

Altera Technical Services 1

How to Run Industry-Standard Benchmarks on

the Cyclone V SoC and Arria V

SoC FPGAs

Altera Technical Services 2

1 Overview

1.1 Introduction

This how-to guide discusses how to obtain, compile and run industry-standard processor performance benchmarks on the Cyclone

V SoC Development Kit. Using the steps outlined in this document, you can understand how to obtain and run benchmarks on

your system and compare to the stated results. Once you have validated your system setup and measurement techniques using this

document, you can choose additional benchmarks or create your own benchmarks which best represent your end application for

performance analysis purposes. Because the dual-core ARM® Cortex™-A9 processor subsystem is the same architecture between

the Cyclone V SoC and the Arria V SoC, the techniques described in this application note can be readily applied to the Arria V

SoC Development Kit, although the Arria V SoC results will be faster because it has a maximum processor frequency of up to

1.05 GHz and a higher performance main memory subsystem.

1.2 Benchmark Overview

CoreMark, Dhrystone, and Whetstone are processor core related benchmarks. Please refer to the table below to understand the

goals of and hardware elements used by each benchmark.

Benchmark Emphasis Hardware Elements Utilized

CoreMark Processor core, cache memory read/write CPU Pipeline, L1 cache

Dhrystone Integer and branch operations CPU Pipeline, Integer ALU, L1 cache

Whetstone Floating point operations CPU Pipeline, NEON/FPU, L1 cache

STREAM and LMbench are memory intensive benchmarks. They are commonly used and well respected benchmarks for

measuring embedded system memory performance. The table below summarizes the differences between these two benchmarks.

Benchmark Emphasis

STREAM Mostly sequential data stream of memory writes and reads

LMBench Random memory writes and reads

Using different tool chains to compile the benchmarks may result in different benchmark results. The results are also affected by

compile flags such as optimization level, single core or dual cores, whether or not neon is used, or whether or not hardware

floating point is used.

1.3 Setup: Device, Hardware and Software

 Device and Hardware

o Cyclone V SoC Development Kit Rev C

o CPU Core frequency: 925 MHz

o DDR frequency: 400 MHz, 32bit physical interface width

 Software

o SD pre-build image stored at <QUARTUS_INSTALL>\embedded\embeddedsw\socfpga\prebuilt_images folder

after install SoC EDS tool, pre-build image used in this guide is included in SoC EDS 15.0 tool.

o Arm-linux-gnueabihf-gcc, Linux GCC compiler tool chain from Linaro, version 4.8.3 shipped with the SoC EDS

15.0, after ds-5 is installed on the machine, this GCC compiler is located at

<QUARTUS_INSTALL>\embedded\ds-5\sw\gcc, the default configuration of this toolchain is:

 Runs on all Cortex-A profile devices

 Tuned for the Cortex-A9

 Thumb-2

Altera Technical Services 3

 'hard float' calling convention

 Uses the VFPv3-D16 FPU

 Multiarch and multilib enabled

o Linux OS with kernel version 3.10.31-ltsi

1.4 Compile Options

The following options can be used during binary building process:

 -lm (Math Library)

 -mcpu=cortex-a9 (Gears compilation to the cortex-A9)

 -mfloat-abi=hard (Makes use of the floating-point unit)

 -O2, O3 or Ofast (Optimization level 2, 3 and fast)

 -fopenmp (Makes use of multiple cores if the benchmark uses it)

 -mfpu=neon (Uses neon)

 -lrt and -lpthread (helpful for boosting speed by using rt and pthread library)

For the arm-linux-gnueabihf-gcc toolchain used in this guide, the –mcpu, -mfloat-abi, and -mfpu options are not needed

during the build process because the toolchain uses these options by default. If you use an alternative toolchain, such as Code

Sourcery Pro, you must use these three options explicitly. The examples shown in the Compile sections below uses all the needed

options explicitly in the command line. You can refer to this command line to determine the correct flags and add them into the

command line of the toolchain you choose as needed.

