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COVER PHOTO: a fountain of superfluid Helium-4 will 

flow forever with a tiny amount of heating at the bottom 

(1) (2) (3).
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1    Introduction 

Over the past few decades, superconductivity has taken the 

world by storm. The promise of zero loss in electrical 

systems has led to hundreds of thousands of papers on the 

subject (4). Lesser known – and not nearly as world-

changing – is superconductivity’s little brother: superfluidi-

ty. Instead of having no resistance (‘electrical friction’) it is 

a liquid or gas with no viscosity (‘fluidic friction’). This also 

produces some interesting effects, like superfluids crawling 

up walls by themselves (5) (6) and the creation of superflu-

id fountains (2) (3). Although superfluidity also has some 

practical applications1, the main point of interest is funda-

mental understanding. And in this area, a fair few ques-

tions remain. 

 

Descriptions of superfluidity and superconductivity on the 

most basic level are plagued with problems. In particular, 

the mainstream theory violates conservation of particles. 

That is to say, new particles spring into existence out of 

thin air and others suddenly disappear. This description is 

specifically created to exactly cancel out some tricky con-

tributions to the energy. As the developers of the original 

BCS-theory for superconductivity point out, this isn’t 

actually correct (7); but no one ever bothered to fix it. In 

subsequent years, it increasingly became ‘the mainstream 

theory’. Because it worked well enough for most predic-

tions, it was eventually left at that. However, any first year 

physics student can tell you that conservation laws are the 

building blocks of physics. Especially when you’re looking 

at microscopic systems, particle conservation is a pretty big 

deal, since specific parts of your system may contain no 

more than one or two particles. 

 

With all that in mind, we set out to see if there is a way to 

describe superfluids without violating conservation of 

particles. We use a simplified system based on superfluid 

spin-polarized atomic Hydrogen, which is believed to be 

essential for describing a number of physical systems, 

including neutron stars (8). The system is also roughly 

applicable to superfluid Helium-4, although our approxi-

mations are too restrictive to model it with high accuracy 

(9) (10) (11). Of course, if an exact calculation was doable, 

that would have been done a long time ago. So we are 

merely looking for an approximation that has less funda-

mental difficulties than the current one, while still being 

practical to calculate. 

 

                                                         
    1 For example, superfluids can be used in gyroscopes 

(19) or as quantum solvents that allow particles to ‘fly’ 

frictionlessly, letting you research the properties of a mo-

lecular fluid as if it were a gas (20). 

In section 2, we will describe the system in more detail and 

then go through the conventional approximation of its 

lowest lying states and their energies. We will take a look at 

some of the properties of both the system and the approx-

imation, paying special attention to the violation of particle 

conservation. 

     In the next section, we will describe our method for a 

calculation that conserves the number of particles. Along 

the way, we introduce a set of operators that change the 

momentum of particles, instead of creating or annihilating 

them. We will see that these operators reduce to the con-

ventional bosonic creation and annihilation operators 

when most particles are in the same state. We will apply 

this method to the original system to find its states and the 

associated energies. These results are then checked for 

consistency. To complete our overview, we summarize our 

results and look at the price we had to pay to guarantee 

particle conservation. Finally, we will briefly touch upon 

the possibilities for improving our method and other po-

tential applications, in particular for superconductors. 

    Overall, this text will offer a solid alternative to the 

conventional description of superfluids and will provide 

you with the tools needed to use it. 

1.1    Notes about notation 

References to sources are numbered and placed in paren-

theses. You will find the complete references in chapter 5. 

Equations are numbered and placed in square brackets, as 

are references to them throughout the text. Operators are 

marked with a ̂  above them. Complex conjugates are 

noted with a  . Commutators use the conventional nota-

tion of [   ]       . 

 

Throughout the text you will find sidebars. These will 

refresh your memory on mathematical techniques or go 

into more detail about things mentioned in the text. None 

of the sidebars are essential to the main points being made, 

but each one explores a potentially interesting aspect of 

our system. Reading them is optional, but may help you 

put our findings into context. 
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2    Describing a simplified super-

fluid 

In the system below, we will be looking at a simplified and 

idealized bosonic superfluid (12) (13). The system consists 

of a very large collection of N identical spin-0 bosons with 

mass m. The particles are trapped in a large cube with sides 

L and periodic boundary conditions, giving rise to the 

quantized momentum spectrum 

  ⃗    ⃗            
  

 
  

  

 
  

  

 
     [1] 

    We further assume that the temperature is sufficiently 

low for the particles to be almost exclusively in the lowest 

lying one-particle ground state. This means that for these 

low-energy N-particle states 

   ⃗⃗⃗    ∑  ⃗⃗

 ⃗⃗  ⃗⃗⃗

   [2] 

 ∑  ⃗⃗

 ⃗⃗  ⃗⃗⃗

     [3] 

which we will use repeatedly in our approximations. Here 

  ⃗⃗ is the number of particles with momentum  ⃗, with   ⃗⃗⃗ 

the number of particles in the one-particle ground state. 

    Neglecting particle interactions for the moment, we can 

write the Hamilton-operator of the system in the momen-

tum representation as 

  ̂  ∑
   ⃗ 

  
 ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 [4] 

with eigenvalues 

      ∑
   ⃗ 

  
 
 ⃗⃗

   

 ⃗⃗  ⃗⃗⃗

   [5] 

using the conventional definitions of the operators  ̂ and 

 ̂  that annihilate and create particles respectively (14).2 

We then have as in [2] and [3] 

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗   ̂  ∑ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

  ̂ [6] 

 ∑ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗   ̂   [7] 

where the  ̂-operator counts the total number of particles. 

Once again, this is only true for very low-energy states. 

Note that with particle conservation,  ̂ goes to N when 

applied to our system, because the number of particles it 

counts is fixed at N. 

    But there actually is a weak repulsive interaction be-

tween the bosons – depending on the distance between the 

particles – which gives rise to the additional potential 

                                                         
2 If you’re fuzzy on those definitions, take a look at the 

‘What is a?’ sidebar for a quick refresher. 

  ̂  
 

 
∑      ̂

 ⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂  ⃗⃗⃗⃗⃗  ⃗⃗ ̂ ⃗⃗  ⃗⃗

 ⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗

   [8] 

Here      is the Fourier-transform of the spatial pair 

interaction per unit volume which depends on   (the abso-

lute value of  ⃗). This gives for our total Hamiltonian 

 

 ̂  
 

 
∑

   ⃗ 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 
 

 
∑      ̂

 ⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂  ⃗⃗⃗⃗⃗  ⃗⃗ ̂ ⃗⃗  ⃗⃗

 ⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗

   

[9] 

where we have split the  ̂ -component into two terms, for 

reasons that will become clear when we approximate  ̂.  

 

Because the interaction is weak, we know that in the low-

energy N-particle states almost all particles will remain in 

the one-particle ground state, meaning [2], [3], [6] and [7] 

still hold for low energies. 

 

What is a? 
 

In the rest of this text, we will use the creation and annihi-

lation operators  ̂ ⃗⃗
 
 and  ̂ ⃗⃗ repeatedly. More than that, we 

will take knowledge of their use as a given. So if you are 

not intimately familiar with these operators, make sure to 

take a careful look at the quick overview below. 

 

The annihilation operator  ̂ ⃗⃗ removes a particle with 

momentum  ⃗ from our system and picks up a counting 

factor along the way 

  ̂ ⃗⃗|    ⃗⃗   ⟩  √  ⃗⃗|    ⃗⃗     ⟩   [10] 

where the   ⃗⃗ in the ket represents the number of particles 

with momentum  ⃗ in our system. Similarly,  ̂ ⃗⃗
 
 adds a 

particle 

  ̂ ⃗⃗
 |    ⃗⃗  ⟩  √  ⃗⃗   |    ⃗⃗     ⟩   [11] 

    This also explains the form of our  ̂-operator. After 

all, applying  ̂ ⃗⃗ and  ̂ ⃗⃗
 
 to our system successively, gives 

 
 ̂ ⃗⃗
  ̂ ⃗⃗|    ⃗⃗  ⟩   ̂ ⃗⃗

 
√  ⃗⃗|    ⃗⃗     ⟩ 

   ⃗⃗|    ⃗⃗  ⟩   
[12] 

This means we count the number of particles with mo-

mentum  ⃗ while leaving the system itself unchanged. So 

when we apply  ̂, we find 

 
 ̂|    ⃗⃗  ⟩  ∑ ̂ ⃗⃗

  ̂ ⃗⃗

 ⃗⃗

|    ⃗⃗  ⟩ 

  |    ⃗⃗  ⟩   

[13] 
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A final point to note is that our operators do not always 

commute. Instead they obey the following bosonic com-

mutation relations: 

 

[ ̂ ⃗⃗
   ̂

 ⃗⃗

 ]    

[ ̂ ⃗⃗  ̂ ⃗⃗]    

[ ̂ ⃗⃗  ̂ ⃗⃗  ⃗⃗

 ]    

[ ̂ ⃗⃗  ̂ ⃗⃗
 ]   ̂ 

[14] 

 

2.1    Conventional approximation 

The conventional approximation uses three steps to find 

the lowest lying states and associated energies of the sys-

tem (12) (13). 

    For the first step, approximations [6] and [7] are used to 

remove the suppressed contributions to  ̂. For the second 

step,  ̂
 ⃗⃗⃗

  ̂
 ⃗⃗⃗

 
 and  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ are approximated as being roughly 

equal to  , violating conservation of particle number. For 

the final step, we apply a Bogoliubov transformation to 

diagonalize  ̂ in terms of pairs of quasi-particle number 

operators (15) (16) (17). 

