
–

 BULK RENAME UTILITY
 OPERATIONS MANUAL
 2nd Edition

 Volume I

Timothy R. Mongeon

Bulk Rename Utility Operations Manual Page 2 of 715

 [This Page Intentionally Blank]

Bulk Rename Utility Operations Manual Page 3 of 715

Before I begin.

I am old school. Therefore I slip between using old terms like Directories and Sub-Directories instead of the more

common term today of ‘Folders’. I know the difference but for the average person, it tends to be confusing, so I will

leave it at that. Personally, I think the old way best described them, especially when the directory structure is viewed

in a tree formation. The tree is positioned with the root at the top with all of its branches (the directories) and limbs

branching off from that (the sub-directories).

Also, since this is an English – the country, not the language – program, you will find words like Behaviour, Colour,

and Favourite. These are not typos. In USA lingo the equivalents are Behavior, Color, and Favorite (Bloody Yanks!)

so don’t run amok with your spell checkers.

The Bulk Rename Utility (BRU) can find any pattern in a filename or folder name and make changes – a real search

and replace function. It can be a bit daunting to use at first because it can do so much more than search and replace.

Many people find the program interface hard to use at first and I was no different, so I decided a book was necessary.

I also wanted to highlight many of the features of this wonderful program and to pay homage to some of the

contributors of the BRU Forum – see Volume 2 of this series - Expert’s Corner. All of the information from the

original BRU manual from Jim Willsher and TGRMN Software has been incorporated in one form or another as well.

I should also mention that in my style of writing I use capitalization, bolding, italics and colour of certain words,

topics and terminology as an emphasis which may or may not follow any proper protocol of writing.

Technical Notes:

Some photos were edited to fit the layout. I have preserved the essential information and this should be easily observable at

100% magnification in a PDF reader. However, all photos are high resolution, and if need be, you can enlarge (zoom) the

page(s) in your reader to accommodate the detail without distortion.

This volume has been updated to reflect BRU v3.43 series and completely incorporates the BRU manual as of July 2021.

Disclaimer:

All information presented has been to the best of my knowledge excerpted or researched from pubic domain sources. Other uses of
information fall under the Fair Use Act. Most references to sites other than BRU have had the hyperlinks removed to prevent future
‘dead links’ – you can’t click on them.

 Thanks to Matt of TGRMN Software.

 His Parliament and our Congress could learn from our Bilateral collaboration.

 and my wife, Patty of 40 years, without whom none of this is possible

 Modification of this book is not permitted without express written consent of the author.

Original material by Tim Mongeon; Berkshire County, Pittsfield MA USA; Other sources where noted; Revision July 2021

Bulk Rename Utility Operations Manual Page 4 of 715

Considerations:

1. Only One Instance of BRU can run at one time.

2. When you re-launch the utility, the application remembers the screen position from the previous launch.

3. Command Line options:

 a. On the command line you can specify the name of a favourite file to open at start-up or a directory path to

 scan, i.e.:

"Bulk Rename Utility.exe" filename.bru

 Or

"Bulk Rename Utility.exe" directory path

 b. Other command line options

 Command Line Parameters for automatic license code registration:

"Bulk Rename Utility.exe" /writeregkey:"AAAA|BBBB" [/elevated]

 Where:

/writeregkey:"AAAA|BBBB" AAAA is the registration text

BBBB the registration key

| separation character

 The whole text must be surrounded by quotes

 [/elevated] Optionally instructs to prompt for elevation to administrator

 if needed (to register for all users on computer).

 Program will return 0 if the operation was successful.

Examples:

"C:\Program Files\Bulk Rename Utility\Bulk Rename Utility.exe" /writeregkey:"Paul|1234"

"C:\Program Files\Bulk Rename Utility\Bulk Rename Utility.exe" /writeregkey:"Paul|1234" /elevated

Note:

There is a separate Command Line version of Bulk Rename Utility called Bulk Rename Command or BRC. This version is not covered here.

Bulk Rename Utility Operations Manual Page 5 of 715

Considerations:

4. Recursive Scans

 It is possible to perform a recursive scan and rename from the current folder. This allows you to rename

 folders and files contained within any subdirectories from the current folder. Subdirectories of subdirectories

 are also scanned, right down to the lowest level.

 To do this, enable the ‘Subfolders’ option of ‘Section #12: Filters’. This option needs to be treated with great care –

 if you scan a high-level folder such as C:\ or C:\Program Files, the program could have tens of thousands of files to

 scan. While the system should cope with in excess of 250,000 files, it will take a long time for the file list to be

 displayed. It is recommended that you only use the ‘Subfolders’ option only if you really need it.

 Please note, renaming a folder using recursion will automatically refresh the File List in the Content Pane. This is

 to prevent problems with synchronization with the files on your hard drive (The File List no longer reflects the

 names of the actual files on your hard drive). This does not apply if just renaming files (with or without recursion).

 For more information, refer to ‘Subfolders (Recursion)’ under ‘Section #12: Filters’, ‘Speeding up the Program’.

 5. INI File

 When you quit the application, your current settings (menu choices etc.) will be stored in a .INI file in the

 same folder as the executable program. As Bulk Rename Utility doesn't require an Installer this makes it quite

 useful as a utility on a "memory stick" or a "Tools CD".

 If you need two sets of preferences with different values then create two copies of the executable with

 different names, and you'll get two INI files. Newer versions of BRU support Unicode.

6. Portability

 There is also a portable version of Bulk Rename Utility (BRU_NoInstall.zip) available on the website. Note that

 the portable version does not include the built-in JavaScript libraries, sugar.js and date.js.

7. Updates are available from the application's website (www.bulkrenameutility.co.uk). Make sure you're using the

 latest version to obtain the most benefit.

8. To unlock the JavaScript functionality, you need an inexpensive Commercial License which also shows your

 support in the future development of both the freeware and commercial versions of BRU.

 Even if you don’t know JavaScript, you can copy and paste the examples found in Volume 2. Without a

 commercial license, you can paste the examples into the JavaScript Code Entry Form for testing (‘Section #14:

 JavaScript’), but you won’t be able to Rename the files. The JavaScript capability provides the full power of BRU,

 useful even if you are just a home user. Further assistance can be found in the JavaScript section of the BRU

 forums. There are also numerous books, publications, etc. on the web if you want to learn more.

Source Material this section: BRU Manual

Bulk Rename Utility Operations Manual Page 6 of 715

Introduction to the 2nd Edition of Volume I

This volume has been updated to version 3.4.30 of BRU.

This is a complete rewrite of the first edition with over 400 pages of new and revised material that inlcudes more

photos, illustrations and diagrams. I have also added new elements, e.g., lines, shapes and arrows, to assist with

understanding the text. I have redone the fonts, added more colour, and made the text sharper.

Where applicable, supplemental text will be addressed for any program changes specific to newer versions of v3.4x.

I have chosen to make note of these changes at the appropriate end of each section and where necessary incorporate

them within the main text of the subject matter.

Also of note, some added material that appears in the first few chapters addresses topics that will be discussed in more

detail later on in the book, so if you don’t understand something in one section of the book, the discussion will be

forthcoming.

You now have many avenues available to you to locate information on your own – newly added Bookmarks and a full

hyperlinked Index, and of course the Table of Contents and don’t forget the Search facility of your own PDF reader.

Every photo has been painstakingly recreated from the original volume under the newest version as of this revision

date.

I have used my own computer network to document this volume. Therefore, where I feel it necessary, photos have

been altered and text redacted for my personal privacy concerns.

The section entitled, ‘Section #1: RegEx’, now includes support for many of the improvements of PCRE v2. The

RegEx Manual in the Appendix has also undergone a full rewrite – still based on PCRE v1 for the most part, though,

but applicable just the same.

I have also included extensive analysis of the sample RegEx - something that was previously only available in

Volume II. In doing so, I must state that my analysis is not fact, nor for that matter simply conjecture – it is my

opinion based on how I view the logical progression of an evaluation of a RegEx to its conclusion. I will repeat this

disclaimer at various places as a reminder.

Additionally, you will find that this volume includes samples of testing data that I used for validation surrounding a

Metadata discussion in the heading titled, ‘Section #8: Auto Date’. I typically do not include my testing methods but

in this case, I felt it was important to illustrate my findings rather than just state, ‘this’ or ‘that’, as absolute without

showing proof.

Most page references that appeared in the first edition have been removed because of the complexity of tracking and

updating them all. Instead, I have used the names of headings and sections. Any needed information can be searched

within the content of this volume.

Exceptions were made with certain references to pages in Volume II. These, however will be outdated as soon as a

new revision of Volume II is released.

Bulk Rename Utility Operations Manual Page 7 of 715

 [This Page Intentionally Blank]

Bulk Rename Utility Operations Manual Page 8 of 715

Bulk Rename Utility Operations Manual

Before I Begin 3
Considerations 4
Introduction to the 2nd Edition of Volume I 6
Drag and Drop from Explorer 15
The Program Screen 17
User Interface 21

The 14 Sections Used to Specify the Criteria 25

 Order of Expression Evaluation 26

 Program Notes 32

 Understanding Favourites 39

 Save on Exit 39

 Store Pathname 39

 Section # 1 - RegEx 46

 Match 48

 Replace 49

 v3.4 New Additions 51
 Numbered Backreferences 51
 Named Capture Groups 53
 Using Named Backreferences with Capture Groups 54
 Size Limitations in PCRE and PCRE2 60
 Specifying Multiple Regular Expressions Using The (?X) Separator 62
 v2 vs v1 & Simple 66
 The Global Switch /g 88
 Case Insensitive /i 92
 Case Conversion 93
 v3.43 New Additions 95
 Added ability to use \E \L \l \U \u modifiers in the Replace field of the ‘Simple’ RegEx 95
 Section # 2 - Filename 100

 Filename 101

Bulk Rename Utility Operations Manual Page 9 of 715

 C O N T E N T S

 Section # 3 - Replace 102

 Replace 103

 v3.4 New Additions 104
 Multiple Replacements 105
 Match Case enabled – Perform case-sensitive replacement with Replace Only on First Match 107
 Position Modifier \<Position value>\ 108
 Section # 4 - Case 112

 Case 113

 v3.43 New Additions 114
 The New York Times Title Case is now used in the Title option, Enhanced Title 114

 New Changes in the Except(tion) field 116
 Section # 5 - Remove 122

 Remove 123

 Section # 6 – Move/Copy Parts 136

 Move/Copy Parts 137

 Section # 7 – Add 144

 Add 145

 Using Substitution Tags 148
 MP3 148
 JPEG 150

Other Tags Available in BRU 154
 Removed 154
 File Size 155
 Hash Value 156
 Using Windows File Properties 159

File Properties as Dates and Numbers 162

Using Windows Clipboard Data 164

Using EXIF tags 165

EXIF Properties as Dates and Numbers 168

 Section # 8 – Auto Date 170

Auto Date 171

 Adding a New Date & Timestamp 176

 Using the EXIF property ‘Taken (Original)’ 178

 v3.4 New Additions 187
 Item Date 187

 Section # 9 – Append Folder Name 216

 Append Folder Name 217

 v3.42 New Additions 218
 Append Negative Value for Specific Directory Name 218
 Section # 10 – Numbering 222

 Numbering 223

 v3.43 New Additions 228
 Roman Numerals section removed and placed under ‘Type’ section 228
 Case 231

 Section # 11 – Extension 247

 Extension 248

 Section # 12 – Filters 250

 Filters 251

 Subfolders (Recursion) 253

 BRU’s Sub Dir Column vs Full Path 256

 v3.42 New Additions 260
 Set Subfolder Level to Control Recursive Scanning 260

Bulk Rename Utility Operations Manual Page 10 of 715

 C O N T E N T S

 Section # 13 – Copy/Move to Location 262

 Copy/Move to Location 263

 Moving Files from one Directory to Another Location with Files content! 268

 Section # 14 – Special 271

 Special 272

Menus 274

 File Menu 275

 New (Ctrl + N) 276

Open (Ctrl + O) 276

Save (Ctrl + S) 276

Save As 276

Recent 277

 Favourites 277

 Save on Exit 277

 Store Pathname 277

 Actions Menu 279

 Selection 280

 Select All (Ctrl + A) 281

 Deselect All (Ctrl + D) 281

 Invert Selection (Ctrl + I) 281

 Select From Clipboard 282

 Jump to Path (Ctrl + J) 283

 v3.4 New Additions 283
 Network/UNC Paths are Supported 283

 Troubleshooting UNC Under Jump to Path 299

 Rename Object Manually (F2) 302

Refresh Files (F5) 302

Refresh Tree (Ctrl + F5) 302

Show/Hide Tree (F11) 302

Zoom (F8) 303

 List 303

 Reposition 303

 Apply Random Sort to Current List 305

 Show Only Items Affected by Renaming Criteria 307

 Clear All Items from Current List 308

 Auto-Select All Items After Listing a Folder 308

 Clear All Non-Selected Items from Current List (Ctrl + O) 309

 Import Rename-Pairs (Rename from a Text File) 310

 Import Rename-Pairs 310

 View Imported Rename-Pairs 314

 Clear Imported Rename-Pairs 314

 v3.4 New Additions 315
 Full Path Support 315

 Debug New Name 318

 Reset All Renaming Criteria (Ctrl + T) 327

Revert All Criteria to Last Saved (Ctrl + E) 327

Preview (Ctrl + P) 328

Rename (Ctrl + R) 329

Undo Rename (Ctrl + Z) 329

Create Undo Batch File (Ctrl + B) 330

Bulk Rename Utility Operations Manual Page 11 of 715

 C O N T E N T S

 Display Options Menu 331

 Always on Top 332

 List 332

 Show Gridlines 332

 Show Icons 333

 Show File Sizes as… 333

 Show Picture Viewer (Ctrl + W) 334

 Select Columns 335

 Autofit All Columns (Ctrl + Alt + +)342

 Expand File List (Ctrl + F9) 343

 Maximize File List (F9) 345

 Colours 347

 New Name OK 347

 New Name Invalid 347

 Active Criteria 348

 Highlight Active Criteria 348

 Changing the Colours 349

 Font 350

 Use Larger Font 350

 Use Smaller Font 350

 Reset 350

 Sorting 351

 Logical Sorting 351

 Group Affected Files 354

 Sort Files and Folders Together 355

 v3.4 New Additions 356
 Custom Column 356

 Item Date 363

 A Brief primer on EXIF Date Taken accuracy- GIGO 366

 Renaming Options Menu 367

 Retain Autonumber 368

 Rename in Reverse Order 370

Prevent Duplicates 372

Advanced Options 373

 Allow Using ‘\’ in Renaming Criteria for Creation of New Folders 373

 Allow Overwrite / Delete Existing Files During Renaming If Needed 376

 ID3 /EXIF Data /File Properties 377

 Extract ID3 Data (MP3) 377

 Extract EXIF Data (Photos) 378

 Extract Windows File Properties 378

 File/Folder Extensions 379

 Rename File Extensions as Being Part of File Name 379

 Rename Folder Extensions as Being Part of Folder Name 379

Log Renaming Activity to File 380

Show Warning Message Before Renaming 380

Show Confirmation Message After Renaming 381

Bulk Rename Utility Operations Manual Page 12 of 715

 C O N T E N T S

 Special Menu 382

 Change File Attributes 383

Change File Timestamps 385

 Understanding Delta 389

 v3.4 New Additions 390
 Change File Timestamps to Allow Item Date 390

Character Translations 391

JavaScript Renaming 396

 Using the Test Facility 397

 Handling Syntax Errors 398

 About Conditional Renaming 401

 JavaScript Libraries 405

 Include sugar.js 405

 Include date.js 405

JavaScript Filter Condition 406

 Context Menu 409

 BRU Context Menu 410

 Clipboard Copy 410

 Open Containing Folder 412

 Show List of File Properties 412

 Show List of EXIF Info (.JPG Files) 412

 v3.4 New Additions 413
 Copy all available column data for highlighted files 413
 Windows Explorer Context Menu 415

 Bulk Rename Here 415

Bulk Rename Utility Operations Manual Page 13 of 715

 C O N T E N T S

Appendix 417

 Speeding up the Program 418

 Display Options Menu 419

 List - Show Icons 419

 Renaming Options Menu 419

 ID3 / EXIF Data / File Properties 419

 Section #12: Filters 419

 Subfolders Option (Recursive Scan) 419

 v3.4 New Additions 419
 Enabling v2 (PCRE v2 with Boost) 419

 Regular Expressions (RegEx) Manual 420

 Applying example to BRU – Review Time 421
 v3.4 New Additions 422
 BRU Supports PCRE v2 with Boost 422

 Literal 423

 Special Characters (aka Metacharacters) 423

 Metacharacters in Depth 427

 Greed and Lazy 566

 Backtracking 588

 Non-marking Groups 590

 Using Options with RegEx 591

 Case Insensitive 591

 Free-Space Option 596

 Comments 598

 If Then Else 599

 Using multiple Capture Groups to locate Partial Words 600

 Lookarounds: Lookahead and Lookbehind 602

 Using Alternates with Capture Groups 642

 Personal Examples 661

 JavaScript Bulk Rename Utility Constants and Variables 667

JavaScript BRU Constants and Variables 668

JavaScript BRU Utility Functions 669

 EXIF Metadata Reference 671

 ASCII Character Codes 697

ASCII Character Chart (Version 1) 698

ASCII Character Chart (Version 2) 700

Extended ASCII Character Chart 709

PC Extended ASCII Character Chart 710

Last Word

Note: Modification of this document is not allowed without express written consent of the author.

Bulk Rename Utility Operations Manual Page 14 of 715

 [This Page Intentionally Blank]

Bulk Rename Utility Operations Manual Page 15 of 715

Drag and Drop from Explorer

You can now drag files and folders directly from within Windows Explorer. This means you can select files from

anywhere on your computer and aggregate them all together, allowing you to rename them in a single operation.

To perform this task:

1. Launch Bulk Rename Utility in the normal way.

2. Launch Windows Explorer.

3. Find the files or folders that you wish to process.

4. Select the files/folders. If you select a folder, the contents of that folder will be aggregated together with any other

 selected files.

5. Drag them to the Bulk Rename Utility "file list" window.

 a. You do not have to use ALT or Shift when dragging

 because the files are not actually moved or copied.

6. Release the mouse, and the files will be listed in the Content

 Pane.

Note:

You can use the ‘Filter Refresh’ button to refresh the file listing

and remove your selections.

File List prior to Drag and Drop: File List after Drag and Drop:

Bulk Rename Utility Operations Manual Page 16 of 715

Drag and Drop from Explorer

Notes:

1. Any files/folders you drag on the window will be added to the list of files/folders already there.

2. To display ONLY those files in the Content Pane, hold down the CTRL key when you let go of the mouse button.

3. The files are not being actually Copied or Moved. They are being displayed in Bulk Rename Utility for subsequent

 processing.

4. This function is available for/from ANY Explorer window to BRU.

5. Windows "Search" facility can be used to locate files on your computer (for example, all your Word documents)

 and drag the files directly from the Search Results window. This also allows for files to be selected from different

 directories because the search results are aggregated together. The Program, ‘Everything’ from Void Tools is also a

 very good source for Searching and supports Drag and Drop into BRU as well.

Example:

(1). In Windows Explorer, navigate (using the Navigation Pane) to the directory you want to begin the search.

 a. Windows search is limited to searching from within the selected Library or within the selected root directory

 down to the subdirectories below.

(2). Type in the ‘search’ field what you want to search for e.g., pdf.

(3). Now you can select the files from the search results and drag them to BRU.

Source Material this section: BRU Manual

Bulk Rename Utility Operations Manual Page 17 of 715

The Program Screen

Let’s take this one section at a time.

This is the Windows Explorer section. Nothing new here. You navigate the Hierarchy Tree list in the left pane (the

Navigation Pane) and browse through the files content in the right pane (the Content Pane).

Navigation Pane Content Pane

In the Navigation Pane containing the Tree, you select the folder containing files you want to rename. The Content

Pane is where the file list appears. If the selected folder contains subdirectories, these folders will also appear here.

Bulk Rename Utility Operations Manual Page 18 of 715

The Program Screen

I have maximized the window in this photo and expanded the columns so I can see what I am doing:

There are 14 sections evaluated from left to right in the order 1 through 14 (see photo previous page).

Sections 1 – 11, and two functions from Section 14, Character Translation and the JavaScript function, are used to set

up a criteria of an inclusion or absence that build a final expression applied to each selected file when you click on

RENAME. JavaScript requires an inexpensive license to activate.

‘Section 12: Filters’ is a filter that can be used to filter out what files and folders are visible in the Content Pane.

‘Section 13: Copy/Move to Location’, along with two functions from Section 14, File Attributes and File

Timestamps, are used to affect the physical file after the renaming process.

Bulk Rename Utility Operations Manual Page 19 of 715

The Program Screen

In a nutshell -

(1). Select which directory contains the files to be processed in the Navigation Pane.

(2). Select your criteria and file options using any one or more of the 14 sections.

Bulk Rename Utility Operations Manual Page 20 of 715

The Program Screen

(3). In the Content Pane, select which files are to be processed (Ctrl + A to select all files, Ctrl + Mouse Click to

 individually select files, Shift + Down arrow to select files consecutively, and Ctrl + D to deselect all files).

(4). Immediately see the results in the Content Pane under the New Name column as a preview BEFORE you process

 (one of the best features of this program)! Valid files to be renamed will be highlighted in green.

(5). Click on the RENAME button to begin processing.

Notes:

1. To rename just a single file, highlight that file and press F2.

2. There is even an UNDO feature under the Actions Menu.

3. The number of selected files is shown in the status bar.

Bulk Rename Utility Operations Manual Page 21 of 715

User Interface

The bottom portion of the screen contains the 14 sections that are used to define the criteria and other tasks.

First Glance Features:

Zoom Feature –for most of the blank data fields in

a section, press F8 to temporarily provide a larger view to make it easier to enter data.

For each section there appears at the top right corner, a checkmark data field and an R next to it.

The checkmark indicates to the program to include this section and its criteria in the final evaluation of the

expression. It is okay to leave them checked (the default), because if there is no criteria specified by a section, it will

be included but processed with null data. The result will have no effect and have no impact on performance.

The ‘R’ will reset the values and settings for that single section back to its default state. Just click on it to reset. It will

affect only that section.

At the far right lower corner are three buttons:

Preview – Preview all the renaming actions before actually renaming (name change, timestamp

change, attribute change, etc.). This is the equivalence of the ‘Preview’ menu item of the ‘Actions’

menu. For more information, refer to the ‘Actions Menu’ section.

Reset – Master reset to reset all values and settings for all 14 sections back to their default state.

Revert – Loads the Favourites settings for all criteria previously saved using ‘Save’ under the File Menu. This is used

to restore a Favourites file that had been loaded but had been changed during the current session.

Rename – This will begin the Rename action. The button becomes enabled when criteria has been set

and qualified files have been selected in the Content Pane.

Bulk Rename Utility Operations Manual Page 22 of 715

User Interface

In addition there is the Expansion button toggle for the

Navigation and Content Panes:

When you click on this, it expands allowing you to see more of the Tree List in the Navigation Pane and more of the

File List in the Content Pane. This is the equivalence of the ‘Maximize File List’ selection in the ‘List’ sub-menu of

the Display Options Menu.

From This:

To This:

Bulk Rename Utility Operations Manual Page 23 of 715

With Bulk Rename Utility aka BRU, You can:

 Use Regular Expressions (updated to v2 as of v3.4.1.0 – can use v1 (default) or v2 or the New Simple RegEx)

 Rename or replace using a Fixed name

 Perform text Manipulation including:

 Replace Text with other Text (Do a Search and Replace by Pattern)

 Add a Fixed Prefix or Suffix

 Modify Text in the Middle of a Name

 Move Text to the Beginning, End or within the Middle of the Name

 Remove First or Last n characters of the Name

 Remove Characters using Character Positions From.. To..

 Remove a List of Characters

 Remove All Digits or Symbols from a Name

 Remove Double Spaces

 Change the Extension (Replace, Remove, Change Case or Add a Secondary Extension)

 Crop Text Before or After a Specified Text or Character (or from anywhere within the Name using a Wildcard)

 Add a Numbering sequence (Autonumber) to Prefix or Suffix using a pre-defined Minimum Length if Required)

 Append (Prefix or Suffix) or manipulate a Date (in various forms and formats)

 Date Modified, Date Accessed, Date Created, (Item Date), or today's date

 Change the Case (with specified Exceptions)

 Extract and Use Metadata from Files Including:

 EXIF Data from JPG Images

 ID3 Tags (v1 and v1.1) from MP3 Sound Files

 Windows File Properties from any File

 EXIF v2 Metadata including Date Taken (EXIF Photo.DateTimeOriginal)

 Item Date (For certain Image Files this would map to the Windows Property, System.PhotoDateTaken)

 Insert new sections within the filename

 Append the Folder Name and Path with various Directory Levels

 Create and move files into folders based on file names or file dates ('folderize')

 – see Advanced Options under Renaming Options Menu

 Perform Recursive Renaming on files located in subfolders in one action

 File Functions

 Change the Attributes

 Change the Timestamp

 Move or Copy the renamed files

 Drag and Drop support of Files from Windows Explorer and the Everything Search program by Void Tools

 Import a list of files to be renamed

 Use JavaScript (Commercial version ONLY- buy an inexpensive license today)

 Export/Import all criteria settings …… referred to as favourite

In addition, new features or improvements (some are in red type above) have been added to this version These will be

explained in detail under the sub-heading, ‘ v3.4x New Additions ’, where appropriate.

Bulk Rename Utility Operations Manual Page 24 of 715

 [This Page Intentionally Blank]

Bulk Rename Utility Operations Manual Page 25 of 715

 The 14 Sections Used to Specify the Criteria

Bulk Rename Utility Operations Manual Page 26 of 715

Order of Expression Evaluation

BRU has 14 sections that make up criteria you can specify to build an expression. As you build this expression, BRU

is constantly working, providing a preview of the evaluation (one of the best features) allowing you to see problems

before they happen. Once all of the desired criteria has been entered (you only need to select what you want to

include), click on the ‘Rename’ button and BRU applies the finished evaluation to each of the selected files or folders.

The evaluation is processed from left to right and follows the same order as the criteria, Section #1 through Section

#14 with certain exceptions noted. So for example, a text replace ‘Section #3: Replace’ will always be performed

before a change of case ‘Section #6: Case’.

The specific order of evaluation is as follows:

1) Apply any fixed name changes from an imported text file

 (Import Renamed-Pairs)

2) Apply Regular Expression reformatting – Section #1: RegEx

3) Remove any file name, or use a fixed name – Section #2: File

4) Perform any text substitutions – Section #3: Replace

Bulk Rename Utility Operations Manual Page 27 of 715

Order of Expression Evaluation

5) Perform Character Translations – Section #14: Special – Character

6) Perform any changes of case – Section #4: Case

7) Remove n digits from the start, middle or end of the filename, and optionally

 remove certain characters, and/or all characters, and/or all digits, and/or all

 symbols, and/or all high-ASCII characters (128 to 256) – Section #5: Remove

8) Move any text from/to the start, middle or end of the filename

 – Section #6: Move/Copy

9) Add any prefixes or suffixes, or apply text to the middle of the filename. Suffixes

 are added at the end of the filename before any file extension – Section #7: Add

10) Apply any "Auto-Date" text as a prefix or suffix. "Sep"

 is the text to insert between the filename and the date;

 "Seg" is the separator between the day, month, year,

 hour, minute and second segments. Or you can use a

 custom date format – Section #8: Auto Date

11) Add the containing folder name as a prefix or a suffix,

 with a user-defined separator

 – Section #9: Append Folder Name

Bulk Rename Utility Operations Manual Page 28 of 715

Order of Expression Evaluation

12) Perform any Autonumbering – Section #10: Numbering

13) Make any changes to the case of the file extension, or change

 the extension – Section #11: Extension

14) Process JavaScript code – Section #14: Special - JavaScript.

 This is the last step.

Bulk Rename Utility Operations Manual Page 29 of 715

Order of Expression Evaluation

 Notes:

1. Although part of Section #14: Special, any Character Translation will be performed (step 5 on previous page) prior

 to Section #4: Case (step 6 on previous page).

 Be aware the Debug New Name function found in the Actions Menu

 does not show a distinction between the two operations, even though

 there are:

For example, below is the outcome from Character Translation translating

the uppercase N to an uppercase P, followed by changing the CASE to

Title, resulting in:

When we view the Debug New Name output, we can see that Group 4 contains

both the criteria for Character Translation, which is performed first, and Case,

because the filename changes from DSCN0032.jpg to Dscp00232.jpg with no

distinction between the two evaluations visible.

 In Group 4 Character Translation changed the DSCN to

 DSCP, while Case changed the original case to Title

 Case, changing DSCP to Dscp.

Also note that although there are no other specified criteria other than for those two sections, the Debug New Name

output still displays all of the criteria sections regardless. The reason there are only 11 sections listed is because

JavaScript, if used, will display last in its own named section.

For more information, see ‘Debug New Name’ from ’Actions Menu’ section.

Bulk Rename Utility Operations Manual Page 30 of 715

Order of Expression Evaluation

Notes cont.:

2. Section #12: Filter, creates a mask of what files you see (the file list) in the Content Pane of BRU and is not a

 part of the expression built from the previous criteria.

3. Section #13: Copy/Move Location will optionally copy and move the files AFTER they have been renamed and is

 not a part of the expression built from the previous criteria.

4. Section #14: Special – Change File (Attributes), changes the selected files’ attributes AFTER the renaming process

 and is not a part of the expression built from the previous criteria.

Bulk Rename Utility Operations Manual Page 31 of 715

Order of Expression Evaluation

Notes cont.:

5. Section #14: Special – Change File (Timestamps), changes the selected files’ timestamps AFTER the renaming

 process and is not a part of the expression built from the previous criteria.

Bulk Rename Utility Operations Manual Page 32 of 715

Program Notes

1. The selected files will be renamed according to your selection criteria. You can select multiple files by holding

 down the SHIFT for consecutive selection or the CTRL + Left Mouse for non-consecutive (individual) selection.

Consecutive Selection:

Files are listed one right after the other. Click on the first file to select, then use the Shift + Down Arrow to select the

files beneath. In the same manner you can use the Shift + Up Arrow to deselect files.

Non-Consecutive Selection:

Individual files are selected using the Ctrl + Left Mouse Click.

Bulk Rename Utility Operations Manual Page 33 of 715

Program Notes

2. If there are any problems with the rename operation, you have the option to roll back (undo) the operation.

You can also press Ctrl + Z

Bulk Rename Utility Operations Manual Page 34 of 715

Program Notes

3. Remember - you can always preview the new name in the file list This allows you to refine your criteria before

 actually committing to the renaming process.

Select the ‘Preview’ option under the ‘Actions Menu’:

Or click on the ‘Preview’ Button:

or simply press Ctrl + P

This is a read-only dialog box. You cannot

make changes.

Bulk Rename Utility Operations Manual Page 35 of 715

Program Notes

4. Favourites allow you to preserve your renaming criteria for the next time you use the utility.

5. You can use the ‘Reset’ button to reset all your renaming criteria back to their default values

… or the smaller ‘R’ buttons located to the top right of each section to just reset one individual criteria group.

Bulk Rename Utility Operations Manual Page 36 of 715

Program Notes

6. The files will always be processed in the order of the displayed sequence in the Content Pane.

 What does this mean?

In the example above I have selected 4 files. The order in which they appear in the Content Pane will be the order in

which each of these files is evaluated. I am not referring about the Order of Evaluation – that has to do with the

specified criteria and has already been discussed.

I am referring to which file will be processed first, second, third and fourth, in other words, the order of processing.

Currently the order of selection is:

DSCN0001.JPG

DSCN0032.JPG

DSCN0056.JPG

DSCN0058.JPG

But there are several options that can be used to manipulate this order.

a. The sorting options available from the Display Options Menu:

Bulk Rename Utility Operations Manual Page 37 of 715

Program Notes

b. The ‘Reposition’ sub-menu and ‘Apply Random Sort to Current List’ menu items from the List sub-menu option of

 the Actions Menu:

c. The ‘Rename in Reverse Order’ menu item from the Renaming Options Menu:

d. Sorting the Column Headers in the Content Pane ascending or descending by clicking on the Header Name:

Before – e.g., I will sort by the ‘Created’ Date column in ascending order by clicking on the ‘Created’ Date header:

After – (note that DSCN0058.JPG appears further down the file list and is currently not visible in the photo).

Bulk Rename Utility Operations Manual Page 38 of 715

Program Notes

7. JavaScript function requires an inexpensive commercial license and supports future development. JavaScript is also

 beneficial for home users and unleashes the full power of BRU. Refer to Volume II for many useful examples.

JavaScript Code Entry Form:

Even without a license, you can enter JavaScript into the form and click on Test to see if there are any syntax errors.

With the license, this step is optional. Clicking OK will execute the script and apply the changes on the selected

filenames along with any of the other renaming criteria. Remember that the actual renaming process does not take

place until you click on the ‘Rename’ button.

Bulk Rename Utility Operations Manual Page 39 of 715

Understanding Favourites

BRU allows you to save your current selection and rename criteria along with the current folder in a named file with a

*.bru extension called a ‘Favourite’. Using Favourites, you can define multiple renaming jobs and recall them

quickly.

To create a Favourite file, simple set your criteria and other settings and use the ‘Save’ or ‘Save as’ menu items from

the File Menu. Favourites can be recalled similarly using the ‘Open’ menu option from the File Menu or by double

clicking on the file name in Windows Explorer.

Once loaded, all of the criteria and settings that were in place at the time the file was originally saved are

automatically entered into BRU. The status bar at the bottom of the BRU program Interface will reflect the current

Favourites file loaded. e.g.,

Save On Exit

You can have BRU always save any changes that you may have made during the session to the currently loaded

Favourites file by setting the ‘Save on Exit’ option located in the File Menu:

If you do not have ‘Save on Exit’ enabled and changes are made, those changes will be lost.

Store Pathname

This is a misnomer. When the Favourites file is saved, it saves the current pathname regardless of this setting.

So what does this do?

Even though the pathname is saved, BRU will only use it if the ‘Store

Pathname’ setting is enabled.

1. If the setting is disabled and you load a Favourite file, the program

 remains in the current directory.

2. If the setting is enabled and you load a Favourite file, the program

 reads in the pathname and changes to that directory.

Bulk Rename Utility Operations Manual Page 40 of 715

Understanding Favourites

Notes:

1. BRU will always automatically load the last saved Favourites file when you start the program.

2. If you have a Favourites file loaded and make changes, you can remove those changes by selecting the ‘Revert All

 Criteria to Last Saved’ menu option from the Actions Menu.

 Note that this will not work if the changes have already been

 saved via –

 e.g.,

 used ‘Save’, Ctrl + S, or exited the program with ‘Save on Exit’ set.

3. The most recent loaded Favourites Files can be accessed for convenience

 using the ‘Recent’ menu option from the File Menu.

4. Favourites files by default are stored in ‘..\Documents\Bulk Rename Utility\’.

But you can place them anywhere and use the ‘Open’ menu item from the File Menu and recall them easily using the

‘Recent’ menu item. In the above example, the Favourites file, ‘test 2.bru’ is located in the path, D:\Tim\...\test 2.bru

Bulk Rename Utility Operations Manual Page 41 of 715

Understanding Favourites

Notes cont.:

5. Selecting ‘New’ from the ‘File Menu’ will unload any previous Favourite file and ‘Reset’ all the criteria:

Before: The Favourites file, test2.bru is loaded and this displays in the status bar at the bottom of the screen. In

addition, ‘Section #3: Replace’ is currently active (highlighted in Red)’ as well as the JavaScript option under

‘Section #14: Special’.

Bulk Rename Utility Operations Manual Page 42 of 715

Understanding Favourites

Notes cont.:

After: All criteria has been reset (no longer highlighted in Red) and the Favourites file, test2.bru, is unloaded and no

longer appears in the status bar.

The above indicates that any active criteria are now inactive and no longer highlighted and all of the data fields have

been blanked, set to their default values, or set to null values depending on each section in question.

Important to note that in addition to resetting and un-enabling the JavaScript sub-section, this has also removed any

JavaScript coding that was contained within the JavaScript Code Entry Form. So be careful if all you want to do is

reset the Criteria, don’t use ‘New’ but use the Master Reset instead. This will un-enable the JavaScript function

without removing any current script.

Bulk Rename Utility Operations Manual Page 43 of 715

Understanding Favourites

Notes cont.:

It is also important to note that ‘New’ has no effect on any loaded ‘Imported Rename Pairs’.

In this example, a Rename Pairs file has just been loaded – this is reflected in the status bar. The Red Box indicates

that the Rename Pairs Imported feature is currently active.

If you click on ‘New’ in the File Menu, the status of the Imported Rename Pairs will remain unchanged.

The only available option to unload the file is to use the ‘Clear Imported Rename-Pairs’ menu item from the ‘Import

Rename-Pairs’ sub-menu of the Actions Menu.

Bulk Rename Utility Operations Manual Page 44 of 715

Understanding Favourites

Notes cont.:

In addition, if ‘Save on Exit’ is set and ‘New’ is still in effect (there is currently no Favourites file loaded) ….

… then you will be reminded to create a Favourites file upon exiting the BRU program:

The ‘Save As’ dialog box pops up as a reminder that the Favourites File has not been saved.

Bulk Rename Utility Operations Manual Page 45 of 715

Understanding Favourites

Notes cont.:

6. Selected files in the Content Pane are not saved as part of the Favourites file. You will need to select these again.

7. BRU will not change directories to the original directory upon loading in a Favourites file unless the ‘Store

 Pathname’ option is enabled.

8. The ‘Store Pathname’ is a misnomer. It should be labeled as ‘Use Stored Pathname’. This has no bearing on saving

 a Favourite file, but in opening it. It can be activated at any time if you forget to set it beforehand. Just set it and

 reload the file to change directories.

9. ‘New’ menu item will also direct BRU to navigate to its default of ‘This PC’ in the Navigation Pane.

10. For more information, refer to the ‘File Menu’ and ‘Actions Menu’ in the ‘Menus’ section.

Bulk Rename Utility Operations Manual Page 46 of 715

Section # 1 - RegEx

Bulk Rename Utility Operations Manual Page 47 of 715

Section # 1: Regular Expressions (RegEx)

Regular Expressions - The first section is only used if you understand the Regular Expression language. If you don’t,

then you don’t need to fill anything out. Use the other 13 sections that don’t require any knowledge of Regular

Expressions. If you want to learn, this section is a good start. You can further your education by looking through the

RegEx manual in this volume’s Appendix and go to the head of the class by studying Volume II.

RegEx can be combined with any of the other criteria. Remember to Press F8 to open a zoomed window of the data

field to make data entry easier if desired. By the Order of Evaluaton, RegEx is evaluated first, ‘Section #1: RegEx’.

 F8 opens this window

What you are matching up against is called the Input String(s). In BRU, these will be the selected files.

A Regular Expression is a search string that uses special characters to match ‘patterns’ of string data. BRU uses a

Match and Replace field for this purpose.

The Match data entry field will contain the Regular Expression used to test against the input string. If a match is

found, then the replacement data is applied and a resulting filename is entered into the New Name column of the

Content Pane.

The entire Regular Expression sequence can be summed up as:

If

Input String = pattern

Then

Replace

Where:

Input String – what is tested against the pattern, in this case, a directory or filename

Pattern – the Regular Expression used for the match

Notes:

1. In these books, I refer to the file list of Input Strings as Sample Strings, dataset or something similar. An individual

 Input String is addressed as simply, String. The Regular Expression may be addressed as RegEx or Match String.

Bulk Rename Utility Operations Manual Page 48 of 715

Section # 1: Regular Expressions (RegEx)

The string is the folder(s) or filename(s) displayed in the Content Pane:

In BRU, the RegEx section displays as:

Match

Match is limited to searching out what you want to replace.

1. Look at what you want to rename

2. Find the pattern (alphanumeric or whatever) of the filename and create an expression using the Regular Expression

 language based on that pattern.

3. Add Capture Groups by enclosing a segement of the expression in parentheses that will isolate what you want to

 rename from the rest of the filename.

 a. Each Capture Group represents a sub-expression of the string. When the sub-expression is evaluated for a match,

 the resulting value of a successful match is saved or ‘held’ by that Capture Group.

 b. Each Capture Group is given a numeric designation that can call up the substring value in the Replace data

 field called ‘Backreferences’.

 c. These Capture Groups are designated from the first to last with the first Capture Group designated 1, and so on.

 1. The notation used, e.g., to bring up Capture Group 1’s resulting value in the Replace data entry field is \1

 d. The RegEx engine supports from \1 to \9 Capture Groups.

 e. Not all of the expression have to be in Capture Groups. They can be outside (not enclosed within parentheses).

 f. Resulting values of the evaluated sub-expressions outside of Capture Groups are not saved and discarded.

 g. Using Regular Expressions allow you to save what you want to keep and discard what you don’t. Saved values

 can be displayed in the New Name column of the Content Pane by using their Backreference designations.

Bulk Rename Utility Operations Manual Page 49 of 715

Section # 1: Regular Expressions (RegEx)

Replace

Replace strings are created by indicating Capture Groups’ values to include in the New Name column string. These

are referenced by numeric designations based on the order they appear in the expression from left to right, called

Backreferences. They use the syntax, ‘ \n’ where ‘n’ = Capture Group number.

For example

(..)(..)(..)

Here are three Capture Group that would be referenced in the Replace String as \1\2\3.

You can include any text or punctuation in the Replace.. for example, \1[\2] would include Capture Group 1 and

also Capture Group 2 but the string value held by Capture Group 2 would be bracketed with square brackets.

String = .. This is a test

Match: .. (This) is a (test)

Replace: \1 <space> [\2]

Another example of using RegEx in BRU:

String = xghiy.jpg

 a comma and <space> is added after Capture Group’s 1 value

Name: New Name:

Notes:

1. Text, punctuation, etc. are called ‘literals’. Literals are any character that can be created by the keyboard.

2. I typically refer to certain characters in the RegEx sections, e.g., space, hyphen, by placing them within angular

 brackets. I do this especially with <space> so that you know what is there. So if you see <space>, it doesn’t mean

 to enter it as ‘<space>’, but enter it normally as “ ”. Be aware that angular brackets are part of the syntax of some

 RegEx, e.g., Named Capture Groups, and therefore need to be entered as is.

3. I typically highlight null in green. Null has an empty value.

4. Undefined refers to a value that was never set, or if it was set, it was taken away. This is different than null. Null is

 an assigned value of nothing. Undefined has no assigned value. Undefined appears in red.

Bulk Rename Utility Operations Manual Page 50 of 715

Section # 1: Regular Expressions (RegEx)

Notes: cont.

5. Think of the Regular Expression language like parsing (for any of you programmers out there).

6. PCRE (Perl Compatible Regular Expressions) is a C library. The original author, Jim Willsher, points out that this

 implementation uses the Perl 5 Regular Expression syntax of PCRE. PCRE is considered the Regular Expression

 Engine. It is the PCRE Engine that performs the evaluation of the RexEx expression. BRU refers to this RegEx

 Engine as v1. Newer versions of BRU now support what is called v2. More on this later.

7. RegEx is the shorthand for Regular Expressions and not only references the topic but the scripts produced as well.

8. Limitations can be placed on the number of matches allowed for a sub-expression. There are several operators that

 fall under this called Repeat Quantifiers or just Quantifiers …

 * ? + {min,max} {max}

9. If a limitation on the number of matches is included as part of the pattern, then each character of the input string is

 tested against that pattern until the match limit has been reached or fails to find a match because the length of the

 string has been exceeded and exhausted.

 a. A string that has been exceeded is at the end of the string or EOL (End of Line or End of File EOF).

 b. A string is said to be exhausted when no more matches can be made. Evaluation ends.

 c. A tested character is said to be ‘consumed’.

10. Regular Expressions can be simple as demonstrated by the first example, or complex as demonstrated by the

 second example.

11. If there is no limitation on the number of matches, then each character of the string is tested against the pattern

 until the length of the string has been exceeded (all the characters have been consumed).

 If the EOL has been reached, any further evaluation of the next part of the expression causes the PCRE engine to

 backtrack – working backwards through the string to find a match. Each part of that sub-expression is evaluated

 against the input string in this manner.

 See Backtracking section in the RegEx Manual located in the Appendix for more information.

12. If you want to learn Regular Expressions, start with the RegEx Manual that can be found in the Appendix.

My Message to those learning Regular Expressions ~

Personally, I struggle understanding Regular Expressions. By pouring over a lot of material out there, I hope to

educate myself and in doing so write down my findings so perhaps it can help others. Using information obtained

from the PCRE Man(ual) pages as well as from many other sources, (regular-expressions.info, autohotkey.com, etc.),

I will attempt to explain in simple terms, Regular Expressions. I have also included my findings in a RegEx Manual

that can be found in the Appendix of this volume as well as a continuation in Volume II.

Bulk Rename Utility Operations Manual Page 51 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Numbered Backreferences using the $ Substitution Syntax

Remember all of the ‘tricks’ and ‘code optimizing’ that was used to keep the number of Capture Groups under ten

because PCRE v1 only supports up to 9 Capture Groups? Ah.. the good old bad days.

Well no more.

Backreferences are either Numbered Backreferences or Named Backreferences.

Numbered Backreferences – these are the ones you are most familiar with using \1 to \9 to represent Capture Groups 1

through 9. In addition, however, using the ‘$’ substitution syntax as a replacement for the escape character backslash,

PCRE v2 supports up to 99(!!) Capture Groups from $0 through $99.

$0 is used when expressing all of the matches and not just the match string. A detailed discussion can be found in the

RegEx manual located in the Appendix under subsection, ‘Parentheses when used with a Quantifier’, heading,

‘Metacharacters in Depth’.

 1 2 3 4 5 6 7 8 9 10 11

Match: (H)(e)(l)(l)(o)()(W)(o)(r)(l)(d)/i

Replace: $11

Produces:

I specified the 11th Capture Group, something not possible before.

If $<Capture Group number>, e.g., $6, refers to a Capture Group that doesn’t exist, it will display as a null but it

won’t Invalidate the RegEx that would otherwise occur using \6 under PCRE v1. The same holds true if I were to use

\6 under PCRE v2:

e.g., Under PCRE v2

String = DSCN0001-more.jpg

Match: (.*)(SCN)(\d+)(.*)

Replace: Capture Group 2 = \2 Capture Group 3 = $3 Capture Group 6 = $6

Bulk Rename Utility Operations Manual Page 52 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

String = DSCN0001-more.jpg

Match: (.*)(SCN)(\d+)(.*)

If I change the Replacement String to have Capture Group 6 represented as a regular numbered Backreference, there

is no difference under v2.

Replace: Capture Group 2 = \2 Capture Group 3 = $3 Capture Group 6 = \6

Under PCRE v1, a reference to a non-existent Capture Group would have Invalidated the RegEx:

Replace: Capture Group 2 = \2 Capture Group 6 = \6

This means that under PCRE v2, you may have to be more cautious because obvious errors like this can go unnoticed

since BRU is not red-flagging it so to speak.

Notes:

1. Appears in RED because, if the Capture Group didn’t exist but was referenced in the Replace String, then the

 backslash and the numeric digit would be interpreted as string literals rather than a backreference. This would

 display the backslash and the numeric digit in New Name. The backslash character is not a legal character in a

 filename, so BRU flags it as Invalid. The rename operation would not be able to be performed as long as the

 Invalid flag remains.

Bulk Rename Utility Operations Manual Page 53 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Named Capture Groups

Named Capture Group Syntax:

(?<name of Capture Group> expression to be evaluated to ‘name’)

Named Capture Groups help to better document sub-expressions. They also provide the means of exceeding the

limitation of 99 Capture Groups imposed by the substitution syntax. But clearly, this is dependent on any limitation

BRU imposes on the number of characters allowed in the RegEx data entry field, and, if it can sustain enough

characters to create expressions that can handle 99 Capture Groups or more.. It’s a good bet that it does. I lost track at

1,947 characters during my testing.

Example:

Sample data:

Match: (.*)SCN(?<This is a test>.*)

Replace: $+{This is a test}

Analysis:

1. (.*) Capture to end of string. Capture Group 1 = <entire string>

 Capture Group 1 is a normal Numbered Capture

Group and if referenced in the Replace String,

would be designated as \1

2. SCN Backtrack to match string ‘SCN’ (Not captured). Changes Capture Group 1 = D

3. (?<This is a test>.*) Assign the name, ‘This is a test’, to the second This is a test = 0001

 Capture Group made up of the sub-expression, .*

Captures from the position after the ‘N’ to EOL.

This includes the numeric portion of each filename.

 Where:

(? Begin the syntax of the Named Capture Group.

 <This is a test> Define the name that will be assigned to the Capture.

 .* Define the sub expression to be evaluated for

Capture Group2.

Notes:

1. This example uses Named Capture Groups in the Match String and Named Backreferences in the Replace String.

Bulk Rename Utility Operations Manual Page 54 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Using Named Backreferences with Capture Groups

Named Backreference Syntax:

$+{name}

Named Backreferences are used in the Replacement String to directly reference Named Capture Groups in the RegEx.

$+ {Name} is the syntax used to tell BRU to replace the text with the Named Capture Group.

In this example, ‘ $+{This is a test} ’ will replace the filename with the evaluation of the sub expression .* assigned

to the Capture Group named, ‘This is a test’. In the photo below you can see that for each filename, the ‘DSCN’ has

been removed from New Name.

Note:

Capture Group 1 contains ‘D’. It was not used and not really needed, but I

wanted to illustrate that Numbered Capture Groups and Named Capture

Groups can be used together within the same RegEx.

Here’s another example using the same dataset:

Using Numbered Capture Groups in the Match String and Numbered Backreferences in the Replace String, I isolate

the alpha portion of the filename from the numeric portion of the filename -

Match: (.*?)([\d]+)

Replace: \1 - \2

Analysis:

1. (.*) Capture to end of string. Capture Group 1 = <entire string>

2. [\d]+ Backtrack to gather up the numeric Capture Group 2 = 0001

 portion of string, i.e. ‘DSCN0001.jpg’ Changes Capture Group 1 = DSCN

 using a Class made up of \d along with

 a Greedy Quantifier, +

Bulk Rename Utility Operations Manual Page 55 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

The same expression using Named Capture Groups in the Match String along with Named Backreferences in the

Replace String and switching the filename so that the numeric portion comes first -

Match: (?<Alpha>.*?)(?<Numeric>[\d]+)

Replace: $+{Numeric} - $+{Alpha}

You can see that using Named Capture Groups easily documents what each sub-expression is evaluating and the

Named Reference Groups easily document the end result obtained.

Analysis:

1. (?<Alpha>.*?) Assign the name, ‘Alpha’, to the first

 Capture Group made up of .*?

 Where:

 .* Captures the entire string using a Alpha = DSCN0001.JPG

Greedy Quantifier

 ? Makes the Quantifier lazy resulting in the

RegEx Engine repositioning back to the start

of the string. This creates a Zero Occurrence

Match for Capture Group 1 Alpha = null

2. (?<Numeric>[\d]+) Assign the name ‘Numeric’ to the second

Capture Group made up of [\d]+

 Where:

 [\d] Move forward to Capture the first numeric digit in Numeric = 0

the string, e.g., ‘DSCN00001.JPG’, using a class Changes Alpha = DSCN

of [\d].

 + Make it Greedy (captures remainder of numeric Numeric = 0001

 portion of string).

BTW, If you didn’t quite understand my analysis of the RegEx used with the sample data, I would please refer you to

Volume II where by reading and studying the many examples, you will get a better understanding of RegEx and how

it works and how you can make it work for you. In both this volume and Volume II you will also find a RegEx

Manual that will help you to understand the syntax of the Regular Expression language.

Bulk Rename Utility Operations Manual Page 56 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Mixing Named and Unnamed Capture Groups

This next example shows how the PCRE Engine designates Capture Groups under PCRE v2

Capture Groups are determined by the PCRE Engine by counting the number of open parenthesis (left parenthesis)

from left to right moving forward through the evaluation of the RegEx. This is true of both PCRE v1 and PCRE v2.

String - DSCN0001-more.jpg

Match: (.*)SCN(?<This is a test>\d+)(.*)

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3

The above displays both Numbered and Named Capture Groups referenced by Numbered Backreferences.

I have changed the Replace String so that it references both a Named Capture Group and a Numbered Capture Group.

Match: (.*)SCN(?<This is a test>\d+)(.*)

Replace: Named Capture Group = $+{This is a test} – Capture Group 2 = \2

The Numbered Capture Group, Capture Group 2 and the Named Capture Group, ‘This is a test’, hold the same value,

‘0001’. This is because the PCRE Engine designates Numbered Capture Groups first and then designates Named

Capture Groups second.

To the RegEx Engine, Capture Group 2 is the same as the Named Capture Group in the RegEx because in both

instances, the Named Capture Group and the Numbered Capture Group 2 appear in the same position, the second

Capture Group in the RegEx.

 Capture Group 1 Capture Group2/ This is a test Capture Group 3

 (.*) SCN (?<This is a test>\d+) (.*)

Where:

(.*) = Numbered Capture Group 1, encountered as first left parenthesis.

(?<This is a test>\d+) = Numbered Capture Group 2 as well as the Named Capture Group, ‘This is a test’

encountered as second left parenthesis.

(.*) = Numbered Capture Group 3, encountered as third left parenthesis.

Bulk Rename Utility Operations Manual Page 57 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

So by assigning a Named Capture Group to a Numbered Capture Group, what this does is to allow a Numbered

Backreference to reference a Named Capture Group in the Replacement String without having to use a Named

Backreference.

Match: (.*)SCN(?<This is a test>\d+)(.*)

Replace: Capture Group 2 = \2

The Numbered Backreference in the Replace String was able to reference the value held in the Named Capture Group,

‘This is a test’.

But can this cause confusion to the PCRE Engine? Let’s find out. I will change the positioning of the Named Capture

Group, by adding a Capture Group around ‘SCN’ in the second position in the RegEx.

Match: (.*)(SCN)(?<This is a test>\d+)(.*)

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

So far so good…

Changing the Replacement String…

Replace: Named Capture Group = $+{This is a test} – Capture Group 2 = \2 - Capture Group 3 = \3 - Capture

Group 4 = \4

Worked fine. The RegEx Engine designated the Named Capture Group, ‘This is a test’, to the same value as Capture

Group 3 based on the new positioning of the Capture Group in the RegEx. In other words, changing around the

position made no difference. The RegEx Engine was still able to ascertain the proper order and designate accordingly.

Bulk Rename Utility Operations Manual Page 58 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Under PCRE v2, there are many more methods available to accomplish the same thing.

https://www.regular-expressions.info/refext.html

This link provides the different syntax that can be used to express a Named Capture Group. Some work and some

don’t – it depends on the RegEx Engine used. You can determine for yourself through trial and error. The link also

allows you to select the RegEx engine that you use so it can better filter those methods for each function and allows

you to compare them as well.

When making your selections, remember that BRU uses PCRE (v1), PCRE2 (v2) and Boost. Simple, though, is a

proprietary flavor restricted to BRU alone so it is not represented anywhere else.

For example, here I can define a Named Capture Group using the alternate syntax:

(?’name of Capture Group’)

Instead of angular brackets, the name is between single quotes.

Match: (.*)EM(?'sample'.*)

Replace: $+{sample}

Evidently, when all is said and done, you only need one method that works for what you want to accomplish. But isn’t

it nice to know? PCRE v1 was so limiting.

Bulk Rename Utility Operations Manual Page 59 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Size limitations in PCRE and PCRE2

According to the documentation I have found the following (taken from online sources):

PCRE and PCRE2 have the same limits:

 (1) All values in repeating Quantifiers are limited to 65,535.

 (2) 65,535 Capture Groups (named and unnamed inclusive).

 This is dependent on IF that large a number of Capture Groups can be referenced in the Replacement string using

 an equally large number of Backreferences. Is this supported under BRU? Under BRU PCRE v1 – definitely not,

 but under v2 – who knows? Untested.

 (3) 10,000 Named Capture Groups. (untested in BRU)

 (4) The default maximum depth of Nested Capture Groups is 250

 (5) The maximum length of names for Named Capture Groups is 32 code units.

where:

 A char is represented by a length of code units (depending on encoding). For example –

 in Unicode UTF-8 "Ç" has 2 code units: 0xC3 0x87, thus the character "Ç" has a length of 2.

Symbol Ç

Name Latin capital letter c with cedilla

Unicode number U+00C7

Latin-1 Supplement

Encoding

UTF-8 0xC3 0x87 (2 code units)

UTF-16 0x00C7 (1 code unit)

UTF-32 0x000000C7 (1 code unit)

Your milage may vary.

 Multiple code units for a character only applies to Unicode because ASCII characters all have a length of one

 code unit (16 bit number).

For sake of simplicity, if you don’t want to count code units, then just keep your names pithy. ☺

Bulk Rename Utility Operations Manual Page 60 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

 In BRU,

 Max

 (1) Numbered Backreferences = \1 - \9

 This would suggest that even under PCRE v2 the maximum number of Numbered Capture Groups allowed

 under BRU would still be limited to 9 unless referenced by a Substituted Backreference using the syntax,

 $<number> as below.

 (2) Substituted Backreferences = $1 - $99 ($100 not tested but I don’t think it would work)

 (3) Named Backreferences = In BRU - ? but could this be equal to 10,000, to match up with the maximum

 number of Named Capture Groups allowed under PCRE?

Bulk Rename Utility Operations Manual Page 61 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Specifying Multiple Regular Expressions Using The (?X) Separator

Until now, BRU Regular Expressions were limited to running only a single RegEx at one time. BRC, the Command

Line version, was the only source for running multiple RegEx. This has changed with the release of v3.4.

Bulk Rename Utility 3.4 introduces the ability to specify multiple Regular Expressions in ‘Section # 1: RegEx’. Only

v2 Regular Expressions and Simple Regular Expressions are supported. Multiple Regular Expressions can be

specified with a delimiter, (?X). Multiple Replacement Strings can also be specified in this same manner.

For example:

Match: (S)(?X)(P)

Replace: A(?X)R

will run two Regular Expressions:

first …

Match: (S)

Replace: A

.. and then:

Match: (P)

Replace: R

If only one expression is used in the Replace field, it will apply to both matches:

Match: (S)(?X)(P)

Replace: A

will run two matches, first …

Match: (S)

Replace: A

and then:

Match: (P)

Replace: A

Notes:

1. If you need to use (?X) in the regular expression itself and not as a delimiter, you can escape it with \(?X).

Bulk Rename Utility Operations Manual Page 62 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

The following is taken from Bulk Rename Utility Operations Manual Volume II pages 224 to page 233:

String Manipulation (Parsing)

Separate Run on Names, Remove extraneous hyphens and use ‘and’ to join last person’s name

Match: (Modified from original)

^([A-Z]{2,})-([A-Z][^A-Z -]*?)([A-Z].*)$(?X)^(.*[}][^-]*)-([A-Z][^A-Z -]*?)([A-Z].*)$(?X)^(.*[}][^-]*)-([A-

Z][^A-Z -]*?)([A-Z].*)$(?X)(.*[}].*), (.*)(?X)(.*[}].*), (.*)(?X)(.*)[}](.*)

Replace: (Modified from original)

\1}\2 \3(?X)\1, \2 \3(?X)\1, \2 \3(?X)\1 and \2(?X)\1 and \2(?X)\1 - \2

The following are the original RegEx, meant to run separately in as many iterations as required to complete the cycle.

In this case, it was 6 times for this particular string. This is just an example and would not work if applied to other

strings of varying lengths and run on sequences. But it does show how, what would have taken multiple runs, can be

accomplished in a single run using the new capability. Note that each of the RegEx below requires a different

Replacement String.

RegEx #1 – runs once RegEx #2 – runs two times

Match: ^([A-Z]{2,})-([A-Z][^A-Z -]*?)([A-Z].*)$ Match: ^(.*[}][^-]*)-([A-Z][^A-Z -]*?)([A-Z].*)$

Replace: \1}\2 \3 Replace: \1, \2 \3

Match: ^(.*[}][^-]*)-([A-Z][^A-Z -]*?)([A-Z].*)$

Replace: \1, \2 \3

RegEx #3 – runs two times RegEx #4 – runs one time

Match: (.*[}].*), (.*) Match: (.*)[}](.*)

Replace: \1 and \2 Replace: \1 - \2

Match: (.*[}].*), (.*)

Replace: \1 and \2

Bulk Rename Utility Operations Manual Page 63 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Here is another one. In this example it is removing extraneous information from the end of the string from different

document titles - .pdf. .chm. .azw, .epub and .mobi. Unlike the last example, this doesn’t require different

Replacement Strings for each RegEx string. Instead only one Replacement String is specified and this will be used

for each.

Match: (.+)(.epub)({.*)(?X)(.+)(.pdf)({.*)(?X)(.+)(.azw)({.*)(?X)(.+)(.mobi)({.*)(?X)(.+)(.chm)({.*)

Replace: \1\2

Requirements: Include extension, uses v2

Same example applied to more strings:

Bulk Rename Utility Operations Manual Page 64 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

And as always – is there a better way to do this? Yes, of course:

This one removes anything past the left parentheses from the end of the string.

Match: (.+) (\()(.*)

Replace: \1

Requirements: Don’t include extension, Uses v1

This one removes anything past the left curly bracket from the end of the string.

Match: (.+)({)(.*)

Replace: \1

Requirements: Don’t include extension, Uses v1 and in addition uses the ‘Section #11: Extension’ Criteria.

Here is a sample:

Notes:

1. When I state ‘uses v1’, I am referencing that v2 is not required. If, however, v2 was enabled, it typically wouldn’t

 disrupt the evaluation of the RegEx, although Simple may (untested).

2. I believe, and this is not verified, that just as with enabling certain features – JavaScript libraries, Extraction of

 Metadata, etc., performance could take a hit with v2 enabled. So my thinking is if it is not warranted, don’t bother

 with enabling it.

Bulk Rename Utility Operations Manual Page 65 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

v2 vs v1 & Simple

The Regular Expressions Engine you have been using up until now has been PCRE v5 Perl Compatible otherwise

known as Version 1 and this engine configuration went as high to 8.x. When the Newer Library came out it started at

v10.0. This was referred to as PCRE2 or PCRE v2 along with the Boost RegEx library that currently fully supports

the Perl Regular Expression to the latest version, ECMAScript and JavaScript. A little confusing but as far as you are

concerned, v2 provides a lot more capability than v1. Several new options in BRU, including one just discussed, the

ability to use multiple RegEx on the same line, require v2 to be enabled. Other features are related to the Boost

Library functionality (part of v2). At this time TGRMN hasn’t updated the JavaScript library which remains at es5.

Telling BRU to use v2 instead of v1 is as simple as it gets:

Now you can use many of the extended capabilities offered by the PCRE v2 Perl Compatible RegEx library in

accordance with BRU. As to what you can or cannot use of the library functions, just as with the JavaScript capability

offered through the purchase of the licensed version, it is up to you through trial and error to determine what works

and what doesn’t. Basically, though, TGRMN states that all of PCRE2 is supported.

Simple: Optional function of ‘Section #1: RegEx’

Speaking of Simple, there is a BRU Only Proprietary version of Regular Expressions called ‘Simple’. Simple uses

tags instead of the somewhat complicated Regular Expression syntax. I have attempted to make the process of

learning RegEx as painless as possible with my inclusion of supplemental manuals in the Appendix of both Volume I

and Volume II. In addition to this, the majority of Volume II is dedicated to learning RegEx through the use of

‘programming by example’, with full analysis of almost everything in the book provided.

Still, though, it can be difficult for some. Enter ‘Simple’. You enable it in the same manner as you did for using v2,

with just a click in ‘Section #1: RegEx’.

Simple Regular Expressions work by matching text and then removing or rearranging the matched text. The syntax is

very ‘simple’. Up to 9 matching tags, %1, through %9 are provided which match a string of text. Perhaps

uncoincidentally, this is the same limit imposed on Regular Expression matched groups under v1. It may be limited to

maintain compatibility, or it may be the Simple function is a front end that still relies on the Regular Expression

PCRE Engine v1. This is probably the better of the two explanations.

Bulk Rename Utility Operations Manual Page 66 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

You can’t do anything too involved or complicated – that still requires learning Regular Expressions, but it suffices

for many easy renaming operations.

Examples:

Match: %1-%2

Replace: %2-%1

This will match a string of text with %1 followed by the <hyphen> character, '-' , followed by another string of text.

The Replacement String will replace the original string with the second string of matched text, the <hyphen>

character, and the first string of text matched.

Effectively, it will switch the text around the literal character '-' <hyphen>.

In the above example, the first part of the string is matched and ‘gathered’ (captured) as (into) %1 until the <hyphen>

is encountered. The <hyphen> is acting as a delimiter. When this occurs, the text value of %1 is saved (matched

successfully). The <hyphen> is not. Only the tags referenced by %1 through %9 are allowed to save values. Any

characters outside of these tags are not saved. This is why the <hyphen> has to be specified in the Replacement String

if the user wants to preserve the <hyphen> in the finished renamed string.

What happens if there are multiple <hyphens> in the string? (the following refers to version of BRU prior to v3.4.20):

In that case, it acts more like the Regular Expressions of v1.

%1 is matched to the first <hyphen> that follows after ‘ABC’ but because there is a second <hyphen>, it continues to

match %1 to the second <hyphen>. This results in %1 having a value of ‘ABC-123’ and not ‘ABC’.

%2 then takes the remainder of the string to the end (in the Regular Expression language, the end is referred to as

EOF or End of File, but it is also called EOL or End of Line). %2 has a resulting value of ‘45’. The Replacement

String ends up as:

%1 = ABC-123 %2 = 45

Ending String = %2-%1 or 45-ABC-123

Why did the first <hyphen> save when I just got done stating that anything outside of the tags are not? Because the

<hyphen> is not outside of the %1 tag but included as part of it. It became included when the match extended to the

second <hyphen>.

 ABC-123 - 45

Bulk Rename Utility Operations Manual Page 67 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

In February 2021, TGRMN changed the Simple RegEx in v3.4.20 by making the default ‘short’ instead of ‘long’.

Taken from Change log: ‘Changed 'Simple' Regex behaviour from longest match to shortest match.’

Now what do they mean by that? This has to do with Greedy vs Lazy. I have numerous examples throughout Volume

II and a full explanation can also be found in the RegEx Manual in the Appendix of this volume of what Greedy and

Lazy are, but that has to with Regular Expressions and the whole idea of the Simple functionality was to not bother

with learning Regular Expressions. I can see their point.

When v3.4 came out, Simple used Greedy for all tag matches.

To best illustrate what I mean, I will take the example from the previous page and once more take up the question:

What happens if there are multiple <hyphens> in the string?

String = ABC-123-45

Match: %1-%2

Replace: %2-%1

1. %1 gathers up to the second <hyphen> = ABC-123

2. %2 gathers up the remainder of the string = 45

The <hyphen> is ‘kept’ as part of ‘ABC-123’ because it was ‘gathered’ up along with the ‘ABC’. It extended past the

first <hyphen> and ‘gathered up’ until the second <hyphen>.

This was referred to by TGRMN as the ‘longest match’. In Regular Expressions it is called ‘Greedy’, meaning it

gathers up as much as possible to match. In this case it means capture everything until the last <hyphen> encountered

in the string.

Match String %1 - %2

String A B C - 1 2 3 - 4 5

Because the <hyphen> was specified in the Match String of %1 - %2 it remains outside of the tags:

 %1 - %2

Match 1 Match 2

.. it would not be included when it was encountered as the last <hyphen> in the sample string, ‘ABC-123-45’;

therefore, %2 = 45 and not -45.

Bulk Rename Utility Operations Manual Page 68 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

The Replacement String put the name back together but reversed the two elements with %2’ s value in the first

placement of the new filename and %1’s value in the second placement within the new filename. The <hyphen> was

added back as a literal character, a character that can be created from the keyboard, to act as a delimiter (separator)

between the two values.

 %2 - %1

 New Name = 45 - ABC123

TGRMN felt it was defeating the purpose of Simple by having all of the tags gather up as much as possible. Simple is

only supposed to deal with those parts of the string that are implicitly expressed by the tags with the exception of the

last tag in the Match String that remains Greedy (long). Any tags prior to the last will be Lazy (short).

In Regular Expression, or RegEx, the equivalent would be:

Match: (.*)-(.*)

Replace: \2-\1

1. The .* means to gather up or ‘capture’ everything in sight and store in (Capture Group 1) until the last encounter of

 the <hyphen>.

2. Do not include the <hyphen> because it is outside of the Capture Groups indicated by the parentheses.

3. The final .* means to gather the rest of the string and store it in a second Capture Group, (Capture Group 2).

4. Finally, the Replace String is similar to the one used in the Simple example, except that Capture Groups are

 designated as \1 and \2 instead of the tags %1 and %2.

But that is exactly what Simple is not supposed to do – require you to learn Regular Expressions unless you want to.

Simple is supposed to be… well, Simple.

TGRMN instead wants:

%1 -

To mean gather up until the first encounter of any <hyphen> and stop – the Shortest match, or what is called Lazy.

Lazy is just what it is – do as little work as possible to get the job done.

while,

%2

Is not changed in its purpose, only the value has changed. %2 will still gather up any remainder of the string including

the second <hyphen>. The last tag in this example, %2, remains Greedy or in Simple terminology, the ‘Longest

Match’.

Bulk Rename Utility Operations Manual Page 69 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Back to the example.

String = ABC-123-45

Match: %1-%2

Replace: %2-%1

Instead of this… %2 - %1 it now yields this … %2 - %1

Match String %1 - %2

String A B C - 1 2 3 - 4 5

 %1 gathers up only until the first encounter of the <hyphen>

Where: %2 gathers up the rest

%1 = ABC %2 = 123-45

If I changed it to:

Match: %1-%2-%3

Replace: Group 1 = %1 Group 2 = %2 Group 3 = %3

.. it yields this …

Now that I have accounted for the second <hyphen>, it no longer appears in the second group.

%3 at the end of the Match gathers up the remainder of the string.

Match String %1 - %2 - %3

String A B C - 1 2 3 - 4 5

 Lazy Lazy Greedy

Where:

%1 = ABC %2 = 123 %3 = 45

Bulk Rename Utility Operations Manual Page 70 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Breaking down the Simple syntax, each tag represents one part of the string. It could be a single character or more

depending on:

1. The number of tags to match against the number of characters in the string.

2. If a match is made outside of the tag, that would limit how many characters of the string could be gathered.

3. The last tag of the Match String or ‘equation’ if you will allow, remains Greedy, the Longest Match, all tags prior

 to this are Lazy, the Shortest Match, as of v3.4.20.

What do I mean by this? Let’s take it step by step.

1. The number of tags to match against the number of characters in the string.

String = abc

Match %1

Replace Group 1 = %1

 a b c

 %1

Where:

%1 = abc

There is only one tag so %1 = entire string (last tag is always Greedy). It starts by gathering the ‘a’, and because there

are no other tags, it continues to gather until the end of the string sample (in Regular Expressions, this is called the

End of Line or EOL).

Bulk Rename Utility Operations Manual Page 71 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

String = abc

Match %1%2

Replace: Group 1 = %1 Group 2 = %2

 a b c

 %1 %2

Where:

%1 = a % 2 = bc

This time %1 tag matches the first character and %2 matches the second character to the end of the string. Each tag

will match to the first match encountered and with the exception of the last tag, limit that match to as few characters

possible. That makes it the shortest match or ‘Lazy’. There are three characters that make up the sample string and

two tags. That means that each tag will gather at least one character, the first encountered, leaving any additional

character cleanup for the next tag. Tag %1, gathers up the ‘a’, leaving tag %2 to cleanup the rest.

String = abc

Match %1%2%3

Replace: Group 1= %1 Group 2 = %2 Group 3 = %3

 a b c

 %1 %2 %3

Where:

%1 = a % 2 = b %3 = c

Because there is an equal number of tags to an equal number of characters in the string, each tag is matched to a

single occurrence of each character. The last tag, %3 would be left to cleanup any remainder of the string. Since there

are no other characters beyond the ‘c’ of ‘abc’, %3 matches to a singular value.

Bulk Rename Utility Operations Manual Page 72 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

2. If a match is made outside of the tag that would limit how many characters of the string could be gathered.

Next I will introduce a character that will be outside of the tags and observe how Simple behaves.

String = abc(

Match: %1(

Replace: Group 1= %1

 a b c (

 %1

Where:

%1 = a bc

Because the left parenthesis is outside of the tag, it is not included as part of the tag’s returned value. The only tag in

the Match String beomes both the first and last tag, so it is Greedy and will gather up as much of the string as allowed.

This value will not include the left parenthesis for the reasons already stated.

What is really happening in the background that you are not aware and probably don’t care when talking about

Simple will become important later on if you select to use Simple for more than just reversing or moving string

portions around.

In Sequence 1 in the diagram below, %1 is the only tag in the Match String and thereby Greedy. It gathers up any

characters that match, and this INCLUDES the left parenthesis. In Sequence 2 It continues to move through the string

looking for any additional matches until it finds no more and reaches the end of the sample string. In Sequence 3 it

looks for a left parenthesis and moves backwards to search (Backtracking). When it matches, it will ‘spit out’ the left

parenthesis previously gathered as being outside of the scope of the %1 tag. In Regular Expressions terminology this

is called giving up the match or giving up characters of the match.

 Sequence 1 Sequence 2 Sequence 3

 a b c (a b c (end of string a b c (end of string

 %1 %1 %1

This will become clearer later. For now let’s proceed as before.

Bulk Rename Utility Operations Manual Page 73 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Now I will introduce a second tag.

String = abc(

Match: %1%2(

Replace: Group 1= %1 Group2 = %2

 a b c (

 %1 %2

Where:

%1 = a % 2 = bc

Tag %1 has a singular value of the first match, ‘a’, Lazy, and %2, Greedy gathers up the remainder of the string up to

the specified left parenthesis character that is outside of %2 and therefore not included as part of the value.

Bulk Rename Utility Operations Manual Page 74 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

I will change the sample, by moving the left parenthesis after the ‘b’ of ‘abc’ and begin with a single tag.

String = ab(c

Match: %1(

Replace: Group 1= %1

 a b (c

 %1

Where:

%1 = ab

The value of the %1 tag matches to the ‘a’ and because there are no other tags, it is Greedy and proceeds to gather up

the string sample characters until the match of the left parenthesis. Because the left parenthesis is outside of the %1

tag, it is not included as part of the value. In addition, however, the ‘c’ of ‘abc’ is never evaluated (considered)

because it is also outside of the purview of %1, resulting in %1’s value of ‘ab’.

FYI Notes:

1. The left parenthesis is also called the Open Parenthesis and the right parenthesis is also called the Closed

 Parenthesis.

2. Gather in Regular Expression terminology is ‘Capture’

3. The phrase used to ‘spit out’ a literal character is in reference to Regular Expression terminology where the Match

 is given up or characters from the match are given back.

4. If interested in learning more about Regular Expressions, please refer to the sections on RegEx with additional

 material that can also be found in the RegEx Manuals found in both the appendix of this volume and in Volume II.

Bulk Rename Utility Operations Manual Page 75 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Using the same string sample, I will add the second tag, %2.

String = ab(c

Match: %1%2(

Replace: Group 1= %1 Group2 = %2

 a b (c

 %1 %2

Where:

%1 = a % 2 = b

The first tag, %1, lazily gathers up the first character because it will always match against the first character and not

have to take on any extra work if it can be helped. Since there is a second tag in the Match String, the %2 tag will take

on the second character, and seeing that there are no other tags, it Greedily has no choice but to continue gathering up

the string, of which there are no more characters because it is halted by the match of the left parenthesis character that

is outside of the %2 tag. Once more the ‘c’ is never considered because it is also outside of the %2 tag.

Bulk Rename Utility Operations Manual Page 76 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

3. The last tag of the Match String remains Greedy, all tags prior to this are Lazy.

String = ab(c

Match: %1(%2

Replace: Group 1= %1 Group2 = %2

Making a slight change, moving the left parenthesis outside of the %1 tag instead of the %2 tag, changes the returned

value of %1 to ‘ab’ because now it has to do more work and gather up to the first (and only thus far) match of the left

parenthesis. The second tag, %2, will gather up any remainder of the string, resulting in the returned value of ‘c’.

It should not be inferred that Lazy means that ONLY the first character matched in the string is gathered. No, it means

that it will always match against the first character matched then NOT have to gather up any additional characters if it

can be helped, especially if there are other tags in the Match String to carry the load.

But here you can see that Lazy sometimes has to do a little more work than just match against a singular value.

 a b (c

 %1 %2

Where:

%1 = ab % 2 = c

%1 matches against the first character of the sample string, the ‘a’ but grudgingly has to continue gathering until the

encounter of the match of the left parenthesis not included as part of %1’s value because it is outside of the match.

%2 greedily gathers up any remainder of the string after the left parenthesis. There is only the ‘c’ of ‘abc’ left,

thus %2’s value is the ‘c’.

Bulk Rename Utility Operations Manual Page 77 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

String = a(bc

Match: %1(%2

Replace: Group 1= %1 Group2 = %2

 a (b c

 %1 %2

Where:

%1 = a % 2 = bc

If we change the sample string slightly moving the left parenthesis after the ‘a’, it changes the returned values but not

the theory. The first tag Lazily gathers up to the match of the left parenthesis. The second tag Greedily gathers up any

remainder of the string.

Next, I’ll introduce a second literal character into the Match String and change the sample string.

String = a(b(c))

Match : %1(%2)

Replace: %2

 a (b (c))

 %1 %2

Where:

%1 = a %2 = b(c)

%2 = b(c) and not b(c))… how?

Bulk Rename Utility Operations Manual Page 78 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

By now you know where %1 gets its value. But to review - Simple as of v3.4.20 will match against the first

occurrence for any tags, Lazy, or the ‘shortest match’, other than the last tag that remains Greedy, the ‘longest match’.

%1(in the Match String will gather until the first occurrence of the left parenthesis. Since the Match String’s

specification for the literal left parenthesis character is outside of the scope for %1, it is precluded from %1’s value,

so %1 = ‘a’ and not ‘a(’

Because the Replace String only specifies %2, the value displayed in New Name is %2’s value of ‘b(c)’

This still doesn’t fully explain how %2 got its value. Let’s investigate.

I’ll start by simplifying %2 to gathering up the remainder of the string and leave off the ending right parenthesis in the

Match String.

String = a(b(c))

Match: %1(%2

Replace: %2

 a (b (c))

 %1 %2

Where:

%1 = a %2 = b(c))

%1 matches against the first character, ‘a’, limited by the match of the left parenthesis that occurs outside the scope of

the %1 tag.

% 2, as expected, matches the ‘b’ character, and greedily gathers up the remainder of the string. Because the Replace

String only specifies %2, the value displayed in New Name is that of %2’s value of ‘b(c))’ including the second

occurrence of the right parenthesis.

Bulk Rename Utility Operations Manual Page 79 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Now I will add a single right parenthesis into the equation after the %2 tag along with a %3 tag and see what happens.

String = a(b(c))

Match: %1(%2)%3

Replace: Group 1= %1 Group 2= %2 Group 3 = %3

Match: %1 (%2) %3

 a (b (c))

 %1 %2 %3

 Not Captured Not Captured

 a b(c)

Where:

 %1 = a %2 = b(c %3 =)

%1 matches to the first character of the string, the ‘a’, and is limited by the match of the left parenthesis that occurs

outside the scope of the %1 tag and is precluded from %1’s value.

%2 matches against the ‘b’ and lazily gathers until the first occurrence of the right parenthesis that matches outside

the scope of the %2 tag and is precluded from 2%’s value.

%3 greedily gathers up any remaining part of the string, the last right parenthesis that is within the purview of the tag.

It becomes clear that the first occurrence of the right parenthesis is matched but not gathered. This leaves %3’s value

as the LAST right parenthesis.

Bulk Rename Utility Operations Manual Page 80 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Returning to the original example,

String = a(b(c))

Match : %1(%2)

Replace: %2

 a (b (c))

 %1 %2

Where:

%1 = a %2 = b(c)

Looking only at %2, it matches against the ‘b’ as the second character of the string. The first character has already

been gathered by the %1 tag. There are only two tags that make up the Match String, therefore %2 is Greedy

while %1 is Lazy.

%2, being Greedy, begins to gather the string until it encounters the first right parenthesis. What does it do? It is

Greedy so it will continue to try and match UNTIL it reaches the end of the sample string, gathering everything it can

along the way.

In the sample string there is a second occurrence of the right parenthesis, and this is matched as well. Remember the

little discussion earlier about what is happening in the background and how it spits out matches made outside of the

tag? This is significant if you are to understand how ‘b(c)’ is the value of %2.

Bulk Rename Utility Operations Manual Page 81 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

 sequence 1 sequence 2 sequence 3

 a (b (c)) a (b (c)) end a (b (c)) end

 %1 %2 %1 %2 %1 %2

Sequence 1

%2 greedily matches from the ‘b’ on including the match against the second right parenthesis.

Sequence 2

%2 reaches the end of the string.

Sequence 3

%2 spits out the second right parenthesis because it is outside the scope of %2.

 %2’s value is ‘b(c)’

If %2 was not Greedy, it would have stopped at the match of the first right parenthesis making %2’s value ‘b(c’. The

second right parenthesis would not even have been considered.

Bulk Rename Utility Operations Manual Page 82 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Understanding the Importance of Delimiters in Simple

To make the use of Simple practical, it‘s best to work with filenames that have delimiters or characters that separate

one word or a portion of the filename from the other. The Simple syntax does not provide for the recognition of text

from numeric or other advanced pattern expressions. For that you have to turn to Regular Expressions or JavaScript.

The tags in the Match String are lazy with the exception of the last tag which is Greedy and can gather up the

remaining characters of the string. This means that unless you want the lazy tags to capture only singular values, there

must be delimiters that can be matched against, that will allow these tags to gather more than one character.

I’ll start ‘simple’ and build from there.

String = ABC

Match: %1%2%3

Replace: Group 1 = %1 Group 2 = %2 Group 3 =%3

 A B C

 %1 %2 %3

Equal number of tags for each character in the string. Each tag represents a singular value. %3 is the only tag that is

Greedy, but there are no other characters in the string leaving tag %3 to gather the ‘C’.

String = ABC123DEF

Match: %1%2%3%4%5%6%7

Replace: Groups 1 – 6 = %1, %2, %3, %4, %5, %6 and Group 7 = %7

 A B C 1 2 3 D E F

 %1 %2 %3 %4 %5 %6 %7

With no delimiter, tags %1 through %6 will match against singular values of the first 6 characters in the sample

string. The last tag %7 is Greedy and will gather up the remainder of the string.

Bulk Rename Utility Operations Manual Page 83 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

String = ABC-123

Match: %1-%2

Replace:: Group 1 = %1 Group 2 = %2

 A B C – 1 2 3

 %1 %2

The introduction of a <hyphen> delimiter allows tag %1 to gather more than one singular value. In a sense it is told to

gather up to the first <hyphen> encountered. In the example, %1 gathers ‘ABC’, precluding the <hyphen> because it

is outside of the match. If there were two <hyphens> in the string sample, it would make no difference. Only the first

set of characters would still be matched to tag %1 because it is lazy and will stop gathering at the first occurrence.

String = ABC-123-DEF

Match: %1-%2-%3

Replace: Group 1 = %1 Group 2 = %2 Group 3 = %3

 A B C – 1 2 3 – D E F

 %1 %2 %3

The introduction of a second <hyphen> delimiter in the Match String allows tag %2 to gather to the second <hyphen>

leaving tag %3 to cleanup the rest.

Bulk Rename Utility Operations Manual Page 84 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

String = ABC-123-DEF#456

Match: %1-%2-%3#%4

Replace: Group 1 = %1 Group 2 = %2 Group 3 = %3 Group 4 = %4

 A B C – 1 2 3 – D E F # 4 5 6

 %1 %2 %3 %4

This is to demonstrate that multiple delimiters do not have to be the same character. In this example, both <hyphens>

and a numeric sign are used as delimiters. It doesn’t matter. It also doesn’t matter what character a delimiter is. It

could be any literal character. If you recall, a literal character is any character that can be reproduced by the keyboard.

Notes:

1. The specified literal characters in the Match String are outside of the scope of the tags and therefore precluded.

In the first part of this section I also showed you that delimiters are not required. I could match to the ‘2’ if I wanted:

Match: %1-%22%3

Replace: Group 1 = %1 Group 2 = %2 Group 3 = %3

Tag %2 matches only up to the ‘2’ of ‘123’ leaving tag %3. The specified ‘2’ in the Match String is outside of the

match and therefore precluded in %2’s value. Tag %3 consequently starts its match at the ‘3’ of ‘123’.

String ABC - 1 2 3-DEF#456

Match: %1 - %2 2 %3

Tags %1 Not Captured %2 Not Captured %3

Value ABC 1 3-DEF#456

Bulk Rename Utility Operations Manual Page 85 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Back to delimiters.

Using the delimiters, the tags allow you to isolate certain portions of the sample string. This is called ‘parsing’ where

the string can be broken up into individual pieces.

Why would you want to do that?

Because the entire purpose of Simple is to have a very easy method by which to manipulate those parts of the string.

You can take the pieces and rearrange them in any order using the Replacement String.

If I have:

%1 = A, %2 = B and %3 = C

I could use a Replacement String of:

%2%1%3 = BAC

Do you have to bother with knowing Greedy, the Longest Match, vs Lazy, the Shortest Match? No, but if you did

enjoy the discussion, and it is my hope that you now understand the difference between Greedy vs Lazy, at least in

this context, then maybe after you get done playing around using Simple, you may be ready to tackle learning Regular

Expressions. Let’s call Simple the Gateway language to learning RegEx. Regardless, using Simple will provide even

more options for those new to the amazing program, Bulk Rename Utility.

