

1

A Variability Management Process for Software
Product Lines

Edson Alves de Oliveira Junior, Itana M. S. Gimenes, Elisa Hatsue Moriya
Huzita

Universidade Estadual de Maringá (UEM)

Departamento de Informática

José Carlos Maldonado

Universidade de São Paulo (USP)

Departamento de Ciências de Computação e Estatística

Abstract1

The software product line approach (PL) promotes the generation of specific products from a set of
core assets for a given domain. This approach is applicable to domains in which products have well-
defined commonalities and variation points. Variability management is concerned with the manage-
ment of the differences between products throughout the PL lifecycle. This paper presents a UML-
based process for variability management that allows identification, representation and delimitation of
variabilities as well as identification of mechanisms for variability implementation. The process is illus-
trated with excerpts of a case study carried out within the context of an existing PL for the Workflow
Management System (WfMS) domain. The case study was carried out based on the experimental soft-
ware engineering concepts. The results have shown that the proposed process has made explicit a
higher number of variabilities than does the existing PL process, and it offers better support for vari-
ability tracing.

1. Introduction
The software product line (PL) approach aims at promoting the generation of specific products of a

domain (product family) based on the reuse of a well-defined infrastructure, called core asset [1].
The benefits obtained with a PL approach include [1, 2]: better understanding of the domains,

more artifact reuse, and less time to market. Practical evidence of these benefits can be seen from or-
ganization reports such as Nokia [3]. As a result, there are several efforts, both academic and industrial,
to reduce the difficulties in the PL adoption [4].

The core asset is the main part of the PL; it contains the architecture of the PL, and its components
are represented in a way that makes clear the common and variable aspects of the potential products of
the PL. The ability and simplicity of producing products from a PL depend on how well its core asset is
designed. The more generic are the artifacts of the core asset, the more products can be generated from
a PL. This generality requires the postponing of design decisions [1, 5] that allow the discrimination of
products. These design decision issues are treated as variabilities.

Although variability management is recognized as an important issue for the success of PLs, there
are not many solutions available in the literature [2]. In addition, each existing solution is applied to
only a specific PL approach. Thus, there is a lack of an overall reasoning about variability management.

Copyright © 2005 Edson Alves de Oliveira Junior, Itana M. S. Gimenes. Permission to copy is hereby granted
provided the original copyright notice is reproduced in copies made.

2

This paper presents a process for variability management which includes tasks for identification,
representation, delimitation of variabilities; and identification of implementation mechanisms of vari-
abilities. The process supports the whole PL lifecycle. In addition, it supports variability tracing and
analysis of the configuration of specific products.

The process was conceived within the context of an existing component-based product line for
Workflow Management Systems (WfMS) [6], [7]. The evaluation of the process was carried out as a
case study which followed the concepts of experimental software engineering.

This paper is organized as follows: Section 2 presents a discussion about important issues of vari-
ability management. Section 3 presents the proposed process. Sections 4 and 5 present lessons learned
and related work. Finally, Section 6 presents the conclusions.

