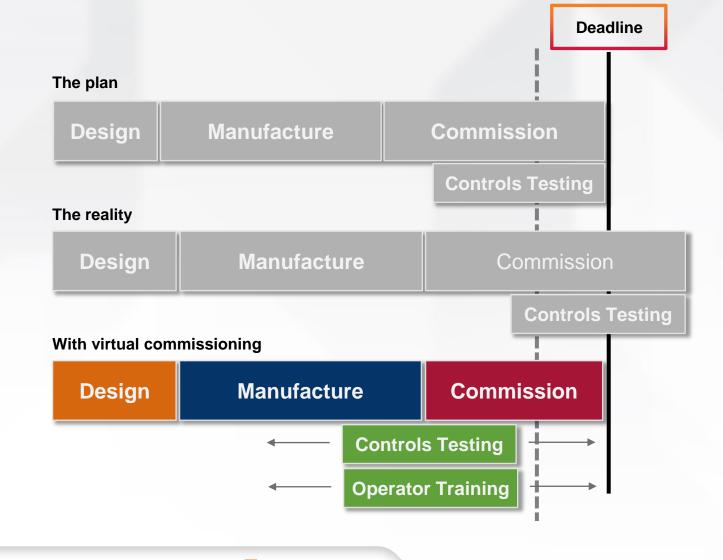


Device Emulation


THEODOROS ASLANIDIS • SENIOR COMMERCIAL ENGINEER SEBASTIAN ZAJAC • EMULATE3D SUPPORT ENGINEER

expanding human possibility°

Why Controls Testing with Emulate3D?

- Take Commissioning Off the Critical Path
- Perform More Testing, Sooner
- Perform Testing that May be Otherwise Impossible
- Empower Multiple Engineering Disciplines to Work on the Same Systems in Parallel

Rockwell

Automation

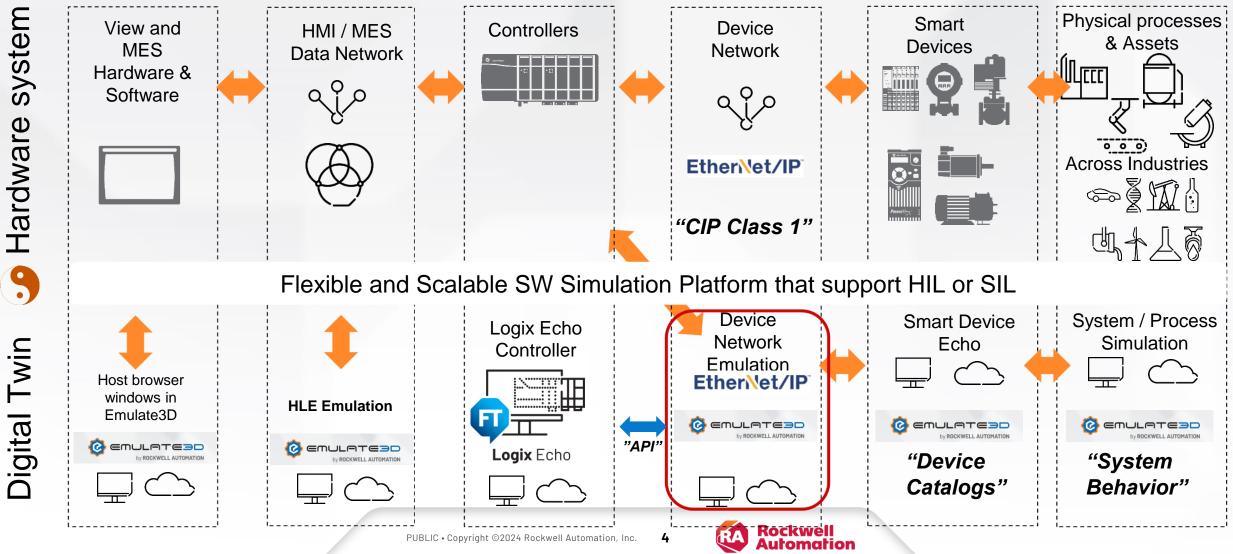
Objective for Emulate3D Controls Testing

