Royal Entomological Society

HANDBOOKS FOR

THE IDENTIFICATION

OF BRITISH INSECTS

To purchase current handbooks and to download out-of-print parts visit:
http://www.royensoc.co.uk/publications/index.htm

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England \& Wales License.

Copyright © Royal Entomological Society 2012

HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS

COLEOPTERA
SCOLYTIDAE AND PLATYPODIDAE
By
E. A. J. DUFFY

LONDON
Published by the Society
and Sold at its Rooms
41, Queen's Gate, S. W: 7

British Entomological \＆Natural History Society

c／o Dinton Pastures Country Park， Davis Street，Hurst， Reading，Berkshire RG10 TH

Presented by
Date

REGULATIONS

1．－No member shall be allowed to borrow more than five volumes at a time，or to keep any of them longer than three months．
2．－A member shall at any time on demand by the Librarian forthwith return any volumes in his possession．
3．－Members damaging，losing，or destroying any book belonging to the Society shall either provide a new copy or pay such sum as the Council shall think fit．

SOUTH LONDON Entomological and Natural History Society

At the Rooms of
The Junior Institution of Engineers Pepys House， 14 Rochester Row，London，S．W．I
RABondod 的 Purchased
Date

REGULATIONS
1．－Books may be borrowed at all Meetings of the Society．
2．－No Member shall be allowed to borrow more than three volumes at a time，or to keep them longer than one month．
3．－Any Member retaining a volume or volumes beyond the specified time shall pay a fine of Twopence per fortnight for each volume so retained．
4．－Members damaging，losing，or destroying any book belong－ ing to the Society shall either provide a new copy or pay such sum as the Council shall think fit．

COLEOPTERA (SCOLY'IIDAE AND PLATYPODIDAE)

By E. A. J. Duffy

Introduction.

Bark beetles* are of major economic importance and world-wide distribution. Well over 2000 species are known, of which about 60 are British. Some of these have only recently become established, and the possibility exists that others may do so in the future. These beetles are well adapted to a subcortical existence and, although they are mainly wood-feeders, some species (e.g., Thamnurgus) are known to infest stems of herbaceous plants, woody creepers and even seeds and cones. A few species attack only seasoned wood and are frequently destructive to casks and barrels.

Although serious and widespread damage is caused every year by these beetles abroad, particularly in coniferous forests, extensive outbreaks rarely occur in this country. Perhaps the most destructive British species is the "Pine Shoot Beetle" (Blastophagus piniperda L.), which in the past has caused serious damage to pines in the New Forest and other areas. Generally speaking, conifers are susceptible to attack by a far greater number of species than are deciduous trees.

The two families here concerned, namely the Scolytidae and Platypodidae, may be distinguished as follows:

[^0]
SCOLYTIDAE.
 Adult Characteristics.

The following are the main characteristics of this family:
Size small, length $0.8-10 \mathrm{~mm}$., but rarely exceeding 4 mm . Form generally elongate, seldom quadrate, usually cylindrical but occasionally hemispherical. Colour always sombre, varying from testaceous to pitchy. Colour as a key character is most unreliable, as all adults of the same brood do not emerge simultaneously and pigmentation develops slowly. The general vestiture comprises either long silky hairs, short bristle-like setae or erect or decumbent squamiform setae. Head either salient or (Hylesini) completely concealed from above by pronotum. Rostrum, if present, short and broad. Antennae inserted on sides of head between eyes and mandibles ;

[^1]scape long, slender, feebly clavate; funicle 1-7-segmented; club large, nearly always compact, very variable in form. Eyes oval, reniform or emarginate, occasionally divided. Mandibles stout, curved, dentate. Labrum usually feebly developed. Thorax at most slightly narrower than elytra, usually slightly to strongly elongate, rarely transverse ; variable in sculpture, usually asperate or spiculate anteriorly and punctate posteriorly or entirely punctate. Mesosternum large, metasternum long. Anterior coxae nearly always contiguous; intermediate and posterior coxae subcontiguous. Elytra usually elongate and cylindrical ; posterior declivity often modified for scraping and shovelling, and then either obliquely truncate or excavate and furnished with spines or teeth. Legs rather stout, compressed ; anterior tibiae denticulate on outer margin except Scolytini, in which the outer apical angle is produced into a curved tooth ; tarsi with segment 5 long; claws simple. Secondary sexual characters are present. on the front of the head and on the elytral declivity ; in some species (e.g., Coccotrypes) the male is blind, diminutive and rarely found.

In general appearance many species resemble certain Bostrychidae and Cisidae owing to similar modifications. They are, however, true Rhyncophora and appear to be closely allied to the Cossoninae. Biologically the Scolytids differ from the remaining Rhyncophora in that they enter their host-plants before ovipositing.

Immature Stages.

The eggs of Scolytids are usually spherical, but are sometimes elliptical or even elongate. The chorion is white and feebly shining and is entirely devoid of microsculpture.

Scolytid larvae are eruciform, apodous and milky white in colour. The maxillary lobes are broadly rounded on their inner margins and the palpi are two-segmented. The abdominal tergites are devoid of ampullae, but each bear three tergal folds. There appear to be five instars, the setae and other cuticular outgrowths of the first-instar larvae differing markedly from those of the succeeding instars. Very few Scolytid larvae have been described. There appear to be no fundamental characters whereby they may be distinguished from larvae of Curculionidae.

Still less is known of the morphology of the pupae. The setae, tubercles and other cuticular outgrowths present on the pronotum and abdomen, when examined, may well afford useful specific and even tribal characters.

Biology.

When attacking the host, the adult beetles first excavate an entrance hole through the bark as far as the surface of the sapwood, except the true wood-boring species, which may penetrate the sapwood for an appreciable distance. The end of the hole is first enlarged by the males of some species into a pairing chamber. Here two or more egg-tunnels are excavated, either transversely, vertically or radially beneath the bark. The eggs are then laid at regular intervals in niches along the tunnels and from these the resulting larvae excavate slender galleries at right angles to the tunnels. The arrangement and pattern of these excavations are often characteristic of certain groups and even species and are thus of diagnostic importance. For example, in Blastophagus piniperda Linnaeus the egg-tunnel is simple
and longitudinal, whereas in B. minor Hartig the tunnel is biradial and transverse. In the genus Scolytus, S. intricatus Ratzeburg is exceptional in that it is the only species which makes a transverse egg-tunnel.

Before pupation the larvae enlarge the ends of their respective galleries, and the resulting adults have thus only to gnaw their way through the bark to the exterior. Frass-ejection holes (sometimes regarded as aeration holes) are often made in the outer walls of the egg-galleries, extending to the surface of the bark.

The social habits of these beetles are unusual and varied ; for example, in the genus Scolytus the male associates with only one female, whereas the males of $I p s$ usually copulate with two females. On the other hand, males of Xyleborus may associate with fifty or more females. Copulation usually takes place on the surface of the bark or just inside the entrance hole, except in polygamous species, which copulate in the pairing chamber.

Adult feeding tunnels are excavated by immature adults or by females preparing for oviposition. Those of the former are usually constructed away from the egg-galleries.