2. Variability Management in Software Product Line

This section introduces the main concepts and issues involved in variability management.
 Variability is the general term used to refer to the variable aspects of the products of a PL. It is
described through variation points and variants. A variation point is the specific place in a PL artifact to
which a design decision is connected. Each variation point is associated with a set of variants that cor-
responds to design alternatives to resolve the variability [2].
 Variability management includes issues such as: (i) variability identification and representation; (ii)
variability binding, and (iii) variability control.
 According to van Gurp, Bosch and Svahnberg [5], a variability can be initially identified based on
the concept of feature. They define a feature as a logical unit of behavior that corresponds to a set of
functional and quality requirements. This concept comes from domain engineering [8] and has been
constantly improved to fit the demands of the product line approach [5, 9, 10, 11].
 Features are usually represented through feature diagrams which are decorated trees that contain
the features identified for a system family [10, 11]. Important attributes usually represented in a feature
diagram are: the relationship between features and variation points, the relationship amongst features,
and the feature binding time.
 There are PL approaches that are purely based on the feature model and Domain Specific Lan-
guages (DSL) [12, 13]. Another important set of PL approaches maps the features to UML models [14,
15, 16] and provides UML extensions to represent variability along the PL lifecycle. The variability
management process proposed in this paper is based on UML.
 Jacobson, Griss and Jonsson [17] propose the currently most popular notation to represent variabil-
ity in use cases. A blob (“•”) is associated to the use case indicating that there are variable aspects as-
sociated with it. However, variabilities are not treated at the actor level. Morisio, Travassos and Stark
[18] introduce a notation for class diagram; in this case the stereotypes “<<V>>” and “<<xorV>>” are
associated to classes and methods. In this work, variability is represented by introducing stereotypes to
the UML models: use case, class and component. In addition, UML notes are used to represent infor-
mation regarding variation points and variants.
 The variability binding time indicates the PL lifecycle milestone in which one of the variants asso-
ciated with the variation point will be chosen [19]. Variability binding constrains also the choice of
implementation mechanisms [20]. We adopt the classification of binding time proposed by Anas-
tasopoulos and Gracek [21] which is: (i) compile time – the variability is resolved either before the
program is compiled or at compile time; (ii) link time – the variability is resolved during module or
library linking, by selecting different library with different versions of exported operations; (iii) run-
time – the variability is resolved during program execution; (iv) update time or post runtime – the vari-
ability is resolved during the program updates or after its execution.
 According to Fritsch, Lehn and Strohm [20] and Becker [22], variability management is related to
every activity of a PL core asset development process. Van Gurp, Bosch and Svahnberg [5] suggest
that the variability management process is composed of the following activities:

• Variability identification – consists of identifying the product differences and their location
within the PL artifacts.

• Variability delimitation – defines the binding time and multiplicity.
• Variability implementation – is the selection of implementation mechanisms.
• Variant management – controls the variants and variation points.

 These activities were used as a basis to conceive our process.

3

3. The Variability Management Process
This section presents the overall variability management process, its activities and its relationship with
the PL development process.
 Figure 1 presents the interaction between the core asset development process, represented by the
activities vertically aligned on the left, and the variability management process, represented by the ac-
tivities defined inside the right rectangle. The variability management process activities are executed by
the PL manager. It is an iterative and incremental process that runs in parallel with the core asset de-
velopment. After the execution of each activity of the core asset development, the variability manage-
ment process is executed, thus progressively taking as input the output artifacts of the core asset
development. As the activities are executed, the number of variabilities tends to increase. As the proc-
ess is iterative, variability updates are allowed from any activity of the process.
 The input and output artifacts of the activities are defined as follows. However, note that the input
artifacts are made available according to the progress of the core asset development activities.
 The proposed process consists of the following activities:

• Variability tracing definition, which takes the use case and the feature models as input and
generates the variability tracing model as output;

• Variability identification, which takes the use case, the static type, and the feature models,
plus the component model as input and generates the same artifacts with the variabilities
identified as output;

• Variability delimitation, which takes the use case, the static type and the feature models, plus
the component model as input and generates the same artifacts with the variabilities limited as
output; and

• Identification of mechanisms for variability implementation, which takes the static type
model and the component model as input and generates the variability implementation model
as output.

 In addition, the process is supported by a metadata model which describes the relationships among
the PL artifacts. This model is described in Section 3.6.
 The process consumes artifacts from the PL core asset as well as producing information for it. An
example is the use case model and the static type model. They feed the variability management process
and return to the core asset the variabilities identified and limited. However, there are models such as
the variability tracing and implementation models that are originated in the variability management
process.
 The following subsections provide a summary of the case study undertaken to evaluate the pro-
posed process and to describe the process activities.

3.1 Case Study

The case study was conceived based on the concepts of experimental software engineering and the
evaluation of software engineering methods and tools [24, 25, 26]. An evaluation plan was developed
consisting of the following activities: identification of the case study context, definition of hypotheses,
selection of the pilot project, identification of comparison methods, planning of the case study, execu-
tion of the case study and analysis of results.
 The context of the case study was an existing component-based product line for Workflow Man-
agement Systems (WfMS) [6], [7]. The design of the product line encompasses important concepts
such as the central role of software architecture, frameworks and patterns. The fact that we represent all
artifacts of the PL in UML makes it easier for designers of traditional approaches to understand our
specification and also enable us to take profit of current support tools such as IBM/Rational Rose [23].
The objective of the case study was to re-specify the existing product line with the introduction of the
proposed variability management process in order to observe the impact on the number of variabilities
identified. Thus, the PL development activities were carried out interacting with the variability man-
agement activities, as established in the proposed process. The number of variabilities identified in the
following models was measured: use case, static type and component. These numbers were than com-
pared to the number of variabilities identified in the previous process.
 The results confirmed that more variabilities were identified after the introduction of the variability
management process (see Figure 6).