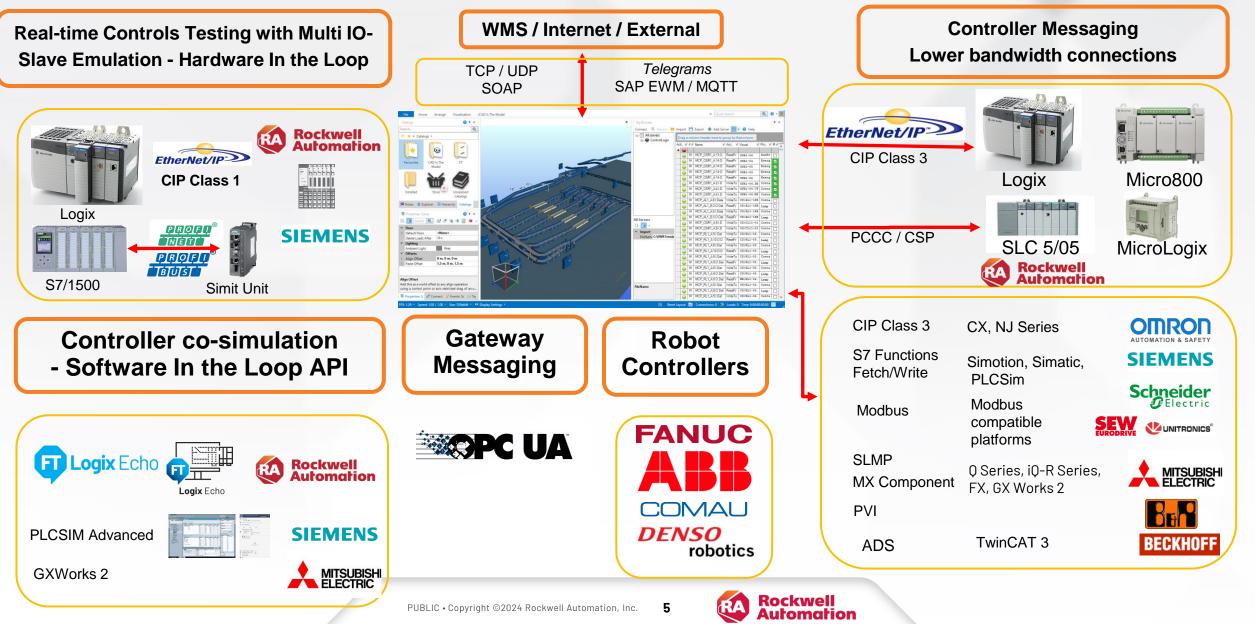
Virtual Commissioning system fidelity is a key factor to success with Emulate3D

- **Simplify** the method of connecting a Controller to a Controls Testing model in Emulate3D while improving the Emulation fidelity of the system by providing Device Echo capabilities
- Mimic the **local intelligence of IO modules** and **smart devices** as part of their control system. Rockwell devices are configured via **AOP**'s
- Include the physical wiring system for testing by using the Wiring Diagram feature
- Implement the **Diagnostics and Fault Handling** of the devices.
- Minimum to zero **PLC program modifications** same code for digital twin and real hardware.
- Deliver IO and RA basic device echo capability.
- Provide the Device Echo API to the customers or business units who want to develop high fidelity emulations – particularly for complex systems like Motor Control Devices and advanced Smart Device Components like Sensors.
- Add-On Profiles (AOP) determine the module behavior as well as the connection type, thus defining the IO Mapping in the controller, smart functions.

I/O and Components

Motor Control Devices





Digital Twins deployment

Most elements of a system can be emulated with various levels of fidelity based on specific objectives. The current focus is on "controls logic testing", not on detailed "digital design prototyping"

Emulate3D Connectivity Overview

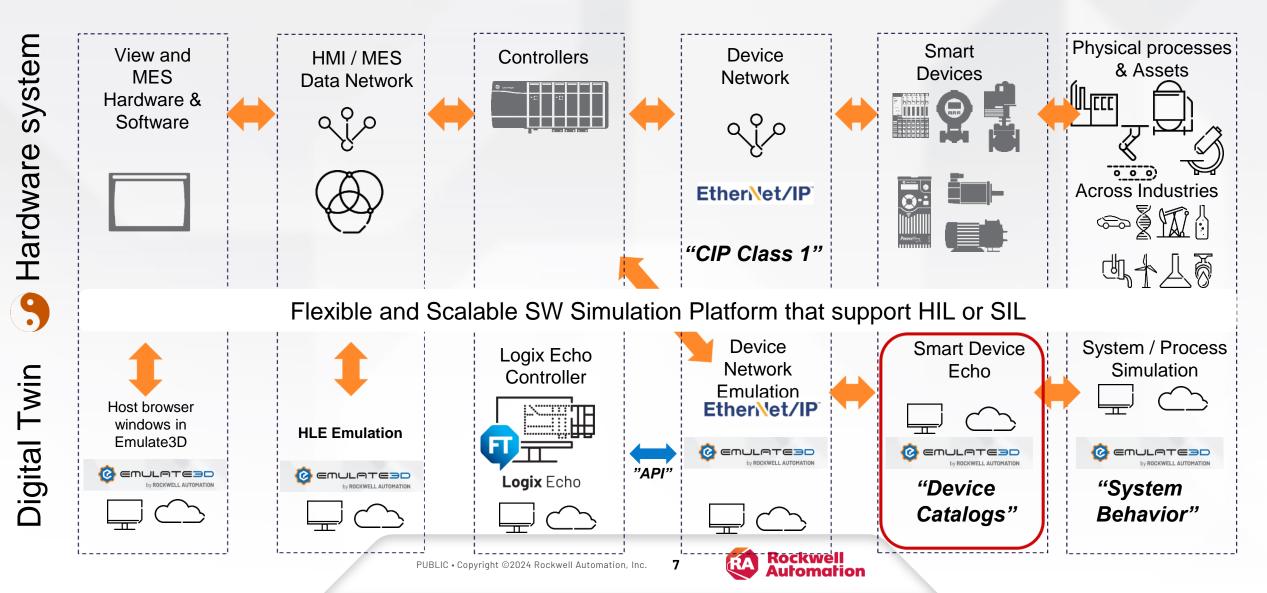
IO Connectivity - EtherNet/IP CIP class 1 to Logix