Both larvae and adults digest starches and sugars and other substances present in the host-plants. Some (e.g., Xyleborus) are dependent on the presence of fungal hyphae or ambrosia in the brood-galleries, and the characteristic dark stain so often seen in timber infested with these insects is caused by the mycelium spreading along the galleries. According to some authors, preparation is made by the adults to cultivate the fungi and even to transport them to other trees. Infection occurs, at least in some species, by adults passing the fungus orally, but there is still some controversy as to whether this is true symbiosis.

Most Scolytids feed in a wide range of either coniferous or deciduous trees, and apparently only one British species (i.e., Xyleborus xylographus Say) is known to attack either kind indiscriminately. A few species confine themselves to a single host, as for example Kissophagus hederae Schmidt in Hedera and Xylocleptes bispinus Duftschmidt in Clematis.

Explanation of Keys.

In recent years more species of Scolytidae have been imported and have become successfully established in this country than of any other family of Coleoptera. On the other hand, some species that have now become cosmopolitan (e.g., Hypothenemus eruditus Westwood, Coccotrypes dactyliperda Fabricius), although regularly imported, can never become established because their hosts are essentially tropical. As several species belonging to these two categories are more frequently found in this country than are many of our rare native species they have been included in the keys for the benefit of persons connected with the timber trade and food infestation.

The following keys are based largely on those of Balachowsky (1949), but they have been appreciably modified and also adapted to include imported and introduced species. Beyond indicating whether a species is mainly of northern or southern occurrence, the distribution of British species has not been indicated, for these insects are so easily transportable from one area to another that county records are of little significance. All imported species are marked with an asterisk, ${ }^{*}$, and doubtfully indigenous species are indicated by an asterisk enclosed in brackets, (*). Figs. 33-39
have been prepared by Mrs. C. A. O'Brien, the remaining figures being the work of the author.

Family Scolytidae.

Key to Genera.

1 Front tibia produced apically into a long, curved tooth (figs. 1, 32). Pronotum margined laterally and posteriorly (fig. 33) (Scolytini)

- Front tibia not produced apically into a tooth (figs. 2, 34). Pronotum not margined laterally and at most only feebly posteriorly (fig. 34)

Scolytus Müller (p. 10)

2 Head salient, not entirely concealed beneath pronotum and at least partly visible from above (fig. 34). Basal margin of elytra with a granulate carina (fig 34) and/or head produced anteriorly in the form of a short rostrum. Pronotum similarly sculptured throughout (fig. 34). Segment 3 of tarsus bilobed (fig. 34) (Hylesinini).
.

- Head strongly retracted into and almost entirely concealed from above by the prothorax (fige. 37, 38). Basal margin of elytra without a granulate carina and head never produced anteriorly in the form of a rostrum (figs. 36-38). Pronotum granulate anteriorly (except Crypturgus) and punctate posteriorly (figs. 36-38). Segment 3 of tarsus simple (figs. 36-38) (Ipini)

15.

3 Basal margin of elytra without a granulate carina. Head produced anteriorly in the form of a short rostrum. Apices of elytra never with tufts of long setae; either with short setae arranged in rows on the interstices or with apical squamiform setae
.4.

- Basal margin of elytra carinate, with a row of protuberant granules (fig. 34). Head seldom produced anteriorly in the form of a rostrum, but if so (Hylurgus) then apices of elytra covered with tufts of long fine setae.
.
4 Basal margin of elytra almost straight. Pronotum quadrate to strongly elongate, not appreciably narrowed anteriorly. Segment 3 of tarsus narrowly cordate and very slightly broader than segment 2..................Hylastes Erichson (p. 10)
- Basal margin of elytra strongly curved on each side of scutellum. Pronotum slightly transverse and strongly narrowed for anterior half. Segment 3 of tarsus broadly cordate, much broader than sogment 2. Length $2 \cdot 3-3 \cdot 4 \mathrm{~mm}$. Local. In Abies, Pinus, Picea and Larix......................... Hylurgops palliatus (Gyilenhal)
5 Row of granules on basal margin of elytra distinctly curved on each side of scutellum and broadly interrupted at suture (figs. 34, 35). Squamiform setae present or absent on pronotum or elytra
. 6.
- Row of granules on basal margin of elytra almost straight and not broadly interrupted at suture. Squamiform setae present on pronotum and elytra. Eyes divided. Front with a dense fringe of long golden setae. Length 2-2.5 mm. In Picea and Pinus...Polygraphus poligraphus (Linnaeus) ($=$ pubescens (Fabricius))
6 Antennal club compact, with segments not separated (figs. 4, 5)
...................... 7.
- Antennal club loose, with three distinctly separated segments which are serrate or flabellate (fig. 3). Small black species. Length $1.5-1.8 \mathrm{~mm}$. In stems of Genista, Ulex, Cytisus, etc...................Phloeophthorus rhododactylus (Marsham)
7 Eyes emarginate. Antennal club with segments obliquely divided (fig. 4) and without long fine setae. Apical fourth of elytra bearing, in the male, rows of strongly raised granules on interstices 1 and 3 or 3 only; these granules much smaller and scarcely raised in the female. Length $1.5-2 \cdot 2 \mathrm{~mm}$. In Cupressus and Juniperus

Phloeosinus thujae (Perris)

- Eyes not emarginate. Antennal club with segments transversely dividod (fig. 5) and bearing long fine setạ.
8 Anterior coxae distinctly separated by a broad prosternal process. Pronotum, elytra and abdomen or at least one of these, bearing imbricate or scattered squamiform setae (fig. 35)
. 9.
- Anterior coxae contiguous. Pronotum, elytra and abdomen entirely devoid of squamiform setae. Head produced anteriorly in the form of a short rostrum 14.
9 Abdominal sternites progressively rising posteriorly towards apices of elytra (fig. 6). Elytra sloping downward, thus forming an acute angle with the abdomen when viewed laterally. Funicle of antenna 7 -segmented, segment 7 not enlarged... 10 .
- Abdominal sternites flat, not rising posteriorly (fig. 7). Elytra (viewed laterally) regularly rounded
. 11.

Figs. 1-11.-1, Scolytus scolytus (Fabricius), front leg. 2, Hylesinus crenatus (Fabricius), front leg. 3, Phloeophthorus rhododactylus (Marsham), antenna. 4, Phloeosinus thujae (Perris), antenna. 5, Leperesinus fraxini (Panzer), antenna. 6, Same, elytra and abdomen. 7, Pteleobius vittatus (Fabricius), elytra and abdomen. 8, Xylechinus pilosus (Ratzeburg), pronotum. 9, Kissophagus hederae (Schmidt), pronotum. 10, Trypophloeus asperatus (Gyllenhal), antenna. 11, Stephanoderes coffeae Hagedorn, antenna.

10 Posterior margin of pronotum bluntly angled medially opposite scutellum. Squamiform setae on elytra unicolorous

Hylesinus Fabricius (p. 12)

- Posterior margin of pronotum straight. Squamiform setae on elytra of two contrasting colours, forming an asymmetric pattern on each side of suture

Leperesinus Reitter (p. 12)
11 Antennal funicle 7-segmented 12.
Antennal funicle 5- or 6 -segmented 13.