2.1.1    Removing suppressed contributions to V 
 

Because in our system almost all particles are in the one-

particle ground state, the contributions from  ̂ ⃗⃗⃗-like terms 

will be much larger than from  ̂ ⃗⃗  ⃗⃗⃗-like terms. After all, 

the creation and annihilation operators give rise to √  ⃗⃗-

like terms. While the occupation of the one-particle ground 

state guarantees  (√ ) terms from  ̂ ⃗⃗⃗ and  ̂
 ⃗⃗⃗

 
, the much 

lower occupation of the excited one-particle states (as 

quantified in equation [3]) guarantees terms much smaller 

than √  from  ̂ ⃗⃗  ⃗⃗⃗-like terms. In particular, the separate 

terms of the sums in  ̂ can be broken up into progressive-

ly smaller parts by the number of  ̂ ⃗⃗⃗-like terms. This leads 

to a leading order term 

  ̂    
 

 
     ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗   [15] 

a number of second order corrections 

 

 ̂    
 

 
∑     ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗

 ⃗⃗  ⃗⃗⃗

 
 

 
∑       ̂

 ⃗⃗⃗

  ̂
  ⃗⃗ ⃗⃗⃗
  ̂ ⃗⃗⃗ ̂  ⃗⃗ ⃗⃗⃗

  ⃗⃗ ⃗⃗⃗  ⃗⃗⃗

 
 

 
∑      ̂

 ⃗⃗⃗

  ̂
  ⃗⃗ ⃗⃗⃗
  ̂

  ⃗⃗ ⃗⃗⃗ ̂ ⃗⃗⃗

  ⃗⃗ ⃗⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂

 ⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂

 ⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗⃗

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂

 ⃗⃗

  ̂
  ⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗

 ⃗⃗  ⃗⃗⃗

 ∑     ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 
 

 
∑    ( ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 )

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂

 ⃗⃗⃗

  ̂ ⃗⃗⃗ ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[16] 

a number of third order corrections 

 

 ̂    
 

 
∑      ̂

 ⃗⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂  ⃗⃗⃗⃗⃗  ⃗⃗ ̂  ⃗⃗

  ⃗⃗⃗⃗⃗  ⃗⃗⃗  ⃗⃗  ⃗⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗  ⃗⃗⃗

 
 

 
∑      ̂

 ⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗  ⃗⃗

 ⃗⃗  ⃗⃗⃗  ⃗⃗  ⃗⃗⃗  ⃗⃗  ⃗⃗  ⃗⃗⃗

 
 

 
∑       ̂

 ⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂ ⃗⃗⃗ ̂ ⃗⃗   ⃗⃗⃗⃗⃗

 ⃗⃗  ⃗⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗⃗  ⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗⃗

 
 

 
∑      ̂

 ⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂  ⃗⃗⃗⃗⃗  ⃗⃗ ̂ ⃗⃗⃗

 ⃗⃗  ⃗⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗⃗   ⃗⃗⃗⃗⃗  ⃗⃗  ⃗⃗⃗

   

[17] 

and one fourth order sum 

 
 ̂    

 

 
∑      ̂

 ⃗⃗

  ̂
  ⃗⃗⃗⃗⃗
  ̂  ⃗⃗⃗⃗⃗  ⃗⃗ ̂ ⃗⃗  ⃗⃗

 ⃗⃗  ⃗⃗⃗   ⃗⃗ ⃗⃗⃗  ⃗⃗⃗ 

 ⃗⃗  ⃗⃗        ⃗⃗⃗⃗⃗

   
[18] 

Note that conservation of momentum guarantees that 

there are no first order corrections  ̂    with three  ̂ ⃗⃗⃗-like 

terms. 

 

Since  ̂ is small to begin with, and [15] is correct to second 

order, it is tempting to simply use [15] as our value for  ̂. 

This would then lead us to approximate our new energy 

levels as simply having increased by a roughly constant 

amount determined by the one-particle ground state occu-

pation. However, although this would give us a good ap-

proximation of the total energy of the system, the errors in 

the energy of the one-particle excited states might still be 

significant and we are just as interested in these one-

particle excited states as in the one-particle ground state. 
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After all, their occupation may be lower, but all interac-

tions in our material involve a one-particle excited state as 

well. On top of that, the differences between the N-

particle ground state and the low-energy N-particle excited 

states – which determine the superfluid properties of our 

system – is wholly dependent on the properties of our 

excited states as well. Therefore, an approximation that 

ignores these states will not do, no matter how well it 

approximates the total energy of the system. This means 

we will need to take into account the contributions from 

[16] as well, but we will still neglect the higher order terms 

from [17] and [18], leading to 

 

 ̂  
 

 
     ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗  ∑     ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 
 

 
∑    ( ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 )

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂

 ⃗⃗⃗

  ̂ ⃗⃗⃗ ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[19] 

    Finally, we use the exact equivalence from [6] to rewrite 

this, filling in the value of  ̂    and throwing out the 

fourth order sums that appear. (We can safely do this 

because they are significantly smaller than the terms we 

already neglected before.) 

 

 ̂  
          

 

 
 

 
∑    ( ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 )

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[20] 

 

Since the number of particles is still conserved in this 

approximation, it can safely be applied as part of an alter-

native method, so it will be our starting point in section 3.3 

2.1.2    Approximating pairs of equal operators in V 
 

This second part of the approximation is based on the idea 

that an approximation similar to the one for  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ can be 

used for  ̂
 ⃗⃗⃗

  ̂
 ⃗⃗⃗

 
 and  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗.  Since these pairs only appear in a 

second order term in  ̂, even a rough approximation 

would be sufficient. Since the constant factor from apply-

ing any pair of creation or annihilation operators to a state 

is similar if the associated occupation is sufficiently high – 

as is the case for our one-particle ground state – we use the 

approximation 

  ̂
 ⃗⃗⃗

  ̂
 ⃗⃗⃗

   ̂ ⃗⃗⃗ ̂ ⃗⃗⃗      [21] 

                                                         
3 Actually, we will find that we don’t need to throw out all 

the fourth order sums that appear when rewriting [19] for 

our method in section 3, but we will get to that there. 

where for simplicity we ignore phase factors of        that 

can be shown to cancel in the final approximation (13) 

(18). 

    The value of this constant factor is a good approxima-

tion, since the neglected terms are of fourth order. How-

ever, the effect on the state of the system is also complete-

ly neglected. Namely, we neglect the addition or removal 

of two particles, violating particle-number conservation. 

This is the problem we will look to solve by means of an 

alternative solution in section 3. 

    But for now, simply plugging [21] into [20] gives 

 ̂  
          

 
 

 

 
∑     

 ⃗⃗  ⃗⃗⃗

  

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗   ̂ ⃗⃗ ̂  ⃗⃗   ̂ ⃗⃗
  ̂  ⃗⃗

 )    

[22] 

so that we find for our approximated total Hamiltonian 

 ̂  
          

 
 

 
 

 
∑(

   ⃗ 

  
      )( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑     

 ⃗⃗  ⃗⃗⃗

( ̂ ⃗⃗ ̂  ⃗⃗   ̂ ⃗⃗
  ̂  ⃗⃗

 )   

[23] 

2.1.3    The Bogoliubov transformation 
 

Equation [23] is fairly compact and only has pairs of op-

erators. But ideally we would like to find a diagonalized 

form that lets us count occupations of states. In other 

words, it should only include operator pairs of the form 

 ̂  ̂, like in the first term. 

    We cannot use any of the tricks for large numbers from 

§2.1.1 and §2.1.2, because for  ̂ ⃗⃗  ⃗⃗⃗ the occupation is not 

large enough – in fact, many one-particle excited states 

may be empty. However, we can exploit the symmetric 

occurrence of  ⃗ and   ⃗ in  ̂ to find a form that lets us 

count the occupation of states.4 There is a general Bogoli-

ubov transformation specifically for such operator pairs 

(15) (16) (17) (18): 

 
 ( ̂ 

  ̂   ̂ 
  ̂ )   ( ̂  ̂   ̂ 

  ̂ 
 ) 

 √     ( ̂ 
   ̂   ̂ 

   ̂   ̂)    ̂  
[24] 

for       and   | |, where 

 
  ̂    ̂    ̂ 

         ̂
    ̂ 

    ̂    

  ̂    ̂    ̂ 
        ̂ 

    ̂ 
    ̂    

[25] 

are bosonic annihilation and creation operators for quasi-

particles. They adhere to all rules for normal annihilation 

and creation operators, in particular the bosonic commuta-

                                                         
4 For anyone who was still wondering about the reason 

why we split  ̂  into two terms back in equation [9], this is 

it. 
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tion relations. This is guaranteed by the carefully chosen 

values 

 
  

 

 
(
   

   
)
   

 
 

 
(
   

   
)
    

   

  
 

 
(
   

   
)
   

 
 

 
(
   

   
)
    

   

[26] 

also guaranteeing that      . 