4

Figure 1: The variability management process and its interaction with the PL development process.

5

 As support tool we used IBM/Rational Rose and Requisite Pro [23].
 The activities described in the following sections are illustrated with an excerpt of the case study.
For space reasons, the activities of identification and delimitation of variabilities are illustrated through
the use case diagram. The representation of variabilities for other artifacts is similar.

3.2 Variability Tracing Definition

Variability tracing definition receives as input the use case model and the feature model built in the PL
development process. The variability tracing model is built as follows:

• the features of the PL are listed;
• the use cases are listed;
• the relationship between feature and use cases are analyzed;
• crossing relations between use cases and features are marked with a blob.

 This model is represented as a cross reference between features and use cases. For example, the
feature User Communication is related to the use cases (Figure 2): Communicate with Us-
ers, Communicate Via E-mail, Communicate Via Chat and Communicate Via
Teleconference, so the cross reference between them are marked. The model will support the trac-
ing from the features to all UML models that are related to variable aspects throughout the lifecycle.
Thus, if a certain feature needs to be removed from a given product, it is necessary to know the impact
of the removal over related artifacts. The tracing is possible because the features are related to the use
case model that is related to the static type model and the component model. For instance, if the feature
User Communication is not selected for a certain product, the related use cases and its connected
models (static type and component) have to be updated to reflect this.
 The variability tracing model is based on the representation used for feature and use case tracing in
the tool IBM/Rational Requisite Pro [23]. This tool allows indicating which use cases are related to the
features and vice-versa.

3.3 Variability Identification

Variability identification receives as input the use case, feature, static type, and component models
from the development activity in each interaction between the core asset development and the variabil-
ity management process. It aims at progressively identifying the variability associated with the models.
Appendix A presents the stereotypes used to represent variability on the artifacts of the PL. For each
model, there are two columns. The first indicates the UML relation used to represent the type of vari-
ability between the variation point and its variants. The second indicates the stereotype used to indicate
variability.
 The stereotype <<variationPoint>> indicates that a model element represents a variation
point and has associated variants. These variants can be represented with one of the following stereo-
types: <<mandatory>>, indicating a compulsory variant; <<optional>>, indicating a variant
that need not be chosen; <<alternative_OR>>, indicating that zero or more variants can be cho-
sen; and, <<alternative_XOR>>, indicating that only one of the variants can be chosen.
 The stereotypes <<requires>> and <<mutex>> are used to indicate dependency relationship
between variants. The former indicates that once a source variant is chosen, also the target variants
have to be chosen. In contrast, the latter indicates that once a source variant is chosen the target variants
cannot be chosen.
 UML notes are also used to support graphical representation of variabilities. A UML note repre-
sents essential information that allows answering questions such as:

• Which variants are related to a variation point?
• What is the binding time of the variants associated to a variation point?
• Is it possible to add new variants to the variant set associated with a given variation point?

 The UML note associated with a variation point defines:
• the type of the relationship between the variation point and its variants, which are: {} indicat-

ing a mandatory or optional relation, {or} indicating an inclusive relation and {xor} indicat-
ing an exclusive relation;

• the name of the variation point;

6

• the multiplicity of the variation point, indicating the minimum number of variants to be cho-
sen to resolve such variation point;

• the binding time of the variation point; and
• true or false indicating whether the variation point supports the addition of new variants to its

associated set.
 Figure 2 presents an example of variability identification in a use case model. In this Figure, the
UML notes has three “?” because the variabilities were not limited yet.
 Two variabilities were identified in this Figure. One is concerned with different forms of workflow
execution, and the other is related to the kind of communication between workflow users. The former is
represented by the use case Execute Workflow. The associated variants include Execute Workflow
with Priority Control and Execute Workflow Serial. The kind of variability relationship is <<alter-
native_XOR>> because only one of the execution algorithms can be selected. The latter, is repre-
sented by the use case Communicate with Users. The associated variants are Communicate
Via Chat, Communicate Via E-mail and Communicate Via Teleconference. The
kind of variability relationship is <<alternative_OR>> as more than one kind of communication
can be used.
 Variability identification is a domain dependent activity which requires abilities of the PL manag-
ers and analysts. However, some guidelines may be offered, such as:

• elements of the use case model related with the stereotype <<extend>> or elements of the
static type model related by inheritance suggest variation points with associated variants
which are inclusive or exclusive alternative. For instance, in Figure 2, the use cases Execute
Workflow with Priority Control and Execute Workflow Serial represent exclusive alternatives
associated with the variation point Execute Workflow.