12 Pronotum and elytra entirely covered with imbricate squamiform setae of two or three different colours forming on the latter a symmetrical design on each side of suture (fig. 35). Length $1 \cdot 8-2 \cdot 1 \mathrm{~mm}$. Local. In Ulmus and, occasionally, Fraxinus..Pteleobius vittatus (Fabricius)

- Pronotum and elytra entirely devoid of squamiform setae, which are confined to the meso- and metathoracic episterna, on which they are white, dense and in strong contrast with the remainder of the body. Strise comprising rows of coarse shallow punctures. - Interstices granulate, especially on apical fourth, where they are covered with small spiniform or blunt granules. Length 22.5 mm . Local. In dead Trifolium, Ononis, Ulex, Spartium, etc.

Hylastinus obscurus (Marsham)
13 Squamiform setae on pronotum inclined inwards and perpendicular to the median, longitudinal carina (fig. 8). Antennal funicle 5-segmented. Interstice 1 of elytra densely covered with squamiform setae, which form a pale border along suture. Length $2 \cdot 1-2.5 \mathrm{~mm}$. In Abies, Picea and, occasionally, Larix

Xylechinus pilosus (Ratzeburg)

- Squamiform setae on pronotum inclined concentrically towards the disc, at least on anterior half (fig. 9). Antennal funicle 6 -segmented. Interstice 1 of elytra similar to remainder. Length $2-2.2 \mathrm{~mm}$. Very local. In stems of dead Hedera, helix...Kissophagus hederae (Schmidt)
14 Pronotum quadrate to slightly transverse (fig. 34). Elytra with setae sparsely and regularly distributed, never arranged in tufts on apices (fig. 34). Metasternum shorter than abdomen. Abdomen shining.............Blastophagus Eichhoff (p. 12)
- Pronotum elongate. Elytra with setae irregularly distributed, sparse on basal third and in tufts on apical third. Metasternum as long as abdomen. Abdomen matt. Elytral interstices 1 and 2 strongly depressed for apical fourth. Length $5-5.5 \mathrm{~mm}$. In Pinus.
.Hylurgus ligniperda (Fabricius)
15 Pronotum entirely punctate, entirely devoid of asperities, spicules and granules. Antennal funicle very short, 1 or 2 -segmented......Crypturgus Erichson (p. 13)
- Pronotum with at least anterior half with conspicuous raised asperities, granules or spicules distributed irregularly or in rows; puncturation, when present, confined to posterior half behind disc (figs. 36-38).
.16.
16 Eyes completely divided. Antennal club 1-segmented
Trypodendron Stephens (p. 13)
- Eyes not divided; oval or simply emarginate. Antennal club at least 2 -segmented

17.

- Elytra covered with fine squamiform setae... 18.

18 Antennal funicle 5 -segmented; segment 1 as long as following four together (fig. 10) .. 19.

- Antennal funicle 3- or 4-segmented... 20.

19 Antennal club lanceolate, oblong, without a septum between segments 1 and 2 (fig. 10). Declivity of elytra obliquely sloping...Trypophloeus Fairmaire (p. 13)

- Antennal club oval, with a septum (interrupted medially) between segments 1 and 2 (fig. 11). Declivity of elytra rounded.............. *Stephanoderes Eichhoff (p. 14)
20 Antennal funicle 3 -segmented in male, 4 -segmented in female; segment 1 longer than following three together. Club with a septum between segments 1 and 2. Elytra and abdomen bearing numerous short, triangular, squamiform setae. Length $1-1.2 \mathrm{~mm}$. Found in an old book (imported from Egypt?). Also imported in Cocos from Ceylon.
(*)Hypothenemus eruditus Westwood
- Antennal funicle 4 -segmented in both sexes; segment 1 equal to or shorter than following three together. Club without a septum.
.21.
21 Eyes distinetly emarginate (fig. 12). Antennal funiele with segment 4 strongly broadened. Asperities on anterior margin of pronotum not projecting beyond margin. Pronotum and elytra with pubescence as well as documbent squamiform setae

Cryphalus Erichson (p. 13)

- Eyes not emarginate (fig. 13). Antennal funicle with segment 4 scarcely broadened and of same breadth as segment 3. Asperities on anterior margin of pronotum projecting beyond margin.
. 22.
22 Elytra distinctly more than twice as long as combined basal width. Transverse asperities on pronotum not extending posteriorly beyond middle of disc. Antennal

Figs. 12-21.-12, Cryphalus abietis (Ratzeburg), eye. 13, Ernopocerus fagi (Fabricius), eye. 14, Ips sexdentatus (Boerner), elytra (ventral aspect). 15, Xylocleptes bispinus (Duftschmidt), elytra (ventral aspect). 16, Ips sexdentatus (Boerner), elytral declivity. 17, Onthotomicus erosus (Wollaston), elytral declivity. 18, Dryocoetes autographus (Ratzeburg), elytral puncturation. 19, Coccotrypes dactyliperda Fabricius, elytral puncturation. 20, Scolytus ratzeburgi Janson, abdominal sternites (male). 21, S. scolytus (Fabricius), abdominal sternites.
club with articulating margins curved on outer face. Length $1.5-1.8 \mathrm{~mm}$. In Fagus, Quercus and Betula......Ernopocerus ($=$ Ernoporus pars) fagi (Fabricius)

- Elytra not or scarcely more than twice as long as combined basal width. Transverse asperities on pronotum extending posteriorly beyond middle of disc almost to posterior third. Antennal club with articulating margins straight on outer face. Pronotum and elytra with decumbent squamiform setae, the erect setae in longitudinal rows on elytra. Length $1-1.5 \mathrm{~mm}$. In Tilia parvifolia and Hibiscus

Ernoporus tiliae (Panzer) of elytra abruptly and deeply excavated and bearing (at least in the male) lateral teeth which vary in size and number

Figs. 22-32.-22, Hylastes ater (Paykull), front of head. 23, H. angustatus (Herbst) front of head. 24, Trypodendron domesticum (Linnaeus), antennal club. 25, T. lineatum (Olivier), antennal club. 26, T. signatum (Fabricius), antennal club. 27, Dryocoetinus villosus (Fabricius), elytral puncturation. 28, D. alni (Georg), elytral puncturation. 29, Stephanoderes coffeae Hagedorn, elytral setae. 30, S. cassiae Eichhoff, elytral setae. 31, Pityogenes quadridens (Hartig), elytral declivity. 32, P. bidentatus (Herbst), elytral declivity.

- Apical margins of elytra not approximate ventrally (fig. 15)

24 Declivity of elytra obliquely sloping, explanate or feebly raised towards the apices (figs. 16, 36). Anterior tibiae distinctly narrower than mid-tibiae (fig. 34). Segment 2 of antennal funicle only slightly shorter than segment 1

Ips Degeer (p. 16)

- Declivity of elytra subvertical, not explanate or raised towards apices (fig. 17). Anterior tibiae scarcely narrower than mid-tibiae. Segment 2 of antennal funicle distinctly shorter than segment 1 \qquad Onthotomicus Ferrari (p. 16)
25 Pronotum partly or entirely but irregularly covered with very small punctiform granules or concentrically spiculate for anterior third, in which case the discal area bears both granules and punctures, but on the remainder of the pronotum only granules are present

26.