And that, in conclusion, is the long and short of it ☺

Bulk Rename Utility Operations Manual Page 86 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

My Final Observation on Simple:

So now you should have a full understanding of Simple and how it works. I have also shown you the differences

between the original v.3.4 of Simple that used Greedy, or ‘the longest match’, for all matches except the first tag that

used Lazy, or the ‘shortest match’, and v3.4.20 that uses Greedy only on the last tag and all other subsequent tags are

Lazy.

There is actually much more that is happening behind the scenes, because it is obviously using the RegEx Engine to

appropriate these values, but because this is Simple, I am not going to get into that other than what has been

discussed.

When multiple tags are involved in the Match String, the ‘Lazy’ or Shortest Match really comes into play. So, did

TGRMN do the right thing by changing the Simple functionality to use the ‘shortest match’ aka ‘Lazy’ vs the ‘longest

match’ aka ‘Greedy’ in v3.4.20? Yes, I believe it really is better for first learners.

v2 creates a copy of the original string in New Name

In v1, the RegEx was used to parse the string keeping only what you wanted by capturing those elements and any

elements that were not captured were discarded in New Name. Under v2, the entire string is copied over to New

Name and specific elements using the RegEx, can be substituted for those same elements in New Name. New Name

will always be a new string.

e..g., String = My Cat has milk to drink

Match: \bmilk\b(.*)\bdrink\b

Replace: tuna\1eat

New Name is a new string where the words, ‘tuna’ and ‘eat’ have been substituted for ‘milk’ and ‘drink’. The ‘to’ is

captured in Capture Group 1 and backreferenced in the Replace String. All other elements of the string, ‘My Cat has’

remains unchanged in New Name.

There will be more on this under the Global Switch discussion next.

Bulk Rename Utility Operations Manual Page 87 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

The Global Switch /g

Ladies and Gentlemen, we have been waiting for this for some time now. My involvement with TGRMN has

provided a special privilege of ‘having their ear’. I have been working for you getting many of these long standing

requests done and this is just another one of those requests that many users have expressed their desire to have. I want

to thank TGRMN for their extensive cooperation in listening not just to me but to the other voices out there. Of course

the only problem is now I have to redo some of this manual to reflect the new features. What’s that expression? oh,

yes, be careful what you wish for ☺

Anyway back to the news of the day. Under PCRE v2, BRU supports The Global Switch!!

What is the Global Switch? Up until now, BRU Regular Expressions could only match against the first match. Any

other matches found were ignored by New Name or never evaluated. The Global Switch, also called a modifier,

allows all matches within the string, not just the first match that BRU v1 supports.

To best understand this feature, I again take you to an excerpted example, this time presented from the JavaScript

section of Volume II.

from page 1498..

JavaScript

Remove <dots> between words only (Not numbers) in File Name and replace it with <space>

Nitro.Pro.13.15.1.282.Ent_x64

Match: ([^\d])[\.]+/g

Replace: \1

The idea is to remove the dot characters from in between the Nitro and Pro as well as between Pro and 13 but ignore

any dot characters between numbers, so you end up with:

 NitroPro13.15.1.282.Ent_x64

Nitro . Pro . 13.15.1.282.Ent_x64

 Not Captured Not Captured

Nitro Pro 13.15.1.282.Ent_x64

Bulk Rename Utility Operations Manual Page 88 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

In the Regex Buddy program, the Global Switch is always used. This can be clearly seen -

Match: ([^\d])[\.]+

Two matches are performed at one time.

What it did is Match against the <dot > character from ‘Nitro’ as well as the <dot> character from ‘Pro’.

Without the Global Switch, under PCRE v1 only the first match would be evaluated in BRU.

With the Global Switch under PCRE v2 you have:

Bulk Rename Utility Operations Manual Page 89 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Notice though something else…

The New Name without the Global Switch is the isolated ‘o’ of ‘Nitro’, (along with the extension, ‘.Ent_x64’). This is

the expected behavior because in v1, BRU has to match everything you want to keep. In other words, only the

captured text is retained.

The New Name with the Global Switch is made up of the entire string along with the matched ‘o’ of ‘Nitro’ and the

matched ‘o’ of ‘Pro’, excluding the (ignored) dot characters removed using the greedy class of [\.]+. These were all

changed within the string. This is because using the Global Switch allows all matches to be retained, so the new match

values do not ‘isolate’ the current values, but instead are ‘replaced’ or copied into the new string without disturbing

the rest of the string value. Previously, this could only be accomplished through JavaScript. The help in BRU states it:

‘In v2 the unmatched text is copied to the output, unlike in the default regular expressions.’

 o o

 matched

Nitr o Pr o 13.15.1.282.Ent_x64 copied

 NitroPro13.15.1.282.Ent_x64 result

To visualize this a bit more clearly, if the Replacement String was instead /1 <space>, the expression would look like:

First Match:

 Capture Group 1

 \1 <space>

Nitr o . Pro . o <space> 13.15.1.282.Ent_x64

 Removed

 Replacement

Second Match:

 C a p t u r e G r o u p 1

 \1 <space>

Nitro Pr o . o <space> o <space> 13.15.1.282.Ent_x64

 Removed

 Replacement

Bulk Rename Utility Operations Manual Page 90 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Here is one more example to tie it all up:

String = is this all there is

Match: (is)

Replace: \1 <space>

This example without global enabled will match only against the first ‘is’ in the string. This is the ‘is’ of the first

occurrence of the word, ‘is’ --- is this all there is

By placing the <space> in the Replace String, the match is easily identifiable in New Name:

Adding the Global Switch:

String = is this all there is

Match: (is)/g

Replace: \1 <space>

You can see at least one other match is included and that is the ‘is’ of ‘this. But did it also match against the second

occurrence of the word, ‘is’, at the end of the string? Hard to tell if there is an added <space> after, ‘there is’ in New

Name.

It can be verified if I change the string slightly to:

String = is this all there is or more

Match: (is)/g

Replace: \1 <space>

The <space> is definitely after, ‘there is’. The answer is yes, it matched all occurences of the string characters ‘is’.

So there you have it. The Global Switch.

Bulk Rename Utility Operations Manual Page 91 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Case Insensitive /i

Although I provided work-arounds to use in v1 in both Volume I and Volume II, BRU now fully supports the Case

Insensitive modifier in v2. Prior to this, BRU only supported Case Sensitive. This also makes it more compatible with

the Regex Buddy program which also supports Case Insensitive.

/i makes the regular expression Case Insensitive.

Here is an example taken from the JavaScript section of Volume II page 1461 that illustrates a RegEx:

JavaScript

Remove the second repetition of filename from the end

The example presented in the book uses the work-around, (?i), for using Case Insensitivity in the previous version of

BRU:

Match: ^(?i)(.*? *(.{8,}).*?)\2(.*)$

Replace: \1\3

Using that same example with the Case Insensitivity modifier – the /i at the end of the RegEx:

Match: ^(.*? *(.{8,}).*?)\2(.*)$/i

Replace: $1$3

What the RegEx does and how it works is not of significance here but the outcome is the same for both and that is

significant.

Also I threw in the use of the $ + Capture Group designator to illustrate how, e.g., $1 can be used in place of \1 in

the Replacement String under v2.

Bulk Rename Utility Operations Manual Page 92 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

Case Conversion

\E = turn off conversion

\L = Lowercase until next \l (lowercase L) or \E

\l = Lowercase next character (hard to tell but this is a lowercase L)

\U = Uppercase until next \L or \E

\u = Uppercase next character

string = HeLIO WoRID

Match: (Hello) (World)/i

Replace: \U$1 \L$2

Note:

1. Don’t get confused between the lowercase letter ‘ l ’ and the number one ‘ 1 ’ used in these examples.

2. Any usage of Case Conversion Metacharacters turn off any preceding Case Conversion. This means you can’t

 have, for example:

Replace: \l \U$2 \l = lowercase next character – this is not the numeral one, followed by

 U= uppercase next character, followed by Group 2 Backreference

and expect: wORLD

instead you get

Because although \l will lowercase next character, which it does in Capture Group 2, it is superseded by \U which

converts the entire $2 (Capture Group 2) to Uppercase.

Here’s another one, just the opposite where Case Conversion is left on:

Replace: \U$1 \2

Produces:

Although Conversion to uppercase was specified for Capture Group 1 only, Case Conversion is still enabled when it

encounters Capture Group 2.

Bulk Rename Utility Operations Manual Page 93 of 715

Section # 1: Regular Expressions (RegEx)

v3.4 New Additions

You could use:

Replace: \U$1 \l\2 (\l = lowercase next character – this is not the numeral one)

to produce:

Turn on Uppercase conversion until \l where it converts the next character, ‘W’ to ‘w’, but Uppercase remains

enabled so ‘WoRlD ‘ becomes ‘wORLD’.

Where:

 $1 = HELLO \2 = wORLD

If you used:

Replace: \U$1 \E\l\2 (\l = lowercase next character – this is not the numeral one)

This produces:

Turn on Uppercase until the \E which turns off case conversion at that point. Continuing, \l converts the next

character only to lowercase and the remainder of Capture Group 2 is left unchanged.

Where:

 $1 = HELLO \2 = woRlD

Match : (\w)/g

Replace: \L$1

This will replace ALL upper-case to lower-case with v2

Bulk Rename Utility Operations Manual Page 94 of 715

Section # 1: Regular Expressions (RegEx)

v3.43 New Additions

Added ability to use \E \L \l \U \u modifiers in the Replace field of the ‘Simple’ RegEx.

To review, these are:

\E = turn off conversion

\L = Lowercase until next \l or \E

\l = Lowercase next character

\U = Uppercase until next \L or \E

\u = Uppercase next character

Example #1:

String = HeLlO WoRlD

Match: %1

Replace: \U%1

Converts the entire string to uppercase because %1 matches the string and \U%1 converts it to uppercase.

Where:

 %1 = HeLlO WoRlD

Analysis:

The Match:

1. %1 Matches against first character H, and is Greedy.

 Review – last tag under Simple is always Greedy.

The Replace String:

1. \U Enable Uppercase conversion.

 Will convert all following characters until EOL or \E whichever comes first.

2. %1 Backreference to %1 tag.

Notes:

1. I am not going to repeat all of my findings concerning Greedy, Lazy, Short vs Long that I have already discussed at

 length (pun not intended). Therefore, these analysis’ will be ‘simplified’.

Bulk Rename Utility Operations Manual Page 95 of 715

Section # 1: Regular Expressions (RegEx)

v3.43 New Additions

Example #2:

String = This is_ version 2010 test

Match: %1_%2

Replace: \U%1\E_%2

Converts the first part of the string before the ‘_’ to uppercase.

Where:

 %1 = This is %2 = version 2010 test

Analysis:

The Match:

1. %1_%2 Match against the ‘T’.

%1 will continue to match against characters until the underscore delimiter

used in the Match String encounters the underscore in the sample string. The

underscore is not part of %1 because it is outside the scope. %2 is Greedy and

gathers up the remainder of the string.

The Replace String:

1. \U Enable Uppercase conversion.

 Will convert all following characters until EOL or \E whichever comes first.

2. %1 Backreference to %1 tag.

3. \E Turn off conversion.

4. _ Replaces the underscore character that was not part of the match.

 Review – the underscore character was outside of the %1 tag in the Match String.

5. %2 Backreference to %2 tag.

Bulk Rename Utility Operations Manual Page 96 of 715

Section # 1: Regular Expressions (RegEx)

v3.43 New Additions

Example #3:

String = abc_123-DEF

Match: %1_%2

Replace: \U%1\E_\L%2

Converts the first part of the string before the ‘_’ to uppercase and converts the remainder to lowercase.

Where:

 %1 = abc %2 = 123-DEF

Analysis:

The Match:

1. %1_%2 Match against the ‘a’.

%1 will continue to match against characters until the underscore delimiter

used in the Match String encounters the underscore in the sample string. The

underscore is not part of %1 because it is outside the scope. %2 is Greedy and

gathers up the remainder of the string.

The Replace String:

1. \U Enable Uppercase conversion.

 Will convert all following characters until EOL or \E whichever comes first.

2. %1 Backreference to %1 tag.

3. \E Turn off conversion.

4. _ Replaces the underscore character that was not part of the match.

 Review – the underscore character was outside of the %1 tag in the Match String.

5. \L Enable Lowercase conversion.

 Will convert all following characters until EOL or \E whichever comes first.

5. %2 Backreference to %2 tag.

Bulk Rename Utility Operations Manual Page 97 of 715

Section # 1: Regular Expressions (RegEx)

v3.43 New Additions

Example #4:

String = TESTing the Words TITLE

Match: %1%2%3%4

Replace: \L%1%2%3\E%4

Convert the first 3 characters of the string to Lowercase.

Where:

 %1 = T %2 = E %3 = S %4 = Ting the Words TITLE

Analysis:

The Match:

1. %1 Match against the ‘T’.

 Lazy, so no other characters captured and no delimiter characters that would force

 additional matches.

2. %2 Match against the ‘E’

Lazy.

3. %3 Match against the ‘S’

 Lazy.

4. %4 Match against remainder of string.

 Greedy. Last tag is always Greedy.

The Replace String:

1. \L Enable Lowercase conversion.

 Will convert all following characters until EOL or \E whichever comes first.

2. %1 Backreference to %1 tag.

3. %2 Backreference to %2 tag.

4. %3 Backreference to %3 tag.

5. \E Turn off conversion.

6. %4 Backreference to %4 tag.

Notes:

1. In all of these examples when conversion is turned off via the \E modifier, any remaining string referenced by a tag

 in the Replacement String will display in New Name with the Case as it was originally in the string.

Bulk Rename Utility Operations Manual Page 98 of 715

Section # 1: Regular Expressions (RegEx)

v3.43 New Additions

Summary:

v2 also known as PCRE2, offers a lot of improvements. Further information about the PCRE and PCRE2 Engine with

the Boost Library can be found:

General information:

https://perldoc.perl.org/perlre

Information specific to the Match Expression:

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Information specific to the Replace String:

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html

Information on the new Substitution Markers

https://www.boost.org/doc/libs/1_75_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html

Additional resources for using some of these new capabilities can be found at:

https://www.rexegg.com/

https://www.regular-expressions.info

https://regexlib.com

My Regular Expression manuals remain a good resource for familiarizing yourself with RegEx for beginners and the

experienced alike. Volume II covers some of the more advanced features. Best of all v2 removes most of the

limitations imposed by v1 and likewise those limitations that have already been documented and illustrated in both of

these volumes.

Final Conclusion:

This is just a sample of the new possibilities opened up by BRU’s support of the PCRE2 RegEx Engine with the

Boost Library.

Note:

Volume II was written before the newer version of BRU. Therefore, although Volume II only covers RegEx v1

(PCRE v1 5.x) and not RegEx v2 (PCRE2 with Boost) or Simple RegEx, it is still a valuable learning resource. With

all of the numerous examples presented, you are always encouraged to try them yourself and make improvements and

with the new PCRE v2, this is a certainty. Volume II, however, is more than just examples of RegEx. It teaches you

the language through the study of the written analysis in formats similar to the ones briefly presented here.

Enjoy.

https://perldoc.perl.org/perlre
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html
https://www.boost.org/doc/libs/1_75_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html
https://www.rexegg.com/
https://www.regular-expressions.info/
https://regexlib.com/

Bulk Rename Utility Operations Manual Page 99 of 715

Section # 2 – (File) Name

Bulk Rename Utility Operations Manual Page 100 of 715

Section # 2: (File) Name

Filename - This manages the current filename.

Your options in the drop down list are:

1. Keep – the current filename will not change (default)

2. Remove – completely removes the current file name. Must be used in conjunction with other renaming criteria that

 will replace the current name with a New Name. If no other criteria is specified, New Name will not reflect any

 change unless the filename contains an extension. See notation #1.

 By itself it displays no change to New Name (sample string does not have an extension) 1:

 But if I include a prefix under the ‘Section #7: Add’ …

 New Name reflects the change of both ‘Section #2: Name’ and ‘Section #7: Add’:

 The original filename has been removed and replaced with ‘test’.

Notes:

1. If no other criteria is specified except to remove the filename and the filename contains an extension, then this will

 display in New Name as:

 .. where only the extension will remain.

2. The ‘Section #1: RegEx’ will not work in conjunction with ‘Section #2: Name’ because the Order of Evaluation

 will preclude any criteria section numbered lower than ‘Section #2: Name’. I could not have the name removed in

 ‘Section #2: Name’ and added back using RegEx in ‘Section #1: RegEx’.

Bulk Rename Utility Operations Manual Page 101 of 715

Section # 2: (File) Name

Filename - This manages the current filename.

3. Fixed – A new specified filename (in the Name data field) will be applied for all selected files. Only useful in

 conjunction with the ‘Section #10: Numbering’, because otherwise if more than one file is selected, they will have

 the same name and generate an error when you try to apply the Rename function. By appending an incrementing

 number, the files will continue to be unique.

 Name data field

 results in:

 Adding ‘Section #10: Numbering’, makes the filenames unique.

4. Reverse – completely reverses (backwards) the filename –

 e.g. 12345.txt

 … becomes 54321.txt.

Bulk Rename Utility Operations Manual Page 102 of 715

Section # 3 - Replace

Bulk Rename Utility Operations Manual Page 103 of 715

Section # 3: Replace

Replace - This is a Search and Replace by pattern.

It can find any pattern.

For example if I want to search for the pattern “- <space>” and replace with “<space> - <space>“ I would enter:

 Spaces can’t clearly be seen in the data fields. That is why

I typically enclose them in angular brackets for the

purposes of this document. Do not, however, enter the,

‘angular bracket space angular bracket’, when entering

<spaces> into any of the data fields. Just enter the

character produced from the spacebar on the keyboard.

Remember, that once your criteria has been entered, select the files from the File List in the Content Pane you want to

include through the normal selection process of Select all (Ctrl + A), non-consecutively (Ctrl + left mouse click), or

consecutively (Shift + down arrow).

Unicode and High ASCII can also be entered:

For example,

2000-07-23 name ▌.pdf

I Created the symbol in the filename by using Alt + 221 (from Numeric keyboard, hold down Alt key and hit 2,2,1).

Enter the symbol by keying in the same Alt + 221 into the Replace field (numlock must be ON).

Results in:

Bulk Rename Utility Operations Manual Page 104 of 715

Section # 3: Replace

v3.4 New Additions

Multiple Replacements

Multiple replacements can be specified using the | (Pipe character) delimiter.

Examples:

Multiple specifications in the ‘Replace’ search field are replaced ‘With’ multiple replacement values.

Using:

Replace: H|L

With: T|J

Replaces all instances of ‘H’ in the string with ‘T’ and subsequently all instances of ‘L’ with ‘J’.

Specifying just a single replacement for ‘With’ and multiple specifications in the ‘Replace’ search field results in all

instances of the multiple characters in the string replaced by the single ‘With’ replacement value.

All instances of both the ‘H’ and ‘L’ are replaced by the ‘T’.

Bulk Rename Utility Operations Manual Page 105 of 715

Section # 3: Replace

v3.4 New Additions

You are not limited to two replacements.

Here is another example:

Three changes are specified for the ‘Replace’ search but only two ‘With’ replacements are provided.

Replace: H|L|O

With: T|Y

All instances of ‘H’ are replaced with ‘T’. The remaining two searches of ‘L’ and ‘O’ have all instances replaced with

‘Y’. Because I did not enable ‘Case’, case remains Insensitive, resulting in both upper and lowercase characters

replaced.

The only ‘H’ in the substring,’HeLlO’, is replaced with ‘T.

Both the uppercase ‘L’ and lowercase ‘l’ of ‘HeLlO’ and the lowercase ‘l’ in ‘WoRlD’ are replaced with ‘Y’. The

final search specification of the ‘O’ of both the uppercase ‘O’ of ‘HeLlO’ and the lowercase ‘o’ found in ‘WoRlD’ are

also replaced with ‘Y’.

Notes:

1. If you wish to include the pipe character in the Replacement, then precede it with an ‘Escape’ character (a

 backslash \). The escape character tells BRU to ignore the character as a command or as part of the syntax of a

 command and instead treat it as a literal. e.g., \|

2. The pipe character is not a legal character in a Windows filename, meaning, BRU would not allow you to rename a

 file containing this character normally. However with the added improvements in the ‘Section #1: RegEx’ allowing

 multiple RegEx to be run, the Global switch, etc., the pipe character could be used temporarily within the renaming

 process (there are examples of this that can be found in Volume II) and be removed here in ‘Section #3: Replace’

 before the final renaming operation.

3. The reason that the Escape character is required in this section, ‘Section #3: Replace’, is because the pipe character

 is now a part of the syntax for that section. In other sections, if the pipe character is used and is not a part of the

 syntax of that function, the escape would not be required.

Bulk Rename Utility Operations Manual Page 106 of 715

Section # 3: Replace

v3.4 New Additions

The following example is in two parts.

First, a RegEx is used to place the pipe character in the string because, again, I cannot do this directly since Windows

won’t allow a filename containing the character. For more information on literals, Metacharacters and Special

Characters, see Volume II. Some information can also be found in the RegEx manual in the Appendix of this volume

as well.

Match: (.*\s)(.*)

Replace: \1| <space> \2

 It should be noted that I have not included the

 expanded version of a <space> character using the

 angular brackets in all the examples in this book and

 Volume II. Therefore I recommend that you use Copy

 and Paste to enter them in your own BRU program if

 you don’t see ‘<space>’ explicitly.

The first part of the Match string, .*\s, will capture the entire string to EOL, then backtrack to search out the <space>

character which it finds after the word, “HeLlO’, and isolate it in Capture Group 1. The second part of the RegEx, .*,

isolates and captures the remaining string into Capture Group 2. The Replace String will display Capture Group 1 that

contains the word ‘HeLlO <space>’.

Next, it places the pipe character as a literal (literals in the Replace String of ‘Section #1: RegEx’, do not require a

preceding escape character) into the filename. Windows doesn’t complain because the actual renaming has not been

initiated at this stage. So far all changes are in memory only. BRU on the other hand is complaining. New Name is in

red meaning that this is a warning the filename is Invalid and will not be renamed if you proceed.

\1 = Capture Group 1 = HeLlO <space>

\2 = Capture Group 2 = WoRlD

The final part will use ‘Section #3: Replace’ to remove the pipe character and replace it with a <hyphen> which is a

legal character in a Windows Filename. New Name turns from red (Invalid) to green (valid and good to go):

Because the pipe character is now a part of the syntax used in

‘Section #3: Replace’, it must be escaped to be recognized as a

literal, whereas when used in the Replace String of

‘Section #1: RegEx’ above, it is not part of the syntax and does

not need to be escaped.

Bulk Rename Utility Operations Manual Page 107 of 715

Section # 3: Replace

v3.4 New Additions

Match Case enabled - Perform case-sensitive replacement with Replace Only on First Match

Case Sensitive matches were allowed previously but a quick example is necessary to explain the new option, ‘First’:

Example:

Only the lowercase ‘o’ is affected and replaced with ‘J’ in the word, ‘WoRlD’ and not the uppercase ‘O’ found in

‘HeLlO’.

First enabled - Replace only first match.

Only the first occurrence found in the string, the uppercase ‘O’ of ‘HeLlO’ is affected and replaced with ‘J’ leaving

the second occurrence, the lowercase ‘o’ in the word, ‘WoRlD’ intact.

Bulk Rename Utility Operations Manual Page 108 of 715

Section # 3: Replace

v3.4 New Additions

Position Modifier \<Position value>\

Position values are:

first \first\ Replace only the first match (equivalent to enabling ‘First’)

last \last\ Replace only the last match

start \start\ Replace at start of string

end \end\ Replace at end of string

second \second\ Replaces only the second match (second occurrence) found in the string

third \third\ Replaces only the third match (third occurrence) found in the string

fourth \fourth\ Replaces only the fourth match (fourth occurrence) found in the string

fifth \fifth\ Replaces only the fifth match (fifth occurrence) found in the string

sixth \sixth\ Replaces only the sixth match (sixth occurrence) found in the string

seventh \seventh\ Replaces only the seventh match (seventh occurrence) found in the string

eighth \eighth\ Replaces only the eighth match (eighth occurrence) found in the string

ninth \ninth\ Replaces only the ninth match (ninth occurrence) found in the string

The position modifier has to be specified at the start of the Replace String.

Examples:

Replace first ‘e’ in string with ‘TRM”.

As already stated, this position modifier, \first\, is equivalent to enabling the ‘First’ option –

Bulk Rename Utility Operations Manual Page 109 of 715

Section # 3: Replace

v3.4 New Additions

It should be noted that enabling ‘First’ overrides any position modifier in the Replace field:

Although I wanted the second ‘o’ in the string, the ‘o’ in ‘WoRlD’, it is the first ‘o’, the ‘O’ in ‘HeLlO’ that is

changed. This is because ‘First’ is enabled and supersedes the Positon Modifier, \last\.

To correct this, disable ‘First’ and you will obtain the expected results.

Bulk Rename Utility Operations Manual Page 110 of 715

Section # 3: Replace

v3.4 New Additions

If a null value or ‘empty’ string is specified for the ‘With’ replacement string, the ‘Replace’ value is removed.

A null value is specified (no entry), not to be confused with a <space> character that

would also not display.

Results in the removal of the last ‘o in the string, the ‘o’ in ‘WoRlD’.

More Examples:

Example:

The ‘HeL’ of ‘HeLlO’ is replaced with ‘Bal’.

The specified ‘Replace’ string must be text found at the start of the string only. The following will not work:

Bulk Rename Utility Operations Manual Page 111 of 715

Section # 3: Replace

v3.4 New Additions

Example:

This replaces the second Match or occurrence of the ‘o’ with ‘K’ in the string. The first match is found at the ‘O’ of

‘HeLlO’ and the second match is found at the ‘o’ of ‘WoRlD’. It is the second match, the ‘o’ of ‘WoRlD’ that is

changed to a ‘K’.

If there is no second match, the evaluation fails and no change occurs:

Note: It is also possible to use the tag, <clip>, in both the Replace and With fields. <clip> will be substituted

with the current textual content of the Windows Clipboard.

Placed in Windows Clipboard:

This is a Test

Bulk Rename Utility Operations Manual Page 112 of 715

 Section # 4 - Case

Bulk Rename Utility Operations Manual Page 113 of 715

Section # 4: Case

Case- Allows you to change the Case of the selected Filenames.

Under the drop-down menu your options are:

Same – leave as is (default)

Lower - converts all letters in filename to lowercase (small letters)

Upper - converts all letters in filename to uppercase (capitals)

Title - converts the first letter of each word to uppercase

Sentence - converts only the first letter of each word to uppercase.

* In addition you can specify words in the ‘Except.’ field that are excepted from having the above case action

 performed.

* The case used for the words in this field will appear in the selected files as they appear in the ‘Excep.’ field.

* Multiple exceptions are specified using a colon to separate the words (called a delimiter character).

So for example,

Original filename:

Donna Summer- Mac Arthur Park Suite (original extended version).mp3

The Specified Case will be Upper for all letters of the selected filename with the exception of Donna. The word

Donna is entered into the ‘Except. Field, specified as DoNNa for fun.

becomes:

DoNNa SUMMER- MAC ARTHUR PARK SUITE (ORIGINAL EXTENDED VERSION).MP3

Bulk Rename Utility Operations Manual Page 114 of 715

Section # 4: Case

v3.43 New Additions

The New York Times Title Case is now used in Title option, ‘Title Enhanced’, of the drop down Case menu.

So what is New York Times Title Case? The RULES:

The following are Capitalized:

1. Nouns, pronouns, and verbs.

2. All words of four or more letters.

 Bru, however, doesn’t distinguish between the quantity of letters:

 Single letter (j), two letter (my) and three letter (cat) words are all converted to uppercase.

3. no, nor, not, off, out, so, up

 Bru, however, doesn’t capitalize ‘nor’

4. The following are not capitalized unless they appear at the beginning or end of a string:

 a, and, as, at, but, by, en, for, if, in, of, on, or, the, to

5. The following are Capitalized:

 v., vs., via

Bulk Rename Utility Operations Manual Page 115 of 715

Section # 4: Case

v3.43 New Additions

BRU doesn’t use the full New York Times Style. For instance the following are not true.

6. Capitalize when used as adverbs.

‘in’ is an adverb in the above sentence, but is not capitalized. Understandable because I don’t believe that BRU is

grammatically sophisticated enough to tell the difference. It is most likely programmed with a list of words and what

to do with them.

7. Capitalize ‘for’ if it takes the place of a verb meaning “support” or “advocate”

BRU leaves ‘for’ unchanged, following rule #1 instead. Understandable because I don’t believe that BRU is

grammatically sophisticated enough to tell the difference. It is most likely programmed with a list of words and what

to do with them.

8. In hyphenated compounds, do not capitalize the second part if it follows a prefix of two or three letters, and if the

 <hyphen> separates doubled vowels.

BRU converted both sides of the compound to uppercase, regardless. Same reason. BRU is not able to distinguish

what should be capitalized and what shouldn’t when it comes to hyphenated words.

Notes:

1. Other considerations of why BRU doesn’t support the full New York Times Case, is because that style, as you can

 ascertain from the rules, is meant for styling paragraphs and not one line folder or filenames.

Bulk Rename Utility Operations Manual Page 116 of 715

Section # 4: Case

v3.43 New Additions

New Changes in the Except(ion) field:

The following special tags are available in the Exception data field under Title Enhanced Case:

<clear>

for Title Enhanced case, it clears all default words that are not to be capitalized unless they are at the start

or at the end of a string..

The default words are:

 a and as at but by en for if in of on or the to

Example #1

Under Title Enhanced:

<clear>

.. will clear the default exception list

Using a string with the default exception list in uppercase, the default is to lowercase all of these items.

When I add the tag,

… using a string with the default exception list in lowercase results in:

Items in lowercase by default under Title Enhanced, will be in uppercase, the same behaviour as under Title Case.

<clear> tag has no effect under the Title Case.

Bulk Rename Utility Operations Manual Page 117 of 715

Section # 4: Case

v3.43 New Additions

The following special tags are available in the Exception data field under Title Enhanced Case: cont.

<clear> cont.

Example #2

Under Title Enhanced:

<clear>:and:or

.. will clear the default exception list but maintain the items ‘and’ and ‘or’ as lowercase.

Under Title Enhanced, the default behaviour is to lowercase all of these items.

When I add the tag,

results:

All items of the string are now Capitalized regardless of setting of Title Enhanced, because the default list that

normally would have lowercased these items has been cleared with the exceptions of ‘and’ and ‘or’.

Bulk Rename Utility Operations Manual Page 118 of 715

Section # 4: Case

v3.43 New Additions

Under Title:

Normally, the default is to uppercase all of these items.

When I add the tag,

Results:

The ‘and’ and ‘or’ items have been converted to lowercase.

Of course this is the default behaviour of the Exception list anyway.

No difference. This is because <clear> does not seem to do anything under the Title Case, but only works under the

Title Enhanced Case.

It would be interesting if BRU used the Exception list to convert the opposite of what was the norm. For example, an

item that is normally lowercase would be case converted to uppercase and vice versa using an <Opposite> tag, but

that will have to be reserved for a future discussion. I have put in this request to TGRMN.

Bulk Rename Utility Operations Manual Page 119 of 715

Section # 4: Case

v3.43 New Additions

<ic>

For Title Enhanced case, ignore words that are all caps and do not change capitalization for them.

Sample Strings:

Graham the aB ab abc abC ABC Miller.jpg

ABC-123-DEF

Normally,

But applying the Special tag, <ic>

Results:

The first string, Graham the aB ab abc abC ABC Miller.jpg, the ‘ABC’ item in uppercase is unaffected. In the second

string made up of all uppercase letters, there is no change and New Name reflects this.

Has no effect under the Title Case.

Bulk Rename Utility Operations Manual Page 120 of 715

Section # 4: Case

v3.43 New Additions

The following tags work under both Title Case and Title Enhanced Case –

<rnlo> Roman Numeral Lowercase

Lowercase all Roman Numerals regardless. Note that the code is r n l o - not mlo if you look too quick.

String = beethoven's ninth symphony part III

Applying the Special tag, <rnlo>

Results:

<rnup> Roman Numeral Uppercase

Upper case all Roman Numerals regardless. Note that the code is r n u p - not mup if you look too quick.

String = beethoven's ninth symphony part iii

Applying the Special tag, <rnup>

Title:

Results:

Bulk Rename Utility Operations Manual Page 121 of 715

Section # 4: Case

v3.43 New Additions

The following work under both Title Case and Title Enhanced Case –

You can also specify words that you always want full caps:

String = beethoven mozart liszt

BEETHOVEN:MOZART:LISZT

Results:

This goes along with the original rules of the Exception List. Remember DoNNa?

Source this section: The New York Times Manual of Style and Usage. 5th ed.

Bulk Rename Utility Operations Manual Page 122 of 715

Section # 5 - Remove

Bulk Rename Utility Operations Manual Page 123 of 715

Section # 5: Remove

Remove- Removes parts within a filename (excluding the extension).

Your options are:

First n chars - Remove the first n characters from the beginning of the filename.

Last n chars - Remove the last n characters from the end of the filename.

Example:

String = Andrew Gregory Macintyre.jpg

Remove the first 2 and the last two characters from the string.

Results:

Bulk Rename Utility Operations Manual Page 124 of 715

Section # 5: Remove

From n to n – This allows you to remove a consecutive string of characters by specifying their exact numeric position,

first (starting from the left) and last, as they appear in the filename.

For example, a filename:

This is a test.txt

The filename has a total of 14 characters.

T h i s i s a t e s t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

all characters are counted including spaces.

If the word, ‘is’ was to be removed, it would be specified as - From 6 to 7

resulting in:

This a test.txt There are now two spaces after ‘This’. The original <space> following, ‘This’, and the

 <space> previously following, ‘is’.

In BRU:

Notes:

Positioning in BRU, other than RegEx, generally starts with position 1. In RegEx, the position starts with 0.

Bulk Rename Utility Operations Manual Page 125 of 715

Section # 5: Remove

Chars – Removes any occurrences of characters entered here wherever they appear in the filename. There is

no delimiter between characters because the entire character set can be used including symbols and even high

ASCII. For example, entering Alt + 128 using the numeric keypad enters Ç.

Okay, so ‘Section #3: Replace’ can do that. What’s the big deal?

Well, smarty, can Replace do this?

I specified three lowercase characters to be removed using a comma delimiter. As a result, the ‘i’ of ‘’This’,

the ‘a’, and the ‘t’ of ‘test’ have all been removed at one time. The uppercase ‘T’ of ‘This’ is not affected

because of Case Sensitivity.

Words - Remove any occurrences of words entered here. Multiple words are separated by a <space> delimiter.

 Example:

 Removes the word, ‘This’, from the string. As with Chars, the real difference with ‘Section #3: Replace’ is

 that multiple words can be entered via a <space> delimiter.

Bulk Rename Utility Operations Manual Page 126 of 715

Section # 5: Remove

Double Spaces – convert any occurrences of double spaces to single spaces

Remember that example where we ended up with a double <space>? Here it is again.

This time we enable the D/S option –

.. no more double <space>

Bulk Rename Utility Operations Manual Page 127 of 715

Section # 5: Remove

Accents – Replace Accented characters with their non-accented equivalent.

Example:

String = Bahá í Muñoz

If you wanted to remove all of the High ASCII

characters then you would use the ‘High’ option and

not the ‘Accents’ option.

Chars – remove all alpha-numeric characters

String = DSCN0001-more.jpg

Bulk Rename Utility Operations Manual Page 128 of 715

Section # 5: Remove

Symbols - remove all non alpha-numeric characters

Example:

String = DSCN0001-more.jpg

Removes the <hyphen>

Bulk Rename Utility Operations Manual Page 129 of 715

Section # 5: Remove

Lead Dots – Removes a selection of a leading single, double dot or both in the filename. None is default.

The documentation states that this is useful if you copied files from a Linux or Unix type environment.

 You can under the drop-down menu:

None – leave as is (default)

. – Remove leading single dot character in the filename

.. – Remove leading double dot characters in the filename

Both – Remove either a leading single or a leading two dot characters from a filename but not both

 in the same filename. It will be one or the other that is removed based on which comes first.

Strings = . DSCN0001-more.jpg .. DSCN0001-more.jpg . .. DSCN0001-more.jpg .. . DSCN0001-more.jpg

With the single dot enabled, only the first

file is affected.

With the double dot enabled, only the

second file is affected.

With ‘Both enabled, files that contain a

leading single dot or two dots are affected.

 The first and second file are affected.

‘Both’ will not remove both leading single dots and two dots from the same filename:

. .. DSCN0001-more.jpg .. . DSCN0001-more.jpg

 one … or … the other… but not both

Bulk Rename Utility Operations Manual Page 130 of 715

Section # 5: Remove

Digits – Remove any numeric characters

String = DSCN0001-more.jpg

Trim – Remove leading and trailing spaces

String = DSCN0001-more .jpg

All leading and trailing <space> characters have been removed.

Bulk Rename Utility Operations Manual Page 131 of 715

Section # 5: Remove

High ASCII – removes any High ASCII characters (ASCII 128 to ASCII 255)

String = Bahá í Muñoz

 The High ASCII characters have been removed in the string. If you wanted

only to remove the accents themselves, you would use the ‘Accents’ option

and not the ‘High’ option.

Note – There are full ASCII charts available in the Appendix of both volumes.

Bulk Rename Utility Operations Manual Page 132 of 715

Section # 5: Remove

Crop – Removes any text either before or after a character or word in the filename as specified in the data entry field

that appears to the right.

String = Andrew Gregory Macintyre.jpg

All characters in the string before the word ‘Greg’ have been cropped. In the example, ‘Andrew <space>’ has been

removed.

All characters after the word ‘Greg’ have been cropped. In the example, ‘ory Macintyre’ has been removed.

Bulk Rename Utility Operations Manual Page 133 of 715

Section # 5: Remove

* The drop down list also provides for a ‘Special’ option that can be applied using the wildcard * character. This will

 not only remove the specified string but any characters before or after dependent on the position of the wildcard

 character (for this to work, the ‘Special’ option must be selected in the drop down list).

 Normally a filename would be represented by:

 <filename> . <ext> or *.*

 This does not affect the filename extension. Therefore only one asterisk is used to represent the filename portion.

(1). Removing all characters after and including the specified string (wildcard positioned after):

 Summer* when applied to…

 Donna Summer- Mac Arthur Park Suite (original extended version).mp3

 results in…

 Donna <space>.mp3

 This removed the string ‘Summer” and all characters following.

(2). Removing all characters before and including the specified string (wildcard positioned before):

 *Mac when applied to…

 Donna Summer- Mac Arthur Park Suite (original extended version).mp3

 results in…

 <space> Arthur Park Suite (original extended version).mp3

 This removed the string ‘Mac’ along with all characters prior.

Bulk Rename Utility Operations Manual Page 134 of 715

Section # 5: Remove

(3). Specified string appears in multiple occurrences in filename:

 a. If specified string appears more than once, the action will be performed using only the first occurrence.

 Using the filename…

 Donna Summer- Love to Love You Baby (extended original version).mp3

 And the string…

 *Love

 results in …

 <space> to Love You Baby (extended original version).mp3

 ... because it has removed the first occurrence of the string, ‘Love’ as well as all characters prior.

(4). Removing a section

 In addition, you can remove a section in the middle using the format:

 <starting position, left character or string> * <ending position, right character or string>

 If the words ‘Love to Love You’ were to be removed…

 Donna Summer- Love to Love You Baby (extended original version).mp3

 Use this…

 L*You

 results in…

 Donna Summer- Baby (extended original version).mp3

 This removes the first occurrence of the specified character ‘L’ as well as all characters leading up to and including

 the word ‘You’

Bulk Rename Utility Operations Manual Page 135 of 715

Section # 5: Remove

Since this is complicated, here is another example.

 Summer*You

 When applied to the filename,

 Donna Summer- Love to Love You Baby (extended original version).mp3

 Results in …

 Donna Baby (extended original version).mp3

 .. because it has removed the specified string ‘Summer’ unaffecting any characters prior, and removing all

 characters leading up to and including the specified string ‘You’.

Bulk Rename Utility Operations Manual Page 136 of 715

Section # 6 - Move/Copy Parts

Bulk Rename Utility Operations Manual Page 137 of 715

Section # 6: Move/Copy Parts

Move/Copy Parts – Move or copy a selected set of characters to another part of the filename.

* This is useful when you have some code or date that appears at e.g., the end of the filename and you’d rather have

 it in the beginning.

a. Select what you want to do

Your options in the drop down list are:

None (default) – do nothing

Copy first n characters as specified by, indicating character position in the filename

Copy last n characters as specified by, indicating character position in the filename

Move first n characters as specified by, indicating character position in the filename

Move last n characters as specified by, indicating character position in the filename

Bulk Rename Utility Operations Manual Page 138 of 715

Section # 6: Move/Copy Parts

b. Select the characters to copy

 You do this by increasing or decreasing the number in

 For example,

 Using the filename, 130646_How to Avoid.png

 filename 1 3 0 6 4 6 _ H o w t o A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Move first n characters where n = 7 would create a string of 7 characters

results in the preliminary filename:

 How to Avoid.png

In this example, the string takes from position 1 through position 7 = ‘130646_’

 Note:

 This is preliminary. The movement has not yet taken place.

Bulk Rename Utility Operations Manual Page 139 of 715

Section # 6: Move/Copy Parts

c. Specify where you want to place the string

Your Options in the drop down list are:

None (default) – do nothing

To end – place selected characters at the end of the filename

 Example,

 Using the filename, 130646_How to Avoid.png

 Having set the ‘Move first n characters where n= 7’, the string is ‘130646_’, …

 Current preliminary filename = How to Avoid.png

 Results in:

 How to Avoid130646_.png

 The string, ‘130646_’, specified by the, ‘Move first n’ function, is placed at the end of the file,

 ‘How to Avoid’.png

Note:

Using, ‘Move last n To End’, would not change the filename, because all you would be doing is moving characters

that are already present at the end to their same positions in the string. In order to use the option, ‘To End’, it would

need to be used with the other options, ‘Move first n’, ‘Copy first n’, or ‘Copy Last n’.

Bulk Rename Utility Operations Manual Page 140 of 715

Section # 6: Move/Copy Parts

To start – place selected characters at the beginning of the filename

 Example,

 using the filename, How to Avoid_130646.png

 Set the ‘Move last n characters where n= 7’, the string is ‘_130646’, …

 Current preliminary filename = How to Avoid.png

 results in:

 _130646How to Avoid.png

 The string, ‘‘_130646’, specified by the, ‘Move last n’ function, is placed at the start of the file, ‘130646_’.png

Note:

Using, Move first n to Start, would not change the filename, because all you would be doing is moving characters

that are already present at the start to their same positions in the string. In order to use the option, ‘To Start’ it would

need to be used with the other options, ‘Copy first n’, ‘Copy last n’, or ‘Move last n’.

Bulk Rename Utility Operations Manual Page 141 of 715

Section # 6: Move/Copy Parts

The options, ‘Copy last n, and ‘Copy first n’, are similar in how they function with their ‘Move’ counterparts, but I

will provide one example for your complete understanding.

 For example,

 Using the filename, 130646_How to Avoid.png

 filename 1 3 0 6 4 6 _ H o w t o A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Copy first n characters where n = 7 would create a string of 7 characters

Since this is a ‘Copy’ function, no preliminary filename is generated

Select the placement of the string, ‘130646_’, e.g., To end:

results in:

In this example, the string takes from position 1 through position 7 = ‘130646_’ and copies it to the end of the

filename, ‘130646_’How to Avoid’.

Bulk Rename Utility Operations Manual Page 142 of 715

Section # 6: Move/Copy Parts

To pos(ition) – place selected characters to a position within the filename.

The position is specified by increasing or decreasing the number in

 For example,

 130646_How to Avoid.png

 filename 1 3 0 6 4 6 _ H o w t o A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 To end up with (using the last example):

 How to Avoid130646_.png

 You would use:

 First, this takes the first seven characters of the filename = ‘130646_’ and preliminary removes them.

 You now have:

 filename H o w t o A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13

 Second, specify the Position in the string to where the string will be moved.

 This moves the string, ‘130646_’, to position 13 in the filename. Position 13 is now at the end of the filename.

 Results in:

 How to Avoid130646_.png

Bulk Rename Utility Operations Manual Page 143 of 715

Section # 6: Move/Copy Parts

There is one final section titled, ‘Sep.’ which stands for Separator. Any characters entered here will separate the string

that was moved or copied from the original text remaining, , depending on the Start, End or Pos(ition) selection.

‘To Start’ selected, the characters appear immediately following the string at the beginning of the filename.

 For example,

 This will result in:

 130646_testHow to Avoid.png

‘To End’ selected, the characters appear immediately following the string at the end of the filename.

 For example,

 This will result in:

 How to Avoidtest130646_.png

‘Pos(ition)’ selected, the characters appear on either side of the string.

 For example,

 This will result in:

 How to Avoidtest130646_test.png

The Sep. is typically a single character like a space rather than a string because it is intended to avoid run-together

text as is seen in these examples, but multiple characters are supported.

Bulk Rename Utility Operations Manual Page 144 of 715

 Section # 7 – Add

Bulk Rename Utility Operations Manual Page 145 of 715

Section # 7: Add

Add – add a string at the beginning, end or anywhere within the filename.

 Prefix - Add the specified string at the Beginning of the filename. String is entered in the Prefix field.

 Example,

results in:

 cat130646_How to Avoid.png

 Suffix – Add the specified string at the End of the filename. String is entered in the Suffix field.

 Example,

 results in:

130646_How to AvoidCat.png

 Insert – Place the specified string at the position ‘Pos’ within the filename. String is entered in the Insert field.

 Example,

 results in:

 130646_How toCat Avoid.png

Notes:

1. You can enter a space before 'Cat' or after or both as needed in the data fields so text does not run together.

2. Negative numbers can be entered directly into the ‘at Pos’ data field, or you can use the Up/Down indicators:

Bulk Rename Utility Operations Manual Page 146 of 715

Section # 7: Add

In the final example under ‘Pos’, I will elaborate how the result was obtained:

‘Pos’ refers to a position in the string where characters can be inserted.

 In that example I used the filename,

 130646_How to Avoid.png

 filename 1 3 0 6 4 6 _ H o w t o A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Thus when the Add options were set to:

‘Cat’ was inserted at position 14 which in the string is the <space> after ‘to’.

 filename 1 3 0 6 4 6 _ H o w t o

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Cat

resulting in:

 filename 1 3 0 6 4 6 _ H o w t o C A T A v o i d

 position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Notes:

1. No, I did not include a <space> after ‘Cat’. The <space> character at position 17 is the <space> character originally

 at position 14 that was displaced.

Bulk Rename Utility Operations Manual Page 147 of 715

Section # 7: Add

Word Space – this places a <space> character before any Capitalized word if there is not one already present. The

first word of the filename is exempted from this action.

 Example,

 With Word Space active, and using the same example of the ‘Insert’ at ‘Pos’, the new result is:

 130646_How to Cat Avoid.png

This example is simple. It could just as easily been done using a space character in the data entry field, but more

useful if applied to filenames that already have run together text (PascalCase or camelCase).

e.g.,

ThisIsAnExampleOfPascalCase.pdf thisIsAnExampleOfCamelCase.pdf

PascalCase is defined by the words all run together with each word in uppercase. Word Space uses the uppercase as a

delimiter to separate the words. This will also work with camelCase where only the first word is lowercase and the

rest are in uppercase. Even though the first word is lowercase, the delimiter on the second word will result in the

correct separation. This will not work with a lowercase word anywhere after the first word.

Bulk Rename Utility Operations Manual Page 148 of 715

Section # 7: Add

Using Substitution Tags

BRU supports both the inclusion of Windows Properties and EXIF tags in the ‘Section #7: Add’ and ‘Section #14:

JavaScript’ renaming functions. However, for users that do not need that complexity, BRU provides a few of the more

common items in the form of Substitution Tags. Substitution Tags are used for extracting certain information from

MP3 audio files with ID tags v1.0 and v1.1 D3 and extracting certain EXIF information from JPEG image files.

Substitution Tags available for MP3 files:

 %r - Artist

 %t - Title

 %k - Track Number

Example using %r

In this example I’ve added the text, ‘(Artist) <space>’ along with a substitution tag, %r that provides the Artist Name.

1. For this to work:

 a. You have to enable, ‘Extract ID3 Data (MP3)’, from the ID3/ EXIF Data / File Properties submenu of the

 Renaming Options Menu for MP3 Music files.

 b. The ID3 Data (in 2 halves below in Ztree) for Artist, Title and Track Number has to be present within the file,

 e.g., Songbird.mp3:

Bulk Rename Utility Operations Manual Page 149 of 715

Section # 7: Add

Although BRU only supports three tags for Music ID3, I think it is important for your own information to know how

the ID3 Metadata relates to the Metadata stored by Windows.

Here is how some of the ID3 tags in the Header of the file presented on the previous page, match up to Windows

Explorer Preview of the Metadata:

And this is how the ID3 Metadata matches up with the Windows File Properties (BRU tag support is in blue):

Artist Title

Album Size

Genre Year

Length: Track

Bulk Rename Utility Operations Manual Page 150 of 715

Section # 7: Add

Substitution Tags available for JPEG image files:

 %a – Aperture %ma – Camera Make

%c – Comments %mo – Camera Model

 %e - Exposure

 %f - Focal Length

 %xb - Exposure Bias

String = _MG_0144.jpg

Example using %ma

In this example, the value of Camera Make has been prefixed to the file, ‘_MG_0144.jpg’.

1. For this to work:

 a. You have to enable, ‘Extract EXIF Data (Photos)’, from the ID3/ EXIF Data / File Properties submenu of the

 Renaming Options Menu for MP3 Music files.

 b. The EXIF Data has to be present within the file, e.g., _MG_0144.jpg. Part of the information below is cut

 off – sorry

Bulk Rename Utility Operations Manual Page 151 of 715

Section # 7: Add

Here is how some of the ID3 tags in the Header of the file presented on the previous page, match up to Windows

Explorer Preview of the Metadata:

The information that makes up this Metadata is recorded and stored in the header of the file. Much of it can be seen in

the photos. However, not all Metadata is recorded for all files. The Metadata that is written is dependent on the device

that created the file. Windows can also write Metadata and some programs will also add their own Metadata. There

are also programs out there that the user can use to alter existing Metadata. The program, ‘EXIFtool’, comes to

immediate mind, for example.

It should be noted, because I have seen this asked many times by BRU users – No, BRU cannot alter existing EXIF or

ID3 Metadata nor can it write this Metadata. All it can do is to read this existing Metadata and extract that information

for purposes of adding it as criteria for the renaming process. BRU can alter the Windows Properties, Date Created,

Date Modified and Date Accessed through the Change File Timestamps function available in ‘Section 14: Special’,

but cannot change e.g., Taken (Original), which is a value taken from EXIF Photo.DateTimeOriginal.

I hope that puts the matter to bed once and for all.

Bulk Rename Utility Operations Manual Page 152 of 715

Section # 7: Add

And this is how the EXIF Metadata matches up with the Windows File Properties (BRU tag support is in blue):

Exposure

Focal Length

Exposure Bias

Aperture

Date taken:

PHT Tags:

Rating:

Dimensions:

Size:

Authors:

Camera maker:

Camera model:

Comments: No Windows Property available for ‘Comments’

Bulk Rename Utility Operations Manual Page 153 of 715

Section # 7: Add

Notes:

1. Metadata in BRU includes EXIF, ID3 and Windows File Properties.

2. For EXIF data, the option, ‘Extract-EXIF data (Photos)’ must be enabled.

 – see ‘ID3 / EXIF Data / File Properties’ selection under the Renaming Options Menu.

3. For MP3 files’ Id3 data, the option, ‘Extract-ID3 Data (Mp3)’ must be enabled.

 – see ‘ID3 / EXIF Data / File Properties’ selection under the Renaming Options Menu.

4. For Windows Properties data, the option, ‘Extract Windows File Properties’ must be enabled.

 – see ‘ID3 / EXIF Data / File Properties’ selection under the Renaming Options Menu.

5. ID1 and ID3 refer to a Metadata container most often used in conjunction with the MP3 audio file format. It allows

 information such as the title, artist, album, track number, and other information about the file to be stored in the file

 itself. ID tags are identified in the header information of the MP3 file. For example:

6. Enabling these options can slow down the processing. If you don't need these fields, then leave them unchecked.

7. ID3 v2 is currently not supported at the time of this writing.

Bulk Rename Utility Operations Manual Page 154 of 715

Section # 7: Add

Other Tags Available in BRU

Removed Tag <removed>

The <removed> tag is used to add back what was removed by ‘Section #5: Remove’ and replace it in another

position..

It is limited and will only be effective on the following Remove functions:

‘First – Last’ function

‘Position – From, To’ function

 and the ‘Crop’ function.

Has no effect on any other functions, e.g., Chars, Words, etc.

The <removed> tag can be used in the following Add functions:

‘Prefix’ function

‘Insert’ function

 And ‘Suffix’ function

All at the same time if desired.

Example: Name =

New Name =

New Name =

The Removed characters of ‘_M, 68’ have been replaced in the filename’s Suffix

Bulk Rename Utility Operations Manual Page 155 of 715

Section # 7: Add

File Size %z

%z can be entered in the data entry fields, Prefix, Suffix and Insert, to append the file size. The format is determined

under the ‘List’ menu item of the Display Options Menu by:

Example:

Using the string, ‘(File Size is %z)’ in the Prefix (and the format either as ‘Mixed; or ‘Kilobytes’)

Name =

New Name =

Bulk Rename Utility Operations Manual Page 156 of 715

Section # 7: Add

Hash Value Tags

Hash Values

A Hash Value or ‘Checksum’ is produced by an algorithm calculated from a file. This value is then attached to the file

and can then be used to check the file’s integrity at a later time. This is because the checksum changes as the file is

altered. Cryptographic Hash Codes, such as the ones illustrated here, are by definition a one-way hash and can't be

"decrypted" or reversed - all you can do is find a value which hashes to the expected value.

Example file used = in Prefix with two added spaces at end for clarity (i.e. ‘<(hash:crc32)> ’)

The Hash Values that BRU generates are:

Cyclic Redundancy Check (CRC)

CRC is an error-detecting code commonly used to detect accidental changes to raw data. When a file gets

entered into a system, blocks of data are checked with a calculated value attached (a ‘Checksum’). On retrieval

of the file, the calculation is repeated (Cyclic Redundancy) and, in the event the check values do not match, a

CRC error is generated. Because the check value has a fixed length, the algorithm that generates it is

occasionally used as a hash function.

CRC-32 is one of those algorithms.

BRU tag- <(hash:crc32)>

New Name =

Keccak

Keccak is another cryptographic hash function. The algorithm uses what is referred to as ‘sponge

construction’. Sponge construction takes an input bit stream (‘absorbing’) of any length and produces an

output bit stream (‘squeezing’) of any desired length.

BRU tag- <(hash:keccak)>

New Name =

Bulk Rename Utility Operations Manual Page 157 of 715

Section # 7: Add

Secure Hash Algorithm (SHA)

SHA-1, SHA-2 and SHA-3 are cryptographic hash functions all designed by the United States National

Security Agency, and is a U.S. Federal Information Processing Standard. They take input and produce a fixed-

length hash value known as a message digest – typically rendered as a hexadecimal number.

SHA-1 has security concerns (code has been broken and compromised) and has been replaced by SHA-2.

SHA-256 is a SHA-2 hash function computed with a 32-bit word. SHA-3 has not replaced SHA-2 but is used

alongside and is based on the Keccak algorithm.

BRU tags - <(hash:sha1)> <(hash:sha256)> <(hash:sha3)>

SHA-1

New Name =

SHA-2

New Name =

SHA-3

New Name =

Bulk Rename Utility Operations Manual Page 158 of 715

Section # 7: Add

MD5 (Message-Digest)

This algorithm is a widely used hash function producing a 128-bit hash value. Although MD5 was initially

designed to be used as a cryptographic hash function, it proved too vulnerable, but remains as an excellent

checksum to verify data integrity, but only against unintentional corruption. MD5 is commonly in practice by

the typical computer user for file integrity checks. There are many freeware programs out there that can both

generate and verify MD5 Hash Values.

 BRU tag- <(hash:md5)>

New Name =

Notes:

1. The angular brackets are part of the syntax for any of these tags and must be entered.

Bulk Rename Utility Operations Manual Page 159 of 715

Section # 7: Add

Using Windows File Properties (Windows Vista or Newer)

Every file has Metadata values that are assigned through Windows. These are called ‘Windows Properties’, not to be

confused with other Metadata i.e. ID3 and EXIF. BRU supports using Windows Property values in ‘Section #7: Add’

in ‘Prefix’, ‘Suffix’ and ‘Insert’ data entry fields as well as under ‘Section #14: JavaScript’.

To see the available properties for a file, right click and select, ‘Show List of File Properties’ from the context menu:

This displays the Windows Properties for the selected file. This shows you the ‘Label’ property and the current Value.

If you scroll over, you can see the ‘Name’ property, e.g., for ‘Singles’, this is ‘System.ItemFolderNameDisplay’.

Alternatively, you can also see the file properties of a file

in Windows Explorer: right-click on a file and select

‘Properties’ and then ‘Details’.

 (No photo available)

Bulk Rename Utility Operations Manual Page 160 of 715

Section # 7: Add

BRU can use either ‘Label’ or ‘Name’ Windows Properties.

Format: <(label | name)>

e.g., < (Folder name)> or <(System.ItemFolderNameDisplay)>

Where:

Folder name is a ‘Label’ property

System.ItemFolderNameDisplay is a ‘Name’ property

Both refer to the same current value - ‘Singles’. This value is what is used to rename the file.

Example using <(System.ItemType)> as Prefix and <(System.ItemFolderNameDisplay)> as Suffix:

Prefix: <(System.ItemType)> <space>

Suffix: <space> (<(System.ItemFolderNameDisplay)>)

Notes:

1. In the photo for ‘Section #7: Add’, you can’t see the entire values for the Prefix and Suffix.

a. Prefix is Windows Property ‘Name’ using –

 ‘<(System.ItemType)>’ and for clarity, followed by a space = ‘MP3 Audio File (VLC)’ <space>

b. Suffix is Windows Property ‘name’ to which I added the preceding space and the outer parentheses for

 clarity using –

 ‘(<(System.ItemFolderNameDisplay)>)’ = <space> ‘(Singles)’

2. You are not limited to just JPEG and MP3 files. Windows Properties are available for any file.

3. More information on the Windows Property System that can be set on Windows files can be found here:

https://docs.microsoft.com/en-us/windows/win32/properties/props

Bulk Rename Utility Operations Manual Page 161 of 715

Section # 7: Add

Tip:

If you have a problem getting BRU to recognize the tag, (most likely a ‘Name’ or syntax error) –

1.Bring up the Windows Properties list.

2. Locate the property you want to include (in either the ‘Label’ or ‘Name’ column)

3. Right click on that property and select ‘Copy Selection’

4. Paste it into the data entry field.

Prefix: System.ItemNameDisplay

5. Add the appropriate syntax, parentheses and angular brackets.

Prefix : <(System.ItemNameDisplay)>

Now you know the tag is correct and BRU should recognize it.

IMPORTANT:

You can also specify some extra characters ‘within’ the property < > tag and they will display in the tag as long as the

specified property is not empty (the property has no value assigned). If the property is empty, the whole tag < > will

be empty.

e.g., Adding <hyphen> character within the ‘Subject’ property tag is dependent on if that property is empty or not –

<(System.ItemType) - >

Note that this is not the same as –

<(System.ItemType)>-

.. where the <hyphen> character is added outside of the property tag and will always display regardless of the current

status of the property.

Bulk Rename Utility Operations Manual Page 162 of 715

Section # 7: Add

File Properties as Dates and Numbers

If you want to add a file property to a file name as a date or as a number, use the Property Formatting Markers.

‘#’ format a property as a number.

Note:

If a file property value has numbers and letters, the letters will be ignored.

File name =

Example using the ‘ISO speed’ ‘Label’ property:

Suffix : < - (#ISO speed)>

New Name would add a suffix of ‘ – 100’. The file property is added as a number only removing the ASCII

characters ‘ISO-‘.

New Name =

Suffix : < - (ISO speed)>

New name would add a suffix of ‘ - ISO100’. The file property is added as a text string.

New name =

Bulk Rename Utility Operations Manual Page 163 of 715

Section # 7: Add

‘$’ format a property as a date. Format is determined by the date and time Fmt options in ‘Section #8: Auto-Date’.

 Example using the ‘System.Photo.DateTaken’ ‘name’ property:

If –

Prefix : <($System.Photo.DateTaken) - >

This will add the ‘date taken’ followed by a ‘ – ‘, formatted according to values in ‘Section #8: Auto-Date’.

File name =

Settings for Add = Prefix of <($System.Photo.DateTaken) - > followed by an added space character for clarity.

Settings for Auto Date Fmt = DMY

 New Name =

where:

26 = Day 03 = Month 10 = 2010 Year

.. If I change the format of Auto Date -

Settings for Auto Date Fmt = YMD

 New Name =

where:

10 = 2010 Year 03 = Month 26 = Day

Bulk Rename Utility Operations Manual Page 164 of 715

Section # 7: Add

Using Windows Clipboard Data

BRU supports using the data contained within the Windows Clipboard in the ‘Add’ renaming process – using the

Prefix, Suffix and Insert functions.

Format:

 <clip>

Example:

I copied the text, ‘This is a Test -’ into the Windows Clipboard (Ctrl + C).

Using a Prefix of <clip>

If –

Name =

New Name =

This will also work with multiple lines of text.

Clipboard contents =

‘This is a Test *

 This is another Test –’

New Name =

Notes:

1. Only works with text data. Graphic data will not be displayed.

2. If clipboard contents change, the new data will not be reflected in New Name until you change the focus (e.g.,

 moving the mouse to another file and back again). This will refresh the file name (or press F5 to refresh all files).

3. If you want to edit the Windows Clipboard data before committing to Rename, use a Clipboard Manager,

 e.g., Clipmate.by Thornsoft.com.

4. Displays in red because the asterisk is not a legal character in a filename.

Bulk Rename Utility Operations Manual Page 165 of 715

Section # 7: Add

Using EXIF Tags

In addition to Substitute tags, BRU fully supports the extended version 2.2 EXIF Tags. They can be added as text,

number or as a formatted date, using the methods illustrated previously. Tags can also be used in JavaScript.

You can show a list of all available EXIF attributes for a file by right-clicking on the file in the main file list and

select 'Show EXIF info (.JPG files)' from the context menu.

Example of EXIF Properties for an Image File JPG

EXIF Property Value

Bulk Rename Utility Operations Manual Page 166 of 715

Section # 7: Add

Format:

<(EXIFproperty)>

Where:

EXIFproperty is made up of-

‘EXIF’ followed by a colon, ‘:’ followed by the property name

i.e.

<(EXIF:ImageWidth)>

<(EXIF:ImageResolution)>

<(EXIF:Software)>

Example:

Name =

If the image has the following EXIF data available

Using a Prefix of <(EXIF:Model)>,

New Name =

Notes:

1. If you have a problem getting BRU to recognize the tag, (most likely a syntax or ‘Name’ error) – right click on the

 desired EXIF property and select, ‘Copy Section’, then you can paste into the ‘Add’ data entry field enclosed with

 the appropriate syntax ‘<()>’. This way you can be assured the tag is correct and BRU should now recognize it.

Bulk Rename Utility Operations Manual Page 167 of 715

Section # 7: Add

IMPORTANT:

You can also specify some extra characters ‘within’ the EXIF < > tag and they will display in the tag as long as the

specified property is not empty (the property has no value assigned). If the property is empty, the whole tag < > will

be empty.

 For example, adding the <hyphen> character within the ‘EXIF:DateTimeOriginal’ property tag,

<- (#EXIF:DateTimeOriginal)>

Note that this is not the same as –

-< (#EXIF:DateTimeOriginal)>

.. where the <hyphen> character is added outside of the EXIF tag and will always display regardless of the current

status of the property.

IMPORTANT:

Using EXIF tags requires enabling ‘ID3 /EXIF Data/ File Properties’ in the Renaming Options Menu.

Notes:

1. A <space> was added to the Prefix of ‘Section #7: Add’, for clarity in the above New Name photo.

Bulk Rename Utility Operations Manual Page 168 of 715

Section # 7: Add

EXIF Properties as Dates and Numbers

If you want to add an EXIF property to a file name as a date or as a number, use the Property Formatting Markers.

‘#’ format a property as a number.

Note:

If a file property value has numbers and letters, the letters will be ignored.

Example using the ‘EXIF:DateTimeOriginal’ property:

Name:

Suffix : <- (#EXIF:DateTimeOriginal)> followed by a <space> character for clarity.

New Name will add a suffix of ‘ – 20090627’. The file property is added as a text representation of the numeric

portion only, stopping at the first non-numeric character it encounters. This results in removing any data after and

including the <space> character (including the Hour:Minute:Seconds data).

The colon character is ignored because it is an Invalid character in a filename designation (BRU automatically strips it

away), otherwise you would obtain ‘2009’. This is why the end result is ‘20090602’ and not ‘20090627154012’.

It should be noted that I used the EXIF:DateTimeOriginal Metadata to show a distinction between the ‘#’ and ‘$’

markers. You would typically want to use the ‘$’ marker for Timestamps and reserve using the ‘#’ for EXIF tags that

hold alpha-numeric textual data.

With the ‘#’ Property Formatting Marker -

New Name =

Without the ‘#’ Property Formatting marker, the file property is added as a text string in its entirety. New name will

add a suffix of ‘ – 2009-06-27 15-40-12’ -

Suffix : <- (EXIF:DateTimeOriginal)>

New Name =

Bulk Rename Utility Operations Manual Page 169 of 715

Section # 7: Add

‘$’ format a property as a date. Format is determined by the date and time Fmt options in ‘Section #8: Auto-Date’.

Example using the ‘EXIF:DateTimeOriginal’ property:

File name =

If –

Prefix : <- (#EXIF:DateTimeOriginal)> followed by a space character for clarity.

This will add the ‘date and time originally taken’ preceded by a <hyphen> and followed by a space, formatted

according to values in ‘Section #8: Auto-Date’.

Settings for Auto Date Fmt = DMY

 New Name =

 where:

 27 = Day 06 = Month 09 = 2009 Year

.. If I change the format of Auto Date -

Settings for Auto Date Fmt = DMY HMS

 New Name =

 where:

 27 = Day 06 = Month 09 = 2009 Year

 15 = hour (3:00 pm) 40 = minutes 12 = seconds

Bulk Rename Utility Operations Manual Page 170 of 715

 Section # 8 - Auto Date

Bulk Rename Utility Operations Manual Page 171 of 715

Section # 8: Auto Date

Auto Date – append a date to the beginning or end of the filename.

Mode

Must be set to other than ‘None’ for Auto Date to be applied to the New Name.

Mode lets you choose between:

None (default) – no additions

Prefix – add date at beginning of filename

Suffix – add date at end of filename

 I added a <space> character as a ‘Sep.’(arator) for clarification in photos.

Type

Type selects the type of date data to be used. You can select among (Windows File properties):

Creation date (Current) – the date used will be the current creation date

Modified date (Current) – the date used will be the date the file was last modified

Accessed (Current) – the date used will be the date the file was last accessed

Current – the date used will be today’s date

There are also additional types available dependent on other settings.

For more information on these refer to:

‘Adding a New Date & Timestamp’, ‘ Using the EXIF Property “Taken (Original)” ’ in this section.

Bulk Rename Utility Operations Manual Page 172 of 715

Section # 8: Auto Date

Fmt

Format – this is the format used for the Date. Select among –

DMY- Day Month Year

DMY HM- Day Month Year Hour Minute 24 hour military time

DMY HMS- Day Month Year Hour Minute Seconds 24 hour military time

MDY- Month Day Year

MDY HM- Month Day Year Hour Minute 24 hour military time

MDY HMS- Month Day Year Hour Minute Seconds 24 hour military time

YMD- Year Month Day

YMD HM- Year Month Day Hour Minute 24 hour military time

YMD HMS- Year Month Day Hour Minute Seconds 24 hour military time

 I added a <space> character as a ‘Seg.’ for clarification in photos.

Sep.

Separator character – any character(s) entered here will be placed between the date data and the original filename.

 Example with Mode = Suffix and Fmt DMY, using the semi-colon as a separator will change New Name to:

New Name =

Seg.

Segment character – this character(s) is used to distinguish between the different sections that make up the date.

 Example, using the <hyphen> as a segment character, the date changes from:

 200112

 To:

 20-01-12

 New Name =

Bulk Rename Utility Operations Manual Page 173 of 715

Section # 8: Auto Date

Cent.

Century – normally the year is expressed as two digits but if this is checked, it will be expressed as 4 digits.

e.g. 02-11-2011 instead of 02-11-11

Custom Format

In addition there is a CUSTOM format that can be selected. This allows a custom format to be entered in the Custom

data entry field:

The format codes are:

Code Meaning Using

%a Abbreviated weekday name lowercase a

%A Full Weekday name uppercase A

%b Abbreviated month name lowercase b

%B Full month name uppercase B

%d Day of Month (01-31) lowercase d

%H Hour in 24-hour format (00-23) uppercase H

%I Hour in 12-hour format (1-12) uppercase I

%j Day of Year (01-366) lowercase j

%m Month number (01-12) lowercase m

%M Minute (00-59) uppercase M

%p AM/PM Indicator lowercase p

%S Seconds (00-59) uppercase S

%U Week number of year (00-53), with Sunday as the first day of the week uppercase U

%w Weekday (0-6), with Sunday=0. lowercase w

%W Week number of year (00-53), with Monday as the first day of the week uppercase W

%y Year, with no century indicator (00-99) lowercase y

%Y Year, with century indicator (e.g. 2004) uppercase Y

%z Time zone name lowercase z

%% Percentage sign percentage sign %

These, as well as any characters or text you may want to include can be entered.

Example,

 "Created on %a, %d %B, %Y"

Results in:

 "Created on Tue, 25th March 2004”

Bulk Rename Utility Operations Manual Page 174 of 715

Section # 8: Auto Date

Off.

Offset – can be expressed as positive or negative value. This can be used to alter the date by setting a future (positive)

or past (negative) date. The offset value is applied to time and is in the form of hours. So an offset of +1 is an

increment of 1 hour. An offset of –1 is a decrement of 1 hour.

For example to set back the date by 24 hours to yesterday, enter –24 in the Offset field using a Type as Current Date.

Or… setting a file timestamp to account for daylight savings time using an offset value of –1 (Fall) or +1 (Spring).

If the offset’s value is in hours and 1 Day = 24 hours, as the offset value increases it will affect first the day, then the

month and then the year.

So, to increment by one … day is.. + 24 hours (1x24)

month is.. + 720 hours (30 x 24)

year is .. + 8760 hours (365 x 24)

Notes:

1. Month calculation can also be based on 31 (744 hours), 28 (672 hours) and sometimes 29 (696 hours).

2. Also refer to ‘Special Menu – Change Timestamps – Delta’.

3. Negative numbers can be entered directly into ‘Offset’ data field or you can use the Up/Down indicators:

4. Time is entered in 12 hour format but New Name appended Timestamps are expressed in 24 hour Military Time.

Hour: (the word, ‘hours’, is optional written or spoken) Tim Tidbit –

12:00 am = 00 (zero zero hundred hours) Verbally properly expressed as:

1:00 am = 01 (zero one hundred hours) 1:00 pm = 13

2:00 am = 02 (zero two hundred hours) 2:00 pm = 14 12 hr. Military

3:00 am = 03 . 3:00 pm = 15 11:59 pm = twenty three fifty nine hundred

4:00 am = 04 . 4:00 pm = 16 12:06 am = zero zero six hundred (hours)

5:00 am = 05 etc. 5:00 pm = 17 6:30 pm = eighteen thirty hundred (hours)

6:00 am = 06 6:00 pm = 18 6:35 pm = eighteen thirty five hundred

7:00 am = 07 7:00 pm = 19 3:01 am = zero three one hundred (hours)

8:00 am = 08 8:00 pm = 20 2:15 am = zero two fifteen hundred

9:00 am = 09 9:00 pm = 21 2:37 am = zero two thirty seven hundred

10:00 am = 10 (ten hundred) 10:00 pm = 22 6:00 am = zero six hundred (hours)

11:00 am = 11 (eleven hundred) 11:00 pm = 23

12:00 pm = 12 (twelve hundred) not .. ‘oh six hundred’

 e.g., 7:30 pm is written as 1930 expressed as nineteen thirty hundred hours

Bulk Rename Utility Operations Manual Page 175 of 715

Section # 8: Auto Date

There is one more consideration. When applied against a file date, the offset value is taken in conjunction with the

timestamp of the file to obtain the final value.

 Example using ‘Taken (Original) EXIF’ as type,

 The filename

 SAM_0096.JPG

 Using these settings:

 Mode is Prefix.

 The Taken (Original Date) is May 07, 2011

 The date format is Month Day Year

 The Separator character is a single <space> (can’t tell from illustration but it is there)

 The Segment character is a single <hyphen>

 The Century is enabled so the year is expressed as 4 digits

 Custom format is not used.

 Offset is currently set at zero.

 results in:

What If I needed to use an offset to change the date forward to May 8th ? I would need to use a positive offset value,

but which value? Look at the time stamp…

If you look to the right in the Content Pane, you can see the timestamp of the Taken (Original) date as 4:57 AM. The

hour value is 4. The offset must move to midnight of the next day, hour 24.

If the Offset is increased to 20, 20 + 4 hours = 24 hours, the day will change from May 7 to May 8.

For yesterday, use a value of –5 because to get back to yesterday you have to get past midnight of the current day.

Therefore, 4am -5 hours = -1, or hour 23 of the previous day if you think in terms of …

 0 = hour 24 (midnight of the current day) , and –1 = hour 23 (11 pm of the previous day)

Bulk Rename Utility Operations Manual Page 176 of 715

Section # 8: Auto Date

Adding a New Date & Timestamp

In the ‘Type’ of date, there are three additional options for using the changed file date and timestamp as part of the

new file name. This directs BRU to use the Creation, Modified or Accessed Dates that were entered in the ‘Change

File Timestamps’ function of ‘Section #14: Special’ as the source data for ‘Type’ instead of the current Windows

Properties values for those timestamps.

Creation (New)

Modified (New)

Accessed (New)

This works in conjunction with ‘Change File Timestamps’ of the Special Menu or ‘Section #14: Special’.

Data entered here will modify the file’s Timestamp.

In this example, the Date Created is set to ‘Current’, e.g., 1\3\2020.

This will change the file’s creation date from it’s original date of

1\20\2012 to the current date:

From this -

To this -

Selecting one of the three, ‘Creation (New)’, Modified (New)’ or

‘Accessed (New)’ Type(s), makes this data available to be included

as part of the new file name.

Bulk Rename Utility Operations Manual Page 177 of 715

Section # 8: Auto Date

Using the same example on this filename,

Name =

New Name =

When you click the ‘Rename’ button, not only will it have changed the file’s creation date, but this information will

also be assigned to the file name as well.

Notes:

1. The ‘Change File Stamps’ option from the Special Menu or ‘Section #14: Special’ must contain data in order for

 Auto Date’s (New) change to occur.

2. For more information on setting options in the ‘Change File Stamps’, refer to the Special Menu under the Menus

 Section.

3. Tim Tidbit - Military Time Conversion:

 If Military Time is PM, Subtract 12 to convert Military 24 hour time to Standard 12 hour time:

 1800 – 12 = 6 or 6 pm

 If Standard Time is PM, Add 12 to convert Standard 12 hour time to Military 24 hour time:

 6:00 pm = 6 + 12 = 18 or 1800 (18 hundred hours)

4. Tim Tidbit - Military Time Conversion trick:

 Drop the one and minus two –

 e.g.,

 18 hundred hours = 1800 drop the one = 8 minus two = 6 = 6:00 pm

5. If a Timestamp is appended in New Name it uses Military Time unless Custom Format 12 hour time is specified.

 a. 24 hour time is similar to Military Time except that Military Time does not use colons and expresses 8 as 08.

 b. BRU uses Military Time because of the numeric notation of 08 vs 8. Colons can be added as Seg(ment)

 characters.

Bulk Rename Utility Operations Manual Page 178 of 715

Section # 8: Auto Date

Using the EXIF property ‘Taken (Original)’

Image files that were created with a digital device will have embedded Metadata information called EXIF data. One

of these bits of information is called ‘Taken (Original)’, or the ‘original date’ the image was taken.

 In order to use this, you must first enable, ‘Extract EXIF Data (Photos)’, of the Renaming Options Menu –

The column,‘Taken (Original)’ is visible. It contains a value for the EXIF data extracted from an image file.

e.g., Michael 5705.jpg holds EXIF data. The data is displayed in the ‘Taken (Original)’ column.

Notes:

1. The EXIF Metadata value for Taken (Original) maps from EXIF DateTimeOriginal. This is the EXIF data being

 referred to in the above examples.

2. The term, ‘mapping’ means in this context to extract a value from the EXIF property source.

3. Metadata is also generally known as ‘tags’

Bulk Rename Utility Operations Manual Page 179 of 715

Section # 8: Auto Date

In the ‘Type’ item of Auto-Date (8), you can select among the following additional entries:

Taken (Original) - The date when the image was first captured. The original timestamp which

 should never change. Maps to EXIF DateTimeOriginal.

Taken (Digitized)- The date the image was stored as digital data. This would normally be the

 same as the original timestamp, but if the RAW file was edited, e.g., Canon

 Digital Photo Professional, then the new date is reflected.

 Maps to EXIF DateTimeDigitized.

Taken (Modified)- Reflects any last modification. Maps to EXIF DateTime.

Taken (Recent)- The most "recent" of all three. By recent, this means the last timestamp in

 the file, not necessarily the most recent in time. This is purely to retain the

 same behaviour as previous versions of Bulk Rename Utility.

With the exception of Taken (Recent), the other two items, Taken (Original) and Taken (Digitized) get their values

directly from EXIF data items. Typically, these two values are the same but they can vary by a few seconds.

Using the example from before:

Name =

Auto Date Fmt = using a Sep of ‘- <space>’

Mode = Suffix

Where Type =

Taken (Original)

 New Name = where: 08 = Month, 04 = Day, 09 = 2009 (Year)

 15 = (3:00 pm) Hour, 44 = Minutes, 26 = Seconds

Taken (Date Digitized) = no change

Taken (Modified)

 New Name = where: the date changed to Aug 16 2009

 Time changed to 7:53:49 pm

Taken (Recent) = back to using original timestamp

Bulk Rename Utility Operations Manual Page 180 of 715

Section # 8: Auto Date

Notes:

1. BRU will only get the flags from JPEG images (.JPG or .JPEG extension), TIFFs (.TIF, .TIFF), Nikon (.NEF) and

 Canon (.CR2) files.

2. If there is no value in the Taken (Original) column (the EXIF property is empty) for a particular file, then selecting

 the Taken field as the ‘Type’ will append nothing to the New Name field.

3. The EXIF properties sheet will be blank if you select a file type other than a JPEG file. You can bring up the

 Property sheet by right clicking on the file and selecting from the Context Menu, ‘Show EXIF Info (.JPEG Files)’.

4. You need to enable ‘Extract EXIF Data (Photos)’ from the Renaming Options Menu if there are no values in the

 Taken (original) column for any image files containing Metadata or if the message ‘Set menu option to extract

 EXIF data’ is visible in the column display. This may also require a ‘Refresh Files’ either through the Actions

 Menu or by pressing F5 to see the changes take effect.

5. ‘Taken (Modified)’ is not the Windows Property ‘Modified’ date. It is the EXIF property, DateTime, so don’t get

 this confused in the example on the previous page.

Other Considerations:

1. Taken (Original) does not support RAW files. You can set a DSLR (Digital Single Lens Reflex) camera to create a

 RAW image instead of a JPG when taking an image. A RAW image is just that, RAW – unprocessed. JPG is not

 only processed, but uses compression that may diminish the original quality that might otherwise be obtained.

2. If you have a RAW image, you can use software that can process the image the way you want. It offers higher

 quality with more options available to modify the image than if it was just in a JPG format. After editing, the file

 can be saved as a JPG and read by BRU.

3. The main disadvantage with RAW is that it takes more time because it has to be individually processed. The

 format is also proprietary to the camera manufacturer and requires software that is licensed to that manufacturer’s

 format in order to process the file. If the RAW file is stored away, you may not be able to read the file at a future

 date unless you have the proper software capable of decoding it.

4. Under what circumstances would there not be a value for Taken (Original) for an image file?

 a. The file was created in Windows or was created in a device not capable of creating the Metadata.

 b. The EXIF Metadata was removed by a user or a third party utility.

 c. The file was transferred or copied over from another File System, FTP, USB Stick or other source and the

 Metadata was lost in the transfer.

 d. The filetype is not supported by EXIF DateTimeOriginal. See Notation #1 at the top of this page.

Bulk Rename Utility Operations Manual Page 181 of 715

Section # 8: Auto Date

Understanding EXIF and Windows Properties as they apply to BRU

When it comes to Date Metadata there are two property types:

EXIF (Exchangeable Image File Format)

The Exchangeable image file format, officially EXIF, in accordance with JEIDA/JEITA/CIPA specifications. is a

standard that specifies the Metadata formats for images, sound, and ancillary tags used by digital cameras (including

smartphones), scanners and other systems handling images. Bulk Rename Utility supports the EXIF Metadata and

attributes version 2.2. A full listing can be found in the appendix.

When you take a picture with your digital device, an image file (usually a JPEG or JPG) is written that not only

contains the information that makes up the image, but also what is called Metadata. This Metadata can consist of

many different pieces of additional information including date, time, camera settings, as well as geolocation data.

Supplemental Metadata can also be added by the photo processing software, third party software, and from the user.

These dates are assessed at the point in which the file is created by the device and may consist of –

DateTimeOriginal, or CaptureDate depending on the device.

DateTimeDigitized or CreateDate depending on the device.

This Metadata will always be the most accurate and is recorded into the file’s header. Exactly which Metadata items

are recorded is dependent on the device that created the file. For example, a file may have the EXIF CreateDate but

not EXIF DateTimeOriginal. These timestamps are not easily edited but there are programs that can, e.g., EXIFTool.

Here are the EXIF items that BRU uses in ‘Section #8: Auto Date’ –

EXIF:DateTimeOriginal: When the shutter was clicked The date and time when the original image data was

generated. For a digital still camera, this is the date and time the picture was taken and

recorded.

EXIF:DateTimeDigitized: When the image was converted to digital form. For digital cameras, DateTimeDigitized

will be the same as DateTimeOriginal; for scans of analog pics, DateTimeDigitized is

the date of the scan, while DateTimeOriginal was when the shutter was clicked on the

film camera.

EXIF.DateTime: This is the date and time the file was changed (Modified).

In the ‘Type’ option these are referred to as:

Taken (Original) ~ corresponds directly to EXIF DateTimeOriginal

Taken (Digitized) ~ corresponds directly to EXIF DateTimeDigitized, i.e. Scanning an image file

Taken (Modified) ~ corresponds directly to EXIF DateTime

Bulk Rename Utility Operations Manual Page 182 of 715

Section # 8: Auto Date

Windows File Properties

These dates are assessed as Windows Properties. This information may not be as accurate as the EXIF Metadata but is

representative of the timestamps that Windows applies after the files are imported from the device and assigned as

the item passes through the Windows OS. These properties are also applied to files that are created within Windows

directly. If, however, a Windows Property maps from an EXIF item, it would assume that value.

The Windows File Properties for Date Metadata (Date Created, Date Modified, and Date Accessed) do not map from

any EXIF Metadata. That information is obtained from the File System.

All of these properties are easily modified.

For example, these are Windows File Properties:

Date Created – Assigned either at the moment the file is entered into the Windows OS or assigned as the file is

created within Windows. This timestamp is not necessarily the same value as the EXIF item

DateTimeOriginal. Date Created is not carved in stone. It can be changed by Windows or the

user. Where Date Created is the Label of the Windows Property, System.DateCreated is the

Name (From right-click Context Menu, select ‘Show List of File Properties).

Date Modified – This timestamp is assigned whenever the file undergoes an edit, modification or if the file was

moved. Where Date Modified is the Label of the Windows Property, System.DateModified. is

the Name.

Date Accessed – This timestamp is assigned whenever the file is accessed by a user. Where Date Accessed is the

Label of the Windows Property, System.DateAccessed is the Name.

In ‘Section #8: Auto Date’ these are referred to as:

Created (Current) ~ corresponds to Date Created

Modified (Current) ~ corresponds to Date Modified

Accessed (Current) ~ corresponds to Date Accessed

Notes:

1. These are not EXIF Metadata and do not map from EXIF Metadata. They originate from the File System.

2. BRU doesn’t do any mapping, it only reads whatever data is available. When I refer to mapping, I refer to mapping

 performed outside of BRU to obtain the values that BRU ultimately extracts.

3. Certain Windows Properties are stored as part of the file system, FAT32, exFAT, UDFS and NFTS4. These include

 Date Created, Date Modified and Date Accessed.

4. EXIF and other Metadata, including ID3, are stored within the physical file, commonly in the File Header.

Bulk Rename Utility Operations Manual Page 183 of 715

Section # 8: Auto Date

Understanding Metadata

Before continuing, I feel a further discussion about Metadata is warranted. This concept has caused so much

confusion, but it is important to understand if we want to determine where BRU gets its values.

There are three general types of Metadata. That which is stored as part of the File System or somewhere on the

Volume, that which is stored as part of the file itself and that which is stored in a separate file as an ancillary.