• elements of the artifacts related to the stereotype <<include>> in the use case model or to
an association in the static type model suggest either mandatory or optional variation points.
For instance, in Figure 2, the use case Execute Script represents a compulsory variant.

3.4 Variability Delimitation

Variability delimitation aims at defining the following attributes of a variation point: (i) multiplicity; (ii)
binding time, and (iii) possibility, or not, of adding new elements to the associated variant set.
 The multiplicity of a variation point indicates the minimum number of elements of the associated
variant set that must be chosen to resolve the variability. The following rules are applied:

• a variation point with relation type optional has multiplicity 0 (zero), indicating that a variant
can be chosen or not;

• a variation point with relation type mandatory has multiplicity 1 (one), indicating that the as-
sociated variants must be selected;

• a variation point with relation type exclusive alternative has multiplicity 1 (one), indicating
that only one element of the possible set of variants must be selected; and

• a variation point with relation type inclusive alternative has multiplicity ranging from 0 (zero)
to the maximum number of variants associated with the variation point, indicating that any
number of variants of this interval can be chosen.

 The binding time of a variation point, as defined in Section 2, can be as follows:
• Design – the variation point is resolved during the specification of the PL or of its products.
• Implementation – the variation point is resolved at programming time, before compilation.
• Compiling – the variation point is resolved during the compilation process.
• Linking – the variation point is resolved during the module or library linkage process.
• Runtime – the variation point is resolved at the PL product execution time.
• Updating – the variation point is resolved during the PL product update. An example is the in-

clusion of new module to in PL product when it is already running.

7

Figure 2: Variability identification in a use case model.

8

Figure 3: Representation of multiplicity and binding time of variation points in use case models.

9

 The definition of the binding time is essential to determine the choice of implementation mecha-
nisms, which are described in the next section. Figure 3 presents an example of variability delimitation
in a use case model, for the variation points Execute Workflow and Communicate with Us-
ers, identified in Figure 2. The variability “scheduling” has multiplicity 1 as it requires the selec-
tion of only one of the variants: Execute Workflow with Priority Control or Execute
Workflow Serial. The fourth line of the note indicates that the binding time is “compiling”
whereas the fifth line is set to false to indicate that addition of new variants is not allowed. The note
associated with the variability “communication” indicates that 0 (zero) or more variants can be
selected; the binding time is “runtime”, and the addition of new variants is not allowed.

3.5 Identification of Mechanisms for Variability Implementation

The identification of mechanisms for variability implementation aims at selecting the mechanisms to be
used to implement the variability. The input artifacts are the static type and the component models with
their respective variabilities represented and limited, as a result of the previous activity.
 The output artifact of this activity is an implementation model which is represented as a table.
Each row of the table indicates the name of a variability, the artifact element in which it occurs, the
binding time, the implementation mechanism and the implementation strategy. The model was built
based on the variability implementation techniques proposed by Svahnberg, van Gurp and Bosch [35],
Jacobson [17] and Anastasopoulos [21]. These techniques include inheritance, extension, and parame-
terization.
 The implementation mechanism and strategy are chosen based on the binding time and the class or
component in which the variability occurs.
 As an example, Figure 4 presents the static type model for the WfMS PL. The class TypeTool
represents a variation point and the classes TypeInternalTool and TypeExternalTool are the
associated variants. The variability “tool class type” occurs at the class level and it is bound at
compiling time. Thus, a possible implementation mechanism [35] is “Code Fragment Superpo-
sition”. The strategy “override generic source code with specific one us-
ing aspect-oriented programming” guides the variability implementation.