- Anterior half of pronotum bearing short transverse asperities arranged in concentric and parallel rows as far as disc, where they are replaced by microscopic granules
and distinct punctures, which are also distributed posteriorly over remainder of pronotum (figs. 37, 38)... 31.
26 Form short. Pronotum scarcely longer than broad and elytra less than twice length of pronotum. Antennal club obliquely truncate (scarcely in Coccotrypes), lenticulate, with articulations visible only on outer face.
. 27.
- Form elongate. Pronotum distinctly longer than broad and elytra at least twice as long as pronotum. Antennal club rounded.. 29.
27 Puncturation of striae coarser than that of interstices (fig. 18)........................... 28.
Puncturation of striae similar to that of interstices (fig. 19). Anterior tibiae with 3 or 4 strong teeth on outer margin. Length $1 \cdot 5-2 \cdot 2 \mathrm{~mm}$. Cosmopolitan species. Imported in seeds of various palms (Livingstonia, Chamoerops, etc.)
*Coccotrypes dactyliperda (Fabricius)
28 Pronotum behind dise with large conspicuous punctures, the interspaces flat. Apical third of elytra without a well-defined groove parallel to suture. Length $3-4.3 \mathrm{~mm}$. Rare. In Abies, Pinus, Picea and Larix

Dryocoetes autographus (Ratzeburg

- Pronotum entirely granulate or rugoso-punctate, the interspaces raised. Apica third of elytra with a deep groove parallel to suture. In deciduous trees

Dryocoetinus Balachowsky (p. 14)
29 Antennal funicle 4 -segmented. Club with articulation indistinct. Punctures on elytral interstices as large as those on striae. Length $1 \cdot 6-2 \mathrm{~mm}$. Rare. In dead dry branches, especially those of Corylus ; also in Quercus, Pyrus, Rhamnus, etc.

Lymantor coryli (Perris)

- Antennal funicle 5-segmented. Club with articulation distinct............................ 30.

30 Granules of anterior third of pronotum punctiform, feebly raised and never hooked (fig. 37). Male elytra abruptly declivous and bearing a pair of teeth at beginning of declivity (fig. 37). Female elytra regularly declivous. Pronotum without a depression behind disc. Length $2 \cdot 5-3.5 \mathrm{~mm}$. Local. In woody stems of Clematis vitalba.......................................Xylocleptes bispinus (Duftschmidt)

- Granules of anterior third of pronotum hooked and punctures distributed as far as dise, where they are absent. Male and female elytra similarly declivous and without teeth. Pronotum with a feeble but distinct, broad, transverse depression behind middle of disc
.Taphrorychus Eichhoff (p. 14)

31. Elytra quadrate to slightly transverse (fig. 38). Pronotum depressed, flat, without an olevated disc (fig. 38). Dise with posterior third very finely and sparsely punctured and shining, at least medially. Black, antennae and legs yellow. Length $2-2.5 \mathrm{~mm}$. Rare. In Quercus, Ilex, Pyrus, Fagus, Ulmus, Corylus, etc.
$\sigma^{\text {ot }}$ Anisandrus dispar (Fabricius)

- Elytra elongate. Pronotum not depressed, disc elevated................................ 32.

32 Antennal club thick, obliquely truncate apically on outer face; sutures visible only on outer face. Elytra with 5 very distinctly punctured striae on disc, the punctures placed close together (separated by scarcely more than their own diameter), those on interstices (when present) much smaller than those on disc and placed much further apart.

- Antennal club strongly compressed, evenly rounded; sutures visible on both faces. Elytra either confusedly punctured or with 8 or 5 punctured strias on dise ; if the latter then punctures placed well apart (separated by more than twice their own diameter).
.35.
33 Anterior coxae widely separated by an antecoxal process. Sides of elytral declivity finely margined. Length $0.5-1.8 \mathrm{~mm}$. Occasionally found in imported orchids (Dendrobium spp.).................................. *Xlosandrus morigenus Blandford
- Anterior coxae contiguous. Sides of elytral declivity not margined................. 34.

34 Pronotum quadrate. Segment 1 of antennal funicle narrower than sagment 5. Elytra slightly elongate. Black, antennae and legs yellow. Length $3-3.5 \mathrm{~mm}$. Rare. In Quercus, Ilex, Pyrus, Fagus, Ulmus, Corylus, etc.

우 Anisandrus dispar (Fabricius)

- Pronotum elongate. Segment 1 of antennal funicle broader than segment 5. Elytra strongly elongate. Length $2-2.5 \mathrm{~mm}$.
..Xyleborus Eichhoff (p. 14) are greatly reduced. Front tibiae distinctly narrower than mid-tibiae. Posterior margin of pronotum not bordered.
. Pityogenes Bedel (p. 15)
- Apical third of elytra devoid of spines in both sexes. Front tibiae as broad as mid-tibibe. Posterior margin of pronotum finely bordered

Genus Scolytus Müller.

This genus comprises over thirty species, of which nearly half are European, the remainder having been described from North, Central and South America, and from Java. The commonest species, S. scolytus Fabricius, is responsible for the destruction annually of large numbers of elm trees throughout the country. S. rugulosus Müller is known to attack perfectly healthy trees.
1 Second abdominal sternite (in both sexes) bearing a basal or median, strongly protuberant process

- Second abdominal sternite (in both sexes) without a process (figs. 20, 21) 3.

2 Posterior margins of abdominal sternites 2, 3 and 4 each with a pair of lateral teeth. Apical truncature of abdomen oblique. Length $2-3.3 \mathrm{~mm}$. In Ulmus, Pyrus, Prunus, Quercus, Populus, Rhamnus, etc....................multistriatus (Marsham)

- Posterior margins of abdominal sternites without lateral teeth. Apical truncature subvertical. Length $2-4.5 \mathrm{~mm}$. Imported from North America
*dimidiatus Chapuis
3 Elytra not narrowed towards apices; apices smooth (fig. 33). Posterior margin of sternite 1 strongly raised or carinate.
- Elytra narrowed towards apices; apices serrate. Posterior margin of sternite 1 not or feebly raised. Length $1 \cdot 8-2 \cdot 7 \mathrm{~mm}$. In Pyrus, Prunus, Rosa, etc.
rugulosus Müller
4 Abdominal sternites 3 and 4 with median tubercles (figs. 20, 21)........................5.
- Abdominal sternites 3 and 4 without tubercles... 6.

5 Posterior part of sternite 3 with a stout, rounded, shining, median tubercle (fig. 20). Posterior part of sternite 4 with a much broader bilobate tubercle (fig. 20). Head with longitudinal rugae forming a median keel. Length $5-6.5 \mathrm{~mm}$. Scotland. Exclusively in Betula.. ${ }^{\text {or }}$ ratzeburgi Janson

- Posterior part of sternites 3 and 4 each with a small peg-shaped tubercle (fig. 21). Head finely and densely punctured (fig. 33). Length 3-6 mm. Chiefly in Ulmus, but also in Fraxinus, Quercus, Populus, etc................scolytus (Fabricius)
6 Frons without a distinct median carina. Length less than 4 mm .
.7.
- Frons with a distinct median carina. Interstices of elytra smooth and shining. Length $5-6 \mathrm{~mm}$. Scotland. Exclusively in Betula............ $\%$ ratzeburgi Janson
7 Puncturation of pronotum fine and sparse on disc, scarcely more dense laterally, where the punctures are larger and densest around anterior angles. Length $3 \cdot 5-4 \cdot 5 \mathrm{~mm}$. Chiefly in Pyrus, Prunus, Ulmus, Crataegus
mali (Bechstein) (= pruni Ratzeburg)
- Puncturation of pronotum much coarser and denser laterally than on disc, the punctures being contiguous or confluent. Elytra much less shining than pronotum. Length $2 \cdot 4-3.6 \mathrm{~mm}$. Mainly in Quercus, but also in Castanea, Ulmus, Fagus, Populus, etc.
intricatus (Ratzeburg)

Genus Hylastes Erichson.