The Windows File System Metadata

The File System is an area on the storage media or ‘Volume’, that has an MFT (Master File Table) in a FAT32, FAT

or NTFS system. In other systems, like UNIX based, it may be referred to as something else. It is represented on the,

e.g., hard drive as $MFT, and not generally accessible. The MFT acts like an index to the information stored on the

volume.

Each volume has its own MFT or equivalent, and therefore its own File System. Logical drives are on the same

volume and share one File System. Not all of the File System Metadata is stored in the MFT. Some of it is stored in a

completely different structure, e.g., inode, Streams (Microsoft), or Forks (Apple), but within the same volume the file

resides.

It holds the following information:

1. It keeps records of all files in a volume

2. The files' location in the directory

3. The physical location of the files on the drive

4. The file Metadata

The last one is important for our consideration.

Some of this Metadata is defined as Resident Attributes. The File Metadata falls under the ‘Standard Attribute’

category under Resident Attributes. But don’t worry, I’m not going to discuss Resident vs Non-Resident or get

tangled up in Sparse files. This is just to give you an idea of the complexity involved. I am going to make it as simple

as I can hopefully without misinforming.

File Metadata Stored Within the Windows File System

The File Metadata consists of:

1. Date Created

2. Date Modified

3. Date Accessed

4. Last Written Date

5. Physical Size (the space the file actually occupies on the hard drive)

6. Logical Size (the size of the information in the file – number of characters, etc.)

7. ACL (Access Control List which are the Permissions)

Bulk Rename Utility Operations Manual Page 184 of 715

Section # 8: Auto Date

BRU extracts the File Metadata and displays it in the columns for Created Date, Modified Date and Date Accessed.

These, together with other Metadata, make up the Windows Property System. Most of the Metadata is stored not as

part of the Windows File System, but within the file itself, or in a separate ancillary file created by certain proprietary

software. EXIF and XDM and ID3 Metadata are also stored in the file but are not Windows Properties.

File Metadata Stored Within the File Itself

I have already discussed EXIF Timestamps Metadata and how it is different from the Windows Properties of Date

Created and Date Modified. EXIF Metadata as well as ID3 are also stored as part of the file, usually in the Header.

EXIF Metadata only applies to certain filetypes; image, video and sound. ID3 only applies to MP3 files. EXIF

properties are recorded by the device creating the file while Windows Properties are assigned by the OS as the file

passes through the system. Other Metadata, like ID3, may be added through other sources but again this would be

applied within the OS. EXIF and XDM (Extensible Device Metadata) are the only Metadata that are not OS

dependent (to my knowledge). XDM is relatively new and not currently supported by BRU.

Much of the other Metadata that make up the Windows Properties including Metadata applied by various sources,

e.g., third party programs, user , etc. are stored within the file itself. Certain other Metadata may also be stored in a

separate ancillary file generated by proprietary software.

For a list of a file’s available Windows Properties, use the ‘Show List of File Properties’ selection from the Context

Menu of a file by right clicking on the filename. In newer versions of BRU, these Windows Properties can be used in

the renaming process.

Notes:

1. In order for BRU to extract the information, you first have to enable, ‘Extract Windows File Properties’ from the

 ‘ID3 / EXIF Data / File Properties’ submenu of the Renaming Options Menu.

BRU can use any of these Windows Properties in renaming. For more information, please refer to ‘Using Windows

Properties’ and ‘Using EXIF Tags’ under the section heading of Section #7: Add.

Bulk Rename Utility Operations Manual Page 185 of 715

Section # 8: Auto Date

EXIF and XDM Metadata doesn’t change easily unless you use a third party utility. Windows Properties can easily be

changed by Windows, by the user or by other software. Metadata can also be added through same means.

Metadata when Moving or Copying Files and Folders

Because the Standard File Attributes, including the Date Created, Date Modified and Date Accessed, are stored as

part of the File System, whether or not this Metadata is preserved during a Copy or Move operation is first dependent

on the target location.

1. If the target location is a different volume, and this could be a server or other storage device, e.g., USB Flash Drive,

 external Hard Drive, etc. – in short – any volume that has its own File System, some of the File System Metadata

 will not be preserved.

 a. If a file is copied, the new File System will assign its own Date Created and other attributes using the current

 timestamp. To the File System, this is a newly created file, however Date Modified is preserved because this

 has to do with the contents. If the contents of the file are not changed, then the Modified Date won’t change.

 Date Created, on the other hand, relates to the file created on the new File System and that does change.

 b. If a file is moved, it is essentially a Copy and Delete operation, thus the new file will have the current timestamp

 for both the Date Created and Date Modified. The previous Metadata for these items are not preserved.

 c. Metadata stored within the file itself should transfer over because it is part of the file itself. Ancillary files

 typically do not transfer over.

 d. Date Accessed - Always set with the current timestamp. Previous Metadata for this item is not preserved.

2. If target location is on the same volume (this also applies to logical partitions on the same volume), then the File

 System is the same. The Standard File Attributes Metadata that are preserved is dependent on whether it is a Copy

 or a Move operation.

 a. If a file is copied, it retains the Date Modified but the Date Created is not preserved and changes to the current

 timestamp unless the file already exists at the target location. Under that circumstance, the Date Created

 Metadata would be preserved.

 b. If a file is moved, both the Date Created and Date Modified are retained.

 c. Date Accessed - Always set with the current timestamp. Previous Metadata item is not preserved.

 d. Copying Folders that contain files will change the Folder timestamp to the current timestamp, but the files

 themselves should retain their original Metadata. If you want to preserve the Timestamps of the folders, then you

 must first zip them before performing the copy operation. This behavior is File System dependent and whether or

 not a directory sub-structure is created in the copy/move operation. This will be discussed next.

Bulk Rename Utility Operations Manual Page 186 of 715

Section # 8: Auto Date

Metadata when Copying and Moving Folders in a Directory Sub-Structure

Under NTFS:

1. A directory is created on a volume with the Date Created and Date Modified set with the current timestamp.

2. Date Modified will only change if the contents of the file changes.

Scenario –

 Two directories, Test A and Test B on the same volume.

 a. The Test B directory is moved as a sub-directory under Test A.

 Test A becomes the root or Main directory of the new sub-directory structure.

 1. Test A:

 Date Created is retained, but the Date Modified changes to current timestamp. The File System views the

 added sub-directory of Test B as a modification to Test A’s contents.

 2. Test B Subdirectory:

 Both the Date Created and Date Modified are retained. The File System already has the information on the

 Test B directory in the MFT. No new entry is required, so the Metadata does not change.

 b. The Test B directory is copied as a sub-directory under Test A. The original Test B directory remains.

 Test A becomes the root or Main directory of the new sub-directory structure.

 The Test B original directory does not change.

 1. Test A:

 Date Created is retained, but the Date Modified changes to current timestamp. The File System views the

 added sub-directory of Test B as a modification to Test A’s contents.

 2. Test B Subdirectory:

 Both the Date Created and Date Modified changes to current timestamp. Although Test B was copied, the File

 System has to create a new entry in the MFT to accommodate the new subdirectory with new Metadata.

Under FAT or FAT32:

1. The Date Modified does not change even if the contents of the folder change. Thus, if Test B was copied, both the

 Date Created and Date Modified are retained.

Source Material: KB299648

Bulk Rename Utility Operations Manual Page 187 of 715

Section # 8: Auto Date

v3.4 New Additions

Item Date –

‘Item Date comes from the Windows Property, System.ItemDate and it is the primary date

of interest for an item.’

That statement is taken directly from the Microsoft docs.

The statement continues –

‘In the case of photos, for example, this property maps to another Windows Property,

System.Photo.DateTaken’

Now my take –

For other video or media file types, supplementary mapping may take place, but more importantly, for certain image

types that are supported by System.Photo.DateTaken, it corresponds to an EXIF property depending on the file type.

Why is this important? Because EXIF values are more accurate than Windows Properties. The available EXIF

Metadata is dependent on the device that created the image. Windows will map from the EXIF value from any of

these Metadata for System.Photo.DateTaken:

EXIF:DateTimeOriginal This is the date and time an image was taken at the moment of the shutter

actuation.

XMP:DateTimeOriginal This is the XMP equivalent of the EXIF value. Not currently supported in BRU.

EXIF:CreateDate This is the timestamp that the file was written to the memory card in a device at

the moment of creation. Typically there should only be a few seconds difference

between this item and DateTimeOriginal with DateTimeOriginal being the more

accurate of the two if both are available; typically, not.

Most devices will only create one or the other. This is dependent on the type of

device creating the file and the filetype.

It should also be noted that DateTimeOriginal is listed in the EXIF v2.2 and

CreateDate is not. I do not know why. CreateDate may be created for an e.g.,

video filetype instead of DateTimeOriginal while DateTimeOriginal is reserved

for supported image filetypes of JPEG, TIFFs, NEF and CR2 files.

EXIF:Photo.DateTimeDigitized This is the timestamp the image was stored as digital information. Any

difference in time between this item, CreateDate and DateTimeOriginal will also

be minimal but in most cases, the same. Some devices may create the

CreateDate item while others would create only the DateTimeDigitized item.

CreateDate, I believe, is the equivalent of DateTimeDigitized.

Bulk Rename Utility Operations Manual Page 188 of 715

Section # 8: Auto Date

v3.4 New Additions

BRU’s Taken (Original) corresponds with the EXIF:DateTimeOriginal value and will only display if there is a value.

This value would be unavailable for images originating in a device not capable of generating the Metadata.

This is an image file that was created in a camera and later imported into the computer.

Look at a closeup of these three dates:

The Item Date for this filetype mirrors the Taken (Original) value, both of which in turn, map directly from the EXIF

Metadata DateTimeOriginal, so the timestamp is accurate. This date reflects the creation of the image in the camera.

On the other hand, the Windows Property, Date Created, is when the image was created in Windows. In this example,

it is the point at which the image file was transferred from the camera into the computer. You can see the discrepancy

of three days in the dates between the other two. Typically, though, with most filetypes supported by the EXIF

Metadata DateTimeOriginal, there won’t be that much of a difference, if any. This is dependent, of course, on when

the file is imported into Windows from the device.

If Item Date and Taken (Original) are basically the same value, why do we need it? They are not.

1. Taken (Original) only supports limited filetypes – as noted previously, JPEG images (.JPG or .JPEG), TIFFs

 (.TIF, .TIFF), Nikon (.NEF) and Canon (.CR2) files and only if there is an EXIF DateTakenOriginal Metadata

 value available for those files that was created by the originating device.

2. Item Date applies to most media, pictures, and video filetypes including HEIC files, RAW camera files, etc., This

 date can be mapped from other Metadata as well as EXIF DateTakenOriginal, meaning, that even if BRU has no

 value for Taken (Original), Item Date most likely will. The Item Date Metadata is also available for most other

 file types and not just media and images.

3. Taken (Original) is restricted to the epoch date that limits the earliest recognized date to 01/01/1970 (see

 ‘Renaming with Dates Prior to January 1, 1971’ in the Appendix of Volume II for further information on the epoch

 dates). Item Date does not have this restriction. Update – I believe this restriction has been lifted in newest version.

HEIC stands for High Efficiency Image Format, a graphic format adopted by Apple for its newer devices. It allows

photos to be created in smaller file sizes while retaining a higher image quality as compared with JPEG/JPG.

Other Considerations:

1. Taken (Original) is accurate to the seconds.

2. Item Date does not take in consideration seconds. It is accurate to the minute (Microsoft dropped the Seconds).

3. Certain exceptions of .exe files exhibit Metadata but Item Date returns no value. I am at present working on

 the problem as to why. This seems to be an abnormality and not typical of most .exe filetypes.

Bulk Rename Utility Operations Manual Page 189 of 715

Section # 8: Auto Date

v3.4 New Additions

Notes:

1. EXIF, Exchangeable Image File format is fully supported by BRU.

2. XMP, Extensible Metadata Platform, is relatively new and not currently supported by BRU.

3. The Windows Property, Date Created, is NOT the EXIF property CreateDate as already explained above, so do not

 get confused between the two. Date Created is a timestamp assigned by the File System as the file is first entered

 into the Windows OS. In the case of the example cited previously, a photo was imported from a camera, thus, the

 two values may not be identical.

4. There are utilities that can alter EXIF data affecting the reliability of the original timestamps. One such popular

 utility is EXIFTool.

5. Item Date does not only apply to video and media files but most any file type, but only if the Metadata exists. If

 not, then the Item Date will be blank for that file.

6. The Item Date can be shown as a column in the Content Pane. It does require enabling the option, ‘Extract

 Windows File Properties’ from the Renaming Options Menu. To view the column, just right click in any of the

 Column Headings and select Item Date from the list:

Now, the Item Date column is visible:

Bulk Rename Utility Operations Manual Page 190 of 715

Section # 8: Auto Date

v3.4 New Additions

My Conclusions arrived at for Item Date.

Item Date is the Windows Metadata property, System.ItemDate. In BRU’s List of File Properties, the Label is ‘Date’.

System.ItemDate’s value can not only map from the EXIF Metadata DateTimeOriginal for supported image filetypes,

but also maps from other Windows Metadata, primarily, Date Created and Date Modified. This provides an Item Date

value for most any filetype. I wanted to find out how.

I tested a number of different filetypes. Here is just a sample.

.txt file:

.pdf file

.exe file

You can see that Item Date assumes a value for all of these different filetypes.

My findings:

(1) In the event of a filetype that is supported by EXIF DateTimeOriginal where the Metadata exists and holds a

 value, both Taken (original) and Item Date will assume this value.

(2) In the event of a filetype that is:

 a. Unsupported by EXIF DateTimeOriginal …

 b. Neither an image or media type file …

 c. Supported by EXIF DateTimeOriginal (JPEG, TIFFs, NEF and CR2 files) but has no value or the EXIF

 Metadata for DateTimeOriginal is unavailable …

 ... then the following takes place:

 1. Item Date will look at the Windows Properties of Date Created and Date Modified, and assume the value of the

 earliest date with the exception of file types that are recognized by Windows as documents.

 2. Item Date will assume the Windows Metadata, Date Last Saved, if available, for ‘recognized’ document file

 types.

Bulk Rename Utility Operations Manual Page 191 of 715

Section # 8: Auto Date

v3.4 New Additions

So where does System.ItemDate get its value for these type of files and how does it determine which value to use?

Back to the statement, ‘… it is the primary date of interest for an item.’ Vague. Can’t you do better Microsoft?

Okay, so it is up to me and a lot of theories and testing.

The docs also state that System.ItemDate can map to System.Photo.DateTaken from among others. Logically, if EXIF

DateTimeOriginal holds a value then it is reasonable to presume that System.Photo.DateTaken will assume that value

and in turn, System.ItemDate will hold that same value.

Why do I say this? Because Microsoft Docs support this.

Microsoft documentation references are in dark sky blue–

System.ItemDate –

https://docs.microsoft.com/en-us/windows/win32/properties/props-system-itemdate

‘The primary date of interest for an item. In the case of photos, for example, this property maps to

System.Photo.DateTaken.’

System.Photo.DateTaken –

https://docs.microsoft.com/en-us/windows/win32/properties/props-system-photo-datetaken

‘The date when the photo was taken, as read from the camera in the file's Exchangeable Image File (EXIF)

tag.’

The EXIF tag in question can only be one of DateTimeOriginal or DateTimeDigitized.

This concludes that the Windows Metadata property, System.ItemDate, IF it maps from the Windows Metadata

property, System.Photo.DateTaken, assumes the value of the EXIF value of DateTakenOriginal IF this tag holds a

value and it would only hold a value for the supported filetypes. Those filetypes are JPEG, TIFFs NEF and CR2 files.

Other research garnered the following explanation, also taken from some Microsoft Docs stating:

‘Windows determines the most relevant date based on the type of the item. For example, if the item is a photo,

System.ItemDate (a Windows property) maps to System.Photo.DateTaken (a Windows property of which the

value is assumed from EXIF DateTimeOriginal). Or, if the item is a an MP3, then System.ItemDate (may also)

map(s) to, System.Media.DateReleased (another Windows Metadata property).’

Bulk Rename Utility Operations Manual Page 192 of 715

Section # 8: Auto Date

v3.4 New Additions

My Conclusions arrived at for Item Date. cont.

Therefore,

Although Taken (Original) maps directly from EXIF DateTimeOriginal, and it is this EXIF item that limits the

filetypes supported, Item Date does not have this limitation and has many options from which to map, some of those

consist of Windows Properties that may – not always, in turn map from EXIF Metadata. The most common of these –

and the only ones I have found given the filetypes I have tested, are:

EXIF tags:

EXIF DateTimeOriginal Item Date assumes these Creation Date Values if EXIF Data

EXIF DateDigitized is available for the supported image filetypes.

Taken (Original) will also hold this value.

Windows Properties:

 Item Date will use the earlier of the two date values for both

Date Created image filetypes not supported by EXIF DateTimeOriginal

Date Modified and for non-image filetypes that are not Document filetypes.

System.Photo.DateTaken Item Date assumes the value from System.Item.Date. If the

 filetype is a supported image filetype, Windows will map out

to System.Photo.DateTaken which in turn maps from EXIF

DateTimeOriginal.

Document Property:

 Item Date may assume this value if the filetype is a

Date Last Saved ‘recognized’ Document filetype and has Metadata available.

As for Microsoft’s claim of mapping to other Metadata, e.g., System.Media.DateReleased for an MP3 file, my

findings dispute this by and large. I tested many MP3 and video files and found that unless it is a file type supported

by Taken (Original), and MP3 and video files are not supported, System.ItemDate assumes the value from the earlier

date of the two Windows Properties, period.

Document files, though, are another matter. I have found that Item Date can assume the Windows Metadata property,

System.Document.DateSaved (Date Last Saved) value if available, of recognized Document filetypes. What

constitutes a recognized Document filetype will be explained.

I find no other values in consideration, but let’s say for the sake of argument, that it is true that other values are

assumed. Who am I to question Microsoft?

Bulk Rename Utility Operations Manual Page 193 of 715

Section # 8: Auto Date

v3.4 New Additions

My Conclusions arrived at for Item Date. cont.

Still confused? Perhaps this visual will clarify (as I see it anyway):

 Item Date

 System.Item.Date

 Supported Unsupported or other filetype Document

 (JPGs, TIFFs, NEF CR2)

 System.Photo.DateTaken Date Created Date Modified System.Document.DateSaved

 (recognized Document filetypes)

 (possibly others according to Microsoft)

DateTimeOriginal DateDigitized

 Taken (Original)

 Supported

 (JPGs, TIFFs, NEF, CR2)

 DateTimeOriginal

All of the above named properties are Windows Metadata with the exceptions of DateTimeOriginal and

DateDigitized which are EXIF properties. Windows properties that assume values from EXIF are more accurate than

those that are taken from other Windows Properties, or assigned by the Windows OS directly, e.g., Date Created.

Bulk Rename Utility Operations Manual Page 194 of 715

Section # 8: Auto Date

v3.4 New Additions

The Tests Used

Conclusion #1 Tests

For other file types, takes its value from the earlier date of Date Created or Date Modified.

This is an Access database I created for this test and assigned the various Timestamps you see here.

a. I Change the original Date Created from 8/3/17 to current, 12/21/20. Item Date is currently 8/3/17 before change.

result: Item Date changes to reflect the original Date Modified, 12/8/20. Date Created and Date Accessed are ignored.

b. I Changed the original Date Modified from 12/8/20 to current, 12/21/20, leaving the Date Created also as current:

result: Item Date reflects the change and changes to 12/21/20. Date Accessed of 12/8/20 is ignored.

c. I Took the original file (Date Created is 8/3/17) and changed the Date Modified from 12/8/20 to current, 12/21/20:

result: Item Date doesn’t change – reflects original date 8/3/2017, the Date Created value.

Bulk Rename Utility Operations Manual Page 195 of 715

Section # 8: Auto Date

v3.4 New Additions

d. I Changed the Date Created to an earlier date from 8/3/17 to 2/10/06. Item Date is currently 8/3/17 before change.

result: Item Date changes to 2/10/06, the Date Created. Date Accessed and Date Modified are ignored.

Further research concluded that Date Accessed was not a factor in determining Item Date’s value.

This next set of tests will be using two different dates for Date Modified and Date Created.

e. I Changed Date Modified (Written) to a date (11/24/19) later than 8/3/2017 (refer to ‘set to:’ in each photo below).

result: As expected, Item date did not change from original value, 8/3/2017, a reflection of Date Created.

f. I Changed the original Date Created from 8/3/17 to current, 12/21/20.

result: Item Date changes to take the value of Date Modified, 11/24/19, the earlier date.

Bulk Rename Utility Operations Manual Page 196 of 715

Section # 8: Auto Date

v3.4 New Additions

g. I Changed the original timestamps around so that Date Created is earlier (11/24/19) than Date Modified (12/8/20).

result: Item Date changed to the earlier date, 11/24/19, without requiring changing Date Modified.

Hmmmm… this disputes a claim in my earlier internet research (not shown) that only the Date Modified value is

assumed for other filetypes. Now I know this not to be the case.

h. I Changed Date Accessed from 12/8/20 to an earlier date, 03/02/14:

result: Item Date doesn’t change, despite the earliest date value; proof that Date Accessed has no influence in the

 determination.

Final Conclusion from these tests:

1. For a filetype that is not supported by Taken (Original) and correspondingly EXIF DateTakenOriginal, Item Date

 looks at Date Created and Date Modified and takes the earliest date value between the two.

2. When tested against other non-media types I came to the same findings.

3. For a supported image filetype, if EXIF Metadata doesn’t exist (no EXIF Metadata in the file), then Item Date will

 take the earliest date between the Windows Properties, Date Created and Date Modified.

Bulk Rename Utility Operations Manual Page 197 of 715

Section # 8: Auto Date

v3.4 New Additions

Conclusion #2

For a filetype that is supported by Taken (Original) and correspondingly EXIF DateTimeOriginal, Item Date will

assume this value over the Windows Properties, Date Created or Date Modified:

This next set of tests will test other factors.

a. For supported image filetypes that do have EXIF Metadata, Both Item Date and Taken (Original) will assume this

 value directly from EXIF DateTimeOriginal.

This example shows that Item Date has the same value as Date Created and Taken (Original).

The fact that Taken (Original) holds a value is proof enough that EXIF data does exist for this file.

But if you want further proof, a look at the header reveals the EXIF DateTimeOriginal value:

You can also look at the Properties for the file:

The Details tab displays the EXIF value,

DateTimeOriginal as Date taken.

Bulk Rename Utility Operations Manual Page 198 of 715

Section # 8: Auto Date

v3.4 New Additions

This next set of tests will verify whether Item Date will take its value from the earlier date of the Windows Property

or use the EXIF DateTimeOriginal date regardless.

b. I will change all of the dates at once to earlier than the current Item Date of 2009:

Results:

There’s the proof.

Item Date remains at 2009 even if the Windows Property Timestamps are earlier. This successfully validates that

when EXIF Metadata exists, Item Date will take that value, regardless of the date values held by Date Created or Date

Modified, and when it doesn’t, Item Date assumes the value of the earlier between the two Windows Properties

aforementioned with the exception of (recognized) Document filetypes. These will be tested next.

Bulk Rename Utility Operations Manual Page 199 of 715

Section # 8: Auto Date

v3.4 New Additions

How I Tested Document Metadata

Document Metadata

Document specific Metadata are properties added by the program that created the document. These are stored as part

of the document and are not part of the File System. This Metadata is updated as the document is modified, saved, etc.

The two we are concerned with consist of –

Content Created (System.Document.DateCreated)

Content Created is the point at which the document is created by the user but no content has been entered. At this

time, Content Created will share the same value as the Windows Property, Date Created. It is only after any content

has been entered into the document and saved that Content Created is updated. After this, the timestamp does not

change. Date Created is not updated in this manner and therefore no longer holds the same value as Content Created.

Item Date does not assume this value (at least in my testing and research).

Date Last Saved (System.Document.DateSaved)

Self explanatory. It is the date the document was last saved from a program capable of loading, modifying and saving

the document. It does not necessarily have to be the program that originally created the document. This is updated

whenever the document is saved after a modification. It is not the same item as the Windows Property Date Modified

or Date Accessed.

Item Date may use this value if available (and only if the file is a recognized document filetype)

Notes:

1. These two Metadata items are not only reserved for Document filetypes, but appear in most filetypes as long as

 Metadata is present (I look at this as an anomaly to its purpose). You can see these Properties by bringing up the

 ‘Show List of File Properties’ from BRU.

 a. The Content Created item behaves in the same manner as detailed above. It is assigned at the creation of the file

 and ‘initially’ shares the same timestamp as Date Created. The date is not supposed to change once established

 (content has been entered and saved the first time).

 b. The Date Last Saved item also behaves in the same manner as detailed above. This date is subject to change. The

 difference between these properties when applied to a non-document filetype and a ‘recognized’ document

 filetype is that the Metadata item, Date Last Saved, is not a consideration in determining Item Date for a

 non-document filetype.

Bulk Rename Utility Operations Manual Page 200 of 715

Section # 8: Auto Date

v3.4 New Additions

Notes:

1. If you want to view the ‘Standard Attributes’ timestamps of a file, right click on the file and select Properties.

 Under the General tab, it will list the current Windows timestamp properties, Date Created, Date Modified and

 Date Accessed, as extracted from the File System.

2. To find the Content Created or Date Last Saved Metadata for Microsoft related documents, go to the Details tab

 and look under, Origin. To find the same Metadata for other types of documents, use BRU’s ‘Show List of File

 Properties’ option by right clicking on the file and selecting from the Context Menu.

3. Under the listing of Windows Properties from the ‘Show List of File Properties, you can also perform a search for

 the Label, Date Last Saved, or under the Name, System.Document.DateSaved.

4. How I concluded that Item Date uses the Date Last Saved value.

 a. I altered the Windows Timestamp Property values of a Microsoft Word document with numerous values – no

 change in Item Date. Upon reviewing the properties I saw that the only date that corresponded with Item Date’s

 current value was Date Last Saved.

 b. I Loaded the document into Microsoft Word, made a minor change and Item Date changed to today’s date.

 Reviewing the properties also verified that Date Last Saved reflects this change. The following pages will fully

 document my findings.

I started with a Microsoft Word document file and from this, I created the rest of the filetypes to be tested.

.docx – Microsoft Word

.rtf – Microsoft Word Rich Text Format

.pdf – Adobe Portable Document Format

.odt – Open Office Open Document Text file

.tmd – SoftMaker TextMaker Document

.txt – Plain Text File

The Microsoft Word document file had a Date Last Saved value initially of 10/9/20.

The remainder of the files all shared the same Date Last Saved value with the Date Created value of 1/4/21 because

they were all created within the same time period.

Bulk Rename Utility Operations Manual Page 201 of 715

Section # 8: Auto Date

v3.4 New Additions

Original timestamps.

All files, with the exception of the Word document, are using the current timestamp. This is in all likelihood based on

the earliest value between Date Created and Date Modified, all of which, at this stage in the testing, are identical. The

Word document’s Item Date is either based on Date Last Saved or the value for the Date Modified. Currently

unproven.

First I changed all of the Date Created values to an earlier date of 3/2/14.

The TextMaker file is the only file that changed to the earlier date. All others were unaffected. The Word document

continues to remain at 10/9/20, and all indications are that Item Date is using the Date Last Saved value for this

filetype because it did not change to the earlier date of Date Created.

Using the original files, I Changed the Date Modified to an earlier date of 2/10/06.

Bulk Rename Utility Operations Manual Page 202 of 715

Section # 8: Auto Date

v3.4 New Additions

The Word Document remained at 10/9/20, proof that the Word Document is using the Date Last Saved value. All of

the other files changed to the earlier date, an indication that these filetypes may be using the earlier date between Date

Created and Date Modified and not the Date Last Saved value.

Using the original files, I Changed both the Date Created and Date Modified to 12/13/08.

Same results as before. Item Date reflects the change with all filetypes except the Microsoft Word document.

I changed the Date Created, Date Modified and Date Accessed to all different timestamp values.

The Microsoft Word document is the only filetype that retained the original, Date Last Saved value. All others used

the earliest date between Date Created and Date Modified.

Preliminary conclusion:

Microsoft only refers to a document file as one of its own and does not recognize the other formats as document types

for purposes of mapping to the Last Date Saved value if available.

This includes .rtf (Rich Text Format) surprisingly since it belongs to the Microsoft family of formats.

Bulk Rename Utility Operations Manual Page 203 of 715

Section # 8: Auto Date

v3.4 New Additions

Continuation of the testing waited until a few days later, Jan 6, 2021.

In this second series of tests, I loaded each of the documents from the first test into their respective editor programs,

made minor changes, then saved each modified document and checked the results.

For each file tested, the following holds true:

a. The Date Last Saved Metadata is modified to the current timestamp, the date the file was edited, Jan 6, 2021.

b. Every file with the exception of the TextMaker document, changed Item Date to reflect the Date Last Saved value,

 even though this value is not the earliest date available. If Item Date was using the earliest date between

 Date Created and Date Modified, then Item Date would have assumed the Date Created value of 9/24/11 and not

 the value of 1/6/21.

 This is conclusive proof that IF the filetype is recognized as a document by Windows and IF the Date Last Saved

 Metadata is available, then Item Date assumes this value.

 I have stated that, ‘IF Windows recognizes the file as a document filetype’, at various places in this section,

 because the TextMaker document file, with the extension .tmd, did not use the Date Last Saved Metadata for the

 value of Item Date, but instead fell back to using the earliest date between Date Created and Date Modified.

 This concludes that Item Date will only assume the value of Date Last Saved if the file is recognizable as a

 document filetype. I should also note that I performed additional testing for verification, the results of which are not

 included herein.

 How Windows determines what is recognizable as a document, I am not certain. Windows obviously looks at the

 file extension for the filetype, and .tmd is obviously a proprietary format that is not as well known as, for instance,

 Open Office filetypes, so that may be the sole explanation, but again, not verified. I should also mention that I did

 verify that I have the .tmd extension associated with the TextMaker program, thus Windows is well aware of the

 program association.

Bulk Rename Utility Operations Manual Page 204 of 715

Section # 8: Auto Date

v3.4 New Additions

Also of note is that Microsoft Office adds its own additional Metadata to its document files. This can be seen in the

Details tab of the document’s properties sheet under Origin.

Final conclusions:

Preliminary findings were wrong, because the OS does recognize more filetypes as documents than originally

thought. This includes, PDF, RTF, ODT and TXT. There are probably more but these were the ones tested. I also

found that if a filetype is not recognized by the OS as a document filetype, then Item Date will treat that filetype as a

‘non-supported or other filetype’ and assume the earlier value between Date Created and Date Modified. Date Last

Saved will also assume this value (again, I look at this as an anomaly).

The explanation for the preliminary findings in error is that these files, other than the Microsoft Word file, were never

edited in the first phase of testing. They were created and therefore any value for Last Saved in the Metadata was

premature. It wasn’t until the files were edited and saved, that Item Date assumed the value in the second phase.

Notes:

1. Other Office documents, .PPT (PowerPoint), .xlsx (Excel), were not tested. It is presumed though, that because

 Office considers these filetypes as documents, Item Date may also assume the Date Last Saved of these filetypes.

Bulk Rename Utility Operations Manual Page 205 of 715

Section # 8: Auto Date

v3.4 New Additions

Anomalies: exe

This particular .exe file holds no Metadata. Just as with Taken (Original), if there is no data available, then the Item

Date column for that entry will be blank.

But that’s odd because it does have values for the Windows Properties, Date Created and Date Modified. Why then

doesn’t Item Date assume the earliest of these two values as I concluded earlier?

Upon examining the file, using the Windows File Properties

list from within BRU, I verified there was no Metadata that

could be extracted.

Under Windows Properties accessed through the file’s Properties option using the Context Menu, the Date Created,

Date Modified, and Date Accessed File Attributes are listed under General, but the Details tab, used for displaying if

any Metadata is available, is empty except for data reported from the File System.

When validating this finding using the Nirsoft Property System Viewer (freeware), however, the program displayed

all of the missing Metadata properties (not shown).

Bulk Rename Utility Operations Manual Page 206 of 715

Section # 8: Auto Date

v3.4 New Additions

Here is another example. One has Item Date, the other does not. Verification that not all exe files exhibit this problem.

I again tested using the Nirsoft Property System View program. Using not only the file above but other test files, I

found that all files, those with and those without an Item Date in BRU, had Metadata including System.ItemDate.

The question becomes, why doesn’t BRU see the System.ItemDate if available to determine BRU’s Item Date value?

Bulk Rename Utility Operations Manual Page 207 of 715

Section # 8: Auto Date

v3.4 New Additions

Although BRU only displays what it extracts, the data is there at least according to the Nirsoft program, but BRU is

not extracting it for some reason. Is it because BRU is set to extract only that Metadata which Windows displays in

the Details tab of the file’s property sheet?

Using WildGem.exe, a file that does have an Item Date

in BRU, the Details tab doesn’t display much, but there

is evidence of some Metadata:

Therefore, at least for this .exe, Metadata does exist and

BRU displays the Item Date for this file – see previous

page. But this reveals very little as to an explanation of

why it can extract one but not the other.

And because Date Created and Date Modified exist, why doesn’t System.ItemDate have a value?

Here’s why.

The explanation as far as BRU is concerned, is that BRU only ‘reads’ whatever Metadata values are there for

extraction of the Item Date value. The properties of Date Created, Date Modified and Date Accessed, if you

remember, belong to the ‘Standard Attributes’ of the Resident Attributes found in the File System and are not stored

within the file as is other Metadata.

The fact that the Metadata contents of the file is void is why BRU cannot read a value for Item Date. It only reports

the news, and doesn’t make it. The General tab of the Properties sheet echoes back the information reported from the

File System. The Details tab displays some of the Metadata if ‘any’ exists in the file. If it is blank that means the file

doesn’t contain any. If System.ItemDate has no value, then Item Date has no value because they are the same.

This doesn’t explain though, how the Windows File Properties reports no Metadata, as the Properties sheet shows, but

the Nirsoft program provides a full listing. When I contacted Nirsoft as to why, they informed me that they obtain this

data through the Windows Property System API (https://docs.microsoft.com/en-us/windows/win32/api/propsys/).

TGRMN also verified that they use the same API for the extraction of the Metadata, so the mystery continues.

At least so far, the only filetype I have found that exhibits this strange behavior is .exe files, not .msi., archives,

document files, etc. I have tried doing a comparison between the two .exe files to see if there was anything different

or missing from the property listings as reported by the Nirsoft program. There was none.

https://docs.microsoft.com/en-us/windows/win32/api/propsys/

Bulk Rename Utility Operations Manual Page 208 of 715

Section # 8: Auto Date

v3.4 New Additions

A further test was done as to a theory proposed that the problem could be related with Digital Signatures.

I looked at .exe’s, some of which had Digital Signatures with a Digital Signature Timestamp and some without. The

files that have Digital Signatures are identified by a separate tab in the Properties sheet for the file:

And those that do not, display as:

Simple enough. The file with the Digital Signature had a value for Item Date. Could this be the missing factor?

Unfortunately no; and here’s why.

Bulk Rename Utility Operations Manual Page 209 of 715

Section # 8: Auto Date

v3.4 New Additions

I took a file with a Digital Signature:

 setup(free-chm-to-pdf)(1).exe

I

This .exe file has Metadata and displays Item Date in BRU with a value, 11/15/2020. This value, you will notice, is

not that of the Digital Signature Timestamp 11/21/2014, but of the earliest date between Date Created and Date

Modified.

The theory in question is not whether Item Date is using the Digital Signature Timestamp for its value, but that the

very presence of the Digital Signature is somehow contributing to Windows using the File System’s Date Created or

Date Modified rather than simply disregarding the value as it did with wildcrypt.exe.

I next removed the Digital Signature from the file, expecting and hoping that Item Date would be blank as a result.

It was not. No change.

Finally, I removed all of the Metadata from the file:

Item Date still held a value.

Theory failed. Digital Signatures are not a contributing factor as to why certain .exe files hold no value for Item Date.

Bulk Rename Utility Operations Manual Page 210 of 715

Section # 8: Auto Date

v3.4 New Additions

Anomalies: Non-Document or Other Filetype Breaks Microsoft’s Rules

For purposes of clarification, the following illustrates how Windows manages a ‘non-recognized document filetype or

other filetype’, when changing timestamps and in doing so, breaks its own rules of behaviour.

This is an example of an MP3 file with all dates set to 8/31/19

Here is the pertinent Windows Metadata:

As you know, even though this is not a document filetype, the Document Metadata of Content Created and Date Last

Saved are available. Regardless, Windows will treat this file as a non-document filetype where the Date Last Saved

value will not be a consideration in determining Item Date, nor should it be.

Bulk Rename Utility Operations Manual Page 211 of 715

Section # 8: Auto Date

v3.4 New Additions

The Rules (repeated from previous):

Content Created and Last Date Saved

These Dates are added to the file via the Application, e.g., Microsoft Word -

https://docs.microsoft.com/en-us/windows/win32/properties/props-system-document-datecreated

Indicates the date and time that a document was created. This information is stored in the document, not

obtained from the file system.

The value is in two phases. The first is when the document is created. Content Created will share the same value as

Date Created. The second phase is when the content is entered and saved for the first time. Content Created is updated

to reflect the current timestamp and will not change from this point forward.

System.DateImported

The date and time the file was imported into a private application database. For example, this property can be

used when a photo is imported into a photo database.

Breaking the Rules:

First off, let’s look at the Windows Property Names for Content Created and Date Last Saved:

Label Name

Content Created (System.Document.DateCreated)

Date Last Saved (System.Document.DateSaved)

Notice that these are Document Metadata. They are only supposed to be created for Document filetypes and even

then, only those filetypes that Windows recognizes as Documents. But I have seen them in all sorts of non-document

filetypes. The rules are broken, but that doesn’t invalidate my findings. As long as they are present, then I have to test

how they apply and I have. My conclusions can be viewed under, ‘How I tested Document Metadata’.

Now this may change in future Windows revisions and updates, because everything about Windows is not written in

stone anymore. Here today, gone tomorrow – usually with no warning. Microsoft, in addition, has undocumented

algorithms that are embedded in the code that do strange things. These particular anomalies could be related.

The program creating the file, e.g., Microsoft Word, adds this Metadata. Does this mean that the MP3 created by a

program from Jaksta added this? If so, Windows allowed it. I don’t have answers for that. But what I do know is how

Windows handles these non-document filetypes in determining the Item Date value. It doesn’t use them. Instead, as I

have already concluded, non-document filetypes will base the value on the earliest date between Date Created and

Date Modified. Only those document filetypes, as recognized by Windows, will use the Date Last Saved value.

Bulk Rename Utility Operations Manual Page 212 of 715

Section # 8: Auto Date

v3.4 New Additions

Here is that MP3 example of a non-document file again.

I Changed the Date Modified value to 3/2/2014.

result: Item Date as expected assumed the value of the earlier date, 3/2/2014, of either Date Created or Date Modified.

But that’s not all that changed…

Changed these Windows Properties:

Date Modified

(System.DateModified)

8/31/2019 to 3/2/2014

Content Created

(System.Document.DateCreated)

8/31/2019 to 3/2/2014

Date Last Saved

(System.Document.DateSaved)

8/31/2019 to 3/2/2014

Date

(System.ItemDate)

8/31/2019 to 3/2/2014

Date Imported

(System.DateImported)

 8/31/2019 to 3/2/2014

Bulk Rename Utility Operations Manual Page 213 of 715

Section # 8: Auto Date

v3.4 New Additions

Results.

Content Created date is not supposed to change once established. And if you remember, it is established once the file

has had content entered and saved for the first time. Changing a timestamp should not be relevant to this action.

Date Imported, according to Microsoft’s own definition, is updated, or created for that matter, if the file is imported

into some application database. Does changing the timestamp from within BRU or using a File Manager program like

ZTree to alter the timestamps qualify? I wouldn’t believe so.

Date Last Saved was also affected. Changing Date Modified should have no effect on this value as well.

However this is uncharted territory so who knows?

Using the original file again, when I changed the Date Created to 3/2/01 ….

Results:

Once again, as expected, Item Date assumed the earliest value between Date Created and Date Modified.

However, interestingly enough…

Date Last Saved did NOT change as it did when I changed Date Modified. I am, however, unsure of what significance

this plays, if any, because this Document Metadata property shouldn’t even be there in the first place.

The other timestamp values followed the same course as before.

Date Created 8/31/2019 to 3/2/2014

Date Modified no change

Date Imported 8/31/2019 to 3/2/2014

Bulk Rename Utility Operations Manual Page 214 of 715

Section # 8: Auto Date

v3.4 New Additions

Now I will change both the Date Created and Date Modified values to 3/2/2014.

Results:

Item Date – expected behaviour. Takes the earliest value between Date Modified and Date Created. In this case they

are the same.

Because changing Date Modified affected Date Last Saved prior, it was therefore affected this time and changed to

3/2/2014. Content Created once again changed as well to 3/2/2014 and all other values listed on previous page in

green, changed as expected, at least in accordance with this strange scenario. I should also note that ID3 Metadata for

this filetype had no bearing on any of these outcomes and was unaffected by any of these changes.

As to my reasoning of these anomalies, I’m just putting this out there. I have no explanation and no theories.

Notes:

1. These tests were conducted on other non-document filetypes, not just the single sample MP3 file used in these

 examples, with the same conclusive or should I say, inconclusive findings.

Final Conclusions on the Anomalies section:

1. Regarding the .exe anomaly, TGRMN has no explanation at this time as to the discrepancy between BRU’s

 extraction methods and Nirsoft. In fairness, it should be pointed out that the Windows Property Sheet substantiates

 BRU’s conclusion of no Metadata available for the file in question. Consequently, it is perhaps Nirsoft’s findings

 that are at fault in this matter. In either regard, I consider the matter closed.

2. Document Metadata should not exist for filetypes that are non-documents, but it does. This, however is not taken in

 consideration when determining Item Date’s value for these filetypes, and therefore a moot point.

Bulk Rename Utility Operations Manual Page 215 of 715

Section # 8: Auto Date

v3.4 New Additions

A final thought on a problem that some users may come up against that is fairly common.

Scenario:

Windows Properties’ Date Modified is Earlier than the Date Created value.

a. This occurs when the file is copied from another medium storage, e.g., USB, FTP, etc. Windows changes the Date

 Created to the date of when the file was copied but the Date Modified remains as is. This also occurs if transferring

 files from one PC to another, e.g., setting up a new system.

b. If you copy files, the OS modifies the original Date Created to the date of when files are copied. This does not

 occur when moving files unless moving files from one File System to another, e.g., Linux to Windows, at which

 point, the move operation is really creating a new file; thus you get a new Date Created followed by deletion of the

 old file on the previous File System.

c. Restoration of a backup, depending on the program used and its options, may change the Date Created to the date

 of the restoration.

Prevention – none. This behaviour is part of the Windows OS.

Remedy –

Third party freeware utilities can be used to copy or move files without affecting the dates. This solution is not a

prevention, but a work-around, because these utilities will bypass the OS.

After the fact –

Only commercial utilities are available.

Final Notes on Item Date:

1. For more information, refer to, Understanding Metadata, in this section.

2. The Item Date value, as with all of the other Metadata values, are evaluated outside of BRU. BRU only extracts

 whatever values are available, it cannot create or alter them, with the exception of the Windows properties, Date

 Created, Date Modified and Date Accessed.

Bulk Rename Utility Operations Manual Page 216 of 715

 Section # 9 - Append Folder Name

Bulk Rename Utility Operations Manual Page 217 of 715

Section # 9: Append Folder Name

Append Folder Name – The names of the directory and sub directory levels can be appended as a prefix or suffix.

This is useful where you have lots of directories, each containing the same group of files, and you want to merge

all the files into a single folder all with unique names. You could also use ‘Prevent Duplicates’ from the Renaming

Options Menu.

1. Select where to append under Name.

2. Select if you want to use any separator characters to distinguish between the appended data and the original

filename.

3. Select how many directory levels to include.

 Level 3 Level 2 Level 1

 Example,

 File, Cat.jpg located in D:\Documents and Settings\Administrator\Pictures

 Level 3 as Prefix using a <hyphen> as a separator results in New Name:

 Documents and Settings-Administrator-Pictures-Cat.jpg

Note – any colon or backslash characters are converted to <hyphen> characters automatically by BRU.

For more information, refer to –

Renaming Options Menu

‘Append Folder Name Levels and Rearrange them’ in the JavaScript section of ‘Volume 2

Bulk Rename Utility Operations Manual Page 218 of 715

Section # 9: Append Folder Name

v3.42 New Additions

Append Negative Value for Specific Directory Name

Added ability to use negative values for ‘Levels’ in ‘Section #9: Append Folder Name’. A negative level number will

only append that specific directory name to the file name instead of the current sub-directory path.

This is a directory hierarchy I created that has four levels of subdirectories coming off of the root, Test Folder.

File #9

File #10

 File #11

 File #12

In each of these directories I have placed a single file.

In the above directory hieracrchy, there are 5 levels including the root directory. The range for Levels is from:

 Level 0 to Level 5

or

 Level 0 to Level -5

Bulk Rename Utility Operations Manual Page 219 of 715

Section # 9: Append Folder Name

v3.42 New Additions

Example #1:

 Name: Prefix

 Separator: <space>

File #11 resides in Tier 3 Level (3). Range of levels is thereby 0 through -4, including the root directory, Test Folder.

Level 0

At the default, Level 0, no appending, but New name does reflect a change because of a specified Separator at Prefix.

Level -1

Level -1 specifies the current directory in which the file resides, Tier 3 Level (3).

Level -2

Level -2 specfies the subdirectory above the current directory one level up.

Level -3

Level -3 specifies the subdirectory two levels up from current directory, first subdirectory off from root, Test Folder.

Level -4

Level -4 specifies the subdirectory three levels up from the current directory. For this example, it is the root directory.

Bulk Rename Utility Operations Manual Page 220 of 715

Section # 9: Append Folder Name

v3.42 New Additions

Example #2:

 Name: Prefix

 Separator: <space>

File #11 resides in Tier 3 Level (3). Range of levels is thereby 0 through 4, including the root directory, Test Folder.

Level 0

At the default, Level 0, no appending, but New name does reflect a change because of a specfied Separator at Prefix.

Level +1

At Level 1, the current subdirectiry path is specified. The Current subdirectory contains the example file, File #11.

Level +2

At Level 2, the subdirectory path includes the current subdirectory and one directory level up from there.

Level +3

At Level 3, the subdirectory path includes the current subdirectory and two directory levels up from there.

Level +4

At Level 4, in this example, the full subdirectory path is specified and includes the root directory, Test Folder.

Bulk Rename Utility Operations Manual Page 221 of 715

Section # 9: Append Folder Name

v3.42 New Additions

Notes:

1. Subfolder must be enabled in ‘Section #12: Filters’.

2. How many levels are displayed is determined by the Sub-folders Level setting in ‘Section #12: Filters’.

For example:

If I limit the levels to three, there is no display of the 4th Tier. Only the third Tier containing File #11 would be the

maximum level available:

But if I have the level at zero, which is the default maximum…

… now you can see the 4th Tier containing File #12:

Bulk Rename Utility Operations Manual Page 222 of 715

 Section # 10 - Numbering

Bulk Rename Utility Operations Manual Page 223 of 715

Section # 10: Numbering

Numbering – Adds a sequential sequence, numeric or alpha, to a group of files, also known as ‘Autonumbering’.

Notes:

1. You can sort the file list using the column headers, just as you would do in Windows Explorer.

2. ‘Section #4: Case’ has no effect on the Alpha Base sequence.

3. The files will always be processed in the order of the displayed sequence –. In other words, the displayed files’

 position in the Content Pane will determine the numeric sequence of numbers (or alpha) applied to the filenames.

To further demonstrate what I mean by the order of the displayed sequence -

As it stands now,

The files will be processed in this order:

DSCN0001.JPG

DSCN0029.JPG

DSCN0032.JPG

DSCN0055.JPG

By changing the order of the files, the order in which the files will be processed is also changed.

The files will now be processed in the following order:

 DSCN0032.JPG

 DSCN0001.JPG

 DSCN0055.JPG

DSCN0029.JPG

 For more information refer to –

 ‘Sorting’ under the Display Options Menu

 ‘List - Reposition’, under the Actions Menu

 ‘Apply Random Sort to Current List’ under the Actions Menu

 ‘Rename in Reverse Order’, under the Renaming Options Menu

Bulk Rename Utility Operations Manual Page 224 of 715

Section # 10: Numbering

Mode

Select among the following -

None – no changes made (default)

Prefix – append at the beginning of filename

Suffix – append at the end of filename

Pre. + Suff. – append at both the beginning and end of the filename

Prefix: Suffix:

 Prefix + Suffix

 Insert – specify by position where in the filename the numbering

 sequence should appear

 Position ………………………………………. 1 2 3 4 5

Notes:

1. Under BRU criteria other than RegEx, the position starts with 1. Under Regular Expressions and programs like

 Regex Buddy the position starts with 0.

Bulk Rename Utility Operations Manual Page 225 of 715

Section # 10: Numbering

Start

Specify a starting number (or in the case of alpha, a letter designation, 1=A, 2 =B, etc.) and increment value.

 Start = 2, Increment = +1 Start = 2, Increment = +2

 Numeric

 Alpha

Note:

1. A Negative number entered into the Increment field will display from the Start value down to zero, then negative

 values thereafter. Negative numbers can be entered directly into the Insert ‘At’ or Start ‘Incr.’ data entry fields or

 you can use the Up/Down indicators:

Bulk Rename Utility Operations Manual Page 226 of 715

Section # 10: Numbering

Pad

Specify how many places the numbering sequence should occupy. Any unused places are ‘padded’ from the left with

a ‘0’ (zero), ‘a’ (lowercase), or ‘A’ (uppercase) character, as appropriate dependent on ‘Type’ selected (see ‘Type’).

 0 e.g. 00001 (padded with zeroes)

a e.g. aaaab (padded with lowercase a’s)

A e.g. AAAB (padded with uppercase A’s)

The positions occupied by the sequence, including any padding, are counted from right to left:

e.g.,

 Padding is set a 3

 Sequence: 0 0 1

 Position: 3 2 1

Example:

 Numeric

 Alpha

Bulk Rename Utility Operations Manual Page 227 of 715

Section # 10: Numbering

Roman Numerals

This has nothing to do with a numbering sequence, but since it is related to controlling numbers, it appears here. If

Roman Numerals exist in the current filename, the option is given to do nothing or convert them to upper or lower

case. This is done to preserve them when a rename action will change the overall case of the filename.

Example:

String = Mark IV 204.56 Alphoze.jpg

‘Section #4: Case’

 Set to Lower

New Name without ‘Roman’ enabled:

 The result is that the Roman Numeral IV has been altered.

Using ‘Section #10: Numbering’ with ‘Roman’ enabled ….

 Roman: Upper

 The result is that the Roman Numeral IV is unaltered.

Notes:

1. The other settings of Numbering, Mode, Start, Pad, etc. have nothing to do with the ‘Roman Numeral’ function.

2. BRU v3.42 or higher, disregard this section and refer to v3.43 New Additions supplement that follows..

Bulk Rename Utility Operations Manual Page 228 of 715

Section # 10: Numbering

v3.43 New Additions

Roman Numerals section removed and placed under ‘Type’ section.

Before: Current:

All previous functionality pertaining to Roman Numerals has been modified. Case conversion is no longer performed.

The function of Case Conversion of existing Roman Numerals in the string has been moved to the more appropriate,

‘Section #4: Case’. This is how to use Roman Numerals under ‘Section #4: Case’:

Using the previous example, slightly modified:

Example #1:

String = mark IV 204.56 alphoze.jpg

The Roman Numeral is preserved.

Bulk Rename Utility Operations Manual Page 229 of 715

Section # 10: Numbering

v3.43 New Additions

Example #2:

String = mark iv 204.56 alphoze.jpg

Case conversion is also performed when necessary under ‘Section #4: Case’.

Instead, the Roman Numeral functionality under ‘Section #10: Numbering’, now performs in the same manner as the

other Base types; to append a prefix or suffix to an existing string or to insert a sequence within an existing string.

Example #3:

String = My Cat has milk to drink

 Mode: Suffix

 Start: 4

 Type: Roman Numerals

 Case: Upper

The Roman Numeral, IV (representing Start = 4), presented in uppercase (Case set to Upper), suffixed to the string.

Bulk Rename Utility Operations Manual Page 230 of 715

Section # 10: Numbering

v3.43 New Additions

Example #4:

Samples:

My Cat has milk to drink

mark iv 204.56 alphoze.jpg

'abc'x

700 8 is next

a, and, as, at, but, by, en, for, if, in, of, on

 Mode: Suffix

 Start: 4

 Increment: 1

 Type: Roman Numerals

 Case: Upper

Adding more samples will append the incrementing value to each selected string while ignoring any strings that are

not selected.

This prevents the string,

 e.g., ‘abc’x

from having a value of ‘VI’ instead of ‘V’ because the unselected string, ‘mark iv 204.56 alphoze.jpg’, is not

included..

Results:

Bulk Rename Utility Operations Manual Page 231 of 715

Section # 10: Numbering

v3.43 New Additions

Case

The Case item is also a new addition. In previous versions, it was reserved for the Roman Numeral Case conversion.

Now it can be used for both the appended Roman Numerals and the A-Z, a-z Alpha Base Types as well, although, it

doesn’t really do that much when applied to the Alpha Base Types. Not very useful and probably not even intended

for that purpose.

Example:

Samples:

My Cat has milk to drink

mark iv 204.56 alphoze.jpg

'abc'x

700 8 is next

a, and, as, at, but, by, en, for, if, in, of, on

 Mode: Suffix

 Start: 1

 Increment: 1

 Type: a-z

 Case: None (same – do not change)

Results:

The Alpha Base Type a-z or A-Z is what determines initially if the letters that are appended are to be in lowercase or

uppercase. I say initially because if you change the CASE to either lowercase or uppercase, this will supplant the

Type specification. In the example below, although the Type a-z has been specified, the appended value is in

uppercase because of the Case specification of Upper.

e.g., Results:

Bulk Rename Utility Operations Manual Page 232 of 715

Section # 10: Numbering

A Quick Review before continuing …

‘Section #10: Numbering’ – is a facility where an Autonumber can be appended to the Prefix, Suffix, both the Prefix

and Suffix, or inserted at an exact position within the string. It cannot be inserted at a variable position.

Example:

 Numbering not active. Mode is at ‘None’. Filename unaffected.

 Numbering Active. Mode is at ‘Prefix’.

 Start number at 1 and Auto increment at 1.

Numbering Active. Mode is at ‘Suffix’.

Start number at 1 and auto increment at 1

Numbering Active. Mode is at ‘Prefix and Suffix’.

Start number at 1 and auto increment at 1.

Numbering Active. Mode is at ‘Insert’. Position is at 1.

 Position is 2 Note:

Position is 3 The ‘N’ in the beginning of the string is considered

 position ‘0’, or the ‘Prefix’ position. This is why the

 Position is 4 position of the Autonumber at position 1 begins with

 the position of the ‘a’ character in the text and not at

Position is 5 the ‘N’ character. Most positions in the BRU sections

 other than, ‘Section #1: RegEx’, begin at Position 1.

 Position is 6

Etc.

Bulk Rename Utility Operations Manual Page 233 of 715

Section # 10: Numbering

Sep(arator)

Specify a separator character(s) that will be used to distinguish the numbering sequence from the filename.

Using the Sep(arator) –

This option provides a character(s) as a delimiter for the Autonumber’s placement in the string. For example if a

<space> character is used in Sep. with Mode at ‘Prefix’:

goes from this…

… to this.

More than one character can be entered here as well:

Sep: <space> <hyphen> <space>

Resulting in -

Bulk Rename Utility Operations Manual Page 234 of 715

Section # 10: Numbering

Using The Special Character ‘ : ’ Colon

There is also a special function that uses the ‘ : ’ (colon) to act as a ‘placeholder’ for the Autonumber.

If you enter the special character ":" (colon), this will be replaced with the Autonumber at runtime. So a Sep. value of

ABC:DEF: would result in ABC1DEF1, ABC2ABC2 etc.

Illustrated here:

Sep: ABC:DEF: clarified to ABC : DEF :

Mode: Prefix

Inc.: 1

results in –

I said before that the Autonumber cannot be placed at a variable position within the string. Some people get confused

in the purpose of the colon. They presume, that by placing the colon anywhere in the filename itself, the Autonumber

would appear at that position in the New Name. It does not.

Here is the confusion –

i.e.,

This is a test : some text here.jpg

This is another test : some more text and a number : here.jpg

 some might assume would result in:

This is a test 1 some text here.jpg

This is another test 2 some more text and a number 3 here.jpg

This would be great except that is not how this works, besides, Windows does not recognize the use of the colon in

filenames; it is considered an illegal character. In addition, the Autonumber increment would only increment per

filename not within the filename itself. (1)

Bulk Rename Utility Operations Manual Page 235 of 715

Section # 10: Numbering

This is how it does work –

Using Autonumber in it’s correct usage:

The following examples demonstrate how the Autonumber increments on a per filename basis.

Example 1 -

 Mode: Prefix + Suffix

 Start: 1

 Inc.: +1

results in:

You can clearly see that the same value ‘1’ is applied to both the prefix and suffix and does not result in,

‘1 test 2.jpg’.

Example 2 –

Applying to multiple files:

 Mode: Prefix Mode: Prefix + Suffix

 Start: 1 Start: 1

 Inc.: +1 Inc.: +1

results in: results in:

 It is each filename that gets incremented.

Bulk Rename Utility Operations Manual Page 236 of 715

Section # 10: Numbering

The use of the colon is to be able to specify WHERE in the Sep. delimiter string, you want the Autonumber to appear

NOT WHERE in the filename string.

Example:

Sample dataset –

 Filename a (some text here).jpg

Filename b (some text here).jpg

 Mode: Prefix + Suffix

 Start: 1

 Inc.: +1

 Sep.: Cat : Mouse : House :

results in:

 original filename is not affected by colon

For each colon in each filename, the Autonumber is applied to the position indicated within the Sep. value

(1) There is, however, a technique to do this that can be found in ‘Volume 2 of the Bulk Rename Utility Operations

 Manual – Expert’s Corner’, under ‘Add’ in the ‘RegEx’ section.

Also refer to –

‘Add Autonumber in Middle of String’ under the ‘Add’ section of RegEx, in Volume 2 of Bulk Rename

 Utility Operations Manual: Expert’s Corner’, which explains this further.

Bulk Rename Utility Operations Manual Page 237 of 715

Section # 10: Numbering

Resetting an (Auto) Numbering back to start value

 If the start value is 1, the filenames will be appended with 1, 2, 3, 4, etc., incrementing each time.

 However, if you want the value to start back at ‘1’ …

2 methods by which this can happen:

 Break

Use Break to reset the ‘counter’ when the specified character position changes.

 Example,

 Mode: Prefix at 0 position

 Start: 1 at increment +1

 Sep: <space>

 Pad is set a 3 positions

 Break is set at (position) 2

 Results in:

 When the second position changes, the counter resets back to 001.

 e.g., 009 (DSCN0025.JPG) to 010 (DSCN026.JPG), ‘DSCN026’ becomes ‘001 DSCN026’

 10 will change the second position occupied by zero to one, so counter resets to ‘001’

Bulk Rename Utility Operations Manual Page 238 of 715

Section # 10: Numbering

Second method:

Folder

This will reset the counter for each new sub directory. This also requires that ‘Section #12: Filters’ have ‘Subfolders’

option enabled (recursion), otherwise you will see no difference.

Here are two directories, Test and a subdirectory, Test 1

Test contains the following files: Test 1 subdirectory contains the following files:

 Illustration #1 Illustration #2

In the Navigation Pane click on the Test directory, and it will display illustration #1 again. Now click on the

‘Subfolders’ option in ‘Section #12: Filters’ this turns on ‘Recursion’:

` The window displays all of the files in both directories.

 Illustration #3

Bulk Rename Utility Operations Manual Page 239 of 715

Section # 10: Numbering

Example:

 Using the directories from the previous page,

 Mode is set a Prefix

 Start is set at 1 with an increment of 1

 Pad is set at 3

 Sep.(arator) is <space>

 Folder is enabled

 Results in:

 Test 1

 Test

Notice that the files in the Test directory are renamed using a sequence of 001 through 012 and the files in the Test 1

subdirectory begin at 001 through 006. This is because the counter resets for each new directory that is processed. If

the Folder option was not enabled, the files would be renamed using a sequence of 001 through 018 and the counter

would not reset.

Bulk Rename Utility Operations Manual Page 240 of 715

Section # 10: Numbering

Using Break and Folder options together

Example:

 Using the same example, but this time:

 Break is set at (position) 2 and Folder is enabled

 Results in:

 Test 1

 Test

The files are renamed in the Test directory using a sequence of 001 through 009. Sequence number 010 resets the

counter back to 001, so the remaining files in Test return back to 001 and continue to 003 (for a total of 13 files). The

Test 1 directory only contains 6 files, so the files are renamed using a sequence of 001 through 006.

Notes:

1. For more information, see ‘Section #12: Filters’.

Bulk Rename Utility Operations Manual Page 241 of 715

Section # 10: Numbering

Type

Type is used to indicate what type of numbering system or Base to use for the sequence.

These are the available Numeric Bases along with two Alpha Bases, A-Z (uppercase) and a-z (lowercase):

Notes:

(1) The base is what you count up to before it starts over. This corresponds to the digit referenced in the base name.

e.g.,

 Base 10, Base 8, etc.

(2) Zero is always counted as part of the base. In a Base 6 system for instance, the base is –

 0 1 2 3 4 5.

 For example, the numeric digits, 0-9 make up the base in the Base 10 (decimal) system –

 0 1 2 3 4 5 6 7 8 9 10

 The digit ‘9’ marks the end of the base before it changes over to ‘10’. The ‘10’ is the equivalent of the zero

 digit again – 1-0 and starts the base over until it reaches ‘19’ where ’20’ – 2-0 ’will continue the base, etc.

 For this reason, I refer to the numeric digit number ‘10’, as the changeover point. The changeover value

 in a numeric base system, is always the numeric digit ‘10’ initially.

Bulk Rename Utility Operations Manual Page 242 of 715

Section # 10: Numbering

Notes: cont.

(3) In numeric bases past base 10, letters are used to fill up places past the numeric digit 9 to the end of the base

 before changing over to 10.

 Examples,

 Base 11 (Undenary)

 0 1 2 3 4 5 6 7 8 9 A 10

 Base 12 (Duodecimal)

 0 1 2 3 4 5 6 7 8 9 A B 10

 Base 13 (Tridecimal)

 0 1 2 3 4 5 6 7 8 9 A B C 10

 you get the idea.

On the following page is a chart that I created that illustrates each available Base:

1. The numeric digits leading up to the first changeover point are in BOLD black. These are the numeric digit values

 that make up the Base of each system.

2. The first changeover value is in BOLD red. This value is always ‘10’ in a numeric base system and represents

 the changeover point where the base starts over the numeric sequence. The next changeover value in the sequence

 would be ‘20’ , then ‘30’ and so forth. In binary, the second changeover value would be 100, then 110 etc.

3. The digits after the initial changeover value are in yellow.

4. I have also included the name of each Base System.

Bulk Rename Utility Operations Manual Page 243 of 715

Section # 10: Numbering

Base Name Example

2 Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 ..

3 Ternary 0 1 2 10 11 12 20 21 22 100 101 102 110 111 112 120..

4 Quaternary 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 100 101 102 103 110 ..

5 Quinary 0 1 2 3 4 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 100 ..

6 Senary 0 1 2 3 4 5 10 11 12 13 14 15 20 21 22 23 24 25 30 31 32 33 34 35 40 41 42 43 44 45 50 ..

7 Septenary 0 1 2 3 4 5 6 10 11 12 13 14 15 16 20 21 22 23 24 25 26 30 31 32 33 34 35 36 40 41 42 43 44 45 46 50 ..

8 Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40 ..50 ..

9 Nonary 0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 .. 40 .. 50

10 Decimal 0 1 2 3 4 5 6 7 8 9 10.. 19 20 21 22 23 24 25 26 ..

11 Undenary 0 1 2 3 4 5 6 7 8 9 A 10.. 19 1A 20 .. 29 2A ..

12 Duodecimal 0 1 2 3 4 5 6 7 8 9 A B 10.. 19 1A 1B 20 .. 29 2A ..

13 Tridecimal 0 1 2 3 4 5 6 7 8 9 A B C 10.. 19 1A 1B 1C 20 .. 29 2A ..

14 Tetradecimal 0 1 2 3 4 5 6 7 8 9 A B C D 10.. 19 1A 1B 1C 1D 20 .. 29 2A ..

15 Pentadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E 10.. 19 1A 1B 1C 1D 1E 20 .. 29 2A ..

16 Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F 10.. 19 1A 1B 1C 1D 1E 1F 20 .. 29 2A ..

17 Heptadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G 10.. 19 1A 1B 1C 1D 1E 1F 1G 20 .. 29 2A ..

18 Octodecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 20 .. 29 2A ..

19 Enneadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 1I 20 .. 29 2A ..

20 Vigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 20 .. 29 2A ..

21 Unvigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K 20 .. 29 2A ..

22 Duovigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K .. 20 .. 29 2A

23 Trivigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M 10.. 19 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K 1L 1M 20..

24 Tetravigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 10.. 19 1A 1B .. 1N 20..

25 Pentavigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O 10.. 19 1A 1B .. 1O 20..

26 Hexavigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P 10.. 19 1A 1B .. 1P 20..

27 Septemvigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q 10.. 19 1A 1B.. 1Q 20..

28 Octovigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R 10.. 19 1A 1B.. 1R 20..

29 Enneavigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S 10.. 19 1A 1B .. 1S 20..

30 Trigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T 10.. 19 1A 1B .. 1T 20..

31 Untrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U 10.. 19 1A 1B .. 1U 20..

32 Duotrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V 10.. 19 1A 1B .. 1V 20..

33 Tritrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W 10.. 19 1A 1B .. 1W 20..

34 Tetratrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X 10.. 19 1A 1B .. 1X 20..

35 Pentratrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y 10.. 19 1A 1B .. 1Y 20..

36 Hexatrigesimal 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 10.. 19 1A 1B .. 1Z 20..

1. The base of each numeric system is displayed in BOLD black. The yellow are samples of following sequences.

2. The changeover point is where each base begins the sequence over.

3. The first changeover value in a numeric based system is always ‘10’. In the chart it can be observed in BOLD red.

4. There are two Alpha options that are representative of uppercase and lowercase letters and not part of any base:

A-Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC..BA BB BC .. CA CB ..

a-z a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac.. ba bb bc .. ca cb cc .. da db dc .. ea eb ec ..

 Example of using Alpha option, A-Z, (with Pad set to 3 places):

Bulk Rename Utility Operations Manual Page 244 of 715

Section # 10: Numbering

Known Issues:

Deselecting a File with a Non-Consecutive Selection Also Deselects the Previous File that held Focus

1. Remember that selections can either be Consecutive or Non-Consecutive.

 a. Consecutive selections refer to selections of files that are done in sequence – top to bottom, bottom to top and

 selecting all files in between. This is done using the Shift key + Mouse or the Shift + Down/Up arrow keys.

 b. In addition, all files can be selected using Ctrl + A.

 i.e.,

 c. Non-Consecutive selections refer to selections that do not follow in sequence. This is done using the

 Ctrl key + Mouse.

 i.e.,

2. The issue is that the last file in focus, meaning the last file that was selected individually, and this does not matter if

 the selection was done consecutively or non-consecutively, will be deselected when another file is deselected

 non-consecutively using Ctrl key + Mouse.

Bulk Rename Utility Operations Manual Page 245 of 715

Section # 10: Numbering

Known Issues:

To Reproduce the problem:

1. Activate Numbering and give it some settings.

2. Select a file – it does not have to be the first file in the Content Pane, but let’s use that. The first file now has focus.

3. Select additional files consecutively or non-consecutively – it doesn’t matter. For clarity, this example will use

 consecutively:

 a. The last file to hold focus is the last selected file – ‘CAN-FirstLast.docx’

Bulk Rename Utility Operations Manual Page 246 of 715

Section # 10: Numbering

Known Issues:

4. Using Ctrl + Mouse, deselect a file, - again, it doesn’t matter which. I will deselect, ‘FILENAME [1998] (text)’

5. Now you can see that not only did the file that I deselected become deselected, but the last file that held focus was

 also affected. It is selected but no longer under the criteria’s evaluation.

6. Work-around, re-select the file using Ctrl + Mouse (twice) – once to remove the selection and then again to select.

Update:

TGRMN has addressed this issue to a satisfactory conclusion. I leave the original text of the problem to help those

who for whatever reason have not or will not update to the newest version.

Bulk Rename Utility Operations Manual Page 247 of 715

 Section # 11 - Extension

Bulk Rename Utility Operations Manual Page 248 of 715

Section # 11: Extension

Extension – you can elect to change the filename extension during the rename action.

Your options are:

Same – no changes are made.

Lower/ Upper/Title – change the Case

 Lower –

 Upper –

 Title –

Fixed – specify an extension to use for all selected files. This is entered in the data entry field to the right. This

replaces any previous extension.

Remove – remove the current file extension and replace it with nothing

Bulk Rename Utility Operations Manual Page 249 of 715

Section # 11: Extension

Extra – add a secondary extension. Windows supports use of the dot character in more than one place within the

 filename, so files could be renamed with a secondary dot extension,

If you had a bunch of files with no windows identifiable extension, for instance, a previous rename operation may

have gone awry, you could add the proper extension.

Using the ‘Fixed’ option would not work because it would remove ‘.music’ when all that is needed is to add an

extension that could identify the file type.

Bulk Rename Utility Operations Manual Page 250 of 715

Section # 12 - Filters

Bulk Rename Utility Operations Manual Page 251 of 715

Section # 12: Filters

Filters – Specify a filespec (filename, with or without extension, aka file mask) that determines what is displayed in

the Content Pane. This has no direct effect on which files or folders are actually selected for processing other than to

make the selection easier by displaying only those files that match against the filter.

Navigation Pane Content Pane

Mask – used to enter a filespec that is used to filter the display (limit what is seen) in the Content Pane. The default is:

* - show all (or the more traditional filespec of *.*). This is also called a ’Wildcard’ character, because the asterisk is

used to represent something else. e.g., *.mp3, displays only Mp3 (audio) file types identified by the .mp3 extension.

 Example,

 displays:

Bulk Rename Utility Operations Manual Page 252 of 715

Section # 12: Filters

Notes:

1. ‘*’ is the same as ‘*.*’ but not ‘*.’ (neither ‘ *.’ or ‘ .* ’ is valid in the Filters field)

2. Multiple filespecs can be entered using a <space> delimiter.

3. When entering or changing a filespec, the change won’t take effect (doesn’t refresh) unless you click on a different

 object or move to another field, Press F5 to refresh all or use the ‘Filter Refresh’ button.

4. A ‘not’ Boolean operator can be entered using an exclamation point. The operator is used as ‘do Not include’.

e.g., *! *Sam* Display only files beginning with SAM (don’t include All but do include *Sam)

Results in:

Test directory

e.g., * !Sam* Display all files except those beginning with SAM (include all but not Sam)

Results in:

 Test directory

e.g., * !*QT* Display all files except those containing the string QT (include all but not *QT)

Results in:

 Test 1 directory

Specifying multiple not selections (using <space> delimiter):

e.g., "* !*.doc !*.mp3" This will select everything except (older type) Word documents and MP3 files

(include all but not .doc or .mp3).

Bulk Rename Utility Operations Manual Page 253 of 715

Section # 12: Filters

Include sub-section

This indicates what items can be included in the display:

Files – all files in the selected directories (default)

Folders – include folders

e.g.,

Hidden – include hidden files

Subfolders (Recursion)

Recursion. Sounds like stomach-upset and it very well could be if handled in the wrong manner. Recursion directs

Windows to perform an action not only on the current directory and its files, but the inclusion of any subsequent

sub-directories and their file contents.

Certain Windows functions can perform recursion.

For example:

BRU can use recursion as well. When selecting the Subfolders option, BRU is directed to include the contents of the

subdirectories. Any files in any subdirectories below the current directory will have all of its files displayed without

having to click on each separate directory. This is called a ‘Recursive Scan’. It allows for the processing of any or all

of these files in one operation.

Bulk Rename Utility Operations Manual Page 254 of 715

Section # 12: Filters

Here are two directories, Test, and a subdirectory, Test 1

Test contains: Test 1 subdirectory contains: Sub Folders option enabled:

The Content Pane changes to display all the files in both directories.

Note:

1. A scan refers to reading the files in the directories that were selected using the Navigation Pane (the Tree

 Hierarchy). The files are then displayed in the Content Pane. BRU refers to the resulting display as the File List.

 Because, however, the File List can contain both files and folders, I use the more generic ‘Content Pane’ in this

 document to avoid confusion.

2. With recursion set, if you were to scan a high-level folder such as C:\ or C:\Program Files, it could take a long time

 processing potentially tens of thousands of files, so be aware of this. Slow network issues have also been reported.

 a. If, after selecting a directory in the Navigation Pane, the program seems to freeze, look at the status bar:

 This indicates the program is busy scanning. If you press ‘Esc’, the program will stop the scan (after a moment

 or two).

3. Be careful using recursion and look for unintended consequences; e.g., You forgot and left ‘Subfolders’ enabled

 and now you have just mislabeled many files through a Rename action. Time to reach for that ’Undo’ function.

4. This also works in conjunction with the ‘Sub. Dir’ column (see Display Options Menu for more information).

Bulk Rename Utility Operations Manual Page 255 of 715

Section # 12: Filters

File Name Minimum Length/ Maximum Length

Values entered here limit the files/folders displayed based on the (greater or equal to) length of the filename

(including dot character and extension).

 Example, this filter limits the maximum file length to 13 characters.

 when applied against the Test directory, results in:

 e.g., SAM_0030.JPG = 12 characters including extension

Path Minimum Length/ Maximum Length

Values entered here limit the files/folders displayed based on the (greater or equal to) length of the pathname.

Unfortunately, BRU doesn’t display the full path. You also can’t rename by path length. I have discussed adding

these to a future modification of BRU with TGRMN.

 Example, this limits the path that includes the file length to a maximum of 154 characters.

 when applied against this directory:

 F:\Music\10,000 Maniacs with Natalie Merchant (up until 1994)\John and Mary (Ramsey - took over

 after Merchant)\Pinwheel Galaxy\

 Results in only two selections that met the criteria:

Notes:

1. File length includes ALL characters that make up the filename - the name, the dot character and the extension.

Bulk Rename Utility Operations Manual Page 256 of 715

Section # 12: Filters

BRU’s Sub Dir Column vs Full path

I don’t like getting ahead of myself, but to avoid confusion, I feel it is important to bring up some topics now that will

be discussed in a latter part of the book.

If you select Subdirs to turn on Recursion, as already mention in notation #4, there is a display column setting you can

enable that will display both the current directory and the preceding directory levels above for each file displayed.

For example, If I have this directory structure:

If I enable the Sub Dir. column,

You can see that for each file, it provides the current directory and any directories preceding, but not the full path.

A true path would be, i.e.,

H:\A Test Folder\test a\adjusted\Windows 7 Quick Reference Card.pdf

In Sub Dir. column it displays as:

\test a\adjusted

This indicates that the file, ‘Windows 7 Quick Reference Card.pdf’, is displayed as:

 \test a

 \adjusted

 Windows 7 Quick Reference Card.pdf

Unlike a full path, it does not display the parent root, ‘A Test Folder’, or the root directory of the drive, ‘H:\’

Bulk Rename Utility Operations Manual Page 257 of 715

Section # 12: Filters

It only works on files – for example, using an empty directory -

 I have a directory, ‘Sub Dir 1 Level 1’ that is currently empty. It displays as:

This is because the directory is empty (void of any files) and Sub Dir. is meant to display file paths not folder paths.

Long Path Support

e.g., This path exceeds the Windows limitation of 260 characters (The Max_Path limit of the WinAPI) -

H:\RESEARCH\Browsers\Browser (general or applies to all)\Printing\Prevent Firefox or Internet Explorer from

Printing the URL on Every Page\Prevent Firefox or Internet Explorer from Printing the URL on Every Page -- the

How-To Geek.png

BRU Doesn’t Support long File Paths – e.g., attempting to rename a file with an existing path that exceeds 260

characters:

You can, however, filter the display in displaying only those files and file paths that meet a certain length, but when it

comes to renaming using paths, without the ability to see the full path, you are at a slight disadvantage. I have

reached out to TGRMN Software for adding a 'Full Path' column and supporting long file paths.

Notes:

1. For more information, refer to the discussion of the Sub Dir. Column setting.

2. ‘Section #9: Append Folder Name’ can append the names of subdirectory levels above and including the current

 directory. Although you can see these changes – the subdirectory names appear in New Name, this is still not a true

 full path display. It is also doubtful that the Rename operation will be permitted if the renaming length is exceeded.

3. The Sub Dir. column is useful for displaying paths associated with recursion. Must enable ‘Subfolders’ in

 ‘Section #12: Filters’ for data to be displayed in the Sub Dir. display column.

Bulk Rename Utility Operations Manual Page 258 of 715

Section # 12: Filters

Match Case

Directs BRU to use Case Sensitivity when filtering out the file list. Any filtered data is normally Case Insensitive,

meaning, any mix of upper and lowercase letters as part of folder or filenames are ignored. If this is set, then the filter

will include both lower and uppercase letters in evaluating the filtering of the data.

Example:

Filter Case Insensitive Filter Case Sensitive

RegEx

Directs BRU to interpret the entered ‘Mask’ as a Regular Expression. BRU allows RegEx to be used in evaluating a

filter. For more information, see ‘Section #1: RegEx’ and the ‘Regular Expressions Manual’ in both the Appendix in

this volume and in Volume II. There is also a small section in Volume II dedicated to RegEx as it is used in Filters.

Condition

In this data entry field, you can enter a JavaScript Condition to filter files/folders. If the Condition evaluates to true

for an object (filename or folder), that object is included in the file list, otherwise it is not. Using a JavaScript

Condition you can include/filter files based on name, date, EXIF, size, attributes, length, etc.

For more information, refer to both the JavaScript section in the Appendix in this volume and you will find a

dedicated section to JavaScript in Volume II.

Bulk Rename Utility Operations Manual Page 259 of 715

Section # 12: Filters

Notes:

1. The pathname includes all of the directories in the path as well as the length of the filename with dot and extension.

 F:\Music\10,000 Maniacs with Natalie Merchant (up until 1994)\John and Mary (Ramsey - took over after

 Merchant)\Pinwheel Galaxy\John & Mary- The Drone.mp3 = 154 characters

2. The files still have to meet the path and or filename limits to display, but in a Recursive Scan, (Subfolders option is

 enabled) subdirectories and their files will still be scanned (reads all files) regardless of length. This could

 slow things down if there are a lot of files. See ‘Subfolders’ option in this section for more information.

3. The button next to the Mask data entry field will rescan the directory and apply the filter.

4. The button next to the Condition data entry field will rescan the directory using the JavaScript condition. It will

 also display any errors in the JavaScript (similar to the ‘Test’ button on the JavaScript Code Entry form).

5. See ‘JavaScript’ under ‘Special Menu’ for more information.

6. JavaScript requires Commercial version of BRU (inexpensive license).

7. Refer to ‘JavaScript’ section in ‘Volume 2 Bulk Rename Utility Operations Manual – Expert’s Corner’ for more

 information on JavaScript and some examples of using the Condition data entry field.

8. F7 will clear the Content Pane of all files. It does not delete them. It just removes them from the File List. This is

 useful if you want to Drag and Drop files and want a ‘clear’ window to work with. To use F7, make sure that the

 Content Pane has focus (click on the Content Pane Window to change focus). Now press F7.

 As an alternative, you can also use Ctrl + Drag and Drop to accomplish the same thing.

 For more information, see ‘Drag and Drop from Explorer’ in an earlier section of this volume.

Bulk Rename Utility Operations Manual Page 260 of 715

Section # 12: Filters

v3.42 New Additions

Set Subfolder Level to Control Recursive Scanning

Added specification of subfolder level to set the maximum level of recursive scanning under ‘Section #12: Filters’.

This will help speed up recursive scanning, especially useful on Networked drives when a lot of files are involved.

This way you only need to include those levels of folders that you require.

In each of these directories I have placed a single file …

 File #0

 File #1

 File #2

 File #3

 File #4

File #5

 File #6

 File #7

 File #8

 File #9

 File #10

 File #11

 File #12

… It displays as …

Bulk Rename Utility Operations Manual Page 261 of 715

Section # 12: Filters

v3.42 New Additions

Level 0 is the default. It will recurse all folder levels. In the example, the maximum level is 4. From there you can

begin specifying levels.

 Level 4 to Level 1

I’ll demonstrate one file to help you to understand. I will use File #12 that resides 4 levels down from its root, Tier 3.

Level 4. All preceding sub-directories from Level 4 through Level 1 are included. Since there are 4 maximum levels,

setting Level as 4 is the same as specfying 0 levels. File #12 resides in the Tier 3 Level (4) directory.

Level 3. All preceding sub-directories from Level 3 to Level 1 are included. Because File #12 was on Level 4, the

next file, File #11 in Tier 3 Level (3) directory, is displayed.

Level 2. All preceding sub-directories from Level 2 to Level 1 are included. Because File #11 was on Level 3, the

next file, File #10 in Tier 3 Level (2) directory, is displayed

Level 1. All preceding sub-directories from Level 1 are included. Level 1 is the only preceding directory. The root

directory, Tier 3, is never shown in the Sub-Dir. column because it is not a sub-directory. Because File #10 was on

Level 2, the next file, File #9 in Tier 3 Level (1) directory, is displayed.

Bulk Rename Utility Operations Manual Page 262 of 715

Section # 13 – Copy/Move to Location

Bulk Rename Utility Operations Manual Page 263 of 715

Section # 13: Copy/Move to Location

Copy/Move to Location – option to copy or move processed files to a different specified directory. Copied files will

leave the original files intact. Processed files are those files that have already been renamed.

If ‘Allow Overwrite / Delete Existing Files During Renaming If Needed’ is set under the Advanced Options of the

Renaming Options Menu, files with same name will be overwritten. If not, this message will be generated:

If you choose to ignore the error, processing will continue on with the next file.

Notes:

1. This restriction is overridden if ‘Prevent Duplicates’ is enabled from the Renaming Options Menu.

 What this does is to append ‘_#’ as a suffix to the file name,

i.e., Becca hT Fl Chalk becomes Becca hT Fl Chalk_1

where:

_# represents a count of each duplicate named file.

2. FYI, the above error example is the output result of ‘Section #3: Replace’ set to .. Replace: Q With: h

Bulk Rename Utility Operations Manual Page 264 of 715

Section # 13: Copy/Move to Location

This is how it works.

After renaming some files, I want to move them to the Test 2 directory. In this example I will remove the extension of

some files in the Test 1 directory.

Current contents of Test 2 directory:

1. Specify my renaming criteria.

2. Select my files to be renamed in the Test 1 directory.

3. Specify the directory to which these files are to be moved.

Result:

 The three renamed files, Becca*, have been

 moved to the Test 2 directory.

Bulk Rename Utility Operations Manual Page 265 of 715

Section # 13: Copy/Move to Location

Notes:

1. Only files can be copied or moved, not the directories with their file contents.

2. If directories are copied/moved, the behavior of BRU is to create ‘empty’ directories at the new location. The

 original directories are left unchanged (regardless if files are contained).

3. If the target directory does not exist, it will be created.

 Using the same example as before,

 … Removing the extension from three files and moving them …

 The directory, Test 2 under the Test directory off of the H: drive, did not currently exist but was created

 ‘on the fly’ (American expression meaning, on demand) as the Copy/Move operation was being performed.

4. If the ‘Copy’ option is used, the original files are not renamed, only the copied files.

 Using the same example as before,

 … Removing the extension from three files and moving them …

 Files selected from Test 1 directory:

 Target location specified as:

 Files will be Copied not Moved.

 Result:

 Files remain unaltered in original directory, Test The Renamed files are copied over to Test 2 directory

Bulk Rename Utility Operations Manual Page 266 of 715

Section # 13: Copy/Move to Location

Because of the confusion among Forum participants over this subject, I will elaborate on my notations further.

1. Only files can be copied or moved, not the directories themselves with their file contents. If directories are

 copied/moved, the behavior of BRU is to create ‘empty’ directories at the new location. The original directories are

 left unchanged (regardless if files are contained). {Taken from notations #1 and #2 from the previous page}.

This means, using this function, I cannot simply move one directory including its contents to another location.

Example:

The current directory structure for the Test directory.

If Test 1 contains the following files:

I want to move the Test 1 directory along with its contents to become a

subdirectory under the Test 2 directory so I end up with –

 H:\Test\Test 2\Test 1\

1. I specify Test 2 as the target directory:

2. The directory, Test 1, is selected…

3. Click on Rename:

 Directory Test 1 was NOT moved but COPIED as a

subdirectory under Test 2, and the contents of that

subdirectory is EMPTY.

You will find, though, that the original contents of the

Test 2 directory under Test are still intact, unaltered.

Conclusion:

BRU will only copy the directory structure, not the

contents, if you attempt to Copy/move a directory.

Bulk Rename Utility Operations Manual Page 267 of 715

Section # 13: Copy/Move to Location

Let’s examine this behaviour in more depth.

This is what happens when I select a file that does not meet the criteria for renaming using Copy/Move to Location.

1. I have selected a file, test file a.jpg, located in the main Test directory.

2. I Specify my target directory location.

I have no other criteria other than the Move/To Location specification. Therefore, New Name shows no value other

than the original Name unchanged.

3. Click on Rename.

Result:

The file is successfully moved to the Test 2 directory unaltered.