 

For our Hamiltonian in [23] we then have for each term in 

the sum over  ⃗ 

  
 

 
(
   ⃗ 

  
      ) 

   
     

 
 

√      
   ⃗ 

  
√  

       

   ⃗ 
 

  ⃗⃗
 

   

[27] 

Thus the Hamiltonian can be written as 

 ̂  
          

 

 
 

 
∑[

   ⃗ 

  
      ]

 ⃗⃗  ⃗⃗⃗

 
 

 
∑[  ⃗⃗ ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗   ̂)]

 ⃗⃗  ⃗⃗⃗

   

resulting in 

 

 ̂  
          

 
 

 
 

 
∑(  ⃗⃗  

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

 

 ∑  ⃗⃗  ⃗⃗̂
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

   

[28] 

 

From the general form of equations [25] and [26] it follows 

that for our system 

 ̂ ⃗⃗    ⃗⃗ ̂ ⃗⃗    ⃗⃗ ̂  ⃗⃗
        ̂ ⃗⃗

    ⃗⃗ ̂ ⃗⃗
    ⃗⃗ ̂  ⃗⃗   [29] 

specified by  

 

  ⃗⃗  
 

 
(  

       

   ⃗ 
)

   

 
 

 
(  

       

   ⃗ 
)

    

   

  ⃗⃗  
 

 
(  

       

   ⃗ 
)

   

 
 

 
(  

       

   ⃗ 
)

    

   

[30] 

 

Basically, this is it. The first two terms of  ̂ describe the 

new N-particle ground state energy. We then have quasi-

particles with energies   ⃗⃗ that are created and annihilated 

by   ⃗⃗̂
 
 and  ̂ ⃗⃗ respectively. These new quasi-particle opera-

tors can be described in terms of our original operators – 

and thus our original particles – as needed.  

    The only nagging issue is that little violation of particle-

number conservation in the second part of the approxima-

tion. 
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3    The particle conservation 

method 

As mentioned in the previous section, a good starting 

point for applying a method with particle conservation is 

equation [20]: 

 

 ̂  
          

 

 
 

 
∑    ( ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 )

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

 

All approximations up to that point are simple, particle 

conservation still holds, and the problem is clearly isolated: 

the troubling terms in this equation are  ̂
 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗  and 

 ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 
. The most obvious way to make these terms 

more pleasant, is to somehow transform them into terms 

of two operators instead of four. Once we get our Hamil-

tonian into that form, we have a wide array of tools at our 

disposal for simplifying it further. 

    We know that we cannot simply replace creation or 

annihilation operators with fixed numbers as is done in the 

conventional approximation, because that would break 

particle conservation. But we may still be able to compacti-

fy the tricky terms into sets of two operators, by introduc-

ing a pair operator  ̂ ⃗⃗   ̂
 ⃗⃗⃗

  ̂ ⃗⃗. To be more exact, we will 

define: 

  ̂ ⃗⃗  ⃗⃗⃗ 
 ̂
 ⃗⃗⃗

  ̂ ⃗⃗

√ 
  ̂

 ⃗⃗  ⃗⃗⃗

  
 ̂ ⃗⃗
  ̂ ⃗⃗⃗

√ 
   [31] 

    Writing the troubling parts of our potential in terms of 

 ̂ would plainly reduce them to terms of only two opera-

tors. The structure of  ̂ also seems similar enough to that 

of  ̂ to believe that many of their properties could be the 

same. On top of that,  ̂ looks promising from a physical 

point of view, as expanded on in the ‘What is b?’ sidebar. 

    As nice as ‘looks promising’ sounds though, it doesn’t 

mean much without a solid mathematical basis. In particu-

lar, two major questions remain. Firstly, does the  ̂ ⃗⃗-

operator exhibit the required bosonic behavior? Secondly, 

can the  ̂ ⃗⃗-operator be applied to the complete Hamiltoni-

an of our system, without creating all kinds of extra com-

plications? 

    We will start by discussing the first question in §3.1 and 

§3.2. Once we have set up our general toolbox there, we 

will apply it to our Hamiltonian to answer our second 

question in §3.3. The three final paragraphs of this section 

will be used to check and reflect on our results. 

 

 

What is b? 

Suddenly, out of nowhere, we introduce some operator  ̂. 

But why would this be a useful operator? And what is its 

physical meaning? What does  ̂ ⃗⃗ actually do? 

 

We mainly have two criteria when building an operator. 

First, we want one that’s as close as possible to  ̂ ⃗⃗. We 

don’t want to change the way our system works any more 

than we have to; we just want to correct one tiny prob-

lem. Second, we want it to be an operator that guarantees 

particle conservation.  

    In short, we are looking for a way to make sure one 

particle is created for every one that is annihilated – and 

vice versa – but in a way that hardly impacts our system. 

And that’s where  ̂
 ⃗⃗⃗

 
 comes in: adding one particle to the 

ground state causes only a tiny change to our system. That 

is after all what the conventional approximation is based 

on. So defining  ̂ is simply a matter of starting with the 

original  ̂ ⃗⃗ and adding a term  ̂
 ⃗⃗⃗

 
 to guarantee particle 

conservation. The 
 

√ 
 roughly normalizes  ̂

 ⃗⃗⃗

 
, since there 

are about N particles in the ground state. 

 

So now that we know how we got to  ̂ ⃗⃗, what does it 

actually do? The answer is surprisingly simple:  ̂ ⃗⃗ changes 

the momentum of a single particle. To be exact, it drops a 

particle from the  ⃗-state to the ground state. Similarly,  ̂ ⃗⃗
 
 

takes a particle from the ground state and gives it a mo-

mentum  ⃗. 

    However, because of the massive number of particles 

in the ground state and their low energy, we hardly notice 

there being one more or less of those. So what we would 

actually see is a particle with momentum  ⃗ appearing or 

disappearing, without noticing the tiny change in the 

ground state. This makes  ̂ ⃗⃗ act a lot like the original  ̂ ⃗⃗. 

    Note that this change of particle momentum is what 

we intuitively expect a weak added potential to cause: it 

doesn’t ‘create’ or ‘annihilate’ any particles, it simply 

moves them to a different energy state. 

 

Finally, an added bonus of this physical picture of  ̂ ⃗⃗ is 

that it is immediately obvious that no matter what combi-

nation of  ̂’s we use, particle number is always conserved. 

After all,  ̂ doesn’t actually make any new particles, it only 

shifts the existing ones around a bit. 
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3.1    Commutation relations 

We want to know if our  ̂-operator exhibits the same 

bosonic behavior as  ̂. In other words: does it conform to 

the same bosonic commutation relations? Let’s answer this 

question in a slightly more general way than that of our 

particular system. 

 

Consider some system with a large collection of N identi-

cal bosons and a number of one-particle states they can be 

in. We label one of these states as the ‘base’ state. This 

means particles in that state can be created or annihilated 

using operators  ̂
 ⃗⃗

 
 and  ̂ ⃗⃗.5 We can then define an opera-

tor  ̂ as in [31] 

  ̂ ⃗⃗  ⃗⃗ 
 ̂
 ⃗⃗

  ̂ ⃗⃗

√ 
  ̂

 ⃗⃗  ⃗⃗

  
 ̂ ⃗⃗
  ̂ ⃗⃗

√ 
   [32] 

Note that we do not define  ̂ ⃗⃗, since we do not need it for 

our purposes, and it leads to a number of complications 

discussed in the ‘What is bb?’ sidebar. We will assume for 

any  ̂ ⃗⃗ that  ⃗   ⃗⃗ unless explicitly noted. 

 

If we then look at the commutation relations for  ̂, we 

find 

 
[ ̂ ⃗⃗

   ̂
 ⃗⃗

 ]  
 

 
( ̂ ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗) 

   [ ̂ ⃗⃗  ̂ ⃗⃗] 
[33] 

because all  ̂-operators involved commute. It gets more 

interesting when we look at 

[ ̂ ⃗⃗  ̂ ⃗⃗  ⃗⃗

 ]  
 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗) 

 
 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂
 ⃗⃗

  ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗   ̂
 ⃗⃗

  ̂ ⃗⃗) 

  
 ̂
 ⃗⃗

  ̂ ⃗⃗

 
   

[34] 

This should be zero for a bosonic operator, but it clearly is 

not, unless there happen to be no particles with momen-

tum  ⃗ in the system we apply it to. For our last identity we 

find 

[ ̂ ⃗⃗  ̂ ⃗⃗
 ]  

 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗   ̂ ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗) 

 
 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗   ̂ ⃗⃗

  ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗   ̂ ⃗⃗
  ̂ ⃗⃗) 

 
 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗   ̂

 ⃗⃗

  ̂ ⃗⃗
  ̂ ⃗⃗ ̂ ⃗⃗   ̂ ⃗⃗

  ̂ ⃗⃗) 

 
 ̂
 ⃗⃗

  ̂ ⃗⃗   ̂ ⃗⃗
  ̂ ⃗⃗

 
 

 ̂ ⃗⃗   ̂ ⃗⃗

 
   

[35] 

                                                         
5 Note that in general this ‘base’ state need not be the 

ground state. However, if you are only interested in our 

specific system, feel free to read  ⃗⃗ wherever  ⃗⃗ appears. 

This commutator should be equal to one, but once again it 

is not. Except in the specific case where we apply it to a 

system with all N particles in the ‘base’ state. 

    We can only conclude that in general,  ̂ is not a good 

bosonic operator and cannot be used. 

3.2    The single state limit 

The operator  ̂ may not be a good bosonic annihilation 

operator in general, but it can still be salvaged for a more 

specific set of systems. So let us look at the limit where 

almost all particles are in the ‘base’ state, analogous to 

equations [2] and [3] for our superfluid 

   ⃗⃗    [36] 

 ∑   ⃗⃗

 ⃗⃗  ⃗⃗

     [37] 

 

If we now apply the commutator from [34] to our system 

 

[ ̂ ⃗⃗  ̂ ⃗⃗  ⃗⃗

 ] |    ⃗⃗     ⃗⃗   ⟩ 

  
 ̂
 ⃗⃗

  ̂ ⃗⃗

 
|    ⃗⃗     ⃗⃗   ⟩ 

  
√  ⃗⃗(  ⃗⃗   )

 
|    ⃗⃗        ⃗⃗      ⟩   

[38] 

with the prefactor being negligible since we know from 

[37] that   ⃗⃗    and   ⃗⃗      ⃗⃗     . So the 

contribution from this commutator may be small enough 

to safely neglect when applied to a system where equations 

[36] and [37] hold.6 

    For the commutator from [35], we get 

[ ̂ ⃗⃗  ̂ ⃗⃗
 ] |    ⃗⃗   ⟩  

 ̂ ⃗⃗   ̂ ⃗⃗

 
|    ⃗⃗  ⟩ 

 
  ⃗⃗    ⃗⃗

 
|    ⃗⃗  ⟩ 

 |    ⃗⃗  ⟩ 

[39] 

from [36] and [37]. So it is now almost equal to 1.  