In this genus over 40 species are known from Europe, Asia and North America. A few species have also been described from Central and South America and from New Zealand and elsewhere.

According to Blair (1949) the series of H. cunicularius Erichson in the British Museum (Nat. Hist.) was divided by Eggers into two species, one of which he had proposed to describe as new. Neither Blair nor the present author can find justification for this separation. On the other hand, H. brunneus Erichson, a former variety of H. ater (Paykull), is here regarded as a distinct species (see also Blair, 1949).

1 Front with a protuberant median carina extending from middle as far as clypeus
(fig. 22). Length at least 3 mm .

- Front without a median carina or entirely granulate or with a short rectilinear impression in middle (fig. 23). Length at most 3 mm .

Figs. 33-36.-33, Scolytus ratzeburgi Janson (male). 34, Blastophagus piniperda (Linnaeus) (male). 35, Pteleobius vittatus (Fabricius) (male). 36, Ips typographus (Linnaeus) (male).

2 Pronotum elongate, widest behind middle or parallel-sided for basal half. Elytral interstices sparsely reticulate
interstices sparsely reticulate.. 3.

- Pronotum quadrate to slightly transverse, widest before middle. Elytral interstices densely reticulate. Length 3.2-4.5 mm. Local. In Picea
cunicularius Erichson
3 Pronotum strongly elongate and parallel-sided for basal half. Elytral interstices dull, microscopically reticulate between punctures. Length $3 \cdot 5-4 \cdot 5 \mathrm{~mm}$. Southern species. Common. In branches, stumps and roots of Pinus
ater (Paykull)
- Pronotum less elongate, broadest behind middle. Elytral interstices shining and smooth between punctures. Length $4 \cdot 5-5.5 \mathrm{~mm}$. Northern species. In Pinus
brunneus Erichson
4 Elytral interstices with a single row of granules, accompanied by a single row of obliquely-set setae for their entire length. Pronotum black, elytra brown and matt. Length $2-2.5 \mathrm{~mm}$. Very local. Exclusively in Pinus
attenuatus Erichson
- Elytral interstices with, at least at base, two rows of granules and setae arranged in 1 or 2 rows. Entirely black. \qquad
5 Front with a short sulcus in middle (fig. 23). Pronotum slightly elongate. Elytral interstices not broader than strise and with 2 rows of granules. Length $2 \cdot 5-3 \cdot 2$ mm . Southern species. Local. In Pinus and Picea.........angustatus (Herbst)
- Front without a median sulcus. Pronotum quadrate. Elytral interstices broader than strize, with granules uneven. Length $2 \cdot 5-3 \cdot 4 \mathrm{~mm}$. Local. Chiefly in Pinus, but also in Ulmus and Fraxinus.
opacus Erichson

Genus Hylesinus Fabricius.

This genus is represented by only the following two palearctic species:
1 Elytra with short, sparse, squamiform setae along outer margins; sutural margins slightly raised and sparsely covered with slender squamiform setae ; interstice 1 coarsely granulate. Basal transverse carina of elytra scarcely distinguishable from rugosity of interstices. Length $4 \cdot 5-6 \mathrm{~mm}$. Local. Chiefly in Fraxinus, but also in Quercus, Juglans, etc..crenatus (Fabricius)

- Elytra with long, suberect, bristle-like setae along outer margins. Sutural margins very strongly raised and densely covered with coarse, squamiform setae ; interstice 1 flat and smooth. Basal transverse carina of elytra clearly defined. Length $2.5-3.5 \mathrm{~mm}$. Local. In twigs of Fraxinus .oleiperda (Fabricius)

Genus Leperesinus Reitter.

This genus is represented by only two palearctic species:
1 Squamiform setae on elytra very dense, almost or completely concealing the rows of granules on interstices. Pale squamiform setae much more numerous than the dark setae. Femora and tibiae reddish brown. Length $2 \cdot 5-3 \mathrm{~mm}$. In slender branches of Fraxinus .orni Fuchs Squamiform setae on elytra less dense, the granules on interstices conspicuous. Pale squamiform setae much less numerous than the dark setae. Femora and tibiae black. Length 2.5-3.2 mm. Mainly in Fraxinus \qquad fraxini (Panzer)

Genus Blastophagus Eichhoff ($=$ Myelophilus Eichhoff).

This genus consists of five palearctic species, of which only two are European. All species are apparently confined to coniferous trees.

1 Interstice 2 of elytra longitudinally depressed for at least apical fourth; this depression devoid of setiferous granules (fig. 34). Length $3-5 \mathrm{~mm}$. Local. Mainly in Pinus, but also in Picea, Abies and Larix. Tunnels under bark longitudinal
piniperda (Linnaeus)

- Interstice 2 of elytra not depressed; setiferous granules completely distributed. Length $3 \cdot 8-4 \cdot 5 \mathrm{~mm}$. Scotland. Rare. Mainly in Pinus but also in Abies and Picea. Tunnels under bark transverse.
.minor (Hartig)

Genus Crypturgus Erichson.

The twelve palearctic species of this genus are all known to attack coniferous trees.

1 Pronotum and elytra dull. Pronotum parallel-sided, at least for posterior half. Punctures of elytral striae transversely impressed. Elytral interstices densely setose. Length $1 \cdot 2-1.5 \mathrm{~mm}$. Imported from Europe. In Pinus, Abies and Picea; usually in trees already attacked by other Scolytids..........einereus (Herbst)

- Pronotum and elytra shining. Pronotum with sides rounded. Punctures on elytral striae round and regularly spaced. Elytral interstices sparsely setose. Length $1-1 \cdot 4 \mathrm{~mm}$. In Picea, Abies and also Pinus and Larix
pusillus (Gyllenhal)

Genus Trypodendron Stephens ($=$ Xyloterus Erichson).

Only three species of this genus are known :
1 Antennal club slightly produced and pointed apically (fig. 24). Pronotum entirely black. Interstice 5 of elytra not as dark as first. Length $3-3.5 \mathrm{~mm}$. Local. In Quercus and Fagus..domesticum (Linnaeus)

- Antennal club oval or subrectangular, not pointed apically (figs. 25, 26). Pronotum only partly black, base reddish. Interstice 5 of elytra as dark as first . 2.
2 Antennal club rounded apically (fig. 25). Elytral striae with rows of punctures regularly arranged even on the sides of the elytra. Elytral declivity matt. Interstice 5 of elytra almost black. Length $3-3.5 \mathrm{~mm}$. Very local. In Abies, Picea, Pinus and Larix
lineatum (Olivier)
- Antennal club angular apically (fig. 26). Elytral striae with rows of punctures on sides of elytra sinuate or irregular. Elytral declivity shining. Length $3-3.5 \mathrm{~mm}$. Very local. Mainly in Quercus and Fagus......signatum (Fabricius)

Genus Cryphalus Erichson.

Over thirty species of this genus are known, of which only two are indigenous to this country. Other species, however, are frequently imported from the tropies in stored products.