What does this mean? A Great Tip coming up, that’s what.

Bulk Rename Utility Operations Manual Page 268 of 715

Section # 13: Copy/Move to Location

Moving Files from one Directory to Another Location with Files content!

This is done in two parts:

1. Create the directory to which the files will be moved.

You can use any File Manager including Windows Explorer. I have already shown you how to do it in BRU, by

specifying the directory and then issuing the Move/Copy.

For this example I will use BRU to create an empty directory structure.

a. Turn on Recursion.

b. Select the directories.

c. Specify the target location.

d. Click Rename.

e. Click Ctrl + F5 to refresh.

f. Directory structure has been recreated under Tom,

 albeit empty of any file content.

Bulk Rename Utility Operations Manual Page 269 of 715

Section # 13: Copy/Move to Location

2. Now we move the files. Leave recursion on to move all of the files into a single directory or turn recursion off and

 perform the operation on each directory individually. To save time for this experiment, I will opt to move them all

 at once into a single directory, H:\Tom\Test 1.

1. Select my files.

2. Select my target directory.

3. Click Rename.

All files have been moved intact with no renaming required! Neat, huh?

Bulk Rename Utility Operations Manual Page 270 of 715

Section # 13: Copy/Move to Location

Notes:

1. When I refer to ‘Main’ it is because it is the root directory of this directory structure and not a subdirectory

 branching off from it.

2. The subdirectory, test a, was originally a subdirectory under Test2, but because I included it in the transfer

 operation, it became a subdirectory directly under the Test directory of Tom. There is no current method of

 recreating more than 1 level of directories using this method. In other words, I can’t recreate the original structure

 of:

 to the new location.

 Instead, I have to settle for this:

 test a directory becomes a subdirectory off of Tom instead of off of Test 2

 I can always move the test a directory manually using a File Manager.

3. You can also use my tip for moving the directories to a location that doesn’t exist because BRU will create it on the

 fly just as it does normally when specifying non-existent target directories for renaming operations.

Bulk Rename Utility Operations Manual Page 271 of 715

Section # 14 – Special

Bulk Rename Utility Operations Manual Page 272 of 715

Section # 14: Special

The Special Section is made up of the following:

Change File – Change File Attributes

 File Attributes consist of ‘Read-Only’, ‘Archive’, ‘Hidden’, and System.

Change File – Change File Timestamps

 Time stamps consist of ‘Date Created’, ‘Date Modified’, and ‘Date Accessed’.

Character – Character Translations

 Defines a set of rules that will translate one specific character or sequence of characters into a

 different character or sequence of characters.

JavaScript - Use JavaScript in Renaming

 (ONLY available with purchase of an inexpensive Commercial license)

This section has an entire menu equivalent – ‘Special Menu’

Section 14, therefore, is located on the User Interface as a convenience.

For each of these criteria there is a button, Status Not Set. When you click on either it or the little blank checkbox, it

will bring up the dialog box with available settings and options that pertains to that criteria.

Bulk Rename Utility Operations Manual Page 273 of 715

Section # 14: Special

File Change (Attributes): File Change (Timestamp): Character (Translations):

For further information on using these criteria, please refer to the appropriate section dedicated to each of these

functions earlier in the book. More information can be found under the ‘Special Menu’ of the Menus section as well.

JavaScript:

 This code entry form affords

 you a working space to both

 write and optionally test the

 code’s syntax before committing

 to it.

 Notes:

 ‘JavaScript’ form requires a

 knowledge of JavaScript as

 well as the Commercial

 version of BRU to peform

 the rename function. Testing

 and code syntax checking are

 included in freeware edition.

 Also refer to ‘JavaScript’

 section in ‘Volume II Bulk

 Rename Utility Operations

 Manual – Expert’s Corner’.

Bulk Rename Utility Operations Manual Page 274 of 715

Menus

Bulk Rename Utility Operations Manual Page 275 of 715

File Menu

Bulk Rename Utility Operations Manual Page 276 of 715

File Menu

New (Ctrl + N)

This will unload any previous Favourite file and ‘Reset’ all the criteria but it has no effect on any loaded ‘Imported

Rename Pairs’. In addition, if ‘Save on Exit’ is set and ‘New’ is still in effect (there is currently no Favourites file

loaded), then you will be reminded to create a file upon exit. For more information, refer to ‘Understanding

Favourites’ earlier in this volume.

Open (Ctrl + O)

Open a previously saved Favourites file (saved with a ‘.bru’ extension). A Favourites file (or for you Americans –

Favorites), is a file that contains all of the set criteria so you don’t have to enter it from scratch each time for a

particular renaming task. For more information, see ‘Favourites’ in this section and ‘Understanding Favourites’ earlier

in this volume.

Save (Ctrl + S)

Saves the current set criteria as a Favourites File. If the file doesn’t already exist, a new name will be requested. If the

file exists, it will be overwritten. For more information, refer to ‘Understanding Favourites’ earlier in this volume.

Save As

Request to Save a Favourites file with a new name. For more information, refer to ‘Understanding Favourites’ earlier

in this volume.

Bulk Rename Utility Operations Manual Page 277 of 715

File Menu

Recent

For your convenience, BRU remembers the last few Favourite files for easy selection without having to use the

‘Open’ dialog.

 The most recent file, will also be displayed in the status bar unless ‘New’ was previously selected.

Favourites

A Favourites file saves all of the settings, including criteria, selection and even the current directory. You can have

multiple Favourites files each consigned to a particular task.

– Save on Exit

If set, this will automatically save any changes to the current Favourites file on exiting the program. If there is

no current Favourites file, a new name will be requested upon exit by presenting the Save dialog box.

– Store Pathname

If set, the next time this Favourites file is loaded, you will be placed into the same directory at the time this file

was last saved. This allows you to continue previous work. If not, set, you will remain in the current directory

when the Favourites file is loaded.

1. For more information, refer to ‘Understanding Favourites’ earlier in this volume.

Bulk Rename Utility Operations Manual Page 278 of 715

 [This Page Intentionally Blank]

Bulk Rename Utility Operations Manual Page 279 of 715

Actions Menu

Bulk Rename Utility Operations Manual Page 280 of 715

Actions Menu

Selection

- Individually Select with Keyboard and Mouse

Select which files are to be processed in the Content Pane using ‘Ctrl + Left Mouse Click’ to individually select files

or use ‘Shift Key + Down Arrow’ to select files consecutively.

Note:

1. The files will always be processed in the order of the displayed sequence.

 For more information see -

 ‘Sorting’ under the Display Options Menu

 ‘List - Reposition’, under the Actions Menu

 ‘Apply Random Sort to Current List’, under the Actions Menu

 ‘Rename in Reverse Order’, under the Renaming Options Menu

 notation #6 under ‘Program Notes’ section earlier in this volume

 - Select All (Ctrl + A)

Selects all files and directories displayed in

the Content Pane.

 - Deselect All (Ctrl + D)

Unselects any files and directories previously selected in the Content Pane.

 - Invert Selection (Ctrl + I)

Reverses the selections in the Content Pane. If a file or directory was selected previously, it becomes unselected. If a

file or directory was previously unselected, it becomes selected.

Before - After -

Bulk Rename Utility Operations Manual Page 281 of 715

Actions Menu

 - Select From Clipboard

If a previous list of files or directories was saved via the clipboard, e.g. the output from a ‘Dir \B | clip’ command, the

program will select which files or directories from the clipboard match any files or directories currently displayed in

the Content Pane.

Notes:

1. It does not place the contents of the clipboard into the Content Pane, it only matches against it.

2. Matches will be highlighted by row based on the Name column (Clipboard contents must ‘exactly’ match).

3. In the example Dir command above, ‘clip’, an executable, is only available in Vista or higher. Clip redirects

 command output from the command line to the Windows clipboard.

Example of clipboard contents containing list of files:

Becca BW.music

Becca Colour QT BW.music

Becca Moving Sun Faded.music

Before:

Issue command:

After:

Bulk Rename Utility Operations Manual Page 282 of 715

Actions Menu

 Another Example. This time I am going to match against directories.

 clipboard contains the following directories:

 database

 OS

 Win 7 Development software

 In the Navigation Pane the ‘\Computer’ directory is currently selected.

 From Actions Menu, click on ‘Select from Clipboard’.

 Results in:

The directories above were matched with the contents of the clipboard providing the selections highlighted.

Bulk Rename Utility Operations Manual Page 283 of 715

Actions Menu

Jump to Path (Ctrl + J)

Initiates the ‘Jump Directly to Path’ dialog box. This allows you to navigate directly to the user specified path. If you

don’t know the path, you can click on ‘…’ and browse for it. BRU will switch to the path in the Navigation Pane,

update the Address line and display any file contents in the Content Pane.

Jump to Path (Ctrl + J): v3.4 New Additions

Network/UNC Paths are Supported.

In a network, the Universal Naming Convention (UNC) is a way to access a shared file in a computer without having

to specify (or know) the storage device it is on. In Windows, the UNC can be used instead of the local naming system.

The UNC name format is:

 \\servername\sharename\path\filename

instead of:

d:\path\directory name

Example:

Where:

\\DESKTOP-K366SMH server name (name of computer being accessed)

\d share name. In this case the share is a drive’s root directory

\tim\ pathname

filename not used because Jump to Path only supports paths not filenames.

file://///DESKTOP-K366SMH

Bulk Rename Utility Operations Manual Page 284 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

If you want to find the UNC Network path name for a share -

1. In Explorer, navigate to a share. I temporarily created the D share for this example.

2. Right click and select ‘Properties’

Brings up the Properties dialog box:

Under Sharing tab, you can see the UNC Network path. Here you can use Copy and Paste to copy the path into BRU.

Bulk Rename Utility Operations Manual Page 285 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Here are some additional methods to view and copy the Network Path:

Using the same D share,

1. In Explorer, navigate to a share.

2. In the Share tab in the top menu, select Advanced Sharing.

3. This brings up the Share Dialog box directly:

You can use Copy and Paste to copy the path into BRU.

Bulk Rename Utility Operations Manual Page 286 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

For this next method, I created another temporary share, this time a directory on an external drive.

Create a share:

1. In Windows Explorer, navigate to the folder you want to share. Since this is a test, I decided on one of my photo

 directories:

2. Under the Share tab, click on ‘Specific People’

Bulk Rename Utility Operations Manual Page 287 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

3. This opens the Share dialog box:

I added the group, ‘Everyone’ providing Read access only. You can specify this or any other defined group.

4. Click on the ‘Share button:

Bulk Rename Utility Operations Manual Page 288 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Open Windows Explorer and navigate to Networks. Under Networks, you should see your new share:

To view and copy the Network path, here are a couple more methods:

1. Navigate to the Network in the Tree Hierarchy of the Navigation Pane and select the device that holds the share. In

 this particular example it was on my local network under DESKTOP- K366SMH:

Bulk Rename Utility Operations Manual Page 289 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

2. Click inside the file share to display the pseudo path in the Explorer address bar.

3. Click on the address bar and it will change to the Network path:

4. Copy the highlighted address to the clipboard buffer.

or… replace step 2 above with …

2. right click on the pseudo path and select ‘Copy address as Text’:

Bulk Rename Utility Operations Manual Page 290 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

or ….

2. Right click on the shared directory in the Navigation Pane,

3. .. and select ‘Copy’.

The UNC Path is copied to the Clipboard buffer:

\\Desktop-k366smh\100nikon

Any of these methods will work.

file://///Desktop-k366smh/100nikon

Bulk Rename Utility Operations Manual Page 291 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

The reason I created a temporary share on a specific directory and not on a root directory of a drive was to illustrate

that the UNC is not simply applying the filepath with an added syntax of \\<path> but is using the assigned network

Share name.

Path is:

K:\Ma & Dad Pictures\DCIM\100NIKON

Network Share is:

//Desktop-k366smh/100nikon

and this would be the UNC path as well:

Bulk Rename Utility Operations Manual Page 292 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

If you want to view all the available shares on the current computer, use the net command.

1. From a command prompt, type ‘net share’.

The advantage of this over simply viewing the Network in the Explorer Navigation Pane is that this will display all

shares including hidden shares.

This can also be done from Computer Management:

1. Right click on Start Menu and select Computer Management.

2. Navigate to System Tools\Shared Folders\Shares

Now you can use Jump to Path to quickly navigate to a particular shared folder in BRU.

Bulk Rename Utility Operations Manual Page 293 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Using the new UNC support for Jump to Path.

BRU’s current path is set to C:\Users\tmong\3D Objects.

You will notice that the Content Pane is empty. I deliberately picked an empty directory to provide a visual contrast.

Bulk Rename Utility Operations Manual Page 294 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

1. Anywhere in BRU, issue the command, Ctrl + J or use the menu item,

 ‘Jump to Path’ from the Actions menu.

2. This initiates the Jump to Path dialog box:

 It will always display the current path initially.

3. Enter in your UNC path

 and click OK.

4. The path is changing, the Status Bar at the bottom may indicate ‘Jump To Path’. Depending on how many files will

 need to be read, there may be a delay before the Content Pane displays the files.

a. Path bar at top will change to reflect new

 path: \\Desktop-k366smh\100nikon

b. Status bar at bottom will also reflect this

 change.

c. Navigation Pane changes to new

 directory path and highlights current

 directory:

 \100nikon

d. Content Pane will display the files, if

 any, contained within that directory.

file://///Desktop-k366smh/100nikon

Bulk Rename Utility Operations Manual Page 295 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Advantages over other methods:

1. Completely bypasses the Win32 Namespace Windows API and instead uses the File System directly. This

 eliminates a lot of problems with accessing Network Drives including some reported speed issues.

2. The Windows API was also limited to Max_Path and responsible for the parsed path and filename length restriction

 of 260 characters. This addresses one issue of BRU’s non-support of Long File Paths, although still not supported

 in renaming operations.

3. If a Mapped drive is changed, the file is inaccessible and pointing to it via a path would produce an error:

4. The same would happen if the mapped drive was assigned a different drive designation or a user on the network

 changed the mapping. UNC paths usually do not change. BRU, however, still validates the existence of the UNC

 path.

5. A mapped drive can only be accessed by a logged on user. A UNC pathname does not require this.

6. The directory structure under a mapped drive may also be changed due to updates or repairs so as to make mapped

 drives impossible to maintain. UNC only requires to maintain a list of computers on the network so the user always

 has access to the correct resources.

7. Printers and other devices can also be addressed using UNC (not in BRU certainly).

8. UNC access can be faster than accessing through Mapped drives especially if user authentication is involved. But

 generally speaking, this is also due to the fact that UNC bypasses the OS.

9. Mapped drives are more convenient for the end user but a nightmare for the system administrator who has to

 maintain a list of all of the mapped drives on the network as well as the UNC lists.

Notes:

1. Please refer to Long File Paths in the Appendix of Volume II for a more detailed explanation of this.

Bulk Rename Utility Operations Manual Page 296 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Oh, by the way:

To remove the temporary share, use the ‘Remove Access’ button from the Share tab of Windows Explorer on the

highlighted shared directory in the Navigation Pane:

Bulk Rename Utility Operations Manual Page 297 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

This begs the question, will the UNC support work under other BRU functions? Let’s find out. For this next example

I will test it using ‘Section #13: Copy/Move to Location’:

I set up a simple rename test using ‘Section #3: Replace’ and specify the share for Section #13: Copy/Move to

Location’.

Use the Preview button from the Actions Menu (or Press Ctrl + P)

Actions Menu

Bulk Rename Utility Operations Manual Page 298 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Did it work?

No.

If you look at the preview again, the UNC syntax of ‘\\’ was changed to: ‘\’.

So instead of referring to a Network path, the single ‘\’ refers to a directory off of the root. And since the directory

structure, ‘Desktop-k366smh\100nikon\’ did not already exist, BRU created it and copied the renamed file over just as

I had directed.

So, at least for now UNC support is limited to Jump to Path.

Bulk Rename Utility Operations Manual Page 299 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

Troubleshooting UNC under Jump to Path

It should be noted that in order for the UNC path option to function properly under Windows 10, the Network

Discovery under Windows Explorer must be in working order.

What I mean by this is, if you go to Network in the Tree Hierarchy of the Navigation Pane under Windows Explorer

and it displays empty

 instead of i.e., -

.. then you have a problem and UNC will not work. If you try, the directory will not change and the Content Pane will

go blank. If this happens, click on the address bar and press Enter to refresh the files from the original directory to

restore the file listing.

Why would this occur and why have I mentioned it at all? Because a lot of people are afflicted with this, including

myself, because of some fouled up Windows Update in the past – which is my excuse, or it could be some other

problem. With Windows, you just never know. Search Google to see how many mentions there are on this subject.

In a working system, Network should display any Shares along with all computers currently online and connected to

your system. It may also display any networked printers or other peripherals available to the Network.

Bulk Rename Utility Operations Manual Page 300 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

☺ Network 101 – of course make sure you have Network Discovery turned on in the first place:

In the Advanced options of the Network and Sharing Center -

and turn on Sharing:

One sure way to know if you have the problem is to issue the ‘net view’ from an elevated command prompt.

If you get this error or something similar, welcome to the club.

Bulk Rename Utility Operations Manual Page 301 of 715

Actions Menu

Jump to Path (Ctrl + J): v3.4 New Additions

If indeed you do have this problem then you may want to try some of the remedies out there. For myself, they didn’t

work. What did work is that I have both an Ethernet and Wireless connection set up. I switch the Ethernet to Wireless

(pull the Ethernet cable from the router and it automatically switches over because I have both connections set up),

then when the Wireless is recognized, I switch back (plug the cable back in), and it fixes it – at least temporarily until

the next Windows Update usually.

If you don’t have this setup, then you will have to try other alternatives.

Update January 13, 2021

Windows did another update. Guess what? Lost the Network again (along with the usual loss of my printer and

sound). Tried my trick of switching from Ethernet to Wireless but the system ‘learned’ and this time it didn’t work.

 Kindly send your donations to Tim Mongeon, Home for

 Overworked and Unpaid Writers, Level 3 Locked Ward

 FYI. This is not my photograph.

So more trial and error produced this final working solution:

Under Services:

function discovery resource publication (fdPHost)

If it is not running, start it. If it is already running, restart it. Make certain you have it is set to AUTOMATIC. On my

system, it was already running so I restarted it and once more problem fixed (temporarily). Can’t wait until the next

Windows Update so it gets screwed with some more, and perhaps that insidious Windows AI, getting far more

intelligent than I can keep up with in fixes, will shut my Network folder down again.

This does not fix the above System Error, e.g., 1231, but you can ignore it if your Network comes back in

Windows Explorer because now the UNC path will work in Jump to Path.

Bulk Rename Utility Operations Manual Page 302 of 715

Actions Menu

Rename Object Manually (F2)

For this to work, you have to have only one file\folder selected in the Content Pane. This is the standard F2 Windows

Explorer function. Press Esc to cancel the rename.

Now you can rename the file by typing. Click ENTER to save, or just move to a different filename.

Notes:

1. If you are in ‘Recursive mode’, (‘Sub Folders’ enabled in ‘Section #12: Filters’) the File List will be refreshed.

Refresh Files (F5)

This will refresh the Content Pane.

Refresh Tree (Ctrl + F5)

This will refresh the Navigation Pane. Note that you can also refresh the contents of the selected branch by collapsing

and re-expanding the branch.

Show/Hide Tree (F11)

This will hide or show the Tree Hierarchy (the Navigation Pane). This is useful if you are performing a great amount

of renaming in a single folder. The "tree" can be removed to give you more space in which to work.

Notes:

1. The tree will always be visible at program startup, even if it was hidden when you closed the program.

2. I refer to the tree as the ‘Tree Hierarchy’ because it is an Object Tree. An Object Tree displays hierarchical objects

 in a tree view.

Bulk Rename Utility Operations Manual Page 303 of 715

Actions Menu

Zoom (F8)

This will display a larger data entry field for easier editing, if you press F8 while in most of the data entry fields of the

criteria sections. #1 - #13.

List

The List command acts on the files and folders listed in the Content Pane. The content presented in the pane is often

referred to as the ‘File List’.

- Reposition

Allows you to reposition/reorganize items in the File List, useful for renumbering. Reposition offers several

sub-commands.

Bulk Rename Utility Operations Manual Page 304 of 715

Actions Menu

- Reposition

Move Up Selected Item (Ctrl + Alt + Up Arrow)

Moves the selected item up one line position in the list. For smooth, rapid movement, use the Keyboard Shortcuts.

Move Down Selected Item (Ctrl + Alt + Down Arrow)

Moves the selected item down one line position in the list. For smooth, rapid movement, use the Keyboard Shortcuts.

Move Top Selected Item (Ctrl + Alt + PgUp)

Moves the selected item to the top of the list. For smooth, rapid movement, use the Keyboard Shortcuts

Move Bottom Selected Item (Ctrl + Alt + PgDn)

Moves the selected item to the bottom of the list. For smooth, rapid movement, use the Keyboard Shortcuts

Bulk Rename Utility Operations Manual Page 305 of 715

Actions Menu

- Reposition

Swap Two Selected Items (Ctrl + Alt + S)

Repositions two selected items each replacing the other’s position in the list.

Remove From List (Delete key)

This removes the file from the list, BUT does not delete the actual file. If you wish to delete the physical file, right

click on the file to bring up the context menu and select ‘Delete’.

- Apply Random Sort to Current List (Ctrl + 8)

This allows you to sort the file list in a random sequence. Useful if you want to create a slideshow in a random

display-sequence.

Before – After -

Bulk Rename Utility Operations Manual Page 306 of 715

Actions Menu

- Apply Random Sort to Current List

Once you've sorted in random order, apply a numeric auto-number prefix to keep the list in that order.

example -

‘Section #10: Numbering’, showing Prefix selected with Increment set at one and an added <space> separator.

Before: After:

Order can be restored if desired by re-sorting the list by ‘Name’. Click on the ‘Name’ Title bar.

Notes:

1. If you use the keyboard shortcuts, you can move the file quickly and easily rather than using the menu requiring

 clicking on the item for each instance.

2. For more information, refer to ‘Section #10: Numbering’.

Bulk Rename Utility Operations Manual Page 307 of 715

Actions Menu

- Show Only Items Affected by Renaming Criteria (Ctrl + 9)

This allows you to only display those files that will be renamed using the criteria. Especially useful when you have a

large list. Select files first before applying.

Example:

Here is a list of various files. I have selected (highlighted) only a few files for this illustration.

Before:

To limit the scope of the list and only view those files affected by the current criteria…

After:

Bulk Rename Utility Operations Manual Page 308 of 715

Actions Menu

- Clear All Items from Current List

Clears ‘all’ items from list (Content Pane), not just selected. Files are removed from view and not actually deleted. To

restore view, use F5 or ‘Refresh Files’ from ‘Actions Menu’.

- Auto-Select All Items After Listing a Folder

All files and folders in the Content Pane are selected automatically whenever the list of files/folders is built.

Notes:

1. Applies to:

 a. When the BRU program starts.

 b. When the Files are refreshed using F5 or ‘Refresh Files’ from Actions Menu.

 c. When changing to another folder in the Navigation Pane. The files in the Content Pane will be selected for the

 changed folder.

2. Any criteria set will be applied to the selected files. New Name will reflect any changed (qualified) filenames. This

 function is a convenience that can save a little time.

Bulk Rename Utility Operations Manual Page 309 of 715

Actions Menu

v3.4 New Additions

- Clear All Non-Selected Items from Current List (Ctrl + 0)

Clears ‘all’ non-selected items (without highlight) from list (Content Pane). Files are removed from view and not

actually deleted. To restore view, use F5 or ‘Refresh Files’ from ‘Actions Menu’.

Before:

After:

Bulk Rename Utility Operations Manual Page 310 of 715

Actions Menu

Import Rename-Pairs (Rename from a Text File)

You can perform a rename action using a text file containing the files to be renamed in this format:

<original name>|<new name>

One entry per line.

where:

the <original name> is separated from the <new name> using a pipe character ‘ | ‘

 Pipe character is found on most keyboards as the key above the backslash character.

e.g.

Track001.mp3|Headlong.mp3

Track002.mp3|Rushes.mp3

TRACK003.mp3|AnywhereIs.mp3

- Import Rename-Pairs

1. Navigate to the directory containing the files to be renamed, e.g.,

2. From the Actions Menu select, ‘Import Rename-Pairs’.

3. Load in the text file from the, ‘Open File’, dialog box.

 a. Select your files in the Name column.

 b. If successful, the New Name column will contain a preview of the renamed files.

Bulk Rename Utility Operations Manual Page 311 of 715

Actions Menu

- Import Rename-Pairs cont.

 Example,

 I have a text file called do.txt containing the following filenames taken from my Test directory:

 Belvedere Plantation 6474.jpg|test1.jpg

 Belvedere Plantation 6476.jpg|test2.jpg

 Belvedere Plantation 6479.jpg|test3.jpg

 Belvedere Plantation 6488.jpg|test4.jpg

 Belvedere Plantation 6490.jpg|test5.jpg

 Once loaded, and the files selected, results in:

Notes:

1. The text file cannot contain the file paths. It won’t work. Therefore you are limited to having all of the files

 referenced in the Rename-Pairs listing reside in the same directory (another suggestion I have made to TGRMN).

2. The text file can reside anywhere and does not have to be in the same directory as the intended files.

3. The file only tells the program what will be renamed. You still have to use the Navigation Pane to select the

 directory containing the files.

4. Case is ignored when BRU is comparing filenames in the text file to the filenames in the folder.

5. Use the ‘Clear Imported-Pairs’ command from this sub-menu to remove the text file entries from the Content Pane.

6. BRU will read ANSI and Unicode (UTF-16) text files.

7. The Imported rename-pairs can be viewed using ‘View Imported Rename Pairs’ from this sub-menu.

8. When the file is loaded, BRU will reflect this by placing a RED notice next to the program info:

9. Double-Clicking on the RED notice above will bring up the ‘View Imported Rename Pairs’ window.

Bulk Rename Utility Operations Manual Page 312 of 715

Actions Menu

- Import Rename-Pairs cont.

Directory List Method

To make the listing itself, you need a program that can create a text file from a directory. You may need to look

around to find one. Even so, once you have the listing, you will need to add the pipe character. This can be done by

loading the list into a word processor or text editor and use that program’s find and replace, specifying the ‘^p’

character (paragraph) as the Find and ‘| ^p’ as the Replace.

Spreadsheet Program Method

Here’s a method for using a Spreadsheet program to create a Renamed-Pairs list. It was originally meant for Volume

II, but I decided it would be a better fit in Volume I. The idea was taken from the BRU forums by the Contributor,

KenP with added material by myself.

Contents of old.txt (old filenames) Contents of new.txt (new filenames)

3052503155104.Bourjois_FDTAirMat_01_3 3052503155104.Bourjois

AWOLNATION - Run (B52 Remix)_217279053 - B52 AWOLNATION - Run (B52 Remix)

b&B_296170807 – psupac B_296170807

[Word1-Word2] 2010 [Word1-Word2] 2019

[Word] 2006 [Word] 2008

Word1-Word2.com - 2009 r Word1-Word2.com – 2010

In Excel or other Spreadsheet program enter the following into row 1:

 A B C D E F G H

 1 " <paste old filenames> " | " <paste new filenames> " =A1&B1&C1&D1&E1&F1&G1

Column H contains a formula. When you press ENTER after entering the formula or you move to another cell it will

evaluate the formula giving you this:

 old name | new name

This is the result you want for each of the words in your word list. To get this formatting, copy the cell data for each

cell that does not contain a word list, beginning with cell A1, down to the end of the word list A6.

Bulk Rename Utility Operations Manual Page 313 of 715

Actions Menu

- Import Rename-Pairs cont.

e..g.,

Copy each value in the columns, A – H down to the end of the word list, but do not include cell B or cell F because

these contain the word lists.

1. Place cursor on cell A1 that contains the “ and press Ctrl + C to copy the cell into the clipboard.

2. Move down to cell A2 (the next cell down) 3. Press Ctrl + V to paste

 and select the cells A2 through A6 using the

 Down arrow. 4. Repeat this for cells C1, D1,

 …. E1 and G1.

5. Move to cell H1 that contains the formula.

 a. If the formula is displayed, click on cell H1 and press <Enter> to get the text back.

6. Copy cell H1 using Ctrl + C. Move down to cell H2 and select through cell H6. Paste as you did with other cells.

7. Select cell H1 and including cell H1, select down to cell H6.

8. Copy and paste this data into a text file and you now have your list.

Bulk Rename Utility Operations Manual Page 314 of 715

Actions Menu

- View Imported Rename Pairs

If you have already imported the Import-Rename Pairs text file, you can see the contents by selecting this option. I

reduced the file down to 5 items for this example.

- Clear Imported-Pairs

Unloads the ‘Imported Rename-Pairs’ file from BRU, and clears the data used for ‘New Name’.

Loaded Unloaded

Bulk Rename Utility Operations Manual Page 315 of 715

Actions Menu

Import Rename-Pairs (Rename from a Text File): v3.4 New Additions

Full Path Support

BRU supports full paths in the Rename Pairs text file. This means that you are no longer restricted to having your

source files in one directory BUT you are restricted to having the files within a single directory structure.

You can’t have your source files reside anywhere and expect BRU will include them. This feature will hopefully be

made available in a future update – I keep pushing for this.

Note that the files cannot contain UNC paths. These only work under the Jump to Path feature.

So what do I mean by a single directory structure? Remember the discussion about Directory Levels? You have a

main directory with sub-directories beneath. BRU now supports having the source files, not just in a single directory,

but in any directory that branches off from it.

Using my example from previous, I have moved the files to be renamed all within a single directory structure:

 Root (Main)

 Subdirectory

 Subdirectory

 Subdirectory

Test is the main or Root directory of this structure with the sub-directories, \Test 1, \Test 2, and \Test 3.

here are the contents of each directory -

..\Test

Belvedere Plantation 6479.jpg

..\Test\Test 1

Belvedere Plantation 6474.jpg

\Test\Test 2

Belvedere Plantation 6488.jpg

Belvedere Plantation 6490.jpg

..\Test\Test 3

Belvedere Plantation 6476.jpg

Bulk Rename Utility Operations Manual Page 316 of 715

Actions Menu

Import Rename-Pairs (Rename from a Text File): v3.4 New Additions

This is the contents of the Import Rename-Pairs text file, do.txt -

 H:\Test\Test 1\Belvedere Plantation 6474.jpg|test2.jpg

 H:\Test\Test 2\Belvedere Plantation 6488.jpg|test3.jpg

 H:\Test\Test 2\Belvedere Plantation 6490.jpg|test4.jpg

 H:\Test\Test 3\Belvedere Plantation 6476.jpg|test5.jpg

 Belvedere Plantation 6479.jpg|test1.jpg

The last entry represents the current directory. The current directory is H:\Test and it contains two files, the do.txt file

that contains the above file list and the last file entry, Belvedere Plantation 6479.jpg. I could just as easily have used

the full path, H:\Test\ Belvedere Plantation 6479.jpg|test1.jpg, but I wanted to demonstrate that you can have both

representations in the same Import Rename-Pairs file.

1. Navigate to the Main or root directory, e.g., Test, of your directory structure.

2. Turn on Recursion so that all of the files display in the directory structure.

Displays as:

3. View the Imported List:

Bulk Rename Utility Operations Manual Page 317 of 715

Actions Menu

Import Rename-Pairs (Rename from a Text File): v3.4 New Additions

4. Select all of the files that will be renamed.

5. Click on the Rename button.

Files have been renamed according to the do.txt Imported Rename-Pairs list.

Notes:

1. Although do.txt is part of the selected files list in step 4 above, it will not be renamed. If it was to be affected, New

 Name would reflect any changes.

2. Remember that you can select what you want, and only those files that are subject to the criteria entered will be

 altered.

3. It is good, though, to be careful in your selections to avoid including unintended files that may result in unintended

 consequences. This has been a Tim Confucius moment.

Bulk Rename Utility Operations Manual Page 318 of 715

Actions Menu

Debug New Name

This menu item is available only if you have one single file or folder selected, the purpose of which is to demonstrate

how the final New Name was derived. Upon selecting, you are presented with a message box that lists each of the 11

criteria as they were evaluated and their effect, if any, on the new file name. JavaScript, if part of this evaluation,

would have its own 12th entry at the end of the listing. This is created ‘on-the-fly’ and cannot be saved as a file.

This is useful when the result is unexpected and helps assist with the debugging process, or in other words, ‘How the

hell did I end up with this mess?’

 Example,

Bulk Rename Utility Operations Manual Page 319 of 715

Actions Menu

So how did I end up with this mess?

Because this book is an entirely new edition of the original, I ended up updating all of the photos, and in doing so, I

actually did have to figure out this mess. Oh, this particular recreation may not be 100% accurate to what I had

originally. For instance, I believe I actually used tags in the Custom Date format instead of lazily spelling out the date

as I have done here, but it is true enough.

So back to the recreation -

All I had to go on was my original Debug output photo in the original volume to try and figure things out, but isn’t

that the purpose of this function, after all?

So, for each of the listed criteria in the debug output, I tested and retested each section until the final outcome was

close enough to the original.

This is what I came up with:

created from:

Bulk Rename Utility Operations Manual Page 320 of 715

Actions Menu

Here is another extreme example broken down into each single segment. This should also provide an insight into how

BRU’s Order of Evaluation operates– just to illustrate, using test file, DSCN0032.JPG:

First I will apply each criteria individually so you can see how the Debug displays the results for each.

Section #1: RegEx

Name = New Name =

Section #2: Name

Name = New Name =

Section #3: Replace

Name = New Name =

Bulk Rename Utility Operations Manual Page 321 of 715

Actions Menu

Section #14: Special – Character Translation

Name = New Name =

Selection #4: Case

Name = New Name =

Notes:

1. Notice how Character Translation and Case both appear in Group 4?

2. Character Translation is always performed prior to Case.

Bulk Rename Utility Operations Manual Page 322 of 715

Actions Menu

Selection #5: Remove

Name = New Name =

Selection #6: Move/Copy Parts

Name = New Name =

Bulk Rename Utility Operations Manual Page 323 of 715

Actions Menu

Selection #7: Add

Name = New Name =

Selection #8: Auto Date

Name = New Name =

Where:

 Sep. equals the string, ‘ Date = ’

Bulk Rename Utility Operations Manual Page 324 of 715

Actions Menu

Selection #9: Append Folder Name

Name = New Name =

Where:

 Sep. = ‘= Folder ’

Selection #10: Numbering

Name = New Name =

Where:

Sep. = ‘ NUM = ’

Bulk Rename Utility Operations Manual Page 325 of 715

Actions Menu

Selection #11: Extension

Name = New Name =

Notes:

1. Only lists 11 criteria because section 12-13 and parts of section 14 have no effect on a file’s name change.

 a. ‘Section #12: Filter’ – affects only what you see in the File Listing of the Content Pane.

 b. ‘Section #13: Copy/Move Location’ only affects the physical file. Has nothing to do with the Renaming process.

 c. ‘Section #14: Special’ is made up of items that appear in the Special Menu and are placed here for convenience.

 Two of the items, ‘Change File (Attributes)’ and ‘Change File (Timestamp)’ do not affect the Renaming process

 and therefore are not listed in the Debug results.

 JavaScript if used, appears as the last line and is identified not under a group but as its own entry, ‘JavaScript’.

 JavaScript requires an inexpensive commercial license.

2. Character Translation of Section #14: Special is performed prior to Section #4: Case. Be aware the Debug Log

 does not show a distinction between these two operations, even though there are.

3. The Bulk Rename Utility log located in ..\Documents\Bulk Rename Utility\, only gives an account of what files

 were renamed and does not account for how. The ‘Debug New Name’ is the only facility that provides the stages.

4. The resulting Log file produced by ‘Debug New Name’ is done ‘on the fly’. Once you close out the message box,

 there is no electronic transcript kept, unfortunately.

5. The Debug results are divided into 11 groups, each representative of one evaluation. Each corresponding to a

 numbered section with the exception of ‘Character Translation’ falling before Section #4: Case, and if active,

 would be grouped together with Case under Group 4 in the Debug Log.

Bulk Rename Utility Operations Manual Page 326 of 715

Actions Menu

And just for fun, Here is what you have been waiting for – all of them active at once, with the exception of

JavaScript:

Name =

New Name =

Now you can clearly see how each section evaluated in each corresponding group (any Character Translation and

Case appear as one in Group #4 as previously discussed). By the way, it is your turn to figure out what created the

mess above by studying just the Debug output from the photo above. Don’t cheat and refer back to the previous

pages. It will be a good training exercise. Good luck with that. I have given you all the help you need to figure it

out.☺

Bulk Rename Utility Operations Manual Page 327 of 715

Actions Menu

Reset All Renaming Criteria (Ctrl + T)

This is the same as the ‘Reset’ button on the interface:

Master reset to reset all values and settings for ‘all’ 14 sections

back to their default state

Notes:

1. Has no effect on a loaded Favourites file.

2. Has no effect on a loaded Imported Rename-Pairs file.

3. Current directory position in the Navigation Pane and those

 files that display in the Content Pane remain unchanged.

4. Any selected files in the Content Pane remain selected.

5. Difference between this and the File Menu option, ‘New’ is

 that New will unload the Favourites File, reset all criteria,

 navigate back to the default location, ‘This PC’, and remove

 any JavaScript code from the Code Entry Form.

 6. JavaScript selection will be disabled but any script in the

 Code Entry Form remains.

Revert All Criteria to Last Saved (Ctrl + E)

This is the same as the ‘Revert’ button on the interface:

Displays in menu item only if a Favourites file was previously

loaded. Revert restores a Favourite file back to its original

version after you have made changes to it.

Note:

1. This will not work if the changes have already been saved.

 For example, if you have used ‘Save’, Ctrl + S, or exited the

 program with ‘Save on Exit’ set, then the changes are

 made permanent because the Favourites file has been

 overwritten.

Bulk Rename Utility Operations Manual Page 328 of 715

Actions Menu

Preview (Ctrl + P)

This is the same as the ‘Preview’ button on the interface:

Preview all the renaming actions, before actually renaming

(name change, timestamp change, attribute change, etc.).

‘Preview’ is a bit different than just using the New Name column to see a preview of the applied changes.

1. Displays only those files affected.

 a. ‘Show Only Items Affected by Renaming ...’ from List submenu of Actions Menu will perform similar function.

2. Provides a count of files affected.

3. Has a search facility.

4. Is not a DEBUG – will only show the name change and the action taken to obtain the change and nothing more.

Bulk Rename Utility Operations Manual Page 329 of 715

Actions Menu

Rename (Ctrl + R)

This is the same as the ‘Rename’ button on the User Interface:

‘

‘Rename’ will instruct BRU to begin processing the evaluation of the

expression specified by the set criteria and any options that may have

been selected, and apply the finished equation to all selected files that

qualify.

Or, in other words, Rename the stupid files already! ☺

Undo Rename (Ctrl + Z)

Unintended Consequences. Oh No! You realized too late that you just

renamed 177 files to *&%% 1, 2 etc. and now you are screaming a

similar sequence of expletives ‘$&*%$!’ at yourself. Despite all of

the safeties built into the program – ‘New Name’ column, ‘Preview’

facility and even a ‘Debug Result’ function, your attention was

distracted for the moment. Fret not. BRU has you covered.

This will undo the last Rename Operation and remove any and all

changes made to the files and folders including timestamps, attribute

changes, etc. This is a single use command. If you were to perform

further renaming operations on these files, then you really are

‘$&*%$!’ out of luck.

Note: Does not undo ‘physical location changes’: Selection #13:

 Copy/Move to Location. But does restore ‘File Attributes’ and

 ‘Timestamp’ changes.

Bulk Rename Utility Operations Manual Page 330 of 715

Actions Menu

Create Undo Batch File (Ctrl + B)

 Although the program employs an excellent Undo feature

 already, this allows for creating an Undo Batch File that

 essentially can be run outside of the program anytime as long as

 those filenames retain their current name.

 This is especially useful..

 (1). If the program is closed and restarted later, you will not

 have the ability to use the normal Undo feature because it

 clears this status, however the batch file can be run and

 restores the files back.

 (2). If you need to perform multiple actions, you can use this

 feature as a timeline of events. Each batch file created

 after a rename action would preserve the previous names

 allowing you to trace back to a place before things started

 to go wrong. This, in conjunction with the Debug New

 Name feature, could be utilized for further analysis.

 Notes:

 1. The rename action must be performed first in order to

 successfully create an Undo Batch File for that action.

 Example:

 1. Perform the rename action on these files by clicking on the ‘Rename’ Button

 2. Select from the ‘Actions Menu’, ‘Create Undo

 Batchfile’

 3. Give it a name and save the file, e.g., do.bat

 4. Just run the do.bat file when you want to

 restore the files back.

Bulk Rename Utility Operations Manual Page 331 of 715

Display Options Menu

Bulk Rename Utility Operations Manual Page 332 of 715

Display Options Menu

Always on Top

The BRU program will remain on ‘top’ of other windows regardless of ‘focus’. Windows will normally move a

window (program, dialog box, message box, etc.) into the background (place it behind other windows) when the user

clicks on or uses the Windows task switching (task view) to select a different window.

This new window now has ‘focus’, meaning, that the user can interact with the window (any Foreground/Background

processing Priorities of Windows are in effect). This window also has priority as far as placement and is on ‘top’ of

other windows. By specifying ‘Always On Top’ you are instructing Windows to display the BRU program ‘on

screen’ even if focus is lost by switching to another window.

List

The List item displays selections that affect the visual interface of the Content Pane.

- Show Gridlines

No Gridlines: With Gridlines:

Bulk Rename Utility Operations Manual Page 333 of 715

Display Options Menu

- Show Icons

Must refresh files to view changes (F5 or through ‘Refresh Files’ of the Actions Menu), or momentarily switch to

another folder then back again from the Navigation Pane. It has been observed that displaying icons can have an

effect on BRU’s speed when scanning files and folders, especially with mapped drives.

Without Icons: With Icons:

- Show File Sizes as..

Mixed – Bytes - Kilobytes - Megabytes - Gigabytes -

Notes

1. "Mixed" will display files in the unit most suited to their size (e.g., a file size 1224555 Bytes will be displayed in

 Megabytes). This is the default view.

Bulk Rename Utility Operations Manual Page 334 of 715

Display Options Menu

- Show Picture Viewer (Ctrl + W)

Simple resizable window quick image viewer for BMP,

GIF, JPG, WMF and EMF file types. Select single image

in Content Pane beforehand. Will not work if multiple

images are selected.

- Select Columns

Selects which columns of data are displayed in the Content

Pane.

Sub Dir. –

Files that originate from subdirectories will display

in the Content Panel and the subdirectory path will

display in the column if ‘Section #12: Filters’ is set

to display Subdirectories.

Notes:

1. IF ‘Section 12: Filters’ is set to display Subdirectories, recursive processing will take place. This means that

 not only are the files in the current main directory processed but any files in ‘all’ the sub directories as well

 (including those that fall below other sub-directories), so be careful with this option.

Bulk Rename Utility Operations Manual Page 335 of 715

Display Options Menu

- Select Columns

Type –

Refers to file type e.g., .rar, .bat, .jpg and .emf …

File types are identified by Windows using the file’s extension. In the example above, an .EMF file is a type

of image file, a .bat file is a batch file and a .JPG is another type of image file, and BRU identifies a

compressed file, e.g., .rar archive, using a generic ‘FILE’. But there are many others. BRU gets this

information from Windows using the defined file types and this includes associated program filetypes.

For example, I have WinRar. BRU identifies the .zip extension as ‘WinRar ZIP archive’. A .pdf file is

identified on my system as a Foxit Reader PDF Document because the program, Foxit Reader, is associated

with that extension. Either of these extensions on another person’s system will produce a different

identification if there is a different program associated with the filetype, or a generic result if they don’t.

Some software installations may also add their own unique filetypes that are proprietary to one company or

product. Take as an example, Omnipage. Omnipage is an OCR program and .opd files are uniquely identified

as an Omnipage Document.

Here are just a few others I have seen in BRU.

File Folder – Directory Text Document - .txt Windows Batch File - .bat

EMF File - .emf PNG File - .png DJVU File - .djvu

HTML Document - .htm or .html Epub File - .epub Application - .exe

Windows Installer Package - .msi BMP File - .bmp Configuration Settings - .ini

MP3 Audio File (VLC) - .mp3

Etc.

You get the idea.

Notes:

1. VLC refers to VLC Media Player, an associated program.

Bulk Rename Utility Operations Manual Page 336 of 715

Display Options Menu

- Select Columns

Created, Modified, Accessed –

Will display the Windows File Properties timestamp values for each selected column. e.g.,

Notes:

1. These timestamps are assigned by the Windows File System at the time of creation within the Windows OS

 or at the time the file is imported ino Windows from another source. The data is stored in the MFT (Master

 File Table) of the File System on the volume on which the file resides.

2. BRU extracts this information and it appears in the selected columns.

3. The Windows Properties, Date Created, Date Modified and Date Accessed, can be modified through the

 Change File Timestamp facility of ‘Section #14: Special’.

Size –

Will display the current File Size of each file – but not a Folder’s file size. The format – Mixed, Bytes,

Kilobytes, Megabytes, and Gigabytes, as determined by the, ‘Show File Sizes as…’, option (see List selection

in this section for further information).

Bulk Rename Utility Operations Manual Page 337 of 715

Display Options Menu

- Select Columns

Length –

Will display the current File length – this includes the dot notation and the extension but does not include the

file path. Currently, there is no function or option to display the full pathname or length. I have submitted a

request to TGRM Software to add a ‘Full Path’ column.

i.e.

Taken (Original) –

This is an EXIF Metadata that refers to the original date an image file was created by the digital device. If the

message, ‘Set Menu Option to Extract EXIF data’ is displayed, then BRU is indicating that data exists but the

option to view it has not been activated {set option ‘Extract EXIF data (Photos)’ under the ‘ID3 /EXIF Data/

File Properties’ selection of the Renaming Options Menu to activate}.

Notes:

1. For more information, refer to, ‘Using EXIF Tags’ under ‘Section #7: Add’

Bulk Rename Utility Operations Manual Page 338 of 715

Display Options Menu

- Select Columns

Attributes –

Refers to the File Attributes, Archive, System, Hidden, and Read-Only. This ‘bit’ can be set by Windows, a

program, or the user. These will be displayed for both files and folders:

Example of Folder with Attributes set –

Example of Files with Attributes set –

Read-only - Allows a file to be read, but cannot be written or modified. The file is ‘write-protected’ but can be

deleted.

Archive – Indicates that this file has been modified since a previous backup. This attribute is commonly used

by backup software for determining ‘Incremental’ Backup status. Files can be written, modified and deleted.

Hidden - File is not shown. It will display in Windows Explorer if you have the system set to show Hidden

Files, but will not include System files. They require a separate option for authorization. BRU allows the

display of Hidden Files using an override available in ‘Section #12: Filters’.

System – Indicates to Windows that this is a system-critical file that should not be tampered with (modified,

renamed, moved, etc.) or deleted. Will be hidden under normal circumstances.

Note:

1. For more information, refer to ‘Change File Attributes’ under the ’Special Menu’

Bulk Rename Utility Operations Manual Page 339 of 715

Display Options Menu

- Select Columns

Track –

Track is part of the ID3 MP3 Metadata. To display the data, the ‘Extract ID3 Data (MP3)’ must be set from

The ‘ID3 /EXIF Data / File Properties’ selection of the Renaming Options Menu. If it isn’t, even if data is

present, all you will see is ‘Track 0’.

Not set:

Set:

Copy/ Move to Location (13) –

This simply indicates the selected path the renamed files will be copied or moved to based on the options set

In ‘Selection #13: Copy/Move to Location’.

Notes:

1. Using ‘Undo Rename’ from the ‘Actions Menu’ or pressing Ctrl + Z does not undo ‘physical location

 changes’.

Bulk Rename Utility Operations Manual Page 340 of 715

Display Options Menu

- Select Columns

Status –

Provides two flags. An OK flag is indicated after a successful Renumber operation, and an Error flag is

Indicated along with a generated error message, if the Renumber operation was unsuccessful.

Example of Error Status (to produce the error, I deleted the file prior to the Renumber action):

Example of OK Status:

Notice that previous status flags are retained. To clear the Status, Refresh the File List (F5 or use ‘Refresh

Files’ from the Actions Menu or momentarily change to a different folder and back again from the Navigation

Pane (this re-establishes the focus).

Bulk Rename Utility Operations Manual Page 341 of 715

Display Options Menu

- Select Columns

Reset –

Resets Content Pane display back to the default columns. Does not affect any other options except columns.

The columns are: ‘Name’, New Name’, ‘Modified’, ‘Size’, and ‘Status’. All other columns are removed.

Show All –

All of the available columns will display:

Name New Name Type Created Modified

 Attributes Track Size Accessed Length Status

Item Date* Custom* Sub Dir* Copy/Move to Location Taken (Original)

* refer to the sub-sections under New Additions below and ‘Section #8: Auto Date’.

* enable recursion under ‘Section #12: Filters’

Bulk Rename Utility Operations Manual Page 342 of 715

Display Options Menu

- Autofit All Columns (Ctrl + Alt + +)

Autofit adjusts each column’s width equal to the longest length of data held in each. This will display all data without

being cut off (truncated) and save you from having to make the manual adjustments yourself (expanding each header

of the columns individually through mouse select and drag).

For example - using mouse to select and drag the Status header to expand the Status column -

Instead, using Autofit –

Before:

After:

Notes:

1. Status has no current value, therefore width = 1 character. This requires manual expanding because Status changes.

2. Columns are equal to the width of the longest data held which may not be visibly apparent in the provided photos.

Bulk Rename Utility Operations Manual Page 343 of 715

Display Options Menu

- Expand File List (Ctrl + F9)

This enlarges both the Navigation and Content Panes to allow more visibility and still be able to work with most of

the criteria sections. It does this by removing Sections 13 and 14 from the user interface.

Notes:

1. This is not the same as the Maximize File List (F9).

Bulk Rename Utility Operations Manual Page 344 of 715

Display Options Menu

- Expand File List (Ctrl + F9)

Before:

After:

Bulk Rename Utility Operations Manual Page 345 of 715

Display Options Menu

- Maximize File List (F9)

This is the equivalent of using the ‘Expand’ button on the User Interface.

Maximizes both the Navigation and Content Pane. This allows you to fully concentrate on the Hierarchy Tree and

File List. It does this by removing most of the User Interface. The control is a toggle, meaning that if you click it a

second time, it will restore back.

Notes:

1. Refer to ‘User Interface’ for more information.

Bulk Rename Utility Operations Manual Page 346 of 715

Display Options Menu

- Maximize File List (F9)

Before:

After:

Bulk Rename Utility Operations Manual Page 347 of 715

Display Options Menu

Colours

You can select the colour for the following three display characteristics.

- (1) New Name – Ok (default is light green in bold)

Hue: 79 Sat: 240 Lum: 60 Red: 4 Green: 128 Blue: 0

The colour to use if the new filename is acceptable to Windows and does not contain illegal characters or sytax errors.

- (2) New Name – Invalid (default is red in bold)

Hue: 0 Sat: 240 Lum: 120 Red: 255 Green: 0 Blue: 0

The colour to use if the new filename is not acceptable to Windows and contains illegal characters. This could also be

indicative of a possible syntax error.

Illegal characters

Bulk Rename Utility Operations Manual Page 348 of 715

Display Options Menu

- (3) Active Criteria (default is orange in bold)

Hue: 11 Sat: 240 Lum: 120 Red: 255 Green: 69 Blue: 0

The colour to use if a criteria section is active – meaning that this section is selected and criteria has been entered.

Note that ‘Highlight Active Criteria’ must be set for the colour to display.

 Inactive Active

Must restart application for any colour changes to ‘Active Criteria’ to occur.

- Highlight Active Criteria

Not Set: Set:

Notes:

1. The colour default is orange and is determined by ‘Active Criteria’ colour selection.

Bulk Rename Utility Operations Manual Page 349 of 715

Display Options Menu

Changing the Colours

When you select any of the colour options, it presents you with the Colour selection dialog box.

This offers a choice between Basic Colours that you can quickly choose from, along with a possible user defined 16

colours. If you click on the ‘Define Custom Colours’, the more advanced Colour Selection dialog box appears.

The colour selection here is more refined. Characteristics of Hue, Saturation, Luminance, along with the RGB values

for Red, Green Blue can be specified. Once the colour is established, you can save the specifications as a Custom

Colour by clicking on the ‘Add to Custom Colours’.

Bulk Rename Utility Operations Manual Page 350 of 715

Display Options Menu

Font

You have two font choices.

- Use Larger Font (default)

- Use Smaller Font

The smaller font also allows for more files to display in both the Navigation and the Content Pane.

Notes:

1. Must restart application for any font change to take effect.

2. Reset (Font) restores back to larger default Font.

Bulk Rename Utility Operations Manual Page 351 of 715

Display Options Menu

Sorting

Unlike the other Display Options, Sorting affects the renaming process and is not just for Display purposes. In that

regard, I think the Sorting function is mislabeled as a Display Option and really belongs in the Actions Menu.

Because BRU processes the files in the order in which they appear in the Content Pane, if you change the sort, you

change the files’ order of appearance, and thereby change the order of processing. This becomes especially apparent

when ‘Section #10: Numbering’ is applied. This is referenced in other sections of the book as the ‘order of the

displayed sequence’.

For other BRU functions that affect the order of processing, please refer to:

 ‘List - Reposition’, under the Actions Menu

 ‘Apply Random Sort to Current List’, under the Actions Menu

 ‘Rename in Reverse Order’, under the Renaming Options Menu

 notation #6 under ‘Program Notes’ section earlier in this volume

- Logical Sorting

BRU uses Absolute Sorting as the default instead of Logical Sorting.

The Logical Sorting sequence (aka numeric sort or numeric order), was adopted as the default sort for all operating

systems XP and higher. Logical Sorting sorts numbers from lowest value to highest value; thereby, ‘2’ follows after

‘1’. Any filenames that contain numerals will be sorted by name first and by their numeric value second; thereby,

‘text 2’ follows after ‘text 1’.

Absolute Sorting

In Absolute Sorting (aka string sort or string order), the sort sequence is based on the first numeric character

regardless of the value. If that character is the same, e.g., a ‘1’, it falls to the second character, e.g., ‘0’. In other

words, numeric values are treated as text. The operating system does not differentiate between filenames that contain

numeric values and those that do not; thereby, ‘10’ follows after ‘1’ and ‘text 10’ follows after ‘text 1’

Bulk Rename Utility Operations Manual Page 352 of 715

Display Options Menu

If that seems hard to follow, then this diagram and photos should help to clarify.

 L O G I C A L S O R T A B S O L U T E S O R T

 Low to High Name First First Character Regardless of Value. If Same Character,

 Numeric Value Second Falls to the Second character. Values Treated as Text.

There may be situations when the files in BRU don’t match up with the sort order in a directory, or perhaps you may

want the sort ordered differently. This option when enabled directs BRU to use Logical Sorting. Logical Sorting will

also require to be re-enabled after a system reboot because BRU defaults back to Absolute Sorting.

Bulk Rename Utility Operations Manual Page 353 of 715

Display Options Menu

To make a group of files sort by a numeric value that is not logical or absolute-

Suppose you have this group of files that you just sorted by name descending (clicking on the heading in ‘Name’

column is a toggle – once for Ascending sort a-z, and again for descending z-a):

You want to preserve this sort order. The easiest way is to auto append a number using the ‘Select #12: Numbering’:

 This … .. yields this:

 This technique also works if you want to preserve the order after randomizing the sort

 (use the ‘Random Sort’ command from the Actions menu).

Notes:

1. File sorting can also get messed up if the files were entered into BRU using Drag and Drop.

2. You can manipulate the order by manually dragging each file using the mouse (or use the ‘Reposition’ option from

 the List sub-menu of the Actions Menu), and preserve that order using this numbering technique.

Bulk Rename Utility Operations Manual Page 354 of 715

Display Options Menu

- Group Affected

You have a group of files with 4 filenames selected individually using non-consecutive selection (Ctrl + Left Mouse

Click). They display as:

After enabling Group Affected…

… files with new filenames, the ‘Affected Files’, will be grouped together, segregated from the ‘Unaffected Files’.

Notes:

1. The display of the newly grouped files will only take place after you re-sort the column using a column heading.

 e.g., click on ‘Name’ column heading to see the files grouped.

 a. This will not work using the column headings of Attribute, Size or Date to re-sort the files.

 b. You can sort the file list using the column headers as you would normally in Windows Explorer.

2. The files will always be processed in the order of the displayed sequence – especially useful when you're applying

 ‘Section #12: Numbering’ criteria.

 For more information see -

 ‘List - Reposition’, under the Actions Menu

 ‘Apply Random Sort to Current List’, under the Actions Menu

 ‘Rename in Reverse Order’, under the Renaming Options Menu

 notation #6 under ‘Program Notes’ section earlier in this volume

Bulk Rename Utility Operations Manual Page 355 of 715

Display Options Menu

- Sort Files and Folders Together

Windows will typically sort the folder names first and then the files.

Example,

In an ascending sort the folders appear at the top and are sorted accordingly. The files that appear below these folders

are also sorted accordingly and are kept segregated. This behaviour is reversed in a descending sort, while still

maintaining the separation.

With, ‘Sort Files and Folders Together’ enabled, the folders are treated no differently than any other filename and are

sorted ‘mixed together’ accordingly.

In an ascending sort the folders appear at the bottom in this example because, ‘T’ comes last after ‘S’. In a descending

sort, ‘Test 2’ comes before ‘Test 1’ and ‘S’ follows. In both of these cases, if there were filenames beginning with

‘T’, these would be mixed in as well with no separation between files and folders.

 In these examples to the left,

although there are no other

 filenames beginning with ‘T’,

it can still be observed that the

folder names are sorted together

with filenames and appear

together rather than sorted and

kept segregated.

Bulk Rename Utility Operations Manual Page 356 of 715

Display Options Menu

v3.4 New Additions

List

Custom Column –

 The Custom Column displays information that the user added through the ‘Set Content of Custom Column’

from the List submenu under the Display Options Menu. This added information is defined by the File

Metadata, including Windows File Properties tags, version 2 EXIF tags, and Hash tags.

Right click anywhere in the Headings of the Content Pane presents the list of available columns.

From here you can select the ‘Custom Column’ which will add the column to the Content Pane. It will be

empty except for a help message, unless you have previously defined the custom data, as will be discussed.

Bulk Rename Utility Operations Manual Page 357 of 715

Display Options Menu

v3.4 New Additions

- Set Content of Custom Column

This is where the Custom information that will appear in the column is defined. The definition is set by using

File Metadata including Windows File Properties tags, version 2 EXIF tags and Hash tags.

For example, you can set the Custom Column to <(Title)> which would display the Windows File Property,

‘Title’, for each file. For more information on the tags that can be used for the Custom Column, see ‘Custom

Column’ under the List Menu. Selecting this option brings up:

Bulk Rename Utility Operations Manual Page 358 of 715

Display Options Menu

v3.4 New Additions

 To see what properties are available for a file that can be used to define your custom content –

EXIF Tags –

Right Click on file name in Content Pane:

e.g.,

Version 2 EXIF tags for file, DSCN0001.JPG:

EXIF Property Value

exif:ImageResolution 3648x2736

exif:ImageWidth 3648

exif:ImageHeight 2736

exif:Make NIKON

exif:Model COOLPIX L20

exif:Orientation 1

exif:XResolution 300.000000

exif:YResolution 300.000000

exif:ResolutionUnit 2

exif:Software COOLPIX L20 V1.0

exif:DateTime 2009:09:01 13:38:35

exif:DateTimeOriginal 2009:09:01 13:38:35

exif:DateTimeDigitized 2009:09:01 13:38:35

exif:ExposureTime 0.016667

exif:FNumber 3.100000

exif:ExposureProgram 2

exif:ISOSpeedRatings 168

exif:FocalLength 6.720000

exif:Flash 24

exif:MeteringMode 5

exif:LensInfo.FocalLengthIn35mm 38.000000

This example lists properties that are only for media and image files that contain Metadata. Other filetypes may have

different properties.

Bulk Rename Utility Operations Manual Page 359 of 715

Display Options Menu

v3.4 New Additions

Windows Properties –

Right click on file name in Content Pane:

e.g.,

Windows Properties for File, ‘HeLlO WoRlD’:

Label Value Name

 0 System.ZoneIdentifier

 {9BF73ECC-0000-0000-0000-100000000000} System.VolumeId

 6684827675453505162 System.ThumbnailCacheId

Activity System.StorageProviderAggregatedCustomStates

Size 50.0 KB System.Size

 filesys; stream System.Shell.SFGAOFlagsStrings

Sharing status Not shared System.SharingStatus

Shared with System.SharedWith

File ownership System.Security.EncryptionOwnersDisplay

 1077936503 System.SFGAOFlags

Perceived type Unspecified System.PerceivedType

 L:\0 - BRU Test\a\HeLlO WoRlD System.ParsingPath

 HeLlO WoRlD System.ParsingName

Offline status System.OfflineStatus

Availability System.OfflineAvailability

 No System.NotUserContent

Network location System.NetworkLocation

Link target System.Link.TargetParsingPath

Kind System.Kind

Type File System.ItemTypeText

Item type File System.ItemType

Path HeLlO WoRlD (L:\0 - BRU Test\a) System.ItemPathDisplayNarrow

Path L:\0 - BRU Test\a\HeLlO WoRlD System.ItemPathDisplay

 HeLlO WoRlD System.ItemNameDisplayWithoutExtension

Name HeLlO WoRlD System.ItemNameDisplay

 HeLlO WoRlD System.ItemName

Bulk Rename Utility Operations Manual Page 360 of 715

Display Options Menu

v3.4 New Additions

Windows Properties cont –

Windows Properties for File, ‘HeLlO WoRlD’ cont.:

Label Value Name

Folder a (L:\0 - BRU Test) System.ItemFolderPathDisplayNarrow

Folder path L:\0 - BRU Test\a System.ItemFolderPathDisplay

Folder name a System.ItemFolderNameDisplay

Date 8/3/2017 9:07 AM System.ItemDate

Shared No System.IsShared

 Files System.IsFolder

 6 System.FilePlaceholderStatus

Owner DESKTOP-XXXXXXXX\Tim System.FileOwner

Filename HeLlO WoRlD System.FileName

File extension System.FileExtension

Attributes A System.FileAttributes

Date last saved 6/4/2018 6:02 PM System.Document.DateSaved

Content created 8/3/2017 9:07 AM System.Document.DateCreated

Date modified 6/4/2018 6:02 PM System.DateModified

Date imported 8/3/2017 9:07 AM System.DateImported

Date created 8/3/2017 9:07 AM System.DateCreated

Date accessed 6/4/2018 6:02 PM System.DateAccessed

Computer DESKTOP-XXXXXXXX (this PC) System.ComputerName

Parent id System.AppUserModel.ParentID

AppUserModelId System.AppUserModel.ID

Hash Tags that are available for any file type –

hash:crc32

hash:keccak

hash:sha1

hash:sha256

hash:sha3

hash:md5

Notes:

1. For Windows properties, the expression for the Custom Column can use either the Name or Label of the property.

Bulk Rename Utility Operations Manual Page 361 of 715

Display Options Menu

v3.4 New Additions

To use the Custom Column definition, place the property in the proper syntax and enter this in the data entry

field provided. The syntax consist of the property placed in parentheses enclosed between angular brackets.

Examples:

 Use EXIf – <(exif:Make)>

Use Windows Property Label – <(Date Last Saved)>

or, use Windows Property Name – <(System.Document.DateSaved)>

Use Hash – <(hash:md5)>

Bulk Rename Utility Operations Manual Page 362 of 715

Display Options Menu

v3.4 New Additions

You can also define more than one property and include literals (any character that can be reproduced on the

keyboard) such as <hyphens>, etc.

If you wish to include angle brackets or parentheses then place them around the angle brackets. Anything

outside of the angle brackets are considered to be literals.

Angle Brackets as literals:

Parentheses as literals:

Multiple Properties defined:

Notes:

1. The placing of <space> and <hyphen> in angular brackets is something I tend to do personally, and has nothing to

 do with the syntax described for the Custom Column Defintion.

Bulk Rename Utility Operations Manual Page 363 of 715

Display Options Menu

v3.4 New Additions

 Notes:

 1. The items in the file list can be sorted under this column by clicking on the column header.

2. For more information on Windows Properties, EXIF Tags and Hash Tags, refer to headings under the

 volume section of, Section # 7 – Add, earlier in the book.

Item Date –

Item Date has already been extensively discussed and analyzed under the section, ‘Section #8:Auto Date’.

Item Date is taken from the Windows Property, (Name) System.ItemDate, (Label) Date.

To summarize Item Date:

1. For filetypes that are not supported by Taken (Original) and correspondingly, EXIF DateTakenOriginal, or

 EXIF DateDigitized, Item Date assumes the earliest date of either the Windows Properties of Date Created ,

 or Date Modified with the exception of certain Document filetypes.

 2. For filetypes that are supported by Taken (Original) and correspondingly, EXIF DateTakenOriginal, or

 EXIF DateDigitized, Item Date will assume this value. Taken (Original) will also hold this same value.

 3. For filetypes that Windows recognizes as Document filetypes, Item Date will assume the value of the

 Windows Property, Last Date Saved.

 4. For filetypes that Windows does not recognize as Document filetypes will be handled in the same manner

 as provided for those filetypes that are not supported by Taken (Original). Item Date will assume the earliest

 date value between the two Windows Properties, Date Created and Date Modified.

 5. According to Microsoft, Item Date may be based on properties other than those I have listed, but to date, I

 have found none.

6. Item Date does not support ‘Seconds’, only ‘Minutes’. Microsoft dropped the support of seconds.

 Therefore, Taken (Original), if available, is more accurate to the seconds.

7. TGRMN main reasoning for adding support for Item Date is to provide an alternative for media and image

 files that do not have EXIF Metadata. I applaud this though because of its versatility in use with other data

 types as well.

Bulk Rename Utility Operations Manual Page 364 of 715

Display Options Menu

v3.4 New Additions

 The advantages of Item Date over Taken (Original) are:

1. Taken (Original) only works with limited files – as noted previously, JPEG images (.JPG or .JPEG

 extension), TIFFs (.TIF, .TIFF), Nikon (.NEF) and Canon (.CR2) files under the following prerequisites:

 a. The Windows Property, System.Photo.DateTaken must have a value.

 b. System.Photo.DateTaken will not have a value unless EXIF DateTimeOriginal has a value.

 whereas:

Item Date is applied to any image filetype under the following prerequisites:

a. Item Date will assume the value of EXIF DateTimeOriginal if available.

b. If EXIF DateTimeOriginal is not available, Item Date can assume other EXIF Values if available.

These include:

CreateDate

Photo.DateTimeDigitized

c. If EXIF Metadata is not available, or for those image filetypes that do not map to EXIF metadata, other

 Metadata values will be assumed, meaning, that even if Taken (Original) has no value, Item Date most

 likely will. This includes Windows File Metadata, e.g.,

 Date Created

 Date Modified

 2. Item Date applies to most media, pictures, and video filetypes including HEIC, RAW camera files, etc.,

 3. Item Date applies to most (if not all) filetypes, as long as Metadata exists. If there is none, the column value

 will be blank.

4. Taken (Original) is restricted to the epoch date that limits the earliest recognized date to 01/01/1970 (see

 ‘Renaming with Dates Prior to January 1, 1971’ in the Appendix of Volume II for further information on

 the epoch dates). Item Date does not have this restriction (possibly no longer restricted in current version).

For further information, refer to the ‘Section #8:Auto Date’ section.

Bulk Rename Utility Operations Manual Page 365 of 715

Display Options Menu

v3.4 New Additions

To use, you must first enable the option "Extract Windows File Properties" from the Renaming Options menu.

Right click anywhere in the Headings of the Content Pane presents the list of available columns.

From here you can select the ‘Item Date’ column which will add the column to the Content Pane.

Bulk Rename Utility Operations Manual Page 366 of 715

Display Options Menu

v3.4 New Additions

A Brief primer on EXIF Date Taken accuracy- GIGO

In the Details tab of the Windows Property sheet, you may notice the item, Date Taken. This corresponds to the EXIF

Metadata Photo.DateTimeOriginal. Date Taken is just another name for it. If Date Taken is available, both Taken

(Original) and Item Date will assume this value. Supported and unsupported filetypes for DateTimeOriginal have

previously been discussed.

Although the Item Date for these supported image filetypes is mapped from EXIF Metadata and generally accurate,

this accuracy, however, is only as proven as the EXIF data whence it was mapped. This is all dependent on the device

that created the file. But there is an old Computer Proverb, GIGO – Garbage In, Garbage Out. You can’t expect

accuracy if your analysis and conclusion is based on faulty initial data.

Here are the problems associated with the accuracy of the EXIF Date Taken (DateTimeOriginal) -

(1) The Device’s date and time setting is inaccurate; therefore the file timestamp will also be inaccurate. This will also

 occur when the date and time settings of the camera are not updated during travels between different time zones.

(2) The camera device settings reset when the battery is replaced causing a discrepancy between the photos’

 timestamps.

(3) With multiple camera use, there can be sync problems between timestamps of photos taken with different devices.

(4) A scanned printed photo’s digital copy timestamp references the date of the scan, not the date the photo was taken.

(5) The original timestamp is lost for photos downloaded or exported from an outside source.

(6) The timestamp has been edited using a third party utility, e.g. EXIFTool

 The GIGO caveat must be adhered if basing the accuracy of an EXIF item over a, e.g., Windows Property.

Notes:

1. In all of these scenarios, the date has to be adjusted back. As already mentioned, EXIFTool can modify this and

 other Metadata. BRU cannot. BRU can only read and extract the Metadata information for purposes of appending

 onto a filename in a Rename operation.

2. Professional photographers will always check their battery and camera settings before a shoot, and if multiple

 cameras are in use, then all of the devices are synchronized. Reserve cameras are also set for any anticipated

 time zone changes to avoid the problems related to the first scenario.

Source Material this section: organizingphotos.net, old computer philosopher- Tim Mongeon.

Bulk Rename Utility Operations Manual Page 367 of 715

Renaming Options Menu

Bulk Rename Utility Operations Manual Page 368 of 715

Renaming Options Menu

Retain Autonumber

Retains the last Autonumber used so the counter doesn’t reset back to zero.

If you have criteria set in ‘Section #10: Numbering’, it will Autonumber selected files as shown below.

Criteria entered Results in:

Last value for counter = 07. The counter value is based on the current increment

with the Pad value, ‘2’ or two numeric digit places. Current value is now ‘08’.

 Note: Sep. character used in the above example is a <space>

Once you perform the Rename action, the ‘counter’ resets from the current value, ‘08’ back to ‘01’. The example

below shows that the files prefixed 01 through 07 have been renamed, and when further files are selected afterwards,

the file count begins at 01 again.

To clarify, the first renaming operation renamed the files using the Numbering settings from 01 through 07. This

operation has been completed. The Auto Number is currently at the value ‘08’, thus in the next renaming operation,

the count begins at 08. This is not related to the Break option. Using the Break, the Auto Number value would be

reset within the same single renaming operation. The example above is performed in two separate renaming

operations.

Bulk Rename Utility Operations Manual Page 369 of 715

Renaming Options Menu

You can set the criteria to begin at whatever number you want, so changing the Start to 08 will solve this little

dilemma.

If, however, you wish to save yourself the trouble, enable ‘Retain Autonumber’ and it will start the following group of

files at the next incremented number.

Using the same settings for ‘Section #10: Numbering’ as before:

First Renaming Operation:

Second Renaming Operation –

Without enabling ‘Retain Autonumber’: With ‘Retain Autonumber’ enabled:

Notes:

1. ‘Retain Autonumber’ must be enabled prior to the first renaming operation to retain the Autonumber for subsequent

 renaming operations.

2. The Autonumber can be retained even after you shut down the program by using the ‘Favourites’. For further

 information, refer to ‘Open\ Save’ from the File Menu.

Bulk Rename Utility Operations Manual Page 370 of 715

Renaming Options Menu

Rename in Reverse Order

Files are generally renamed from top to bottom, e.g., the first item in the list followed by the second item ... (also refer

to references in this book regarding the order of the displayed sequence). But this can cause you problems if files

with those filenames already exist.

 For example, Let's say you have… .. and you want to rename…

The first rename (1.jpg to 2.jpg) would fail because 2.jpg already exists.

This option removes the problem, processing the files in reverse order –

3.jpg renamed to 4.jpg

2.jpg renamed to 3.jpg

1.jpg renamed to 2.jpg

Results in:

Bulk Rename Utility Operations Manual Page 371 of 715

Renaming Options Menu

Notes:

1. Example adapted from BRU Manual.

2. BRU manual considers this an ‘Advanced’ option. Not to be confused with the ‘Advanced Options’ menu selection.

3. Don’t forget to turn off this option when through.

In case you were curious..

Example was created using -

‘Section # 2: Remove’ –

‘Section # 10: Numbering’ –

Remove and Numbering Together results in:

Order of Evaluation – Remove (2) is performed first, removing the filename, then Numbering (10) is applied, starting

at the ‘2’ value and incrementing + 1 for each filename thereafter.

Bulk Rename Utility Operations Manual Page 372 of 715

Renaming Options Menu

Prevent Duplicates

This will prevent situations where a rename operation would fail because the resulting filename would create ‘an

Existing File’ error. If this option is set, the program will automatically append a suffix with a numeric using the

format:

 _<numeric> (underscore followed by a numeric character 1 through 99)

The program would first use ‘_1’ as the suffix, and failing that would continue with the next number ‘_2’ all the way

up to 99 before generating an error.

Example (with option set):

Results in:

Notes:

1. This option is set by default.

Bulk Rename Utility Operations Manual Page 373 of 715

Renaming Options Menu

Advanced Options

- Allow Using ‘\’ in Renaming Criteria for Creation of New Folders

This option can create new folders during the renaming process. The creation of the New folders cannot be undone by

using the ‘Undo Rename’ option from the ‘Actions Menu’ or by pressing Ctrl + Z. You can, however, still undo the

renaming process itself.

The following simple example will create a new sub directory, ‘te’ off of the current directory path, ‘..\Keep\a’, and

move the renamed files into it.

1. Typically, when you try to rename these files,

 it will generate an error:

2. When this option is set, the error is ignored…

Click Yes…

… and you get This…

See options, ‘Show Warning Message Before Renaming’ to suppress these if desired.

Bulk Rename Utility Operations Manual Page 374 of 715

Renaming Options Menu

Click Yes again and… well, this program really gives you a chance to change your mind doesn’t it?

Note:

The Preview will not indicate that directories are about to be created so best to heed the previous ‘3’ warnings if you

want to back out.

Click ‘OK’. The backslash will create a directory, ‘te’.

4. The following message indicates that the Tree in the Navigation Pane has been affected by the renaming operation.

Bulk Rename Utility Operations Manual Page 375 of 715

Renaming Options Menu

Look at both the Navigation Pane (after Ctrl + F5) and the Content Pane to see the results.

In this photo you can see the new file path of ‘..\Keep\a\te’…

In this photo you can see that the renamed files have been moved into the new sub directory, ‘te’…

This doesn’t change the file content. The files are unaltered. They have just been renamed and moved.

Although you cannot remove the ‘te’ directory through the ‘Undo’, it will restore the file names and even move them

back into their original directory.

After ‘Undo’:

Any unwanted sub directories can be deleted manually using a File Manager or as an alternative, use the ‘Delete’

option from the right-click Context Menu.

Notes:

1. Use this option with caution.

2. Before using, it is recommended to backup your files.

3. The process itself is known as 'Folderize'. User-defined hierarchies of directory/subdirectory structures are created

 for the purpose of organzing files through sorting them into these folders.

 a. ‘Section #13: Copy/Move To Location’, ‘Section #9: Append Folder Name’, ‘Section #3: Replace’ and

 ‘Section #7: Add’, could all be used to create a Folderize system.

 b. This could be used to reorganize files into folders based on their timestamps, for instance.

 c. The process existed long before the term, ‘folderize’. I was doing this when folders were paper files in a cabinet.

Bulk Rename Utility Operations Manual Page 376 of 715

Renaming Options Menu

- Allow Overwrite / Delete Existing Files During Renaming If Needed

BRU will generate an error message if the renaming operation will result in a file with the same name, or if the

‘Prevent Duplicates’ option is set, will append a numeric to make the renamed filename(s) unique. If, however, the

‘Allow Overwrite …’ option is set, those other options will be superseded and the resulting files will be overwritten.

This also applies to ‘Section #13: Copy/Move to Location’.

Example:

Click on Rename…

Result – text 2.jpg has been renamed to text 3.jpg overwriting the original text 3.jpg file.

Bulk Rename Utility Operations Manual Page 377 of 715

Renaming Options Menu

The Undo process will rename the changed file text 3.jpg back to text 2.jpg, BUT the original text 3.jpg has been

overwritten and is permanently lost.

Notes:

1. This option supplants the ‘Prevent Duplicates’ option.

ID3 / EXIF Data / Files Properties

These options must be set before BRU is allowed to use Metadata in the renaming process. This will extract the

Metadata from the files as they are scanned. Functions that require this include ‘Section #7: Add’,

‘Section #8: Auto Date’ and JavaScript.

- Extract ID3 Data (MP3)

This must be enabled before any criteria can be set using ID3 MP3 tags extracted from MP3 files. This includes

‘Section #7: Add’, which can use specific ‘Substitute Tags’ as appended data:

 %r - Artist

 %t - Title

 %k - Track Number

Notes:

1. This option may slow down the processing a lot. If you don't need these fields then leave this option disabled to

 speed up the processing.

2. Only MP3 files with ID3 tags v1.0 and v1.1 are supported. v2.x ID3 tags are not supported at this time.

3. Refer to, ‘Using Substitution Tags’, under ‘Section #7: Add’ for more information.

Bulk Rename Utility Operations Manual Page 378 of 715

Renaming Options Menu

- Extract EXIF Data (Photos)

This must be enabled before any criteria can be set using EXIF data extracted from supported image filetypes. This

includes ‘Section #7: Add’, which can use specific ‘Substitute Tags’ as appended data:

%a – Aperture

%c - Comments

 %e – Exposure

 %f - Focal Length

 %xb - Exposure Bias

…and ‘Section #8: Auto Date’ can extract ‘Date Taken (Original)’.

Notes:

1. This option may slow down the processing a lot. If you don't need these fields then leave this option disabled to

 speed up the processing.

2. Supported image formats include only the following: .JPG, .JPEG, .TIF, .TIFF, .CRW, .CR2, .NEF.

3. May require a ‘Files Refresh’ from the Actions Menu before the Date Taken (Original)’ column data can be viewed

 in the Content Pane. This option must be enabled in order to extract any information that appears in this column.

4. Refer to ‘Section #7: Add’ and ‘Section #8: Auto Date’ for more information.

5. This setting must be enabled before the extended EXIF tags can be utilized. Refer to ‘Using EXIF Tags’ under

 ‘Section #7: Add’.

- Extract Windows File Properties

This option must be set enabled before using Windows File Properties data extracted from files. This includes

‘Section #7: Add’.

Every file has Metadata values that are assigned through Windows. These are called ‘Windows Properties’, not to be

confused with other Metadata e.g. ID3 and EXIF. BRU supports using Windows Property values in ‘Section #7: Add’

in ‘Prefix’, ‘Suffix’ and ‘Insert’ data entry fields (also supported under ‘Section #14: JavaScript’).

To see the available properties for a file, right click and select, ‘Show List of File Properties’ from the context menu.

Notes:

1. This option may slow down the processing a lot. If you don't need these fields then leave this option disabled to

 speed up the processing.

2. For more information, refer to ‘Using Windows File Properties’ under ‘Section #7: Add’.

Bulk Rename Utility Operations Manual Page 379 of 715

Renaming Options Menu

File / Folder Extensions

The extension of a file name is identified as a period or ‘dot’ followed by the ASCII characters that make up the

extension name. In a file, this is used to identify the file type. If a dot notation appears as part of a folder name, it has

no meaning to Windows and can be ignored.

- Rename File Extensions as being Part of File Name

This option will ignore the file name extension and treat the entire file name as a single string during renaming

operations. Use this option with great care because the file name extension is used to identify the file type. If the file

extension is renamed, Windows may no longer recognize how to open the file.

Example:

- Rename Folder Extensions as being Part of Folder Name

With this option selected, any dot notation "extensions" within folder names will be ignored - this is because folder

extensions have no real meaning, unlike file name extensions which identify the file type. Often, a directory name

may contain dot characters the program might otherwise interpret as an extension like a file extension.

Example:

Removing the last 2 characters -

 Enabled (folder name all one string): Not Enabled (folder name w/extension):

 Last two characters of ‘04’ are removed. Last two characters of ‘ys’ are removed.

Notes:

1. This option is enabled by default.

2. Any criteria can be used to rename a folder without requiring ‘Section #11: Extension’ or resorting to RegEx.

Bulk Rename Utility Operations Manual Page 380 of 715

Renaming Options Menu

Log Renaming Activity to File (Ctrl + L)

This will direct BRU to log all of the files renamed including ‘Undo’ requests in a text file, ‘Bulk Rename Utility.log’

located at ..\Documents\Bulk Rename Utility\.

Example of a log (lines edited for clarification):

1/6/2020 7:32:36 PM - Renamed "H:\Music\Victoria Summer\Truth Hurts (From Ratpocalypse).mp3"

to "h:\0\Truth Hurts (From Catpocalypse)_2.mp3"

1/6/2020 7:33:06 PM - UNDO! Renamed "h:\0\Truth Hurts (From Catpocalypse)_2.mp3" back to

"H:\Music\Victoria Summer\Truth Hurts (From Ratpocalypse).mp3"

Notes:

1. Only gives an account of what files were renamed and does not account for how. The ‘Debug New Name’ is the

 only facility that provides this, however, limited, because it only displays the stages of the process and not the

 details. The other problem with the “Debug New Name’ is that the Debug Log file is not saved when you exit the

 dialog box.

2. Does not include physical changes to files, i.e. Changing file attributes or Timestamps are not logged entries.

3. Newer versions of BRU will also support Unicode names.

Bulk Rename Utility Operations Manual Page 381 of 715

Renaming Options Menu

Show Warning Message Before Renaming

Look at the message carefully. This is your last chance to change your mind. It informs you of how many files and or

folders are about to be included in the rename operation.

e.g.,

The default is enabled.

Show Confirmation Message After Renaming

e.g.,

The default is enabled.

1. Is a good reminder that the number of files you wanted to include is the number of files that were processed.

2. This will alert you to any problems with files that did not get processed for whatever reason.

3. If a mistake has been made, you now have the opportunity to Undo the changes.

Bulk Rename Utility Operations Manual Page 382 of 715

Special Menu:

 Also see Section #14: Special

Bulk Rename Utility Operations Manual Page 383 of 715

Special Menu

Change File Attributes

Directs Bulk Rename Utility to ‘set’ specified file attributes of the renamed files (does not affect directories). This

operation is performed after processing completion. Refers to the File Attributes of Archive, System, Hidden, and

Read-Only. This ‘bit’ can be set by Windows, a program, or the user.

This is useful if you need to flag all of the renamed files/folders as requiring archiving, or if you want to hide all the

renamed files/folders.

Read-only - Allows a file to be read, but cannot be written or modified.

The file is ‘write-protected’ but can be deleted.

Archive – Indicates that this file has been modified since a previous

backup. Commonly used by Backup software for determining

‘Incremental’ Backup status. Files can be written, modified and deleted.

System – Indicates to Windows that this is a system-critical file that

should not be tampered with (modified, renamed, moved, etc.) or deleted.

These will normally be hidden unless authorized.

Hidden - File is not shown. It will display in Windows Explorer if you

have the system set to show Hidden Files but System Files will not be

included. They require a separate option for authorization.

The authorization can be overridden in BRU by enabling ‘Hidden’ in the

‘Section #12: Filters’. Hidden files will now display in the Content Pane.

Notes:

1. To Display Hidden Files (non-system) in Windows Explorer:

 a. In Windows Explorer check ‘Hidden Items’ under the ‘Show/Hide’ section.

Bulk Rename Utility Operations Manual Page 384 of 715

Special Menu

Notes

2. To Display System Files in Windows Explorer:

 a. In Windows Explorer select ‘Change Folder and Search Options’ under the ‘Options’ drop down menu of the

 ‘Show/Hide’ section of Windows Explorer.

 b. Under the ‘View’ tab of the ‘Folder Options’ dialog box, uncheck ‘Hide protected Operating System Files’.

Once a File’s Attribute has been changed via BRU, the Attribute field in the Content Pane will reflect this:

In the example above, the Read Attribute, ‘R’, has been set on the file, HeLlO WoRlD.

Bulk Rename Utility Operations Manual Page 385 of 715

Special Menu

Change File Timestamps

Change the Windows date timestamp properties, Date Created, Date Modified and Date Accessed of the selected files.

Looks more complicated than it is.

This is useful if you have certain applications which use a file's

timestamp in order to identify if a file has been modified, or if

you want to sort photographs in a particular sequence.

Some older applications even use the timestamp to identify a

product version.

If you would like to set the Date Modified and Date Accessed

timestamps to the same value as the Date Created timestamp,

then choose the Date Created option.

Once a File’s Timestamp has been changed, this will be reflected in the Content Pane under the appropriate date field:

Notes:

1. Created in the Column Headings refers to the Windows Property, Date Created.

2. Modified in the Column Headings refers to the Windows Property, Date Modified.

3. Accessed in the Column Headings refers to the Windows Property, Date Accessed.

Bulk Rename Utility Operations Manual Page 386 of 715

Special Menu

Essentially, Windows assigns a timestamp (Windows Property) to all files and directories. They are:

Date Created

The date the file was created in Windows, in Month Day Year Hours Minutes and seconds. If the file did not originate

in Windows, then this property represents when the file was transferred into the Windows OS, but not when the file

was created.