    The small errors in equations [38] and [39] make sense 

when looking at our definition of  ̂: We use √  to nor-

malize  ̂, rather than √  ⃗⃗.7 So if we drop one particle to 

the base state and then raise one from the base state with 

 ̂
 ⃗⃗

  ̂ ⃗⃗, the number of particles counted in the base state 

will be higher than when we apply the operators in re-

versed order ( ̂ ⃗⃗ ̂ ⃗⃗

 
). However, the normalizing factor does 

not change, leading to the non-zero terms in our commu-

                                                         
6 In §3.3 we will see that for our superfluid the errors are 

of about the same size as the fourth order corrections 

from equation [18] that we neglected earlier. 
7 We would love to use   ⃗⃗, but its value changes when we 

change the system, making it a function of our operators 

and states instead of a constant. 
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tators. Because of the same normalization problem, we 

need the approximation from [36] to set   ⃗⃗ equal to N.  

 

In short, for this single state limit all our corrections are 

small and well-understood. So if our system and our opera-

tors are well-behaved, we can say 

 
[ ̂ ⃗⃗  ̂ ⃗⃗  ⃗⃗

 ]   ̂ 

[ ̂ ⃗⃗  ̂ ⃗⃗
 ]   ̂   

[40] 

making  ̂ approximately bosonic. 

 

What is bb? 
 

In §3.1 we quickly brushed off  ̂ ⃗⃗ as something we do not 

need for our purposes. Although we will see that is true, 

wouldn’t it nevertheless make sense to define  ̂ ⃗⃗ consist-

ently and be done with it? Just so we have a proper opera-

tor? As we will see, that is easier said than done. 

 

Definition 1 

We could define  ̂ ⃗⃗ in the exact same way as we did for 

the other  ̂-states 

  ̂ ⃗⃗ 
 ̂
 ⃗⃗

  ̂ ⃗⃗

√ 
  ̂

 ⃗⃗

    [41] 

Then, since  ̂ ⃗⃗   ̂
 ⃗⃗

 
, it immediately follows that 

 [ ̂ ⃗⃗  ̂ ⃗⃗

 ]      [42] 

    This makes sense from a physical perspective: an oper-

ator that changes the momentum of a particle from the 

momentum in the base state to… the momentum in that 

same base state, basically does nothing. So it had better 

not matter which ‘nothing’ we do first. Or to put it anoth-

er way:  ̂ ⃗⃗ differs by just a constant from the counting 

operator  ̂ ⃗⃗, which leaves our system unchanged. With 

this definition though, we lose our bosonic commutation 

relations. This ground state operator is no longer like our 

bosonic  ̂ ⃗⃗⃗ at all! 

    But wait, it gets worse. When we look at the other 

commutators, we find 

 

[ ̂ ⃗⃗  ̂ ⃗⃗
 ]  

 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗   ̂ ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗) 

  
 ̂ ⃗⃗
  ̂ ⃗⃗

 
  

[43] 

 

[ ̂ ⃗⃗  ̂ ⃗⃗]  
 

 
( ̂

 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗) 

 
 ̂
 ⃗⃗

  ̂ ⃗⃗

 
   

[44] 

Unlike the small terms we found for the other commuta-

tors of  ̂, the terms from equations [43] and [44] cannot 

simply be brushed aside in the single state limit. Since the 

occupation of our  ⃗⃗-states is so large, these terms are at 

best  (
 

√ 
) rather than  (

 

 
). Though these terms could 

arguably still be neglected, it is far from an elegant solu-

tion and our errors are suddenly a lot larger. 

 

Definition 2 

A somewhat more heavy-handed approach would be to 

simply define  

 ̂ ⃗⃗  ̂   ̂
 ⃗⃗

    

After all, as we mentioned for the first definition, we 

know from physical considerations what  ̂ ⃗⃗ should do: 

nothing at all. You might expect some constant factor in 

front of  ̂, but remember that we originally used the fac-

tor of 
 

√ 
 in our definition of  ̂ specifically to normalize it. 

Well, there’s no better normalization than setting our 

operator to  ̂ by definition. 

    This solves all our problems with non-zero commuta-

tors – since everything commutes with the unit operator – 

and it makes physical sense. But it still leaves the problem 

of [ ̂ ⃗⃗  ̂ ⃗⃗

 ] being zero. In other words, this definition may 

be cleaner, but it’s still not bosonic. 

 

On top of that, this definition cannot be used to compact-

ify sets of four  ̂-operators into more workable sets of 

two  ̂s. One of the main uses for a definition of  ̂ ⃗⃗ would 

be to also compactify terms with three or four factors of 

 ̂ ⃗⃗ into sets of two. But we cannot do anything with those 

terms in this definition. In fact, it would not even be 

possible to write them in terms of  ̂. 

 

Definition 3 

If our operator isn’t close enough to our original  ̂ ⃗⃗, we 

could always fall back on 

  ̂ ⃗⃗  ̂ ⃗⃗        ̂ ⃗⃗

   ̂
 ⃗⃗

    [45] 

This of course means we get our first commutator 

 [ ̂ ⃗⃗   ̂ ⃗⃗

 ]  [ ̂ ⃗⃗   ̂ ⃗⃗

 ]   ̂ [46] 

exactly as we want it to be. We even find the proper 

 
[ ̂ ⃗⃗  ̂ ⃗⃗

 ]  
 

√ 
( ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂ ⃗⃗
  ̂ ⃗⃗ ̂ ⃗⃗) 

     

[47] 

But we have no such luck with our final commutator 

[ ̂ ⃗⃗  ̂ ⃗⃗]  
 

√ 
( ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗   ̂
 ⃗⃗

  ̂ ⃗⃗ ̂ ⃗⃗) 

 
 ̂ ⃗⃗

√ 
 

[48] 

which gives at least an  (
 

√ 
) error, just like our first 

definition. 

    A second problem is the fact that this  ̂ ⃗⃗ no longer has 

the built in particle conservation which we constructed  ̂ 

for to begin with. If we’re not careful with this definition, 
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our approximations may end up breaking particle conser-

vation all over again. 

    And finally, this third definition has the same problem 

as the second one, although to a lesser extend: it cannot 

be used to compactify terms with three or four  ̂ ⃗⃗s. Al-

though unlike in the second definition, here we could at 

least write them in terms of  ̂, if not in only two terms. 

 

In conclusion 

Although there are some potentially usable definitions for 

the ‘base’ state of  ̂, they all have problems and none of 

them fit neatly into our system. It is a good thing then 

that we don’t need a base state for our applications, be-

cause that avoids a whole lot of unnecessary complica-

tions. 

3.3    Application to the simplified su-

perfluid 

We have found the answer to our first question: the  ̂ ⃗⃗-

operator exhibits the required bosonic behavior if our 

system has a single one-particle state that contains most 

particles. That is of course the case for our superfluid, 

where the ground state plays that role. One caveat was that 

things need to be ‘well-behaved’ for this to be true. In 

particular, approximating the commutation relations by 

throwing out higher order terms only works if the lower 

order terms don’t cancel. 

    That leads us to our second question: can we rewrite our 

entire Hamiltonian in terms of  ̂ without running into 

problems? We will rewrite  ̂ and  ̂ , giving us an expres-

sion for  ̂ in terms of  ̂. We then apply a Bogoliubov 

transformation to  ̂, leading to a tentative final form for 

 ̂. In the next section, we will check these results for con-

sistency. So if you think we’re going a bit too fast in §3.3.2, 

don’t worry, we’ll do a double-check in §3.4. 

3.3.1    Rewriting the Hamiltonian 
 

Rewriting  ̂ in terms of  ̂ turns out to be extremely easy. 

That is, if we use a slightly more exact approximation of 

the      part of equation [19]. Rather than replacing  ̂ ⃗⃗⃗ ̂ ⃗⃗⃗

 
 

with N, we switch the order to  ̂
 ⃗⃗⃗

  ̂ ⃗⃗⃗ and neglect the 

fourth order correction the commutator leaves, to find 

 

 ̂  
          

 

 
 

 
∑    ( ̂

 ⃗⃗⃗

  ̂
 ⃗⃗⃗

  ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗

 )

 ⃗⃗  ⃗⃗⃗

 
 

 
∑     ̂ ⃗⃗⃗ ̂ ⃗⃗⃗

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
          

 

 
 

 
∑     ( ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗

  ̂  ⃗⃗
 )

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑     ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[49] 

 

Unfortunately,  ̂  (as given in equation [4]) is not in the 

right form to transform. But that can be solved by multi-

plying by 1 

 

 ̂  ∑
   ⃗ 

  
 ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  
 ̂ ⃗⃗
  ̂ ⃗⃗

 ̂

 
 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  

 ̂ ⃗⃗
  ̂ ⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗⃗

 

 
 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  

 ̂ ⃗⃗
  ̂ ⃗⃗

 
 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  

 ̂ ⃗⃗
  ̂ ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗

 
 ⃗⃗  ⃗⃗⃗  ⃗⃗  ⃗⃗⃗ 

 

[50] 

where we have used the exact equivalence from equation 

[6] and switched  ̂ ⃗⃗⃗ and  ̂
 ⃗⃗⃗

 
 to get our expression into the 

correct form for a transformation to  ̂. 