• The entire IO tree is available to your application:

- All Device connection information
- Looks for tags / IO modules "in use" in the simulation.
- For those, identify the IP address of the parent adapter node and attempt to emulate the IP address.
- If the same node is on the physical network, the DNE app will back off.
- Multiple IP nodes are emulated at once utilizes multi-homing of

the node IP addresses on the Windows host

- When the app exits, the IP addresses are released again
- On Change events indicate updates from/to the controller
- IO in the local rack is excluded from the class 1 connection but can be reached over Class 3.


Pre-requisites:

- Administrative rights on E3D computer
- CIP Class 1 connection
- Physical Logix controller, or
- FactoryTalk Logix Echo API (req. for Safety IO)
- Firewall exception
 - Add public exception for IPCHost.exe
- RSLinx configuration
 - Disable "Accept UDP Messages on Ethernet Port"
- FactoryTalk Linx configuration
 - Disable "Listen on Ethernet/IP encapsulation ports" for all Drivers
- We do not do Class 1 to other tags e.g. P/C tags.
 => We do support a 1756-Module emulator (~480 bytes) Note that this requires modifying PLC code to remap / copy controller data to/from that IO datablock.

Smart Device Echo

Our initial focus is on various IO components, but intelligent devices are equally important

Device Echo API for Rockwell Devices and I/0

Enables emulating the **smart logic behavior** of the device

- Alarms Input value too high, too low, excessive rate of change
- Outputs scheduled outputs, program mode, safe state behavior
- Faults blown fuse, discrepancy faults, fault latching
- Power supply module power, field power
- Network faults module unplugged, cable unplugged
- **Input filters** de-bouncing example of a Hardware Firmware function which is not emulated, but the setpoint value is transferred to the model for validation
- And much more...
- All these devices are configured via an AOP in Logix Designer and thus a core part of the control system/code.

Ch00 - Alarms		
Disable All Alarms		
Process Alarming		
🗹 Latch Process Alarms		
High High Limit:	95.0	%
High Limit:		
_	90.0	%
Low Limit:	10.0	%
	1010	
Low Low Limit:	5.0	%
	0.0	
Deadband:	2.0	%

Rate Alarming

🗹 Enable Rate Alarm Latching

Rate Alarm Limit:

6.0 %/s

5094-0B16 Configuration example

A mainstream digital output module with a typical feature set for output fault handling

Channel configuration main dialogs

General	Points												
Connection													
Module Info Points		0	utput St	ate During	Ι	Fault Mo	de	Output Sta	ite	Output State whe		Enable	
	Point	Program	n Mode	Fault Mode	1	Duratio	n	Final Sta	te	Communications I in Program Mode		No Load Diagnostics	Diagnostics
	0	Off	\sim	On 📐	2	5 s	\sim	Off	\sim	Program Mode	\sim		
	1	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Fault Mode	\sim		
	2	Off	\sim	Hold .	2	10 s	\sim	On	\sim	Program Mode	\sim	\sim	
	3	On	\sim	Off 📐	2	2 s	\sim	On	\sim	Fault Mode	\sim	\checkmark	
	4	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim	\checkmark	
	5	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim	\checkmark	
	6	On	\sim	Off 📐	/	Forever	\sim	Off	\sim	Fault Mode	\sim		
	7	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim		
	8	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim		
	9	Off	\sim	Off 📐	/	Forever	\sim	Off	\sim	Program Mode	\sim		
	10	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim		
	11	Off	\sim	Off 📐	2	Forever	\sim	Off	\sim	Program Mode	\sim		
	12	Off	\sim	Off 📐	/	Forever	\sim	Off	\sim	Program Mode	\sim		
	13	Off	\sim		2	Forever	\sim	Off	\sim	Program Mode	\sim		
	14	Off	\sim	Off 📐	/	Forever	\sim	Off	\sim	Program Mode	\sim		