Date Modified

The date the file was last physically changed. Date Modified is only affected if the actual contents of the file changes,

for example, editing and saving the file. Moving, copying the file has no effect typically.

Date Accessed

The date the file was last accessed.

1. Date Accessed includes a move, open, read or other simple access. By itself it is not very reliable because even

 system access will modify this date. This is probably the reason that Item Date does not take Date Accessed in

 consideration when determining its value.

For each timestamp, Created, Modified and Accessed, you have several options:

Set to:

No Change – no modification.

Current – set to current date and timestamp

Modified – use the existing Modified Date as the new timestamp

Taken(Original) – use the EXIF DateTimeOriginal as the new timestamp

Created - use the existing Date Created as the new timestamp

Fixed – use the specified date and time as the new timestamp

Delta – individual timestamps can be adjusted by Days, Hours, Minutes and Seconds

Some further explanation is required:

Bulk Rename Utility Operations Manual Page 387 of 715

Special Menu

Taken (Original) (aka Date Taken) –

For Taken (Original) to hold a value, the image must have been created in a device outside of the Windows OS

capable of recording Metadata, e.g., a camera.

Taken(Original) maps directly from the EXIF item DateTimeOriginal. DateTimeOriginal represents the immediate

timestamp of when the image was created in the device. Thus, Taken (Original) is more reliable and accurate than the

Windows Property, Date Created, if available.

For Taken (Original) to extract properly, the EXIF data must exist for DateTimeOriginal. The problem becomes that

EXIF DateTimeOriginal only applies to certain image file types. If the filetype is not supported, Taken (Original) will

have no value. If DateTimeOriginal holds a null value, Taken (Original) will also be rendered null.

Below are three files, two of which are digital images with recorded EXIF Metadata that was taken with a camera.

One of these Metadata items that was recorded is DateTimeOriginal. Because DateTimeOriginal holds a value, this

value can be observed in the column ‘Taken (Original)’. The other file is an image file that has no EXIF data and so

the ‘Taken (Original)’ column for that file subsequently contains no value.

Notes:

1. BRU can change the Windows timestamps but cannot change the EXIF data but there are tools out there that can.

2. For more information refer to ‘Section #7: Add’, ‘Section #8: Auto Date’ and ‘ID3 /EXIF Data / File Properties’

 under the Renaming Options Menu.

3. Additional EXIF data may be recorded, some of which can be accessed by BRU for the purpose of appending

 (only). These are: Taken (Digitized), Taken (Modified) and Taken (Recent). Refer to ‘Section #8: Auto Date’.

4. If you direct the program to use the Taken(Original) date, and there is no data present, it will change nothing.

5. ‘Extract EXIF Data (Photos)’ option from the ID3/ EXIF Data/ File Properties submenu of the Renaming Options

 Menu must first be enabled in order for the data to be extracted.

6. Windows timestamps, EXIF data, ID3 data, are also referred to by their generic name, Metadata.

Bulk Rename Utility Operations Manual Page 388 of 715

Special Menu

Fixed –

To use the Fixed option:

For the date –

You can choose to enter the date directly by clicking inside the data entry field:

Or by clicking on the Drop down arrow, you can select using a calendar.

For the time –

You can choose to enter the time directly by clicking inside the data entry field:

Or you can adjust it by clicking on the field and using the up and down arrows to increment and decrement.

Bulk Rename Utility Operations Manual Page 389 of 715

Special Menu

Understanding Delta

Delta – The duration expressing the difference between two date-time instances. Using delta in BRU, current

individual timestamps can be adjusted by Days, Hours, Minutes and Seconds using a positive value for increasing,

and a negative value for decreasing. Also refer to ‘Section #8: Auto Date’ which discusses Offset, same as Delta..

e.g., if you were traveling and you took some pictures but forgot to account for time zones, you could rename the files

with the corrected timestamps using a delta adjustment. This will NOT update the ‘Date Taken’ Metadata.

Example,

 Here is a file with a Date Created of April 30, 2014 timestamped 11:36:55 PM

 To increment this timestamp by 1 day 8 minutes-: To decrement the original timestamp by 1 day 8 minutes,

 enter, ‘1 0 8 0’ in the Delta data field; just change the positive value to a negative:

 Where:

 1 = Day 0 = hours 8 = minutes 0 = Seconds

Here is the new Date Created of May 1, 2014 timestamped 11:44:55 pm exactly 24 hours 8 minutes ahead

Here is the new Date Created of April 29, 2014 timestamped 11:28:55 PM exactly 24 hours 8 minutes behind

Bulk Rename Utility Operations Manual Page 390 of 715

Special Menu

v3.42 New Additions

Change File Timestamps function Allows Item Date

Enhanced the Change File Timestamps function to use the file’s ‘Item Date’ if the EXIF 'Taken (Original)' timestamp

is not available, for example, for some unsupported video or image formats.

Example.

Here are two files. One with a Taken (Original) timestamp and one without. The filetype is not important. Item Date

is available for most if not all filetypes. This is indeed a welcome addition.

After renaming:

You can see that the first file that did not have a Taken (Original) timestamp will have applied the Item Date as its

new Created Date. The second file, on the other hand, does have the timestamp and will change its Created Date to

the file’s Taken (Original Date).

For further information, please refer to Item Date.

Bulk Rename Utility Operations Manual Page 391 of 715

Special Menu

Character Translations

Defines a set of rules that will translate one specific character or sequence of characters into a different character or

sequence of characters. These rules are set forth in the Character Translation Table.

There are three ways to enter the replacement data:

1. As a character e.g. A

2. As a hex value e.g. 0F

3. As a decimal value e.g. 065

Syntax:

<character or string to be translated FROM > = <character or string to be translated TO>

Notes:

1. To differentiate between the values, decimal is entered as three characters, hex is entered as two characters and

 direct characters (literals) are entered as single characters.

2. If translating the equal sign character, it must be entered as either hex or decimal since it is part of the syntax.

 In the following, every example is converting a capital "A" to a capital "B" -

 where:

 A=B direct (literal) expression of the characters to convert, A, B

 41=42 two characters long, therefore hex value equivalents of A, B

 065=066 three characters long, therefore decimal value equivalents of A, B

 A=066 a direct (literal) character, A and a decimal value equivalent of B

 41=066 a hex value equivalent of A and a decimal value equivalent of B

3. Strings are translated by using comma delimiters to separate individual values (characters) that make up the string.

 e.g.,

 41,066,C=D,E,070 converts ABC to DEF

4. Bulk Rename Utility identifies the type of value entered by its length.

 a. If the value on either side of the equal sign is one character long (e.g. "A" or "1") then it's a literal character.

 b. If the value is two characters long (e.g. "6F") it is automatically interpreted as a hex value.

 c. If the value is three characters long, (e.g. ‘017’) it is interpreted as a decimal value (see "Decimal" column).

 1. This allows you to perform replacements of non-keyboard characters. Refer to the ASCII Charts.

Bulk Rename Utility Operations Manual Page 392 of 715

Special Menu

Notes: cont.

5. The Translation Table syntax is using a format similar to, From … To ….

where e.g.,

 From … To ….

 A = B

The From... To.. in the Translation table is using the equal sign, e.g. A=B. If you wish to translate the equal sign as

part of the Translation Table, then use the corresponding hex or decimal equivalent for the equal sign. This won’t

work: = = A.

The same principle is applied to translating the comma sign that is otherwise used as part of the syntax to indicate the

conversion of multiple characters.

Here are some examples of translations:

1) convert SAM to DEF 2) convert ABC to DEF

 S,A,M=D,E,F 41,066,C=D,E,070

This will not work using the ABC example:

.. because the value is ‘ABC’, and the letters must be in the filename in that order consecutively for translation to take

place. If you wanted A, B, or C anywhere in the file to be translated, you would instead use this:

Table: Result:

41=D

066=E

C=F

Here’s another one:

3) translate the $ sign to the word DOLLAR 4) .. or vice versa

 $=D,O,L,L,A,R D,O,L,L,A,R=$

Bulk Rename Utility Operations Manual Page 393 of 715

Special Menu

These are some additional examples by Forum member Stefan from the BRU Forum website:

4) Replace signs with a space:

 (= <space>

 [= <space>

 != <space>

5) Replace signs with an underscore:

 +=_

 ;=_

6) Replace signs with nothing (null, meaning no entry, or “”, is equivalent to removing the character):

 Ü=

 ü=

 $=

 This is also useful when you have file names filled with junk symbols:

 Test File 1 - ! 2# 3$ 4(5) 6+ 7, 8- 9. 0; 1= 2@ 3] 4_ 5{ 6} 7~.txt

 To remove these symbols you could also use ‘Section #5: Remove’ and enable ‘Sym’ option:

Bulk Rename Utility Operations Manual Page 394 of 715

Special Menu

However, to have more control over which symbols gets removed and which do not, use Character Translation:

 !=

 #=

 $=

 (=

)=

 +=

 -=

 .=

 ;=

 @=

]=

 _=

 {=

 }=

 ~=

 When applied to the Test File, this results in a cleaned up filename:

 Test File 1 - 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7.txt

7) Translate German umlautes:

 Ü=U,e

 ü=u,e

 Ö=O,e

 ö=o,e

 Ä=A,e

 ä=a,e

 ß=s,s

8) Shorten file names:

 f,e,a,t,u,r,i,n,g=f,e,a,t

 B,u,l,k,R,e,n,a,m,e,U,t,i,l,i,t,y=B,R,U

 R,e,m,i,x=R,M,X

 R,e,m,a,s,t,e,r,e,d=R,E,M

 I,m,p,o,r,t,a,n,t=!

 V,e,r,y, ,I,m,p,o,r,t,a,n,t=!,!,!

 2,0,1,3=1,3

Source Material this section: Bulk Rename Utility Forum: Stefan

Bulk Rename Utility Operations Manual Page 395 of 715

Special Menu

9) Replace a group of signs or one sign with an another sign or group:

 A=F,i,r,s,t

 J,a,n=0,1

 0,0,5=V

 0,0,6=V,I

10) Roman Numerals Translation List

 0,0,1=I

 0,0,2=I,I

 0,0,3=I,I,I

 0,0,4=I,V

 0,0,5=V

 0,0,6=V,I

 0,0,7=V,I,I

 0,0,8=V,I,I,I

 0,0,9=I,X

 0,1,0=X

 0,9,8=X,C,V,I,I,I

11) Use Character Translations for URL encoded files decoding

 %,2,0=

 %,2,1=!

 %,2,3=#

 %,2,4=$

 %,2,5=%

 %,2,6=&

 %,2,7='

 %,2,8=(

 %,2,9=)

 %,2,B=+

 %,2,C=,

 %,5,B=[

 %,5,D=]

Important –

BRU does save the Character Translation settings as part of a Favourite File, but they would be loaded in every time,

which may be undesirable. The better solution is to copy and paste them to a text file, and when you need them, just

paste them back. Make sure that no entries have a trailing space when pasting. Using ‘Ctrl + Enter’ at the end of each

line, rather than simply pressing ‘Enter’, is the best method to ensure this. Ctrl + Enter in BRU inserts a Line Break.

Bulk Rename Utility Operations Manual Page 396 of 715

Special Menu

JavaScript Renaming (Ctrl + F7)

This is a powerful addition to the already splendid capabilities that BRU offers. The company decided to make this

functionality available only to the commercial version and requires an inexpensive commercial license to unlock. It is

well worth it even for home users. Think of it as registering the program.

JavaScript renaming gives you total flexibility and full control of your file renaming needs by using JavaScript code.

Bulk Rename Utility uses the v8 JavaScript, Google's high performance JavaScript engine, that is also used in Google

Chrome. v8 implements ECMAScript as specified in ECMA-262, 5th edition. Most standard JavaScript syntax and

functions are supported in the BRU implementation.

The program provides two built-in JavaScript libraries, Sugar.js library and Date.js library. Additional libraries may

be added using the functions, ‘Include’ and ‘Require’ (see Appendix – JavaScript Bulk Rename Utility Functions).

Brings up the JavaScript Code Entry Form

The Code Entry Form is where JavaScript code can be entered and tested.

 Example:

This scripts adds a counter, padded with up to 5 zeros,

after each selected file name:

This the text in case you want to enter it yourself:

 function padleft(nr, n, str){
 return Array(n-nr.toString().length+1).join(str||'0')+nr;
 }

 newName = name + '_' + padleft(counter, '5', '0') ;

Quick Analysis:

1. The function padLeft is defined.

2. newName represents the new name of the file.

3. name represents the current name of the file.

4. counter is a constant that starts from 1 and it's incremented for each selected file.

Bulk Rename Utility Operations Manual Page 397 of 715

Special Menu

The selected files showing the results of the JavaScript:

Using the Test facility

After entering in your code, you can optionally test it using the ‘Test’ button. This will verify the syntax is correct.

Example of bad code entry:

Code entered as:

Press the ‘Test’ button ….

Generates this error:

It does not debug the code –

there are no breakpoints or

anything similar – it just

determines if it will run or not.

It is also colour coded which

indicates possible problems

with syntax.

Bulk Rename Utility Operations Manual Page 398 of 715

Special Menu

Handling Syntax Errors

The following is taken from Bulk Rename Utility Manual Volume II. At the risk of repeating information found there,

I feel it is important to include in order to have a better understanding of the Code Entry Form.

Understanding the JavaScript Code Entry Form Colour Coding

The colour coding system used is to help with syntax and errors (colour displayed is as close as I can get).

Within function

Item Colour Correct Bad Neutral

Keywords blue * Black & White

strings Brown-red * “

Variables Black & White *

Numerals Black & White *

Function name Black & White *

Outside Function

Item Colour Correct Bad Neutral

Variables purple * Black & White

All

Item Colour Correct Bad Neutral

Operators silver-green * Black & White

parenthese/brackets silver-green * “

Braces, Semicolon

Avoid Common Errors: <spaces>

JavaScript, unlike RegEx, is very flexible when it encounters extra spacing in the code.

For example, you could have: Changed to:

function myFunction(){ function myFunction() {

 var y = 5; var y = 5 ;

 var x = y + 2; var x = y + 2

 return x return x

} }

newName = myFunction(); newName = myFunction();

Result: 7 .. and it will still produce the result: 7

Bulk Rename Utility Operations Manual Page 399 of 715

Special Menu

Avoid Common Errors: CASE SENSITIVITY

Occasionally, you will encounter errors while entering the script into the JavaScript Code Entry form:

One of the most common is this:

Why? Because a keyword has been capitalized and most JavaScript language is in Lowercase and Case Sensitive. One

of the clues is that the word in error is in black and white and should be blue or some other colour depending on

whether it is a keyword, string, or operator. To correct, all that is required is to change it to a lowercase, ‘return’.

If your syntax is correct, you can see a preview of the renamed file by looking at the Test Code block:

 In the ‘From’, it will have a test string but you can

 change this to any test string you want (do not have

 to have a physical file, just change the name):

 From: Belvedere Plantation 6493.jpg

 The ‘To’ will show a preview of the renamed file

 after clicking ‘Test’

 To: Belvedere Plantation 6493_00001.jpg

Notes:

1. This allows you to see an execution of the JavaScript virtually. Acts as a preview before committing to Rename.

2. The Syntax Testing and Test Code Data Entry do not require the Commercial license.

3. Execution of the actual renaming process does require the commercial license.

4. The result in photo, Belvedere Plantation_00001.jpg, is taken from ‘padleft’ script not the ‘myFunction’ script.

Bulk Rename Utility Operations Manual Page 400 of 715

Special Menu

Avoid Common Errors: ASCII Mistakes

If you copy and paste code – be it RegEx or JavaScript from either volume, you may have to do a little fine editing if

you discover the code is not working. Much of these errors has to do with inadvertent ASCII conversions.

1. Some text editors and word processing programs may convert <hyphens> into ‘dashes’. Microsoft Word converts a

 <hyphen> character into a dash character when you press ‘Enter; after a <hyphen>.

2. Microsoft Office products use High ASCII 145 and ASCII 146 for the right and left single quotes, instead of the

 ASCII 39 used for either side, typically found in plain text editors.

3. Microsoft Office products use high ASCII 147 and ASCII 148 for the right and left double quotes. Why? Because

 they look better than the ASCII 34 used for either side, typically found in plain text editors. Unfortunately,

 however, the JavaScript Code Entry Form requires ASCII 34.

 If the script contains one of these characters, it will generate this error:

 A clue to this problem can be found in

 the JavaScript Code Entry Form…

 You have:

 instead of:

 Notice the colour difference? Black and white characters that should be reddish brown for the string are a clear

 indication of a syntax problem.

 Also see the difference in the double quotes? The more curvy and refined characters belong to the Office products.

 This is the cause of the error.

4. For more information, please refer to BRU JavaScript Reference Manual in the appendix of Volume II.

Bulk Rename Utility Operations Manual Page 401 of 715

Special Menu

About Conditional Renaming

A Conditional in JavaScript is essentially an If.. Then.. statement. ‘If’ something is true, ‘Then’ do this. Setting the

variable, newName, back to the origName is like canceling the renaming of an object, as the new name is set back to

the object's original name. This feature allows you to perform conditional renaming.

For example, you could set newName back to origName only for objects with a certain modified timestamp. The

modified timestamp is accessed via object("modified"). The same would be valid if applied to newExt and

newLocation.

Another Example –

This JavaScript code conditionally renames files that do not start with the letter ‘B’. If they do, then newName is reset

back to origName, thereby canceling out the renaming operation on those filenames that matched.

1. ‘Section #4: Case’

 Case = Lower

then select all files you wish to rename in the file list.

2. ‘Section #14: Special’ : JavaScript

Code:

if (origName.startsWith("B")) newName =

origName;

Analysis:

Variables:

origName The equivalent of Name in the Content Pane. This is the filename before the renaming operation.

newName The equivalent of New Name in the Content Pane. This is the filename in preview of the renaming

 operation. New Name represents the result after the renaming operation has been completed.

Simple one line script that tests ‘If’ origName begins with an uppercase letter, ‘B’. If true, ‘Then’, for those

filenames, the renaming operation would be canceled through the assignment of origName to newName.

Bulk Rename Utility Operations Manual Page 402 of 715

Special Menu

In the Order of Evaluation, ‘Section # 4: Case’ comes before JavaScript, ‘Section #14: Special’. JavaScript will

always be the last criteria applied before the actual Renaming is performed.

Example using Belvedere Plantation 6492.jpg with Debug log.

If you look at Group 4, this represents ‘Section #4: Case’.

 In Group 4 the Name changes –

 From:

 Belvedere Plantation 6492.jpg

 To:

 belvedere plantation 6492.jpg

The final group, JavaScript, tests that the filename starts

with an uppercase ‘B’ = true, rendering the renaming

operation void. The name changes back –

 From:

 belvedere plantation 6492.jpg

 To:

 Belvedere Plantation 6492.jpg

Example using Tim Master.accdb with Debug log.

 If you look at Group 4, this represents ‘Section #4:

Case’. In Group 4 the Name changes –

 From:

 Tim Master.accdb

 To:

 tim master.accdb

 The final group, JavaScript, tests that the filename starts

 with an uppercase ‘B’ = false. The renaming operation

 is performed.

Bulk Rename Utility Operations Manual Page 403 of 715

Special Menu

3. Select the files in the Content Pane.

Before JavaScript is applied:

 Filenames that are already in lowercase are ignored.

e.g., wildcrypt.exe

After JavaScript is applied:

All filenames beginning with an uppercase letter, ‘B’ look to be ignored, but are in fact, excluded from the renaming

operation based on the JavaScript code.

With thanks to Matt of TGRMN for the example provided

Bulk Rename Utility Operations Manual Page 404 of 715

Special Menu

Notes:

1. Conditional Renaming under JavaScript can be as complex as needed, excluding and conditionally renaming a very

 complex set of files and conditions, including dates, windows properties, etc.

2. The simple example provided can just as easily have been accomplished using ‘Section #12: Filters’.

Bulk Rename Utility Operations Manual Page 405 of 715

Special Menu

JavaScript (Extension) Libraries

Extension JavaScript libraries and files can be included

using the functions include and require. There are two

JavaScript libraries that are already included in Bulk

Rename Utility. They are saved in the js folder under the

installation directory.

File names are sugar.js and date.js.

To make them available to BRU, select libraries to include from ‘JavaScript Libraries’ option of the ‘Special Menu’,

Activating the option 'Include sugar.js' is equivalent to adding:

require('js/sugar.js')

.. at the start of your JavaScript code.

Activating the option 'Include date.js' is equivalent to adding:

require('js/date.js')

… at the start of your JavaScript code.

Using the menu options is much easier.

Include sugar.js

Sugar.js library

Sugar is a very powerful library. It adds many useful functions to work with dates, text, etc. in JavaScript.

Include date.js

 Date.js library

Date.js is a very powerful library. It adds many useful functions to work with dates in JavaScript.

See Notes at the conclusion of this section.

Bulk Rename Utility Operations Manual Page 406 of 715

Special Menu

JavaScript Filter Condition

The JavaScript filter ‘Condition’ is a data entry field found in ‘Section #12: Filters’ that allows you to enter

JavaScript coding for the selection/inclusion of files/folders based on an objects' name and also on the date, size, time,

EXIF, attributes, etc.

If the condition evaluates to true for an object in the File List, that object will be included, otherwise it is not. The

JavaScript condition supports all the functions, variables and constants that are available for JavaScript Renaming.

The button next to the Condition data entry field will rescan the directory using the JavaScript condition. It will also

display any error messages (similar to the ‘Test’ button on the JavaScript Code Entry form).

Notes:

1. This function requires the Commercial license.

2. Do not confuse this with ‘Conditional Renaming’. The Filter Condition is a feature of the ‘Section #12: Filters’

 criteria. Conditional Renaming is a functionality of JavaScript.

Bulk Rename Utility Operations Manual Page 407 of 715

Special Menu

Bulk Rename Utility Operations Manual Page 408 of 715

Special Menu

JavaScript

Notes:

1. JavaScript code is applied to each object and processed as the last step after all other criteria and options have been

 performed, just before the renaming operation.

2. More information available at https://www.bulkrenameutility.co.uk/forum/

3. The Sugar library is Copyright (c) 2014 Andrew Plummer. It is licensed under the MIT license.

4. The Date.js library is copyright (c) 2006-2007, Coolite Inc. all rights reserved, licensed under the MIT license.

5. The following are available to JavaScript :

 Windows Properties – see ‘Using Windows Properties’ under ‘Section #7: Add’

 Substitution Tags – see ‘Using Substitution Tags’ under ‘Section #7: Add’

 EXIF Tags – see ‘Using EXIF Tags’ under ‘Section #7: Add’

 ‘ID3 / EXIF Data / File Properties’ options must be set from the ‘Renaming Options Menu’ prior to use.

6. Processed JavaScript appears as the last line in the ‘Debug Results using the ‘Debug Name’ function from the

 ‘Actions Menu’. It may be noted it is not part of a group e.g., defined as Group 12, (‘Section #14: Special’) , but its

 own entry.

 For more information, see ‘Debug Name’ option under the ‘Actions Menu’

https://www.bulkrenameutility.co.uk/forum/

Bulk Rename Utility Operations Manual Page 409 of 715

Context Menu

 From Bulk Rename Utility: Content Panel

 From Bulk Rename Utility: Navigation Panel

 From Windows Explorer

Bulk Rename Utility Operations Manual Page 410 of 715

BRU Context Menu

Clipboard Copy

When you install BRU, it installs a Context Menu, ‘Clipboard Copy’, that can be accessed by right clicking either in

the Navigation Pane or Content Pane of the Windows Explorer window.

Navigation Pane

In the Navigation Pane, right click on any directory or drive:

 Your options are:

 - Pathname

 copy the directory pathname to the

clipboard.

 - Pathname, and paste to Location (13)

 copy the path to the clipboard and set it as

the new location (target destination) for a

copy or move operation.

Content Pane

In the Content Pane, right click on a file or directory in the Name column:

 Your options are:

 - Pathname

 copy the directory pathname (including

filename) with or without file extension to

the clipboard.

 - Filename

 copy just the filename with or without the

extension to the clipboard.

 - New Filename

 copy the filename that appears in the New

Name column with or without file

extension to the clipboard.

 - Original Filename with New Filename

 copy the original filename along with the

new filename with or without file

extension to the clipboard.

Note:

The previous version had an additional option – ‘Extended File Details’ – this has been replaced by the ‘All’ option.

Bulk Rename Utility Operations Manual Page 411 of 715

BRU Context Menu

Example of using Clipboard Copy from Navigation Pane:

Option Clipboard Contents

Pathname: F:\Music\Classical

Examples of using Clipboard Copy from Content Pane:

Option Clipboard Contents

Pathname: F:\Music\Classical\Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro

Pathname + Ext.: F:\Music\Classical\Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3

Filename: Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro

Filename + Ext.: Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3

New Filename: 220414Alvaro Cassuto- Sinfonia in B flat I- Allegro

New Filename + Ext.: 220414Alvaro Cassuto- Sinfonia in B flat I- Allegro.mp3

Filename + New Filename: Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro
 220414Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro

Filename + New Filename + Ext.: Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3

 220414Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3

Extended File Details:

Filename Parent Folder Full Path File Type Size Created Modified Accessed
Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3 Classical F:\Music\Classical\Alvaro Cassuto- Sinfonia in B flat III- Minuet Allegro.mp3 VLC
media file (.mp3) 3 MB 4/22/2014 9:23:28 AM 4/22/2014 9:23:38 AM 4/22/2014 9:23:28 AM

Notes:

1. Fonts were changed in examples as required and do not reflect the font of the stored data.

2. In illustrating the Filename + New Filename selections, carriage returns were added for clarity and would not be

 part of the clipboard data. The data would be copied as one continuous line to the clipboard.

3. Box 13 refers to ‘Section #13: Copy/ Move to Location’

4. Extended File Details option no longer available as of v3.4 – Replaced by the ‘All’ option.

Bulk Rename Utility Operations Manual Page 412 of 715

BRU Context Menu

In addition to Clipboard Copy, the Context Menu from the Content Pane provides several additional options:

Open Containing Folder

This initiates the standard Windows Explorer for the current directory.

Show List of File Properties

This has to do with ‘Using Windows Properties’ under ‘Section #7:Add’. It provides a complete list of all of the

available Windows Properties for a selected file. BRU allows values assigned to these properties to be inclusive

(appended) in ‘Add’ and JavaScript renaming operations. For more information, refer to these sections.

Show List of EXIF Info (.JPG Files)

This has to do with ‘Using EXIF Tags’ under ‘Section #7:Add’. It provides a complete list of all of the available

EXIF Metadata for a selected (and supported) image filetype. BRU allows values assigned to these properties to be

inclusive (appended) in ‘Add’ and JavaScript renaming operations. For more information, refer to these sections.

Bulk Rename Utility Operations Manual Page 413 of 715

BRU Context Menu

v3.4 New Additions

Copy all available column data for highlighted files using the Clipboard Copy menu option ‘All’ or Ctrl + C

The contents of the Clipboard buffer are a bit of a jumble. This is how they would appear:

Filename Parent Folder Full Path File Type Size Created Modified Accessed Length

Taken (Original) Item Date Attributes Track Status New Name Custom

Bing Crosby - Silent Night.mp3 Christmas H:\Music\Christmas\Bing Crosby - Silent Night.mp3 MP3 Audio File

(VLC) 6 MB 12/27/2019 12:03:35 AM 12/27/2019 12:11:51 AM 12/27/2019 12:03:35 AM 30

 12/27/2019 12:03 AM 0 Bing Crosby - Silent Night.mp3 File Size is 6.17 MB - Modified Date

is 12/27/2019 12:11 AM)

I have clarified the contents of the Clipboard for better comprehension, but this is not how they would appear:

Attributes

Filename Parent Folder Full Path

Bing Crosby - Silent Night.mp3 Christmas H:\Music\Christmas\Bing Crosby - Silent Night.mp3

Created Taken (Original) Item Date

12/27/2019 12:03:35 AM 12/27/2019 12:03 AM

Accessed Modified

12/27/2019 12:03:35 AM 12/27/2019 12:11:51 AM

Custom

File Size is 6.17 MB - Modified Date is 12/27/2019 12:11 AM)

File Type Size Length Status Track

MP3 Audio File (VLC) 6 MB 30

New Name

Bing Crosby - Silent Night.mp3

Bulk Rename Utility Operations Manual Page 414 of 715

BRU Context Menu

v3.4 New Additions

The available column data can also be copied by selecting the files directly within BRU and then hitting Ctrl + C

without having to use the Context Menu:

Dump of Clipboard buffer. This is how the contents would appear:

Filename Parent Folder Full Path File Type Size Created Modified Accessed Length Taken

(Original) Item Date Attributes Track Status New Name Custom

Bing Crosby - Silent Night.mp3 Christmas H:\Music\Christmas\Bing Crosby - Silent Night.mp3 MP3 Audio File

(VLC) 6 MB 12/27/2019 12:03:35 AM 12/27/2019 12:11:51 AM 12/27/2019 12:03:35 AM 30

 12/27/2019 12:03 AM 0 Bing Crosby - Silent Night.mp3 File Size is 6.17 MB - Modified Date

is 12/27/2019 12:11 AM)

Carol of the Bells - Lindsey Stirling.mp3 Christmas H:\Music\Christmas\Carol of the Bells - Lindsey Stirling.mp3

 MP3 Audio File (VLC) 7 MB 12/26/2019 9:52:33 PM 12/26/2019 10:24:39 PM 12/26/2019 9:52:33 PM 41

 12/26/2019 9:52 PM 0 Carol of the Bells - Lindsey Stirling.mp3 File Size is

7.12 MB - Modified Date is 12/26/2019 10:24 PM)

Do You Hear What I Hear - Bing Crosby.mp3 Christmas H:\Music\Christmas\Do You Hear What I Hear - Bing

Crosby.mp3 MP3 Audio File (VLC) 6 MB 12/26/2019 11:47:37 PM 12/26/2019 11:47:53 PM 12/26/2019

11:47:37 PM 41 12/26/2019 11:47 PM 0 Do You Hear What I Hear - Bing Crosby.mp3

 File Size is 6.33 MB - Modified Date is 12/26/2019 11:47 PM)

It is up to the user to sort through the contents and arrange it as needed, just as I did in the previous example.

Bulk Rename Utility Operations Manual Page 415 of 715

Windows Explorer Context Menu

In addition to the Context Menu available through the Bulk Rename Utility Navigation and Content Pane, when you

agree to install the Context Menu along with BRU at the time of program installation, it adds one item to the

Windows Explorer Context menu.

Bulk Rename Here

Selecting this option will launch Bulk Rename Utility, and will automatically select the folder you right-clicked (or

the parent folder, if you right-clicked on a file).

Example:

This file was selected in Windows Explorer.

After selecting ‘Bulk Rename Here’ from the Context Menu:

BRU comes up with the directory already selected. This option only selects the directory, not the file.

Bulk Rename Utility Operations Manual Page 416 of 715

Windows Explorer Context Menu

Notes:

1. This will work regardless if BRU is already running.

2. If you have a Favourite file loaded and ‘Save on Exit’ option set, the current folder will replace the folder saved in

 the Favourites file when you exit the program. If you wish to avoid this, reload the Favourites file or use ‘Revert

 All Criteria to Last Saved’ option from the Actions Menu.

3. For reasons of performance, if you use the Bulk Rename Here right-click function, the Sub-folders flag (recursion)

 will not be enabled, regardless of its stored setting.

 This is to prevent situations where you choose a high-level folder (e.g. C:\) without realizing that a recursive

 directory search is about to be performed. The note regarding Favourites above also applies here.

Bulk Rename Utility Operations Manual Page 417 of 715

Appendix

Bulk Rename Utility Operations Manual Page 418 of 715

 Speeding up the Program

Bulk Rename Utility Operations Manual Page 419 of 715

Speeding up the Program

Display Options Menu

List - Show Icons

Normally enabled, but displaying icons can sometimes slow down a long file listing.

Renaming Options menu

ID3 / EXIF Data / File Properties

Leave off unless absolutely required because extracting the data from each file during a scan can slow down the

processing quite a bit.

Section #12: Filters

Subfolders option (Recursive Scan)

Recursive scan reads all the files not only in the current directory but in all subdirectories below it. Depending on the

amount of files that have to be read, this can take a long time and you may have to wait awhile until the Content Pane

displays anything.

Remember to look at the status indicator at the bottom of the Interface window which will provide feedback as to why

an operation is possibly taking longer than necessary. Typically, it is because the directories are in process of being

scanned.

v3.4 New Additions

Section #1: RegEx

Enabling v2 (PCRE v2 with Boost)

I believe, and this is not verified, that just as with enabling certain features – JavaScript libraries, Extraction of

Metadata, etc., performance could take a hit. So my thinking is if it is not warranted, don’t enable it.

Bulk Rename Utility Operations Manual Page 420 of 715

 Regular Expressions (RegEx) Manual

 Volume I

Bulk Rename Utility Operations Manual Page 421 of 715

Regular Expressions (RegEx) Manual

Applying example to BRU – Review Time

1. Highlight and select what you want to rename.

This example uses only one file.

2. Enter the RegEx expression in the Match data field. 3. Enter the replacement data in the Replace data field.

4. If the match is successful, the name under the New Name column will be in Green lettering. If the Match is

 unsuccessful, there will be no change in New Name. If there is an error in the expression, the status at the bottom

 will show ‘Invalid’. If there are other kinds of problem, like having to do with the replacement data, New Name

 will be in red lettering due to illegal literals like a backslash displayed because of a non-existent Capture Group.

Successful match Match unsuccessful Error in Expression Other Problem

What’s great about this program is that you can enter in different data and the New Name will immediately change to

reflect this new data. This allows you to test and retest without committing to the rename action.

Notes:

1. Although the file extension shows up in all the New Name files, it is not a consideration in evaluating for a match

 unless explicitly checked off in the ‘Include Ext.’ field or enabled in the Renaming Options Menu.

Bulk Rename Utility Operations Manual Page 422 of 715

Regular Expressions (RegEx) Manual

v3.4 New Additions

BRU Supports PCRE v2 with Boost

BRU now supports PCRE v2 with Boost. What this means is that most of the limitations, some which have been

documented here in this volume and in Volume II, have been removed. Modifiers such as Global Switch, Case

Insensitivity, and many other features that are part of the Perl Regular Expression Engine v2 are now available.

Some of these additional features of the language have been introduced in this book. If the user wishes to explore the

newer capabilities of the language other than what has already been presented, I have provided some resources below.

I can understand why TGRMN has decided to include both v1 and v2 in the new version. The RegEx v2 with all of its

capabilities does not replace v1 – only supplements it.

The majority of the RegEx Manuals in both volumes covers PCRE v1, but this is not to say that the RegEx manual in

this volume has not undergone a complete rewrite. It has. A lot of new material and instruction has been added.

General information:

https://perldoc.perl.org/perlre

Information specific to the Match Equation:

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Information specific to the Replace String:

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html

Additional resources for using some of these new capabilities can be found at:

https://www.rexegg.com/

https://www.regular-expressions.info

https://regexlib.com

https://perldoc.perl.org/perlre
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html
https://www.rexegg.com/
https://www.regular-expressions.info/
https://regexlib.com/

Bulk Rename Utility Operations Manual Page 423 of 715

Regular Expressions (RegEx) Manual

Literal – a regular or normal character (that can be reproduced with the keyboard) includes all characters except for

the following special metacharacters: . | * ? + () { [^ $ \

Special Characters (aka Metacharacters) – certain characters are reserved for special use. They cannot be used as a

literal unless preceded by an escape. An escape Metacharacter is the backslash, e.g., \[is a literal left bracket.

Metacharacters include:

 \ backslash Escape character. Used to specify that the next character will be a literal even

 though this character is normally a reserved metacharacter. e.g. \+ is a plus sign.

 . period or dot Matches any single character.

 | vertical bar or pipe symbol Used to separate alternatives. Think of it like an OR operator. e.g cat|dog

 - hyphen Specifies a range (usually within a class).

Word Boundaries

 \b…\b A Word Boundary is a word (alpha numeric or underscore) isolated with no

 characters before or after it except whitespace or punctuation (whole word)

 The characters between the ‘\b’ establish the Word Boundary of the word to be

 matched. Equivalent to [a-zA-Z0-9_]. E.g. \bcat\b matches ‘cat’ but not

 ‘catfish’. The Word Boundary can be used singularly, e.g. \b, or in pairs.

 \B…\B Requires the current character not be at a Word Boundary. The character must

 be inside a word and not at a Word Boundary. There can be no whitespace or

 punctuation before or after it, only other characters. \Bice\B matches ‘priceless’

 but not ‘price’. The non-Word Boundary can be used singularly, e.g. \B, or in

 pairs. Negated \b.

Word Characters

 \w A Word Character used to form words. Equivalent to [A-Za-z0-9_].

 \W Matches against all characters that are not Word Characters.

 Negated \w.

Bulk Rename Utility Operations Manual Page 424 of 715

Regular Expressions (RegEx) Manual

Special Characters (aka Metacharacters) cont.

Anchors

 ^ the caret Requires any match to occur at the beginning of the string input. \A is same as ^

 This is called the BOL or Beginning of Line.

 $ dollar sign Requires any match to occur at the end of the string input. \Z is same as $

 This is called the EOL or End of Line, aka EOF or End of File.

Quantifiers

 * asterisk or star Match the previous (character, metacharacter, Capture Group or class) zero or

 more times.

 + plus sign Matches the previous (character or metacharacter, Capture Group or class) one

 or more times.

 ? question mark Matches the previous (character or metacharacter, Capture Group or class) zero

 or one time. The question mark makes the previous optional.

Range Quantifiers (Minimum, Maximum)

 {…} curly braces Limits how many matches (or attempts at matches through iterations):

 {n} Specifies exactly how many matches are allowed. Match previous (character,

 metacharacter, Capture Group or class) exactly n times. e.g., \d{4}

 {n,} Specifies that it can match n or more times. Match previous (character,

 metacharacter, Capture Group or class) at least n times with no upper limit.

 e.g., \d{3,}

 {min, max} Limits how many times something can be repeated. Match previous (character,

 metacharacter, Capture Group or class) at least min times but no more than max

 times, e.g., \d{3,5}

Bulk Rename Utility Operations Manual Page 425 of 715

Regular Expressions (RegEx) Manual

Special Characters (aka Metacharacters) cont.

Numeric Digits

 \d Matches any single numeric digit – equivalent to class [0-9].

 \D Matches any single non-numeric digit – equivalent to class [^0-9].

 Negated \d.

Class

 [...] square brackets A character class. Match characters contained in list or range.

 [^…] caret inside brackets A negating character class. Do Not match characters contained in list or range.

 Generally it searches to match any character that is not of this class.

 I think it is more accurate, however, to state that the characters contained in a

 negating class are seemingly ignored when the engine is moving forward or

 back through the string.

 This opinion is merely an observation.

Subpattern (Capture Group)

 (...) parentheses Creates a subpattern group also called grouping or Capture Group. In this

 document, I will refer to subpatterns as Capture Groups for simplicity.

 A sub-expression is enclosed between a left and right parenthesis. The RegEx

 Engine will evaluate this Capture Group and if the pattern is matched, the value

 produced is held or ‘captured’.

 This value can then be recalled in BRU’s Regular Expression ‘Replace’ data

 entry field, using the syntax:

 ‘\1’ to represent Capture Group 1, ‘\2’ to represent Capture Group 2, etc.

Bulk Rename Utility Operations Manual Page 426 of 715

Regular Expressions (RegEx) Manual

Special Characters (aka Metacharacters) cont.

Non-Printable Characters

 \n Matches new line (line break).

 \r Matches carriage return.

 \t Matches tab character.

 \s Matches any single Whitespace character – a space, tab, and newline.

 \S Matches any single non-Whitespace character. Negated \s.

 Will not match against space, tab and newline because these are Whitespace.

 The only non-printable Whitespace character supported in BRU is the <space> character

 \ The Escape (backslash)

If you want to use any of the following metacharacters as a literal, you must precede it with the escape:

 \ () [{ + * ? | ^ $

For example, to include a * in the Match expression as a literal, you would use *

Bulk Rename Utility Operations Manual Page 427 of 715

Metacharacters in Depth

Character class (or just class)

I like to think of this in terms of algebra. In algebra, groups of related characters are considered collected together

when classified as a ‘set’. When something is in a set, it is treated as one element in an equation. This is kind of what

character classes are. Groups of characters that are placed between square brackets are called a ‘character class’. A

class can match any single one of the characters between the brackets, or any single character belonging to a range of

characters. The range is specified using a <hyphen> (-) as a delimiter:

e.g., [0-9] is a range with the set of characters = 0 1 2 3 4 5 6 7 8 and 9.

Just like in sets, you can have what to include and what not to include. What not to include is referred to as a negated

character class. What to include is identified by placing the characters between two square brackets []. What not to

include (negated) is identified by adding a caret ^ as the first character, before any other characters.

Examples (with any ranges specified):

ho[ur]se - the characters that are included are u and r. [ur] is a character class.

ho[^ur]se - the characters that are not included are u and r. [^ur] is a negated class (this is still a character class).

[a-z] a class that includes any single lowercase character a-z

 range: a-z

[A-Z] a class that includes any single uppercase character A-Z

 range: A-Z

[A-Za-z] a class that includes any single alpha character

 range: upper and lowercase

[A-D] a class that includes a range of uppercase characters, A,B,C,D

[ab3-] a class that includes a, b 3 or <hyphen>. The <hyphen> must be the last character in the list.

[0-9] a class that includes any single numeric (digit) character

 range: 0-9

[A-Za-z0-9] a class that includes any single alpha numeric character

 range: uppercase, lowercase, numeric digits

[^0-9xyz] a Negated class that matches any single character that is NOT a numeric or the letters x,y or z,

 or a numeric digit that falls within the range: 0-9

[^-] a Negated class that matches a single character, numeric, Whitespace or punctuation but is

 NOT a <hyphen> character

h[aeiou][a-z] a class that matches hat, hip, hit, hop, and hut

 range: a-z

Bulk Rename Utility Operations Manual Page 428 of 715

Metacharacters in Depth

Character class (or just class) cont.

The only metacharacters allowed inside a class are.. (]), (\), (^) and (-). All others are treated as a literal and do

not require a backslash ‘escape’ character (to use a backslash as a literal, you use \\ inside a class, e.g. the right

bracket, [abc\\]).

Example:

[.] is treated as a dot literal and not a dot metacharacter

Notes:

1. Each class represents a single character in a search

 Example:

[A-Za-z] [a-zA-Z0-9] represents two characters, an alpha character and an alpha numeric character

2. In a class containing a <hyphen>, the <hyphen> must appear at the end of the list, otherwise it will be mistakenly

 interpreted as a range delimiter.

 Range delimiter:

 [0-9]

 defines a class made up of numeric digits, 0-9 or 0,1,2,3,4,5,6,7,8,9

 Range delimiter with added <hyphen>:

 [0-9-]

 defines a class made up of numeric digits, 0-9, and a <hyphen>

Bulk Rename Utility Operations Manual Page 429 of 715

Metacharacters in Depth

Posix Character Class (Bracket Expression)

POSIX Description Class Equivalent

[:alnum:] Alphanumeric characters [a-zA-Z0-9]

[:alpha:] Alpha characters [a-zA-Z]

[:ascii:] ASCII characters [\x00-\x7F]

[:blank:] Space and tab [<space> \t]

[:cntrl:] Control characters [\x00-\x1F\x7F]

[:digit:] Numeric Digits [0-9]

[:graph:] Visible characters (anything except spaces and control characters) [\x21-\x7E]

[:lower:] Lowercase letters [a-z]

[:print:] Visible characters and spaces (anything except control characters) [\x20-\x7E]

[:punct:] Punctuation and symbols, including left and right brackets [!"\#$%&'()*+,\-./:;<=>?@\

[\\\]^_‘{|}~]

[:space:] All whitespace characters, including line breaks [<space> \t\r\n\v\f]

[:upper:] Uppercase letters [A-Z]

[:word:] Word Characters (letters, numbers and underscores) [A-Za-z0-9_]

[:xdigit:] Hexadecimal digits [A-Fa-f0-9]

To use with BRU, the Bracketed Posix Class must be enclosed in an additional square brackets. This is because it

involves two different syntax, not just one. The syntax of the Posix requires the keyword enclosed in brackets, but the

addition of using it in a Character Class requires that any value be enclosed between brackets; thus the two brackets:

Example-

Belvedere Plantation 6492.jpg

Match: ([[:digit:]])

Replace: \1

Bulk Rename Utility Operations Manual Page 430 of 715

Metacharacters in Depth

Dot Metacharacter

. Dot represents any single character

Example:

ab. Matches strings abc and abz and ab_

h.t Matches strings hat, hit, hot and hut.

 Notes:

 1. Bru under PCRE v1 only returns the value of the first match if there were more than one matched.

 2. New Name only displays in green if there is a valid match and the original Name would be changed as a

 result in some form. It is a preview of what will happen before committing to the Renumber operation.

3. In the example above, ab. matches the entire string, abc. Ordinarily, New Name would not be changed and

 would display as:

 This is because, even if there is a match, which there is, Name would not be changed, therefore New Name

 reflects no change. In order to display a change, I added a <space> character in the Replace String.

 New Name is now ‘abc <space>. I use this technique a lot in these volumes whenever I want to illustrate a

 change, that would otherwise not display.

 Match: (ab.)

 Replace: \1 <space>

 4. To display any changed values, the values have to be ‘captured’. That is what the parentheses around ab. are

 for. They capture the evaluated value into the Capture Group. The RegEx designates the Capture Group as

 Capture Group 1 because it assigns each Capture Group as they are encountered from left to right.

 In this example, there is only one, designated as Capture Group 1. The value of Capture Group 1 can be

 recalled in the Replace String using \1.

 5. Additional photos are provided by the program, Regex Buddy.

Bulk Rename Utility Operations Manual Page 431 of 715

Metacharacters in Depth

\s Matches any single Whitespace character – a <space>, tab, newline, among others. This can be used inside a

 character class. [] In BRU only the <space> is supported.

 Match: (e\sP)

 Replace: \1

 1. e Match against a lowercase ‘e’ Capture Group 1 = e

 This is the ‘e’ after ‘B’.

 2.\s Match against a <space> character Capture Group 1 = e <space>

 This changes the original ‘e’ captured from the

 ‘e’ after ‘B’, to the ‘e’ after ‘r’ of ‘Belvedere’.

Why?

Because in order to match against the <space> it had to move forward testing each character for the <space> until

it matched, which it did. However, as it moved forward after the initial match of the ‘e’ character, it also backtracked

because the pattern was now ‘e’ with a <space> immediately following. The only pattern that matched was the –

 ‘e <space> following the ‘r’.

This can best be illustrated as:

 Belvedere Plantation 6474.jpg

 Belvedere Plantation 6474.jpg

The first photo shows the initial match, and the second shows the second match with the added <space> in the pattern,

represented by the underscored blank character after the underscored ‘e’. The third photo shows the final pattern

matched as ‘e<space>P’.

 3. P Match against a ‘P’. Continues to move forward and matches Capture Group 1 = e<space> P

 against the ‘P’ following the <space> after ‘Belvedere’.

 4. Will continue searching the remainder of the string looking for

 any additional matches that match the established pattern,

‘e<space>P’. Finding none, the RegEx fails at that point having

reached the EOL, satisfying the match and exhausting the string

(no more matches can be made).

Bulk Rename Utility Operations Manual Page 432 of 715

Metacharacters in Depth

\S Matches any single non-Whitespace character. This is the Negated \s. Where \s matches against the

 Whitespace character, <space> in BRU, \S will match against anything that is not a <space> character.

This can be used inside a character class. []

 Match: (e\S)

 Replace: \1

 1. e Match against the ‘e’. Capture Group 1 = e

 This is the e after ‘B’ in ‘Belvedere’.

 2. \S Match against the first non-Whitespace character. Capture Group 1 = el

 This is the ‘l’ after ‘e’ in ‘Belvedere’

 Pretty straight forward.

 What happens if I change it by adding ‘e’ to the pattern?

 3. e Match against the ‘e’. Capture Group 1 = ede

 Changes the original ‘e’ matched after the ‘B’ to

 the ‘e’ after the ‘v’ in ‘Belvedere’

The pattern becomes ‘e’ followed by any non-Whitespace character followed by a second ‘e’. Therefore, ‘el’ no

longer matches. The RegEx engine moves forward and matches the pattern against ‘e’ followed by ‘d’ followed by

‘e’.

Likewise if I changed the match to (P\Sa), the pattern becomes, ‘P’ followed by a non-Whitespace character followed

by an ‘a’. The only possible match in the string becomes the ‘Pla’ of ‘Plantation’.

 Capture Group1 = Pla

Notes:

In this section,

1. I used green whenever I am discussing the string.

2. I used blue when discussing matches.

3. Patterns and the RegEx and matches in these discussions are left as is.

4. Analysis is colour coded in violet.

Bulk Rename Utility Operations Manual Page 433 of 715

Metacharacters in Depth

| The vertical bar is used to distinguish between alternatives. Think of it like an OR operator.

You can have this or that or this or that.

Example:

gray|grey matches gray and grey which can also be accomplished by, gr(a|e)y

 Match: (gray|grey)

 Replace: \1<space>

There is that technique I use with the <space> added in the Replacement String, otherwise New Name would

indicate no change because the entire string ‘gray’ is matched.

Let’s change it to:

Match: (gray|grey)

Replace: \1

This is important regarding how a Conditional Alternative works. You will notice that in the string, both

values would match the alternatives, but only ‘gray’ matches and not ‘grey’.

Why?

The Conditional works on a first come, first served. In other words, only the first match is valid as far as BRU

is concerned (under PCRE v1). When a match is found, the second alternative is never tested.

Notes:

1. The <space> technique in the Replace String is not needed because the entire string is not matched, only a

 portion.

What if I changed it to:

Match: (grey|gray)

hmmm.. no change in the result. I would have thought it would change to ‘grey’. What happened?

Bulk Rename Utility Operations Manual Page 434 of 715

Metacharacters in Depth

| The vertical bar cont.

Match: (grey|gray)

This brings me to the second point. It isn’t the alternates that are tested against the string, it is the string

that is tested against the alternates. What I mean by this:

It is NOT

Grey, as an alternate, is first tested against ‘gray’ in the string, and failing that moves on to the second

alternate, grey, that matches against ‘grey’ in the latter part of the string… no..

It IS

The first part of the string, ‘gray’ is tested against the alternate, grey. This fails, so it repeats the RegEx,

testing the same portion of the string, ‘gray’, against the second alternate, gray = true. Match successful,

Capture Group 1 = gray.

Notes:

1. This is under PCRE v1. Under PCRE v2, all matches would display, not just the first. The result would

 instead be the entire string, graygrey. The process, however, would still be the same. The first part of the

 string, ‘gray’ is tested against the first alternate, grey. This fails so the second alternate, gray, is tested

 against the same portion of the string, ‘gray’ = true. The Regex repeats looking for additional matches with

 the remainder of the string.

 The second portion of the string, ‘grey’ is tested against the first alternate, ‘grey’ = true. EOL is reached,

 the RegEx has been satisfied, the string is exhausted. Two matches were made, ‘gray’ and ‘grey’

 string = graygrey

 Match: (grey|gray)

 Results:

Bulk Rename Utility Operations Manual Page 435 of 715

Metacharacters in Depth

| The vertical bar cont.

Match: (grey|gray)

My analysis is a bit over simplified for clarity. What really happens is that each character in the string is tested

against the pattern created by the alternate. This can be seen above where, ‘g’ then ‘r’ is matched in steps 1-2 in the

first part of the photo above, but the ‘e’ tested fails at step 3, so it backtracks, this time testing the second alternate

beginning with ‘g’ in step 4, matching again the ‘r’ in step 5, and this time looking to match against an ‘a’, and this

matches in step 6. Step 8 completes the first match of ‘gray’.

The second part of the photo illustrates the second match of ‘grey’. It begins again at the beginning of the string

testing against the first alternate, grey. Once again, each character is tested. Because ‘grey’ is in the first part of the

string, it quickly matches moving forward with no backtracking necessary this time. The match is completed in step 5.

string = graygrey

Match: gr(a|e)y

Replace: \1 <space>

Similar to before, in terms of the process.

1. gr Match against string ‘gr’ but not captured = ‘gr’.

 This is the ‘gr’ of ‘gray’.

2. a Alternate. Capture Group 1 = a

 Tests the next character after ‘gr’ for ‘a’ = true.

 Second alternate not tested.

3. y Match against string ‘y’ but not captured = ‘y’

 RegEx satisfied.

4. Tests remainder of string for additional matches

 of the pattern. None found. String exhausted.

If there had not been a ‘y’ that matched, the RegEx would have failed prior to the RegEx satisfied, and the previous

match would have been ‘given up’ and subsequently there would be no match. Capture Group 1 would have no value

and New Name would not have changed.

Bulk Rename Utility Operations Manual Page 436 of 715

Metacharacters in Depth

| The vertical bar cont.

As already discussed, several expressions can be combined into one by using the parentheses () and |

characters. The Parentheses creates a Capture Group, Capture Group 1:

Example:

(apple|^pear$)

a) This takes the expressions,

 apple

 ^pear$

 and places them into a Capture Group as defined by the surrounding parentheses.

 b) The expressions remain as two separate expressions because they are alternates in a Conditional Group.

c) Because there is only one Capture Group defined, this is designated as Capture Group 1.

In summary:

 Capture Group 1 contains a Conditional Alternate made up of two expressions, apple and ^pear$.

Capture Group 1 matches strings containing the characters ‘apple’ or the word ‘pear’.

In this example, it matches against any separate word ‘apple’, or a word that contains the word ‘apple’ while

the word, ‘pear’, can only appear as a separate word and not contained within another word.

This is because of the caret, ‘^’ (BOL, Beginning of Line) which means that the alternate, pear, must be at the

beginning of the string for a match to occur. The dollar sign, ‘$’ (EOL, End of Line) further refines the match limiting

the alternate, pear, not only to begin the start of the string, but additionally, it must be the last word in the string. In

other words, to match against ‘pear’, the word must be isolated with nothing before or after it; the only word in the

string.

Match: (apple|^pear$)

Replace: \1 <space>

For more information, refer to the anchors, ^ and $.

Bulk Rename Utility Operations Manual Page 437 of 715

Metacharacters in Depth

These escape sequences are used to match against special characters:

\f Match against the PAGE BREAK (form feed) character (not supported in BRU)

\t Match against the TAB character (not supported in BRU)

\r Match against the CARRIAGE RETURN character (not supported in BRU)

\n Match against the LINEFEED (new line) character (not supported in BRU)

 Used for matching expressions that span line boundaries. This cannot be followed by operators '*', '+' or {}, so

you can only match an exact number of them (e.g. \n\n will match a single blank line.). Do not use this for

constraining matches to the end of a line. It's much more efficient to use "$".

Notes:

1. The reason these may not be supported in BRU is because they are ineffectual for matching a single Line of text,

 e.g. , a filename.

 These Metacharacters are meant for multiline text segments. BRU may in fact accept them as valid, but since they

 do nothing to change the original string, they are ignored and no changes are reflected in New Name.

 This theory is untested and I find no need to explore further.

Bulk Rename Utility Operations Manual Page 438 of 715

Metacharacters in Depth

() Parentheses – used for:

 1. Create a set of optional characters. Enclose the characters within parentheses followed by the question

 mark. This makes the previous expression optional. For more information, refer to the, ? Quantifier.

Examples:

1) Nov(ember)? matches Nov and November

Match: (Nov(ember)?)

Replace: \1 <space>

‘Nov’ matches because the second part of the expression, ‘ember’ is made optional.

2) (Sun|Mon|Tues|Wednes|Thurs|Fri|Satur)day

Match: (Sun|Mon|Tues|Wednes|Thurs|Fri|Satur)day

Replace: \1

Matches the name of any day. For example, ‘Tuesday’ will match because Tues is one of the

alternates. After the RegEx Engine evaluates the expression through to Tues, it continues to process

the next part of the expression and finds a secondary match for ‘day’.

 2. Grouping. By placing part of the RegEx expression within parentheses, it groups that part of the expression.

 This allows for locating and isolating a part of the input string. Data that matches is stored or ‘captured’ in

 these groups. These groups are referred to as ‘subpatterns’ because the RegEx expression is used to define a

 search pattern. Another common name for these are ‘Capture Groups’ and that is the term I will use to refer

 to them.

 Example:

 (B.*\sP)

Bulk Rename Utility Operations Manual Page 439 of 715

Metacharacters in Depth

() Parentheses – used for: cont.

 These Capture Groups are designated a number that is dependent on the order in which they occur. In a later

 discussion I will elaborate on just how these Capture Groups are assigned.

 In the Replace data entry field, the resultant values of the data ‘held’ or ‘stored’ within these Capture

 Groups can be recalled by referencing them by their number in the form, \n where ‘n’ is the designated

 number of the Capture Group.

 Example:

\1 \2 \3

Notes:

1. In the first example, the Replace String \1 was used to recall the value of Capture Group 1 of (B.*\sP).

2. The analysis is:

 a. B Match against the ‘B’ string. Capture Group 1 = B

 b. . Match against any character. Capture Group 1 = Be

 c. * Make it Greedy. Capture Group 1 = <entire string>

 Current position = EOL.

 d. \s Match against <space>. Capture Group 1 = Belvedere <space>

 Backtracks to locate the first <space>.

 Matches at <space> after the ‘e’ of

 ‘Belvedere’.

This changes Capture Group 1’s value to ‘Belvedere <space>’ because as the RegEx Engine backtracked and

tested each character, it dropped those characters from the captured value.

 Backtracks

B e l v e d e r e P l a n t a t i o n 6 4 7 6

 Matches the <space>

 e. P Match against the ‘P’ string. Capture Group 1 = Belvedere P

 Moves forward to match against the

‘P’ of ‘Plantation’

 f. Will continue to test moving forward looking

 for additional matches until it reaches EOL.

Bulk Rename Utility Operations Manual Page 440 of 715

Metacharacters in Depth

() Parentheses – used for: cont.

 3. Nested Parentheses in Capture Groups create a hierarchy that determines the order of evaluation much like

 that used in mathematics, only, the outer Capture Groups are evaluated first before the inner Capture

 Groups.

 This is an example of a simple nested Capture Group.

 (Nov(ember)?)

 It breaks down as:

 C a p t u r e G r o u p 1

 Capture Group 2

 (Nov (ember) ?)

 Capture Group 1 contains the following expressions: Nov (Capture Group 2) ?

 Capture Group 2 contains a single expression: ember

 Using the string, November –

 result =

 Capture Group 1

 \1 <space>

 Capture Group 2

 \2

When a Capture Group is nested, the Outer Capture Group, Capture Group 1, holds the value of all nested Capture

Groups, e.g., Capture Group 2, inclusive. This means that whatever values are evaluated from the expressions inside

Capture Group 2 are aggregated (appended, concatenated, added with, etc., however you want to say it) - to any

values resulting from the evaluation of expressions within Capture Group 1.

Thus, if Capture Group 2 evaluates to ‘ember’ and Capture Group 1 evaluates to ‘Nov’, then Capture Group 1’s value

becomes. ‘November’. Capture Group 1, as the outer group, is evaluated first.

Bulk Rename Utility Operations Manual Page 441 of 715

Metacharacters in Depth

() Parentheses – used for:

 3. Nested Parentheses in Capture Groups cont.

 string = November

 C a p t u r e G r o u p 1

 Capture Group 2

 (Nov (ember) ?)

 Nov ember

 Notes: November

 1. The ? Quantifier makes the (ember) expression optional, but because it matches against ‘ember’, of

 ‘November’ using the RegEx, (Nov(ember)?), the evaluation of the expression is performed in

 Capture Group 2.

 If instead the string was, ‘Nov’, The RegEx would exercise the option because the string ‘ember’ does not

 match. Rather than fail the entire RegEx at this point, the expression, (ember), is optioned, and the

 evaluation is allowed to proceed.

 string = Nov

 C a p t u r e G r o u p 1

 Capture Group 2

 (Nov (ember) ?)

 Nov

 Nov

Bulk Rename Utility Operations Manual Page 442 of 715

Metacharacters in Depth

() Parentheses – used for:

 4. When used with a Quantifier, * ? + {min,max}, it matches the enclosed string against the input

 string (filename), zero, one, or more times, depending on the type of Quantifier used.

 Where parentheses differentiate with a character class is that a character class, as defined between square

 brackets, represents a single character whereas parentheses represent more than one character in a string.

 Example:

(abc)+ matches abcabc123 (two matches), but does not match ab123 or bc123

Before delving into how this is evaluated, I want to take a few steps back.

Start with

Match: (abc)

Replace: \1 <space>

This captures the first match of ‘abc’ in the string. How do I know it is the first set and not the second set, abc? I use a

simple trick to determine the current position. I use dot characters after the expression, abc:

 (abc..)

If the current position after the immediate capture of ‘abc’ is an ‘a’, the value returned from the first dot, and the

second is a ‘b’, then this confirms that the capture was abc of abcabc123 because if it was the second set that was

captured, the first character would have been a ‘1’.

Back to the original expression.

String = abcabc123

Match: (abc)+

Replace: \1

By placing the Greedy Quantifier outside of the expression, the RegEx Engine will repeat the evaluation of (abc) in as

many iterations required to match against the string until no matches can be made. At this point, the string is said to

be exhausted.

BRU will only match against a single match (under PCRE v1) even if there are two matches. The ‘+’ Greedy

Quantifier doesn’t change this behaviour. A repeated evaluation of a capturing group will only capture the last

iteration. In this example, the RegEx Engine discards the first match and retains and captures the second match.

Notes:

1. The dot Metacharacter trick does not always work. Adding additional characters to match against, may change the

 expression drastically enough to affect any validity of the results, so take care.

Bulk Rename Utility Operations Manual Page 443 of 715

Metacharacters in Depth

() Parentheses – used for:

String = abcabc123

Match: (abc)+

Replace: \1

Analysis:

The expression, abc, of Capture Group 1 in the RegEx, matches against the first set of ‘abc’ in the string. The ‘+’

Greedy Quantifier repeats the expression (iteration) and a second match is found. Capture Group 1 = ‘abcabc’. The

RegEx continues moving forward. Finding no further matches, only the last match is kept and the first discarded.

Capture Group 1 = ‘abc’. The string is exhausted.

One thing I should mention is that trick of positioning that I employed before, will not work with a Quantifier outside

of the expression. Here’s why.

 (abc..)+

Looks the same. Provides the same result indicating that it is matching against the first set.., hey, wait a minute, I

thought with the addition of using the Quantifier it only matches against the last set?

With the expression in a Capture Group and the Quantifier outside, it creates a pattern for which the expression has to

be matched against in order to have a successful match. When I added the two dot Metacharacters, I changed that

pattern from:

abc to abc + two more characters

So each iteration has to begin with abc and end with two additional characters. When it begins to search the string, the

RegEx Engine encounters the first set of:

abcab This is – abc + a + b

.. and matches. Capture Group 1 = abcab. Current position is the ‘last b’ of ‘abcab’. After this, it continues to move

forward and encounters,

c123

It is looking to match the first character ‘a’ of the pattern established as ‘abc..’ It tests

the character ‘c’ of ‘c123’ and failing to match the ‘a’, the RegEx fails, and the first

and only match is retained. Capture Group 1 = abcab

Notes:

1. To avoid confusion I use the + sign above in blue to indicate concatenation, not as a Quantifier.

Bulk Rename Utility Operations Manual Page 444 of 715

Metacharacters in Depth

() Parentheses – used for:

Therefore, the trick does not work with this example because it cannot accurately determine the current position of

(abc)+ by adding the two dot characters, (abc..)+ because the pattern changed too much from the original pattern.

But you can analyze it in the same manner to verify the results.

Analysis:

1. abc is the pattern established.

2. The first iteration matches against the first set of ‘abc’ in the string, ‘abcabc123’. Capture Group 1 = abc

3. The RegEx Engine moves forward with the second iteration and encounters, the second set, abc, and this is also

 captured. Capture Group 1 = abcabc.

4. The RegEx Engine moves forward to the 123 and tests for the pattern that begins with ‘a’ = false. Finding none, the

 last match of ‘abc’ is retained. Capture Group 1 = abc, the second match.

In the above photos, the second one in particular, verifies that it is the second set of ‘abc’ that is captured in Capture

Group 1 as indicated by the 3-6, which represents the character positions in the string. The second set of ‘abc’ begins

at character position 3.

a b c a b c 1 2 3

0 1 2 3 4 5 6 7 8

If I change the RegEx to:

 Match: (abc)+(.*)

 Replace: \1 \2

The second Capture Group, designated as Capture Group 2, holds the value of ‘123’. This indicates that after the

capture of the second set of ‘abc’, because the RegEx has a second expression, .*, it moves forward, matching against

and capturing the remainder of the string to EOL. Capture Group 2 = ‘123’. The RegEx Engine remains at EOL, the

position after the last capture. String exhausted.

Capture Group 1 = abc

Capture Group 2 = 123

Additional photos from Regex101.com

Bulk Rename Utility Operations Manual Page 445 of 715

Metacharacters in Depth

() Parentheses – used for:

Under PCRE v2, the ‘+’ Quantifier outside of the expression acts like a Global Switch, although not completely as I

will illustrate later. It will match and retain all occurrences of the pattern established as ‘abc’.

The same RegEx (abc)+ when v2 is enabled produces:

Match: (abc)+

replace: \1

I was expecting abcabc and why was the 123 captured?

Let’s use the substitution Replace String syntax to explain this.

The match of the RegEx is in fact, abcabc. All occurrences of abc are matched and captured. It is the Replace String

that is the problem. BRU displays the matched string as \1 or $1 = abc, rather than the entire match of abcabc.

This accounts for the single set of abc in New Name.

The entire match including all instances of abc is represented using the substitute Replace String of $0. BRU does not

support a Replace String of \0. If you want to display the entire match, in this example using a Quantifier outside of

an expression, you will need to use the $0 syntax.

match = abcabc

Match: (abc)+

replace: $0 <space>

Now as to the explanation for the capturing of 123. It is not captured.

This was previously discussed in an earlier part of the book under the Global Switch topic. Under PCRE v1, only

those parts of the string that are captured are retained and all other parts are excluded from New Name. Under PCRE

v2, elements of the string such as those values that are captured will be substituted in a copy of the original string as

New Name. This will occur even if those substituted values do not change the original elements of the string that have

been replaced. The original string, with the exception of those substituted values, are retained and copied over to New

Name.

Summary:

The original filename: abcabc123

String matched abc

Matched abcabc (2 matches of ‘abc’ will subtitute for the current value in the New Name string)

Not matched 123 (This is retained as part of the original filename and copied over to New Name)

New filename abcabc123 (the replaced value of ‘abcabc’ and the retained value of ‘123’)

Bulk Rename Utility Operations Manual Page 446 of 715

Metacharacters in Depth

() Parentheses – used for:

BRU will only display the entire match using $0, otherwise only the matched string of abc is displayed in New Name.

While BRU only displayed abc originally using \1, the entire match of abcabc was actually substituted. That left 123

as the only part of the string that was not substituted, hence New Name became abc123.

abcabc123 2 matches of ‘abc’. BRU using \1 or $1 only returns the first matched value of Capture Group 1.

abcabc123 2 matches of ‘abc’. BRU using $0 returns all matches in Capture Group 1 as a single value.

You may be better able to understand this if I change the string to:

String = now abcabc123

Match: (abc)+

Replace: $1 <space>

Using $1, only the matched string, abc, and not the entire match, abcabc, displays in New Name.

The matched elements of abcabc are substituted in the substring of abcabc even though this value is the same as the

original. Using $1, only the first matched value is returned = ‘abc’. All other elements of the string that were not

matched are retained and copied over to New Name. This includes, ‘now’ and ‘123’.

Match: (abc)+

Replace: $0 <space>

Using $0, the entire match of abcabc is displayed in New Name.

The matched elements of abcabc are substituted in the substring of abcabc even though this value is the same as the

original. Using $0, both matches are returned as a single value = ‘abcabc’. All other elements of the string that were

not matched are retained and copied over to New Name. This includes, ‘now’ and ‘123’. Comparison -

match: using $0 match: using $1 or \1

 substitutes substitutes

 abcabc abcabc

 now abcabc 123 now abc 123

 now abcabc 123 now abc 123

Bulk Rename Utility Operations Manual Page 447 of 715

Metacharacters in Depth

() Parentheses – used for:

Using the <space> in the Replace String is the needed change to provide New Name with a value, otherwise Name

would remain the same and New Name would display no change.

Match: (abc)+

Replace: $0

Now add the Global Switch to the RegEx in place of the Quantifier:

Match: (abc)/g

Replace: $1

Using the Global Switch in this manner without the Quantifier no longer requires $0 to display all matches.

Whereas using the ‘+’ Greedy Quantifier resulted in a single match made up of abcabc, using the Global Switch

results in separate matches of ‘abc’ for each occurrence of the matched string, ‘abc’ wthin the same Capture Group.

In this example, Capture Group 1 = ‘abc’ ‘abc’.

Now here is something interesting.

There is no Capture Group 2. Therefore, Capture Group 2 holds no value. If I were to express Capture Group 2 under

PCRE v1, it would display as Invalid (invalid because it treats the backslash as a literal):

Match: (abc)

Replace: \2

Under PCRE v2, using the Global Switch, because Capture Group 2 holds no value, there is no match to display in

New Name, but this doesn’t change the original parts of the string that were retained. Displays as:

Match: (abc)/g

Replace: \2

 No Invalid flag.

Backslash is no longer part of NewName because it was not part of the original string and therefore, not copied over.

Remember that this is only what is displayed. Capture Group 1 still holds the matched value of ‘abc’ ‘abc’

Bulk Rename Utility Operations Manual Page 448 of 715

Metacharacters in Depth

() Parentheses – used for:

Notes:

1. Invalid flag displays as red in New Name. This indicates the problem has to do with the Replace String of Capture

 Group 2. Some errors in expressions won’t display as red, and remain in black and white (no change in New Name)

 possibly meaning that the syntax is in error.

 The reason that it displays in red is because of the non-existent Capture Group. New Name interprets both the

 backslash and the Capture Group Reference number as a literal. The Invalid flag is because the backslash is an

 illegal character in a Windows filename.

 v2 RegEx doesn’t display the flag because any changed or matched elements are substituted for the original

 elements in a copied New Name string. All other elements are retained in the copy. If a Capture Group is

 non-existent, it is ignored because it has no values to replace and nothing in which to copy over.

2. Under v1, BRU matches against all possible matches, but only the value of the first match is retained, with the

 exception of a Quantifier placed outside of a Capture Group. Only the match of the last iteration is retained. Under

 v2, BRU matches against all possible matches using a Greedy Quantifier outside of the Capture Group. All

 matched values are retained in the Capture Group, but it is dependent on the Replace String which values are

 returned. The backreferences, e.g., \1 or $1 will return the first matched value of Capture Group 1 = abcabc123

 (First match in yellow, secondary match in blue), while $0 returns all matched values as a single value =

 abcabc123.Under v2, using the Global Switch, each match is retained separately within the Capture Group. They

 can be distinguished using a <space> delimiter but can’t be referenced individually.

 String = abcabc123

 Match: (abc)/g Match the string, abc globally

 Replace: \1 <space> Return the two matches of abc

 Capture Group 1 first match Capture Group 1 second match

 abc <space> abc <space> 123

 I can’t backreference the individual matched values of ‘abc’

Changing the Match to:

 (abc)(123)/g

This matches the second occurrence of abc only: abcabc123 because the pattern becomes ‘abc123’ to match against

and there is only one occurrence in the string.

3. This is my understanding of how this works. Remember, that this all new to me as well. I could have to revise this

 in a future edition.

Bulk Rename Utility Operations Manual Page 449 of 715

Metacharacters in Depth

\d Matches any single numeric digit – equivalent to a character class of [0-9]

This can be used inside a character class []

Example:

[\d.-] (backslash, dot, followed by a <hyphen>) matches any numeric digit, dot or minus sign

character.

A common example is to match against dates in a string.

String = 01-10-2021

By now you know of patterns. RegEx is based on pattern recognition. This string is an example of a simple pattern of

a month, day of month and year expressed as 4 digits using a <hyphen> as a delimiter. The pattern can be expressed

as:

##-##-####

When you know the pattern, you can design a RegEx that can match the pattern.

(1) Where # = a numeric digit, substitute that with \d

(2) The <hyphen> character can always be included or left out of the Replace String so I will decide to exclude it in

 the RegEx. I can do this by capturing those parts of the string I wish to retain and ignore the rest.

 Now when I say ‘ignore the rest’, the <hyphens> are still a part of the pattern so I must include it in the RegEx

 BUT I won’t capture them.

So my RegEx becomes:

(\d\d)-(\d\d)-(\d\d\d\d)

If I did not include the <hyphen>, the RegEx would fail if I just had:

(\d\d)(\d\d)(\d\d\d\d)

1. Matches against the first two numeric digits Capture Group 1= 01

 Current position = right after the last match of the ‘1’ of ‘01’

2. Fails to match against the next numeric digit. RegEx engine tests

 the character for a numeric digit = <hyphen> = false.

 RegEx Fails.

See?

So although I don’t want to include the <hyphen>, I still must recognize it as part of the pattern to match the string.

Bulk Rename Utility Operations Manual Page 450 of 715

Metacharacters in Depth

\d Matches any single numeric digit cont.

Each Metacharacter corresponds to a string character. The following is the completed process.

String 01-10-2021

Pattern # # - # # - # # # #

Pattern 0 1 - 1 0 - 2 0 2 1

RegEx (\d \d) - (\d \d) - (\d \d \d \d)

Captured (0 1) (1 0) (2 0 2 1)

Value 01 10 2021

 Not Captured Not Captured

Match: (\d\d)-(\d\d)-(\d\d\d\d)

Replace: Month = \1 Day = \2 Year = \3

This can also be expressed as: .. to obtain the same result.

Match: (\d{2})-(\d{2})-(\d{4})

Replace: Month = \1 Day = \2 Year = \3

where:

{n} = number of iterations

For example, using Capture Group 3 of (\d{4})

{4} = repeat the previous expression or sub-expression, 4 times (iterations).

\d {4} = repeat the match for a numeric digit, 4 times (iterations).

2021 = \d first iteration = 2

 \d second iteration = 0

 \d third iteration = 2

 \d forth iteration = 1

Capture Group 3 = 2021

Bulk Rename Utility Operations Manual Page 451 of 715

Metacharacters in Depth

\D Matches any single non-numeric digit – equivalent to the negated class [^0-9]. Negated \d.

This can be used inside a character class []

The \D is the negated (opposite) of the \d. The above uses the equivalent, [^0-9], where the ^ carrot sign in a class

negates the class thus [^0-9] is the same thing as saying that \D represents any character that is NOT 0-9 (numeric

digits).

Some of the Metacharacters do have a ‘negated’ counterpart. The \s and \S Metacharacters previously discussed are

an example of this.

string = two apples in 1 basket -02

If I want to isolate the second part of the string, where it begins with a numeric, from the first section, I can use this:

pattern: text <space> text <space> text <space> # <space> text <space> <hyphen> ##

 (\D+) (.*)

 two apples in <space> 1 basket -02

You do not have to account for each item in the pattern separately for a successful match to occur, just as long as they

are accounted for in the RegEx.

In the above RegEx, the \D will search to match against any character that is not a numeric digit. The ‘+’ Greedy

Quantifier will repeat the \D for as many iterations as required until EOL or the string is exhausted, whichever comes

first.

The RegEx continues to match until the encounter with the ‘1’. The tested character fails to match, at which point, the

string is exhausted because no more matches can be made by this sub-expression.

Capture Group 1 = two apples in <space>

The next sub-expression is evaluated. The dot Metacharacter captures any character. The Greedy Quantifier, *,

repeats the match until EOL, capturing the remainder of the string.

Capture Group 2 = 1 basket -02

Match: (\D+)(.*)

Replace: Group 1 = \1 Group 2 = \2

Bulk Rename Utility Operations Manual Page 452 of 715

Metacharacters in Depth

Anchor Metacharacters

^ Placed at the beginning of a pattern to require any match to occur at the beginning of the input string.

In BRU the string input will always be a file or folder name. This is the BOL or Beginning of String. The BOL

is the position before the first character of the string. It is not a character but a position and has zero length.

Example:

^abc matches ‘abc123’ but not ‘123abc’ because none of the characters, ‘a b c’, appear at the

beginning of the string input.

Match: (^abc)

Replace: \1

In this example, only the first string matches because it begins with ‘abc’.

as opposed to:

Match: (abc)

Replace: \1

With this example, the match of ‘abc’ can occur anywhere in the string so both strings match.

Another Example:

^fun matches first ‘fun’ only in "fun function"

Match: (^fun)

Replace: \1

.. and how can this be verified, other than with the knowledge gained from reading this book? ☺

By employing that trick I demonstrated earlier. It wouldn’t work, if you recall with a Quantifier outside of the

expression, because it changed the pattern too drastically, but with this example, it will.

Match: (^fun..)

Replace: \1

With the two added characters, it captures the <space> after the first word, ‘fun’ and the following ‘f’ as the

beginning of the word, ‘function’, thus verifying that (^fun) captured the first word in the string.

Bulk Rename Utility Operations Manual Page 453 of 715

Metacharacters in Depth

$ Placed at the end of a pattern to require any match to occur at the end of the input string.

Use this for restricting matches to characters at the end of a line. In BRU the string input will always be a file

or folder name. This is the EOL or End of String. The EOL is the position just after the last character of the

string and before the file extension if any. It is not a character but a position and has zero length.

Example:

abc$ matches ‘123abc’ but not ‘abc123’ because none of the characters, ‘ a b c’, appear at the

 end of the string input.

 Match: abc$

 Replace: \1

In this example, only the second string matches because it ends with ‘abc’.

 Another Example:

 on$ matches last ‘on’ only, in ‘onto my fun function’

 Match: (on$)

 Replace: \1

Notes:

1. ^ and $ are referred to as anchors because they fall at either end of the pattern.

2. end$ only matches "end" when it's the last word on a line, and ^end only matches "end" when it's the first word on

 a line.

3. Anchors return a null value.

Bulk Rename Utility Operations Manual Page 454 of 715

Metacharacters in Depth

Both the Beginning of Line (BOL) Anchor, ^, and the End of Line (EOL) Anchor, $, can be used together:

Example:

 ^abc$

Match: (^abc$)

Replace: \1 <space>

Matches only ‘abc’

In order for a match to occur there must be no other characters before or after in the string input. In other words, this

produces an exact match.

Bulk Rename Utility Operations Manual Page 455 of 715

Metacharacters in Depth

\w Matches any single Word Character.

A Word Character is an alpha numeric character or an _ (underscore). Equivalent to [a-zA-Z0-9_] that can be

used to form words. This can be used inside a character class [].

 Example:

\w would match against any of these single characters, a, b, c, d, e. and f in the string, ‘abc def’,

 however the pattern must account for the <space> character.

 Example:

 String = This is a word 123 Another word

 Match: (\w*) (\w*) (\w*) (\w*)\s(\d*)

 Replace: \1 \2 \3 \4 \5

 Analysis:

 1. Each \w* will capture a word. This is done by using the \w to match against a single Word Character and

 then making it Greedy using a Greedy Quantifier that captures to the next non-Word Character, the

 <space> character.

 2. <spaces> are not Word Characters, therefore they must be accounted for but not captured (at least I don’t

 need them to be captured). I use two representations for the <spaces> above just for fun and for purposes of

 demonstrating there is more than one way to specify a <space>. One, of course, is the <space> character

 found in between some of the Capture Groups, and the other is using the Whitespace Metacharacter, \s.

3. I also capture the numeric digits in the string using, \d*

 Notes:

 1. This is a pretty good RegEx, no backtracking at all, but it does use too many Capture Groups, 5 out of 9

 available. If I wanted to parse the entire string, I would need 7 Capture Groups total using this method. Here

 is the debugging output taken from Regex Buddy showing no backtracking:

Bulk Rename Utility Operations Manual Page 456 of 715

Metacharacters in Depth

\W Matches any single non-Word Character

Examples of non-Word Characters are whitespace (<space>), beginning and end of strings (BOL, EOL),

punctuation and symbols. Negated \w. This can be used inside a character class [].

 This is the negated (opposite) counterpart to the Word Metacharacter, \w.

 String = This is a word 123 Another word

 Match: (.*)(\W..)(\W..)(\w*)

 Replace: \1\2\3\4

Analysis:

1. .* Starts out by matching the entire string to EOL. Capture Group 1 = <entire string>

2. \W Match against a non-Word Character. Already Capture Group 2 = <space>

 at EOL, so it backtracks to the <space> following Changes Capture Group 1 =

 ‘Another’. This is a word 123 Another

3. .. Match against any two characters. Capture Group 2 = <space>wo

 Moves forward and matches ‘wo’ of the second

 occurrence of ‘word’.

4. \W Match against a non-Word Character. Capture Group3 = <space>

 This is the <space> after ‘is’. Changes Capture Group 2 = <space> is

 Changes Capture Group 1 = This

At this point, it is moving backwards testing each character for the following pattern established by, .* \W..\W

 .*, character followed by a \W, <space> followed by any two characters, .. followed by a \W, <space>

(a) Backtracks to test current character against the sub expression, (.*). This will match of course.

(b) Moving forward to test for the <space> (\W) in the next sub-expression. If this matches, continue.

(c) Moving forward again to test for the two characters, .. , part of the same sub-expression. This will match of course.

(d) and finally moving forward to test for the <space> (\W) in the next sub-expression.

If this fails, it backtracks one character to repeat the whole process again.

The only test that matches in the string is currently:

.* .* = ‘s’ of ‘This’

followed by a <space> \W = the <space> after ‘This’

followed by two characters = ‘is’

followed by a <space> \W = the <space> after ‘is’

 Capture Group 3 = <space> after ‘is’

Bulk Rename Utility Operations Manual Page 457 of 715

Metacharacters in Depth

\W Matches any single non-Word Character cont.

Notes:

1. Capture Group 2 changes its value.

2. Capture Group 2’s value prior = <space>wo.

3. Because Capture Group 3 moved backwards (backtracking) past the value captured by Capture Group 2, Capture

 Group 2 was forced to give up its value, and proceed to Capture the <space> + two characters that precedes

 Capture Group 3’s capture of the <space> after ‘is.

4. Capture Group 1 changes its value.

 Correspondingly, Capture Group 1 was also forced to give up its value of, ‘This is a word 123 Another’, because

 Capture Group 3 captured the <space> after ‘is’, that is included as part of the value of Capture Group 1, and

 Capture Group 2 captured the ‘<space> is’, that was also included in the value of Capture Group 1.

5. Capture Group 1’s value is based on the pattern of .* meaning any characters. Capture Group 1 changes to include

 all characters prior to the value of Capture Group 2 = This.

6. In (a), .* will match against any character. Similarly, in (c) the .. will match against any two characters.

Analysis continues.

5. .. Match against any two characters. Capture Group 3 = <space> a<space>

 Moves forward and matches ‘a<space>’

 preceding the first occurrence of ‘word’.

6. (\w) Match against a Word Character. Capture Group 4 = w

 Matches against the ‘w’ of the first

 occurrence of ‘word’ in the string.

7. * Make it Greedy. Capture Group 4 = word

 Matches against the first occurrence

 of ‘word’ in the string.

Bulk Rename Utility Operations Manual Page 458 of 715

Metacharacters in Depth

\W Matches any single non-Word Character cont.

Here is a more visual view of the analysis.

Capture Group 1 = Violet

Capture Group 2 = Red

Capture Group 3 = Green

Capture Group 4 = Blue

1. .* This is a word 123 Another word

2. \W This is a word 123 Another word

3. .. This is a word 123 Another word

4. \W This is a word 123 Another word

5. .. This is a word 123 Another word

6. \w This is a word 123 Another word

7. * This is a word 123 Another word

Bulk Rename Utility Operations Manual Page 459 of 715

Metacharacters in Depth

\W Matches any single non-Word Character cont.

Plenty of backtracking in this example, not my best work, but it does work.

Bulk Rename Utility Operations Manual Page 460 of 715

Metacharacters in Depth

\b A Word Boundary

Quick Review:

Word Characters:

A word is made up of Word Characters. A Word Character is an alpha numeric character that also includes the

underscore character. If you recall the discussion on \w, the Word Metacharacter, it includes the class of

[A-Za-z0-9_].

Whitespace:

Whitespace is defined as <space> characters. Whitespace are non-Word Characters.

non-Word Characters:

non-Word Characters include Whitespace, EOL, BOL, and any characters that are part of the negated class,

[^A-Za-z0-9_], e.g., punctuation marks, symbols, #, $, !, etc.

So what is a Word Boundary?

I have seen all manner of explanations regarding the Word Boundary. Here are a couple of them:

‘A Word Boundary is a position that is either preceded by a Word Character and not followed by one or followed by a

Word Character and not preceded by one.’

‘Word Boundaries match before the first and after the last Word Characters in a string, as well as any place where

before it is a Word Character or non-Word Character, and after it is the opposite.’

These explanations are certainly not wrong, but they do seem complex, and perhaps that is because Word Boundaries

are complex. In my research, I have found this topic to be one of the most difficult endeavors of this volume to date.

And it is not just myself, but many others who are perplexed over what appears seemingly and deceptively an easy

subject matter.

I will ‘attempt’ to simplify it.

A Word Boundary, \b, is matched if it occurs…

➢ before, if used at the beginning of the word, \btest

➢ or after, it if used at the end of a word, test\b

➢ or both, if used on either side of the word, \btest\b

but it is not that simple.