3.6 Variability Tracing and Control

Variability tracing and control aims at defining the relationship between artifacts in order to control
variabilities. It is supported by the process metadata model, presented in Figure 5. This model describes
the relationships among the PL artifacts. It was conceived based on the generic variability model pro-
posed by Becker [22] to support variability management tools. The metamodel defines the relationships
between variant artifacts of a PL and their variation points, variants, binding time and implementation
mechanisms.
 This metamodel together with the variability tracing model allows the association of a feature to
the related use cases and therefore to the elements of the static type and component model. The execu-
tion of this activity consists of the instantiation of the metamodel for the PL.

10

Figure 4: Static Type Model for WfMS.

11

Figure 5: Metadata model to support the variability management process.

12

3.7 Configuration Analysis of Specific Products

Configuration analysis for specific products aims at investigating the impact of selecting possible fea-
tures of the PL artifacts in order to analyse the feasibility of the production of a specific product which
is a PL member. The selection of a feature may imply the selection of a product configuration accord-
ing to the variation points described. Moreover, if the product requires an additional feature there has to
be an analysis of the introduction of this feature in the PL artifacts.
 The fact that the metadata model makes explicit the relationships among artifacts enables the exe-
cution of algorithms of analysis to inspect the PL artifacts. However, we still lack a tool that makes this
analysis possible.
 The completion of this activity represents the end of an iteration of the variability management
process, and thus a return to the PL development activity which triggered the beginning of the iteration.

4. Lessons Learned
In this section, we present the lessons learned from the development and the exercising of the variabil-
ity management process.
 Variability Management Process – the key issue of a PL is the way it articulates and manages its
variable aspects. A variability management process must coexist with any PL core asset development
and product development in order to support the clear specification, tracing, and control of variabilities.
Our studies provided evidence that the variability management process enables the identification, and
therefore the control, of more variabilities than the existing PL, as it establishes a sequence of activities,
notation, guidelines, and support models and artifacts. Moreover, it makes explicit the most important
decisions, such as the number of variants associated with a variation point and the type of choices al-
lowed; the binding time; and the implementation mechanisms.
 Empirical Evaluation of a PL – the evaluation of the proposed variability management process was
carried out based on an empirical study in the form of a quantitative case study [24, 26] which enabled
a clear demonstration of the need of a variability management process. This case study together with
the results of previous work [6] made it possible to create an experimental baseline for a PL. However,
investigation has to proceed to increase the volume of data available for experiments. An experimental
basis for a PL can be built that allow inference of quality attributes of the PL itself and of potential
products.
 UML Models – the proposed process is based on the UML models. It extends these models by
adding stereotypes to represent variability in the feature, use case, static type, and component models.
Most of the stereotypes used in our process were inherited from previous work [15, 27, 28, 29]. In our
process, we introduced the idea of using UML notes to make explicit the multiplicity and binding time
associated with variation points. One of the advantages of using notes is that, because the notes belong
to the UML meta-models, they can be read from any commercial tool that supports UML modelling.
 Feature Modelling – In previous work [6], we did not use the feature model because we gave prior-
ity to modifying a traditional software process, to reduce the impact of a PL adoption. The feature
model is not, as yet, a familiar artifact from the software engineers point of view. However, we intro-
duced the feature model in our variability management process because it proved to be important from
both the reuse and variability tracing perspectives. Moreover, the introduction of the feature model
made our PL approach compatible with most existing approaches [14, 29, 30]. In particular, it is impor-
tant for a PL to keep a clear relationship between the feature model and the PL’s architecture [10].
 Metadata Model – the metadata model was an important result of our process design. It provides
information about the relationships between artifacts, thus allowing navigation throughout them. More-
over, it forms a basis for building a tool to automate the variability management process. We note that
there is still few tools to support the PL approach, such as Ménage [31], Holmes [32] and pure:variants
[30]. The proposed metadata model can be represented in XML to facilitate exchange of data with
other PL support tools. IBM/Rational Requisite Pro and Rose have shown to be potentially feasible to
support variability management. Requisite Pro supports the specification of the relationship between
use cases and features. However, it still does not allow graphical representation of the feature model
and it is not well integrated with Rose models. Rose allows the manipulation of the UML models to
represent variability, and already provides some mechanisms to support artifact tracing. We believe

13

that the harmonization of tools such as the IBM/Rational suite with PL principles can be fruitful and
should facilitate PL adoption.