    We would like to neglect the second and third term in 

this expression of  ̂ , so that we can write  ̂  in terms of 

 ̂. At first glance, they simply have two less  ̂ ⃗⃗⃗-like terms 

than the first term; just like the second order terms in  ̂ 

from equation [16] that we couldn’t neglect. However, the 

reason we couldn’t neglect our second order terms for  ̂ 

was that the leading terms only applied to the ground state. 

The second order terms in  ̂ were the leading order terms 

for excited states. However, that doesn’t hold for  ̂ , 

because it only describes excited states (the unperturbed 

one-particle ground state has zero energy). That means the 

second order terms in  ̂  are actually equivalent to the 

fourth order terms in  ̂ (from equation [18]) that could be 

neglected safely. That means we can neglect those terms, 

to find 
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 ̂  ∑
   ⃗ 

  

 ̂ ⃗⃗
  ̂ ⃗⃗ ̂ ⃗⃗⃗ ̂ ⃗⃗⃗

 

 
 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  
 ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑

   ⃗ 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[51] 

    You might still worry that while the terms we neglect are 

sufficiently small relative to  ̂ , aren’t they much larger 

than our corrections in  ̂? After all, wasn’t our interaction 

weak, implying that  ̂ is small?  

    Luckily, our interaction being weak refers to the fact 

that the potential is not strong enough to excite the majori-

ty of our particles and that only 2-particle interactions need 

to be taken into account. It does not mean that our inter-

action is weak compared to  ̂ . In fact, since we’re looking 

at extremely low temperatures, almost all particles are in 

the zero-energy one-particle ground state without the 

added potential. That means  ̂  receives no contribution 

from the majority of our particles either and is thus also 

very small. In other words, the terms we neglect are tiny – 

about a factor of N smaller than the full Hamiltonian, 

which itself is small to begin with. But even so, they could 

potentially be larger than the corrections we’ve made to  ̂ 

so far, depending on the exact system. This is part of the 

‘price’ we pay for our alternative approximation. 

 

With these approximations, we can now write our com-

plete Hamiltonian in terms of  ̂ 

 

 ̂  
          

 
 

 
 

 
∑(

   ⃗ 

  
      )( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑     

 ⃗⃗  ⃗⃗⃗

( ̂ ⃗⃗ ̂  ⃗⃗    ̂ ⃗⃗
  ̂  ⃗⃗

 )   

[52] 

As those with an extraordinary memory will have seen, this 

looks extremely similar to equation [23], leaving us an 

obvious next step. 

3.3.2    The Bogoliubov transformation revisited 
 

Since we have a Hamiltonian of the same form as in [23] – 

albeit with a not-quite bosonic operator in place of  ̂ – we 

can also follow the same steps as used in §2.1.3. This 

would give us the final Hamiltonian 

 

 ̂  
          

 
 

 
 

 
∑(  ⃗⃗  

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

 

 ∑  ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

   

[53] 

with   ⃗⃗ defined exactly as in [27] 

   ⃗⃗  
   ⃗ 

  
√  

       

   ⃗ 
 [54] 

and 

  ̂ ⃗⃗    ⃗⃗ ̂ ⃗⃗    ⃗⃗ ̂  ⃗⃗
        ̂ ⃗⃗

    ⃗⃗ ̂ ⃗⃗
    ⃗⃗ ̂  ⃗⃗ , [55] 

where just like in equation [30]  

 

  ⃗⃗  
 

 
(  

       

   ⃗ 
)

   

 
 

 
(  

       

   ⃗ 
)

    

   

  ⃗⃗  
 

 
(  

       

   ⃗ 
)

   

 
 

 
(  

       

   ⃗ 
)

    

   

[56] 

 

This would make our final description of the system basi-

cally the same as the one from the conventional approxi-

mation. The only difference being that our quasi-particles 

are now defined slightly differently, guaranteeing particle 

conservation. 

3.4    Checking consistency  

These results seem nice, but before we can celebrate, we 

once again have to answer the two questions we were 

faced with at the start of this chapter, but now for our 

latest transformation: First, did using this Bogoliubov 

transformation on our not-quite-bosonic  ̂s create any 

extra complications? Second, does the  ̂-operator still 

exhibit the required bosonic behavior? 

3.4.1    The transformed Hamiltonian 
 

To answer the first question, we have to determine if our 

‘guess’ for the results of the Bogoliubov transformation in 

§3.3.2 is actually correct. The recognizable form and near-

bosonic properties of  ̂ suggest that the transformation is 

close to exact. However, the Bogoliubov transformation 

relies on a number of terms cancelling, making even small 

errors risky if they do not cancel. 

    The most general way to check this would be to derive 

the Bogoliubov transformation rules again for an operator 

with a small non-bosonic component. As interesting as 

that might be though, we will content ourselves with 
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checking if our ‘guess’ is correct. In other words, we will 

work out the transformed Hamiltonian from equation [53] 

and see if it reduces to the untransformed Hamiltonian 

from equation [52]. Of course there probably will be some 

corrections –  ̂ is not exactly bosonic after all – so the real 

question is if these corrections are small enough to neglect. 

 

First, for ease of reading, let us define 

   ⃗⃗  (  
       

   ⃗ 
)

   

   [57] 

so that we can write 

 

  ⃗⃗  
  ⃗⃗

 
 

  ⃗⃗
  

 
 

  ⃗⃗  
  ⃗⃗

 
 

  ⃗⃗
  

 
 

  ⃗⃗  
   ⃗   ⃗⃗

 

  
  

[58] 

based on the definitions for u, v and   from [54] and [56]. 

 

With that notation established, let’s take a look at  ̂ ⃗⃗
  ̂ ⃗⃗ 

 ̂ ⃗⃗
  ̂ ⃗⃗  (  ⃗⃗ ̂ ⃗⃗

    ⃗⃗ ̂  ⃗⃗) (  ⃗⃗ ̂ ⃗⃗    ⃗⃗ ̂  ⃗⃗
 ) 

   ⃗⃗
  ̂ ⃗⃗

  ̂ ⃗⃗    ⃗⃗
  ̂  ⃗⃗ ̂  ⃗⃗

    ⃗⃗  ⃗⃗ ( ̂ ⃗⃗
  ̂  ⃗⃗

   ̂  ⃗⃗ ̂ ⃗⃗) 

 (
  ⃗⃗

 

 
 

 

 
 

  ⃗⃗
  

 
)  ̂ ⃗⃗

  ̂ ⃗⃗ 

 (
  ⃗⃗

 

 
 

 

 
 

  ⃗⃗
  

 
)  ̂  ⃗⃗ ̂  ⃗⃗

  

 (
  ⃗⃗

 

 
 

  ⃗⃗
  

 
) ( ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗) 

 
 

 
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
 ) 

 
  ⃗⃗

 

 
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗) 

 
  ⃗⃗

  

 
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)   

[59] 

    We can plug that result into the last term of our trans-

formed Hamiltonian from equation [53] 

∑  ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 ∑
   ⃗   ⃗⃗

 

  
 ̂ ⃗⃗

  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑  ⃗⃗ ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
 )

 ⃗⃗  ⃗⃗⃗

  

∑
   ⃗   ⃗⃗

 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 ∑
   ⃗ 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)  

 ⃗⃗  ⃗⃗⃗

 

[60] 

 

This gives us three terms. The first one can be rewritten to 

 

 

 
∑  ⃗⃗ ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗  ̂  ⃗⃗
 )

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑  ⃗⃗ ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂ ⃗⃗
  ̂ ⃗⃗  [ ̂ ⃗⃗  ̂ ⃗⃗

 ])

 ⃗⃗  ⃗⃗⃗

 

  
 

 
∑  ⃗⃗

 ̂ ⃗⃗⃗   ̂ ⃗⃗

 
 

 ⃗⃗  ⃗⃗⃗

 

  
 

 
∑  ⃗⃗
 ⃗⃗  ⃗⃗⃗

( ̂  
 ̂   ̂ ⃗⃗⃗   ̂ ⃗⃗

 
)   

[61] 

where we have used the commutator from equation [35] 

and where the sum over  ⃗ and the fact that    ⃗⃗    ⃗⃗ 

allowed us to rewrite the  ̂  ⃗⃗ ̂  ⃗⃗
 

 term as  ̂ ⃗⃗ ̂ ⃗⃗
 
. The final 

result may seem needlessly complicated, but in this form it 

will partially cancel against other terms later. 

 

The second term can be rewritten by working out   ⃗⃗
  

∑
   ⃗   ⃗⃗

 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑(

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

  

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗

   ̂ ⃗⃗
  ̂  ⃗⃗

   ̂  ⃗⃗ ̂ ⃗⃗) 

 
 

 
∑(

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

  

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗   ̂ ⃗⃗
  ̂  ⃗⃗

   ̂  ⃗⃗ ̂ ⃗⃗  [ ̂  ⃗⃗  ̂  ⃗⃗
 ]) 

 
 

 
∑(

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

  

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗   ̂ ⃗⃗
  ̂  ⃗⃗

   ̂  ⃗⃗ ̂ ⃗⃗) 

 
 

 
∑(

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

( ̂  
 ̂   ̂ ⃗⃗⃗   ̂ ⃗⃗

 
)   

[62] 

Of course  ̂ ⃗⃗ in the last expression was originally  ̂  ⃗⃗, but 

because we are summing over  ⃗ and all other terms are 

independent of sign,  ̂  ⃗⃗ can be replaced by  ̂ ⃗⃗ for the 

total sum. 