1 Transverse asperities of pronotal dise extending posteriorly as far as basal third or fourth ; disc highest behind middle. Elytra with both suberect and decumbent squamiform setae
2.

- Transverse asperities of pronotal dise not extending beyond anterior half; disc highest in front of middle. Elytra with all squamiform setae suberect. Length $1.8-2 \mathrm{~mm}$. Imported in nutmegs from the West Indies.............*buscki Hopkins
2 Elytra with erect or suberect squamiform setae stout, clavate and much broader than decumbent squamiform setae. Posterior third of pronotal disc with decumbent squamiform setae. Length 1-1.5 mm. Imported from Africa in Arachis and Ficus
*pallidus Eichhoff
- Elytra with erect or suberect setae very slender, not clavate, not or scarcely squamiform and narrower than decumbent squamiform setae. Posterior third of pronotal disc granulate
.. 3.
3 Elytra with distinct striae, at least towards base. Setae on elytral interstices very short, about 2-4 times as long as the decumbent setae on striae. Length $1-1 \cdot 6 \mathrm{~mm}$. Rare. In Abies and Picea...............................abietis (Ratzeburg)
- Elytra with striae very indistinct. Setae on elytral interstices much longer (8-10 times) than the decumbent setae on striae. Length $1 \cdot 5-2 \mathrm{~mm}$. Rare. In Picea
piceae (Ratzeburg)

Genus Trypophloeus Fairmaire.

Ten palearctic species of this genus are known, all of which attack mainly Salix.

Squamiform setae on elytra continuing right to apices on all interstices. Length
$1 \cdot 3-2.5 \mathrm{~mm}$. In dry branches of Populus and Salix...........asperatus (Gyllenhal)

- Squamiform setae on elytra interrupted on interstice 2 at the beginning of the elytral declivity but continuing right to apices on remaining striae. Length $1 \cdot 6-2 \cdot 6 \mathrm{~mm}$. Exclusively in Populus.
granulatus (Ratzeburg)
Genus Dryocoetinus Balachowsky ($=$ Dryocoetes Eichhoff pars).
This genus is so far represented by only the following two species :
1 Strize with large subquadrangular punctures which are much larger than those on interstices (fig. 27). Pronotum and elytra entirely dark brown. Pronotum granulate anteriorly, rugose-punctate posteriorly. Length $2.5-3.5 \mathrm{~mm}$. Local. In Quercus, Fagus and Castanea .villosus (Fabricius)
- Striae with smaller round punctures which are only slightly broader than those on interstices (fig. 28). Pronotum dark brown, elytra reddish brown. Pronotum entirely granulate. Length $2-2 \cdot 3 \mathrm{~mm}$. Rare. In Alnus, Fagus and Corylus
alni (Georg)

Genus *Stephanoderes Eichhoff.

Many species belonging to this genus have been described from tropical regions. Their habitats are varied, but some of those that infest seed pods are occasionally imported into this country. Owing to the nature of their habitat some species have become cosmopolitan.

1 Squamiform setae of elytra long, slender and bristle-like (fig. 29). Length 1-3-1-7 mm . Imported from Africa, Java and Sumatra in coffee beans.
*coffeae Hagedorn

- Squamiform setae short, stout and clavate (fig. 30). Length 0.9-1.2 mm. Imported from Africa and Asia in pods of Cassia and in Crotalaria, Myristica, etc.
*cassiae Eichhoff

Genus Xyleborus Eichhoff.

Many species of this genus are known from the palearctic region and a few from the oriental region.
1 Posterior area of pronotum distinctly punctured and shining. Male pronotum with a deep excavation on anterior balf. Length $2-2.7 \mathrm{~mm}$. Southern species. Very local. In Quercus, Castanea and also Fagus and Ulmus
dryographus (Ratzeburg)

- Posterior area of pronotum extremely finely punctured, shagreened and dull. Male pronotum without an excavation on anterior half. Length $2-2.4 \mathrm{~mm}$. Southern species. Very local. In Quercus, Ulmus, Acer and Pinus
xylographus (Say) (= saxeseni (Ratzeburg))

Genus Pityophthorus Eichhoff.

European species of this genus are confined to coniferous trees.
1 Elytral declivity with the row of spinules indistinct and area between spinules and suture shallowly depressed, longitudinally rugose and dull. Length $1-1.2 \mathrm{~mm}$. Local. In Pinus and Picea
.pubescens (Marsham)

- Elytral declivity with the row of spinules distinctly setiferous and area between spinules and suture deeply depressed longitudinally, smooth and shining. Length $1 \cdot 6-2 \cdot 2 \mathrm{~mm}$. In Pinus
.lichtensteini (Ratzeburg)

Genus Taphrorychus Eichhoff.

The distribution of this genus is exclusively palearctic. All known species apparently infest only deciduous trees.

1 Setae on elytral declivity arising from minute basal tubercles. Length 1.9-2.4 mm.
Mainly in Quercus, but also in Ulmus, Fagus, Castanea, Corylus, etc.
villifrons (Dufour)

Figs. 37-38.-37, Xylocleptes bispinus (Duftschmidt) (male). 38, Anisandrus dispar (Fabricius) (male).

- Setae on elytral declivity simple basally. Pronotum with a feeble, broad, transverse depression behind disc. Length $1 \cdot 5-2 \cdot 6 \mathrm{~mm}$. Rare. Home Counties. In Fagus, Quercus, Ulmus, Populus and Juglans
.bicolor (Herbst)

Genus Pityogenes Bedel.

This genus is mainly palearctic in distribution but a few species occur in America.

1 Ely tral declivity in both sexes oblique, beginning near middle of elytra and delimited laterally by 3 tubercles of equal length and each bearing a straight, spiniform, setose tooth. Female with front bearing a very deep round impression

- Elytral declivity in both sexes delimited laterally by 3 tubercles bearing 1-3 spines, of which the second is always the largest and is strongly curved downward (figs. 31, 32). Female with front simple
2 Male : Suture of elytral declivity glabrous and teeth (viewed laterally) equidistant. Female: Clypeal area in front of median depression pale, dull and pubescent or spiculate, in contrast with the surrounding area. Puncturation of elytral striae 1 and 2 indistinct. Length 2-3 mm. Rare. In Pinus, Picea, Abies and Larix ..chalcographus (Linnaeus)
- Male: Suture of elytral declivity bordered on each side by a row of very short setae ; distance between anterior and median teeth (viewed laterally) less than that between median and posterior teeth. Female: Clypeal area in front of median depression not differing from surrounding area. Puncturation of elytral striae 1 and 2 distinct. Length $1 \cdot 8-2 \cdot 4 \mathrm{~mm}$. Rare. Scotland. In Pinus
trepanatus (Nördlinger)
3 Male: Median tooth of elytral declivity large, curved, with a sharply defined tooth behind it (fig. 31). Female : Front without lateral impressions and clypeal area pubescent. Elytral declivity with 2 or 4 minute spinules (sometimes absent). Length $2-2.5 \mathrm{~mm}$. Scotland. Rare. In Abies and Picea
quadridens (Hartig)
- Male : Median tooth of elytral declivity large, often obliquely truncate or bidentate apically, with area behind it bearing minute spinules (fig. 32). Female: Front with a pair of shallow lateral depressions delimiting anteriorly the clypeal area which is triangular and pubescent. Spinules absent on elytral declivity. Length $2-2.5 \mathrm{~mm}$. Local. In Pinus and Picea
.bidentatus (Herbst)

Genus Ips Degeer.