5. Related Work
The PL variability management process proposed in this paper took into account previous work on PL
approaches mainly related to the following issues: management activities, artifact notation, variability
attributes, metadata modelling and experimental software engineering.
 The management activities defined for the proposed process is inline with the essential activities of
the SEI PLP [1] because variability management is considered a subprocess of the PL management
activity. Thus, it has a close interaction with the core asset development and the product development
activities.
 The activities defined in our process were initially based on van Gurp, Bosch and Svahnberg’s [5]
variability management activities. However, their activities were not fully described. Our activities and
their associated roles and artifacts are fully specified.
 The proposed process uses UML as the notation in which to represent the PL artifacts. It took into
consideration similar approaches such as Gomaa and Weber [16] (further extended in [29]), Kobra [14],
and Clauß [15, 27]. These approaches extend the UML notation to represent variability aspects. In our
process, only the use case, static type, and component models are traced as we considered these models
as the most important in variability representation. However, we agree that the representation of vari-
ability in a sequence diagram, as in Gomaa [29], should also be considered to analyze the impact of
variability on interactions.
 In order to define the activities of the process it was important to consider previous attempts to
define variability attributes [5, 19, 21, 22, 27]. On the end, we define the following attributes for vari-
ability: type, binding time and implementation mechanisms. Recent work presented by Czarnecki [11]
and Cechticky [33] contains well-founded definitions of feature attributes and representation. However,
they are not based on UML.
 The metadata model proposed to support our process was based on that of Becker [22]. However,
we have eliminated elements like those which represent the product family (ProductFamily and
FamilyMember) and those which represent the variability implementation mechanism (Selection, Gen-
eration and Substitution). Morever, we added the following elements to support the variability tracing
overall the PL artifacts: VariantArtifact, FeatureModel, Feature, UseCaseModel,
UseCase, TracingModel and TracingElement.
 Existing experimental works were used as the basis to undertake the case study. In particular,
Basili [34] discusses experiment planning and Kitchenham [24, 26] proposes a terminology, the steps
to undertake an experiment, and how to analyze the results.

6. Conclusions
The variability management process is one of the most important activities of core asset development
and evolution. It is the variability management that enables the clear identification and tracing of the
differences amongst products of a PL.

14

Figure 6: Number of variabilities identified for the use case, static type and component models.

 This paper proposes a variability management process that makes explicit the activities, artefacts,
and roles necessary to control variability in a PL approach that is based on UML. The proposed process
was evaluated with a case study that compares a PL approach to the same with the introduction of vari-
ability management. Figure 6 shows the number of variabilities identified for the use case, static type
and component models both for the original PL and after the introduction of the variability manage-
ment. Thus, the results show the benefits of establishing well-defined and controlled variability man-
agement, as one of the main activities of a PL core asset development.
 Moreover, a metadata model was proposed that forms the basis to design a tool to support variabil-
ity management. We believe that automated support for the variability management process is an im-
portant issue to be investigated. It will make automated product configuration analysis possible, thus,
providing the organizations with mechanisms to evaluate PL adoption and evolution. The experimental
studies undertaken also need to be extended as they can provide a valuable basis with which to evaluate
PLs.
 Because the proposed process is triggered from the PL core asset development activities, it can be
easily adapted to also PL approaches that are based on UML.

Acknowledgements
Itana M. S. Gimenes would like to thank the Computer System Group of the University of Waterloo,
Canada, where she is currently in a sabbatical license.

Edson Alves de Oliveira Junior would like to thank the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES - Brazil) for financial support in his Master Degree project.

About the Authors

Edson Alves de Oliveira Junior has a bachelor and master degree in computer science from Universi-
dade Estadual de Maringá, Brazil. His research interests include: software product line, software archi-

15

tecture, empirical software engineering, component-based development, and workflow management
systems. He is currently taking doctoral degree in computer science at Universidade de São Paulo
(ICMC-USP), Brazil.

Itana M. S. Gimenes is full professor of Software Engineering at Universidade Estadual de Maringá
(DIN-UEM), Brazil, and Ph.D. from The University of York, Department of Computer Science, UK.
Her research interests include: software architecture, software product line, component-based develop-
ment, and workflow management systems. She is currently in a sabbatical license at
CSG/SCS/University of Waterloo.

Elisa H. M. Huzita is associate professor at the Departamento de Informática of the Universidade
Estadual de Maringá (DIN-UEM), Brazil. Her research interests include: component-based develop-
ment and distributed software engineering.

