Supplementary data for

Effects of Fe (II) on microbial communities and nitrogen transformation pathway of nitrogen and iron cycling in the Anammox process: kinetic, quantitative mechanism and metagenomic analysis

Submitted to RSC Advance

Authors:

Duntao Shu^{a, b §}, Yanling He^{c*}, Hong Yue^{d §}, Shucheng Yang^e

Affiliations of authors:

^aCenter for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical

Information Engineering of the Ministry of Education, School of Life Science and

Technology, Xi'an Jiaotong University, Shaanxi 710049, China

^bState Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences,

Northwest A&F University, Yangling, Shaanxi 712100, China

°School of Human Settlements & Civil Engineering, Xi'an Jiaotong University, Shaanxi

710049, China

dState Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and

Yangling Branch of China Wheat Improvement Center, Northwest A&F University,

Yangling, Shaanxi 712100, China

^e School of Energy and Power Engineering, Xi'an Jiaotong University, Shaanxi 710049,

^{*} Corresponding author. Email: heyl@mail.xjtu.edu.cn; Tel/Fax: 0086 029 83395128.

[§] These authors contributed equally to this work.

China

Contents

1. Tables

Table S1 Primers used for qPCR thermal programs in this study.

Table S2 Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon,

Chao1, ACE, and Simpson of five phases.

2. Figures

Figure S1 Rarefaction curves base on MiSeq pyrosequencing of bacterial communities in different phases. The OTUs were defined by 3% distances.

Figure S2 Distributions of bacteria in five phases at different taxonomy level. (a) At class level; (b) at order level; (c) at family level; (d) at genus level. Taxa represented occurred at >1% frequency in at least one sample. Others refer to the taxa with their maximum abundance <1% in any sample.

3. References

Target prokaryote	Target gene	Sequence (5'-3') of parimer pairs	Annealing (°C)	Thermal program	Reference	
Total bacteria	16S rRNA	341F: CCTACGGGAGGCAGCAG	60	5 min at 95°C, 40 cycles of 30 s at 95°C, 30 s at 60°C,	1	
		518R: ATTACCGCGGCTGCTGG		and 40 s at 72°C		
Anammox Bacteria	16S rRNA	Amx809f: GCCGTAAACGATGGGCACT	60	10min at 95°C, followed by 35 cycles of 60 s at 95°C, 60 s at 60°C, and 45 s at 72°C	2	
		Amx1066r: AACGTCTCACGACACGAGCTG				
AOA	amoA	amoAF: STAATGGTCTGGCTTAGACG	53	3 min at 94°C, followed by 40 cycles of 30 s at 94°C, 1 min at 53°C, and 1 min at72°C	3	
		amoAR: GCGGCCATCCATCTGTATGT				
AOB	amoA	amoAF: GGGGTTTCTACTGGTGGT	55	3 min at 94°C, followed by 40 cycles of 30 s at 94°C, 30	4	
		amoAR: CCCCTCKGSAAAGCCTTCTTC		s at 55°C, and 45 s at 72°C		
Denitrifying bacteria	nosz	nosZ1F: WCSYTGTTCMTCGACAGCCAG	63	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	5	
		nosZ1R: ATGTCGATCARCTGVKCRTTYTC		s at 63°C, and 45 s at 72°C		
Denitrifying bacteria	nirS	nirSnF: TACCACCCCGAGCCGCGCGT	63	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	6	
		nirSnr: GCCGCCGTCRTGVAGGAA		s at 63°C, and 45 s at 72°C		
Denitrifying bacteria	nirK	nirKF: ATYGGCGGVAYGGCGA	57	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	6	
		nirKR: GCCTCGATCAGRTTRTGG		s at 57°C,and 45 s at 72°C		
Dissimilarity nitrite	narG	narG2F: CTCGAYCTGGTGGTYGA	55	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	7	
reducing bacteria		narG2R: TTYTCGTACCAGGTSGC		s at 55°C, and 45 s at 72°C		
Dissimilarity nitrite	napA	napA3F: CCCAATGCTCGCCACTG	60	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	7	
reducing bacteria		napA3R: CATGTTKGAGCCCCACAG		s at 60°C, and 45 s at 72°C		
Dissimilarity nitrate	nrfA	nrfA2F: CACGACAGCAAGACTGCCG	60	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	8	
reducing bacteria		nrfa2R: CCGGCACTTTCGAGCCC		s at 60°C, and 45 s at 72°C		
Nitrite oxidizing	nxrA	F1norA: CAGACCGACGTGTGCGAAAG	57	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	9	