Species of this genus are exclusively palearetic and are confined to coniferous trees.

1 Lateral margin of elytral declivity bearing more than 3 pairs of teeth which are unequal in size, the posterior pair never the largest (figs. 16, 36). Front with a tubercle at base of clypeus.

- Lateral margin of elytral declivity bearing only 3 pairs of teeth, the posterior pair the largest. Front without a tubercle at base of clypeus. Posterior tooth bidendate in male, simple in female. Length $2 \cdot 2-3 \cdot 5 \mathrm{~mm}$. Northern species. Local. In Pinus and Larix...acuminatus (Gyllenhal)
2 Lateral margin of elytral declivity bearing 4 pairs of teeth; apical margin broadly explanate (fig. 34). Frontal tubercle at base of clypeus large, conical. Length $4 \cdot \overline{2}-6 \mathrm{~mm}$. Rare. In Picea, Abies and Pinus...............typographus (Linnaeus)
- Lateral margin of elytral declivity bearing 6 pairs of teeth; apical margin narrowly explanate (fig. 16). Frontal tubercle small, indistinct. Length $6.5-8 \cdot 2 \mathrm{~mm}$. Rare. In Pinus
.sexdentatus (Boerner)

Genus Onthotomicus Ferrari.

All European species of this genus are confined to coniferous trees.
1 Second tooth on elytral declivity more strongly developed than the others and broadly triangular (fig. 17). Length $3-3.5 \mathrm{~mm}$. In Pinus
erosus (Wollaston)

- Second tooth on elytral declivity the same size as the others and spiniform.........2.

2 Distance between first and second teeth on elytral declivity less than distance between the first pair of teeth. Length $2-6.3 \mathrm{~mm}$. In Pinus
suturalis (Gyllenhal)

- Distance between first and second teeth of elytral declivity greater than the distance between the first pair of teeth. Length $3-3.5 \mathrm{~mm}$. Local. In Pinus and Larix
laricis (Fabricius)

PLATYPODIDAE.

Adult Characteristics.

Members of this family closely resemble those of the Scolytidae, from which they may be distinguished by the following characters: Head broad, not concealed from above by prothorax (fig. 39). Eyes round, subconvex. Head scarcely narrower than prothorax. Antenna short, scape robust, club usually large, compressed. Thorax elongate, with sides emarginate (fig. 39). Coxae conical; metasternum very long. Elytra elongate, cylindrical and oblique or rounded apically (fig. 39). Abdomen with the five visible sternites unequal in length. Legs (fig. 40) short with femora dilated ; tarsi long, slender ; first tarsal segment prolonged, much longer than segments 2-4 together; claws simple.

Larval Characteristics.

The larvae of Platypodidae, so far as are known, closely resemble those of Scolytids, but may be distinguished from them by the one-segmented maxillary palpi, the trilobate abdominal hypopleura and the presence of asperities or spicules on the pronotum. In the larva of P. cylindrus Fabricius
the abdomen is truncate posteriorly and the thorax is gibbous and bears locomotory spines.

Biology.

Platypodids, like other ambrosia beetles of the Scolytidae, are, with the possible exception of P. cylindrus Fabricius, which infests stumps of Quercus and Fagus, unusual and differ in several respects from those of Scolytids. The galleries are simple, cylindrical, of an almost uniform diameter throughout and extend deeply into the heartwood. Both adults and larvae move about actively from one gallery to another.

Family Platypodidae.
 Genus Platypus Herbst.

1 Elytral interstices flat, smooth, shining. Male elytra without a pair of subapical marginal teeth. Imported species.

- Elytral interstices elevated, subcostate, matt (fig. 39). Male elytra with a pair of subapical marginal teeth (fig. 39). Length 5-5.5 mm. Native (Southern) species. In felled Quercus, Fagus and Fraxinus. \qquad .cylindrus (Fabricius)
2 Male with elytra acutely attenuated apically. Apical fourth of elytra not declivous in either sex. Female with elytra without paramedian tubercles. Length $4-4.8 \mathrm{~mm}$. Imported from Africa............*penetralis Sampson ($=$ solutus Schedl)
- Male with elytra broadly rounded apically. Apical fourth obliquely declivous in both sexes. Female with a pair of paramedian conical tubercles on apical fourth. Length 4-5 mm. Imported from Malaya *curtus Chapuis

Figs. 39-40.-39, Platypus cylindrus (Fabricius) (male). 40, Same, front leg.

18 V (15). COLEOPTERA : SCOLYTIDAE AND PLATYPODIDAE
References.
Balachowsky, A., 1949, Faune de France 50. Coléoptères Scolytides. 320 pp., 345 figs. Paris.
Blatr, K. G., 1949, Hylastes brunneus Er. (Col., Scolytidae) in Britain. Ent. mon. Mag. 85 : 89.
Fowler, W. W., 1889, The Coleoptera of the British Islands 5. London.
Joy, N. H., 1932, A Practical Handbook of British Beetles. 2 vols. London.
Munro, J. W., 1926, British Bark Beetles. Bull. For. Comm., Lond. 8. 77 pp., 10 pls., 32 figs.
Reitter, E., 1912, Fauna Germanica. Die Käfer des Deutschen Reiches. 4. Stuttgart.

INDEX

to Families, Genera and Species of Coleoptera (Scoliytidae and Platypodidae).

Numerals in heavy type indicate pages on which illustrations occur. Synonyms are in italics.
abietis (Cryphalus), 7, 13
acuminatus (Ips), 16
alni (Dryocuetinus), 8, I4
angustatus (Hylastes), 8, 12
Anisandrus, 9
asperatus (Trypophleous), 5, 13
ater (Hylastes), 8, 10, 12
attenuatus (Hylastes), 12
autographus (Dryocoetes), 7, 9
bicolor (Taphrorychus), 15
bidentatus (Pityogenes), 8, 16
bispinus (Xylocleptes), 3, 7, 9, 15
Blastophagus, 1, 2, 3, 6, 12
brunneus (Hylastes), 10, 12
buscki (Cryphalus), 13
cassiae (Stephanoderes), 8, 14
chalcographus (Pityogenes), 15
cinereus (Crypturgus), 13
Coccotrypes 2, 3, 9
coffeae (Stephanoderes), 5, 8, 14
coryei (Lymantor), 9
crenatus (Hylesinus), 5, 12
Cryphalus, 6, 13,
Crypturgus, 6, 13
cunicularius (Hylastes), 10, 12
curtus (Platypus), 17
cylindrus (Platypus), 16, 17, 17
dactyliperda (Coccotrypes) 3, 7, 9
dimidiatus (Scolytus), 10
dispar (Anisandrus), 9, 15
domesticum (Trypodendron), 8, 13
Dryocoetes, 9, 14
Dryocoetinus, 9, 14
dryographus (Xyleborus), 14
Ernopocerus, 7
Ernoporus, 7
erosus (Onthotomicus), 7, 16
eruditus (Hypothenemus), 3, 6
fagi (Ernopocerus), 7, 7
fraxini (Leperesinus), 5, 12
granulatus (Trypophloeus), 14
Hedera, 3
hederae (Kissophagus), 3, 5, 6
Hylastes, 4, 10
Hylastinus, 6