1.5 Moving Compiled Binaries onto an SD Card

This section describes how to copy a binary file onto an SD card. Your SD card with a Linux install should have a Linux

filesystem.

1. Plug your SD card into the SD card reader attached to your PC.

2. Choose a directory to be your working directory and copy your compiled binaries to that directory on the SD card.

Altera Technical Services 4

2 Coremark

2.1 Introduction

CoreMark 1.0 is capable of testing a processor’s basic pipeline structure, as well as its ability to efficiently complete basic

read/write operations, integer operations, and control operations. Coremark was designed to replace Dhrystone, like Dhrystone

benchmark, it entirely fits in the L1 cache of the Cortex-A9 also.

To obtain a copy of the benchmark, go to http://www.eembc.org/coremark/download.php

1. Click on the register link.

2. Fill out the registration form.

3. Wait for a response e-mail to arrive.

4. Follow the e-mail link to a login page, and use your login information.

5. Click the download link.

6. Download the top four links.

2.2 Compile

Unpack the software tarball to the default directory

Move to that directory, and go into /coremark_v1.0/linux

Edit the core_portme.mak file to define the toolchain and options:

1. Change the line that says “CC” to “CC = arm-none-linux-gnueabihf-gcc”

2. Change the line that says “EXE = exe” to “EXE= ”, otherwise the tool generates binary file with postfix .exe.

3. Comment out this line: #FLAGS_STR = "$(PORT_CFLAGS) $(XCFLAGS) $(XLFLAGS) $(LFLAGS_END)", use

command line arguments to main during compiling process, and save the file

Edit the core_portme.h to execute both threads in parallel on dual core HPS devices. If you don’t make this change, only one

thread is running and only one core is used in the process, greatly reducing the performance on the benchmark.

1. Change “#define USE_PTHREAD 0” to “#define USE_PTHREAD 1”

2. Change “#define MULTITHREAD 1” to “#define MULTITHREAD 2”

3. Save the file.

To compile the benchmark, move up one level and navigate to the /coremark_v1.0 folder, then type:

$make compile PORT_DIR=linux XCFLAGS="-O3 -Ofast -mcpu=cortex-a9 -mfpu=neon -lrt -lpthread "

 -lrt and -lpthread gives a speed boost.

 -O3 and –Ofast gives the best performace

Move the coremark binary file onto the SD Card.

2.3 Execute

1. On your development board, insert the SD card and power up the board.

2. Navigate to the directory where the coremark binary is located.

3. Execute the binary in the embedded command shell:

http://www.eembc.org/coremark/download.php

Altera Technical Services 5

4. $./coremark

2.4 Result

The Coremark score for the Cyclone V SoC is 4932.

Cyclone V SoC Coremark/MHz

4932/925= 5.33 Coremark/MHz

For the Arria V SoC running at 1.05 GHz, the EEMBC-certified CoreMark score is 5654.

Arria V SoC CoreMark/MHz

5654/1050 = 5.38 CoreMark/MHz

It is strongly recommended that you run the CoreMark benchmark on your test system first. This way you can validate your

system setup and measurement techniques before moving to more advanced system level benchmarks such as LMBench,

STREAM or other EEMBC system application benchmark suites (e.g. TeleBench, AutoBench, etc.).

Altera Technical Services 6

3 Whetstone

3.1 Introduction

This section describes the steps of running the Whetstone benchmark on the Altera Cyclone V SoC FPGA.

The Whetstone benchmark 1.2 is designed to measure the processor performance for double precision floating point numerical

applications. The provided benchmark is normalized by the CPU clock frequency.

3.2 Compile

whetstone.c can be downloaded from www.netlib.org/benchmark/whetstone.c

Compile the benchmark using the following optimizations:

$ arm-linux-gnueabihf-gcc –o whetstone_arm ./whetstone.c -lm -O3 -mcpu=cortex-a9 -mfloat-abi=hard -fopenmp -

mfpu=neon -static

 -O3 gives the best performace

 -mfloat-abi = hard is to use hardware float-point unit

 -fopenmp makes using multicores

Copy the whetstone_arm file onto the SD Card.