Table S1 Primers used for qPCR and thermal programs in this study.

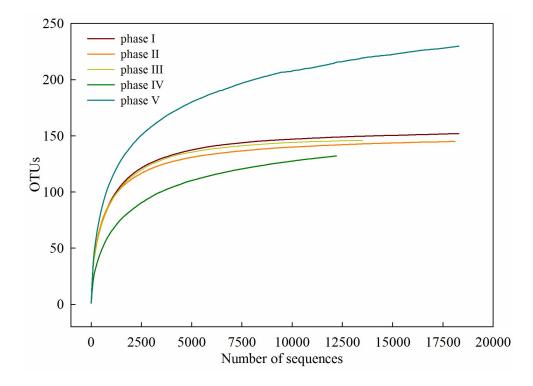
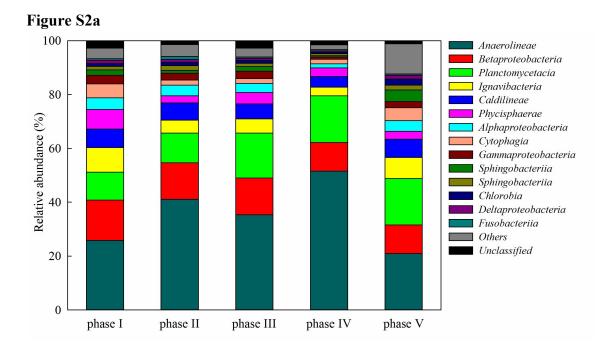
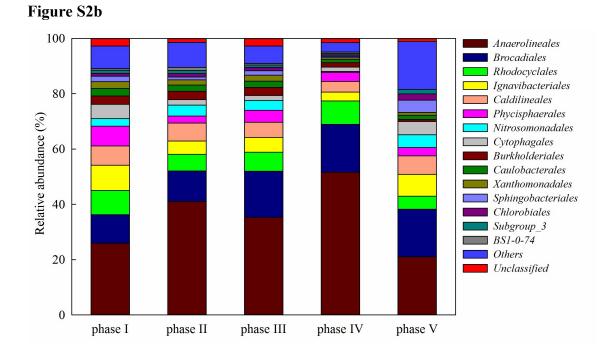

bacteria		R1norA: TCYACAAGGAACGGAAGGTC		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				57 °C for 30 s, and extension at 72 °C for 30 s	
Acidimicrobium	16S rRNA	Amf995: CTCTGCGGCTTTTCCCTCCATG	52	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	10
		Uni-907R-RC: AAACTCAAAKGAATTGACGG		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				52 °C for 45 s, and extension at 72 °C for 45 s	
Ferrovum	16S rRNA	Ferrovum643F: ACAGACTCTAGCTTGCCAGT	57	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	10
		Uni-338F-RC: ACTCCTACGGGAGGCAGC		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				57 °C for 45 s, and extension at 72 °C for 45 s	
Albidiferax	16S rRNA	RdoR-RC: GACCTGCATTTGTGACTGYA	52	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	10
		Uni-907R: CCGTCAATTCMTTTGAGTTT		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				52 °C for 45 s, and extension at 72 °C for 45 s	
Geobacter	16S rRNA	Geo561F: GCGTGTAGGCGGTTTBTTAA	57	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	10
		Geo858R: TCAATACCCGCAACACCTAG		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				57 °C for 45 s, and extension at 72 °C for 45 s	
Acidiphilium	16S rRNA	ACD840: CGACACTGAAGTGCTAAGC	61	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	11
		Uni-338F-RC: ACTCCTACGGGAGGCAGC		for 10 min, denaturation at 95 °C for 15 s, annealing at	
				61 °C for 45 s, and extension at 72 °C for 45 s	