José Carlos Maldonado is full professor at the Instituto de Ciências Matemáticas e de Computação
(ICMC-USP) of the Universidade de São Paulo, Brazil. He is vice-president of the Brazilian Computer
Society, and member of the ACM and IEEE.

References
[1] SEI - Software Engineering Institute. A framework for software product line practice 4.2. Pittsburgh.

<http://www.sei.cmu.edu/productlines/framework.html >. Access: June, 01 2005.
[2] P. Heymans, J. C. Trigaux. Software product line: state of the art. Technical report for PLENTY project, Insti-

tut d’Informatique FUNDP, Namur, 2003.
[3] L. Bass, P. Clements, R. Kazman. Software architecture in practice. 2. ed. Boston: Addison-Wesley, 2003.

560 p.
[4] F. van der Linden. Software Product families in Europe: The Esaps and Café Projects, IEEE Software,

July/August 2002, pp. 41-49.
[5] J. van Gurp, J. Bosch, M. Svahnberg. On the notion of variability in software product lines. in: THE

WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE (WICSA), 2001, Amsterdam.
Proceedings… Amsterdam, 2001. pp. 45-54.

[6] I. M. S. Gimenes, E. A. Oliveira Junior, F. R. Lazilha, L. M. Barroca. A product line architecture for work-
flow management systems with component-based development, in: 2003 Proc. The IEEE Conference on In-
formation Reuse and Integration, pp. 112-119.

[7] WfMC – Workflow Management Coalition. <http://www.wfmc.org>. Access: June, 10 2004.
[8] K. Kang. Feature-oriented domain analysis (FODA) - feasibility study. Technical Report CMU/SEI-90-TR-

21, SEI/CMU, Pittsburgh, 1990.
[9] M. Simons, D. Creps, C. Klingler, L. Levine, D. Allemang. Organization domain modeling (ODM) guide-

book, version 2.0. Technical Report STARS-VC-A025/001/00, Lockheed Martin Tactical Defence Systems,
1996.

[10] P. Sochos, I. Philippow, M. Riebish. Feature-oriented development of software product lines: mapping feature
models to the architecture. Springer, LNCS 3263, 2004, pp. 138-152.

[11] K. Czarnecki, S. Helsen, U. Eisenecker. U. Staged configuration through specialization and multi-level con-
figuration of feature models. To appear in special issue on "Software Variability: Process and Management,"
Software Process Improvement and Practice, 10(2), 2005.

[12] K. Czarnecki, U. Eisenecker, U., Generative programming. methods, tools, and applications. Addison-
Wesley, 2000. 832 p.

[13] D. Batory. The Road to Utopia: A future for generative programming, in: Domain Specific Generation, Len-
gauer et al. (eds.), LNCS 3016, pp. 1-18, 2004.

[14] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthing, B. Paech, J. Wüst, J.
Zeitel. Component-based product-line engineering with UML. Boston: Addison-Wesley, 2001.

[15] M. Clauß, Modeling variability with UML. in: YOUNG RESEARCHES WORKSHOP, 2001, Erfurt. Pro-
ceedings… Erfurt. 2001.

[16] H. Gomaa, D. Webber. Modeling adaptive and evolvable software product lines using the variation point
model. in: HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 37., 2004, Hawaii. Pro-
ceedings… Hawaii, 2004. pp. 01-10.

[17] I. Jacobson, M. Griss, P. Jonsson. Software reuse - architecture process and organization for business success.
1. ed. Boston: Addison-Wesley, 1997. 528 p.

[18] M. Morisio, G. H. Travassos, M. E. Stark. Extending UML to support domain analysis. in: THE
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, 5., 2000, Grenoble,
France. pp. 321-324.

16

[19] J. van Gurp, J. Bosch. Managing variability in software product lines. in: Proceedings of the Landelijk Archi-
tectuur Congres. Amsterdam, 2000.

[20] C. Fritsch, A. Lehn, T. Strohm. Evaluating variability implementation mechanisms. in: INTERNATIONAL
WORKSHOP ON PRODUCT LINE ENGINEERING, 2., 2002, Seattle, USA. 2002. pp. 59-64.