 

And finally, for the third term 
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∑
   ⃗ 

  
( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
   ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑

   ⃗ 

  
 ⃗⃗  ⃗⃗⃗

 ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗   ̂ ⃗⃗
  ̂  ⃗⃗

 

  ̂  ⃗⃗ ̂ ⃗⃗  [ ̂  ⃗⃗   ̂  ⃗⃗
 ]) 

 
 

 
∑

   ⃗ 

  
 ⃗⃗  ⃗⃗⃗

( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗) 

 
 

 
∑

   ⃗ 

  
 ⃗⃗  ⃗⃗⃗

( ̂ ⃗⃗
  ̂  ⃗⃗

   ̂  ⃗⃗ ̂ ⃗⃗) 

 
 

 
∑

   ⃗ 

  
 ⃗⃗  ⃗⃗⃗

( ̂  
 ̂   ̂ ⃗⃗⃗   ̂ ⃗⃗

 
)   

[63] 

where we have once again turned  ̂  ⃗⃗ into  ̂ ⃗⃗. 

 

These three terms neatly combine into 

∑  ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

  

 

 
∑(

   ⃗ 

  
         ⃗⃗)( ̂  

 ̂   ̂ ⃗⃗⃗   ̂ ⃗⃗

 
)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑(

   ⃗ 

  
      )( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑     ( ̂ ⃗⃗

  ̂  ⃗⃗
   ̂  ⃗⃗ ̂ ⃗⃗)

 ⃗⃗  ⃗⃗⃗

   

[64] 

 

Finally, we put this result into the total transformed Hamil-

tonian from equation [53] to find 

 ̂  
          

 
 

 
 

 
∑(

   ⃗ 

  
      )( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗
  ̂  ⃗⃗)

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑     ( ̂ ⃗⃗ ̂  ⃗⃗   ̂ ⃗⃗

  ̂  ⃗⃗
 )

 ⃗⃗  ⃗⃗⃗

 

 
 

 
∑(  ⃗⃗  

   ⃗ 

  
      )(

 ̂   ̂ ⃗⃗⃗   ̂ ⃗⃗

 
) 

 ⃗⃗  ⃗⃗⃗

 

[65] 

where we have moved around our terms to show the simi-

larity to the untransformed Hamiltonian from equation 

[52]. In fact, except for the last term, this is the exact form 

of the original Hamiltonian. So the only question left is: is 

that last term small? 

 

We immediately recognize that the last fraction is small. 

Since equations [2] and [3] tell us that the terms in the 

numerator roughly cancel, that makes the fraction  (
 

 
). 

While ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗) from the second term in equa-

tion [65] is much larger:     .8 That means we can safely 

neglect our final term with its tiny fraction, unless the first 

part of that final term is much larger than the first part of 

the second term. 

    Plainly, 
   ⃗⃗ 

  
 and       in our final term are no larger 

than the exact same expressions in the second term. The size 

of   ⃗⃗ however, is not as clear. Could it be that   ⃗⃗ is much 

larger than the other expressions?     

  ⃗⃗  
   ⃗ 

  
√  

       

   ⃗ 

 √(
   ⃗ 

  
)

 

  
   ⃗ 

  
     

 √(
   ⃗ 

  
)

 

  
   ⃗ 

  
      (     )

 

 
   ⃗ 

  
         

[66] 

guaranteeing that   ⃗⃗ is no larger than the first part of our 

second term, which makes the second term      times 

larger than the final term. This means the final term can 

indeed be neglected safely. 

     

As we had hoped, we find that the error in our final result 

is no larger than the errors in the commutators of  ̂. In 

short, the Bogoliubov transformation leads to an accurate 

approximation of our original Hamiltonian that introduces 

no larger errors than previous steps. 

3.4.2    Commutation relations for d 
 

We needed  ̂ to be roughly bosonic, since it required a 

number of commutations of  ̂-terms to construct our final 

Hamiltonian. Strictly speaking, this is not the case for  ̂. In 

fact, we don’t need any commutations to determine the 

energy levels of the quasi-particles that are created and 

annihilated by  ̂-operators. However, we are not just inter-

ested in the energy levels. We are looking for an operator 

that can describe the complete behavior of our system. So 

we need  ̂ to be roughly bosonic to be able to use it for 

anything beyond the most basic applications. 

 

The check for the bosonic behavior of  ̂ is fairly straight-

forward, but it takes some work. We find for our first type 

of commutator 

                                                         
8 The trivial case where our second term is not      be-

cause all particles are in the ground state poses no prob-

lem, since that means our last term is also zero. 
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[ ̂ ⃗⃗
   ̂

 ⃗⃗

 ]    ⃗⃗  ⃗⃗ [ ̂ ⃗⃗
   ̂

 ⃗⃗

 ]    ⃗⃗  ⃗⃗ [ ̂ ⃗⃗
   ̂  ⃗⃗] 

   ⃗⃗  ⃗⃗[ ̂  ⃗⃗  ̂ ⃗⃗

 ]    ⃗⃗  ⃗⃗[ ̂  ⃗⃗  ̂  ⃗⃗] 

   ⃗⃗  ⃗⃗ [ ̂ ⃗⃗
   ̂  ⃗⃗]    ⃗⃗  ⃗⃗[ ̂  ⃗⃗  ̂ ⃗⃗

 ]   

[67] 

Where the first and last term in the first equivalence are 

zero because of the commutators from equation [33]. 

If  ⃗⃗   ⃗ : 

 [ ̂ ⃗⃗
   ̂ ⃗⃗

 ]      [68] 

If  ⃗⃗    ⃗ : 

 

[ ̂ ⃗⃗
   ̂  ⃗⃗

 ]    ⃗⃗  ⃗⃗ ([ ̂ ⃗⃗
   ̂ ⃗⃗]  [ ̂  ⃗⃗  ̂  ⃗⃗

 ]) 

   ⃗⃗  ⃗⃗ (
 ̂ ⃗⃗   ̂ ⃗⃗⃗

 
 

 ̂ ⃗⃗⃗   ̂  ⃗⃗

 
 ) 

   ⃗⃗  ⃗⃗

 ̂ ⃗⃗   ̂  ⃗⃗

 
   

[69] 

where we have used that   ⃗⃗     ⃗⃗ and   ⃗⃗     ⃗⃗, as well 

as the commutator from equation [35]. For other values of 

 ⃗⃗ : 

 [ ̂ ⃗⃗
   ̂

 ⃗⃗

 ]    ⃗⃗  ⃗⃗

 ̂ ⃗⃗
  ̂  ⃗⃗

 
   ⃗⃗  ⃗⃗

 ̂
 ⃗⃗

  ̂  ⃗⃗

 
   [70] 

as follows from the commutator in equation [34]. 

 

Commutators of the form [ ̂ ⃗⃗  ̂ ⃗⃗] give analogous results, 

so that we only have one more type of commutator to 

consider 

 [ ̂ ⃗⃗  ̂ ⃗⃗

 ]    ⃗⃗  ⃗⃗[ ̂ ⃗⃗  ̂ ⃗⃗

 ]    ⃗⃗  ⃗⃗ [ ̂  ⃗⃗
   ̂  ⃗⃗]   [71] 

so that for  ⃗⃗   ⃗ 

 

[ ̂ ⃗⃗  ̂ ⃗⃗
 ]    ⃗⃗

 [ ̂ ⃗⃗  ̂ ⃗⃗
 ]    ⃗⃗

 [ ̂  ⃗⃗
   ̂  ⃗⃗] 

   ⃗⃗
 
 ̂ ⃗⃗⃗   ̂ ⃗⃗

 
   ⃗⃗

 
 ̂ ⃗⃗⃗   ̂  ⃗⃗

 
 

   ⃗⃗
    ⃗⃗

      

[72] 

Here we have applied the conclusions we could draw from 

equation [39] to make our approximation. Let us also 

quickly clarify that last step. Using our definitions from 

equation [58], we know that 

  ⃗⃗
    ⃗⃗

  
 

 
(  ⃗⃗  

 

  ⃗⃗
)

 

 
 

 
(  ⃗⃗  

 

  ⃗⃗
)

 

     [73] 

Continuing for  ⃗⃗    ⃗ 

 

[ ̂ ⃗⃗  ̂  ⃗⃗
 ]    ⃗⃗

 [ ̂ ⃗⃗  ̂  ⃗⃗
 ]    ⃗⃗

 [ ̂  ⃗⃗
   ̂ ⃗⃗] 

 (  ⃗⃗
    ⃗⃗

 ) [ ̂ ⃗⃗  ̂  ⃗⃗
 ] 

  
 ̂  ⃗⃗
  ̂ ⃗⃗

 
   

[74] 

Finally, for other values of  ⃗⃗ 

 

[ ̂ ⃗⃗  ̂ ⃗⃗

 ]    ⃗⃗  ⃗⃗[ ̂ ⃗⃗  ̂ ⃗⃗

 ]    ⃗⃗  ⃗⃗ [ ̂  ⃗⃗
   ̂  ⃗⃗] 

    ⃗⃗  ⃗⃗

 ̂
 ⃗⃗

  ̂ ⃗⃗

 
   ⃗⃗  ⃗⃗

 ̂  ⃗⃗
  ̂  ⃗⃗

 
   

[75] 

 

To summarize, we find the following set of commutators 

 

  [ ̂ ⃗⃗
   ̂ ⃗⃗

 ]    

  [ ̂ ⃗⃗
   ̂  ⃗⃗

 ]    ⃗⃗  ⃗⃗

 ̂ ⃗⃗   ̂  ⃗⃗

 
 

  [ ̂ ⃗⃗
   ̂

 ⃗⃗   ⃗⃗

 ]    ⃗⃗  ⃗⃗

 ̂ ⃗⃗
  ̂  ⃗⃗

 
   ⃗⃗  ⃗⃗

 ̂
 ⃗⃗

  ̂  ⃗⃗

 
 

  [ ̂ ⃗⃗  ̂ ⃗⃗
 ]  

 ̂ ⃗⃗⃗

 
 

  ⃗⃗
  ̂ ⃗⃗    ⃗⃗

  ̂  ⃗⃗

 
 

  [ ̂ ⃗⃗  ̂  ⃗⃗
 ]   

 ̂  ⃗⃗
  ̂ ⃗⃗

 
 

  [ ̂ ⃗⃗  ̂ ⃗⃗   ⃗⃗

 ]    ⃗⃗  ⃗⃗

 ̂  ⃗⃗
  ̂  ⃗⃗

 
   ⃗⃗  ⃗⃗

 ̂
 ⃗⃗

  ̂ ⃗⃗

 
   

[76] 

Commutators 1 is bosonic and commutator 5 gives a cor-

rection of the same form as the commutators for  ̂, mean-

ing it is small enough to neglect in the same way. 