3.3 Execute

1. On your development board, insert the SD card and power up the board.

2. Move to the directory with the whetstone_arm binary.

3. Execute the binary in the embedded command shell:

4. $./whetstone 5000000

3.4 Result

The Whetstone result is 1529.1 MIPS.

Whetstone result – Normalized per Core Frequency

1529.1/925 = 1.65 MIPS/MHz

http://www.netlib.org/benchmark/whetstone.c

Altera Technical Services 7

4 Dhrystone

4.1 Introduction

The Dhrystone 2.1 benchmark contains no floating point operations, so it provides an indicator of general-purpose ("integer")

performance of new computers. Its small size allows it to easily fit inside most L1 caches; as a result, the results demonstrate CPU

performance and not system performance.

Download dhry-c from www.netlib.org/benchmark/dhry-c.

4.2 Compile

To compile the Dhrystone benchmark, type the following in your terminal:

$ sh dhry-c

$arm-linux-gnueabihf-gcc -O2 -mcpu=cortex-a9 -mfloat-abi=hard -fopenmp -static -mfpu=neon -o dhrystone_arm -

DTIME dhry_1.c dhry_2.c

 -O2 gives the best performace

 -fopenmp makes using multicores

Move the dhrystone_arm file onto the SD Card.

4.3 Execute

1. On your development board, insert the SD card and power up the board.

2. Navigate to the directory where the whetstone_arm binary file is stored.

3. Execute the binary in the embedded command shell:

4. $./dhrystone_arm

5. When you input the number of runs, you are prompted to input a bigger number if your chosen number is not big enough.

4.4 Result

DMIPS = 2941176.5/1757 = 1674

DMIPS/MHz = 1674/925= 1.81

The execution process and result are shown in the figure below.

https://en.wikipedia.org/wiki/Floating_point
http://www.netlib.org/benchmark/dhry-c

Altera Technical Services 8

Altera Technical Services 9

5 LMBench

5.1 Introduction

The LMbench 3.0 benchmark assesses random data access performance. LMBench testing items shown in this guide includes

memory read, memory write, partial memory read, partial memory write, and partial memory read/write performance. The

benchmarks included in LMBench 3.0 include the following:

 Bandwidth benchmarks

o Cached file read

o Memory copy (bcopy)

o Memory read

o Memory write

o Pipe

o TCP

 Latency benchmarks

o Context switching

o Networking: connection establishment, pipe, TCP, UDP, and RPC hot potato

o File system creates and deletes

o Process creation

o Signal handling

o System call overhead

o Memory read latency

 Miscellaneous

o Processor clock rate calculation

To obtain a copy of the benchmark,

1. Go to www.bitmover.com/lmbench/get_lmbench.html

2. Click the link to download LMBench

3. Unpack the software tarball to the default directory

4. Navigate to the extracted lmbench3 directory

5.2 Compile

When compiling this benchmark, you may encounter this error message:
make[2]: *** No rule to make target `../SCCS/s.ChangeSet', needed by `bk.ver'. Stop.

To avoid this error, type the following into your terminal:

 $ mkdir ./SCCS

http://www.bitmover.com/lmbench/get_lmbench.html

Altera Technical Services 10

 $ touch ./SCCS/s.ChangeSet

To compile the LMBench benchmark, type:

$ make CC=arm-linux-gnueabihf-gcc OS=armv7l-linux-gnu CFLAGS=“ -mcpu=cortex-a9 -Ofast -lrt”

 -lrt gives a speed boost.

 -Ofast gives the best performace

Navigate up one directory.

Copy the entire lmbench3 directory to the SD card.