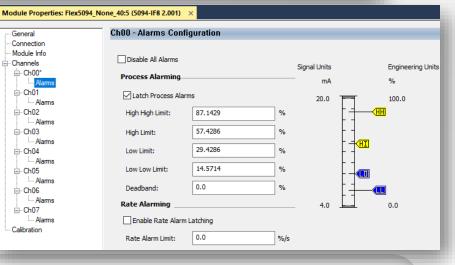
The "points" dialogue shows all relevant configuration and configurable diagnostic data which needs to be simulated / verified. The Configuration comes in 5000_D0_DIAG_Channel and all status data is sent to Channel_D0_Diag.

- The IO **Configuration** is done In **Logix Designer** during controller programming, not in Emulate3D.
- The **Virtual Commissioning process** will need to validate that all fault and diagnostic data are configured as needed for the customer's application and behave accordingly when the signals are raised in the controller input image.
- A script can mimic the behavior of the module into Logix and allows for fault injections.

Module config Data, Input back to Logix and output from the controller

	Name	Value 🕈	Data Ty	De
	Flex5094_None_40:7:C			DO16_Diag:C:0
	▲ Flex5094_None_40:7:C.Pt00	{]	AB:5000	_DO_Diag_Channel:C:0
	Flex5094_None_40:7:C.Pt00.FaultFinalState	0	BOOL	
	Flex5094_None_40:7:C.Pt00.FaultMode	0	BOOL	
Configuration	Flex5094_None_40:7:C.Pt00.FaultValue	1	BOOL	
data	Flex5094_None_40:7:C.Pt00.FaultValueStateDuration	5	SINT	
uata	Flex5094_None_40:7:C.Pt00.NoLoadEn	1	BOOL	
	Flex5094_None_40:7:C.Pt00.ProgMode	0	BOOL	
	Flex5094_None_40:7:C.Pt00.ProgramToFaultEn	0	BOOL	
	Flex5094_None_40:7:C.Pt00.ProgValue	0	BOOL	
	Flex5094_None_40:7:C.Pt01	{}	AB:5000	_DO_Diag_Channel:C:0
	Name	Value	+	Data Type
	Flex5094_None_40:7:1		{}	AB:5000_DO16_Diag:I:0
Diagnostic	Flex5094_None_40:7:I.ConnectionFaulted		0	BOOL
-	Flex5094_None_40:7:1.DiagnosticActive		0	BOOL
feedback data	▶ Flex5094_None_40:7:I.DiagnosticSequenceCoun	t	0	SINT
	Flex5094_None_40:7:1.Pt00		{}	CHANNEL_DO_DIAG:I:0
	Flex5094_None_40:7:1.Pt00.Data		0	BOOL
	Flex5094_None_40:7:I.Pt00.Fault		0	BOOL
	Flex5094_None_40:7:1.Pt00.NoLoad		0	BOOL
	Flex5094_None_40:7:1.Pt00.ShortCircuit		0	BOOL
	Flex5094_None_40:7:1.Pt00.Uncertain		0	BOOL
	Flex5094_None_40:7:I.Pt01		{}	CHANNEL_DO_DIAG:I:0
	Flex5094_None_40:7:I.Pt02		{}	CHANNEL_DO_DIAG:I:0
	Flex5094_None_40:7:I.Pt14		{}	CHANNEL_DO_DIAG:I:0
	Flex5094_None_40:7:I.Pt15		{}	CHANNEL_DO_DIAG:I:0
	Flex5094_None_40:7:1.RunMode		0	BOOL
Actual	Flex5094_None_40:7:0		{}	AB:5000_DO16:0:
Output signal	Flex5094_None_40:7:O.Pt00		{}	CHANNEL_DO:O
ockwell	Flex5094_None_40:7:O.Pt00.D	ata	0	BOOL

5094-IF8 Configuration Options example


A mainstream analog input module with a typical feature set for signal pre-processing.