Table S2 Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon,


Sample ID	Raw	Effective	OTUs	Good's	Shannon	Chao 1	ACE	Simpson
	reads	reads		coverage				
phase I	19527	18283	152	0.999562	3.36	161	154	0.0749
phase II	19051	18041	145	0.999612	3.08	149	147	0.1401
phase III	15616	13425	146	0.999628	3.16	147	147	0.1078
phase IV	13239	12125	132	0.998103	2.26	148	148	0.2605
phase V	19925	17130	230	0.99784	3.51	260	259	0.0733


Chao1, ACE, and Simpson of five phases.

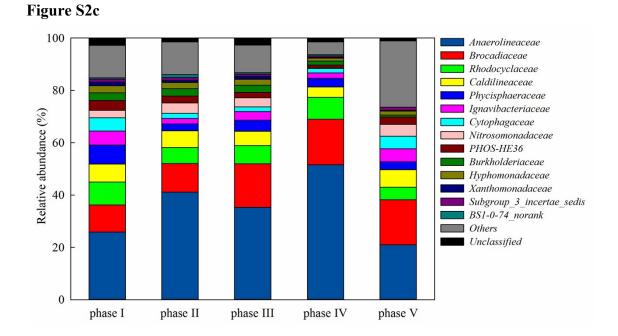



Figure S1 Rarefaction curves base on MiSeq pyrosequencing of bacterial communities in different phases. The OTUs were defined by 3% distances.

Figure S2d

Figure S2 Distributions of bacteria in five phases at different taxonomy level. (a) At class level; (b) at order level; (c) at family level; (d) at genus level. Taxa represented occurred at >1% frequency in at least one sample. Others refer to the taxa with their maximum abundance <1% in any sample.

References

- Y. Bai, Q. Sun, D. Wen and X. Tang, *FEMS microbiology ecology*, 2012, 8, 323-330.
- 2. I. Tsushima, Y. Ogasawara, T. Kindaichi, H. Satoh and S. Okabe, *Water research*, 2007, **41**, 1623-1634.
- C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro and B. B. Oakley, *Proceedings of the National Academy of Sciences of the United States of America*, 2005, 102, 14683-14688.
- 4. J.-H. Rotthauwe, K.-P. Witzel and W. Liesack, *Applied and environmental microbiology*, 1997, **63**, 4704-4712.
- 5. S. Henry, D. Bru, B. Stres, S. Hallet and L. Philippot, *Applied and Environmental Microbiology*, 2006, **72**, 5181-5189.
- 6. E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru and L. Philippot, *Applied and Environmental Microbiology*, 2006, **72**, 5957-5962.
- 7. C. J. Smith, D. B. Nedwell, L. F. Dong and A. M. Osborn, *Applied and environmental microbiology*, 2007, **73**, 3612-3622.
- P. Lam, G. Lavik, M. M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken,
 D. Gutiérrez, R. Amann, M. S. Jetten and M. M. Kuypers, *Proceedings of the National Academy of Sciences*, 2009, **106**, 4752-4757.
- 9. G. Ji, C. He and Y. Tan, *Ecological Engineering*, 2013, **55**, 35-42.
- S. Lu, K. Chourey, M. Reiche, S. Nietzsche, M. B. Shah, T. R. Neu, R. L.
 Hettich and K. Küsel, *Applied and environmental microbiology*, 2013, 79, 4272-

4281.

 M. Fabisch, F. Beulig, D. M. Akob and K. Küsel, *Frontiers in microbiology*, 2013, 4, 1-12.