Bulk Rename Utility Operations Manual Page 461 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The RegEx Engine treats a word as a sequence of one or more Word Characters, \w, as defined by the class,

 [A-Za-z0-9_]. When testing a character, the RegEx Engine cannot perceive whole words, it can only perceive the

character preceding and the character following. You can think of this as standing at a street corner and you want to

walk across the street. So what do you do? You look left and then you look right to determine if it is safe to move

forward. Your perspective, however, is limited to what you can see on either side. The RegEx Engine also has a

perspective. From the current position, It can examine the character to the left and the character to the right.

When discussing Word Boundaries, the focus is not on the character so much as it is on the position. Please don’t

misunderstand me. The characters still determine a match or not, but those characters are to the left and to the right of

the current position and that position of the Word Boundary is between the characters, and not necessarily positioned

on the characters themselves.

In Volume II, I discuss briefly Character Position vs Movement Position. Note that I updated the diagram below to

reflect movement that occurs between the BOL and EOL, something that was omitted from the original Volume II

diagram.

This is how an 8 character string is expressed in movement positions in RegEx:

String = MY KITTY.jpg

 Anchor Anchor

^ $ Extension

 _ 0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6_ 7 _ . ext

 BOL EOL

 M Y K I T T Y .jpg

The RegEx Engine can move between the characters when searching to match against Word Boundaries.

Word Boundary Metacharacters are Zero-Length Assertions. They are called Zero-Length because they match

without consuming any characters, meaning they do not retain the values captured. The match is an ‘assertion’ that

what has been searched for has been found. This will be explained in more detail under the Loookarounds discussion.

A Word Boundary uses a set of rules by which to match:

 this this this this

 or or or

\b asserts the position at a word boundary defined as: (^\\w|\\w$|\\W\\w|\\w\\W)

Still confused? Read on.

Bulk Rename Utility Operations Manual Page 462 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ...

 ^ \w at the beginning of string (a Word Character preceded by BOL)

String = cat nap

e.g. \bcat

The Word Boundary matches between the position of the non-Word Character, BOL, and the Word Character,

‘c’ of ‘cat’.

BOL (Beginning of Line) ^, is a non-Word Character because it falls into the negated class of a non-Word Character,

\W, as defined by [^A-Za-z0-9_]. The alpha character, ‘c’, is a Word Character because it falls into the class of a

Word Character, \w, as defined by [A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 463 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ... cont.

\w $ at the end of a string (a Word Character followed by EOL)

String = cat nap

e.g. nap\b

The Word Boundary matches between the position of the Word Character, ‘p’ of ‘nap’, and the non-Word Character,

EOL.

EOL (End of Line) $, is a non-Word Character because it falls into the negated class of a non-Word Character, \W, as

defined by [^A-Za-z0-9_]. The alpha character, ‘p’, is a Word Character because it falls into the class of a Word

Character, \w, as defined by [A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 464 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ... cont.

\W \w a position between a non-Word Character and a Word Character (beginning of word within string)

String = The flowers are in bloom

e.g. \bflowers

The Word Boundary matches between the position of the non-Word Character,<space>, a Whitespace Metacharacter

that follows after ‘The’, and the Word Character, ‘f’ of ‘flowers’.

The alpha character, ‘f’, is a Word Character because it falls into the class of a Word Character, \w, as defined by

[A-Za-z0-9_]. The Whitespace character, <space>, is a non-Word Character because it falls into the negated class of a

non-Word Character, \W, as defined by [^A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 465 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ... cont.

\W \w a position between a non-Word Character and a Word Character (beginning of word within string) cont.

This can also apply when matching non-Word Characters including punctuation and symbol characters that appear

within the text of the string, even within the same word.

String = The flow#ers are in bloom

 e.g. #\b

The Word Boundary matches between the position of the non-Word Character, #, the Numeric Sign, and the Word

Character, ‘e’ of ‘flow#ers’.

The Numeric Sign, ‘#’, is a non-Word Character because it falls into the negated class of a non-Word Character, \W,

as defined by [^A-Za-z0-9_]. The alpha character, ‘e’, is a Word Character because it falls into the class of a Word

Character, \w, as defined by [A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 466 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ... cont.

\w \W a position between a Word Character and a non-Word Character (end of word within string)

String = The flowers are in bloom

e.g. flowers\b

The Word Boundary matches between the position of the Word Character, ‘s’ of ‘flowers’, and the non-Word

Character, <space>, a Whitespace Metacharacter, that follows.

The alpha character, ‘s’, is a Word Character because it falls into the class of a Word Character, \w, as defined by

[A-Za-z0-9_]. The Whitespace character, <space>, is a non-Word Character because it falls into the negated class of a

non-Word Character, \W, as defined by [^A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 467 of 715

Metacharacters in Depth

\b A Word Boundary cont.

The Rules:

A Word Boundary matches ... cont.

\w \W a position between a Word Character and a non-Word Character (end of word within string) cont.

This can also apply when matching non-Word Characters including punctuation and symbol characters that appear

within the text of the string, even within the same word.

String = The flow#ers are in bloom

 e.g. \b#

The Match is made because the Word Boundary is between the position of the Word Character, ‘w’ of ‘flow#ers’ and

the non-Word Character, ‘#’, the Numeric Sign, of ‘flow#ers’.

The alpha character, ‘w’, is a Word Character because it falls into the class of a Word Character, \w, as defined by

[A-Za-z0-9_]. The Numeric Sign is a non-Word Character because it does not fall into the class of a Word Character

as defined by [A-Za-z0-9_].

Notes:

1. The icon used in these pages represents the Word Boundary position between characters.

Bulk Rename Utility Operations Manual Page 468 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful

It may be easier to think of it this way.

When testing for a Word Boundary, it is the position between characters that is matched, not the string character.

When testing for literal characters, the string character is matched. Let’s take as an example,

String = This island is beautiful

Match: \bis\b

 This island is beautiful

 \b

 BOL T h i s i s l a n d i s b e a u t i f u l

 BOL T

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = true = true

\b is matched.

The RegEx Engine advances to the character, the ‘T’ of ‘This’ and tests for the literal string character ‘i’ of ‘is’.

 T h i s i s l a n d i s b e a u t i f u l

T = i = false.

The RegEx Engine continues to search the string for a Word Boundary.

Notes:

1. The icon used in these pages represents the Word Boundary position between characters currently being tested.

Bulk Rename Utility Operations Manual Page 469 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

\b cannot match at the position between the T and the h.

 T h i s i s l a n d i s b e a u t i f u l

 T h

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = false = true

Doesn’t match because there is a word character to the left of the tested position.

It cannot match between the h and the i either,

 T h i s i s l a n d i s b e a u t i f u l

 h i

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = false = true

.. and neither between the i and the s.

 T h i s i s l a n d i s b e a u t i f u l

 i s

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = false = true

Bulk Rename Utility Operations Manual Page 470 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

\b does match at the position between the s and the <space> but fails when testing for the string characters.

Up to now matches have been attempted using the rule of a non-Word Character, \W, followed by a Word Character,

\w. However, the RegEx Engine also attempts to match for a Word Character, \w, followed by a non-Word

Character, \W, i.e., ‘s’ of ‘this’ and the following <space>.

 \b

 T h i s <space> i s l a n d i s b e a u t i f u l

 s <space>

 looks to the left for a Word Character position looks to the right for a non-Word Character

 = true = true

\b is matched.

The RegEx Engine advances to the <space> character following ‘this’, and tests for the literal string character ‘i’ of

‘is’.

 T h i s <space> i s l a n d i s b e a u t i f u l

<space> = i = false

The RegEx Engine continues to search the string for a Word Boundary.

Bulk Rename Utility Operations Manual Page 471 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

The Word Boundary matches between the <space> character that follows after ‘This’ and the ‘i’ of ‘island.

 \b

 T h i s <space> i s l a n d i s b e a u t i f u l

 <space> i

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = true = true

\b is matched.

The RegEx Engine advances to the character, the ‘i’ of ‘island’ and tests for the literal string characters ‘i’ and

the ‘s’ of ‘is’.

 \b i s

 T h i s <space> i s l a n d i s b e a u t i f u l

Matches.

Bulk Rename Utility Operations Manual Page 472 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

Looking to match against the final \b in the RegEx but fails to match.

 \b i s

 T h i s i s l a n d i s b e a u t i f u l

 s l

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = false = true

\b doesn’t match because there is a word character to the left of the current position.

The RegEx Engine continues to search the string for a Word Boundary.

Bulk Rename Utility Operations Manual Page 473 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

To save time, additional intermediary steps have been omitted.

The Word Boundary matches between the <space> character that follows after ‘island’ and the ‘i’ of ‘is’.

 T h i s i s l a n d <space> i s b e a u t i f u l

 <space> i

 looks to the left for a non-Word Character position looks to the right for a Word Character

 = true = true

\b is matched.

The RegEx Engine advances to the character, the ‘i’ of ‘is’ and tests for the literal string characters ‘i’ and the ‘s’ of

‘is’.

 \b i s

 T h i s i s l a n d <space> i s b e a u t i f u l

Matches.

Bulk Rename Utility Operations Manual Page 474 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

Looking to match against the final \b in the RegEx.

 \b i s \b

 T h i s i s l a n d <space> i s <space> b e a u t i f u l

 s <space>

 looks to the left for a Word Character position looks to the right for a non-Word Character

 = true = true

The Word Boundary matches between the ‘s’ of ‘is’ and the <space> character that follows after ‘is’.

Matches. RegEx satisfied.

After the match of the ‘s’, the current position is just before the <space> preceding ‘beautiful’. The last Word

Boundary begins the test at this position. It looks to the left to match against the ‘s’ that was just matched as a string

literal, as a Word Character because it belongs to the class of [A-Za-z0-9_]. It looks to the right and matches against

the <space> as a non-Word Character because it falls into the class of [^A-Za-z0-9_]. The match is complete and the

RegEx is satisfied. The search for additional matches continues, but finding none, the string exhausts.

Bulk Rename Utility Operations Manual Page 475 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

In BRU, it is represented as:

String = This island is beautiful

Match: (\bis\b)

Replace: \1

Analysis:

1. \b Word Boundary.

 Matches between <space> after ‘’island’ and ‘i’ of ‘is’.

2. is Match against string ‘is’ = true Capture Group 1 = is

3. \b Word Boundary.

 Matches between ‘s’ of ‘is’ and the <space> preceding

 ‘beautiful’.

Bulk Rename Utility Operations Manual Page 476 of 715

Metacharacters in Depth

\b A Word Boundary cont.

This island is beautiful cont.

Match: \bis\b

When it comes to debugging using the Regex Buddy program, there isn’t too much to go on:

 T h i s i s l a n d i s b e a u t i f u l

Character Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1. This first photo below shows the match of the Word Boundary between BOL and ‘T’ of This’ and subsequent

 failure when matching against the string characters, ‘is’.

2. This second photo shows the match of the Word Boundary between the <space> following ‘s’ of ‘This’ and the ‘i’

 of ‘island’ and subsequent failure of the Word Boundary test between the ‘s’ of ‘island’ and the ‘l’ of ‘island’,

 although this is not apparent in the photo, nor does it display the match of the string characters, ‘is’ of ‘island’.

 When it comes to documenting RegEx, most often, failures are not documented well or at all, only the successful

 matches. That’s where I differ in my opinion. I do attempt to document the pertinent failures as well as the

 successes so that you can see what went wrong and why.

3. This third photo shows the successful match of the Word Boundary between the <space> following ‘island’ and the

 ‘i’ of ‘is’ at step 1. Steps 2 to 3 show the match of the literal string characters, ‘is’ against the ‘is’ in the string.

 Step 4 is the final match of the Word Boundary between the ‘s’ of ‘is’ and the <space> following.

Bulk Rename Utility Operations Manual Page 477 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Now that you understand how it works, let’s see it in action.

Using Word Boundaries on either side of a word affords the opportunity to allow ‘whole word only’ searches using a

Regular Expression.

Example:

\bcat\b Looking to match against the word ‘cat’.

Matches ‘cat’ if there are non-Word Characters (including whitespace) before the ‘c’ and after the ‘t’.

Match: (\bcat\b)

Replace: \1 <space>

It will not match ‘catfish’ since an ‘f’ character follows after the ‘t’ instead of punctuation or whitespace. In

other words, ‘catfish’ is a separate word from ‘cat’. For each of the above strings, if ‘cat’ is a separate word, it

will match, otherwise, no.

String = cat o’ nine tails

Analysis:

1. \b Word Boundary.

 Matches at position between BOL and the ‘c’ of ‘cat.

2. cat Matches the literal character string of ‘cat’ Capture Group 1 = cat

3. \b Word Boundary.

 Matches at position between the ‘t’ of ‘cat’ and the <space>

 following.

String = hello kitty cat

Analysis:

1. \b Word Boundary.

 Matches at position between <space> after ‘kitty’ and the

 ‘c’ of ‘cat.

2. cat Matches the literal character string of ‘cat’ Capture Group 1 = cat

3. \b Word Boundary.

 Matches at position between the ‘t’ of ‘cat’ and EOL.

Bulk Rename Utility Operations Manual Page 478 of 715

Metacharacters in Depth

\b A Word Boundary cont.

In the string, ‘cat o’ nine tails’, used in the samples on the previous page, ‘cat’ is matched because the character that

precedes ‘cat’ is BOL. BOL is considered a non-Word Character so \b will match the position between BOL and the

‘c’ of ‘cat’, a Word Character. The second \b matches the position between the <space> after ‘cat’, a non-Word

Character, and the ‘o’, a Word Character.

In the same manner, ‘cat’ of ‘hello kitty cat’ is matched because the preceding character is a <space>, a non-Word

Character, followed by the ‘c’ of ‘cat’ matching the first \b. The second\b is matched using a different rule because

the ‘t’ of ‘cat’, a Word Character, is followed by EOL, a non-Word Character.

String = catfish

Analysis:

1. \b Word Boundary.

 Matches at position between BOL and the ‘c’ of ‘cat.

2. cat Matches the literal character string of ‘cat’ Capture Group 1 = cat

3. \b Word Boundary.

 Fails to match at position between ‘t’ of ‘cat’ and ‘f’ of ‘fish’.

RegEx Fails

Bulk Rename Utility Operations Manual Page 479 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

If I want to search out words that end with ‘sand’,

Match: (sand\b)

Replace: \1

‘Sand’ is matched in these samples where the ‘d’ of ‘sand, a Word Character,’ is followed by a <space>, a

non-Word Character, matching the \b.

Example:

If I want to search out words that begin with ‘sand’,

Match: (\bsand)

Replace: \1

‘Sand’ is matched in these samples where the ‘s’ of ‘sand, a Word Character,’ is preceded by a <space>, a

non-Word Character, matching the \b.

The ‘quick-sand’ sample is also matched because the <hyphen> is a non-Word Character. Therefore, the \b

matches the position between the ‘k’ of ‘quick-sand’ followed by the ‘-‘ of ‘quick-sand’.

Bulk Rename Utility Operations Manual Page 480 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

If I want to match against the entire word that includes ‘sand as the ending part of a word,

Match: (\w+sand\b)

Replace: \1

The string ‘quicksand’ is the only match because that is the only string that includes ‘sand’ as the ending part

of a word. The ‘quick-sand’ string is not included because the <hyphen> is considered a non-Word Character

and would therefore does not match against the \w+.

Analysis:

1. \w Word Character.

Matches against a Word Character, e.g., the ‘q’ of ‘quicksand’.

2. + Made Greedy using the ‘+’ Quantifier, it matches the subsequent Word Characters, ‘u,’ ‘i,’ ‘c’, and ‘k’,

until..

3. sand ..it encounters the ‘s’ beginning the word, ‘sand’.

The ‘s’ matches against ‘s’ in ‘sand’ in the next evaluation of the RegEx, sand. The string ‘sand’ is

matched.

4. \b Word Boundary.

After ‘sand’ is matched, it searches for a Word Boundary. Using these samples, this would include

those strings that have a <space>, a non-Word Character, followed by a Word Character.

The ‘quicksand’ sample is the only string that matches. Strings that have ‘sand’ as the beginning of the word, or by

itself will not match because there are no Word Characters that precede, thus precluding the \w+ match.

Bulk Rename Utility Operations Manual Page 481 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

If I want to match against the entire word that includes ‘sand as the beginning part of a word,

Match: (\bsand\w+)

Replace: \1

Only those samples that have ‘sand’ as the beginning part of the word followed by additional text (Word

Characters) are matched. For example, ‘sand-quick’ would not match because the <hyphen> ‘-’ is not a Word

Character and would not match against the \w+.

Analysis:

1. \b Word Boundary.

 In the samples above, matches…

2. sand But this is refined by ‘sand’ which indicates

that the only valid match of Word Boundaries

are those that are followed by the string, ‘sand’,

or to be more specific, a non-Word Character

followed by, ‘s’ of ‘sand’, a Word Character. In

the sample group, those strings that qualify

have a <space> or other non-Word Character

preceding ‘sand’, <hyphen> included.

3. \w This is further refined by the inclusion of the \w.

This limits the match to only those strings that have

a <space> preceding ‘sand’ followed by a Word

Character. This precludes any strings that have

‘sand’ isolated and disallows the <hyphen>

previously matched.

4. + Make it Greedy.

 Include all Word Characters that follow for the

samples that were matched in step 3.

Bulk Rename Utility Operations Manual Page 482 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

Match: (\bcat)

Replace: \1 <space>

Searches out any words that have a non-Word Character before the ‘c’ followed by an ‘a’ and ‘t’. In the

samples, all strings that have the word, ‘cat’, preceded by BOL or have a preceding <space> character, are

matched. The string, ‘bobcat’ is not matched because there is a Word Character, ‘b’ (as in ‘bob’), before the

Word Character, ‘c’.

Example:

String = uunet#ia

Match: (\b#)

Replace: \1

In this example I will provide a little more insight into what the RegEx Engine is doing when it matches using Word

Boundaries.

1. \b Matches:

2. # Matches:

In step 1, potential matches include the position before BOL, the position preceding EOL, as well as those positions

both before and after the Numeric Sign, ‘#’.

In step 2, by the addition of the ‘#’, the match in step1 becomes limited to only a Word Character followed by a

non-Word Character, the Numeric Sign, ‘#’. This matches the position between the ‘t’ and the ‘#’ to satisfy the \b in

step 1 and the match of the literal string character, the Numeric Sign, ‘#’, satisfies step 2.

Additional photos from regex101.com

Bulk Rename Utility Operations Manual Page 483 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

String = uunet#ia cont.

Match: (\b#)

The Word Boundary searches to match using the rules:

^\w Position preceding Beginning of String followed by a Word Character

\w$ Position following End of String preceded by a Word Character

\W \w Position between a non-Word Character followed by a Word Character

\w \W Position between a Word Character followed by a non-Word Character

The RegEx Engine first matches at the position between BOL, and the first ‘u’ of ‘uunet#ia’. It next tests for the ‘#’

character. Failing that, it moves forward and matches the \b at the position between the ‘t’ of ‘uunet#ia’ and the ‘#’

character. The ‘t’ is a Word Character because it falls into the class defined as [A-Za-z0-9_] . The ‘#’ is a non-Word

Character because it falls into the negated class defined as [^A-Za-z0-9_].

Thereby, there is a valid match of the Word Boundary because it adheres to the rule of a Word Character followed by

a non-Word Character.

The RegEx moves to the next character position, the ‘#’, to test for the string character, the Numeric Sign, ‘#’ and this

also matches, satisfying the RegEx expression.

Remember what I said earlier when discussing perspective about how the RegEx Engine examines the character both

preceding and following that of the current position? It has to physically move to those positions to accomplish this.

The result of which is a constant back and forth movement as each character is tested.

Bulk Rename Utility Operations Manual Page 484 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

String = uunet#ia cont.

Match: (\b#)

This back and forth of testing can be represented as:

 Matches \b at the position between BOL and the first ‘u’,

but fails to match against the string character, the

Numeric Sign, ‘#’:

 ‘#’ = ‘u’ = false

\b A Word Boundary cont.

 The expression is repeated and tested against each

character that makes up the string. Only character position

5 will have a successful match. Character position 5 is the

‘#’ in the string,

 u u n e t # i a

 0 1 2 3 4 5 6 7

The photo also illustrates in the match attempts at character 7 and 8 respectively, how even after the successful match

of the string character, the Numeric Sign, ‘#’, the RegEx Engine continues to search for any additional matches until

EOL or the string is exhausted, whichever comes first.

Bulk Rename Utility Operations Manual Page 485 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

String = uunet#ia cont.

Match: (\b#)

Examining the match more closely –

BOL _ u _ u _ n _ e _ t _ # _ i _ a _ EOL

 0 1 2 3 4 5 6 7

1. Test each character against \b.

2. Matches at position between BOL and ‘u’.

3. Test next character position for ‘#’ = ‘u’ = false.

Move through remainder of string, test for \b.

BOL _ u _ u _ n _ e _ t _ # _ i _ a _ EOL

 0 1 2 3 4 5 6 7

4. Matches at position between ‘t’ and ‘#’.

5. Test next character position for ‘#’ = True.

Bulk Rename Utility Operations Manual Page 486 of 715

Metacharacters in Depth

\b A Word Boundary cont.

That’s fine if the RegEx Engine is testing moving forward in the string, but what happens if it is Backtracking?

Example:

String = uunet#ia

I will determine if there is any difference in matching against the Word Boundary:

 According to this, it matches the entire string using (.*), then backtracks to match the

\b to the position between the ‘a’ and EOL.

Adding the string character to match against results in:

 No difference. The \b is still matched to the position between the ‘t’ and the ‘#’. The

string character, ‘#’, is also matched in the same manner as before.

In BRU, this can be seen as:

Match: (.*)(\b#)

Replace: Group 1 = \1 Group 2 = \2

1. .* Matches to EOL. Capture Group 1 = <entire string>

2. \b Match against Word Boundary.

 Current position = EOL, so it Backtracks.

 Matches position between the ‘t’ and the ‘#’.

3. # Match against string character, ‘#’. Capture Group 2 = #

 Changes Capture Group 1 = uunet

This is a simplified analysis. The RegEx Engine as previously mentioned, is testing each position and character

against the expression, matching at EOL as well as the ‘#’ character for the \b. I prefer in both volumes to illustrate

only the pertinent data and leave out much of the intermediary steps.

Bulk Rename Utility Operations Manual Page 487 of 715

Metacharacters in Depth

\b A Word Boundary cont.

That’s fine if the RegEx Engine is testing moving forward in the string, but what happens if it is Backtracking? cont.

Example:

String = uunet#ia cont.

Match: (.*)(\b#)

Here is the Debug output from Regex Buddy program:

.*

\b

Conclusion:

Moving forward or Backtracking has no effect on how the matches are conducted. The only difference is that in

Backtracking, Capture Group 1 captures the entire string and later gives up characters to account for Capture Group

2’s capture of the ‘#’.

Bulk Rename Utility Operations Manual Page 488 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Word Boundaries are not just applicable to alpha characters, but numeric digits as well.

I’ll change this around so that the character string is not a non-Word Character, but a Word Character, the numeric

digit, ‘6’. Remember that Word Characters consist of a class, [A-Za-z0-9_], so numeric digits fall into this class under

the range, 0-9.

Example:

String = uunet 6ia

Match: (\b6)

Replace: \1

Analysis:

1. \b Match against Word Boundary.

 Matches between the <space> after ‘uunet’, as a

non-Word Character and the ‘6’ of ‘6ia’ as a Word

Character.

2. 6 Evaluates next character position for the numeric

digit, ‘6’. = true. RegEx Satisfied.

On to more complex examples.

Bulk Rename Utility Operations Manual Page 489 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

The following provide a range of numbers to match against.

\b[1-9][0-9]{3}\b

let’s break it down to determine the range:

lowest value

match the [1-9] = n lowest number is 1 (1 numeric place)

match the [0-9] 3 times = nnn lowest number is 000 (3 numeric places)

therefore, the lowest value is nnnn = 1000 (4 numeric places)

 (n + nnn)

 1 + 000

highest value

match the [1-9] = n highest number is 9 (1 numeric place)

match the [0-9] 3 times = nnn highest number is 999 (3 numeric places)

therefore, the highest value is nnnn = 9999 (4 numeric places)

 (n + nnn)

 9 + 999

so, the above would match a number between 1000 and 9999

Match: (\b[1-9][0-9]{3}\b)

Replace: \1

Those strings that do not match are because there are not enough numeric places in the value.

For example, ‘564’ value is three numeric places. The Regex calls for one specified by [1-9] and three specified by

[0-9]{3}. This means that in order to match, there must be exactly four decimal places in the value.

This Section sources include stackoverflow.com

Bulk Rename Utility Operations Manual Page 490 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Analysis:

String = Belvedere Plantation 6512.jpg

Match: (\b[1-9][0-9]{3}\b)

I won’t bother analyzing the failed intermediary attempts against BOL and the <space> after ‘Belvedere’. I rarely do

that anyway. And when I did, it was to show you how I believe the RegEx Engine works. My analysis is in no way a

complete representation of the process. Much of the time, only pertinent steps that indicate changed values are

presented and this is only my interpretation of the events.

1. \b Match against Word Boundary.

 Matches between the ‘n’ of ‘Plantation’ and the following <space>.

2. [1-9] Match against a class consisting of numeric digits, Capture Group 1 = 6

 1-9 = ‘6’

3. [0-9] Match against a class consisting of numeric digits, Capture Group 1 = 65

 0-9 = ‘5’

4. {3} Repeat last sub-expression three iterations Capture Group 1 = 6512

 (two more additional iterations) = ‘12’

5. \b Match against Word Boundary.

 Matches between the ‘2’ of ‘6512’ and EOL.

Notes:

1. The reason I tend to repeat certain information is to drive home those concepts I feel may help you to better

 understand this material.

Bulk Rename Utility Operations Manual Page 491 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

The following provide a range of numbers to match against.

\b[1-9][0-9]{2,4}\b

Break it down to determine the range:

lowest value

match the [1-9] = n lowest number is 1 (1 numeric place)

match the [0-9] for a minimum 2 times = nn lowest number is 00 (2 numeric places)

therefore, the lowest value is nnn = 100 (3 numeric places)

 (n + nn)

 1 + 00

highest value

match the [1-9] = n highest number is 9 (1 numeric place)

match the [0-9] for a maximum 4 times = nnnn highest number is 9999 (4 numeric places)

therefore, the highest value is nnnnn = 99999 (5 numeric places)

 (n + nnnn)

 9 + 9999

 so, the above would match a number between 100 and 99999

Match: (\b[1-9][0-9]{2,4}\b)

Replace: \1

Those strings that do not match are because there are not enough numeric places in the value.

For example, the ‘12’ value is two numeric places. The Regex calls for one specified by [1-9] and a minimum of 2

and a maximum of four specified by [0-9]{2,4}. This means that in order to match, there must be at least three but

less than six decimal places in the value.

Bulk Rename Utility Operations Manual Page 492 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Analysis:

String = Belvedere Plantation 650.jpg

Match: (\b[1-9][0-9]{2,4}\b)

I won’t bother analyzing the failed matches against BOL, and the <space> after ‘Belvedere’.

1. \b Match against Word Boundary.

 Matches between the ‘n’ of ‘Plantation’ and the following <space>.

2. [1-9] Match against a class consisting of numeric digits, Capture Group 1 = 6

 1-9 = ‘6’

3. [0-9] Match against a class consisting of numeric digits, Capture Group 1 = 65

 0-9 = ‘5’

4. {2,4} Repeat last sub-expression between 2 and 4 iterations.

(one minimum, 3 maximum additional iterations) = 0 Capture Group 1 = 650

5. \b Match against Word Boundary.

 Matches between the ‘0’ of ‘650’ and EOL.

This Section sources include stackoverflow.com

Bulk Rename Utility Operations Manual Page 493 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

 \b[A-Z0-9]+\b matches first set of numbers, ‘1987894’ in string…

String = This is a 1987894, 3219800, 234567, 345261. test.jpg

Match: (\b[A-Z0-9]+\b)

Replace: \1

Question:

Using the sub-expression of [A-Z0-9]+, why isn’t the word, ‘This’ matched? Why does the first match not take place

until the first numeric sequence?

The answer is simple when you notice the class consists of UPPERcase letters and Numeric Digits. Following this is

the Greedy Quantifier, ‘+’. It is this that will match against EITHER a word, as defined by the surrounding Word

Boundaries, \b<text>\b, made up of all capital letters, OR a word that begins and ends with a numeric digit; a numeric

sequence.

In the sample string, there are no words that are made up of all capital letters. In the first photo, you will notice that

the position between BOL and the ‘T’ (it appears as an ‘I” because of the underline) of ‘This’ satisfies the first Word

Boundary match. The character position, ‘T’ is tested against the class of [A-Z0-9] and matches because it is an

uppercase letter, falling into the class [A-Z], but fails to match the next character position, ‘h’, because it is a

lowercase letter and does not fall into either class of [A-Z] or [0-9]. The ‘h’ is tested because the class is made greedy

by the adjoining ‘+’ Quantifier.

Could the next character have been a numeric digit and match? In other words, could the sample have matched on a

word made up of alpha-numeric characters, e.g. N1WT3J? Yes. That would have matched because the match only has

to be a character that falls within the class defined as either uppercase letters or numeric digits. The only other

requirement is that the surrounding Word Boundaries will only permit a match if the word has both a preceding and

following non-Word Character.

The first Word Boundary matches at the position between the <space> and the ‘1’ beginning the numeric sequence of

‘1987894’. It continues to match the numeric digits, ‘1’, ‘9’, ‘8’, ‘7’, ‘8’, ‘9’, and ‘4’ that fall into the class, [0-9],

made Greedy by the ‘+’ Quantifier. The RegEx is satisfied when the second Word Boundary matches between the ‘4’

of ‘1987894’ and the <space> following. Although the RegEx will continue to match all of the numeric sequences,

under PRE v1, only the first numeric sequence is retained in BRU. New Name returns, ‘1987894’.

Bulk Rename Utility Operations Manual Page 494 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

This next example is a variation on the previous. This RegEx takes in consideration the repeated ‘comma <space>’

between each numeric sequence and limits the captures to 4 groups of the five numeric sequences available..

String = This is a 1987894, 3219800, 234567, 345261, 895645. test.jpg

Match: (\b[A-Z0-9]+\b)(,)(\b[A-Z0-9]+\b)(,)(\b[A-Z0-9]+\b)(,)(\b[A-Z0-9]+\b)

Replace: \1 \3 \5 \7

Where:

\1 = 1987894 \2 = , <space> \3 = 3219800 \4 = , <space> \5 = 234567 \6 = , <space> \7 = 345261

Breaks down:

(\b[A-Z0-9]+\b) ………………………………….. 1987894 Sequence #1

(,) …………………………………... , <space>

(\b[A-Z0-9]+\b) …………………………………... 3219800 Sequence #2

(,) …………………………………… , <space>

(\b[A-Z0-9]+\b) …………………………………… 234567 Sequence #3

(,) ……………………………………. , <space>

(\b[A-Z0-9]+\b) ……………………………………. 345261 Sequence #4

Nothing but repetition when you see it broken down. It is using the same RegEx as before, with the addition of

capturing the ‘comma<space>’.

The fifth numeric sequence, ‘895645’ in the string is ignored because there is not a capture group that exists in the

RegEx that can capture the sequence. This would require two more Capture Groups for the maximum of 9 allowed. If

you wanted fewer Capture Groups, a simple redo would remove the Capture Groups from the ‘comma<space>’,

reducing the maximum used to 5.

Bulk Rename Utility Operations Manual Page 495 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Example:

Expounding on this, I can select to capture the first numeric sequence that ends with a ‘comma<space>’ or the last:

String = This is a 1987894, 3219800, 234567, 345261, 895645. test.jpg

Match: (\b[A-Z0-9]+(,)\b)

Replace: \1

Captures the first numeric sequence that ends with a ‘comma <space>’ combination.

Quick Analysis:

Same as before, it matches against the first numeric sequence isolated from the other words through the inclusion of

the surrounding Word Boundaries on either side. However, after this, it must match against both the comma and the

<space> in Capture Group 2 ‘nested’ within Capture Group 1.

 C a p t u r e G r o u p 1

 Capture Group 2

 (\b [A-Z 0-9] + (, <space>) \b)

 1987894 ,<space>

 1987894,<space>

Bulk Rename Utility Operations Manual Page 496 of 715

Metacharacters in Depth

\b A Word Boundary cont.

Match: (\b[A-Z0-9]+(,)\b)+

Replace: \1

Captures the last numeric sequence that ends with a ‘comma <space>’ combination. It does this by the addition of the

Greedy Quantifier, ‘+’ placed outside of the expression making the entire expression repeat throughout the string

until the string is exhausted or EOL whichever comes first. In this example, it matches against the last numeric

sequence that ends with the ‘comma <space>’. The numeric sequence, ‘895645’ is not matched because it doesn’t end

with a ‘comma <space>’. String is exhausted. RegEx satisfied.

There you have it.

I hope I have explained a rather difficult topic in the most logical and simple terms.

Notes:

1. The \b is considered (in some of my research) an anchor similar to the $ and the ^ because it matches at a position

 called a ‘Word Boundary’, rather than a character.

2. Word Boundaries are probably the best way to do a simple search in a search and replace operation

Example:

\bCapella\b ….matches

 Bohdan Warchal; Capella Istropolitana- Water Music Suite No- 1 for orchestra in F major, HWV 348 Minuet 1.mp3

3. \b as demonstrated with the ‘#’ series of examples, can be used to capture some punctuation.

4. Word Boundaries are Zero-Length Assertions that do not capture but only ‘assert’ that a match can be made. It is

 the other sub-expressions of the RegEx that must do the work of matching and capturing for the expression to be

 successfully evaluated.

Bulk Rename Utility Operations Manual Page 497 of 715

Metacharacters in Depth

\B A non-Word Boundary

\B is the negated version of the Word Boundary, \b. \B matches at every position where \b does not. Effectively, \B

matches at any position between two word characters as well as at any position between two non-word characters.

\B is considered (in some of my research) an Anchor Metacharacter and is a Zero Length Assertion handled in the

same manner as \b during evaluation. It can also match against punctuation, #,$,!, etc., as long as the character

following is not a Word Character.

Quick Review:

Word Characters:

A word is made up of Word Characters. A Word Character is an alpha numeric character that also includes the

underscore character. If you recall the discussion on \w, the Word Metacharacter, it includes the class of

[A-Za-z0-9_].

Whitespace:

Whitespace is defined as <space> characters. Whitespace are non-Word Characters.

non-Word Characters:

non-Word Characters include Whitespace, EOL, BOL, and any characters that are part of the negated class,

[^A-Za-z0-9_], e.g., punctuation marks, symbols, #, $, !, etc.

If you haven’t already, please also review the Word Boundary section because this will explain in detail about the

positioning between characters, etc. Information found there is applicable to this section, much of which is not

repeated herein, and this will help you to comprehend the following text.

A non-Word Boundary, \B, is matched if it occurs…

➢ after a string of text, test\B

➢ on either side of a string of text, \Btab\B

➢ Between punctuation and other non-Word Characters, \B.\B

Bulk Rename Utility Operations Manual Page 498 of 715

Metacharacters in Depth

\B A non-Word Boundary

The Rules:

\w \w a position between two Word Characters (A character, or substring within a word)

String = catacomb

Match:. (\Bcom)

Replace: \1

The non-Word Boundary matches between the position of the second occurrence of the Word Character, ‘a’ and the

second occurrence of the Word Character, ‘c’ of ‘catacomb’.

Notes:

1. The icon used in these pages represents the non-Word Boundary position between characters.

2. Word Boundaries and non-Word Boundaries are not well documented in Regex Buddy except for acknowledging

 the match by ‘ok’.

Bulk Rename Utility Operations Manual Page 499 of 715

Metacharacters in Depth

\B A non-Word Boundary cont.

The Rules:

\W \W a position between two non-Word Characters

String = This is a ‘test’

Match:. (\B'test')

Replace: \1

The non-Word Boundary matches between the position of the non-Word Character, <space>, following ‘a’, and the

first occurrence of the single quotation non-Word Character of ‘ ‘test’ ’.

Notes:

1. The icon used in these pages represents the non-Word Boundary position between characters.

2. Word Boundaries and non-Word Boundaries are not well documented in Regex Buddy except for acknowledging

 the match by ‘ok’.

Bulk Rename Utility Operations Manual Page 500 of 715

Metacharacters in Depth

\B A non-Word Boundary cont.

The Rules:

\W \W a position between two non-Word Characters cont.

In the same manner I can match at the position between the single quotation and the EOL.

String = This is a ‘test’

Match:. ('test'\B)

Replace: \1

The non-Word Boundary matches between the position of the last occurrence of the single quotation non-Word

Character of ‘ ‘test’ ’ and the non-Word Character, EOL.

Notes:

1. Word Boundaries and non-Word Boundaries are not well documented in Regex Buddy except for acknowledging

 the match by ‘ok’.

Bulk Rename Utility Operations Manual Page 501 of 715

Metacharacters in Depth

\B A non-Word Boundary cont.

More Examples:

Samples –

Jim has a test morning

Giving testimony today

Charlie says Midtesting will take place

The evidence will be used to establish guilt or innocence

This will match any string of text that includes ‘est’.

Match: (\Best)

Replace: \1

String = Giving testimony today

1. \B non-Word Character.

 Matches the position between a Word Character

 and another Word Character in the

sample string.

In the photo to the right, this will match the positions between all of the characters (violet parallel lines) that make up

the words in the sample string with the exceptions of the first and last character of each word because the BOL and

EOL and <space> characters are all non-Word Characters that are either followed or preceded by a Word Character.

2. est Match against the string, ‘est’. Capture Group 1 = est

The RegEx Engine moves forward through the string testing for the non-Word Boundary followed by ‘est. This

matches at ‘est’ of ‘testimony’. The \B matches at the position between the first occurrence of the ‘t’ of ‘testimony’

and the following ‘e’.

Bulk Rename Utility Operations Manual Page 502 of 715

Metacharacters in Depth

\B A non-Word Boundary cont.

More Examples:

➢ after a string of text, test\B

Samples –

Jim has a test morning

Giving testimony today

Charlie says Midtesting will take place

The evidence will be used to establish guilt or innocence

This will match only if ‘test’ has text immediately following. ‘test’ cannot be at the end of a word.

Match: (test\B)

Replace: \1

String = Giving testimony today

1. test Match against string, ‘test’. Capture Group 1 = test

 Matches the ‘test’ of ‘testimony’.

2. \B non-Word Character.

 Matches the position between a Word Character

 and another Word Character in the sample string.

After matching ‘test’, it evaluates for the non-Word Character either followed and preceded by a Word Character. The

\B matches at the position between the second occurrence of ‘t’ of ‘testimony’ and the following ‘i’.

Bulk Rename Utility Operations Manual Page 503 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

➢ on either side of a string of text, \Btab\B

Samples –

The evidence will be used to establish guilt or innocence

Does anyone drink tab anymore

Must tabulate the results

This will match only if the string of text falls within a larger string of text.

Match: (\Btab\B)

Replace: \1

String = The evidence will be used to establish guilt or innocence

1. \B non-Word Character.

 Matches the position between a Word Character

 and another Word Character in the sample string.

This will match the positions between all of the characters that make up the words in the sample string with the

exceptions of the first and last character of each word because the BOL and EOL and <space> characters are all non-

Word Characters that are either followed or preceded by a Word Character.

2. tab Match against the string, ‘tab’. Capture Group 1 = tab

The RegEx Engine moves forward through the string testing for the non-Word Boundary followed by ‘tab. This

matches at ‘tab’ of ‘establish’. The \B matches at the position between the first occurrence of the ‘s’ of ‘establish’ and

the following ‘t’.

3. \B non-Word Character.

 Matches the position between a Word Character

 and another Word Character in the sample string.

In order to match, there must be a successive non-Word Character after the match of ‘tab’. The string, ‘tab’ must be a

substring within another word and not at the start or end of a word. The \B matches at the position betweeen the ‘b’ of

‘establish’ and the following ‘l’.

Bulk Rename Utility Operations Manual Page 504 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

➢ on either side of a string of text, \Btab\B

Match: (\Btab\B)

Replace: \1

String = The evidence will be used to establish guilt or innocence

The first \B matches at the position between

the first occurrence of the ‘s’ of ‘establish’

and the following ‘t’.

The string, ‘tab’ matches at the ‘tab’ substring

within the word, ‘establish’.

The second The \B matches at the position

between the ‘b’ of ‘establish’ and the

following ‘l’.

Bulk Rename Utility Operations Manual Page 505 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

➢ Between punctuation and other non-Word Characters, \B.\B

This will match only if the non-Word Character is preceded or followed by another non-Word Character. non-Word

Characters fall within the negated class of [^A-Za-z_]. This includes punctuation, like the literal dot character above

representing a period, EOL (End of Line or $), BOL (Beginning of Line or ^), symbols, etc., and whitespace including

the <space> character.

Examples:

\B<space>

Placing a <space> before the start of the string will match the position between BOL and the <space>. The same

cannot be said for placing a <space> at the end of a string even though EOL is a non-Word Character, excess trailing

<spaces> are (truncated) ignored in BRU. This will work, however, inside of programs like Regex Buddy because

these programs are meant for multi-line text and not just single filenames or folder names.

Multiple <space> characters will also match:

 !\B

This will match at EOL.

Now that you have the hang of it, here are some more:

\B# \B’ !\B (secondary match in blue) \B!\B

<space>\B

These won’t match. Can you tell me why?

\B#\B \B<space>\B #\B

Bulk Rename Utility Operations Manual Page 506 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

➢ Between punctuation and other non-Word Characters, \B.\B

More Examples:

String = This is a Wow! you are test

Match: (.*)(!\B)

Replace: Group 1 = \1 Group 2 = \2

1. .* Matches to EOL. Capture Group 1 = <entire string>

2. ! Match against the literal character, ‘!’ Capture Group 2 = !

 Already at EOL, so it Backtracks to Changes Capture Group 1 = This is a Wow

 match.

3. \B Match against non-Word Character.

What immediately follows the match of the ‘!’ must be a non-Word Character. Matches at the position between the ‘!’

of ‘Wow!’ and the <space> that follows.

Looks like this:

 \B

 This is a Wow ! <space> you are test

Bulk Rename Utility Operations Manual Page 507 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

More Examples: cont.

String = This is a Wow! you are test

Match: (.*)(!\B)

The \B matches at the position between the ‘!’ of ‘Wow!’ and the <space> that follows.

Bulk Rename Utility Operations Manual Page 508 of 715

Metacharacters in Depth

\B non-Word Boundary cont.

➢ Between punctuation and other non-Word Characters, \B.\B

More Examples:

Simplified string = is a Wow! r

Match: (.*)(\B!)

Replace: Group 1 = \1 Group 2 = \2

This won’t match because the pattern is now \B followed by the exclamation point. This requires that a non-Word

Character precede the exclamation point. It doesn’t. The Word Character, ‘w’ of ‘Wow’ precedes.

Bulk Rename Utility Operations Manual Page 509 of 715

Metacharacters in Depth

Quantifiers

Before I begin.

This section may be especially difficult to understand the RegEx components, e.g., a, b, c, from the string characters,

e.g., a, b, c, because in many cases, they are the same or similar characters. To help differentiate between them, I have

the string characters and any matched values in bold light blue. I did not bother with this in the analysis sections

because the meaning of the two is not as confused. I did, however, apply this to any commentary.

Bulk Rename Utility Operations Manual Page 510 of 715

Metacharacters in Depth

Quantifiers cont.

A quantifier specifies how many instances of the previous character or Metacharacter must be present for the match to

be successful.

* Match the previous character, expression or metacharacter zero or more times

 (As many repetitions as needed - Greedy)

 Examples:

1) a* matches ab:

Match: (a*)

Replace: %1 <space>

ab

2) a* matches aaab:

Match: (a*)

 Replace: %1 <space>

aaab

3) a* matches: baaa. Zero Length Match returns a null value

Match: (a*)

 Replace: %1 <space>

The first character is not a match to the a but the Greedy Quantifier makes the match to the beginning of the

string where there is no value resulting in what is called a Zero Length Match.

Zero Length Match returns a null or empty value of “” and because the Replace String specifies a <space>

literal character, New Name displays with the <space> character only, otherwise New Name would reflect no

change:

Bulk Rename Utility Operations Manual Page 511 of 715

Metacharacters in Depth

Quantifiers cont.

This will require some explanation.

A Zero Length Match, e.g., Zero Occurrence Match, is where the match is made, but there is no value or the value is

empty, resulting in the length of the match as zero,. Examples of a Zero Length Match include matching at EOL or

BOL, or matching at positions between characters in the case of a Word Boundary.

A Word Boundary is a Zero Length Assertion where the matched value is not retained anyway.

A Zero Occurrence Match, as some refer to it, is typically when a previous value of the match is given up but not

Invalidated, so the match exists with no value. An Invalidated match on the other hand, woud be as if the match were

never made, e.g., using an ‘Optional’ or Lazy Quantifier, ‘ ? ’.

If the Global Switch was used, there would be three matches in this example.

* Using the Greedy Quantifier in this manner will always match against the beginning and end of string.

aaa The a in the Match String will initially match against the first a in the sample string, but when made Greedy

 by the *, will capture any and all other a characters in the sample string.

These matches can be expressed as:

Zero Length Matches

Bulk Rename Utility Operations Manual Page 512 of 715

Metacharacters in Depth

Quantifiers cont.

 Examples:

5) abc.*123 matches: abcAnything123

This requires a discussion concerning .*

Typically the * Greedy Quantifier is used most often in combination with the dot Metacharacter. The dot

Metacharacter, if you recall, can match against any single character. By adding the Greedy Quantifier, it will match

against all characters from the matched character of the dot to the end of the string.

Used as:

Match: (.*)

Will match against the entire string. This moves the RegEx Engine to the end of the string. The purpose of doing this

may be to capture any remaining portion of the string after previous matches by other sub-expressions:

String = This is quicksand more text

Match: (This <space>)(.*)

Replace: Group 1 = \1 Group 2 = \2

Another method is after matching to capture the entire string, any sub-expression that follows will cause the RegEx

Engine to backtrack in an attempt to satisfy the RegEx. If a successful match is made, that value is removed from the

previous capture. This is referred to as giving up or giving back characters of the match. Myself, I like to also refer to

it as re-evaluating the match, in order to simplify the explanation for new learners.

String = This is quicksand more text

Match: (.*)(text)

Replace: Group 1 = \1 Group 2 = \2

1. .* matches entire string Capture Group 1 = This is quicksand more text

2. text Already at EOL, so RegEx Engine Capture Group 2 = text

 backtracks (moves backwards) to Changes Capture Group 1 =

 match against ‘text’. Because ‘text’ was This is quicksand more <space>

 part of the first capture, those characters

 are removed from Capture Group 1.

Bulk Rename Utility Operations Manual Page 513 of 715

Metacharacters in Depth

Quantifiers cont.

With this in mind, the example –

Match: (abc.*123)

Replace: %1 <space>

Analysis:

1. abc Matches against the string characters in the sample string. Capture Group 1 = abc

2. . Matches against any character. Capture Group 1 = abcA

 Matches against the ‘A’ of “Anything’

3. * Make it Greedy. Capture Group 1 =

 abcAnything123

4. 123 Match against the string characters, ‘123’. Capture Group 1 = Unchanged

 Already at EOL, so RegEx Engine backtracks to match

 against the ‘123’.

Notes:

1. Although Capture Group 1 already contained the entire string value, in order to match against the 123 in step 4, it

 had to backtrack. If this match had been captured in a second Capture Group, then the characters of 123 in Capture

 Group 1 would have been given back. Because it was the same Capture Group, the value remained the same.

2. The <space> is a descriptive reference to an actual space character in the Match String. You would enter it using

 the space bar on your keyboard and not the characters of ‘<’, ‘space’, and ‘>’

3. I will tend to repeat those topics I wish to emphasize based on their importance. That is why you may find several

 passsages where I explained Zero Occurrence Matches, for example. This term is just something I came across that

 really is just a better explanation for a type of Zero Length Match.

Bulk Rename Utility Operations Manual Page 514 of 715

Metacharacters in Depth

Quantifiers cont.

 Examples:

6) abc.*123 matches: abc123

 Match: (abc.*123)

Replace: \1 <space>

7) ho*p matches hp, hop and hoop

 Match: (ho*p)

 Replace: \1 <space>

Analysis:

1. h Matches to the ‘h’ at the beginning of the string Capture Group 1 = h

2. o The ‘o’ fails to match.

 Tests p = o = false Despite this …

3. * .. the Greedy Quantifier will continue to match until ….

4. p .. Matches against the ‘p’. Capture Group 1 = hp

Because of the Quantifier, although the o was not matched, the Greedy Quantifier did match, and if there were

additional characters in the string, which there were not, would continue matching until the EOL or another

subexpression. In example #5, it captured until the EOL and then had to backtrack in order to match the sub-

expression, but in this example, there was no backtracking. The RegEx engine just moved forward and matched

against the p.

You can see this clearly here:

This is because the Greedy Quantifier in the fifth example was Quantifying the dot character that matches against any

character. This took the RegEx Engine to the end of the string before it even got to the sub-expression of 123. But in

this example it does not. It matches the h, and then moves forward only until it can satisfy the match against the p. In

order to match, there has to be p following the h. That is why hp matches even though there is no o to match against.

Bulk Rename Utility Operations Manual Page 515 of 715

Metacharacters in Depth

Quantifiers cont.

 Examples:

7) ‘(.*)’ matches ‘def’, ‘ghi’ in string, abc ‘def’ ‘ghi’ jkl

 Match: ('def' 'ghi')

 Replace: \1 <space>

Punctuation is part of the literal characters that must be matched against in order to satisfy the RegEx.

Analysis:

1. ‘def’ Matches against string characters of ‘def’ in the sample Capture Group 1 = ‘def’

string, ignoring the ‘abc’.

2. <space> Matches against the <space> character that follows after ‘def’. Capture Group 1 = ‘def’ <space>

3. ‘ghi’ Matches against string characters of ‘ghi’ in the sample string. Capture Group 1 = ‘def’ ‘ghi’

4. Continues to search for additional matches until the string is

exhausted or EOL whichever comes first.

Notes:

1. Punctuation counts. In Microsoft Word, different ASCII characters are used for the apostrophe characters. If you

 notice the little loop on the apostrophe is different for the left and right side. ‘ ’ In most editors, the apostrophe

 character is not different and doesn’t have the loops. It is not the same ASCII value. If I were to copy and paste this

 into Regex101.com, it would not match:

 Doesn’t match: Matches:

 Different single apostrophe characters Same single apostrophe characters

 Remember this when copying and pasting some of the examples from this volume or from Volume II. If something

 doesn’t work, and it most likely should, this may be the cause.

2. Be aware that there are <space> characters both before and after each grouping of text. This may not be noticeable.

3. Not really ignoring the abc. Just easier to think of it that way. The RegEx Engine is testing each and every

 character against the expression. abc doesn’t match, so it moves forward continually searching for a match.

Bulk Rename Utility Operations Manual Page 516 of 715

Metacharacters in Depth

Quantifiers cont.

+ Matches the previous character, expression or metacharacter one or more times

 (As many repetitions as needed - Greedy)

The ‘ + ’ is no less Greedy a Quantifier than the ‘ * ’, but instead of matching zero or more times, there has to be at

least one match to be successful using the ‘ + ’ Quantifier.

Example:

1) a+ matches the strings ab and aaab. In fact it will match against any string that contains one or

more lowercase a’s including those found within words.

 Match: (a+)

 Replace: \1 <space>

String = baaa

Match: (a+)

Replace: \1 <space>

Analysis:

1. a Match against literal lowercase ‘a’. Capture Group1 = a

Will continually move through the string searching for

a match of the lowercase ‘a’. If found it will then match

against the Quantifier, +, which will capture any

additional consecutive lowercase ‘a’s.

Matches against the lowercase ‘a’ of ‘baaa’.

2. + Make it Greedy. Capture Group 1= aaa

 Matches against the ‘aaa’ of ‘baaa’

Bulk Rename Utility Operations Manual Page 517 of 715

Metacharacters in Depth

Quantifiers cont.

String = eeeAiiZuuuuAoooZeeee

Match: (a*)

Replace: \1 <space>

Analysis:

1. a Match against literal lowercase ‘a’.

 Will continually test each character searching to match

 against the ‘a’, but this string does not contain any lowercase

 ‘a’ string characters so it will fail at each test.

2. * Make it Greedy. Capture Group 1 = null

 By adding the Greedy Quantifier to the ‘a’ sub-expression, it

 means to match the ‘a’ zero or more times. When the test for

 the lowercase ‘a’ fails, the zero repetition of the Quantifier

 matches, but because there is no lowercase ‘a’, it captures a

 null value resulting in a Zero Occurrence Match with a length

 of zero. This will evaluate the same for each character in the etc.

 string.

Because of the Replace String that includes the literal <space> character, the resulting New Name will be the <space>

along with any extension associated with the sample filename, for each string that does not contain a lowercase a as

the first character of the string or for any string that does not contain a lowercase a in its entirety.

For samples, e.g., baaa or is this all there is or more, this is the same result of example #3 under the discussion of

the ‘ * ’ Quantifier where a Zero Occurrence Match results when the first character of the string, the b of baaa or the i

of is, does not match against the sub-expression. In both of these examples it is the lowercase a.

Bulk Rename Utility Operations Manual Page 518 of 715

Metacharacters in Depth

Quantifiers cont.

Example:

 2) ho+p matches hop, and hoop, but not hp

 Match: (ho+p)

 Replace: \1 <space>

String = hoop

Analysis:

1. ho Match against the literal string characters, ‘ho’. Capture Group 1 = ho

 Matches gainst the ‘ho’ of ‘hoop’.

2. + Make it Greedy. Capture Group 1 = hoo

3. p Match against literal string character, ‘p’. Capture Group 1 = hoop

 Matches against the ‘p’ of ‘hoop’.

The difference between (ho*p) and (ho+p) is that using the ‘ * ’ Quantifier, it would have matched the entire string in

step 2 (zero or more) and have to backtrack in order to match against the p in step 3. The ‘ + ’ will only match

multiple consecutive occurrences (one or more) of the specified sub-expression, o.

If, for example, the string had been:

The initial ho was matched but not the second occurrence of ho (unless the global switch was used under v2), or even

the second occurrence of the o that would have been evaluated in step 2, because it is not consecutive.

String = hp

1. h Match against the literal string character, ‘h’. Capture Group 1 = h

 Matches against the ‘h’ of ‘hp’.

2. o Match against the literal string character, o’.

 p = o = false.

3. + Make it Greedy.

 EOL reached. No Matches, String Exhausted.

 Fails.

Think of it this way. Using ‘ * ’, all characters are matched and not just the specified sub-expression, whereas the ‘ + ’

limits itself to the specified sub-expression, o in the RegEx, (ho+p).

Bulk Rename Utility Operations Manual Page 519 of 715

Metacharacters in Depth

Quantifiers cont.

Example:

 3) ab.+ Will not match the string ab because there has to be at least one match. Although ‘ab’ exists in

 the string, the dot character calls for a third character, and there is none. The string, aba would

match.

String = aba

Analysis:

1. ab Match against literal string characters, ‘ab’. Capture Group 1 = ab

 Matches against the ‘ab’ of ‘aba’.

2. . Dot Metacharacter Matches against any character. Capture Group 1 = aba

 Matches against the second occurrence of ‘a’ in ‘aba’

 Current position = EOL.

3. + Make it Greedy.

 Already at EOL. String Exhausted. No More Matches can

be made.

Because the Sub-expression using the dot Metacharacter is made Greedy using the ‘ + ’, it would behave the same as

if I had used (.*). This is because in essence the search is for any characters that are consecutive multiples of the dot

Metacharacter. The dot Metacharacter can match against any character. This means that it will match against any

characters that follow the initial match of the dot Metacharacter.

If I add a sub-expression after the Quantifier, .+ab, the EOL is reached with the .+, so it backtracks in an attempt to

match the new sub-expression, ‘ab’, but it also has to account for the dot metacharacter as well. When backtracking it

re-evaluates the expression because of the ‘ + ’ Quantifier. Thus, each character of the string is tested to match against

the . <dot Metacharacter> and then the a, and the b, of the sub-expression, ab.

Match: (.+ab)

The .+ moves to EOL. The sub-expression, ab will fail. Why? because the Dot Metacharacter has to account for at

least one character BEFORE the ab of abc123 in order to match. When it backtracks and finally reaches the a in the

string, the dot Metacharacter assumes the a value. When it tests for a, the position is at the b, and b= a = false = Fails.

Bulk Rename Utility Operations Manual Page 520 of 715

Metacharacters in Depth

Quantifiers cont.

For our purposes, case closed. The match fails. But what really happens behind the scenes is that at this point, the

RegEx Engine will move forward and attempt to test each subsequent character in the same manner. For example, the

match attempt beginning with character 1, the b of abc123, evaluates the .+ value as the remaining string, bc123 and

backtracks from there to attempt a match against .ab just as it did in the first attempt. This will continue until the

string is exhausted and no more matches can be made. This happens in the match attempt at character 5, the 3 of

abc123.

This can be seen using these debug logs from Regex Buddy:

So, it isn’t just as simple as my analysis shows, but the analysis is provided to give you an idea of how the values are

obtained and the matches are made, not a blow by blow description of every tiny step involved in the process.

Bulk Rename Utility Operations Manual Page 521 of 715

Metacharacters in Depth

Quantifiers cont.

On the other hand, if I have:

string = abc123

Match: (.+123)

Replace: \1 <space>

Analysis:

1. . Match the dot Metacharacter to any character. Capture Group 1 = a

2. + Make it Greedy . Capture Group 1 = <entire string>

 Matches to EOL capturing the entire string.

3. 123 Match against the literal string characters, ‘123’. Capture Group 1 = abc123

 Already at EOL. Backtracks to match against the Still remains as entire string after

 ‘123’ of ‘abc123’. re-evaluation. The <space> in the

 Replace String permits New Name.

What is happening here is that once it reaches the EOL in step 2, it backtracks, BUT it still has to account for the

initial dot Metacharacter of step 1 to match against the character PRIOR to the 123. In other words, in order to match,

there has to be at least one character in the position before the match of 123 can take place. In this example, the dot

Metacharacter matches against the c, and the 123 following are successfully matched.

Bulk Rename Utility Operations Manual Page 522 of 715

Metacharacters in Depth

Quantifiers cont.

? Matches the previous (character or metacharacter, Capture Group or class) zero or one time

 (The question mark makes the previous optional. - Lazy)

This is referred to as Lazy, Non-Greedy, Reluctant and Optional. It means to do as little work as possible to get the

job done. Unlike other Quantifiers, which take and take as much as possible and give back only when they have to, a

Lazy Quantifier starts off with very little and adds if required. In Regular Expressions, a Greedy Quantifier can

Decrease the number of already matched characters and a Lazy Quantifier can Expand to include additional

characters to match against. Zero or One Time refers to the Quantifier match as optional or Zero, or one time, a single

successful match. If the match cannot be made, then the optional path is taken. The ‘ ? ’ Quantifier is Greedy in the

sense that it will attempt to match overall at least once rather than zero.

 Example:

1) ba? matches b or ba.

Match: (ba?)

Replace: \1 <space>

String = b

Looking for a b followed by an a, but the a is made optional and therefore if b is found but the a is not, that’s okay.

The match still succeeds.

String = ba

Looking for a b followed by an optional a. If the b is found and so is the a, because it does exists, then what the hell.

The match succeeds.

Bulk Rename Utility Operations Manual Page 523 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 2) def? matches def in string, abc 'def' 'ghi' jkl

Match: (def?)

Replace: \1 <space>

looking for de followed by an optional f.

 Example:

 3) (def)? matches all in string, abc 'def' 'ghi' jkl

Match: (def)?

Replace: \1 <space>

looking for an optional def.

BRU returns the first match which matches against the abc. How does it match at all? When it attempts to match

against the sub-expression, def, made optional, it matches abc but it returns a null value as a Zero Occurrence Match.

Capture Group 1 doesn’t exist at this point and this is why the Replace String of \1 <space> returns \1 as Invalid.

etc. It is not until character 5 that ‘def’ is matched.

Bulk Rename Utility Operations Manual Page 524 of 715

Metacharacters in Depth

Quantifiers cont.

Notes:

1. A little more explanation may be required.

 The match of every character in the string is accomplished because the RegEx is saying, match def if it exists. If it

 does exist, then capture the value into Capture Group 1. If it doesn’t exist, then technically this is still a match, a

 Zero Occurrence Match. Nothing is captured in a Capture Group because Capture Group 1 will only exist when a

 successful match is made for the def characters and this is not until character 5 under the sixth match in the string.

 BRU only concerns itself with the first match performed at character 0. The value was null because of the Zero

 Occurrence Match but Capture Group 1 won’t exist until the match of def, so nothing, not null or anything else,

 was captured. The value may have been null, but this was not captured, so the returned value to BRU is ‘nothing’.

 Because Capture Group 1 does not exist at the first match, the reference to Capture Group 1 is void in the Replace

 String and instead all of the characters are evaluated as literal string characters. This means that New Name has a

 value of the characters, ‘ \ ’ ‘ 1 ’ and <space>.

 The backslash character is an illegal character in a filename, therefore the name is flagged as Invalid. To us, though,

 because the Group Reference literally appears in New Name, it is an indication that the fault with the RegEx may lie

 with the Group Reference. When troubleshooting, this gives a place to start.

2. The reason that it displays in red is because of the non-existent Capture Group. If the Replace String references it

 as it does here using \1, New Name will display both the backslash and the Capture Group Reference number ‘1’ as

 a literal. Because the backslash is an illegal character in a Windows filename, thus the Invalid red flag.

 If I change the Replacement String and remove the backslash character:

 You will see that New Name is no longer Invalid, even though there is no value for Capture Group 1 and without

 the backslash, the Replace String is no longer referencing a Capture Group, but a literal character, ‘1’ followed by a

 <space>.

Bulk Rename Utility Operations Manual Page 525 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 4) abc? matches abc in string, abc 'def' 'ghi' jkl

Match: (abc?)

Replace: \1 <space>

looking for an ab followed by an optional c.

etc.

all other matches fail.

Bulk Rename Utility Operations Manual Page 526 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 5) (abc)? matches (all) abc in string, abc 'def' 'ghi' jkl

Match: (abc)?

Replace: \1 <space>

looking for an optional abc.

Because abc is in the first part of the string, it is immediately matched and captured by BRU.

All other characters are matched as well, but BRU only displays the first match under v1.

Bulk Rename Utility Operations Manual Page 527 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 5) colou?r matches both colour and color because the u becomes optional

Match: (colou?r)

Replace: \1 <space>

String = colour String = color

Bulk Rename Utility Operations Manual Page 528 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

6) ho?p matches hp, and hop, but not hoop

Match: (ho?p)

Replace: \1 <space>

Look for an ho optionally followed by a p.

hoop doesn’t match because there must be 1 character, the h, followed or not by a second character, an o, that must

immediately precede a p. It is the third character of hoop, the second o, that fails the Regex because it is not a p.

h <optional o> p matches hp

h <optional o> p matches hop

Bulk Rename Utility Operations Manual Page 529 of 715

Metacharacters in Depth

Quantifiers cont.

Multiple Lazy Quantifiers can be used within one RegEx expression to match more than one alternative.

Example:

Feb(ruary)? 23(rd)? matches February 23rd, February 23, Feb 23rd and Feb 23

Match: (Feb(ruary)? 23(rd)?)

Replace: \1 <space>

looks for Feb optionally followed by ruary, immediately followed by a <space> 23, followed optionally by rd.

Feb <optional ruary> <space> 23 <optional rd>

 Feb ruary <space> 23 rd

 Feb ruary <space> 23

 Feb <space> 23 rd

 Feb <space> 23

Notes:

1. The Lazy Quantifier can also be used with a Greedy Quantifier, ‘ *? ’ or ‘ +? ’. This will make the Greedy

 Quantifier Lazy. This will be discussed a little later.

Bulk Rename Utility Operations Manual Page 530 of 715

Metacharacters in Depth

Quantifiers cont.

?? Matches the previous (character or metacharacter, Capture Group or class) zero or one time

 (The double question marks makes the previous optional. – Lazy or Non-Greedy)

The difference between using the ‘ ? ’ and the ‘ ?? ’ is that the ‘ ? ’ is Greedy in that it will strive to match at least

once whereas ‘ ?? ’ is really lazy in that it will strive to match zero rather than attempt to match once and even then

only if required for the match. Meaning, that while using ‘ ? ’ would match the optional character if available in the

string, ‘ ?? ’ will not.

 Example:

 1) abc?? matches ab in string ab or abc

Match: (abc??)

Replace: \1 <space>

Looks to match ab followed immediately by an optional c, but because of the Lazy Quantifier, even if c exists in the

string, the optional path will be taken and only ab will match.

So what would force the RegEx to consider the ‘c’ necessary enough to match?

One thing I can think of off hand is to use an End of Line Anchor, $.

Match: (abc??$)

Replace: \1<space>

ab still matches because the c is still optional. If the c doesn’t exist in the string, even with the anchor, it will still

match, but if the c does exist then in order to successfully match, the c must be included in the match if in fact the ab

along with the c is at the end of the string. If the c does exist but is not at the end of the string, the RegEx will fail.

Bulk Rename Utility Operations Manual Page 531 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 2) def?? matches de in string, abc 'def' 'ghi' jkl

Using (def?) matched def where using (def??) matches de.

Match: (def??)

Replace: \1 <space>

(def??) looks to match de optionally followed by f. However, if all three characters are available, then the optional

path is still taken matching only the first two characters. Really Lazy.

The same with this -

Match: (jkl??)

Replace: \1 <space>

… but not this

Match: (jkl??)$

Replace: \1 <space>

The End of String anchor, ‘$’ forces the match against the third character l, because the match cannot be made unless

the last character of the string is an l. Therefore, although jk is matched, so must the l be as well in order for the

RegEx to successfully match.

Bulk Rename Utility Operations Manual Page 532 of 715

Metacharacters in Depth

Quantifiers cont.

Just as:

Match: (jkl)??

Replace: \1 <space>

... results in –

Looks for an optional jkl, but even though the string contains jkl, the Lazy Quantifier dismisses it and takes the

optional path, creating a Zero Occurrence Match.

 etc.

… adding the anchor, $

Match: (jkl)??$

Replace: \1 <space>

… forces the match –

Looks for an optional jkl that must be positioned at the end of the string in order to match.

Bulk Rename Utility Operations Manual Page 533 of 715

Metacharacters in Depth

Quantifiers cont.

*? Match the previous character, expression or metacharacter zero or more times

 (As few repetitions as possible – Made Lazy or Non-Greedy)

 Example:

 1) A.*?Z matches AiiZ, and if Global set (PCRE v2), AoooZ in string, eeeAiiZuuuuAoooZeeee

In many respects, Lazy can also mean that the previous sub-expression is made optional. If, during the evaluation of a

sub-expression that captured values, that sub-expression is made optional, then the previous values of that match are

given up, but the match still exists but with no value. This is referred to as a Zero Occurrence Match with a null value

and a zero length. This is not one of those examples.

Normally when the dot Metacharacter is paired with the * Greedy Quantifier, .*, it matches from that point on to the

end of the string, but when made Lazy by the Non-Greedy Metacharacter, ‘ ? ’, the sub-expression is made optional.

The RegEx engine returns to the point just after the last match and instead matches only until the successful match of

the next sub-expression.

 Match: (A.*?Z)

 Replace: \1

1. A Match against the uppercase letter, ‘A’. Capture Group 1 = A

 Matches against the first occurrence of the ‘A’ of

 ‘eeeAiiZuuuuAoooZeeee’.

2. . Match against any character. Capture Group 1 = Ai

 Matches against the first occurrence of the ‘i’ of

‘eeeAiiZuuuuAoooZeeee’.

3. * Make it Greedy. Capture Group 1 = AiiZuuuuAoooZeeee

4. ? But not too Greedy. Capture Group 1 = A

What happened here is when the sub-expression .* was made Lazy, it made the

sub-expression optional as if it never existed. The RegEx Engine returned to

the point just before the .* was evaluated, and this would be just after the match

of the uppercase A.

5. Z Match against the uppercase letter, ‘Z’. Capture Group 1 = AiiZ

 Matches against the first occurrence of the ‘Z’

 of ‘eeeAiiZuuuuAoooZeeee’.

Notes:

1. Although the .* was made optional, there is no Zero Occurrence Match that results

 because Capture Group 1 already holds the A value previously captured. Zero

 Occurrence Matches are more likely with using the Greedy Quantifier ‘+’ made

 Lazy using ‘ ? ’ than with *?, but I will provide an example that does.

Bulk Rename Utility Operations Manual Page 534 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

 String = eeeAiiZuuuuAoooZeeee

 If the A was removed from the RegEx …

Match: (.*?Z)

Replace: \1

Analysis:

1. . Match against any character. Capture Group 1 = e

 Matches aginst the first occurrence of the lowercase ‘e’ of

 ‘eeeAiiZuuuuAoooZeeee’

2. * Make it Greedy. Capture Group 1 = <entire string>

 Matches against the entire string.

3. ? But not too Greedy. Capture Group 1 = null

 The .* is made optional. Therefore the RegEx Engine

 handles the last sub-expression, .*, as if it never existed.

 This changes the position to right before the beginning

 of the string resulting in a null value with a zero length.

This is a Zero Occurrence Match as some refer to it. Capture Group 1 previously held the value of the entire string.

When the sub-expression that originally matched and created this value was made optional, any value held by the

Capture Group as a result of this was removed, BUT the Capture Group was not Invalidated, only the match was

given back. Thus, Capture Group 1 exists but holds no value. It is empty, or null with a match that is zero length.

4. Z Match against an uppercase ‘Z’. Capture Group 1= eeeAiiZ

 Matches against the first occurrence of ‘Z’ of

 ‘eeeAiiZuuuuAoooZeeee’.

The current position is at the beginning of the string. The RegEx Engine moves forward until it encounters and

matches against the first occurrence of the uppercase Z, capturing all characters as it proceeds in Capture Group 1.

Notes:

1. Zero Occurrence Match is a term I came across that really is just a better explanation for a type of Zero Length

 Match.

2. In step 3, the position just before the first character is the BOL (Beginning of Line).

Bulk Rename Utility Operations Manual Page 535 of 715

Metacharacters in Depth

Quantifiers cont.

Notes:

1. When comparing against greedy, A.*Z matches AiiZuuuuAoooZ. It doesn’t stop when matching for an occurrence

 of an uppercase A with some text following and ending with an uppercase ‘Z’. It will continue until the last match,

 meaning no more matches are available, or what is referred to as the string being ‘exhausted’, or until it reaches

 EOL, whichever comes first.

2. BRU using the Match String of (A.*?Z) would only be able to return the first value in Capture Group – \1 = AiiZ.

 To see the second result, you would have to account for the ‘u’ characters so the Match String would instead be:

 Match: (A.*?Z)uuuu(A.*?Z)

 Replace: Group 1 = \1 Group2 = \2

 or

 Match: (A.*?Z)u{4}(A.*?Z)

 Replace: Group 1 = \1 Group2 = \2

 where:

/1 = AiiZ \2 = AoooZ.

Bulk Rename Utility Operations Manual Page 536 of 715

Metacharacters in Depth

Quantifiers cont.

 Example:

2) a.*?b matches the first match of ab in string abab as compared with the Greedy equivalent of a.*b

that matches the entire string, abab.

Match: (a.*?b)

Replace: \1

Analysis:

1. a Match against the literal lowercase ‘a’. Capture Group 1 = a

 Matches against the first lowercase ‘a’ of ‘abab’.

2. . Match against any character. Capture Group 1 = ab

 Matches against the ‘b’ of ‘abab’.

3. * Make it Greedy. Capture Group 1 = <entire string>

4. ? But not too Greedy. Capture Group 1 = a

 the * is made optional. The RegEx Engine returns to the

 point after the last successful match, the ‘a’ of ‘abab’ in step 1.

5. b Match against the literal lowercase ‘b’. Capture Group 1 = ab

 Matches against the first lowercase ‘b’ of ‘abab’

 Match: (a.*b)

 Replace: \1 <space>

1. a Match against the literal lowercase ‘a’. Capture Group 1 = a

 Matches against the first lowercase ‘a’ of ‘abab’.

2. . Match against any character. Capture Group 1 = ab

 Matches against the ‘b’ of ‘abab’.

3. * Make it Greedy. Capture Group 1 = <entire string>

 Current position = EOL

5. b Match against the literal lowercase ‘b’. Capture Group 1 = abab

 Already at EOL. Backtracks to match against the

 second occurrence of the lowercase ‘b’ of ‘abab’.

Bulk Rename Utility Operations Manual Page 537 of 715

Metacharacters in Depth

Quantifiers cont.

+? Matches the previous character, expression or metacharacter one or more times

 (The question mark makes the previous optional. - Lazy)

 Lazy, so the optional item is excluded in the match if possible.

 Example:

 1) ".+?" matches "def" and "ghi" in string, abc "def" "ghi" jkl

 abc "def" "ghi" jkl

 To understand this, let’s first change it to Greedy:

 “.+”

 Now this matches the entire value of…

“def” <space> “ghi”

 abc "def" "ghi" jkl

 String = abc 'def' 'ghi' jkl

 Match: ‘.+’

 Replace: \1 <space>

1. ‘ Match against the single quotation mark. Capture Group 1 = ‘

 Matches the first single quotation after ‘ abc <space> ’

2. . Dot Metacharacter. Match against any character. Capture Group 1 = ‘d

Matches against the ‘d’ of ‘ ‘def’ ’

3. + Make it Greedy. Capture Group 1 = ‘def’ ‘ghi’ jkl

 Matches to EOL.

 Current position = EOL

4. ’ Match against the single quotation mark. Capture Group 1 = ‘def ‘ghi’

 Already at EOL. Backtracks to match against the single

quotation after ‘ghi’

 RegEx satisfied. Single Match = "def" "ghi"

When it matches against the final single quotation mark in step 4, it gives up the characters, jkl of the previous match.

Notes:

1. Changed to single quotation marks because double quotation marks are illegal characters in Windows File Names.

Bulk Rename Utility Operations Manual Page 538 of 715

Metacharacters in Depth

Quantifiers cont.

Now let’s examine the current example, Lazy.

String = abc 'def' 'ghi' jkl

Match: (‘.+’?)

Replace: \1

Analysis:

1. ‘ Match against the single quotation mark Capture Group 1 = ‘

Matches against the first single quotation mark of ‘def’.

2. . Match against any character = ‘d’ Capture Group 1 = ‘d

3. + Make it Greedy. Capture Group 1 = ‘def’ ‘ghi’ jkl

 Current position = EOL

4. ’ Match against single quotation mark. Capture Group 1 = ‘def’ ‘ghi’

 Already at EOL. Backtracks to match against the second

 single quotation mark of ‘ghi’.

5. ? Makes the previous sub-expression optional. Capture Group 1 = ‘def’ ‘ghi’ jkl

 The match of the single quotation in step 4 is given up.

 The RegEx Engine returns to the last successful match of step 3.

When the sub-expression in step 4 is made optional, it is handled as if it was never evaluated. Any value resulting

from the match is also removed. The previous captured value is restored from step 3.

Bulk Rename Utility Operations Manual Page 539 of 715

Metacharacters in Depth

Quantifiers cont.

String = abc 'def' 'ghi' jkl

Match: ('.+?')

Replace: \1 <space>

Analysis:

1. ‘ Match against the single quotation mark Capture Group 1 = ‘

Matches against the first single quotation mark of ‘def’.

2. . Match against any character = ‘d’ Capture Group 1 = ‘d

3. + Make it Greedy. Capture Group 1 = ‘def’ ‘ghi’ jkl

 Current position = EOL

4. ? But not too Greedy. Capture Group 1 = ‘d

Makes the previous statement optional. The Quantifier, ‘ + ’

is made ‘Lazy’ or optional. The RegEx engine throws out the

match in step 3 and the RegEx Engine returns to the point of the

last successful match in step 2.

5. ’ Match against the single quotation mark. Capture Group 1 = ‘def’

Current position is the ‘d’ of ‘def’.

Moves forward to match against the second single quotation

mark of ‘def’. First match is satisfied.

Remember, at this point, BRU under v1, will only return the first match. This doesn’t stop the behaviour of the RegEx

engine that will continue to move forward testing each character searching for any additional pattern matches until it

hits EOL, and exhausts the string.

6. Finds a second match of ‘ ‘ghi’ ’.

7. Moves forward continually testing and reaches EOL without any further matches.

 String is exhausted.

 RegEx satisfied. Two separate matches = "def" and "ghi"

Notes:

1. Exhausting the string refers to no more matches can be made. The string has reached the EOL but can no longer

 backtrack. The RegEx evaluation is considered finished, match or no match.

Bulk Rename Utility Operations Manual Page 540 of 715

Metacharacters in Depth

Quantifiers cont.

Notes:

1. The RegEx engine can move to positions between each character, but to simplify things, I use the character

 positions in the descriptions. Further information can be found in Volume II.

2. Actually, the RegEx engine does not simply move forward, it looks for the first character, the single quotation,

 finds it and moves forward and then back, tests against each additional character until it matches against the second

 single quotation mark. It looks like this:

 First Match Second Match

It will continue to test each character looking to match against the same pattern as it did in the first two matches, but it

will not match and it will fail when it reaches EOL in the match attempt at character 14, as demonstrated:

I am not going to address all of this background minutia on a regular basis. Instead, I will concentrate on only

pertinent changes.

Bulk Rename Utility Operations Manual Page 541 of 715

Metacharacters in Depth

Quantifiers cont.

Range Quantifiers

Also called repetition or Minimum Maximum Quantifiers, a Range Quantifier specifies a limitation of the number of

consecutive matches that can be made using a minimum-maximum range where one value specified would limit the

range to an exact number of matches, and two values would specify a range where the first value is the minimum

number of matches and the second value would represent the maximum number of matches. Range Quantifiers are

regarded as Greedy.

{n} specifies exactly how many matches are allowed. Match previous character or metacharacter exactly n

times. When only one value is specified, this value represents both the minimum and maximum values.

Example:

 1) a{4} matches four 'a' s

String = aaaaa

Match: (a{4})

Replace: \1 <space>

1. a Match against a literal ‘a’ string character. Capture Group 1 = a

Matches the first ‘a’ of ‘aaaaa’

2. {4} Range Quantifier. Capture Group 1 = aaaa

Repeat the Match for a total of 4 times.

Matches three additional consecutive ‘a’

characters.

The matches must be consecutive. This will not work:

Match: (a{4})

Replace: \1 <space>

1. a Match against a literal ‘a’ string character. Capture Group 1 = a

Matches the first ‘a’ of ‘a a a a a’

2. {4} Range Quantifier.

Repeat the Match for a total of 4 times.

<space> = a = false.

Fails.

Bulk Rename Utility Operations Manual Page 542 of 715

Metacharacters in Depth

Quantifiers cont.

{n} specifies exactly how many matches are allowed cont.

 Example:

2) (Ho){3} matches the string, ‘Ho’ for three matches.

String = Santa laughs HoHoHo

Match: ((Ho){3})

Replace: \1 <space>

Analysis:

1. Ho Match against the string, ‘Ho’. Capture Group 1 = Ho

 Matches the first ‘Ho’ of ‘HoHoHo’.

2. {3} Range Quantifier. Capture Group 1 = HoHoHo

 Repeat the match for a total of 3 times.

 Matches two additional consecutive ‘Ho’

 strings.

 Example:

3) a{2} matches ‘a’ for two matches

Match: (a{2})

Replace: \1 <space>

 An exact value of 2 is specified. It is important to note

that by specifying an exact number does not preclude

matching against strings that consecutively contain more

than the required number of potential matches.

In other words, this RegEx is not a method by which to

limit the match against only those strings that contain the

fixed number of matches represented by the minimum

value.

What a{2} really means is to match against strings that contain at minimum 2 matches of the literal character string,

‘a’. And because there is only one value specified, this value represents both the minimum and maximum values. The

equivalent would be {2,2}. This is why all the above sample strings that contain at least two or more consecutive a

characters will match. I cannot limit the match to only the sample string, aa, not using this RegEx, anyway.

Bulk Rename Utility Operations Manual Page 543 of 715

Metacharacters in Depth

Quantifiers cont.

{min, max} limits how many times a character or character set can be repeatedly matched. Match previous

 character or Metacharacter at least min times but more than max times (cannot be higher than 65536).

where:

min – the minimum number of matches

max – the maximum number of matches

Example:

 a{3,4} Matches no less than three and no more than 4 consecutive matches.

Match: (a{3,4})

Replace: \1 <space>

Looks to match the literal string character, a, a minimum of 3 matches and a maximum of 4 matches. This matches

string samples that have a minimum of three consecutive a’s in the string. In the RegEx, it doesn’t matter if the a’s

appear at the beginning, middle or end of the string, as long as there are three or more consecutive matches it will be

satisfied. If there are more than four potential matches, only the first four will be matched. If there are less than three

potential matches, the RegEx will fail.

For example, the string, aaaaa is made up of 5 potential matches, but New Name only recognizes the first four, aaaa.

Notes:

1. If I want to limit the number of ‘a’s matched in a string and have that string restricted to that number of characters,

 I can use this:

 Match: (^a{2}$)

 This will match the string, aa but not aaa, because the Anchors limit the characters to the value specified by the

 Range Quantifier. The Anchors limit the match to 2 characters that must match at both the beginning and end of the

 string. For this to happen, the first a must match at the BOL and the second consecutive a matches at the EOL.

Bulk Rename Utility Operations Manual Page 544 of 715

Metacharacters in Depth

Quantifiers cont.

{n,} specifies that it can match n or more times. Match previous character or metacharacter at least n times.

Example:

 a{3,} Match ‘a’ three or more times.

The syntax is specifying a minimum and maximum, but the maximum is only referenced and not specified. This is the

same as saying that there is no upper limit on the range.

Match: (a{3,})

Replace: \1 <space>

Looks to match a literal string character, a, that in order to match, must be matched a minimum of three times with no

upper limit on the maximum value.

String = aaaaa

1. a Match against literal string character, ‘a’. Capture Group 1 = a

 Matches against the first ‘a’ of ‘aaaaa’

2. {3,} Range Quantifier. Capture Group 1 = aaaaa

 Match a minimum of three times with no

 upper limit.

 Matches against the remaining consecutive

‘a’ characters of ‘aaaaa’.

Notes:

1. I cannot use this RegEx to only match against the aa sample string. For example, this will not work: (a{2})

 because it only specifies a minimum number of the matches and does not indicate that the string cannot contain

 more than 2 a characters. It consequently has no effect on aaa, aaaa, aaab, etc. They will always return

 the value of aa. See previous notation 1 under the discussion of {min, max} for a RegEx that will accomplish this.

Bulk Rename Utility Operations Manual Page 545 of 715

Metacharacters in Depth

Quantifiers cont.

Oh, I could use a Lookahead in combination with a negated class that would disallow strings that have only two

matches:

Match: (a{2}(?=[^$]))

Replace: \1 <space>

Look for 2 literal a string characters not immediately followed by the EOL. This will preclude the sample string, aa

because it does have the EOL after the two a’s.

String = aaa

But I cannot use the RegEx to only match against the aa sample string (see previous notation for a RegEx that will).

Analysis:

1. a Match against literal string character, ‘a’. Capture Group 1 = a

2.{2} Range Quantifier. Capture Group 1 = aa

 Repeat match for one additional time.

 Matches against the second ‘a’ of ‘aaa’

3. (?=[^$]) Positive Lookahead.

 Look ahead if the next character is NOT EOL.

 a = EOL = false = True.

This uses a Positive Lookahead in conjunction with a negated class that consist of the end of string anchor represented

by the ‘ $ ’ character.

The current position is the second a of aaa from Step 2. The Lookahead in step 3 looks to the right testing the next

character for the end of the string. Because the next character is the third a and not the EOL, the test for EOL is false,

thereby proving the test as true in the statement represented by the negated class.

The Range Quantifier is used to disallow or preclude those strings that only have a single a character. The Lookahead

is used test is to disallow or preclude strings that only have 2 consecutive a characters in the string.

Bulk Rename Utility Operations Manual Page 546 of 715

Metacharacters in Depth

Quantifiers cont.

In the previous example, I used a Lookahead with a negated class, but really all I had to do was use a Negative

Lookahead:

Match: (a{2}(?!$))

Replace: \1 <space>

However, using the negated class resulted in no backtracking, so there are madness to my methods ☺ I wasn’t trying

to impress, but just to illustrate that there are usually different methods available to accomplish the same task using

Regular Expressions.

For more information on Lookaheads, refer to the sections on Lookarounds here and in the appendix of Volume II.

More Examples:

Match: (a{0,2}) Match: (a{2,2})

Replace: \1 <space> Replace: \1 <space>

The strings, baaa and baac resulted in a Zero Occurrence Match in the example on the left because, although it

matched, the minimum was set at zero, meaning match even if the ‘a’ is not found. Because the first character was a

b, it matched but the value returned was null.

Bulk Rename Utility Operations Manual Page 547 of 715

Metacharacters in Depth

Quantifiers cont.

Here’s another similar example.

String = aabcz

Match: (a{0,}z)

Replace: \1 <space>

Analysis:

1. a Match against literal string character, ‘a’. Capture Group 1 = a

 Matches first ‘a’ of ‘aabcz’.

2. {0,} Range Quantifier. Repeat match 0 (optional) Capture Group 1 = aa

to infinity (no upper limit).