Channel configuration main dialogs

Module Propeone_40:5 (5094-IF8 2.001) ×

General Connection Module Info	Cha	nnels		-		-			-	-		-	-	
Channels* Calibration		Chann	el Disable Channel	Input Type	Input Range	High Signal	Low Signal	Units	High Engineering	Low Engineering	Units	Digital Filter (ms)	Disable Alarms	Calibration Status
	1	0		Current 🗸	4mA to 20mA 🔍	20.0	4.0	mΑ	100.0	0.0	%	1 🌻		
	1	1		Current 🧹	4mA to 20mA 🗸	20.0	4.0	mΑ	100.0	0.0	%	0 🌩	\checkmark	
		2		Current 🗸	0mA to 20mA 🔍	20.0	0.0	mΑ	100.0	0.0	%	0 🌩	\checkmark	
		3		Current 🗸	0mA to 20mA 🔍	20.0	0.0	mΑ	100.0	0.0	%	0 🌩	\checkmark	
	1	4		Current 🧹	0mA to 20mA 🔍	20.0	0.0	mA	100.0	0.0	%	0 🌩		
	1	5		Voltage 🗸	0V to 5V 🔍	5.0	0.0	V	5.0	0.0	V	0 🌩	\checkmark	
	1	6		Voltage 🗸	0V to 10V 🔍	10.0	0.0	V	10.0	0.0	V	0 🌩		
	1	7		Voltage 🗸	-10V to 10V 🗸	10.0	-10.0	V	10.0	-10.0	V	0 🌻	\checkmark	

🖞 Module Propertie	one_40:5 (5094-IF8 2.00		
General	ChOO		ł
···· Connection ···· Module Info ·□·· Channels ·□·· Ch00*	Disable Channel	Current (mA) V Scaling	
⊡ Ch01 — Alams	Input Range:	4mA to 20mA % High Signal: High Engineering:	
⊡ Ch02 Alams ⊡ Ch03		20.0 mA = 100.0 % Low Signal: Low Engineering: %	
Alarms ⊡ Ch04 Alarms		$\begin{array}{c} \text{Ever Engineering.} \\ \hline 4.0 \\ \text{Filters} \end{array} \qquad $	I
⊡ Ch05 Alams ⊡ Ch06		Notch Filter: 500 Hz V	
Alarms ⊡ Ch07 Alarms		Digital Filter: 1 ms Diagnostics	
····· Calibration		Open Wire Detection	

Rockwell

Automation

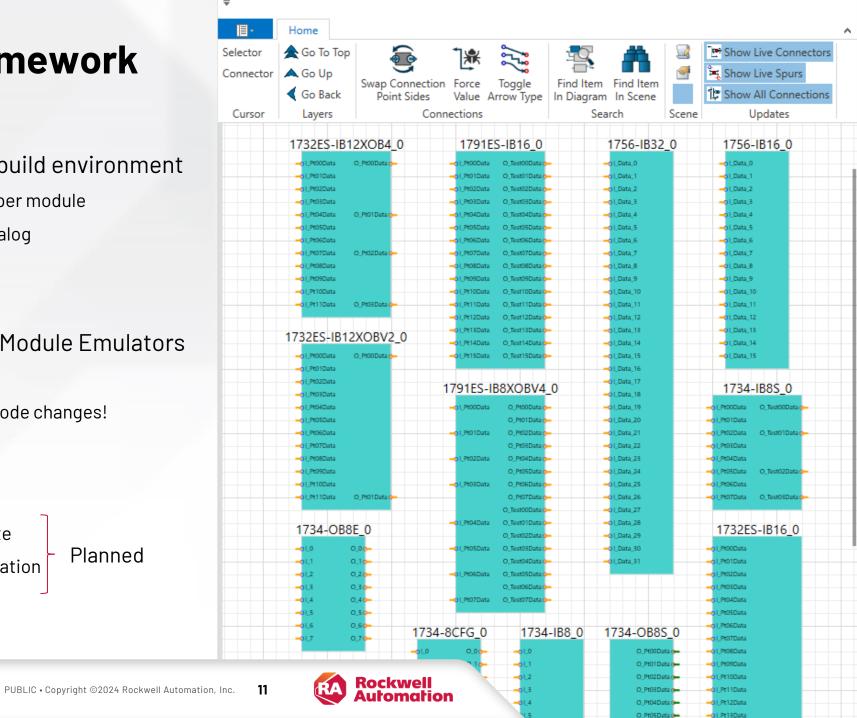
Flex5094_None_40:5:C	{}		AB:5000_AI8:C:0
Flex5094_None_40:5:C.Ch00	{}		AB:5000_AI_Channel:C:0
Flex5094_None_40:5:C.Ch00.Range	5	Decimal	SINT
 Flex5094_None_40:5:C.Ch00.SensorType 	0	Decimal	SINT
Flex5094_None_40:5:C.Ch00.NotchFilter	2	Decimal	SINT
Flex5094_None_40:5:C.Ch00.AlarmDisable	0	Decimal	BOOL
Flex5094_None_40:5:C.Ch00.ProcessAlarmLatchEn	1	Decimal	BOOL
Flex5094_None_40:5:C.Ch00.RateAlarmLatchEn	0	Decimal	BOOL
Flex5094_None_40:5:C.Ch00.OpenWireEn	0	Decimal	BOOL
Flex5094_None_40:5:C.Ch00.Disable	0	Decimal	BOOL
Flex5094_None_40:5:C.Ch00.TenOhmOffset	0	Decimal	INT
Flex5094_None_40:5:C.Ch00.DigitalFilter	0	Decimal	INT
Flex5094_None_40:5:C.Ch00.LowSignal	4.0	Float	REAL
Flex5094_None_40:5:C.Ch00.HighSignal	20.0	Float	REAL
Flex5094_None_40:5:C.Ch00.LowEngineering	0.0	Float	REAL
Flex5094_None_40:5:C.Ch00.HighEngineering	100.0	Float	REAL
Flex5094_None_40:5:C.Ch00.LLAlarmLimit	14.5714	Float	REAL
Flex5094_None_40:5:C.Ch00.LAlarmLimit	29.4286	Float	REAL
Flex5094_None_40:5:C.Ch00.HAlarmLimit	57.4286	Float	REAL
Flex5094_None_40:5:C.Ch00.HHAIarmLimit	87.1429	Float	REAL
Flex5094_None_40:5:C.Ch00.RateAlarmLimit	0.0	Float	REAL
Flex5094_None_40:5:C.Ch00.AlarmDeadband	0.0	Float	REAL