Hylesini, 1
Hylesinus, 5, 12
Hylurgops, 4
Hylurgus, 6
Hypothenemus, 3, 6
intricatus (Scolytus), 3, 10
Ips, 3, 8, 16
Kissophagus, 3, 6
laricis (Onthotomicus), 16
Leperesinus, 5, 12
lichtensteini (Pityophthorus), 14
ligniperda (Hylurgus), 6
lineatum (Trypodendron), 8, 13
Lymantor, 9
mali (Scolytus), 10
minor (Blastophagus), 3, 12
morigenus (Xylosandrus), 9
multistriatus (Scolytus), 10
Myelophilus, 12
obscurus (Hylastinus), 6
oleiperda (Hylesinus), 12
Onthotomicus, 8, 16
opacus (Hylastes), 12
orni (Leperesinus), 12
palliatus (Hylurgops), 4
pallidus (Cryphalus), 13
penetralis (Platypus), 17
Phloeophthorus, 4
Phloeosinus, 4
piceae (Cryphalus), 13
pilosus (Xylechinus), 5, 6
piniperda (Blastophagus), 1, 2, 11, 12
Pityogenes, 9, 15
Pityophthorus, 9, 14
Platypodidae, $1,16,17$
Platypus, 17
poligraphus (Polygraphus), 4
Polygraphus, 4
Pteleobius, 6
pubescens (Pityophthorus), 14
pubescens (Polygraphus), 4
pusillus (Crypturgus), 13
quadridens (Pityogenes), 8, 15
ratzeburgi (Scolytus), 7, 10, 11
rhododactylus (Phloeophthorus), 4, 5 rugulosus (Scolytus), 10
saxeseni (Xyleborus), 14
Scolytidae, l, 4
Scolytini, 2
Scolytus, 3, 4, 10
scolytus (Scolytus), 5, 7, 10
sexdentatus (Ips), 7, 16
signatum (Trypodendron), 8, 13
solutus (Platypus), 17
Stephanoderes, 6, 14
suturalis (Onthotomicus), 16
Taphrorychus, 9, 14
Thamnurgus, 1
thujae (Phloeosinus), 4, 5
tiliae (Ernoporus), 7
trepanatus (Pityogenes), 15
Trypodendron, 6, 13
Trypophloeus, 6, 13
typographus ($\mathrm{I} p \mathrm{~s}$), 11, 16
villifrons (Taphrorychus), 14
villosus (Dryocoetinus), 8, 14
vittatus (Pteleobius), 5, 6, 11
Xyleborus, 3, 9, 14
Xylechinus, 6
Xylocleptes 3, 9
Xylosandrus, 9
Xyloterus, 13
xylographus (Xyleborus), 3, 14

The Royal Entomological Society of London is a scientifio Society founded in 1833 and incorporated by Royal Chaiter in 1885 for the improvement and diffusion of Entomological Science exclusively.

The principal Publications of the Society are the following:
TRANSACIIONS. Papers published in the Transactions are issued separately and separately priced. One volume is issued every year, sometimes two. Prices on application.
PROCEEDINGS : Series A. Contains short papers on general entomology. Four parts are issued annually at a subscription price of $\mathrm{e} 28 \mathrm{8s}$,
PROCEEDINGS : Series B. Consists exclusively of short papers on systematic entomology. Six parts are issued each year at a subscription price of $£ 28 \mathrm{8}$.
PROCEEDINGS: Series C. Contains the minutes of meetings, list of Fellows, Presidential Addresses, etc. A part is issued before each meeting as an Agenda paper. The amnual subscription price is $£ 14 \mathrm{~s}$.
The above are issued free to Fellows on publication. Further copies can be obtained by Fellows on special terms.

Other publications issued by the Society, in addition to the Handbooks (for particulars of which see p . ii of cover), are the following :

The Generic Names of Eritish Insects. Nine parts so far published, covering the Rhopalocera, Odonata, Neuroptera, Hymenoptera Aculeata; Carabidae, Hydradephaga, Hemiptera-Heteroptera, and Staphylinidae.

Stylops: A Journal of Taxonomic Entomology. 1932-1935, Vols. 1-4 (all issued). £2 3s. per Vol.

Hübner: A bibliographical and systematic account of the entamological works of Jacob Hübner and the supplements thereto. By Francis Hemming. 2 Vols., £2 10s.

The Centenary History of tho Soeiety. 10s; 0d,
Communications offered to the Society for publication should be addressed to the Registrar at the Society's Rooms. Those intended for the Transactions must be communicated by a Fellow of the Society.

Meetings are held at the Society's Rooms on the first Wednesday in each month, except January (third Wednesday) and August (no meeting).

Particulars concerning the Fellowship can be obtained on applioation to the Registrar, 41, Queen's Gate, London, S.W. 7.

Handboors for the Identification ofy British Inshots. Parts now Avaitable.
I. Part 5 Dermaptera and Orthoptera. By W. D. Hincks. 20 pp. 3s. 6d.
" 6 Plecoptera. By D. E. Kimmins. 18 pp. 3s. 6d.
" 9 Ephemeroptera:. By D. E. Kimmins. 18"pp. 38. 6d.
„ 10 Odonata. By F. C. Fraser. 48 pp. 7s. 6d.
IV. , 3 Coleoptera: Hydradephaga. By F. BalfourBrowne. 34 pp . 6s. 0d.
V. " 7 Coleoptera : Coccinellidae and Sphindidae. By R. D. Pope. $12 \mathrm{pp} . \quad 2 \mathrm{~s} .6 \mathrm{~d}$.
,, 12 Coleoptera: Cerambycidae. By E. A. J. Duffy. 18 pp: 3s. 6d.
,. 15 Coleoptera: Scolytidae and Platypodidae.
By E. A. J. Duffy.
$18 \mathrm{pp} . \quad 3 \mathrm{~s} .6 \mathrm{~d}$.
VI. " 2(a) Hymenoptera: Symphyta (part). By R. B.

Benson.
$47 \mathrm{pp} . \quad 10 \mathrm{~s} .0 \mathrm{~d}$.
," 2(b) Hymenoptera: Symphyta (contd.) By R. B.
Benson.
8i pp: 15s. 0d.
IX. , 1 Diptera: Introduction and Key to Families. By H. Oldroyd.
$49 \mathrm{pp} . \quad 7 \mathrm{~s} .6 \mathrm{~d}$.
n 2 Diptera: Nematocera (part). By R. L. Coo, Paul Freeman, P. F. Mattingly.

216 pp .20 s .0 d.
X. „ 1 Diptera: Syrphidae. By R. L, Coe. 98 pp. 17s. 6d.

[^0]: Segment 1 of tarsus sherter than segments 2, 3 and 4 together (figs. 1 and 2). Head appreciably narrower than prothorax (figs. 33-36). Eyes oval, reniform or divided (figs. 12 and 13) \qquad Scolytidae (p. 1) Segment 1 of tarsus much longer than segments 2, 3 and 4 together (fig. 40). Head scarcely narrower than prothorax (fig. 39). Eyes round (fig. 39)

 Platypodidae (p. 16)

[^1]: * Also known in the timber trade as "Shothole Borers," "Pinhole Borers" and "Ambrosia Beetles."