3. z Match against literal string character, ‘z’. Capture Group 1 = z

In step #2, it doesn’t just match against the two a’s, but because of the specified lower limit of 0 in the Quantifier, this

is the same as making it optional to match or not, meaning that it will match against any character whether or not it is

an a. Because of this, when the Range Quantifier is done being evaluated, the current position is at EOL. At this point

in Step #3, the RegEx Engine has to backtrack to match against the z and in doing so, it gives up the aa, the characters

of the first match in Step #1 and Step #2, leaving Capture Group 1 with a remaining value of z. It looks like this:

aabcz

Match attempt character 0, matches first a, character 1 matches second a, character 2 matches the b and character 3,

matches the c. These Matches in the Debug Logs above are indicated by ‘ok’. All of the attempts fail because of the z.

Bulk Rename Utility Operations Manual Page 548 of 715

Metacharacters in Depth

Quantifiers cont.

Range Quantifiers are also very useful is in matching multiple times against sub expressions.

For example if I wanted to match against four numeric digits in a string I could use:

Match: (\d\d\d\d)

Replace: \1 <space>

Or I could simplify it by using:

Match: (\d{4})

Replace: \1 <space>

Searches for a numeric digit. Matches against the 0 of the sequence, 0123. The {4} instructs that the match is to be

repeated 3 additional times for a total of 4 consecutive numeric digits. Matches against the 123 of 0123. Capture

Group 1 holds the final value of 0123. The RegEx Engine will continue to move through the string looking for further

matches. Finding none, it will reach the EOL and exhaust the string.

Another example:

String = This is a 1234 test 5678

Match: (\d{4})

Replace: \1 <space>

Searches for a numeric digit. Matches against the 1 of the sequence, 1234. The {4} instructs that the match is to be

repeated 3 additional times for a total of 4 consecutive numeric digits. Matches against the 234 of 1234. Capture

Group 1 holds the final value of 1234. The RegEx Engine will continue to move through the string and match a

second time at the 5678, but BRU only captures the first match under v1.

Bulk Rename Utility Operations Manual Page 549 of 715

Metacharacters in Depth

Quantifiers cont.

This next example uses an Alternate.

String = test 1234

Match: (\d{2}|\d{4)

Replace: \1 <space>

Selects between a match of two consecutive numeric digits or 4 consecutive numeric digits.

This illustrates a dilemma that I referenced at the beginning of this discussion:

To limit the match against only those strings that contain the fixed number of matches represented by the minimum

value, you must use anchors (see notation below).

Given the first alternate of \d{2} in the RegEx, it will always match against the first two consecutive numeric digits in

the string and therefore never get to evaluate the second alternative of the 4 consecutive numeric digits even, as they

do here, exist in the string. The only value that can be returned is 12.

This, however, is the expected behavior of using alternates. The first alternate is always evaluated first against the

string, and if matched, any additional alternates would not be evaluated. First come, first served.

If I reverse the alternates, you will see this:

Match: (\d{4}|\d{2)

Replace: \1 <space>

The first alternate of \d{4} is matched to the value, 1234 = true. The RegEx is satisfied but the second alternate, also

true, is never evaluated.

Notes:

1. I have previously shown you a method that will successfully limit the match by using anchors. See notation 1 under

 the discussion of {min, max} for a RegEx that will accomplish this.

Bulk Rename Utility Operations Manual Page 550 of 715

Metacharacters in Depth

Quantifiers cont.

String = The value of pi to 18 digits is 3.141592653589793238 on to infinity

Match: (3.\d{3,})

Replace: \1 <space>

First you will notice that the string contains a dot character. Because this string in BRU is a filename, and not a folder

name, it is interpreted as a file extension dot with everything else following as part of the file extension. This will not

be evaluated correctly. It will result in:

Doesn’t match. In step 3, the value matched will be the 3 of 3.14.., because to the RegEx, the string ends at the dot

character right before what it interprets as the EOL. Step 4 will fail, because when it backtracks, the next character

tested will be the <space> prior to the 3.

To remedy this, you have to enable, ‘Rename File Extensions As Being Part of File Name’, from the File/Folder

Extensions sub-menu of the Renaming Options Menu.

Bulk Rename Utility Operations Manual Page 551 of 715

Metacharacters in Depth

Quantifiers cont.

String = The value of pi to 18 digits is 3.141592653589793238 on to infinity

Match: (3.\d{3,})

Replace: \1 <space>

Analysis:

1. 3 Match against a literal numeric digit, ‘3’. Capture Group 1 = 3

 Matches against the ‘3’ of 3.14..’

2. . Dot Metacharacter matches against Capture Group 1 = 3.

 any character.

 Matches against the dot of ‘3.14 ..’

I could have also used this:

Match: (3\.\d{3,})

.. and obtained the same results. Why? Because instead of using a Dot Metacharacter that matches any character, I

could have specified the literal dot character by preceding it with an Escape Metacharacter, the forward slash. The

Escape indicates to the RegEx Engine not to treat the dot as a Metacharacter but as a literal character. After the match

of the 3, it would have searched for the literal dot and matched.

3. \d Match against numeric digit. Capture Group 1 = 3.1

 Matches against the ‘1’ of ‘3.14..’

4. {3} Range Quantifier. Capture Group 1 = 3.141592653589793238

 Repeat match for a minimum of 2

 additional times with no upper limit.

 Matches against the remaining numeric list

 of ‘41592653589793238’ and stops when it

 encounters the <space> after the final ‘8’.

The value of pi to 18 digits is 3.141592653589793238 on to infinity

Bulk Rename Utility Operations Manual Page 552 of 715

Metacharacters in Depth

Quantifiers cont.

String = The value of pi to 18 digits is 3.141592653589793238 on to infinity

Match: (.*\d{3,})

Replace: \1 <space>

Analysis:

1. . Dot Metacharacter match any character. Capture Group 1 = T

 Matches the ‘T’ of ‘The’.

2. * Make it Greedy. Capture Group 1 = <entire string>

 Current position = EOL.

3. \d Match against Numeric Digit. Capture Group 1 =

 Backtracks to match against the last numeric digit The value of pi to 18 digits is <space>

 of the numeric list, the ‘8’ 3.141592653589793238

4. {3} Range Quantifier. Capture Group 1 = Unchanged

 Repeat match for a total of three times to infinity.

 Matches the numeric digit still Backtracking,

 eighteen additional two times, for the ‘23’.

Some interesting notes.

In step 2, the entire string is captured, so in Step 3, when it begins to backtrack, characters are being removed from

the first capture and added back in the current capture. The characters that are removed are:

<space> on to infinity

The value of pi to 18 digits is 3.141592653589793238 on to infinity

 backtracking

This happens as it backtracks to the 8.

The next thing that happens is as it backtracks through step 4, those characters are also being removed from the first

capture and added back in the current capture as before, but because there is only one Capture Group, this is not

visible because the final result in step 4 remains unchanged from step 3.

The next point of interest is the match of step 3 through 4. At first glance, you may think that {3,} would backtrack

and capture all the way to the dot character, but you would be wrong. Instead only the minimum needed to match are

captured and this includes the 8 from step 3 and the 23 from step 4. The resulting match of just step 3 through 4 = 238

and not 141592653589793238.

Bulk Rename Utility Operations Manual Page 553 of 715

Metacharacters in Depth

Quantifiers cont.

Look at the Debug log from Regex Buddy.

See the resulting match of 238?

I’ll make this more clear to you by separating the values out in two Capture Groups:

Match: (.*)(\d{3,})

Replace: \1 \2

Capture Group 2 captures the 238 and this in turn is removed from Capture Group 1’s value. You can also see how

this could be used to isolate the end of the string for as many characters as required simply by changing the minimum

value in the Range Quantifier.

Bulk Rename Utility Operations Manual Page 554 of 715

Metacharacters in Depth

Quantifiers cont.

One more example to close this out.

Match: (\d{2})-(\d{2})-(\d{2,4})

Replace: \1. \2 .\3

The first two Capture Groups capture the month and day using a pretty straightforward single value fixed length of 2

repeated matches. The specified 2 though, also precludes the string, The date is 5-6-2021, because both the 5 and the

6 will not match.

The third Capture Group is more interesting because it specifies a range between 2 and 4 numeric digits. This will

match both the 4 digit year of 1990 in the string, The date is 10-24-1990, and the 2 digit year of 89 in the string,

The date is 07-10-89.

The RegEx does not capture the <hyphen> characters used as delimiters between the dates. This allows me to replace

them if I so desire with something else, which I did using dot (literal) characters in the Replace String instead.

Bulk Rename Utility Operations Manual Page 555 of 715

Metacharacters in Depth

Quantifiers cont.

Possessive Quantifiers.

When using a Possessive Quantifier the RegEx will not perform additional permutations to satisfy a match even if the

remainder of the RegEx fails. Unlike a typical Greedy Quantifier where the RegEx will recalculate in an attempt, or

permutation, to get a successful match, the Possessive Quantifiers afford it one chance, and one chance only to get it

right. It moves forward in one direction, from left to right and it will not perform backtracking. As a result, Possessive

Quantifiers run faster. This is important when you have a large number of files to process. Why not always use

Possessive Quantifiers? Because there are many times that you want to match against a pattern that would otherwise

be too restrictive using only Possessive Quantifiers.

After the evaluation of a Possessive Quantifier, the RegEx position is at the end of the string, or EOL. Since it will not

backtrack to give back characters even if there are additional sub-expressions left to evaluate (this is what was meant

in the statement, ‘even if the remainder of the RegEx fails’) , the RegEx is finished whether it matched or failed to

match. This behaviour also classifies the Possessive Quantifiers as Greedy.

For each ‘regular’ Quantifier, there is a Possessive Equivalent with the exception of ‘ ?? ’

*+ Match the previous character, expression or metacharacter zero or more times

As many items as possible will be matched, without trying any permutations with less matches even if the remainder

of the RegEx fails. This is the possessive equivalent of using *

Example:

 1) (ab*+) matches ab in string rabcc rabcc

Match: (ab*+)

Replace: \1 <space>

No Backtracking. That is the difference between making a Quantifier Possessive or not.

Notes:

1. Permutations refer to the RegEx performing different calculations in an attempt to satisfy the match. Unlike the

 human brain, the logic recognizes one definition of insanity is trying the same thing and expecting different results.

Bulk Rename Utility Operations Manual Page 556 of 715

Metacharacters in Depth

Quantifiers cont.

Example:

String = aabc

Match: (.*+abc)

Replace: \1 <space>

Analysis:

1. . Dot Metacharacter. Capture Group 1 = a

Matches against any character.

Matches against the first ‘a’ of ‘aabc’.

2. * Make it Greedy. Capture Group 1 = aabc

3. + Make it Possessive. Capture Group 1 = Unchanged.

 Current position = EOL.

4. abc Match against literal string characters, ‘abc’.

 Already at EOL.

Can’t backtrack because it is Possessive.

 Fails.

If this had been non-Posessive, it would have backtracked and matched against the abc.

Match: (.*abc)

Replace: \1 <space>

Analysis:

1. . Dot Metacharacter. Capture Group 1 = a

Matches against any character.

Matches against the first ‘a’ of ‘aabc’.

2. * Make it Greedy. Capture Group 1 = aabc

 Current position = EOL.

3. abc Match against literal string characters, ‘abc’.

 Already at EOL.

 Backtracks to match against the ‘abc’.

Bulk Rename Utility Operations Manual Page 557 of 715

Metacharacters in Depth

Quantifiers cont.

Because Capture Group 1 already had a value of aabc resulting from Step 2, the user only sees the final value of aabc

as unchanged, but behind the scenes there was backtracking.

This is what it looks like:

As the backtracking is taking place, previous captured

values are given back and this continues until the final

match of the abc. It is here where the value of abc is

added to the remaining value of the first a from step #2

resulting in a final value for Capture Group 1 of aabc.

This behaviour can be clearly seen if I add a second Capture Group.

Match: (.*)(abc)

Replace: Group 1 = \1 Group 2 = \2

Analysis:

1. . Dot Metacharacter. Capture Group 1 = a

Matches against any character.

Matches against the first ‘a’ of ‘aabc’.

2. * Make it Greedy. Capture Group 1 = aabc

 Current position = EOL.

3. abc Match against literal string characters, ‘abc’. Capture Group 2 = abc

 Already at EOL. Changes Capture Group 1 = a

 Backtracks to match against the ‘abc’.

Bulk Rename Utility Operations Manual Page 558 of 715

Metacharacters in Depth

Quantifiers cont.

Where:

 \1 = a \2 = abc

As the a, b and c are captured in Capture Group 2 in Step

3, these values are subsequently given back from Capture

Group 1 leaving the remaining value the first a of aabc

resulting from Step 2. Capture Group 2’s value is the

‘abc’ while Capture Group 1’s value has been changed to

‘a’.

Bulk Rename Utility Operations Manual Page 559 of 715

Metacharacters in Depth

Quantifiers cont.

++ Matches the previous character, expression or metacharacter one or more times

 Possessive. As many items as possible will be matched, without trying any permutations with less matches

 even if the remainder of the regex fails. Possessive quantifiers do not use backtracking so they can run faster

 than using other quantifiers. This is important when you have a large list of files to process. ++ is the

 possessive equivalent of using +

A Tale of Two Strings:

XXXX

XXXXZ

Lets’ start with the non-possessive form, ‘ + ’.

Match: (X+[A-Z])

Replace: \1 <space>

Analysis:

1. X Match against literal uppercase string character, ‘X’. Capture Group 1 = X

 Matches against the first ‘X’ of ‘XXXXZ’.

2. + Make it Greedy… until …. Capture Group 1 = XXXX

 The Match is made for one or more of the ‘X’

 characters. This matches against all consecutive

 uppercase ‘X’ string literals.

3. Z … Match against a class consisting of the literal Capture Group 1 = XXXXZ

 uppercase string characters, A-Z.

 Matches against an uppercase ‘Z’.

Straightforward, even though it is non-possessive, it required no Backtracking since it matched against the X

characters ending with the Z character. Remember that if the ‘ * ’ was used this would have matched the entire string

and then would have backtracked to match against the Z.

Bulk Rename Utility Operations Manual Page 560 of 715

Metacharacters in Depth

Quantifiers cont.

String = XXXX

Match: (X+[A-Z])

Replace: \1 <space>

Analysis:

1. X Match against literal uppercase string character, ‘X’. Capture Group 1 = X

 Matches against the first ‘X’ of ‘XXXXZ’.

2. ++ Make it Greedy Possessive… until …. Capture Group 1 = XXXX

 The Match is made for one or more of the ‘X’

 characters. This matches against all consecutive

 uppercase ‘X’ string literals.

 Current position = EOL.

3. Z … Match against a class consisting of the literal Capture Group 1 = XXXX

 uppercase string characters, A-Z.

 Already at EOL. Backtracks to match against ‘X’.

Bulk Rename Utility Operations Manual Page 561 of 715

Metacharacters in Depth

Quantifiers cont.

Now I’ll make it possessive usng, ‘ ++ ’.

String = XXXXZ

Match: (X++[A-Z])

Replace: \1 <space>

Analysis:

1. X Match against literal uppercase string character, ‘X’. Capture Group 1 = X

 Matches against the first ‘X’ of ‘XXXXZ’.

2. ++ Make it Greedy Possessive… until …. Capture Group 1 = XXXX

 The Match is made for one or more of the ‘X’

 characters. This matches against all consecutive

 uppercase ‘X’ string literals.

3. Z … Match against a class consisting of the literal Capture Group 1 = XXXXZ

 uppercase string characters, A-Z.

 Matches against an uppercase ‘Z’.

No difference from before, but what about this?

String = XXXX

Analysis:

1. X Match against literal uppercase string character, ‘X’. Capture Group 1 = X

 Matches against the first ‘X’ of ‘XXXXZ’.

2. ++ Make it Greedy Possessive… until …. Capture Group 1 = XXXX

 The Match is made for one or more of the ‘X’

 characters. This matches against all consecutive

 uppercase ‘X’ string literals.

 Current position = EOL.

3. Z … Match against a class consisting of the literal

 uppercase string characters, A-Z.

 Already at EOL. Because of the Possessive Quantifier,

 it cannot Backtrack to match against ‘X’

Fails.

Sources this Section: //chortle.ccsu.edu/

Bulk Rename Utility Operations Manual Page 562 of 715

Metacharacters in Depth

Quantifiers cont.

?+ Matches the previous (character or metacharacter, Capture Group or class) zero or one time

(The question mark makes the preceding item optional. - Possessive quantifier.)

Possessive. If the optional item can be matched, then the quantifier won’t give up its match even if the

remainder of the regex fails. Possessive quantifiers do not use backtracking so they can run faster than using

other quantifiers. This is important when you have a large list of files to process. ?+ is the possessive

equivalent of using ?

Example:

1) abc?+c matches abcc but not abc

Match: (abc?+c)

Replace: \1 <space>

Looks to match ab followed optionally by c and immediately followed by a second c.

abcc matches because it matches against ab, immediately followed by a c that is in turn immediately followed by a

second c. Because the first c exists in the string, the optional path is not taken.

The string abc does not match. Although ab is matched, and immediately followed by a c, the second c in the RegEx

is not matched. In step 4 below, the attempt to backtrack is disallowed. The RegEx fails because Possessive

Quantifiers do not allow characters to be given back from the first match, which would be required for the match of

the second c.

 Attempt to backtrack fails. Use of a Possessive Quantifier

 does not permit backtracking.

Bulk Rename Utility Operations Manual Page 563 of 715

Metacharacters in Depth

Quantifiers cont.

Compare that against the non-Possessive equivalent of the RegEx:

Match: (abc?c)

Replace: \1 <space>

ab is matched, followed immediately by a c, but because there is no second c in the string, it backtracks to match

against the second c in the RegEx (the c following the Lazy Metacharacter, ‘?’), giving up the first c value and taking

the optional path, meaning that although there was a first c, in order to match, the RegEx Engine will instead treat the

first c as optional even though in the first capture it was not.

Here is a full analysis:

1. ab Match against the string literals, ‘ab’. Capture Group 1 = ab

2. c Match against the string literal, ‘c’. Capture Group 1 = abc

3. ? Make the ‘c’ in step 2 optional. Capture Group 1 = abc

In step 3, although the capture of the c is made optional, because it does exist, the optional path is not taken. Capture

Group 1’s value remains unchanged. Current position = EOL.

4. c Match against the string literal, ‘c’. Capture Group 1 = abc

In step 4, a second c is searched for. The RegEx Engine is at the EOL so it backtracks. As it backtracks, it finds a c

character in the string. This c character has previously been captured in step 2, but because step 3 makes this c capture

optional, in order to satisfy the match, Capture Group 1 gives up the previous match of the c and applies it to the

capture of the second c of the RegEx instead. Because the optional path is taken, the capture of the first c never

existed, satisfying the match of the literal c in step 4.

When the RegEx is made Possessive, the same steps are taken except that the c value of step 2 is not given back, and

the RegEx fails because it cannot satisfy the match of the second c in the evaluation.

A Possessive Quantifier runs faster as a result of not having to recalculate the expression (permutation) to try and

satisfy the match. Either it matches or is doesn’t, and backtracking will not take place. When you have a lot of files

that require renaming, this can save some time. The trick is that you have to know when to use what you have to its

advantage. That comes with experience.

Bulk Rename Utility Operations Manual Page 564 of 715

Metacharacters in Depth

Quantifiers cont.

There are also Possessive equivalents of Range Quantifiers:

{#, #}+ or {#,}+ or {#}+

Example:

String = abcdz

Match: (a.{0,}+z)

Replace: \1 <space>

Analysis:

1. a Match against the literal string character, ‘a’ Capture Group 1 = a

2. . Match against any character. Capture Group 1 = ab

3. {0,} Perform the match a minimum of zero (optional) Capture Group 1 = abcdz

 with no upper limit.

 Matches the remainder of the string.

4. + Make the .{0,) Possessive.

 Current position = EOL.

5. z Match against the literal string character, ‘z’.

 Already at EOL. Because of the Possessive nature,

 cannot backtrack to match against the ‘z’.

 Fails.

Bulk Rename Utility Operations Manual Page 565 of 715

Metacharacters in Depth

Quantifiers cont.

Compare this against the non-Possessive equivalent.

String = abcdz

Match: (a.{0,}z)

Replace: \1 <space>

Analysis:

1. a Match against the literal string character, ‘a’ Capture Group 1 = a

 Matches against the ‘a’ of ‘abcdz’.

2. . Match against any character. Capture Group 1 = ab

3. {0,} Perform the match a minimum of zero (optional) Capture Group 1 = abcdz

 with no upper limit.

 Matches the remainder of the string.

 Current position = EOL.

4. z Match against the literal string character, ‘z’ of

 ‘abcdz’.

 Already at EOL. Backtracks to match against

 the ‘z’ of ‘abcdz’.

Summary Notes:

1. + is the shorthand for {1,}

2. * is the shorthand for {,}

3. ? is the shorthand for {,1}

4. I will not be emphasizing any differences between string, value, and RegEx characters using the light blue bold

 anywhere else but within this section that pertained to Quantifiers. I only did it here because I felt that it could be

 confusing for the reader given the similarities between the values and the RegEx components.

Sources this Section: logicbig.com, regular-expressions.info, BRU Forum Admin, stackoverflow.com

Bulk Rename Utility Operations Manual Page 566 of 715

Greed and Lazy

Greed

The Greedy Quantifiers are -

match zero or more (match all) match 1 or more specified no. of matches Possessive

 * + {min,max} e.g. ++

These Quantifiers are greedy because they consume (repeatedly testing the pattern against..) every character in the

input string no matter if a match has been found and will do so until it reaches the end of the input string

(E{nd}O{f}L{ine}) regardless if there is more of the pattern left to process (more sub-patterns to be evaluated).

e.g., ‘ .* ’

If you would rather have the Quantifier stop at the first possible match, follow it with a question mark. This is called

‘Lazy’, e.g., ‘ .+? ’. Lazy is also referred to as Non-Greedy or Reluctant. A Lazy Quantifier can also make the

match, or if there is not a match, make the sub-expression optional as it was never evaluated, thereby allowing the rest

of the RegEx to be evaluated even without a match of the sub-expression that was made Lazy.

String = Album1987

Match: .+(\d\d)

Replace: \1 <space>

= 87 because ‘ .+ ’ is greedy, it matches to the EOL, then backtracks to match against the ‘87’.

Match: .+?(\d\d)

Replace: \1 <space>

= 19 because the ‘ ? ’ on ‘ .+? ’ makes that expression Lazy and matches only until it finds the first two digits. In the

analysis, the ‘ .+ ’ matches against the entire string just as in the first example, but the ‘ ? ’ makes the match

optional, so the RegEx engine repositions back to the start of the string where it then tests each character moving

forward against the \d\d, matching against the ‘19’.

Bulk Rename Utility Operations Manual Page 567 of 715

Greed and Lazy

Greed cont.

Example:

using the ‘ + ’ Quantifier…

String = This is a first test

This input string is a piece of an html tag. HTML is an embedded language that uses code enclosed between < >.

I want to locate the first occurrence of in the string. I include the literal characters of ‘ < ‘ and ‘>’ in the RegEx

to accomplish this.

If looking for characters in ‘< >’, we indicate to first find a ‘<’ character and then find what is inside by using

this pattern:

<.+> (the sub-expression, dot character and a plus sign, enclosed between angular brackets)

Match: <.+>

This is a first test

Analysis:

1. < Match against the literal string character, ‘<’. Capture Group 1 = <

 Matches the first ‘<’ of the first occurrence of

‘’.

2. . Dot Metacharacter. Match against any character. Capture Group 1 = <E

 Matches against the first ‘E’ of the first occurrence

of ‘’.

3. + Make it Greedy. Capture Group 1 = first test

 Current position = EOL.

4. > Match against the literal string character, ‘<’ Capture Group 1 = first

 Already at EOL. Backtracks to match against

 the last ‘>’ in the string, first test.

Notes:

1. Some examples use an HTML tag for reasons of illustration only. BRU is only used to rename files and folders, not

 text within a document or file.

2. Because the values returned in these examples may contain characters, e.g., < or > that are illegal in

 filenames, I was unable to show direct results in BRU. Instead I used results from the Regex Buddy program.

3. I felt that using these HTML text strings best illustrated what I wanted to explain and at the same time reflected

 some examples from source material that was used in this section.

Bulk Rename Utility Operations Manual Page 568 of 715

Greed and Lazy

Greed cont.

How does it end up ‘ first ‘ and not ‘ first test’ ‘?

When the next part of the pattern ‘ > ‘ is processed, the end of the Input String (EOL) has already been reached

because of the greedy ‘ + ’ . The PCRE engine (aka RegEx Engine) tries to correct itself by processing the Input

String backwards – testing from the end of the string moving to the front of the string looking for the next character

‘>’ until it either finds a match or the beginning of the string has been reached. This is called backtracking.

In backtracking, it gives up the characters, ‘<space> test’ leaving the end result value as first.

Basically the pattern is:

 C a p t u r e G r o u p 1

 <. + >

search for ‘<E’ append characters search for ‘>’

 <E first

Notes:

1. Regular Expression concepts such as backtracking have previously been discussed.

Bulk Rename Utility Operations Manual Page 569 of 715

Greed and Lazy

Lazy

Lazy refers to, ‘give em’ an out and they’ll take it’. When it comes to Quantifiers, Lazy instructs the RegEx Engine to

do the least amount of matches to satisfy the sub-expression. A non-Greedy Quantifier is one that will match the

shortest possible string in the least iterations of a permutation. An iteration is simply a repeat of the sub-expression. A

permutation is a recalculated evaluation of the sub-expression to provide an alternative method in order to find an

overall match. Where one fails, another is attempted. If you really want to see all the ‘visible’ permutations of a

RegEx, I encourage you to visit regex101.com where you can see the animation of the RegEx play out.

To make a Greedy Quantifier lazy, add a question mark following the ‘repeat’, in this case the ‘ + ’, as in: ‘ .+? ’

The Question mark makes the ‘ + ’ lazy because instead of repeating the ‘ . ‘ as many times as it can (until the end of

the input string, EOL), it will now repeat it in as few times as possible. The ‘+’ requires a minimum match of 1 to

make the match succeed, but the addition of the ‘?’ makes the sub-expression including the Greedy ‘ + ’ optional.

Greedy Example:

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)

Replace: \2\3

Analysis:

1. . Dot Metacharacter. matches against any character. Capture Group 1 = T

 Matches against the ‘T’ of ‘This’.

2. * Make it Greedy. Capture Group 1= <entire string>

 Current position = EOL.

3. & Match against literal string character,’&’. Capture Group 2 = &

 Already at EOL. Backtracks to match against Changes Capture Group 1 =

 the last ‘&’ that precedes the <space> before ‘test. This is a &EM&first&EM

4. [A-Z] Class consisting of an uppercase letter. Capture Group 3 = E

 Changes Capture Group 1 =

 This is a &EM&first

Attempts to move forward but cannot match the pattern ‘& uppercase letter’ against the ‘<space> test’ so it backtracks

still testing to match the pattern, until it matches the ‘& Uppercase letter’ to the ‘E’ that precedes ‘first’. This also

reevaluates the value of Capture Group 2 to the ampersand following ‘first’ and consequently changes Capture 1’s

value to drop the characters, ‘&EM’. For a full explanation, please refer to the sub-section, ‘If I want to capture both

of those values of ‘&EM& …’ under the section, ‘Greedy and Lazy Examples’.

5. + Make it Greedy. Capture Group 3 = EM

6. \2 Match against the value held in Backreference \2. Capture Group 3 = EM&

 Backreference \2 references Capture Group 2.

 Capture Group 2’s value is ‘&’.

 Moves forward to match against the ‘&’ preceding

the ‘<space> test’.

Bulk Rename Utility Operations Manual Page 570 of 715

Greed and Lazy

Lazy cont.

This is one of those RegEx where the whole is better explained than the breakdown of its components.

What the .*&[A-Z]+\2 is really searching for is to test each character from the end of the string for the pattern:

& <two uppercase letters> &

For each permutation, the search is always conducted from the end of the string because that is what the .* directs.

1. Evaluate .*, go to end of string.

2. Begin testing for pattern at current character, moving backwards.

3. If fail, repeat until pattern matched or string exhausted.

It looks like this:

The lines in Yellow represent each permutation beginning with the evauation of ‘ .* ’. This moves the RegEx Engine

to the end of the string positioning itself by backtracking to the current character. The current character is the

character to the left of the last character tested in the previous permutation. It then tests this current character for the

pattern. It is not until line 42 that the pattern is matched.

The Lines in Yellow represent the value captured in capture Group 1. Capture Group 2’s value is seen in line 27 and

Capture Group 3’s value is in line 45 when it finally matches for the pattern in line 42 and moves forward. The Lines

in Yellow also illustrate how characters from a previous capture are given back. This final value for Capture Group 1

can be seen in line 40.

Bulk Rename Utility Operations Manual Page 571 of 715

Greed and Lazy

Lazy cont.

Notes:

1. A Backreference references only the captured value not the original expression.

2. If I had wanted to capture the last word ‘test’ I could have used: (.*)(&)()(.+) and only include Capture group \4 in

 the Replacement String:

Match: (.*)(&)()(.+)

Replace: \4

 Where:

 \1 = This is a &EM&first&EM \2 = & \3 = <space> \4 = test

 After backtracking to match the last ‘&’ prior to the <space> before ‘test’, the RegEx Engine moves forward

 to capture the <space> for Capture Group 3, and ‘test’ for Capture Group 4.

Bulk Rename Utility Operations Manual Page 572 of 715

Greed and Lazy

Lazy cont.

Lazy Example:

By making the ‘ .* ’ Lazy, we change the result to capturing the first part of the string rather than the last part of the

string.

String = This is a &EM&first&EM& test.jpg

Match: (.*?)(&)([A-Z]+\2)

Replace: \2\3

1. . Dot Metacharacter. matches against any character. Capture Group 1 = T

 Matches against the ‘T’ of ‘This’.

2. * Make it Greedy. Capture Group 1= <entire string>

 Current position = EOL.

3. ? But not too Greedy. Capture Group 1 = null

 Current position = BOL.

By making the Greedy Quantifier in step 2 Lazy, it makes what would have been the entire match of the string

optional. When used with the ‘ * ’, what this essentially does is give up the match as if it never was evaluated, and

return to the position before the match. In this example, it is at the BOL. Because the * can match against zero or

more times, it matches at the BOL. The BOL has a null value, and this results in a Zero Occurrence Match for

Capture Group 1. This is a Zero Length Match, so although Capture Group 1 does exist, it is empty at this point.

If I had instead used ‘ .+? ’, Capture Group 1 would currently hold the value of ‘T’. Why? Although the match is still

given up, the RegEx Engine returns to the point before the match, the BOL again, but the ‘ +’ must match at least one

time, so it moves forward to match against the ‘T’ of ‘This’.

4. & Match against literal string character,’&’. Capture Group 2 = &

 Moves forward to match against the first Changes Capture Group 1 =

 ‘&’ after the <space> following ‘is’ This is a <space>

5. [A-Z] Class consisting of an uppercase letter. Capture Group 3 = E

6. + Make it Greedy. Capture Group 3 = EM

7. \2 Match against the value held in Backreference \2. Capture Group 3 = EM&

 Backreference \2 references Capture Group 2.

 Capture Group 2’s value is ‘&’.

 Matches against the second ‘&’ prior to ‘first’

Notes:

1. EOL is the End of the String after the last character position, prior to the extension, if any, and BOL is the

 Beginning of the String before the first character position.

Bulk Rename Utility Operations Manual Page 573 of 715

Greed and Lazy

Lazy cont.

Lazy Example:

My analysis, you must remember, is a simplified observation based on changing values, and not an accurate record

that documents all of the background permutations. I do not want you to think that my interpretations are in stone. Far

from it.

For example, when I state that the RegEx Engine moves forward – I imply that it moves forward only – it does not. It

is actually testing each character as did the previous RegEx, looking for that pattern and backtracking as required,

although the amount of backtracking is minimal compared with the previous example. The backtracking occurs when

the .*? is applied, matching or not matching, and if not matching, making the sub-expression optional, moving back to

the previous match.

Another fact you should be aware of is that I base the analysis on typically a single component added at a time, and

then I reflect back any changes that occurred as a result. But more often than not, the RegEx is testing using patterns

that may be made up of sub-expressions of more than one component. I do document some of these. For example, a

string portion may be tested against a pattern of a lowercase letter followed by a numeric digit, followed by a <space>

character before it is allowed to match rather than just testing for a lowercase letter. The former may be required to

reach the EOL and backtrack for the match. The latter may just move forward and match against the first lowercase

letter found. I account for these discrepancies where possible and ensure that the final values obtained are not affected

by my methodology. I also validate my findings from debug output from programs like Regex Buddy or websites like

Regex101.com.

Bulk Rename Utility Operations Manual Page 574 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Replace: \2\3 <space> <space>\5\6

Notice the use of the extra <spaces> that display in the New Name. Any character can be entered – spaces, etc. in the

Replace String and it will display as a literal. This is because with the exception of the \1.. \9 backreferences to

represent the values held by the Capture Groups, the Replace field, generally speaking, does not use the Regular

Expression language syntax, only the Match field does.

What this example does is to capture both occurrences of ‘EM&’ in the filename. It does this by simply repeating the

entire sequence over. There is currently no way to apply one expression on multiple match occurrences in BRU

otherwise under v1. More on this a little later.

Under v2, it might look something like this:

Match: ((&)([A-Z]+\2))/g

Replace: <space> } <5 spaces> 1 = \1 <3 spaces> 2 = \2 <3 spaces> 3 = \3 <5 spaces> {

This is a &EM&first&EM& test

Bulk Rename Utility Operations Manual Page 575 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test.jpg

Match: ((&)([A-Z]+\2))/g

Analysis:

Where:

Match 1:

 /1 = &EM& \2 = & \3 = EM&

 The Match takes place at the first occurrence of the substring &EM& in yellow:

 This is a &EM&first&EM& test

 Match 2:

 /1 = &EM& \2 = & \3 = EM&

 The Match takes place at the second occurrence of the substring &EM& in blue:

 This is a &EM&first&EM& test

 C a p t u r e G r o u p 1

 2 3

 ((&) ([A-Z]+ \2)) /g

1. & Match against the literal string character, ‘&’. Capture Group 2 = &

Matches the ampersand before the <space> preceding Capture Group 1 = &

the ‘a’.

2. [A-Z] Match against a class consisting of an uppercase letter. Capture Group 3 = E

Matches the ‘E’ of the first occurrence of ‘EM’. Capture Group 1 = &E

3. + Make it Greedy. Capture Group 3 = EM

 Capture Group 1 = &EM

4. \2 Match against the value of Capture Group 2. Capture Group 3 = EM&

 Matches the ampersand after the first occurrence Capture Group 1 = &EM&

 of the ‘&EM’.

5. \g Global switch enabled. Allows all matches to take place

 and those values returned by BRU.

v2.allows multiple matches. BRU will return the values that have changed, or matched without changes and

substitute them within a ‘copy’ of the original string as New Name.

Bulk Rename Utility Operations Manual Page 576 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test.jpg

I’ll change the Replace String to make it a little more legible.

Match: ((&)([A-Z]+\2))/g

Replace: } \2 \3 {

You can see more clearly where I have isolated parts of the original string from the matched values using the braces.

Although the matched values have not changed from the original string, they were still matched successfully in the

RegEx and therefore substituted for those same values in this copy of the original string.

Notes:

1. New Name is always a new string value. In v2, it creates a copy of the original string and substitutes values per the

 RegEx. It does not isolate those values from the original parts of the string as is done under v1. Under v1, in fact,

 the RegEx is used to indicate which parts of the original string are to be kept by Capturing those values and any

 parts that are not captured are discarded in the New Name.

2. v1 refers to the older PCRE Engine v5.x used under previous versions of BRU, as opposed to the newer engine

 implemented with BRU v3.4 with the Boost Regular Expressions Library, referred to as v2.

Bulk Rename Utility Operations Manual Page 577 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

Back to v1.

If I want to capture both of those values of ‘&EM&, I have to use two instances of the RegEx.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Replace: \2\3 <space> <space> \5\6

Analysis:

 (.*)(&)([A-Z]+\2) (.*)(&)([A-Z]+\2)

Where:

 \1 = This is a<space> \2 = & \3 = EM& (first occurrence)

 \4 = first \5 = & \6 = EM& (second occurrence)

1. . Dot Metacharacter. Matches against any character. Capture Group 1 = T

 Matches against the ‘T’ of ‘This’.

2. * Make it Greedy. Capture Group 1 = <entire string>

 Current position = EOL.

3. & Match against literal string character, ‘&’. Capture Group 2 = &

 Already at EOL. Backtracks to match against the Changes Capture Group 1 =

 ampersand preceding ‘<space> test’. This is a &EM&first&EM

4. [A-Z] Match against a class consisting of uppercase letter. Capture Group 3 = E

 Matches against the ‘E’ of the second occurrence of Changes Capture Group 2 = &

 the ‘&EM&. Changes Capture Group 1 =

 This is a &EM&first

Attempts to move forward but cannot match the pattern ‘& uppercase letter’ against the ‘<space> test’ so it backtracks

still testing to match the pattern, until it matches the ‘& Uppercase letter’ to the ‘E’ that precedes ‘first’.

Capture Group 2’s value changes although this is not apparent because it is the same character as before. What has

changed is which character has been matched. When the ‘E’ is captured, Capture Group 2’s value changes from the

ampersand preceding ‘<space> test’ to the ampersand that follows after ‘first’. This is because when Capture Group 3

captures the ‘E’ value, Capture Group 2 is forced to give up its value and the sub-expression in step 3 is reevaluated

as a result. Capture Group 1 is forced to drop the characters, ‘&EM’. Why? Because the ampersand of ‘&EM’ is now

held by Capture Group 2 and all following characters are discarded.

5. + Make it Greedy. Capture Group 3 = EM

6. \2 Backreference to value held in Capture Group 2. Capture Group 3 = EM&

 The value in Capture Group 2 is ‘&’.

 Moves forward to match against the ampersand.

Bulk Rename Utility Operations Manual Page 578 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

Let’s see if I can make sense of it for you.

Step 1. Group 1

 T his is a &EM&first&EM& test

RegEx Engine moves forward. Capture Group 1 matches against the ‘T’.

Step 2. Group 1

 This is a &EM&first&EM& test EOL

RegEx Engine moves forward to EOL. Capture Group 1 matches against the remaining string.

Step 3. Group 1 Group 2

 This is a &EM&first&EM & test EOL

RegEx Engine backtracks. Capture Group 2 matches against the ampersand. Capture Group 1 gives up the characters,

‘& test’.

Step 4. Group 1 Group 2 Group 3

 This is a &EM&first & E M &

RegEx Engine moves forward. Capture Group 3 matches against the ‘E’. Capture Group 2 gives up it’s value and

reevaluates to match against the ampersand following ‘first’. Capture Group 1 gives up the characters, ‘&EM’.

Step 5. Group 1 Group 2 Group 3

 This is a &EM&first & E M &

RegEx Engine moves forward. Capture Group 3 adds the ‘M’ to its previous value, ‘E’. All other values unchanged.

Step 6. Group 1 Group 2 Group 3

 This is a &EM&first & EM &

RegEx Engine moves forward. Capture Group 3 adds the ‘&’ to its previous value, ‘EM’. All other values unchanged.

Bulk Rename Utility Operations Manual Page 579 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Where:

 \1 = This is a<space> \2 = & \3 = EM& (first occurrence)

 \4 = first \5 = & \6 = EM& (second occurrence)

It gets a bit complicated from here.

7. . Dot Metacharacter. Matches against any character. Capture Group 4 = <space>

 Matches against the <space> preceding ‘test’.

Step 7. Group 3 Group 4

 EM& <space> test EOL

RegEx Engine moves forward. Capture Group 4 matches the <space> preceding ‘test. All other values are unchanged.

8. * Make it Greedy. Capture Group 4 = <space> test

 Current position = EOL.

Step 8. Group 3 Group 4

 EM& <space> test EOL

RegEx Engine moves forward. Capture Group 4 matches the remaining string to EOL.

9. & Match against literal string character, ‘&’. Capture Group 5 = &

 Already at EOL. Backtracks to match against the Changes Capture Group 4 =

 ampersand preceding ‘<space> test’. This results in first&EM

 reevaluating the values in all previous Capture Groups. Changes Capture Group 3 = EM&

 Changes Capture Group 2 = &

 Changes Capture Group 1 =

This is a <space>

Bulk Rename Utility Operations Manual Page 580 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Where:

 \1 = This is a<space> \2 = & \3 = EM& (first occurrence)

 \4 = first \5 = & \6 = EM& (second occurrence)

Capture Group 5 Backtracks to match against the ampersand that precedes ‘<space> test’. Because the ‘<space> test’

value was previously held by Capture Group 4 and the ampersand that precedes it was part of the value held by

Capture Group 3, this creates a domino effect where all the other Capture Groups have to be reevaluated.

Before Step 9, the evaluations are: Group 1 Group 2 Group 3 Group 4

 This is a &EM&first & EM& <space> test EOL

After Step 9, all of the other Capture Groups are reevaluated:

 Group 1 Group 2 Group 3 Group 4 Group 5

 Capture Group 2

 This is a <space> & EM& first&EM & <space> test EOL

 .* & [A-Z]/2 & .* &

 & [one or more uppercase letters] & Pattern established to match

I used a colour code to visually display the overlaps.

Capture Group 2 has to match against the pattern of an ampersand followed by an uppercase letter. It fails to match

against the ‘&’ that precedes ‘f’ of ‘first. It does, however, match against the ‘&’ that precedes the <space> of ‘a

<space>’ because of the uppercase letter of ‘E that follows. As a consequence, this forces Capture Group 1 to discard

the characters, ‘&EMfirst’. All of the other Capture Groups give up their value and are reevaluated.

Bulk Rename Utility Operations Manual Page 581 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Where:

 \1 = This is a<space> \2 = & \3 = EM& (first occurrence)

 \4 = first \5 = & \6 = EM& (second occurrence)

Step 9. cont.

 Group 1 Group 2 Group 3 Group 4 Group 5

 This is a <space> & EM& first&EM & <space> test EOL

Capture Group 3 has to match against one or more uppercase letters followed by an ampersand and this matches

against the ‘EM&’, that follows after the capture of the, ‘&’, held by Capture Group 2.

Capture Group 4 captures the remainder of the string up to the value captured in Capture Group 5, the ampersand that

precedes, ‘<space> test’.

After the reevaluations, the result is:

 Group 1 Group 2 Group 3 Group 4 Group 5

 This is a <space> & EM& first&EM & <space> test EOL

 The ‘<space> test’ are not captured.

Bulk Rename Utility Operations Manual Page 582 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Where:

 \1 = This is a<space> \2 = & \3 = EM& (first occurrence)

 \4 = first \5 = & \6 = EM& (second occurrence)

10. [A-Z] Match against a class consisting of uppercase letter. Capture Group 6 = E

 Matches against the ‘E’ of the second occurrence of Changes Capture Group 5 = &

 the ‘&EM&. Changes Capture Group 4 = first

The current position after the ‘&’ that was captured by Capture Group 5 is the <space> that precedes ‘test’. Cannot

match against the <space>, so after hitting the EOL, it backtracks to match against the pattern of ‘&’, established in

step 9, followed by an uppercase letter’ in the class of [A-Z]. This fails to match against the ‘M’ of ‘first&EM’

because of the ‘E’ that precedes the ‘M’ but it does match against the ‘E’ of ‘first&EM’.

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

 Capture Group 5

 This is a <space> & EM& first & E M & <space> test EOL

 .* & [A-Z]

 & [uppercase letter] Pattern established to match

Attempts to move forward but cannot match the pattern ‘& uppercase letter’ against the ‘<space> test’ so it backtracks

still testing to match the pattern, until it matches the ‘& Uppercase letter’ to the ‘E’ that precedes ‘first’.

Capture Group 5’s value changes although this is not apparent because it is the same character as before. What has

changed is which character has been matched. When the ‘E’ is captured, Capture Group 5’s value changes from the

ampersand preceding ‘<space> test’ to the ampersand that follows after ‘first’.

When Capture Group 6 captures the ‘E’ value, Capture Group 5 is forced to give up its value and the sub-expression

in step 9 is re-evaluated as a result. Capture Group 4 is forced to drop the characters, ‘&EM’. Why? Because the

ampersand of that value of ‘&EM’ is now held by Capture Group 5 and all the following characters are discarded.

11. + Make it Greedy. Capture Group 6 = EM

12. \2 Backreference to value held in Capture Group 2. Capture Group 6 = EM&

 The value in Capture Group 2 is ‘&’.

 Moves forward to match against the ampersand.

Bulk Rename Utility Operations Manual Page 583 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

Using just one of the two expressions of the RegEx, results in this:

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)

.*

 Capture Group 1

&

Capture Group 2

[A-Z] +

\2

 Capture Group 3

Bulk Rename Utility Operations Manual Page 584 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

Because of all of the numerous changes that are a result of the addition of the second expression, there are numerous

backtracking steps. This may slow down processing if you have a lot of files.

Steps 1 through 46 are basically the same as before. After step 46, it begins the second expression:

Step 8 .*

 Capture Group 4

Step 9 &

 Capture Group 5

Notes:

1. My indicators for the Debug Logs of Regex Buddy program are only estimates on where the final change takes

 place.

Bulk Rename Utility Operations Manual Page 585 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

 Step 9 Reevaluate Capture Group 1

 Step 9 Reevaluate Capture Group 2

 Step 9 Reevaluate Capture Group 3

 Group 1 Group 2 Group 3

 This is a <space> & EM&

Bulk Rename Utility Operations Manual Page 586 of 715

Greed and Lazy Examples

#1. Isolate both ‘Em&’s cont.

String = This is a &EM&first&EM& test

Match: (.*)(&)([A-Z]+\2)(.*)(&)([A-Z]+\2)

 Group 4 Group 5

 first&EM &

 Step 9 Reevaluate Capture Group 4

 Step 9 Finished evaluation

Group 5 Group 6

 & EM&

Step 10 Reevaluate Capture Group 5

Step 10 – Step 11 Capture Group 6

Step 12 Capture Group 6

Bulk Rename Utility Operations Manual Page 587 of 715

Greed and Lazy Examples

#2. isolate ‘This is a test’

String = This is a &EM&first&EM& test.jpg

2 methods:

(1). Match using generic pattern

Match: (.*)()(.*)()(.*)

Replace: \1\4\5

\1 = This is a

\2 = <space>

\3 = &EM&first&EM&

\4 = <space>

\5 = test

(2). Match by isolating words

Match: ^(\D+?\b)(\b\D+?\b)(\b\D+?\b)(\b\D+?\b)(\b\D+?\b)(.*)\s(.*)

Replace: \1\2\3\4\5\2\7

 Where:

\1 = This

\2 = <space>

\3 = is

\4 = <space>

\5 = a

\6 = &EM&first&EM&

\7 = test

This one captures each word separately.

The format is

^(\D+?\b) - for the word at the beginning of the filename

(\b\D+?\b) - next word within filename

The question mark makes the Quantifier + Lazy instead of Greedy. So instead of more than one word being

consumed it only consumes what is required until it hits \b which is whitespace (the space after the word).

Captures each word - ‘This’ <space> ‘is’ <space> ‘a’

(.*) Then it switches to collecting remainder of line = &EM&first&EM&

\s - follows to the space right before ‘test’

(.*) – collects the remainder of the line = ‘test’

Bulk Rename Utility Operations Manual Page 588 of 715

Backtracking

Let’s see exactly what this is and how it works.

When a Greedy Quantifier is evaluated, it consumes (captures) all of the characters from the current position on to the

end of the string. It does not matter if the match has been satisfied or not. It doesn’t matter if there is still more of the

RegEx left to process. These characters are then held in the Capture Group that contained the Quantifier.

For example, this Quantifier is commonly used:

(.*)

The dot indicates to match any character. The asterisk is a greedy

quantifier that tells it to repeat the dot endlessly until EOL, End of Line,

or more to the point in BRU, ‘end of filename’.

Example:

String = Test 123.txt

 Match: (.*)()

Replace: \1

The string is made up of 8 characters.

 T e s t 1 2 3

 0 1 2 3 4 5 6 7

 Capture Group 1 (.*) gather up all the characters of the string. Current position is at end of string

 = Test 123

 Capture Group 2 () Locate space. Changes Capture Group 1 value to Test. Why? Because the <space>

 character, already a part of Capture Group 1, is given up to Capture Group 2.

 Capture Group 1’s value changes to reflect all characters up to the <space>. This is

 the value, ‘Test’. The remainder of the string, ‘123’, also a part of Capture Group 1

 previously, was not included in Capture Group 2 and is discarded.

This is where it gets interesting. The current position is at the end of the string but the engine has to process Capture

Group 2. Processing will now continue from the end of the string to the front. This is called backtracking.

Notes:

Additional photos provided by the program Regex Buddy. For more information on this software, refer to Volume II.

Bulk Rename Utility Operations Manual Page 589 of 715

Backtracking

It next tests the current character at positions, 7, 6, 5.. until it finds the space at position 4. The current position is at

position 4:

 T e s t 1 2 3

 0 1 2 3 4 5 6 7

 Backtracking

 The character from position number 4 is stored in Capture Group 2.

 = <space>

 What happens now is this. The engine must rectify the string stored in the previous Capture Group,

 because there are too many characters stored.

 Capture Group 2 has yet to be processed so the greedy quantifier takes too many characters the first

 time. The engine is designed to remove whatever characters Capture Group 2 stores from that

 position (4) to the end of the string from the value stored in Capture Group 1.

 Capture Group 1 originally =

 T e s t 1 2 3

 0 1 2 3 4 5 6 7

 Capture Group 2 = <space> stored from position 4

 Capture Group 1 is corrected by taking away all characters from position 4 to end of string.

 T e s t 1 2 3

 0 1 2 3 4 5 6 7

 Capture Group 1 corrected to Test

 \1 = Test

 \2 = <space>

 Notes:

1. Backtracking can slow down processing especially if there are a lot of files to rename. If a RegEx is processing

 slow it may be time to redo it so there is less backtracking involved. For example, you may need to use Possessive

 Quantifiers and see if you can come up with the same results.

2. Corrections may also be made to a Capture Group if the same character added to one Capture Group is part of the

 value of another. In that case, each character is simultaneously dropped from the original as it is added to the new.

3. For more detailed information on Backtracking and how it is used, refer to Volume II which provides many

 examples and full analysis of sample RegEx.

Bulk Rename Utility Operations Manual Page 590 of 715

Non-marking Groups

Normally grouping part of the RegEx pattern with the parentheses creates a Capture Group. These Capture Groups,

also referred to as ‘marked’ groups, capture data values that can be recalled by using their designated number in the

form \n. There are often times when a grouping is required without a capturing requirement. This can be used to ‘not

include’ certain matched groups and drop them from the result.

syntax: (?:)

e.g.,

(?:ab)+ repeats the "ab" sub-expression match without creating a Capture Group

Example:

String = Graham James Edward Miller.jpg

Match: (.*?)(?: .*) (.*) which is … (.*?)(?:<space>.*)<space>(.*)

Replace: \1, \2

This always matches the first item, e.g., ‘Graham’ in Capture Group 1 and the next to the last item, e.g., ‘Edward’ in

Capture Group 2 no matter what the string, as long as there are spaces between items.

Match: (.*?)(?: .*)(?:.*) (.*) which is … (.*?)(?:<space>.*)(?:.*)<space> (.*)

Replace: \1, \2

This always matches the first item, e.g., ‘Graham’ in Capture Group 1 and the last item, e.g., ‘Miller’ in Capture

Group 2 no matter what the string, as long as there are spaces between items.

Source Material for this section: php.net

Bulk Rename Utility Operations Manual Page 591 of 715

Using Options with RegEx

Case Insensitive

What if we needed a Case Insensitive match?

There is no metacharacter that performs this. But there is something called a mode modifier or option that can.

At the beginning of a Regular Expression, you can specify modifiers followed by a close parentheses.

i) case insensitive matching

Example:

String = Andrew Gregory Macintyre.jpg

Match: (andrew|Mac)

Replace: \1 = Mac

Even though “Andrew’ was first in the string, it did not match because the pattern is always case sensitive.

However, if you use this:

Match: i)(andrew|Mac) with a Capture Group

or even this-

Match: i)andrew|Mac without a Capture Group

It should return ‘andrew’ but it doesn’t. Even though \1 should equal ‘Andrew ‘in the first example because the match

is made insensitive.

The problem is that BRU does not accept closed parentheses by itself – there must always be an equal number of open

and closed parentheses.

For example:

Match: (red|white) (king|queen))

The expression is Invalid because there are only 2 open parentheses and 3 closed parentheses.

There is a way around this. A Work-around has been found and fully tested.

Bulk Rename Utility Operations Manual Page 592 of 715

Using Options with RegEx

Case Insensitive cont.

Because BRU cannot have uneven brackets, the modifier cannot be recognized. If you have –

(i)

… then BRU will treat it as a match against ‘i’ instead of as a modifier or option.

Instead use an unmarked group. Why? Because it already has a format that BRU understands. But if the data needed

to be captured, this wouldn’t work either:

Example:

String = Andrew Gregory Macintyre.jpg

Match: (?i:gre)

Results in: ‘Gre’ matching but not captured. Just moves the position to the lowercase ‘g’ in Gregory

The solution is to create a Capture Group around the unmarked group:

String = Andrew Gregory Macintyre.jpg

Match: ((?i:gre))

Where: \1 = Gre

Notes:

1. The current position is revealed by adding the Capture Group ‘(…)’ after the initial pattern to capture the current

 position and two characters after. The value is captured and stored in Capture Group 2. By recalling the value, I can

 determine the current position of the RegEx engine..

For example:

 Match: ((?i:gre))(...)

Where : \2 = gor current position is at ‘g’ after ((?i:gre)) has finished (1st character captured = g)

Bulk Rename Utility Operations Manual Page 593 of 715

Using Options with RegEx

Case Insensitive cont.

Using the Case Insensitive Modifier- Turning it On.

As you can see on the previous page, this method does work with BRU. Here is an alternate method:

You can use options in the form (?i) as in (?i)(gre) returns ‘Gre’ from the string, Andrew Gregory Macintyre.jpg

Example:

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (a(?i)(BC))(.......)

Replace: Group 1 = \1 Group 2= \2 Group 3 = \3

 Where:

 \1 = abc

 \2 = bc

 \3 = <space>abC<space>AB

You can use the modifier either within a Capture Group (previous page) or outside of a Capture Group (above), but

the syntax is slightly different for each. You can even have a mixture within the same RegEx.

Syntax for using the modifier outside of a Capture Group: (?i)

The modifier is placed within parentheses without the colon (this does not Capture anything).

Syntax for using the modifier within a Capture Group: ((?i:<expression>))

The modifier is placed in an Unmarked Group (?:<expression>). The Capturing is performed using an additional set

of parentheses around the Unmarked Group ((?:<expression>). Adding the modifier to the Group gives you the proper

syntax for this modifier – ((?i:<expression>)).

The rules are as follows:

Within a Capture Group, the modifier only applies to the evaluation of the expression within. Meaning that if you

have two Capture Groups, the first with the modifier and the second without, only the first Capture Group is Case

Insensitive and the second Capture Group would remain Case Sensitive.

Outside of a Capture Group, the entire expression from that point onward is made Case Insensitive. This will be in

effect until either EOL is reached or the modifier is turned off.

Because of the nature of this, I call this work-around of the modifier, Case Insensitivity on Demand.

Bulk Rename Utility Operations Manual Page 594 of 715

Using Options with RegEx

Case Insensitive cont.

Using the Modifier – Turning it Off.

Syntax for using the modifier outside of a Capture Group: (?-i)

The modifier is placed within parentheses without the colon (this does not Capture anything).

Syntax for using the modifier within a Capture Group: ((?-i:<expression>))

The modifier is placed in an Unmarked Group (?:<expression>). The Capturing is performed using an additional set

of parentheses around the Unmarked Group ((?:<expression>). Adding the modifier to the Group gives you the proper

syntax for this modifier – ((?i:<expression>)).

The rules are as follows:

Within a Capture Group, the modifier to turn it on and off can reside within the same expression (On Demand).

Outside of this Capture Group or within another Capture Group, the default of Case Sensitivity would be in effect

regardless.

Outside of a Capture Group, the entire expression from that point onward is reverted back to Case Sensitive and will

remain so unless another modifier turns Case Insensitivity On once more.

Here are some examples using the string, Andrew Gregory Macintyre.jpg

Outside of Group – Turned on until EOL or turned off by modifier

Match: (?i)(gregory) (macin)

Replace: \1 \2

Inside of Group – affects current Group only

Match: ((?i:gregory)) (macin)

Replace: \1 \2

No match because the Case Insensitive is placed within the first Capture Group only, therefore, gregory would match

“Gregory” but ‘macin’ would not match “Macin” in the string.

Inside of Groups - Affects each Group only

Match: ((?i:gregory)) ((?i:macin))

Replace: \1 \2

Bulk Rename Utility Operations Manual Page 595 of 715

Using Options with RegEx

Case Insensitive cont.

Here are some additional examples using the string, Andrew Gregory Macintyre.jpg

on Demand, Turned on, on Demand, Turned off

Match: (?i)(gregory)(?-i) (Macin)

Replace: \1 \2

Placed Outside of Groups – Turned on, then off, then on again

Match: (?i)(andrew) (?-i)(Gregory)(?i) (macin)

Replace: \1 \2 \3

Within Groups – One Group is turned on, one Group, turned off, third group turned on

Match: ((?i:andrew)) ((?-i:Gregory)) ((?i:macin))

\1 \2 \3

The group that is turned off is not needed because each group is separate, therefore you could have this instead:

Match: ((?i:andrew)) (Gregory) ((?i:macin))

Replace: \1 \2 \3

… and still produce the same result.

Mixed –

Match: ((?i:andrew)) (?-i)(Gregory)(?i) (macin)

Replace: \1 \2 \3

Source Material this section: geany.org

Bulk Rename Utility Operations Manual Page 596 of 715

Using Options with RegEx

Free-Space Option

Another option that BRU supports is Free-Space (?x)

Normally the RegEx expression uses a syntax of ‘Exact-Spacing’. This means that any whitespace in the expression is

deliberate and meant to convey as part of the expression. For example, there may be a <space> in the string that

requires a location of a <space> character in the RegEx in order to match.

However, sometimes for clarity it would be nice to freely have whitespace. This is what this option does. Any

whitespace in the RegEx is ignored and does not affect the legality of the syntax. If this option is invoked, BRU will

still be able to evaluate the expression.

In BRU, whitespace are <space> characters because other whitespace characters, tab, new line and carriage return, are

not supported just out of common sense. They would only be useful in a multi-line application and BRU is a single

line application. So when referring to any whitespace, I am referring to <space> characters.

Let’s use the example taken from the discussion on Greed and Laziness -

String = This is a &EM&first&EM& test.jpg

Match: (.*)(?'test'&)([A-Z]+\2)

Replace: \2\3

The above is the original match RegEx string using exact spacing (except that I have substituted a named Capture

Group for Capture Group 2).

Now let’s try that same expression using the Free-Space option.

Match: (?x)(.*)(?'test'&)([A-Z]+\2)

Now with the Free-Space option in place, I can add the whitespace without affecting BRU’s evaluation:

Match: (?x) (.*) (?'test' &) ([A-Z] + \2)

Replace: \2\3

Where:

 \1 = This is a &EM&first

 \2 = &

 \3 = EM&

Bulk Rename Utility Operations Manual Page 597 of 715

Using Options with RegEx

Free-Space Option cont.

Notes:

1. You can only add whitespace between expressions or sub-expressions in the RegEx but not within the syntax that

 makes up a component of a sub-expression.

 For example you could not have (? ‘test’) because the syntax of the named Capture Group is, (?’name’)

2. The only whitespace (that I am aware of) that BRU supports are <space> characters.

Bulk Rename Utility Operations Manual Page 598 of 715

Using Options with RegEx

Comments

Comments in Free-Space

Although not too practical, BRU supports comments with the Free-Space option. It could be used for documenting

purposes.

A comment is indicated by the numeric sign, #. Anything after the numeric is ignored as part of the expression.

So you could have:

Match: (?x) (.*) (?'test' &) ([A-Z] + \2) # this is a comment

Comments in Exact-Spacing

You are not limited to comments only in Free-Space. You can also add comments in Exact-Space as well. The syntax

is a little different.

 Syntax:

 (?# comment)

For Example:

Match: (.*)(?# This is a comment)(?'test'&)([A-Z]+\2)(?# This is another comment)

Notes:

1. Comments display only within the RegEx and not in New Name. As I said before, not too practical.

Bulk Rename Utility Operations Manual Page 599 of 715

If Then Else

A special construct (?if then|else) allows you to create conditional Regular Expressions. If the if part evaluates to true,

then the RegEx engine will attempt to match the then part. Otherwise, the else part is attempted instead. The syntax

consists of a pair of parentheses. The opening parenthesis must be followed by a question mark, immediately

followed by the if part, immediately followed by the then part. This part can be optionally followed by a vertical bar

and the else part along with the closing parenthesis. The if part can also be a Lookahead.

Syntax (using a Lookahead):

 (?(?=RegEx)then|else)

Example:

String = xghiy

Match: ((x)?g(?(1)c|h))

Where : \1 = xgh \2 = x

Analysis:

Capture Group 2 is nested inside Capture Group 1.

(x)? optional capturing group Capture Group 2 = null

g Search for literal ‘g’ character. Capture Group 1 = xg

 Matches ‘g’ of ‘xghiy’ (not captured) Changes Capture Group 2 = x

At this point, because of the match for the ‘g’, Capture Group 2 changes from a null value to holding the value of the

‘x’ and the aggregated value of Capture Group 1 becomes ‘xg’.

(?(1)c|h) Lookahead used in an If/Then statement. Capture Group 1 = xgh

The Lookahead creates a conditional statement that tests the capturing group for a ‘c’ OR ‘h’ character. If Capture

Group 1 has a value (successfully matched), then Lookahead for the ‘c’ else for the ‘’h’. A Lookahead is an assertion

and does not capture a value, but I placed the Lookahead in a Capture Group, thereby the ‘h’ value matched is

captured.

Notes:

1. Information on Lookaheads will be discussed shortly.

Source Material this section: regular-expressions.info

Bulk Rename Utility Operations Manual Page 600 of 715

Using multiple Capture Groups to locate Partial Words

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(ham))

Replace: Capture Group 1= \1 Capture Group 2 = \2

Where: \1 = Graham

 \2 = ham

Using this match …

Match: ((?i)(Gra(ham))(.*)mil)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where : \1 = Graham the aB ab abc abC ABC Mill

 \2 = Graham

 \3 = ham

 \4 = <space>the aB ab abc abC ABC<space>

.. or this match ….

Match: ((?i)(gra(Ham))(.*)mIl)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = Graham the aB ab abc abC ABC Mill

 \2 = Graham

 \3 = ham

 \4 = <space>the aB ab abc abC ABC<space>

.. both return the same thing because the pattern is case insensitive by the inclusion of (?i)

Bulk Rename Utility Operations Manual Page 601 of 715

Using multiple Capture Groups to locate Partial Words

Analysis: (a bit complex)

Match: ((?i)(gra(Ham))(.*)mIl)

Nested Groups:

 C a p t u r e G r o u p 1

 mIl)

((?i)

 C a p t u r e G r o up 2 Capture Group 4

 (gra) (.*)

 Capture Group 3

 (Ham)

Where:

 Capture Group 1 consists of nested Capture Groups 2-4 + mIl

 Capture Group 2 consists of nested Capture Group 3

 Capture Group 4 is only nested within Capture Group 1

1. (?i) Turn on Case Insensitivity

2. gra Match against string, ‘gra’ Capture Group 2 = Gra

 Capture Group 1 = Gra

3. Ham Match against string, ‘Ham’ Capture Group 3 = ham

 Changes Capture Group 2 = Graham

 Changes Capture Group 1 = Graham

4. .* Capture remainder of string Capture Group 4 = the aB ab abc abC ABC Miller

 Changes Capture Group 1 =

 Graham the aB ab abc abC ABC Miller

5. mIl Match against string, ‘mIl’ Changes Capture Group 4 =

already at EOL so Backtracks the aB ab abc abC ABC<space>

 Capture Group 1 =

 Graham the aB ab abc abC ABC Mil

In the RegEx, ‘mIl’ is inclusive to Capture Group 1 and not nested in its own Capture Group as are Groups 2 – 4. This

is why Capture Group 4 changes in step 5 to drop off ‘Mil’, because it is now included in Capture Group 1. Also in

step 5, because ‘mIl’ is part of the Capture Group 1 expression, the value is not changed, it is a continuation of the

evaluation.

Capture Group’s 1 value it is the aggregated value of Capture Groups 2 – 4 inclusive + the evaluation of mIl.

Capture Group’s 2 value is the aggregated value of Capture Group 3 inclusive + the evaluation of gra.

Colour coded for clarification.

Bulk Rename Utility Operations Manual Page 602 of 715

Lookarounds: Lookahead and Lookbehind

Lookarounds, are zero-length assertions. They are called zero length because they consume no characters during a

match; they only indicate that a match is possible. Other zero length metacharacters are:

 ^ start of line (Beginning of Line or BOL) $ end of line (EOL) \b Word Boundary

But anchors don’t match characters, Lookarounds do but don’t capture them. That is why they are called "assertions".

They do not consume characters in the string, but only assert whether a match is possible or not. Using Lookarounds

you can create Regular Expressions that would be impossible otherwise.

Notes:

1. Anchors, match positions, not characters.

2. Word Boundaries match positions between characters based on a character’s value to the immediate left and right

 of the current position.

3. Lookarounds match characters but don’t capture them unless a Capture Group is included in the Lookaround.

4. Lookarounds do not consume characters. When a match is found, the position remains unchanged from the

 position before the match took place. Further evaluation of the RegEx would take place from this position.

 The RegEx Engine does not advance after a match of a Lookaround. In a typical match, characters would be

 consumed and the RegEx Engine would advance to the position of the last character following the match.

5. After a Lookaround matches, the RegEx Engine can continue evaluation looking for another match or look ahead

 or behind for something else.

 This will be further explained.

Notes:

1. In Regex Buddy Debug Logs, Lookarounds are not documented except for when they match, then the log will just

 indicate a successful match by the singular label, ‘OK’.

Bulk Rename Utility Operations Manual Page 603 of 715

Lookarounds: Lookahead and Lookbehind

Lookahead asserts

There are two forms:

positive forward Lookahead asserts negative forward Lookahead asserts

syntax (?=n) (?!n)

 where n is what you want to match without capturing

Positive Lookahaead: match something that is immediately followed by something else.

(looks to the right)

Negative Lookahead: match something immediately not followed by something else.

(looks to the right)

Using Expressions within Lookaheads

You can use any Regular Expression inside a Lookahead. Lookaheads that contain Capturing Groups will capture as

normal and backreferences to them will also work normally, even outside the lookahead.

To capture the value of an expression inside of a Lookaround, we do what we did when capturing values in other

non-marking groups, by enclosing the non-marking group expression within a second set of parentheses. The first set

of parentheses in this example, the outer set, remains as part of the syntax while the inner set serves to Capture any

value obtained from the Lookaround before the match is given up and the null value results.

Place the RegEx inside the Lookaround within a Capture Group:

(?=(RegEx))

e.g., (?=(\d{3} dollars))

100 pesos 100 dollars Plantation 6490

Lookahead (look right) for 3 numeric digits followed by <space> ‘dollars’. Matches the ‘100 dollars’ and this value is

captured in Capture Group 1. If it wasn’t for the Capture Group, after the evaluaton of the Lookaround, any matches

are given up and the value returned is null.

This won’t work:

 ((?=RegEx))

The syntax that makes up the Lookaround is no longer correct. The Capture Group must be the inner set of

parentheses not the outer set.

Bulk Rename Utility Operations Manual Page 604 of 715

Lookarounds: Lookahead and Lookbehind

Lookahead: Positive

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?=abc)

 match only if string contains abc without capturing. Lookahead to find ‘abc’

Replace: Capture Group 1= \1

The Match is true because of the string ‘abc’ found in the Input String. If it returns nothing, how do you know it

matched?

In BRU, under the New Name column it displays:

This would indicate a problem with the Match expression or the Replace data, but because there are no Capture

Groups defined, by turning red, one conclusion is that it indicates that a match is found but cannot display any data.

The Replace String backreference is evaluated as a string literal, so both the backslash and the numeral ‘1’ appear in

New Name. The backslash character is illegal in a Windows filename, and as a result, BRU flags it as Invalid in RED.

When something is flagged as Invalid, it means that the rename operation will not take place.

If instead we place the Lookaround expression within a Capture Group, (?=(abc)) now \1 = abc

Bulk Rename Utility Operations Manual Page 605 of 715

Lookarounds: Lookahead and Lookbehind

Lookahead: Positive cont.

Examples of not capturing using a Lookahead

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?=the)(.*)(?=Mil)(.*)

Replace: Capture Group 1= \1 Second Capture Group = \2

Where: \1 = <space> the aB ab abc abC ABC <space>

 \2 = Miller

Analysis:

1. (?=the) Lookahead for the string ‘the’

(Not Captured)

 = true (located after

‘Graham <space>’

2. .* Capture string Capture Group 1 = <space> aB ab abc abC ABC Miller

3. (?=Mil) Lookahead for string, ‘Mil’

(Not Captured)

 = true. Already at EOL so

it backtracks to match.

In Step 3, the backtracking is done testing each and every character

moving back then forward and repeats this until it matches against

‘Mil’ or reaches the beginning of the filename (BOL). This can be

clearly seen here in step 33 of the Debug Log:

Backtracks to match against ‘M’, then moves forward to match ‘Mil’.

So although a Lookahead looks forward to the right, backtracking

can still take place in which case the movement is more like -

 One step back then move forward testing as it goes. Repeat.

Hopscotch perhaps? Not sure, not my game…

4. .* Capture remainder of string, Capture Group 2 = Miller

 moving forward again. Changes Capture Group 1 =

 <space>

 aB ab abc abC ABC

<space>

Additional photos provided by the Regex Buddy program.

Bulk Rename Utility Operations Manual Page 606 of 715

Lookarounds: Lookahead and Lookbehind

Lookahead: Positive cont.

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?=the)(.*)(?=abC)(.*)

Where : \1 = the aB ab abc<space>

 \2 = abC ABC Miller

The analysis would be similar to the first example so I urge you to study that analysis and if you need additional help,

please refer to Volume II.

Notes:

1. In Regex Buddy Debug Logs, Lookarounds are not documented except for when they match, then the log will just

 indicate a successful match by the singular label, ‘OK’.

Bulk Rename Utility Operations Manual Page 607 of 715

Lookarounds: Lookahead and Lookbehind

Using Capture groups within Lookaheads

String = Graham 456x56 Miller.jpg

Match: (?=(\d+))\w+\1

Replace: Capture Group 1= \1

Where: \1 = 56

To fully understand what is happening, I am going to change the expression so that each sub-expression is captured,

then I am going to show you the difference in the evaluation when a Lookahead is used in the expression and an

example where it is not.

This first example uses a Lookahead to look to the right for a numeric digit. If it matches, this value is captured.

Typically, a Lookahead does not capture values but because I have placed a Capture Group in the Lookahead, the

value found, if any will be held by the (\d+). This does not change the behaviour of the Lookaround. It is still an assert

and will not change the current position if a match is found. This is important and the differences will be explained.

Analysis: Match: (?=(\d+))(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

I have changed the original expression and have created three Capture Groups rather than having one Capture Group.

Capture Group 1 Capture Group 2 Capture Group 3

 (?=(\d+)) (\w+) (\1)

1. ?=(\d+) Lookahead. Capture Group 1 = 56

 Looks to the right to match for a numeric digit.

 Made Greedy with the + Quantifier, captures

 any consecutive numeric digits that follow.

 Captures the ‘5’ followed by the ‘6’ until it

 encounters the ‘x’.

How does it come up with the value, ‘56’, I would have thought it would be ‘456’? Full explanation to follow in the

commentary section. The ‘56’ characters captured are in the first occurrence found in the string.

Bulk Rename Utility Operations Manual Page 608 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (?=(\d+))(\w+)(\1) cont.

2. \w Word Metacharacter. Capture Group 2 = 5

 Move forward to capture the ‘5’ in the

 substring, ‘56x’.

The Lookaround does not change the position, According to step 1, the current position is the ‘5’ of the substring,

‘56x’, in the first occurrence found in the string (the explanation of what happened to the ‘4’ of ‘456x’ will be

forthcoming. Be patient.

3. + Make it Greedy. Capture Group 2 = 56x

 Continues to match until it encounters the

 <space> preceding ‘Miller’.

Stranger still, I would have thought even following along if the current position is ‘x’, the value of Capture Group 2

would have been ‘x56’ not ‘56x’. Regardless, it should be noted that the ‘56’ captured is in the second occurrence

found in the string.

4. \1 Backreference to the value held in Capture Capture Group 3 = 56

 Group 1.

 Backtracks to match against the ‘56’ in the

 substring, ‘x56’.

This is where it gets interesting. A Backreference can be included in a RegEx. The reason to use a backreference in

this RegEx is to match against the same string characters of Capture Group 1 – in other words, search for repeated

substrings of consecutive characters of text.

In this string, you have two occurrences of ‘56’. Capture Group 1 originally captures the first occurrence and Capture

Group 3 captures the second occurrence based on the Backreference to Capture Group 1.

‘456’, ‘x56’, 56x’ ??

Now that you are utterly confused, here is the explanation.

Bulk Rename Utility Operations Manual Page 609 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (?=(\d+))(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

There are two occurrences of ’56’ in the string: Graham 456x56 Miller.jpg

Each character of the string is tested against the expression, (?=(\d+))(\w+)(\1). If a character fails, the RegEx Engine

advances one position to test the next character. It tests for the \d and finds none for the first six string characters:

 Group 1

G r a h a m 4 5 6 x 56 Miller

0 1 2 3 4 5 6 7 8 9

The \d matches the ‘4’ at position 7 and matches the + to ‘456’ before encountering the ‘x’. Capture Group 1 = ‘456’.

 Group 2

 Group 1

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The next part of the RegEx, the \w+ captures the ‘456x56’. Remember that the Lookahead has not changed the

position with the match of the ‘456’ for Capture Group 1. The current position is the character before the match, and

this would be <space> after ‘Graham’ at position 6, so when the \w is evaluated, it matches the ‘4’ and the + matches

to the end of the Word at the <space> preceding, ‘Miller’. Thereby Capture Group 2 = ‘456x56’. Because Capture

Group 1’s value was the result of a Lookaround, the value in Capture Group1 is unaffected by the inclusion of the

‘456’ in Capture Group 2. Under normal circumstances, if this had not been the result of a Lookaround, Capture

Group 1 would have been forced to give up the ‘456’ match and return a null value as a result of a Zero Occurrence

Match. This is because the ‘456’ value held previously by Capture Group 1 is now held by Capture Group 2.

The RegEx Engine continues to look for other matches and finding none, hits the EOL.

The Backreference, \1, holds the key to the value of Capture Group 1. The current value of Capture Group 1 is ‘456’.

The current position is at EOL, so it backtracks to try and match against the first character, ‘4’, as far as it can.

Now this is important. It cannot attempt to match against itself, meaning, Capture Group 1’s value is the ‘456’ that

includes the first occurrence of the ‘56’ found in the string. Therefore, the testing can only go back as far as the ‘x’

that follows the ‘456’.

The characters, ‘<space> Miller (backtracking) do not match. Neither do the characters, ‘x56’ (still backtracking), so

the 7th attempt fails.

Bulk Rename Utility Operations Manual Page 610 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (?=(\d+))(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

 Group 1

G r a h a m 4 5 6 x 56 Miller

0 1 2 3 4 5 6 7 8 9

After the failure of the 7th character position, the RegEx Engine moves forward one position and begins the testing at

character position 8, the’5’ of the first occurrence of ’56’ in the substring, ‘456x’.

At character position 8 it finds a match ‘5’ for the \d and matches the + to ‘56’ before encountering the ‘x’. Capture

Group 1 = ‘56’. There is the explanation for how Capture Group 1’s value is ‘56’ and not ‘456’

 Group 2

 Group 1

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The next part of the RegEx, the \w+ captures the ‘56x56’. Remember that the Lookahead has not changed the position

with the match of the ‘56’ for Capture Group 1. The current position is the character before the match, and this would

be still at position 6, the <space> after ‘Graham’ so when the \w is evaluated, it matches the ‘5’ and the + matches to

the end of the Word at the <space> preceding, ‘Miller’. Thereby Capture Group 2 = ‘56x56’ that includes both

occurrences of ‘56’ found in the string. Because Capture Group 1’s value was the result of a Lookaround, the value in

Capture Group1 is unaffected by the inclusion of the first occurrence of ‘56’ in Capture Group 2. Under normal

circumstances, if this had not been the result of a Lookaround, Capture Group 1 would have been forced to give up

the ‘56’ match and return a null value as a result of a Zero Occurrence Match. This is because the ‘56’ value held

previously by Capture Group 1 is now held by Capture Group 2.

The RegEx Engine continues to look for other matches and finding none, hits the EOL.

The next part is the Backreference, \1, that holds the key to the value of Capture Group 1. The current value of

Capture Group 1 is ‘56’. The Regex Engine current position is at EOL, so it backtracks to try and match against the

first character, ‘5’, as far as it can.

Now this is important. It cannot attempt to match against itself, meaning, Capture Group 1’s value is the first

occurrence of ‘56’ of the substring, ‘456’. Therefore, the testing can only go back as far as the ‘x’ that follows ‘456’.

Bulk Rename Utility Operations Manual Page 611 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (?=(\d+))(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

 Group 2

 Group 1 Group 3

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The characters, ‘<space> Miller’ (backtracking) do not match. However, a match is found at the ‘5’, followed by the

‘6’ in the substring leading up to the ‘x’ in the second occurrence found in the string. Capture Group 3 = ‘56’. Capture

Group 2 previously held this value as part of its capture and is forced to give up the second occurrence of ‘56’ in its

value of ‘56x56’ leaving Capture Group 2 with a value of ‘56x’, that includes only the first occurrence of ‘56’ found

in the string. There is your explanation for why Capture Group 2’s final value is ‘56x’ and not ‘x56’.

Still a bit bewildered?

Here is a visual representation of the successful match at character position 8:

Steps 1 – 3 of the Analysis:

 Capture Group 1

Graham 4 56 x56 Miller EOL

 Capture Group 2

Step 4 of the Analysis:

Capture Group 3 already at EOL backtracks to capture the ‘56’ value.

 Capture Group 1 Capture Group 3

Graham 4 56 56x 56 Miller EOL

 Capture Group 2

Furthermore, the Debug log from Regex Buddy on the following page will provide more information.

Bulk Rename Utility Operations Manual Page 612 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (?=(\d+))(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

The Debug Log for the Match attempt at character 7: The Debug Log for the Match attempt at character 8:

Notes:

1. In Regex Buddy Debug Logs, Lookarounds are not documented except for when they match, then the log will just

 indicate a successful match by the singular label, ‘OK’.

Bulk Rename Utility Operations Manual Page 613 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Next, as promised, I will show you a similar RegEx that will not use the Lookahead.

Match: (\d+)(\w+)(\1)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3

Analysis:

Where:

 \1 = 56 \2 = x \3 = 56

I have changed the original expression and have created three Capture Groups rather than having one Capture Group;

Capture Group 1 Capture Group 2 Capture Group 3

 (\d+) (\w+) (\1)

1. \d Match against Numeric Digit. Capture Group 1 = 5

 Matches against the ‘5’ of the first occurrence

in the substring, ‘456’.

Why not the ‘4’? Same explanation as before but I will be discussing it again.

2. + Make it Greedy. Capture Group 1 = 56

 Matches against any additional consecutive

numeric digits that follow.

 Captures the ‘6’ until it encounters the ‘x’.

2. \w Word Metacharacter. Capture Group 2 = x

 Move forward to capture the ‘x’ of the second

occurrence in the substring, ‘x56’.

3. + Make it Greedy. Capture Group 2 = x56

 Matches against any further subsequent characters

 until a non-Word Character is encountered, the <space>

 preceding ‘Miller’. Captures the ‘56’ in the second

 occurrence in the substring, ‘x56’. Continues to EOL.

4. \1 Backreference to Capture Group 1. Capture Group 3 = 56

 Backtracks to match against the ‘56’ in the second Changes Capture Group 2 = x

 Occurrence in the substring, ‘x56’. Capture Group 2

 is Forced to give up the characters ‘56’ from its match.

Bulk Rename Utility Operations Manual Page 614 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Match: (\d+)(\w+)(\1)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3

Analysis:

Where:

 \1 = 56 \2 = x \3 = 56

There are two occurrences of ’56’ in the string:

 Graham 456x56 Miller.jpg

Each character of the string is tested against the expression, (\d+)(\w+)(\1). If a character fails, the RegEx Engine

advances one position to test the next character. It tests for the \d and finds none for the first six characters of the

string:

 Group 1

G r a h a m 4 5 6 x 56 Miller

0 1 2 3 4 5 6 7 8 9

At character position 7 it finds a match ‘4’ for the \d and matches the + to ‘456’ before encountering the ‘x’. Capture

Group 1 = ‘456’. This time there is no Lookaround. The current position of the RegEx is at the last position after the

match. Current position is the ‘x’ of the substring, ‘’x56’.

 Group 1 Group 2

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The \w+ captures the ‘x56’ to the end of the Word at the <space> preceding, ‘Miller’ in Capture Group 2. The RegEx

Engine continues to look for other matches and finding none, hits the EOL.

The Backreference, \1, holds the value of Capture Group 1, ‘456’. The Regex Engine current position is at EOL, so it

backtracks to try and match against the first character, ‘4’, as far as it can. Now this is important. It can’t match

against itself, meaning, Capture Group 1’s value is the ‘456’ that includes the first occurrence of the ‘56’ found in the

string. Therefore, the testing can only go back as far as the ‘x’ that follows the ‘456’.

The characters, ‘<space> Miller (backtracking) do not match. Neither do the characters, ‘x56’ (still backtracking), so

the 7th attempt fails.

Bulk Rename Utility Operations Manual Page 615 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Match: (\d+)(\w+)(\1)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3

Analysis:

Where:

 \1 = 56 \2 = x \3 = 56

There are two occurrences of ’56’ in the string:

 Graham 456x56 Miller.jpg

 Group 1

G r a h a m 4 5 6 x 56 Miller

0 1 2 3 4 5 6 7 8 9

After the failure of the 7th character position, the RegEx Engine moves forward one position and begins the testing at

character position 8, the’5’of the first occurrence of ’56’ in the substring, ‘456x’.

At character position 8 it finds a match ‘5’ for the \d and matches the + to ‘56’ before encountering the ‘x’. Capture

Group 1 = ‘56’. This time there is no Lookaround. The current position of the RegEx is at the last position after the

match. Current position is the ‘x’ of the substring, ‘’x56’.

 Group 1 Group 2

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The \w+ captures the ‘x56’ to the end of the Word at the <space> preceding, ‘Miller’ in Capture Group 2. The RegEx

Engine continues to look for other matches and finding none, hits the EOL.

The Backreference, \1, holds the value of Capture Group 1, ‘56’. The Regex Engine current position is at EOL, so it

backtracks to try and match against the first character, ‘5’, as far as it can. Now this is important. It can’t match

against itself, meaning, Capture Group 1’s value is the first occurrence of ‘56’ of the substring, ‘456’. Therefore, the

testing can only go back as far as the ‘x’ that follows ‘456’.

Bulk Rename Utility Operations Manual Page 616 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (\d+)(\w+)(\1)

Where:

 \1 = 56 \2 = x \3 = 56

 Group 1 Group 2 Group 3

G r a h a m 4 5 6 x 5 6 <space> Miller

0 1 2 3 4 5 6 7 8 9 10 11 12

The characters, ‘<space> Miller’ (backtracking) do not match. However, it matches the ‘5’ followed by the ‘6’ in the

second occurrence of ‘56’ of the substring, ‘x56’. Capture Group 3 = ‘56’. Capture Group 2 previously held this value

as part of its capture and is forced to give up the second occurrence of ‘56’ in its value of ‘x56’ leaving Capture

Group 2 with a value of ‘x’.

Here is a visual representation of the successful match at character position 8:

Steps 1 – 3 of the Analysis:

 Capture Group 1

Graham 4 56 x56 Miller EOL

 Capture Group 2

Step 4 of the Analysis:

For Capture Group 3, already at EOL, so it backtracks to capture the ‘56’ value.

 Capture Group 1 Capture Group 3

Graham 4 56 x 56 Miller EOL

 Capture Group 2

Furthermore, the Debug log from Regex Buddy on the following page will provide more information.

Bulk Rename Utility Operations Manual Page 617 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (\d+)(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

The Debug Log for the Match attempt at character 7:

Bulk Rename Utility Operations Manual Page 618 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham 456x56 Miller.jpg

Analysis: Match: (\d+)(\w+)(\1)

Where:

 \1 = 56 \2 = 56x \3 = 56

The Debug Log for the Match attempt at character 8:

Bulk Rename Utility Operations Manual Page 619 of 715

Lookarounds: Lookahead and Lookbehind

Lookahead: Negative

So what about the Negative Lookahead? Not too much different in terms of the examples presented.

A Negative Lookahead matches when something is not located.

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?!abc) matches only if no characters in the string are followed by the string ‘abc’.

 = false because ‘ab’ is followed by ‘abc’

String = Graham the aB ab abd abC ABC Miller.jpg

Match: (?!abc) matches only if no characters in the string are followed by the string ‘abc’.

 = true. There is no substring, ‘abc’ in the string.

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?=the)(.*)(?!Kil)(.*)

Replace: Capture Group 1= \1 Capture Group 2 = \2

Where: \1 = the aB ab abc abC ABC Miller

 \2 = “” (null or empty)

Analysis:

(?=the) = true. Finds string ‘the’ after ‘Graham <space> ’. The string is not captured unless you used (?=(the)).