Config Data sent to Emulate3D

Input Data received from Emulate3D which Logix needs to Respond to / Fault Handle.

Name		Value 🗧	FStyle	Data Type
Flex5094_No):5:I	{}		AB:5000_AI8:I:0
Flex5094_	40:5:I.RunMode	0	Decimal	BOOL
Flex5094_	40:5:1.ConnectionFaulted	0	Decimal	BOOL
Flex5094_	40:5:1.DiagnosticActive	0	Decimal	BOOL
Flex5094_	40:5:1.DiagnosticSequenceCount	0	Decimal	SINT
▲ Flex5094_	40:5:I.Ch00	{}		CHANNEL_AI_DIAG:I:0
Flex509	ne_40:5:I.Ch00.Fault	0	Decimal	BOOL
Flex509	ne_40:5:1.Ch00.Uncertain	0	Decimal	BOOL
Flex509	ne_40:5:1.Ch00.OpenWire	0	Decimal	BOOL
Flex509	ne_40:5:1.Ch00.OverTemperature	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.FieldPowerOff	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.NotANumber	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.Underrange	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.Overrange	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.LLAlarm	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.LAlarm	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.HAlarm	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.HHAlarm	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.RateAlarm	0	Decimal	BOOL
Flex509	ne_40:5:I.Ch00.CalFault	0	Decimal	BOOL
Flex509	ne_40:5:1.Ch00.Calibrating	0	Decimal	BOOL
Flex509	ne_40:5:1.Ch00.Data	0.0	Float	REAL
Flex509	ne_40:5:I.Ch00.RollingTimestamp	0	Decimal	INT

Module Emulator Framework


Tightly integrated into the Demo3D build environment

- Reduced IO Browser bindings one line per module
- Realistic module visuals dedicated catalog
- Support for the Wiring Diagram