    Being able to neglect all the other terms though, de-

pends on the size of u and v. Even our casual conclusion in 

equation [72] that commutator 4 is roughly equal to 1 

hinges on that point. If u and v are each     , all troubling 

commutator terms are much smaller than 1 and we can 

safely say  ̂ is roughly bosonic as well. However, we cannot 

say that, because u and v may be much larger than 1. As we 

can see from equation [56], if  

 
      

   ⃗ 

  
   [77] 

then u and v can become much larger than 1. In short, we 

cannot guarantee that our commutators will remain rough-

ly bosonic.9 

    This brings us to the final price we have to pay for our 

approximation. While we have found a way to guarantee 

particle conservation, we have lost the bosonic behavior of 

our ‘particles’ in the process. Our only hope is that we can 

do the same thing that was done in the conventional ap-

proximation: Neglect the errors. 

 

Let us take a look at the four troublesome terms from 

equation [76]: Commutators 2 and 3, the second term from 

commutator 4 and finally commutator 6. 

 ̂ ⃗⃗
  ̂  ⃗⃗

    ⃗⃗
  ̂ ⃗⃗

  ̂  ⃗⃗
    ⃗⃗  ⃗⃗ ( ̂ ⃗⃗

  ̂ ⃗⃗   ̂  ⃗⃗ ̂  ⃗⃗
 )

   ⃗⃗
  ̂  ⃗⃗ ̂ ⃗⃗ 

   ⃗⃗  ⃗⃗ ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗)   

[78] 

where we have used equations [55] and [35]. We have also 

used the fact that all our operators create positive terms 

when applied to a superfluid system. This allows us to 

order our operators as larger and smaller – although this is 

not technically a meaningful distinction. Then from [78] 

                                                         
9 In fact, we could show that u and v will grow large for 

sufficiently large occupations of one-particle excited states. 

There the rough equality holds   ⃗⃗    ⃗⃗ √  ⃗⃗ . It would 

go too far to derive this equation here, but suffice it to say 

that our problem is more than just a mathematical oddity. 
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  ⃗⃗  ⃗⃗ ( ̂ ⃗⃗
  ̂ ⃗⃗   ̂  ⃗⃗

  ̂  ⃗⃗)    ⃗⃗  ⃗⃗( ̂ ⃗⃗   ̂  ⃗⃗) 

  [ ̂ ⃗⃗
   ̂  ⃗⃗

 ]   
[79] 

where besides the second commutator from equation [76], 

we have used equations [31] and [6], and we inserted 

 ̂   . Similarly, for commutator 3 

 ̂ ⃗⃗
  ̂

 ⃗⃗   ⃗⃗

    ⃗⃗  ⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗    ⃗⃗  ⃗⃗ ̂ ⃗⃗

  ̂  ⃗⃗  

   ⃗⃗  ⃗⃗ ̂ ⃗⃗
  ̂  ⃗⃗    ⃗⃗  ⃗⃗ ̂ ⃗⃗

  ̂  ⃗⃗  

  [ ̂ ⃗⃗
   ̂

 ⃗⃗   ⃗⃗

 ]   

[80] 

where we have also used equation [34]. We then look at 

the second term from commutator 4 

 ̂ ⃗⃗ ̂ ⃗⃗
    ⃗⃗

  ̂ ⃗⃗
  ̂ ⃗⃗    ⃗⃗

  ̂  ⃗⃗
  ̂  ⃗⃗  

   ⃗⃗
  ̂ ⃗⃗    ⃗⃗

  ̂  ⃗⃗ 

  (
 ̂ ⃗⃗⃗

 
 [ ̂ ⃗⃗  ̂ ⃗⃗

 ])   

[81] 

using equation [35] again. Finally, for commutator 6 

 ̂ ⃗⃗ ̂ ⃗⃗   ⃗⃗

    ⃗⃗  ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗    ⃗⃗  ⃗⃗ ̂  ⃗⃗
  ̂  ⃗⃗  

   ⃗⃗  ⃗⃗ ̂ ⃗⃗

  ̂ ⃗⃗    ⃗⃗  ⃗⃗ ̂  ⃗⃗
  ̂  ⃗⃗  

  [ ̂ ⃗⃗  ̂ ⃗⃗   ⃗⃗

 ]   

[82] 

here using equation [34] once more. 

    What we see then is that every one of our commutators 

is at least a factor of N smaller than the products of the 

operators that feature in the commutator. This means that, 

unless there is an almost total cancellation of the leading 

terms, we will always be able to neglect the errors in the 

commutators. While they may not always be smaller than 

1, they will be a factor of N smaller than our leading terms.  

    This leaves us with the same type of error that was 

found in the conventional approximation as discussed in 

§2.1.2: an error of one in N that seems insignificant, but 

that is nevertheless worrying because it violates one of the 

fundamental laws of physics. We have simply exchanged 

breaking conservation of particle number for changing the 

fundamental nature of the particles themselves. 

 

We are unfortunately not able to resolve this issue. How-

ever, even with this flaw, our method has a number of 

distinct advantages over the conventional approximation. 

On top of that, while the obvious ways around our prob-

lem do not lead to complete solutions, they do highlight 

and build upon the advantages of this approximation. The 

details of these advantages are discussed in the sidebar 

‘Observations on the d commutators’. 

 

 

Observations on the d commutators 
 

In §3.4.2, we considered the commutators of  ̂ from 

equation [76] closely enough to assure ourselves that the 

relative size of our errors was no larger than in the con-

ventional approximation. However, there is more to con-

sider when looking at these commutators. We will touch 

on three aspects here, without going into all the technical 

details and mathematical derivations. First, whether we 

can find values for the occupations of one-particle excited 

states for which our commutators are still roughly boson-

ic. Second, whether the commutators become bosonic 

when we assume spatial symmetry in occupation of one-

particle states, i.e.   ⃗⃗     ⃗⃗ . Third, if we could simply 

describe  ̂  as creating ‘particles’ that are neither bosonic 

nor fermionic, so that we can simply take all the commu-

tator terms into account. 

 

The roughly bosonic zone 

We can plainly see that our commutators from equation 

[76] are roughly bosonic when we assume that the in-

volved one-particle excited states only have      occupa-

tions. The factors of 
 

 
 in these commutators will then 

guarantee that all errors are much smaller than 1. 

    When the occupations of our one-particle excited states 

are much larger than 1, this is not so plain, but we can use 

a number of approximations to simplify our system. Since 

we are only looking at orders of magnitude here, we can 

suffice with fairly rough approximations. In particular, we 

know that for these high values we can say   ⃗⃗ √  ⃗⃗. 

Then, since √  ⃗⃗   , we can see from equation [56] that 

  ⃗⃗    ⃗⃗, because the equal first term 
 

 
(  

       

   ⃗⃗ )
   

 

in both u and v must dominate. So we can say that, for 

√  ⃗⃗    

   ⃗⃗    ⃗⃗ √  ⃗⃗   [83] 

 

If we apply our commutators from [76] to a system where 

the one-particle excited state occupations are high 

enough, they will all yield terms of a similar form. Using 

the first halves of commutators 2 and 3 as examples, we 

find terms 

   ⃗⃗  ⃗⃗

  ⃗⃗

 
 

  ⃗⃗
 

 
 [84] 

and 

   ⃗⃗  ⃗⃗

√  ⃗⃗   √   ⃗⃗

 
 

  ⃗⃗√  ⃗⃗   ⃗⃗

 
   [85] 

with similar terms for commutators 4 and 6. So we could 

guarantee that all our commutator terms are much smaller 

than 1 by requiring for the one-particle excited state oc-

cupations 
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   ⃗⃗  ⃗⃗⃗  √    [86] 

 

Our roughly bosonic zone extends to anywhere the con-

dition from [86] holds. In fact, the only occupations that 

have to be sufficiently small are the ones actually involved 

in the commutations, meaning the roughly bosonic zone 

covers even more states. Even so, this is a much more 

stringent requirement than the original one from equation 

[3]. Nevertheless, it is still an improvement over the con-

ventional approximation, which always breaks particle 

conservation by adding or removing two particles regard-

less of requirements. 

 

Symmetry 

One striking feature of all the troubling commutators in 

[76] is the symmetry in the terms we subtract from each 

other. This symmetry becomes even more striking when 

we only consider the situation with high one-particle 

excited state occupations where [83] holds. We could 

then, for example, compactify commutator 3 from [76] 

into 

[ ̂ ⃗⃗
   ̂

 ⃗⃗   ⃗⃗

 ] 
√  ⃗⃗  ⃗⃗

 
( ̂ ⃗⃗

  ̂  ⃗⃗   ̂
 ⃗⃗

  ̂  ⃗⃗)  10 [87] 

    This in itself does not tell us anything if there is no 

relationship between the occupation of the  ⃗-state and 

the   ⃗-state (nor the  ⃗⃗-state and   ⃗⃗-state). However, we 

could assume that there is no preferred direction to the 

momentum of our particles. In that case, we would expect 

roughly the same amount of particles in either state. So 

wouldn’t the commutator then cancel since   ⃗⃗     ⃗⃗ and 

thus applying  ̂ ⃗⃗
 
 or  ̂  ⃗⃗ would give roughly the same 

particle count? 