5.3 Execute

1. On your development board, insert the SD card and power up the board.

2. In your terminal, navigate to the lmbench3/scripts directory

3. Type:

$./config-run

4. Follow the benchmarking wizard based on the test you wish to run. For example, the following configuration runs the

memory read and write bandwidth benchmark:

MULTIPLE COPIES [default 1]: 1

Job placement selection [default 1]: 1

MB [default 350]: 64

SUBSET (ALL|HARWARE|OS|DEVELOPMENT) [default all]: Enter

FASTMEM [default no]: Enter

SLOWFS [default no]:Enter

DISKS [default none]: Enter

REMOTE [default none]: Enter

Processor mhz [default 498 MHz, 2.0080 nanosec clock] 925

FSDIR [default /tmp] :Enter

Status output file [default /dev/tty] :Enter

Mail results [default yes] no

5. After the configuration process is finished, type the command below in the embedded command shell:

 $./results

6. Wait for the test to finish. This test could take some time; for example the configuration above requires about 40 minutes

to complete. If you choose 32 MB instead of 64MB, the test runs in about half the time. After the benchmark testing is

finished, the results are written to the result/armv7l-linux-gnu folder, with the name socfpga.X, where X is the run

number. This protocol prevents previous result files from being overwritten.

7. Next, navigate to the lmbench3/results/armv7l-linux-gnu/ directory

8. Read the socpfpga.X file to see the benchmark results, this socfpga.X file can be opened by a text editor after you copy it

onto the PC.

You may find following items in the result file.

 Memory read bandwidth

 Memory partial read bandwidth

 Memory write bandwidth

 Memory partial write bandwidth

 Memory partial read/write bandwidth

Altera Technical Services 11

5.4 Result

The vertical axis shows the memory bandwidth vs. the data transfer size along the horizontal axis. (Higher is better for

the memory bandwidth.) The curve can be grouped into three stages as the data size grows from requiring only the L1

cache (32KB data + 32KB instruction) to requiring only the L1 and the L2 caches (512KB shared) to requiring the use of

external memory. So you can see that read throughput begins to decrease when the data size is bigger than 32KB and

write throughput begins to decrease when the data size is bigger than 512KB.

Please refer to diagram below for information about memory read and write bandwidth.

Please refer to diagram below for memory partial read, partial write and partial read/write bandwidth results.

Altera Technical Services 12

6 STREAM

6.1 Introduction

The STREAM benchmark is a simple synthetic benchmark program that measures sustainable memory bandwidth (in MB/s) and

the corresponding computation rate for simple vector kernels. STREAM measures performance using a sequential data stream of

memory writes and reads.

To obtain the benchmark, go to www.cs.virginia.edu/stream/FTP/Code/, and download the files in the link.

6.2 Compile

To compile the benchmark, open your terminal, navigate to the directory where the stream source code is storedand type:

$ arm-linux-gnueabihf-gcc –o stream_arm ./stream.c -Ofast -mcpu=cortex-a9 -fopenmp -static

 -Ofast gives the best performace

 -fopenmp makes using multicores

Move the stream_arm binary file onto the SD Card.

6.3 Execute

1. On the development board, insert the SD card and power up the board.

2. In your terminal, navigate to the directory where the stream_arm binary file is stored and execute the binary in the

embedded command shell:

./stream_arm

6.4 Result

The figure below details the execution process and results.

http://www.cs.virginia.edu/stream/FTP/Code/

Altera Technical Services 13

For normalized STREAM memory bandwidth (MB/s) results per memory bus frequency, please refer to the table below.

Function Rate (MB/s)

Copy 2.48

Scale 3.17

Add 2.87

Triad 2.79

Altera Technical Services 14

7 Conclusion
This document describes the process of how to obtain, compile and execute benchmark results for the CoreMark,

Dhrystone, Whetstone, LMBench and STREAM processer performance benchmarks on the Cyclone V SoC Development

Kit. Because the processor subsystems are the same, these binary files can also be used on the Arria V SoC Dev kit. It is

recommended that you run the CoreMark benchmark on your test system first to validate your system setup and

measurement techniques before moving on to more advanced system-level benchmarks. Using these techniques, you can

select the benchmarks that best represent major elements of your end application or create your own benchmarks for

further performance analysis. All benchmark results are dependent on the system configuration and the benchmark

numbers stated in this report are only valid for the system configurations shown.