Scripting API framework for writing Module Emulators

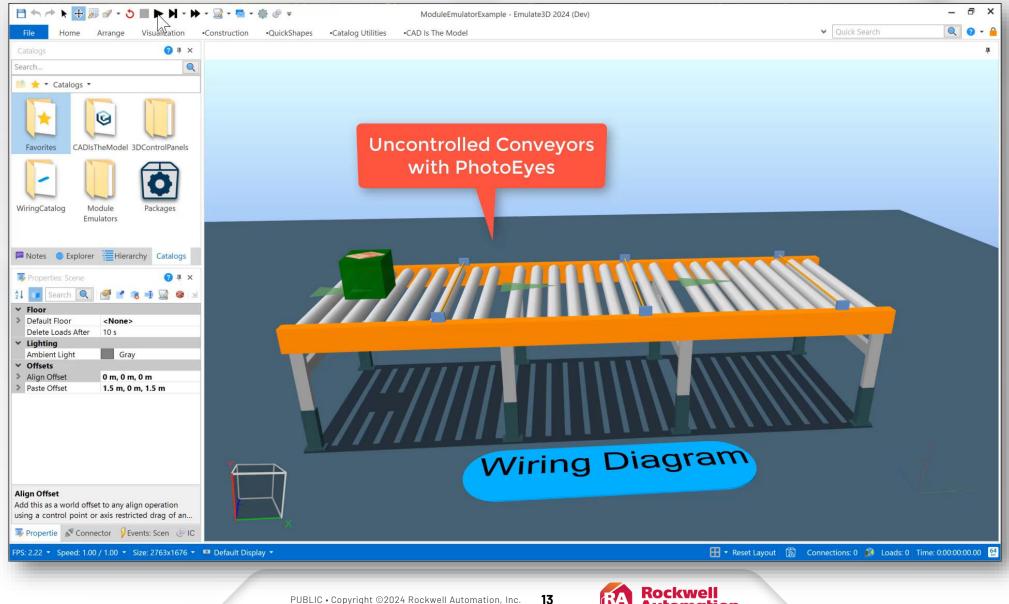
- ✓ CIP Class 1 high fidelity emulation
- CIP Safety no 'gateway' Controller, no code changes! - Only for GuardLogix Echo controllers
- CIP Sync time-sync with Controller
- × CIP Class 3 CIP 1 isn't always appropriate
- × Logix Echo we really want full co-simulation

Planned

Module Emulators

Some prototype emulators already written and available to be used as example code for the API*:

- 1732ES Safety IO
 - IB16, IB12X0BV2, IB12X0B4, IB8X0BV4, IB8X0B8
- 1791ES Safety IO
 - IB16, IB8X0B4
- 1756 IO
 - IA16I, IB16I, IA16, IB16, IC16, IH16I, IM16I, IN16, IV16, IG16, IB16D, IA32, IB32, IV32
 - OA8, OB8, ON8, OC8, OH8I, OX8I, OB8I, OB8EI, OA16I, OB16I, OW16I, OG16, OA16, OB16E, OV16E, OB32
- 1734 10
 - IA2, IB2, IM2, IV2, IA4, IB4, IM4, IV4, IB8, IV8
 - 0A2, 0B2, 0W2, 0X2, 0B2E, 0B2EP, 0V2E, 0A4, 0B4, 0W4, 0B4E, 0V4E,
 - 0B8, 0B8E, 0V8E,
 - IB8S, OB8S Safety
- Add your own... it's an open framework


*CIP 3 Reset functions not fully implemented for the Diagnostic or Electronically Fused modules.

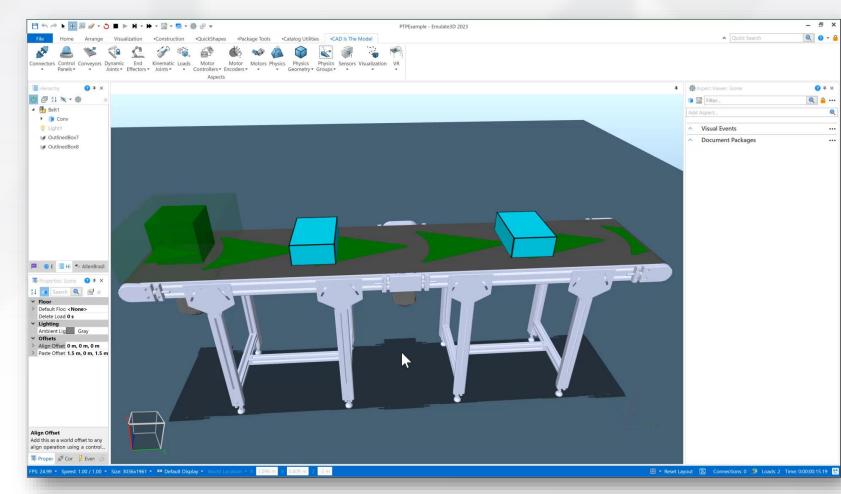
12

Module Emulators Prototypes Example

Automation

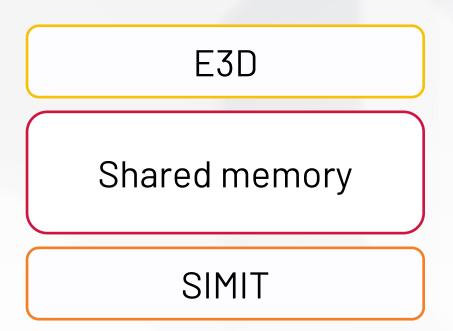
Emulate3D – SIMIT communications enhancements