    Unfortunately, ‘roughly the same particle count’ turns 

out to be very different from ‘exactly the same particle 

count’. Specifically, if we assume our particles with mo-

mentum | ⃗| are randomly distributed between  ⃗ and   ⃗, 

we expect a normal distribution.11 That means the uncer-

tainty in the occupation of either state will be  (√  ⃗⃗). 

Meaning the difference between the occupations could be 

 (√  ⃗⃗) as well. So [87] could be of order 

                                                         
10 We use the fact that [87] describes the leading term, as 

opposed to the term for the difference between u and v. A 

more thorough calculation would show that under our 

assumptions that term is smaller by roughly a factor of 

√  ⃗⃗  √  ⃗⃗ .  

11 Technically, the particles are distributed among many 

more states with an equally large momentum (at least six, 

since our system has a six-sided symmetry in the  ⃗,   ⃗,  ⃗, 

  ⃗,  ⃗ and   ⃗ directions). 

√  ⃗⃗  ⃗⃗

 
(√  ⃗⃗  √  ⃗⃗)  

  ⃗⃗√  ⃗⃗    ⃗⃗√  ⃗⃗

 
   [88] 

And for this to be much smaller than one, we would still 

need the requirement 

   ⃗⃗  ⃗⃗⃗   
 
    [89] 

 

Unsurprisingly, looking at our other commutators yields 

similar results. So this approximation expands our roughly 

bosonic zone a bit. It can also show that our actual errors 

are significantly smaller than the upper limits given in 

equations [78] through [82]. However, at the end of the 

day, assuming this symmetry is not enough to guarantee 

bosonic behavior in all the states we are considering. In 

particular, it does not cover the lowest energy one-particle 

excited states, which usually have occupations  ( 
 

 ). 

(18) 

 

As a final worrying thought, consider that in equation [88] 

we make the same mistake that is made in the conven-

tional approximation: We ignore the fact that our creation 

and annihilation operators don’t just count particles, but 

change the system itself as well. Admittedly, we still pre-

serve particle conservation in this case and we only use 

this approximation on terms that are already small enough 

to neglect. However, this does go to show that having 

non-zero commutators makes for a very complicated 

system. 

 

Non-bosonic ‘particles’ 

That observation leads us neatly to our final idea: accept-

ing these new quasi-particles created by  ̂  as being nei-

ther bosonic nor fermionic. In that case, the non-zero 

commutators would simply be considered one of their 

physical features. 

    However, as simple as this idea seems, it brings with it 

a host of problems. First and foremost is the fact that 

none of our rules for bosons are guaranteed to work for 

our new particles. We do not know if they are governed 

by Bose-Einstein statistics; we do not know if they have 

integer spin; ironically, first principles do not even require 

that the number of these ‘particles’ is conserved. All those 

properties follow from the fact that what  ̂  creates is 

approximately bosonic. 

    Second, even if we knew the properties of these new 

types of particles, working with them would still be hide-

ously complex. Every commutation would complicate a 

calculation immensely and give rise to all kinds of addi-

tional terms. The simplest operations would take longer 

and become harder, while more complex calculations 

would become virtually impossible to do by hand. 

 

However, the upshot of all this is not that we shouldn’t 
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consider our non-bosonic commutator terms, but that we 

could do it, if we really wanted to. This is one final ad-

vantage of our method over the conventional approxima-

tion: We know exactly what our errors are. If we are ever 

unsure whether neglecting the non-bosonic commutator 

terms is justified, we can choose to take them into ac-

count and compare the results. In those few cases where 

these tiny errors might have significant results, we can 

determine their exact significance. 

 

So in the end, our method breaks a rule as fundamental as 

conservation of particles. But unlike the conventional 

approximation, it has a clearly defined zone where this 

fundamental rule still roughly holds and commutation 

relations are approximately bosonic. And even outside 

that zone there is a clear and unambiguous way to quanti-

fy the effect of an error and make sure it has not influ-

enced the results. 

3.5    Results 

In the previous chapters, we have described a model of 

superfluid spin-polarized atomic Hydrogen. We looked at 

the conventional approximation of this system and found 

it to be flawed, because it breaks particle conservation. 

This led us to introduce the operator 

  ̂ ⃗⃗  ⃗⃗⃗ 
 ̂
 ⃗⃗⃗

  ̂ ⃗⃗

√ 
  ̂

 ⃗⃗  ⃗⃗⃗

  
 ̂ ⃗⃗
  ̂ ⃗⃗⃗

√ 
    

which describes the dynamic parts of our system in terms 

of particles changing momentum instead of being created 

and annihilated. 

 

Describing the Hamiltonian in terms of  ̂ led us to a de-

scription of our system that did not break particle conser-

vation. However, we had to pay two prices for this. First, 

we were forced to approximate not just the interaction 

potential  ̂, but also the kinetic Hamiltonian  ̂ . Second, 

unlike the original annihilation operator  ̂, both our  ̂-

operator and the derived  ̂-operator, which is used to 

describe the particle content of the system, have a non-

bosonic component. 

    Fortunately, we were able to show that both of these 

effects are small, are easily explained and do not lead to 

larger errors in our final results. This means we now have a 

solid alternative to the conventional approximation of 

these superfluids, leading to a final description of the sys-

tem in terms of the Hamiltonian 

 

 ̂  
          

 
 

 
 

 
∑(  ⃗⃗  

   ⃗ 

  
      )

 ⃗⃗  ⃗⃗⃗

 

 ∑  ⃗⃗ ̂ ⃗⃗
  ̂ ⃗⃗

 ⃗⃗  ⃗⃗⃗

   

 

 

Although it trades breaking particle conservation for 

breaking bosonic commutation, this Hamiltonian is very 

similar to the one found in the conventional approxima-

tion. In fact, the energy spectrum described has the exact 

same form as in the conventional approximation. The last 

term similarly creates and annihilates quasi-particles with 

energy   ⃗⃗. The only difference is that our quasi-particles 

are of a slightly different nature than in the conventional 

approximation; the dynamic part of the system is now 

described as a collection of momentum changes for exist-

ing particles. 

 

In short, we have shown that it is possible to calculate the 

properties of a superfluid system with particle conservation 

by describing it in terms of momentum changes rather 

than particle creation and annihilation. 

3.6    Further research 

Although our description of superfluid systems is fairly 

complete, three major questions still remain: how accurate 

is it, can this accuracy be improved and how widely appli-

cable is our method? These are the questions we will 

quickly expand on below. 

3.6.1    Testing the approximation accuracy 
 

We already know that the conventional approximation of 

superfluids has withstood the test of time, so the question 

of how accurate our method is might more aptly be posed 

as: which method is the best, the conventional approxima-

tion or our new alternative? Although ‘best’ is obviously a 

subjective term, studying the properties of both methods 

further could teach us about the strengths and weaknesses 

of each.  

  

In particular, we could create simulations of our system for 

different N, L and      to see how close the results are to 

those yielded by each approximation. Choosing a particular 

interaction strength      would determine enough about 

the system to make a simulation possible. The challenge of 

course is that the total number of particles N needs to be 

large enough for our approximations to be meaningful. On 

the other hand, it needs to be small enough that it can be 

simulated in a reasonable time. Finding a balance between 
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the two that yields meaningful results is challenging, but 

becomes ever easier with increasing computing power. 

3.6.2    Improving the approximation accuracy 
 

Even more useful than ascertaining the accuracy of our 

approximation would be to actually improve upon it. Spe-

cifically, the introduction of  ̂ causes two types of errors. 

Decreasing either one would make our approximation 

more exact. 

 

First of all there are the inherent errors caused by the  ̂-

operator algebra being not-exactly bosonic. These errors 

seem to be unavoidable without radical changes. That said, 

there may be ways to decrease these errors or their effects 

by changing the definition of  ̂ slightly. 

 

Secondly there are errors caused by the normalizing factor 
 

√ 
 in  ̂ not being the exact factor needed to normalize the 

creation or annihilation of a second particle.  

    As mentioned in §3.2, our approximation would actually 

be more accurate if we could use   ⃗⃗ instead of N for our 

normalizing factor. This is not trivial to do because   ⃗⃗ is 

not a constant, but it may still be possible. After all, we 

know exactly what we want our added term in  ̂ – as com-

pared to  ̂ – to do: add or remove a particle from the 

ground state without adding a constant factor. So in a non-

technical way, we already know what the normalizing fac-

tor should be. The question that remains is how to put this 

non-technical concept into a mathematical mold that actu-

ally works in our current system. This is a challenging task, 

but finding a way to do this could remove errors of this 

second kind completely. 

3.6.3    Generalizing the approximation method 
 

We have developed a solid technique for describing our 

system in terms of particle momentum changes. But while 

we have derived some simple properties of the core opera-

tor  ̂, we have looked at only enough for our specific 

purposes. 

    An interesting question could be if  ̂ is more widely 

applicable. What are its general properties? And how does 

it relate to the more conventional raising and lowering 

operators, which seem fairly similar? Most importantly: 

what other types of systems could be described more accu-

rately or compactly using our new operator? Is it of more 

general use than just for these superfluids? 

    Specifically, applying a variation on our method to su-

perconductors might offer an alternative to the conven-

tional BCS-theory of superconductivity, which breaks 

particle conservation just like the conventional method for 

superfluids. (7) 
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