[21] M. Anastasopoulos, C. Gracek. Implementing product line variabilities. in: ACM SIGSOFT Software Engi-
neering Notes, New York, v. 26, n. 3, pp. 109-117, May. 2001.

[22] M. Becker. Towards a general model of variability in product families. in: SOFTWARE VARIABILITY
MANAGEMENT WORKSHOP, 2003, Portland. pp. 19-27.

[23] IBM Rational Software - <http://www.ibm.com/software/rational> - Access: Nov. 2004.
[24] B. Kitchenham, L. Pickard, S. L. Pfleeger. Case studies for method and tool evaluation. IEEE Software, v.11,

pp. 52-62, 1995.
[25] S. L. Pfleeger. Experimental design and analysis in software engineering – how to set up an experiment.

ACM SIGSOFT – software Engineering Notes. v. 20, n. 1, pp. 22-26, 1995.
[26] B. Kitchenham. DESMET: a method for evaluating software engineering methods and tools. Technical Re-

port TR96-09, Keele, United Kingdom, 1996. 49 p.
[27] M. Clauß. Generic modeling using UML extensions for variability. in: OOPSLA 2001 WORKSHOP ON

DOMAIN SPECIFIC VISUAL LANGUAGES, 1. 2001, Tampa Bay. USA, pp. 11-18.
[28] H. Gomaa, M. E. Shin. Multiple-view meta-modeling of software product lines, 8th International Conference

on Engineering of Complex Computer Systems (ICECCS 2002), IEEE Computer Society 2002, ISBN 0-
7695-1757-9, pp. 238-246, 2002.

[29] H. Gomaa. Designing software product lines with UML: from use cases to pattern-based software architec-
tures. Boston: Addison-Wesley, 2005.

[30] PURE-SYSTEMS - pure-variants: Variant Management – <http://web.pure-
systems.com/Variant_Management.49.0.html> - Access: Nov. 2004.

[31] A. van der Hoek. Capturing product line architectures. In: INTERNATIONAL SOFTWARE
ARCHITECTURE WORKSHOP, 4., 2000, Limerick. Proceedings… Limerick, 2000. pp. 95-99.

[32] G. Succi, J. Yip, W. Pedrycz. Holmes: an intelligent system to support software product line Development.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 23., 2001, Toronto, Canada. pp.
829-832.

[33] Cechticky, V., Passetti, A., Rohlik, O., Schaufelberger, W., XML-based feature modelling. In: IN-
TERNATIONAL CONFERENCE ON SOFTWARE REUSE, Madrid, Spain, pp. 101-114, LNCS 3107, Jul.
2004.

[34] V. R. Basili, R. W. Selby, D. H. Hutchens. Experimentation in software engineering. IEEE Transactions on
Software Engineering, Piscataway, v. 12, n. 7, pp. 733-743, 1986.

[35] M. Svahnberg; J. Van Gurp; J. Bosch. A taxonomy of variability realization techniques. Technical report,
Blekinge Institute of Technology, Sweden, 2002.

17

Appendix A:
UML Relations and Stereotypes Used in the Graphical Representation of the Variation Points and Variants

Use Case Diagram Class Diagram Component Diagram

UML Relation Element Stereotype UML Rela-
tion Element Stereotype UML Relation Element Stereotype

Variation
Point

-------- <<variationPoint>> -------- <<variationPoint>> Dependency <<variable>>

Mandatory
Variant

Association
Aggregation
Composition
Dependency

<<mandatory>>

Association
Aggregation
Composition
Dependency

<<mandatory>> Dependency <<mandatory>>

Optional
Variant

Association
Aggregation
Composition
Dependency

<<optional>>

Association
Aggregation
Composition
Dependency

<<optional>> Dependency <<optional>>

Inclusive
Alternative

Variant

Spec./ General.
with the

stereotype
<<extend>>

<<alternative_OR>> Inheritance <<alternative_OR>> Dependency <<alternative_OR>>

Exclusive
Alternative

Variant

Spec./ General.
with the stereo-

type
<<extend>>

<<alternative_XOR>> Inheritance <<alternative_XOR>> Dependency <<alternative_XOR>>

Mutually
Exclusive
Variant

Dependency <<mutex>> Dependency <<mutex>> Dependency <<mutex>>

Inclusive
Variant

Dependency <<requires>> Dependency <<requires>> Dependency <<requires>>