- Support for communications between E3D and the SIMIT simulation platform is now possible through new tag server protocols:
- SIMIT Shared Memory
- SIMIT External Coupling
- These protocols correspond to couplings in the SIMIT software, which are in charge of signal exchange with external partners (software or hardware)


neral			New coupling		
Select Server Bus / Protocol Server / PLC	Bus / Protocol Warning	~	New coupling Hardware	Standard	Additional
Hardware Adapter	Available ✓ CSP		SIMIT Unit PRODAVE	 OPC DA Client OPC DA Server 	 gPROMS Mechatronics Concept Design
	 EtherNet/IP Modbus OPC UA Other Profibus Profinet 		Emulation Virtual Controller PLCSIM Advanced PLCSIM	OPC UA Client OPC UA Server <mark>Shared Memory</mark>	Plant Simulation E3D.SIMIT TableReader
	 ✓ S7 Functions ✓ SIMIT External ✓ SIMIT Shared Memory 		-		OK Cance

Allen Bradley Velocity Drives Catalog – PowerFlex PTP Mode

This catalog was expanded with the following features


- Added Point To Point Mode (PTP) to PowerFlex 755 & 755T Drives
- Control Mode (Velocity, PTP) is user selectable
- Aspect reads various Parameters from PLC Memory
- IO Bindings reconfigured based upon Control Mode selection
- All PTP Modes implemented (Absolute, Index, Immediate)
- Commission test your logic using the emulated drives

Shared Memory Coupling for SIMIT

- SIMIT communicates with external software, like Emulate3D, over shared memory
- For general purpose data exchange with high performance
- SIMIT allows multiple partners to access the shared memory, not just Emulate3D

Siemens SIMIT External Coupling

- SIMIT communicates with external partners through a custom implementation of the coupling API, specific to that partner only. A built-in example provided is the TableReader coupling
- Allows for E3D-specific functionality and for future features to be added easily
- Two types of signal exchange are supported:
 - Indirect signal exchange More suited to older projects that already contain other external couplings which only use indirect signal exchange
 - Direct signal exchange Better performance and recommended for new projects

Co-simulation (SIMIT RCI)

- SIMIT also allows external partners to assume control of the simulation through the RCI interface, which is combined with the existing E3D co-simulation framework to allow data exchanges to be synchronized with respect to model time.
- The effect of this functionality means that the user does not manually start the SIMIT simulation from within the SIMIT software and then have E3D connect to a running simulation. Instead, E3D automatically starts the SIMIT simulation upon connection. Likewise, when E3D disconnects from SIMIT, then the simulation is automatically stopped.

Co-simulation (SIMIT RCI)

- Similar to existing protocols that allow co-simulation (PLCSIM Advanced, Logix Echo), functionality is controlled in the IO Browser properties
- Scheduled (co-sim disabled) Time is synchronized with real time. IO is performed on a real time schedule.
- Synchronized (co-sim enabled) Time is virtual time and is tightly synchronized with co-simulation partners. IO is synchronized with the model, happening at specific communication points.

Connection	
Address	simitshm:SIMITSHM/SIMITSH
Connection	Protocol properties
▲ SIMITShm	SIMIT Shared Memory
OperatingMode	Synchronized
✓ Server	
Connected	

CTQA – Controls Testing Quality Assurance

Automated testing of Emulate3D builds for Controls Testing features – initial focus on Communications performance

- CTQA is our automated testing platform for Emulate3D's Controls Testing features.
- Previous testing for Controls Testing was an entirely manual process. Automating the tests provides us with multiple advantages, but especially helps to ensure consistent and reliable testing.
- The end goal is to run automated tests to verify the functionality of **every protocol** supported by Emulate3D, in **every version** of the software.
- CTQA will also be used to measure the characteristics of each protocol, to give an indication of the expected performance, and to track performance as development continues to ensure performance does not degrade.

CTQA

Protocols being tested:

- CIP (Class 3, Class 1)
- CSP
- PCCC
- Logix Echo
- S7P
- SIMIT (Unit, Shared Memory, External)
- OPC UA
- TwinCAT Ads
- Modbus
- Mitsubishi MX Component
- Telegrams (TCP, UDP, MQTT)
- And more...

Types of tests being ran:

- Connectivity tests
- Round trip tests
- Protocol characterization tests
 - Time spent at every stage of communications pipeline.
 - Latency (early, average, late)
 - Packets sent/received
- Tests are executed on a successfully unit tested build, using Emulate3D's command line, to replicate an end user's configuration.

THANK YOU

expanding human possibility°

www.rockwellautomation.com