(.*) Greedy. Gather up the rest of the string = the aB ab abc abC ABC Miller and Capture it in Capture

 Group 1. Current position = EOL.

Why did it include ‘the’? Because a non capturing group, e.g., (?=the), does not consume characters.

 Consume would advance the position in the string. The current position before the match is <space>

 after ‘Graham’, therefore the .* starts the capture at ‘the’.

(?!Kil) Lookahead test for not finding string ‘Kil’ = true. Non capturing group. Even if captured, value would

be null.

(.*) = null. Already at EOL. Capture Group 2 = null.

Bulk Rename Utility Operations Manual Page 620 of 715

Lookarounds: Lookahead and Lookbehind

Up until now the Lookahead has been basically a simple search string. But what it really can do is to match something

that is followed (looks to the right) or not followed (looks to the left) using a Negative Lookahead, by something else.

String = Star Wars Episode USD100 123x12 aNbc.jpg

Match: (d(?!f))

Replace: Capture Group 1= \1

Where: \1 = d First it must find the small letter ‘d’ of the string ‘Episode’ to continue the expression

 = true.

 Next, Lookahead test for not finding character ‘f’ = true. Therefore Regex = Match and

 the ‘d’ is captured.

Notes:

1. Capture Group 1 captures the ‘d’ outside of the Lookaround because the entire expression is placed in a Capture

 Group.

2. If the expression had been, (d(?!e)), although ‘d’ would still be found, the next part of the expression, testing for

 not finding the character ‘e’ = false since, ‘e’ follows ‘d’ in the string ‘Episode’. Therefore the Regex would fail,

 and ‘d’ would not be captured.

3. This Lookahead statement basically means to find ‘d’, then look to the immediate right for ‘f’ or in the case of a

 negative, not ‘f’.

Heres’ a mixed version:

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(?!the))(.*)(abc (?=abC))(.*)(Mil)

Replace: Capture Group 1= \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

 Capture Group 5 = \5

Where: \1 = Gra

 \2 = ham the aB ab<space>

 \3 = abc<space>

 \4 = abC ABC<space>

 \5 = Mil

Source Material this section: rexegg.com, regular-expressions.info

Bulk Rename Utility Operations Manual Page 621 of 715

Lookarounds: Lookahead and Lookbehind

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(?!the))(.*)(abc (?=abC))(.*)(Mil)

Analysis:

1. (Gra(?!the) Negative Lookahead Searches to find Capture Group 1 = Gra

 ‘Gra’ NOT immediately followed by ‘the’

(looks to the right) = true because ‘ham’

follows ‘Gra’.

Current position = ‘h’ of ‘Graham’

2. .* Capture the remaining string Capture Group 2 =

 ham the aB ab abc abC ABC Miller

3. (abc (?=abC) Positive Lookahead searches to find Capture Group 3 = abc <space>

 ‘abc<space>’ immediately followed Changes Capture Group 2 =

 by ‘abC’. (looks to the right) ham the aB ab <space>

 Already at EOL so it backtracks to match

 against ‘abc <space>’ followed by ‘abC’.

 Current position = ‘a’ of ‘abC’

4. .* Capture remainder of string Capture Group 4 = abC ABC Miller

5. Mil Match against string, ‘Mil’ Capture Group 5 = Mil

 Changes Capture Group 4 = abC ABC <space>

Bulk Rename Utility Operations Manual Page 622 of 715

Lookarounds: Lookahead and Lookbehind

We interrupt this broadcast for an important message.

Understanding the current position in Lookaheads.

It can get confusing, but if you are to properly analyze the RegEx, it is important to know where the RegEx Engine in

regards to the string so you can correctly derive the value from the evaluation of the next sub-expression.

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(?=ham))(…)

Here is a positive Lookahead. It searches for ‘Gra’ followed immediately by ‘ham’ = true. This value is captured in

Capture Group 1. The current position as you can see in the Debug output (Regex Buddy program), is the ‘h’ of ‘ham’

Thus, when the next sub-expression,. (…) takes place, it will start with the ‘h’ and the value will be ‘ham’ for Capture

Group 2. Remember that the match of a Lookaround is an assert and does not change the position after a match.

Therefore, the current position remains at the ‘h’ of ‘ham’ prior to the match.

This can be best represented visually as:

 Capture Group 1 Lookaound Capture Group 2

 (Gra (?=ham)) (...)

This shows the resulting matches:

The match can be illustrated in the string as: Graham the aB ab abc abC ABC Miller

The Debug output demonstrates how the matches were obtained:

Bulk Rename Utility Operations Manual Page 623 of 715

Lookarounds: Lookahead and Lookbehind

Understanding the current position in Lookaheads cont.

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(?!the))(.*)

Here is a negative Lookahead. It searches for ‘Gra’ followed not immediately by ‘the’ = true (the ‘ok’ in the Debug

Log in Step 5 below is the indicator of where the Lookahead matched). This value is captured in Capture Group 1.

The current position as you can see in the Debug output (Regex Buddy program), is the ‘h’ of ‘ham’.

Thus, when the next sub-expression,. (.*) takes place, it will start with the ‘h’ and the value will be ‘ham the aB ab

abc abC ABC Miller’ for Capture Group 2.

This can be best represented visually as:

 Capture Group 1 Lookaound Capture Group 2

 (Gra (?!the)) (.*)

This shows the resulting matches:

1x

The match can be illustrated in the string as: Graham the aB ab abc abC ABC Miller

The Debug output demonstrates how the matches were obtained:

 In both instances, the Lookaround did not affect the current position.

Typically, a match made using an expression would move the position to the point after the match – the ‘m’, but the

position remains at the point before the Lookahead. Previous to this, a match was made of ‘Gra’, and so the position

remains at the ‘h’ of ‘ham’. With a negative Lookahead there is no difference. The position remains at the ‘h’ of

‘ham’ because of the last match of ‘Gra’. If there was not a previous match, e.g., BOL, then the value would be null.

Bulk Rename Utility Operations Manual Page 624 of 715

Lookarounds: Lookahead and Lookbehind

Understanding the current position in Lookaheads cont.

This brings us to:

(abc(?=abC)

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (Gra(?!the))(.*)(abc (?=abC))(.*)(Mil)

In step 3, the current position was at the end of the string, or EOL, therefore it backtracked to match against the

‘abc<space>’ and looked to the right for ‘abC’ = true.

The current position remains at the point before the Lookaround after the last match. The last match was

‘abc<space>’ so the current position is the ‘a’ of ‘abC’.

Let’s simplify this a little more because our interest is mainly in the second Lookaround:

 Capture Group 1 Capture Group 2 Lookaround Capture Group 3

 (.*) (abc<space> (?=abC)) (...)

This shows the resulting matches:

 (1) (2) (3)

The match can be illustrated in the string as: Graham the aB ab abc abC ABC Miller

The partial Debug output demonstrates how the matches were obtained:

 (1)

 abc <space>

(.*)

 (2)

 (?=abC)

 Lookaround l

 (…)

 (3)

Bulk Rename Utility Operations Manual Page 625 of 715

Lookarounds: Lookahead and Lookbehind

Lookbehind asserts

This works the same way as a Lookahead only it looks backs (looks to the left) through the string to find a match.

There are two forms:

positive Lookbehind asserts negative Lookbehind asserts

syntax (?<=n) (?<!n)

 where n is what you want to match without capturing

Positive Lookbehind: match something that is preceded by something else. (looks to the left)

Negative Lookbehind: match something not preceded by something else. (looks to the left)

String = Graham the aB ab abc abC ABC Miller.jpg

Match: (?<=aB)(.*)(abC)

Replace: Capture Group 1= \1 Capture Group 2 = \2

Where: \1 = <space>ab abc<space>

 \2 = abC

Analysis:

1. (?<=aB) Lookbehind moves back and forth through the string

until it matches ‘aB’. Current position is the <space>

of ‘<space>ab’. Position doesn’t change from the start

of the match and because of the Lookbehind backtracking,

this was two characters forward from the match.

It does this by moving one step forward, two steps back to test (because there are two characters to test for – ‘a’ and

‘B’). Because each time the position before the testing of the previous characters was ahead of the eventual match of

‘aB’, the position before the match was the <space> after ‘aB’ not the <space> after ‘the’ which it would have been if

this had been a Lookahead.

Bulk Rename Utility Operations Manual Page 626 of 715

Lookarounds: Lookahead and Lookbehind

Lookbehind asserts cont.

Analysis cont.:

With a Lookbehind ….

(?>aB)(.*)(abC)

Illustrated:

 Original Position (<space> after ‘aB’)

 Testing previous

 Movement forward

the <space> aB <space> ab <space> abc <space>

Changing it to a Lookahead…

(?=aB)(.*)(abC)

Illustrated:

 Original Position (<space> after ‘the’)

 Movement forward and forward testing

the <space> aB <space> ab <space> abc <space>

2. .* Capture rest of string Capture Group 1 =

<space> ab abc abC ABC Miller

3. abC Match against string, ‘abC’. Already at EOL Capture Group 2 = abC

 Backtracks. Changes Capture Group 1 =

 <space> ab abc <space>

Notes:

1. A Lookbehind cannot use expressions. This is because the engine cannot apply a Regular Expression moving

 backwards. They must be strings of fixed length. They can use single metacharacters but not Quantifiers including

 ‘ + ’ or ‘ * ’

(?<=(\d))(...) - valid (?<=(\d{3}))(...) - valid (?<=(\d+))(...) - Invalid

Bulk Rename Utility Operations Manual Page 627 of 715

Lookarounds: Lookahead and Lookbehind

Lookbehind asserts cont.

With this Lookahead it can match something that is followed by something else. This is referred to as ‘After the

Match’ where an object to be matched comes before the Lookaround seeking the object to be found or not found.

Both parts of the expression have to be true for the Regex to Match.

For example,

 (dog(?=bone))

Match against ‘dog’ in the string and determine, using the Lookahead, if it is immediately followed by ‘bone’ (look to

the right), or in the case of a negative Lookahead, (dog(?!bone)), not immediately followed by ‘bone’.

With this Lookbehind it can match something that precedes something else. This is referred to as ‘Before the Match’

where the Lookaround seeks the object to be found or not found prior to an object to be matched. Both parts of the

expression have to be true for the Regex to Match.

For example,

 (?<!a)b

This will determine that the preceding character before ‘b’ is not an ‘a’ (Looks to the left), and if true, will match ‘b’.

Cab would not match because ‘a’ does precede ‘b’.

Bed would match because ‘a’ does not precede ‘b’

Debt would match because ‘a’ does not precede ‘b’

Taking the same example and making it a positive Lookbehind:

 (?<=a)b

Cab would match because ‘a’ does precede ‘b’.

Bed wouldn’t match because ‘a’ does not precede ‘b’

Debt wouldn’t match because ‘a’ does not precede ‘b’

Notes:

1. You can use a Lookbehind anywhere in the RegEx, not only at the start.

2. A Lookbehind must match a fixed set of characters. You couldn’t have a variable Quantifier used with a

 Lookbehind, e.g. \d+ or \d* or even \d?, but you could use a Range Quantifier, e.g., \d{3} that limits the match to a

 specific number of iterations.

3. ‘Before the Match’ and ‘After the Match’ can be applied to any of the 4 Lookaround types – Lookahead, Positive

 and Negative and Lookbehind, Positive and Negative.

Bulk Rename Utility Operations Manual Page 628 of 715

Lookarounds: Lookahead and Lookbehind

Lookbehind asserts cont.

Example:

If you want to find a word not ending with an "s":

Match: (\b\w+(?<!s)\b)

Examples:

String = Graham the aB ab abc abC ABC Miller.jpg String = Star Wars Episode USD100 123x12 aNbc.jpg

 \1 = Graham \1 = Star

String = This is a (34) test.jpg String = Belvedere Plantation 6492.jpg

\1 = a \1 = BelvedereStar

Analysis:

Using: This is a (34) test.jpg

1. \b Word Boundary Metacharacter. Establishes

the beginning of a Word.

2. \w Word Metacharacter. Match against Word Character. Capture Group 1 = T

3. + Make it Greedy. This captures all word Characters Capture Group 1 = This

 until it hits a non-Word Character. The non-Word

 Character encountered is the <space> after ‘This’

4. (?<!s) Move forward through the string, one step forward, Changes Capture Group 1 = Thi

 one step back (only one character to test for – the ‘s’)

 Matches against the ‘s’ of ‘This’. By matching, it

 changes the Capture Group 1 consisting of ‘This’ by

 the removal of the ‘s’ character because currently it

 looks for Word Characters that do not have an ‘s’ and

 ‘Thi’ is the result.

5. \b Word Boundary Metacharacter. Establishes an end Changes Capture Group 1 = a

 of a word. This changes the Lookbehind to search

out whole words that do not have an ‘s’ at the end.

A word is defined as Word Characters until a

non-Word Character is encountered.

 tests This = false

 is = false

 a = true

Bulk Rename Utility Operations Manual Page 629 of 715

Lookarounds: Lookahead and Lookbehind

Lookbehind asserts cont.

Here you can see the transition from step 4 to step 5:

Step 4 (\b\w+(?<!s))

Step 5 (\b\w+(?<!s)\b)

Tests ‘This’ Tests ‘is’

 Tests ‘a’

Source Material this section: rexegg.com

Bulk Rename Utility Operations Manual Page 630 of 715

Lookarounds: Lookahead and Lookbehind

Using Lookarounds Before and After the Match

There are four kinds of Lookarounds:

Positive Lookahead (?= ()

Negative Lookahead (?! ()

Positive Lookbehind (?<= ()

Negative Lookbehind (?<! ()

Each of these Lookarounds can be used in two main ways:

Before the expression to be matched

After the expression to be matched

This is an example of a Lookbehind ‘After the Match’.

String = Cotton USD100 JPY100 Plantation 6490.jpg

Match: (.{3}(?<=USD\d{3}))

Where: \1 = 100

Break down:

 C a p t u r e G r o u p 1

 Lookbehind

(.3{3} (?<=USD\d{3}))

The three Dot Metacharacters continually test and match against each three characters of the string, but fails to match

against the Lookbehind of the string, ‘USD’, until it matches against the ‘100’ in the string. This value is captured in

Capture Group 1. After it matches, it evaluates the Lookbehind to look to the immediate left for the ‘USD’ followed

by 3 numeric digits. This matches and the RegEx is satisfied. It will continue to search out other matches until EOL or

the string is exhausted whichever comes first.

Cotton USD100 JPY100 Plantation 6490

Bulk Rename Utility Operations Manual Page 631 of 715

Lookarounds: Lookahead and Lookbehind

Using Lookarounds Before and After the Match cont.

This is an example of a Lookbehind ‘After the Match’. cont.

String = Cotton USD100 JPY100 Plantation 6490.jpg

Match: (.{3}(?<=USD\d{3}))

Where: \1 = 100

Here is the Debug Log from RegEx Buddy program:

etc until ….

The match of ‘100’ is performed first followed by the evaluation of the Lookaround.

Notes:

1. The added outer group, () around the expression, .{3}(?<=USD\d{3} captures the match,‘100’ of .{3} not \d{3}. If

 I used, ((?<=USD\d{3})), it will still match but only captures the returned value of null because a Lookaround

 gives up its match values upon completion of the evaluation. If I want to capture the Lookaround value, I have to

 use, (?<=(USD\d{3})). This captures the Lookaround value before the match is given up and a null value results.

Bulk Rename Utility Operations Manual Page 632 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround Before the Match

String = 100 pesos 100 dollars Plantation 6490.jpg

Match: ((?=\d{3} dollars).{3}) (Positive Lookahead)

Looks ahead for three digits followed by <space> "dollars". Matches "100" in "100 dollars".

 Verified this position by adding (…) to the end = ‘<space>do’

 (next character would be ‘<space> before ‘dollars’)

Break down:

 C a p t u r e G r o u p 1

 Lookahead

((?=\d{3} dollars) .3{3})

Looks ahead (Looks to the immediate right) for three numeric digits followed by the string, ‘dollar’. Matches at

the ’100 dollars’. Lookaround satisfied. The current position does not change despite the match because this is a Zero

Length Assertion. So the current position remains the ‘1’ of ‘100 dollars’. The Dot Metacharacter matches against the

‘1’ followed by the additional two numeric digits using the Range Quantifier of {3} to capture the ‘100’ in Capture

Group 1. The \d{3} is within the non-Capturing Group and that value is given up. It is the .{3} that captures the value

‘100’ and not the \d{3} because there is no Capture Group in the Lookaround.

100 pesos 100 dollars Plantation 6490

The Lookaround is performed first followed by the match of ‘100’, thus this Lookaround is ‘Before the Match’.

Bulk Rename Utility Operations Manual Page 633 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround Before the Match cont.

String = 100 pesos 100 dollars USD100 Plantation 6490.jpg

Match: ((?!\d{3} pesos)\d{3}) (Negative Lookahead)

Makes sure what follows is not three digits followed by <space> "pesos". Matches "100" in "100 dollars".

 Verified this position by adding (…) to the end = ‘<space>do’

 (next character would be ‘<space> before ‘dollars’)

Break down:

 C a p t u r e G r o u p 1

 Negative Lookahead

((?!=\d{3} pesos) \d{3})

Looks to the right for three numeric digits NOT followed by the string, ‘pesos’. Matches at the ‘100’ of ‘100 dollars’.

The current position does not change despite the match because this is a Zero Length Assertion. So the current

position remains at the ‘1’ of ‘100 dollars’. The \d{3} outside of the Lookaround uses a Range Quantifier of {3} to

capture the ‘100’ of ‘100 dollars’ in Capture Group 1 (current position, the ‘1’ of ‘100 dollars’ + ‘00’).

100 pesos 100 dollars USD100 Plantation 6490

The Regex Buddy program uses Global, so it matches all three instances

of three numeric digits NOT followed by the string, ‘pesos’.

The Lookaround is performed first followed by the match of ‘100’, thus this Lookaround is ‘Before the Match’.

Bulk Rename Utility Operations Manual Page 634 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround Before the Match cont.

String = USD100 JPY100 Plantation 6490.jpg

Match: ((?<!USD)\d{3}) (Negative Lookbehind)

Makes certain "USD" does not precede three digits. Matches "100" in "JPY100".

Verified this position by adding (…) to the end = ‘<space> Pl’

 (next character would be ‘<space> before ‘Plantation’)

Break down:

 C a p t u r e G r o u p 1

 Negative Lookbehind

((?<!USD)\d{3}))

Using a back and forth motion, test for three characters that are not ‘USD’ and if matched, three numeric digits must

follow. Match against three numeric digits, look to the left NOT for the string, ‘USD’. This will match ‘JPY100’ and

Capture Group 1 will hold the value ‘100’ because the \d{3} is outside of the Non-Capturing Group.

USD100 JPY100 Plantation 6490

The Regex Buddy program uses Global, so it matches both instances of three numeric digits NOT followed by the

string, ‘USD’

The Lookaround is evaluated first followed by the match of ‘100’, thus this Lookaround is ‘Before the Match’.

Bulk Rename Utility Operations Manual Page 635 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match

String = 100 pesos 100 dollars USD100 Plantation 6490.jpg

Match: (\d{3}(?<=USD\d{3})) (Positive Lookbehind)

Makes certain that "USD" precedes three digits. Matches "100" in "USD100".

 Verified this position by adding (…) to the end = ‘Pla’

 (next character would be ‘P’ of ‘Plantation’)

Break down:

 C a p t u r e G r o u p 1

 Lookbehind

(\d{3} (?<=USD\d{3})

Match against three numeric digits, look to the left for the string, ‘USD’, followed by three numeric digits.

Matches at the ‘100’ of the substring, ‘USD100’. The \d{3} in the first part of the expression, outside of the

Lookaround, captures the ‘100’ in Capture Group 1 and the Lookbehind verifies that ‘USD’ precedes it.

100 pesos 100 dollars USD100 Plantation 6490

The match of ‘100’ is evaluated first followed by the evaluation of the Lookbehind, thus, this Lookaround is ‘After

the Match’.

This may seem redundant, but first it matches against the three numeric digits in the string and then verifies that the

substring, ‘USD’, precedes it. In order for the Lookbehind to verify the string, it must also include the three numeric

digits that have already been matched. This is the syntax of the Lookbehind (?<=USD\d{3}).

This would not match:

(\d{3}(?<=USD))

The current position after the match of ‘100’ captured in Capture Group 1 using the \d{3} Range Quantifier, is the

<space> preceding ‘Plantation’. To the immediate left of this is the substring ‘USD100’ not ‘USD’. Therefore,

(?<=USD) will not match. That is why for the RegEx to succeed it has to be, (\d{3}(?<=USD\d{3})).

Bulk Rename Utility Operations Manual Page 636 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match cont.

String = 100 pesos 100 dollars USD100 Plantation 6490.jpg

Match: (\d{3}(?<=USD\d{3})) (Positive Lookbehind)

Here is an excerpt from Regex101.com that shows how the Lookbehind is evaluated. The ‘100’ has just been matched

in \d{3} at the beginning of the expression previous to step 56.

What it doesn’t show is that it is moving back and forth testing from the ‘100’from between step 56 to step 57:

‘U’ = ‘D’ = False tests back one position

‘U’ = ‘S’ = False tests back one position

‘U’ = ‘U’ = True tests forward one position beginning step 57

‘S’ = ‘S’ = True tests forward one position

‘D’ = ‘D’= True Tests for \d{3} at step 60

‘1’ = \d = True moves forward one position

‘0’ = \d = True moves forward one position

‘0’ = \d = True Match. Lookbehind satisfied.

Bulk Rename Utility Operations Manual Page 637 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match cont.

String = 100 pesos 100 dollars USD100 Plantation 6490.jpg

Match: (\d{3}(?<=USD\d{3})) (Positive Lookbehind)

The current position, the <space> after the substring, ‘USD100’ (preceding ‘Plantation’), doesn’t change after the

evaluation of the Lookaround. Remember that it is a Zero Length Assertion. Any movement or any values captured

are only temporary until after the evaluation. This can be further verified by examining the Debug Log from the

Regex Buddy program:

This is not to say that backtracking is not occurring. The Lookbehind typically uses a back and forth movement that

may not be obvious, but can be clearly seen in Failed attempts as evidenced by an attempted match at character

position 10 that begins the substring, pesos 100’:

The match of ‘100’ is evaluated first followed by the evaluation of the Lookbehind, thus, this Lookaround is ‘After

the Match’.

Bulk Rename Utility Operations Manual Page 638 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match

String = 100 pesos 100 dollars Plantation 6490.jpg

Match: (\d{3}(?= dollars)) (Positive Lookahead)

Makes certain <space> "dollars" follows three numeric digits. Matches "100" in "100 dollars".

Break down:

 C a p t u r e G r o u p 1

 Lookahead

 ((\d{3}(?= dollars))

Match 3 numeric digits. Lookahead looks to the immediate right for the substring, <space> ‘dollars’. Matches at the

‘100’ following the <space> after ‘pesos’. Because the \d{3} is outside of the non-Capturing Group, the value of

‘100’ is captured in Capture Group 1.

100 pesos 100 dollars Plantation 6490

The match of ‘100’ is performed first followed by the evaluation of the Lookaround, thus, this Lookaround is ‘After

the Match’.

Bulk Rename Utility Operations Manual Page 639 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match cont.

String = 100 pesos 100 dollars Plantation 6490.jpg

Match: (\d{3}(?! dollars)) (Negative Lookahead)

Makes certain <space> "dollars" doesn’t follow three numeric digits. Matches "100" in "100 pesos".

Break down:

 C a p t u r e G r o u p 1

 Negative Lookahead

((\d{3}(?! <space> dollars))

Match 3 numeric digits. Lookahead looks to the immediate right NOT for the substring, <space> ‘dollars’. Matches at

the ‘100’ at the start of the string. The \d{3} uses a Range Quantifier to capture the ‘100’ in Capture Group 1.

100 pesos 100 dollars Plantation 6490

The Regex Buddy program uses Global, so it matches both instances of three numeric digits NOT followed by the

string, ‘<space> dollars’

The match of ‘100’ is performed first followed by the evaluation of the Lookaround, thus, this Lookaround is ‘After

the Match’.

Bulk Rename Utility Operations Manual Page 640 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match cont.

String = 100 pesos 100 dollars USD100 Plantation 6490.jpg

Match: (.{3}(?<=USD\d{3})) (Positive Lookbehind)

Makes certain ‘USD’ precedes three numeric digits. Matches "100" in "USD100".

Break down:

 C a p t u r e G r o u p 1

 Lookbehind

((.{3}(?<=USD\d{3}))

The three Dot Metacharacters continually test and match against each three characters of the string, but fails to match

against the Lookbehind of the string, ‘USD’, until it matches against the ‘100’ of the substring, ‘USD100’. This value

is captured in Capture Group 1. After it matches, it evaluates the Lookbehind that looks to the immediate left for the

substring ‘USD’ followed by 3 numeric digits. This matches and the RegEx is satisfied. It will continue to search out

other matches until EOL or the string is exhausted whichever comes first.

100 pesos 100 dollars USD100 Plantation 6490

The match of ‘100’ is performed first followed by the evaluation of the Lookaround, thus, this Lookaround is ‘After

the Match’.

Notes:

1. Lookarounds like Word Boundaries and non-Word Boundaries and other non-Capturing Groups are not

 documented well by Regex Buddy. In the above, only the match is identified by ‘ok’ in the Debug Log.

Source Material this section: Rexegg.com

Bulk Rename Utility Operations Manual Page 641 of 715

Lookarounds: Lookahead and Lookbehind

Lookaround After the Match cont.

String = USD100 JPY100 Plantation 6490.jpg

Match: (\d{3}(?<!USD\d{3})) (Negative Lookbehind)

Makes certain that 3 numeric digits are NOT preceded by "USD". Matches "100" in "JPY100".

Break down:

 C a p t u r e G r o u p 1

 Negative Lookbehind

(\d{3} (?<!USD)\d{3}))

Match against three numeric digits. Look to the immediate left NOT for the substring, ‘USD’. This will match

‘JPY100’ and Capture Group 1 will hold the value ‘100’. The \d{3} uses a Range Quantifier to capture the ‘100’ in

Capture Group 1 in the first part of the expression, and the Lookbehind verifies that ‘USD’ doesn’t precede it.

USD100 JPY100 Plantation 6490

The match of ‘100’ is performed first followed by the evaluation of the Lookaround, thus, this Lookaround is ‘After

the Match’.

Summary Notes:

1. An outer group () was used to capture the value of \d{3}to Capture Group 1, e.g. ((?<!USD)\d{3}).

2. If you want proof that the above works, add (…) as a separate Capture Group e.g. ((?<!USD)\d{3})(....). This will

 return the first few characters of the string after the match providing the current position using a Replace data of

 \1\2. For example, in the last match 100 following JPY, adding (….) yields ‘Plan’ in Capture Group 2.

3. If using Lookbehinds in BRU, alternatives must be a fixed length. This does not apply to Lookaheads.

4. A Lookaround will not consume characters. The position will remain at the point of the capture whereas normally,

 the position will move to the point after the capture.

Bulk Rename Utility Operations Manual Page 642 of 715

Using Alternates with Capture Groups

Quick Review:

The | (pipe) is a metacharacter that is an OR operator. It works in it’s simplest form as

 Cat | Mouse

Look in the string and match either against ‘Cat’ or ‘Mouse’, whichever comes first.

Using ONE Capture Group with two alternates

gr(a|e)y can match gray or grey because the expression states that ‘gr’ followed by either ‘a’ or ‘e’ then ‘y’. The

characters ‘a’ and ‘e’ are in an isolated Capture Group that groups them together in an OR statement. The parentheses

also show an order of evaluation. What it really does is this:

test for characters ‘gr’, if true then…

does ‘a’ follow ‘gr’? if true then Capture Group = ‘a’; if false then Capture Group = undefined

does ‘e’ follow ‘gr’? if true then Capture Group = ‘e’; if false then Capture Group = undefined

if Capture Group 1 true then test for ‘y’; if true then expression is a match

This testing of the alternates can be envisioned as:

 gr (a | e) y

Using ONE Capture Group and three alternates

Example:

String = cat dog mice.jpg

Match: (cat|dog|mice)

Where: \1 = cat

Bulk Rename Utility Operations Manual Page 643 of 715

Using Alternates with Capture Groups

Using TWO Capture Groups and three alternates

Example #1 isolate cat in its own Capture Group. Finds ‘cat’ first.

String = cat dog mice.jpg

Match: ((cat)|dog|mice)

Replace: Capture Group 1 = \1 Capture Group 2 = \2

Where: \1 = cat

 \2 = cat

Example #2 isolate dog in its own Capture Group

This is the same as example #1 only isolating ‘dog’ instead of ‘cat’. Finds ‘cat’ before ‘dog’

String = cat dog mice.jpg

Match: ((dog)|cat|mice)

Replace: Capture Group 1 = \1 Capture Group 2 = \2

Where: \1 = cat

 \2 = undefined

Example #3 change first element to dog in string. Isolate ‘dog’ in RegEx. Finds ‘dog’ first.

String = dog cat mice.jpg

Match: ((dog)|cat|mice)

Replace: Capture Group 1 = \1 Capture Group 2 = \2

Where: \1 = dog

 \2 = dog

Notes:

1. An alternate works on a first come first served basis meaning that BRU will match against the first true alternate

 and discard the rest even if there are more than one true matches in the string. In the above string, all three values,

 ‘dog’, ‘cat’ and ‘mice’ are present but because ‘dog’ comes before the other two values, only the first alternate is

 true and the other two alternates are false and not even tested.

2. Why does Capture Group 1 and 2 hold the ‘same’ value? This will be discussed momentarily under ‘Nested’

 Capture Groups.

Bulk Rename Utility Operations Manual Page 644 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Example #1 One element isolated from the other two that are grouped together

String = cat dog mice.jpg

Match: ((dog)|(cat|mice))

Where: \1 = cat

 \2 = “” (null) This displays as under the ‘New Name’ column of BRU

 \3 = cat

Here is what the RegEx looks like:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3

 ((dog) | (cat|mice))

The second alternate, ‘cat’, is true because ‘cat’ is matched first. Why? Because ‘cat’ appears in the string before the

other two values.

1. First alternate dog is tested against the string value ‘cat’ and fails

2. This falls to the next alternate, cat, which matches = true.

3. Capture Group 1 and Capture Group 3 hold the same value – this is because Capture Group 3 is ‘nested’ within

 Capture Group 1. This is discussed next.

Bulk Rename Utility Operations Manual Page 645 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

This is a good time to bring up the subject of ‘Nested’ Capture Groups.

Here is the RegEx again:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3

 ((dog) | (cat|mice))

Capture Group 1 is the aggregated values from all of the Capture Groups within (inclusive). There are two Capture

Groups within Capture Group 1, but because they represent alternates, there is only one value.

If I just had this:

Match: (dog)|(cat|mice)

Then Capture Group 1 tests the alternate ‘dog’ and fails = null. Although ‘dog’ is part of the alternate ‘dog | cat |

mice’, Capture Group 1 is true only if the outcome of the alternate was the first match, ‘dog’, which it is not.

Therefore Capture Group 1 captures a null value. This is what some refer to as a Zero Occurrence Match. This

typically occurs when the RegEx engine evaluates an expression within a Capture Group but returns no value. It is

empty or null. Another scenario is when an existing Capture Group has been forced to give up it’s match or has given

back all of its matched characters. For more information on this, please refer to Volume II. A Zero Occurrence Match

is also a Zero Length Match.

Capture Group 2 = true = ‘cat’

There is no Capture Group 3 because Capture Group 2 is made up of an alternate, ‘dog |cat |mice’

But instead, I have this:

Match: ((dog)|(cat|mice))

Let’s simplify this. The RegEx tests for three alternates. With each test, pass or fail, that value is held by any Capture

Group that represents that alternate. If an alternate is tested and fails, then a null or empty value is held. If, on the

other hand, an alternate matches, the value of that alternate is held and subsequent testing of alternates are not

performed. For any Capture Group that represents an untested alternate, that Capture Group will have an undefined

value or no value.

Bulk Rename Utility Operations Manual Page 646 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

Undefined is not the same as a null value because there is no value. Never tested.

In BRU, an undefined value displays as ‘Invalid’ in red:

Match: ((cat)|(dog))

Replace: \3

It also displays the Backreference to Capture Group 3 indicating that the problem with the Replacement String resides

within Capture Group 3. This could also indicate a syntax error in the RegEx expression, but in this case, it refers to

an undefined Capture Group because the Capture Group holds no value, not even null. By expressing Capture Group

3 in the Replacement String, BRU says ‘No Can Do’. The file cannot be renamed as long as the ‘red’ Invalid indicator

remains. BRU flags it as Invalid because of the backslash that appears as a literal in New Name.

As opposed to a null value based on a Zero Occurrence Match:

Match: (dog)|(cat|mice)

Replace: \1

This shows New Name in green, meaning that there is no problem with Capture Group 1 represented by

Backreference \1, except that there is no visible value. It displays only the file’s extension. The value is null or empty

but there is a value. This is not to be confused with a <space> value, also not visible, but would display as pushing the

filename represented by New Name, one position to the right, e.g., <space>.jpg vs .jpg

Bottom line, no matter how complicated the Alternate groups may appear, they really boil down to:

 This Or This Or This Or

 n | n1 | n2 | etc.

The rest are just Capture Groups that may hold a value for any alternate tested or may not hold any value for any

alternate not tested. The order in which the alternates are tested and any resulting values held by a Capture Group is

based on the order in which they are evaluated in the RegEx. The expression that is within a Capture Group that is

evaluated first will always be designated as Capture Group 1, for example.

In addition, any Nested Capture Groups will pass their aggregated values to the Capture Group in which they inhabit.

For example, if Group 1 is inclusive of Group 2 and Group 3, and Group 2 has a value ‘B’ and Group 3 has a value

‘C’ and Group 1 has an expression outside of Groups 2 and 3 that evaluates to a value of ‘A’, then Group 1 has an

aggregated value of ‘ABC’.

Bulk Rename Utility Operations Manual Page 647 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

So let’s go back to our example:

String = cat dog mice.jpg

Match: ((dog)|(cat|mice))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3

Breaks down:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3

 ((dog) (cat|mice))

 null cat

 cat

Tests alternatives - cat dog mice.jpg

 dog | cat | mice

dog fails against first value ‘cat’ in string

cat matches against first value ‘cat’ in string = true

mice not tested but this alternate is part of Capture Group 3

So after the alternates have been tested, the Captured values are as follows:

Capture Group 1 = (aggregated value ‘null’ + ‘cat’ =) ‘cat’

Capture Group 2 = (dog tested and fails so..) null value

Capture Group 3 = (cat or mice tested and ‘cat’ matches =) ‘cat’

Bulk Rename Utility Operations Manual Page 648 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

Notes:

1. Capture Group 1 currently holds the value ‘cat’ because any value, e.g., ‘cat’ will replace a null value.

2. Because the alternate, cat, matched the string and satisfied the RegEx expression, the other parts of the string made

 up of ‘dog’ and ‘mice’ are not tested against the alternates.

3. If the alternate, mice, had been isolated in its own Capture Group, that Capture Group would be Invalid since mice

 was never tested. However, because mice was part of Capture Group 3 which included the alternate, cat, Capture

 Group 3 holds the matched value, ‘cat’ and is not designated ‘Invalid’.

4. Do not get confused when I am referring to an alternate, cat, part of the RegEx expression, and the value ‘cat’ held

 by a Capture Group after a successful match.

5. A nested Capture Group takes its value inclusive of all values of Capture Groups held within.

6. The Outer Group is always evaluated first in RegEx, unlike in mathematics where the inner group is evaluated first,

 thus, the Outer Group is given the Group 1 designation while the Inner Groups are assigned the next designation, 2

 and 3 and so on. Nesting can therefore have an impact on the order in which the alternates are tested.

7. The Regex performs the evaluations from left to right and assigns values to any Capture Groups based on those

 evaluations. With nested Capture Groups, however, evaluations are performed from outer to inner, meaning that the

 Capture Group that represents the outer group is designated a lower Capture Group number than the Capture

 Groups within. The Capture Groups within are designated Capture Group numbers in the same manner from left to

 right as they appear in the RegEx and any nested Capture Groups within are handled similarly.

Bulk Rename Utility Operations Manual Page 649 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

Example #2 Group all three elements together but isolate dog within this grouping

String = cat dog mice.jpg

Match: (((dog)|cat|mice))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3

Where: \1 = cat

 \2 = cat

 \3 = Invalid

This is what the RegEx looks like:

 C a p t u r e G r o u p 1

 C a p t u r e G r o u p 2

 Capture Group 3

 (((dog) | cat | mice))

 Invalid cat

 cat

Tests alternatives - cat dog mice.jpg

 dog | cat | mice

In Capture Group 1, cat matches against first value ‘cat’ in string = true (aggregated value of Capture Groups 2 and 3)

In Capture Group 2, cat matches against first value ‘cat’ in string = true = ‘cat’

In Capture Group 3, dog alternate not tested because the RegEx was satisfied = Invalid

BRU displays New Name as Invalid. Remove Capture Group 3 from Replacement String:

Bulk Rename Utility Operations Manual Page 650 of 715

Using Alternates with Capture Groups

Using THREE Capture Groups and three alternates

Nested Capture Groups

If I had –

String = cat dog mice.jpg

Match: (((cat)|dog|mice))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3

Where: \1 = cat

 \2 = cat

 \3 = cat

 C a p t u r e G r o u p 1

 C a p t u r e G r o u p 2

 Capture Group 3

 (((cat) | dog | mice))

 cat

 Invalid

 cat

 cat

Although the alternates, ‘dog’ and ‘mice’ are never tested because the RegEx has been satisfied, and would be

Invalid, they reside within Capture Group 2 which takes its value, ‘cat’, from Capture Group 3, also within Capture

Group 2. Therefore Capture Group 2’s value is ‘cat’. Capture Group 1’s value is ‘cat’ representing the aggregated

values of all Capture Groups inclusive.

Bulk Rename Utility Operations Manual Page 651 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Nested Capture Groups

Example #1 group three elements together but keep them isolated within the grouping

String = cat dog mice.jpg

Match: ((cat)|(dog)|(mice))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = cat

 \2 = cat cat comes before dog

 \3 = undefined

 \4 = undefined

Here is what it looks like:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3 Capture Group 4

 ((cat) | (dog) | (mice))

Tests for ‘cat’ = true, Capture Group 2 = ‘cat’, Capture Group 1 = ‘cat’ (aggregated value of Capture Groups 2 – 4)

The second alternate, ‘dog’ is never tested because the first alternate matched. Capture Group 3 = undefined.

The same for the alternate, ‘mice’ which is never tested. Capture Group 4 = undefined.

Notes:

1. Undefined refers to a Capture Group that never existed as is the explanation here. By now you should be familiar

 with how the Invalid flag attached to New Name is identified and why. If you need a refresher, there is one coming

 up on the next page.

Bulk Rename Utility Operations Manual Page 652 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Nested Capture Groups

String = cat dog mice.jpg

Example #2 Mixing up the alternates

((dog)|(cat)|(mice))

Match: ((dog)|(cat)|(mice))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = cat

 \2 = null

 \3 = cat cat comes before dog

 \4 = undefined

Here is what it looks like:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3 Capture Group 4

 ((dog) | (cat) | (mice))

Capture Group 1 = ‘cat’ (aggregated value of Capture Groups 2-4)

Capture Group 2 is tested but fails = null

Capture Group 3 tests for ‘cat’ = true = ‘cat’

Capture Group 4 never tested = Invalid

Notes:

1. Just a reminder that the Invalid flag is primarily because Capture Group 4 doesn’t exist because it was never tested.

 Therefore the Replacement String’s reference to Capture Group 4 is evaluated as a literal string. The backslash is an

 illegal windows character in a filename and therefore New Name is flagged as Invalid. It does however provide a

 clue as to what is causing the problem with the RegEx, which obviously has to do with or at least start with Capture

 Group 4.

2. The Invalid flag indicates that the Rename Operation cannot be performed as long as the New Name remains

 flagged. Invalid entries appear in Red. Legitimate entries appear in Green in New Name.

Bulk Rename Utility Operations Manual Page 653 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Nested Capture Groups

String = cat dog mice.jpg

Example #3 Mixing up the alternates

((mice)|(cat)|(dog))

Match: ((mice)|(cat)|(dog))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = cat

 \2 = null

 \3 = cat cat comes before dog

 \4 = undefined

Here is what it looks like:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3 Capture Group 4

 ((mice) | (cat) | (dog))

As far as the outcome and the analysis, nothing changes from that of Example #2 because the ‘cat’ alternate remains

in the second position held by Capture Group 3. But it doesn’t matter if ‘cat’ is in the first, second or third position.

The outcome and the analysis may change as far as the positioning in the renaming, but ‘cat’ will always match. No

matter how I change the order of the alternates, it will always match against ‘cat’ because ‘cat’ appears in the string

before either ‘dog’ or ‘mice’. But this is not always the case as you will see.

For now, though, what if I took ‘cat’ out of the equation …

Bulk Rename Utility Operations Manual Page 654 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Nested Capture Groups

String = cat dog mice.jpg

Example #4 Match against dog

If I change ‘cat’ to ‘rabbit’, then ‘dog’ will be the first match.

((mice)|(rabbit)|(dog))

Match: ((mice)|(rabbit)|(dog))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = dog

 \2 = null

 \3 = null

 \4 = dog dog comes before mice

Here is what it looks like:

 C a p t u r e G r o u p 1

 Capture Group 2 Capture Group 3 Capture Group 4

 ((mice) | (rabbit) | (dog))

Capture Group 1 = ‘dog’ (aggregated value of Capture Groups 2-4)

Capture Group 2 is tested but fails = null

Capture Group 3 is tested but fails = null

Capture Group 4 tests for ‘dog’ = true = ‘dog’

1. The first alternate, mice, is tested against the first string value, ‘cat’ and fails.

2. The second alternate, rabbit, is tested against the first string value, ‘cat’ and fails.

3. The third alternate, dog, is tested against the first string value, ‘cat’ and fails.

4. The first alternate, ‘cat’, is tested against the second string value, ‘dog’ and fails.

5. The second alternate, rabbit, is tested against the second string value, ‘dog’ and fails.

6. The third alternate, dog, is tested against the second string value, ‘dog’ and matches.

 RegEx satisfied, Capture Group 4 = ‘dog’

Notes:

1. The RegEx engine is actually testing each and every character that makes up the string value against the alternates.

Bulk Rename Utility Operations Manual Page 655 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Now that you understand about Alternates, Capture Groups and Nested Capture Groups, let’s continue.

String = Star Wars Episode USD100 123x12 aNbc.jpg

What all of the following have in common is that they capture the value of ‘Wars’. The match will always be ‘Wars’

because that is the first occurrence before either ‘Episode’ or ‘Nbc’. Therefore, the only value that can be captured is

‘Wars’. Here is a simple OR statement using three Capture Groups:

Evaluation order:

 1 2 3

 e.g. (Wars)| (Episode) | (Nbc)

where: 1 = Capture Group 1 2 = Capture Group 2 3 = Capture Group 3

Match: (Wars)|(Episode)|(Nbc)

Where: \1 = Wars

Analysis: ‘Wars’ is in Capture Group 1 position. Since the OR has been satisfied, Capture Groups 2-3 are

 undefined (never tested).

Match: (Episode)|(Wars)|(Nbc)

Where: \1 = null

 \2 = Wars

Analysis: ‘Wars’ is in Capture Group 2 position, therefore Capture Group 1 has a null value. Capture Group 3 is

 undefined (never tested).

Match: (Nbc)|(Wars)|(Episode)

Where: \1 = null

 \2 = Wars

Analysis: ‘Wars’ is in Capture Group 2 position, therefore Capture Group 1 has a null value. Capture Group 3 is

 undefined (never tested).

Match: (Nbc)|(Episode)|(Wars)

Where: \1 = null

 \2 = null

 \3 = Wars

Analysis: ‘Wars’ is in Capture Group 3 position, therefore Capture Group 1 and Capture Group 2 return null.

Bulk Rename Utility Operations Manual Page 656 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

Many of these evaluations are just following a repetitious pattern. But things will start to change when I add a nested

Capture Group. This next couple of examples have the alternate, Wars, in the first and second position. There won’t

be any difference in the outcome. Wars will still match.

String = Star Wars Episode USD100 123x12 aNbc.jpg

Match: (Wars)|((Episode)|(Nbc))

Replace: Capture Group 1 = \1 Capture Group 2 = \2 Capture Group 3 = \3 Capture Group 4 = \4

Where: \1 = Wars

 \2 - 4 = not defined

Evaluation order:

 2

 1 3 4 Nested

(Wars) | ((Episode) | (Nbc))

Analysis:

1 = Capture Group 1:

 Tests alternate, Wars, against the string to see if it is the first occurrence. If true, Capture Group 1

 captures the value and the OR has been satisfied. Capture Groups 2-4 will be left undefined. If

 false, then it continues to test using Capture Group 2 and Capture Group 1 will hold a null value..

2 = Capture Group 2:

 If either alternate of Capture Group 3 or 4 is the first occurrence, then Capture Group 2 holds the

 aggregated value.

3 & 4 = Capture Group 3 and Capture Group 4

 If either of these alternates are true, then the Capture Group that matches will capture that

 value. The value is passed along to Capture Group 2. Additionally…

 a. If Capture Group 3 is true then Capture Group 4 will be left undefined (never tested).

 b. If Capture Group 4 is true then Capture Group 3 will have a null value (tested but false).

Capture Group 1 matches against ‘Wars’ in the string as the first occurrence, satisfying the OR expression.

Capture Groups 2-4 are never tested and are therefore undefined.

Bulk Rename Utility Operations Manual Page 657 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

String = Star Wars Episode USD100 123x12 aNbc.jpg

Wars in Second Position

Match: (Nbc)|((Wars)|(Episode))

Where: \1 = null

 \2 = Wars

 \3 = Wars

 \4 = undefined

Evaluation order:

 2

 1 3 4

(Nbc) | ((Wars) | (Episode))

Nbc in the first group is tested but because it appears at the end of the string, this fails the test. The second alternate is

tested and matches in Capture Group 3. In the string, ‘Wars’, comes before either ‘Nbc’ or ‘Episode’, and because

Capture Group 3 is nested in Capture Group 2, Capture Group 2 is the aggregated value –

Or in other words, Capture Group 2 takes its value from both Capture Group 3 and Capture Group 4. Capture Group 4

is left undefined because it is never tested since the RegEx was satisfied by Capture Group 3’s match. Capture Group

2’s value is left as comprised of only the match from Capture Group 3. Capture Group 2 therefore holds the value of

‘Wars’. Capture Group 1 returns a null value because it was tested but failed to match.

Bulk Rename Utility Operations Manual Page 658 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

String = Star Wars Episode USD100 123x12 aNbc.jpg

This next one is different.

I have changed around the RegEx to have Episode as the first alternate under Capture Group 1.

Wars in 3rd Position, Episode in First Position

Match: (Episode)|((Nbc)|(Wars))

Where: \1 = null

 \2 = Wars

 \3 = null

 \4 = Wars

Evaluation order:

 2

 1 3 4

(Episode) | ((Nbc) | (Wars))

Analysis:

Wars is the first occurrence before either Episode or Nbc. Capture Group 4 captures the value, ‘Wars’, and Capture

Group 3 is the aggregate value of both Capture Group 3 and Capture Group 4. Capture Group 3 is tested and returns a

null value. Thus, Capture Group 2 is comprised of only the value from Capture Group 4. Capture Group 2 therefore

holds the value of ‘Wars’. Capture Group 1 also was tested and returned a null value.

Notes:

1. The analysis is a simplified account. What actually happens is that each character of the string is tested against the

 first character of the alternate, ‘E’ of ‘Episode’. If that fails, it tests the first character of the second and third

 alternate, falling back to the first alternate again for the next character in the string until a match can be found.

 When a match is found, the value of null or undefined is dependent on where in the RegEx the matched alternate

 occurs. If, for example, the match occurs at the first alternate, the second and third alternates are not tested and the

 values remain undefined. If the match occurs on the second alternate, then the first alternate returns a null value

 and the third alternate is never tested and remains undefined. If the match occurs on the third alternate, then both

 the first and second alternate return a null value.

Bulk Rename Utility Operations Manual Page 659 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

String = Star Wars Episode USD100 123x12 aNbc.jpg

Wars in 2rd Position, Episode in First Position

Match: (Episode)|((Wars)|(Nbc))

Where: \1 = null

 \2 = Wars

 \3 = Wars

 \4 = undefined

Evaluation order:

 2

 1 3 4

(Episode) | ((Wars) | (Nbc))

Analysis:

Once more Wars is the first occurrence. In the second position this leaves Capture Group 1 with a null value and

Capture Group 4 remains undefined.

Notes:

1. No difference in the outcome. Wars will always match as long as it is the first occurrence in the string regardless of

 the positioning in the RegEx.

Bulk Rename Utility Operations Manual Page 660 of 715

Using Alternates with Capture Groups

Using FOUR Capture Groups and three alternates

String = Star Wars Episode USD100 123x12 aNbc.jpg

Wars in 3rd Position, Episode in First Position

Here’s a tricky one. See if you can follow it.

Match: (Episode) | ((Nbc) | (Wars))

Where: \1 = Episode

 \2 - 4 = undefined

Evaluation order:

 2

 1 3 4

(Episode) | ((Nbc) | (Wars))

Analysis:

Whoa, what happened? Episode matched over Wars?? Hmmm… This requires a closer look.

Look carefully at the Match String. Do you see? It has <spaces>.

It is actually:

(Episode) <space> |<space> ((Nbc)<space> |<space> (Wars))

This means that the first alternate has to match against ‘Episode’ followed by a <space>. The second alternate has to

match against ‘Nbc’ preceded by and followed by a <space> and the third alternate has to match against ‘Wars’

preceded by a <space>.

Okay. Got it. So why did Episode match and Wars didn’t? Simple. In the string, ‘Nbc’ is preceded by the lowercase

letter, ‘a’ and not a <space>, therefore, Wars is not ever tested because ‘Nbc’ can never match. Remember it is first

come first served. So if ‘Nbc’ cannot match anywhere, it will fall back to the first alternate. Episode matches in

Capture Group 1 while Capture Groups 2 through Capture Group 4 remain undefined.

Conclusion:

This section hopefully provided an understanding of how RegEx evaluates a match using alternatives. I am no expert

in RegEx, but like most of you, I try to understand how it works and not just that it works.

Bulk Rename Utility Operations Manual Page 661 of 715

Personal examples

Here’s a few I use for cataloging purposes.

1. Fix Version Numbers

 Match file names that require a dot for version numbers

String = ASP.NET 3 5 2008.pdf

Match: (.*)\s(([0-9])\s([0-9]))(.*)

Replace: \1.\2\5

 Note the dot after \1

Observations:

1. The whole idea of Grouping is to isolate various elements of the string called ‘parsing’.

2. Each grouping or Capture Group is identified by \1, \2 etc. This is called a backreference.

3. The string is read all the way through using .*

4. The pattern is set by the expression and sub-expressions both outside and within the groups.

5. The above searches for the space character between two numeric digits.

6. If matched, the Replace String puts together the New Name string with an added dot character.

Result:

Where:

\1 = ASP.NET 3 \2 = 5 2 \3 = 5 \4 = 2 \5 = 008.pdf

Unfortunately, the Result is not universal. I really need to work on a better RegEx for this one.

String = Here is another string 7 0 no date this time.pdf

Replace: \1 \3.\4\5 (requires a different Replace String)

Result:

Bulk Rename Utility Operations Manual Page 662 of 715

Personal examples

1. Fix Version Numbers cont.

New and Improved:

This one is more universal and should match more strings without having to customize the Replacement String as the

previous RegEx required.

Match: (.*?)(\b\d+?\b)(\s+?)(\b\d+?\b)(\s+?)(\w+)(.*)

Replace: \1\2.\4\5\6\7

Defines Word Boundaries that are inclusive of one or more numeric digits that are separated by one or more

<spaces>, and ends the match search on a Word (Capture Group 4) to differentiate, for example, a year from a version

identification. This was just one of the problems with the previous RegEx.

Examples: Regex Buddy photos based on a simpler version for clarity - (\b\d+?\b)\s+?(\b\d+?\b)\s+?(\w+)

Here is another string 7 0 no date this time

This is version 3 5 2010 test

The other RegEx could not handle this string:

(.*)\s(([0-9])()([0-9]))(.*)

It miscalculated the <space> between ‘5’ and ‘2010’ as a version

number

Bulk Rename Utility Operations Manual Page 663 of 715

Personal examples

1. Fix Version Numbers cont.

Even better. Results same, but less complicated and expounds on the original.

Sample strings:

Here is another string 7 0 no date this time.pdf

ASP.NET 3 5 2008.pdf

8 0 is the version

This is version 3 5 2010 test

700 8 is next

Match: (.+)?(([0-9])(\s)([0-9][^0-9]))(.*)

Replace: \1\3.\5\6

Compared with the original version:

Current: (.+) ? (([0-9]) (\s) ([0-9] [^0-9])) (.*)

Original: (.*) \s (([0-9]) \s ([0-9])) (.*)

Analysis:

1. (.+)? Matches from the beginning using .+? rather than at the end using .*. Also by making it

Lazy, it can take into account those strings that begin with a numeric digit.

2. (([0-9])(\s)([0-9][^0-9])) Next it searches out a numeric digit followed by a <space> followed by a second

 numeric digit. The negated class consisting of a numeric digit ensures that any other

 numeric digits that follow will be ignored as the evaluation moves forward through the

 string. Also could have used [^\w]) in place of [^0-9].

3. (.*) Any text that remains in the string is captured.

Bulk Rename Utility Operations Manual Page 664 of 715

Personal examples

1. Fix Version Numbers cont.

Sample strings:

Here is another string 7 0 no date this time.pdf ASP.NET 3 5 2008.pdf 8 0 is the version

This is version 3 5 2010 test 700 8 is next

Match: (.+)?(([0-9])(\s)([0-9][^0-9]))(.*?)$

Replace: \1\3.\5\6

But, although it captures more of the sample strings, it can’t match against –

this is version 8 0

this will, using \d: or this, using classes:

Match: (.+)?(\d)(\s)(\d)(?!\d)(.*) Match: (.+)?([0-9])(\s)([0-9])(?![0-9])(.*)

Replace: \1\2.\4\5 Replace: \1\2.\4\5

Notes:

1. No difference in processing using \d or classes in this example. Both require 88 steps with backtracking. Interesting

 to note that the ‘New and Improved’ version that was a bit more complicated did not require backtracking and had

 much fewer steps, although it did not match against the samples that ended with numeric digits.

2. Have to enable ‘Rename File Extensions As Being part of File Name’ of the File/Folder Extensions sub-menu from

 the Renaming Options Menu to accommodate the dot character in the string, ‘This.is version 7 0’.

3. The (?!\d) is a Lookaround that Looks Ahead (to the right of the current position) to see that the next character after

 the match of the numeric digit following the <space> is not another numeric digit. This means that it would not

 match against a sample string, ‘This is test 3 00’. You would need to change the Match String to,

 (.+)?(\d)(\s)(\d)(.*) with a Replace String of \1\2.\4\5 specific to that pattern.

Bulk Rename Utility Operations Manual Page 665 of 715

Personal examples

2. Fix Author’s Initials

Match file names that require a dot after an Author’s initial

String = J Doe.pdf

Match: (.*)([A-Z])()([A-Z])(.*)

Replace: \2. \4\5 (Note the dot and space after \2)

Analysis:

1. The above searches for the space between two capitalized letters

2. If matched, the Replacements put together the string with an added dot character

3. Will not match filenames where the author’s initial is lowercase (and would not be practical to do so without

 resulting in adding a dot between each lowercase word of a filename). A trade-off.

Result:

Where:

\1 = null \2 = J \3 = (space) \4 = D \5 = oe.pdf

Notes:

1. The initial ‘J’ has been isolated in Group 2 so it needs to have the dot and a space added - \2<dot> <space>

Bulk Rename Utility Operations Manual Page 666 of 715

Personal examples

3. Remove Excess Spaces after an Author’s Initials

 Match file names that have two spaces after an Initial (only) and remove the additional space.

Match: (.*)(?<=.)(\.)((.*))(\s)(\s.*)(.*)

Replace: \1\2\6

Analysis:

1. Gather up the entire string.

2. This uses a Lookbehind for the dot (signifying an initial).

3. Gather up the dot.

4. Search for two spaces after the dot.

5. Gather up the space.

6. If matched, the Replacements put together the string.

Example:

String = This is the front – J. Doe; More stuff here to End.pdf

2 <spaces>

In this example, notice that only the file name with two spaces after an initial is affected. The other file name that also

has two spaces is unaffected.

Where:

\1 = This is the front – J.pdf \2 = . (dot) \3 = (null) \4 = (null)

\5 = (space) \6 = Doe; More stuff here to End.pdf \7 = (null)

Bulk Rename Utility Operations Manual Page 667 of 715

JavaScript Bulk Rename Utility Constants and Variables

Bulk Rename Utility Operations Manual Page 668 of 715

JavaScript BRU Constants and Variables

The following special constants and variables are available in Bulk Rename Utility JavaScript. Variables can be

modified, while constants have a fixed value and can not be changed.

Bulk Rename Utility Operations Manual Page 669 of 715

JavaScript BRU Utility Functions

The following special functions are available in Bulk Rename Utility JavaScript:

Bulk Rename Utility Operations Manual Page 670 of 715

JavaScript BRU Utility Functions

Source Material this section: BRU manual

Bulk Rename Utility Operations Manual Page 671 of 715

EXIF Metadata Reference

Bulk Rename Utility Operations Manual Page 672 of 715

EXIF Metadata Reference

This is a complete listing of the 2.3 Standard EXIF Tags. BRU uses the 2.2 standard currently so some tags may not

apply.

This is provided for the EXIF Tag capability of both the ‘Section #7: Add’ and the ‘Section #14: JavaScript’. You

will probably never see half of these, but here they are in case you do. I have already formatted each tag with ‘EXIF:’

so all you need to do is to copy and paste the desired tag into BRU. They are not in alphabetical order but in the order

in which they are likely to appear, as per the Exiv2 v0.27.2.

EXIF:ProcessingSoftware

The name and version of the software used to post-process the picture.

EXIF:NewSubfileType

A general indication of the kind of data contained in this subfile.

EXIF:SubfileType

A general indication of the kind of data contained in this subfile. This field is deprecated. The NewSubfileType field

should be used instead.

EXIF:ImageWidth

The number of columns of image data, equal to the number of pixels per row.

EXIF:ImageLength

The number of rows of image data.

EXIF:BitsPerSample

The number of bits per image component. In this standard each component of the image is 8 bits, so the value for this

tag is 8.

EXIF:Compression

The compression scheme used for the image data. When a primary image is JPEG compressed, this designation is not

necessary and is omitted. When thumbnails use JPEG compression, this tag value is set to 6.

EXIF:PhotometricInterpretation

The pixel composition.

EXIF:Thresholding

For black and white TIFF files that represent shades of gray, the technique used to convert from gray to black and

white pixels.

EXIF:CellWidth

The width of the dithering or halftoning matrix used to create a dithered or halftoned bilevel file.

EXIF:CellLength

The length of the dithering or halftoning matrix used to create a dithered or halftoned bilevel file.

EXIF:FillOrder

The logical order of bits within a byte.

Bulk Rename Utility Operations Manual Page 673 of 715

EXIF Metadata Reference

EXIF:DocumentName

The name of the document from which this image was scanned.

EXIF:ImageDescription

A character string giving the title of the image.

EXIF:Make

The manufacturer of the equipment that generated the image.

EXIF:Model

The model name or model number of the equipment that generated the image.

EXIF:StripOffsets

For each strip, the offset of that strip.

EXIF:Orientation

The image orientation viewed in terms of rows and columns.

EXIF:SamplesPerPixel

The number of components per pixel. Since this standard applies to RGB and YCbCr images, the value set for this tag

is 3.

EXIF:RowsPerStrip

The number of rows per strip. This is the number of rows in the image of one strip when an image is divided into

strips.

EXIF:StripByteCounts

The total number of bytes in each strip. With JPEG compressed data this designation is not needed and is omitted.

EXIF:XResolution

The number of pixels per <ResolutionUnit> in the <ImageWidth> direction. When the image resolution is unknown,

72 [dpi] is designated.

EXIF:YResolution

The number of pixels per <ResolutionUnit> in the <ImageLength> direction.

EXIF:PlanarConfiguration

Indicates whether pixel components are recorded in a chunky or planar format.

EXIF:GrayResponseUnit

The precision of the information contained in the GrayResponseCurve.

EXIF:GrayResponseCurve

For grayscale data, the optical density of each possible pixel value.

EXIF:T4Options

T:4-encoding options.

Bulk Rename Utility Operations Manual Page 674 of 715

EXIF Metadata Reference

EXIF:T6Options

T:6-encoding options.

EXIF:ResolutionUnit

The unit for measuring <XResolution> and <YResolution>. If the image resolution is unknown, 2 (inches) is

designated.

EXIF:PageNumber

The page number of the page from which this image was scanned.

EXIF:TransferFunction

A transfer function for the image, described in tabular style.

EXIF:Software

This tag records the name and version of the software or firmware of the camera or image input device used to

generate the image.

EXIF:DateTime

The date and time of image creation. In EXIF standard, it is the date and time the file was changed.

EXIF:Artist

This tag records the name of the camera owner, photographer or image creator.

EXIF:HostComputer

This tag records information about the host computer used to generate the image.

EXIF:Predictor

A predictor is a mathematical operator that is applied to the image data before an encoding scheme is applied.

EXIF:WhitePoint

The chromaticity of the white point of the image.

EXIF:PrimaryChromaticities

The chromaticity of the three primary colours of the image.

EXIF:ColorMap

A colour map for palette colour images. This field defines a Red-Green-Blue colour map (often called a lookup table)

for palette-colour images.

EXIF:HalftoneHints

The purpose of the HalftoneHints field is to convey to the halftone function the range of gray levels within a

colorimetrically-specified image that should retain tonal detail.

EXIF:TileWidth

The tile width in pixels. This is the number of columns in each tile.

EXIF:TileLength

The tile length (height) in pixels. This is the number of rows in each tile.

Bulk Rename Utility Operations Manual Page 675 of 715

EXIF Metadata Reference

EXIF:TileOffsets

For each tile, the offset of that tile, as compressed and stored on disk. The offset is specified with respect to the

beginning of the TIFF file.

EXIF:TileCounts

For each tile, the number of (compressed) bytes in that tile.

EXIF:SubIFDs

Defined by Adobe Corporation to enable TIFF Trees within a TIFF file.

EXIF:InkSet

The set of inks used in a separated (PhotometricInterpretation=5) image.

EXIF:InkNames

The name of each ink used in a separated (PhotometricInterpretation=5) image.

EXIF:NumberOfInks

The number of inks. Usually equal to SamplesPerPixel, unless there are extra samples.

EXIF:DotRange

The component values that correspond to a 0% dot and 100% dot.

EXIF:TargetPrinter

A description of the printing environment for which this separation is intended.

EXIF:ExtraSamples

Specifies that each pixel has m extra components whose interpretation is defined by one of the values listed in

SampleFormat, SMinSampleValue and SMaxSampleValue.

EXIF:SampleFormat

This field specifies how to interpret each data sample in a pixel.

EXIF:SMinSampleValue

This field specifies the minimum sample value.

EXIF:SMaxSampleValue

This field specifies the maximum sample value.

EXIF:TransferRange

Expands the range of the TransferFunction

EXIF:ClipPath

A TIFF ClipPath is intended to mirror the essentials of PostScript's path creation functionality.

EXIF:XClipPathUnits

The number of units that span the width of the image, in terms of integer ClipPath coordinates.

Bulk Rename Utility Operations Manual Page 676 of 715

EXIF Metadata Reference

EXIF:YClipPathUnits

The number of units that span the height of the image, in terms of integer ClipPath coordinates.

EXIF:Indexed

Indexed images are images where the 'pixels' do not represent colour values, but rather an index (usually 8-bit) into a

separate colour table, the ColorMap.

EXIF:JPEGTables

This optional tag may be used to encode the JPEG quantization and Huffman tables for subsequent use by the JPEG

decompression process.

EXIF:OPIProxy

OPIProxy gives information concerning whether this image is a low-resolution proxy of a high-resolution image

(Adobe OPI).

EXIF:JPEGProc

This field indicates the process used to produce the compressed data

EXIF:JPEGInterchangeFormat

The offset to the start (SOI) of JPEG compressed thumbnail data.

EXIF:JPEGInterchangeFormatLength

The number of s of JPEG compressed thumbnail data.

EXIF:JPEGRestartInterval

This Field indicates the length of the restart interval used in the compressed image data.

EXIF:JPEGLosslessPredictors

This Field points to a list of lossless predictor-selection values, one per component.

EXIF:JPEGPointTransforms

This Field points to a list of point transform values, one per component.

EXIF:JPEGQTables

This Field points to a list of offsets to the quantization tables, one per component.

EXIF:JPEGDCTables

This Field points to a list of offsets to the DC Huffman tables or the lossless Huffman tables, one per component.

EXIF:JPEGACTables

This Field points to a list of offsets to the Huffman AC tables, one per component.

EXIF:YCbCrCoefficients

The matrix coefficients for transformation from RGB to YCbCr image data.

EXIF:YCbCrSubSampling

The sampling ratio of chrominance components in relation to the luminance component.

Bulk Rename Utility Operations Manual Page 677 of 715

EXIF Metadata Reference

EXIF:YCbCrPositioning

The position of chrominance components in relation to the luminance component. This field is designated only for

JPEG compressed data or uncompressed YCbCr data.

EXIF:ReferenceBlackWhite

The reference black point value and reference white point value.

EXIF:XMLPacket

XMP Metadata.

EXIF:Rating

Rating tag used by Windows.

EXIF:RatingPercent

Rating tag used by Windows, value in percent.

EXIF:ImageID

ImageID is the full pathname of the original, high-resolution image, or any other identifying string that uniquely

identifies the original image (Adobe OPI).

EXIF:CFARepeatPatternDim

Contains two values representing the minimum rows and columns to define the repeating patterns of the colour filter

array.

EXIF:CFAPattern

Indicates the colour filter array (CFA) geometric pattern of the image sensor when a one-chip colour area sensor is

used. It does not apply to all sensing methods.

EXIF:BatteryLevel

Contains a value of the battery level as a fraction or string.

EXIF:Copyright

Copyright information. In this standard the tag is used to indicate both the photographer and editor copyrights.

EXIF:ExposureTime

Exposure time, given in seconds.

EXIF:FNumber

The F number.

EXIF:IPTCNAA

Contains an IPTC/NAA record.

EXIF:ImageResources

Contains information embedded by the Adobe Photoshop application.

EXIF:EXIFTag

A pointer to the EXIF IFD.

Bulk Rename Utility Operations Manual Page 678 of 715

EXIF Metadata Reference

EXIF:InterColorProfile

Contains an InterColor Consortium (ICC) format colour space characterization/profile.

EXIF:ExposureProgram

The class of the program used by the camera to set exposure when the picture is taken.

EXIF:SpectralSensitivity

Indicates the spectral sensitivity of each channel of the camera used.

EXIF:GPSTag

A pointer to the GPS Info IFD.

EXIF:ISOSpeedRatings

Indicates the ISO Speed and ISO Latitude of the camera or input device as specified in ISO 12232.

EXIF:OECF

Indicates the Opto-Electric Conversion Function (OECF) specified in ISO 14524.

EXIF:Interlace

Indicates the field number of multifield images.

EXIF:TimeZoneOffset

This optional tag encodes the time zone of the camera clock (relative to Greenwich Mean Time) used to create the

DataTimeOriginal tag-value when the picture was taken. It may also contain the time zone offset of the clock used to

create the DateTime tag-value when the image was modified.

EXIF:SelfTimerMode

Number of seconds image capture was delayed from button press.

EXIF:DateTimeOriginal

The date and time when the original image data was generated.

EXIF:CompressedBitsPerPixel

Specific to compressed data; states the compressed bits per pixel.

EXIF:ShutterSpeedValue

Shutter speed.

EXIF:ApertureValue

The lens aperture.

EXIF:BrightnessValue

The value of brightness.

EXIF:ExposureBiasValue

The exposure bias.

Bulk Rename Utility Operations Manual Page 679 of 715

EXIF Metadata Reference

EXIF:MaxApertureValue

The smallest F number of the lens.

EXIF:SubjectDistance

The distance to the subject, given in meters.

EXIF:MeteringMode

The metering mode.

EXIF:LightSource

The kind of light source.

EXIF:Flash

Indicates the status of flash when the image was shot.

EXIF:FocalLength

The actual focal length of the lens, in mm.

EXIF:FlashEnergy

Amount of flash energy (BCPS).

EXIF:SpatialFrequencyResponse

SFR of the camera.

EXIF:Noise

Noise measurement values.

EXIF:FocalPlaneXResolution

Number of pixels per FocalPlaneResolutionUnit in ImageWidth direction for main image.

EXIF:FocalPlaneYResolution

Number of pixels per FocalPlaneResolutionUnit in ImageLength direction for main image.

EXIF:FocalPlaneResolutionUnit

Unit of measurement for FocalPlaneXResolution and FocalPlaneYResolution.

EXIF:ImageNumber

Number assigned to an image, e:g:, in a chained image burst.

EXIF:SecurityClassification

Security classification assigned to the image.

EXIF:ImageHistory

Record of what has been done to the image.

EXIF:SubjectLocation

Indicates the location and area of the main subject in the overall scene.

Bulk Rename Utility Operations Manual Page 680 of 715

EXIF Metadata Reference

EXIF:ExposureIndex

Encodes the camera exposure index setting when image was captured.

EXIF:TIFFEPStandardID

Contains four ASCII characters representing the TIFF/EP standard version of a TIFF/EP file, e.g. '1', '0', '0', '0'

EXIF:SensingMethod

Type of image sensor.

EXIF:XPTitle

Title tag used by Windows, encoded in UCS2.

EXIF:XPComment

Comment tag used by Windows, encoded in UCS2.

EXIF:XPAuthor

Author tag used by Windows, encoded in UCS2.

EXIF:XPKeywords

Keywords tag used by Windows, encoded in UCS2.

EXIF:XPSubject

Subject tag used by Windows, encoded in UCS2.

EXIF:PrintImageMatching

Print Image Matching, description needed.

EXIF:DNGVersion

This tag encodes the DNG four-tier version number. For files compliant with version 1:1:0:0 of the DNG

specification, this tag should contain the s.1, 1, 0, 0.

EXIF:DNGBackwardVersion

This tag specifies the oldest version of the Digital Negative specification for which a file is compatible.

EXIF:UniqueCameraModel

Defines a unique, non-localized name for the camera model that created the image in the raw file.

EXIF:LocalizedCameraModel

Similar to the UniqueCameraModel field, except the name can be localized for different markets to match the

localization of the camera name.

EXIF:CFAPlaneColor

Provides a mapping between the values in the CFAPattern tag and the plane numbers in LinearRaw space. This is a

required tag for non-RGB CFA images.

EXIF:CFALayout

Describes the spatial layout of the CFA.

Bulk Rename Utility Operations Manual Page 681 of 715

EXIF Metadata Reference

EXIF:LinearizationTable

Describes a lookup table that maps stored values into linear values.

EXIF:BlackLevelRepeatDim

Specifies repeat pattern size for the BlackLevel tag.

EXIF:BlackLevel

Specifies the zero light (a:k:a.thermal black or black current) encoding level, as a repeating pattern.

EXIF:BlackLevelDeltaH

If the zero light encoding level is a function of the image column, BlackLevelDeltaH specifies the difference between

the zero light encoding level for each column and the baseline zero light encoding level.

EXIF:BlackLevelDeltaV

If the zero light encoding level is a function of the image row, this tag specifies the difference between the zero light

encoding level for each row and the baseline zero light encoding level.

EXIF:WhiteLevel

This tag specifies the fully saturated encoding level for the raw sample values. Saturation is caused either by the

sensor itself becoming highly non-linear in response, or by the camera's analog to digital converter clipping.

EXIF:DefaultScale

DefaultScale is required for cameras with non-square pixels. It specifies the default scale factors for each direction to

convert the image to square pixels.

EXIF:DefaultCropOrigin

Raw images often store extra pixels around the edges of the final image. These extra pixels help prevent interpolation

artifacts near the edges of the final image. DefaultCropOrigin specifies the origin of the final image area, in raw

image coordinates (i:e:, before the DefaultScale has been applied), relative to the top-left corner of the ActiveArea

rectangle.

EXIF:DefaultCropSize

Raw images often store extra pixels around the edges of the final image. These extra pixels help prevent interpolation

artifacts near the edges of the final image. DefaultCropSize specifies the size of the final image area, in raw image

coordinates (i:e:, before the DefaultScale has been applied).

EXIF:ColorMatrix1

ColorMatrix1 defines a transformation matrix that converts XYZ values to reference camera native colour space

values, under the first calibration illuminant. The matrix values are stored in row scan order. The ColorMatrix1 tag is

required for all non-monochrome DNG files.

EXIF:ColorMatrix2

ColorMatrix2 defines a transformation matrix that converts XYZ values to reference camera native colour space

values, under the second calibration illuminant. The matrix values are stored in row scan order.

Bulk Rename Utility Operations Manual Page 682 of 715

EXIF Metadata Reference

EXIF:CameraCalibration1

CameraCalibration1 defines a calibration matrix that transforms reference camera native space values to individual

camera native space values under the first calibration illuminant. The matrix is stored in row scan order. This matrix

is stored separately from the matrix specified by the ColorMatrix1 tag to allow raw converters to swap in replacement

colour matrices based on UniqueCameraModel tag, while still taking advantage of any per-individual camera

calibration performed by the camera manufacturer.

EXIF:CameraCalibration2

CameraCalibration2 defines a calibration matrix that transforms reference camera native space values to individual

camera native space values under the second calibration illuminant. The matrix is stored in row scan order. This

matrix is stored separately from the matrix specified by the ColorMatrix2 tag to allow raw converters to swap in

replacement colour matrices based on UniqueCameraModel tag, while still taking advantage of any per-individual

camera calibration performed by the camera manufacturer.

EXIF:ReductionMatrix1

ReductionMatrix1 defines a dimensionality reduction matrix for use as the first stage in converting colour camera

native space values to XYZ values, under the first calibration illuminant. The matrix is stored in row scan order.

EXIF:ReductionMatrix2

ReductionMatrix2 defines a dimensionality reduction matrix for use as the first stage in converting colour camera

native space values to XYZ values, under the second calibration illuminant. The matrix is stored in row scan order.

EXIF:AnalogBalance

Normally the stored raw values are not white balanced, since any digital white balancing will reduce the dynamic

range of the final image if the user decides to later adjust the white balance; however, if camera hardware is capable

of white balancing the colour channels before the signal is digitized, it can improve the dynamic range of the final

image. AnalogBalance defines the gain, either analog (recommended) or digital (not recommended) that has been

applied the stored raw values.

EXIF:AsShotNeutral

Specifies the selected white balance at time of capture, encoded as the coordinates of a perfectly neutral colour in

linear reference space values.

EXIF:AsShotWhiteXY

Specifies the selected white balance at time of capture, encoded as x-y chromaticity coordinates.

EXIF:BaselineExposure

Camera models vary in the trade-off they make between highlight headroom and shadow noise. Some leave a

significant amount of highlight headroom during a normal exposure. This allows significant negative exposure

compensation to be applied during raw conversion, but also means normal exposures will contain more shadow noise.

Other models leave less headroom during normal exposures. This allows for less negative exposure compensation, but

results in lower shadow noise for normal exposures. Because of these differences, a raw converter needs to vary the

zero point of its exposure compensation control from model to model. BaselineExposure specifies by how much (in

EV units) to move the zero point. Positive values result in brighter default results, while negative values result in

darker default results.

Bulk Rename Utility Operations Manual Page 683 of 715

EXIF Metadata Reference

EXIF:BaselineNoise

Specifies the relative noise level of the camera model at a baseline ISO value of 100, compared to a reference camera

model. Since noise levels tend to vary approximately with the square root of the ISO value, a raw converter can use

this value, combined with the current ISO, to estimate the relative noise level of the current image.

EXIF:BaselineSharpness

Specifies the relative amount of sharpening required for this camera model, compared to a reference camera model.

Camera models vary in the strengths of their anti-aliasing filters. Cameras with weak or no filters require less

sharpening than cameras with strong anti-aliasing filters.

EXIF:BayerGreenSplit

Only applies to CFA images using a Bayer pattern filter array. This tag specifies, in arbitrary units, how closely the

values of the green pixels in the blue/green rows track the values of the green pixels in the red/green rows. A value of

zero means the two kinds of green pixels track closely, while a non-zero value means they sometimes diverge. The

useful range for this tag is from 0 (no divergence) to about 5000 (quite large divergence).

EXIF:LinearResponseLimit

Some sensors have an unpredictable non-linearity in their response as they near the upper limit of their encoding

range. This non-linearity results in colour shifts in the highlight areas of the resulting image unless the raw converter

compensates for this effect. LinearResponseLimit specifies the fraction of the encoding range above which the

response may become significantly non-linear.

EXIF:CameraSerialNumber

CameraSerialNumber contains the serial number of the camera or camera body that captured the image.

EXIF:LensInfo

Contains information about the lens that captured the image.

EXIF:ChromaBlurRadius

ChromaBlurRadius provides a hint to the DNG reader about how much chroma blur should be applied to the image.

EXIF:AntiAliasStrength

Provides a hint to the DNG reader about how strong the camera's anti-alias filter is. A value of 0:0 means no anti-alias

filter (i:e:, the camera is prone to aliasing artifacts with some subjects), while a value of 1:0 means a strong anti-alias

filter (i:e:, the camera almost never has aliasing artifacts).

EXIF:ShadowScale

This tag is used by Adobe Camera Raw to control the sensitivity of its 'Shadows' slider.

EXIF:DNGPrivateData

Provides a way for camera manufacturers to store private data in the DNG file for use by their own raw converters,

and to have that data preserved by programs that edit DNG files.

Bulk Rename Utility Operations Manual Page 684 of 715

EXIF Metadata Reference

EXIF:MakerNoteSafety

MakerNoteSafety lets the DNG reader know whether the EXIF MakerNote tag is safe to preserve along with the rest

of the EXIF data. File browsers and other image management software processing an image with a preserved

MakerNote should be aware that any thumbnail image embedded in the MakerNote may be stale, and may not reflect

the current state of the full size image.

EXIF:CalibrationIlluminant1

The illuminant used for first set of colour calibration tags (ColorMatrix1, CameraCalibration1, ReductionMatrix1).

EXIF:CalibrationIlluminant2

The illuminant used for an optional second set of colour calibration tags (ColorMatrix2, CameraCalibration2,

ReductionMatrix2).

EXIF:BestQualityScale

For some cameras, the best possible image quality is not achieved by preserving the total pixel count during

conversion. For example, Fujifilm SuperCCD images have maximum detail when their total pixel count is doubled.

This tag specifies the amount by which the values of the DefaultScale tag need to be multiplied to achieve the best

quality image size.

EXIF:RawDataUniqueID

This tag contains a 16- unique identifier for the raw image data in the DNG file. DNG readers can use this tag to

recognize a particular raw image, even if the file's name or the Metadata contained in the file has been changed.

EXIF:OriginalRawFileName

If the DNG file was converted from a non-DNG raw file, then this tag contains the file name of that original raw file.

EXIF:OriginalRawFileData

If the DNG file was converted from a non-DNG raw file, then this tag contains the compressed contents of that

original raw file.

EXIF:ActiveArea

This rectangle defines the active (non-masked) pixels of the sensor. The order of the rectangle coordinates is top, left,

bottom, right.

EXIF:MaskedAreas

This tag contains a list of non-overlapping rectangle coordinates of fully masked pixels, which can be optionally used

by DNG readers to measure the black encoding level. The order of each rectangle's coordinates is top, left, bottom,

right.

EXIF:AsShotICCProfile

This tag contains an ICC profile that, in conjunction with the AsShotPreProfileMatrix tag, provides the camera

manufacturer with a way to specify a default colour rendering from camera colour space coordinates (linear reference

values) into the ICC profile connection space.

EXIF:AsShotPreProfileMatrix

This tag is used in conjunction with the AsShotICCProfile tag. It specifies a matrix that should be applied to the

camera colour space coordinates before processing the values through the ICC profile specified in the

AsShotICCProfile tag.

Bulk Rename Utility Operations Manual Page 685 of 715

EXIF Metadata Reference

EXIF:CurrentICCProfile

This tag is used in conjunction with the CurrentPreProfileMatrix tag. The CurrentICCProfile and

CurrentPreProfileMatrix tags have the same purpose and usage as the AsShotICCProfile and AsShotPreProfileMatrix

tag pair, except they are for use by raw file editors rather than camera manufacturers.

EXIF:CurrentPreProfileMatrix

This tag is used in conjunction with the CurrentICCProfile tag.The CurrentICCProfile and CurrentPreProfileMatrix

tags have the same purpose and usage as the AsShotICCProfile and AsShotPreProfileMatrix tag pair, except they are

for use by raw file editors rather than camera manufacturers.

EXIF:ColorimetricReference

The DNG colour model documents a transform between camera colours and CIE XYZ values. This tag describes the

colorimetric reference for the CIE XYZ values.

EXIF:CameraCalibrationSignature

A UTF-8 encoded string associated with the CameraCalibration1 and CameraCalibration2 tags.

EXIF:ProfileCalibrationSignature

A UTF-8 encoded string associated with the camera profile tags.

EXIF:AsShotProfileName

A UTF-8 encoded string containing the name of the "as shot" camera profile, if any.

EXIF:NoiseReductionApplied

This tag indicates how much noise reduction has been applied to the raw data on a scale of 0:0 to 1:0. A 0:0 value

indicates that no noise reduction has been applied. A 1:0 value indicates that the "ideal" amount of noise reduction has

been applied. A value of 0/0 indicates that this parameter is unknown.

EXIF:ProfileName

A UTF-8 encoded string containing the name of the camera profile.

EXIF:ProfileHueSatMapDims

This tag specifies the number of input samples in each dimension of the hue/saturation/value mapping tables. The data

for these tables are stored in ProfileHueSatMapData1 and ProfileHueSatMapData2 tags.

EXIF:ProfileHueSatMapData1

This tag contains the data for the first hue/saturation/value mapping table. Each entry of the table contains three 32-bit

IEEE floating-point values. The first entry is hue shift in degrees; the second entry is saturation scale factor; and the

third entry is a value scale factor.

EXIF:ProfileHueSatMapData2

This tag contains the data for the second hue/saturation/value mapping table. Each entry of the table contains three

32-bit IEEE floating-point values. The first entry is hue shift in degrees; the second entry is a saturation scale factor;

and the third entry is a value scale factor.

Bulk Rename Utility Operations Manual Page 686 of 715

EXIF Metadata Reference

EXIF:ProfileToneCurve

This tag contains a default tone curve that can be applied while processing the image as a starting point for user

adjustments.

EXIF:ProfileEmbedPolicy

This tag contains information about the usage rules for the associated camera profile.

EXIF:ProfileCopyright

A UTF-8 encoded string containing the copyright information for the camera profile.

EXIF:ForwardMatrix1

This tag defines a matrix that maps white balanced camera colours to XYZ D50 colours.

EXIF:ForwardMatrix2

This tag defines a matrix that maps white balanced camera colours to XYZ D50 colours.

EXIF:PreviewApplicationName

A UTF-8 encoded string containing the name of the application that created the preview stored in the IFD.

EXIF:PreviewApplicationVersion

A UTF-8 encoded string containing the version number of the application that created the preview stored in the IFD.

EXIF:PreviewSettingsName

A UTF-8 encoded string containing the name of the conversion settings (for example, snapshot name) used for the

preview stored in the IFD.

EXIF:PreviewSettingsDigest

A unique ID of the conversion settings (for example, MD5 digest) used to render the preview stored in the IFD.

EXIF:PreviewColorSpace

This tag specifies the colour space in which the rendered preview in this IFD is stored. The default value for this tag is

sRGB for colour previews and Gray Gamma 2:2 for monochrome previews.

EXIF:PreviewDateTime

This tag is a string containing the name of the date/time at which the preview stored in the IFD was rendered. The

date/time is encoded using ISO 8601 format.

EXIF:RawImageDigest

This tag is an MD5 digest of the raw image data.

EXIF:OriginalRawFileDigest

This tag is an MD5 digest of the data stored in the OriginalRawFileData tag.

EXIF:SubTileBlockSize

Normally, the pixels within a tile are stored in simple row-scan order. This tag specifies that the pixels within a tile

should be grouped first into rectangular blocks of the specified size. These blocks are stored in row-scan order. Within

each block, the pixels are stored in row-scan order.

Bulk Rename Utility Operations Manual Page 687 of 715

EXIF Metadata Reference

EXIF:RowInterleaveFactor

This tag specifies that rows of the image are stored in interleaved order. The value of the tag specifies the number of

interleaved fields.

EXIF:ProfileLookTableDims

This tag specifies the number of input samples in each dimension of a default "look" table. The data for this table is

stored in the ProfileLookTableData tag.

EXIF:ProfileLookTableData

This tag contains a default "look" table that can be applied while processing the image as a starting point for user

adjustment.

EXIF:OpcodeList1

Specifies the list of opcodes that should be applied to the raw image, as read directly from the file.

EXIF:OpcodeList2

Specifies the list of opcodes that should be applied to the raw image, just after it has been mapped to linear reference

values.

EXIF:OpcodeList3

Specifies the list of opcodes that should be applied to the raw image, just after it has been demosaiced.

EXIF:NoiseProfile

NoiseProfile describes the amount of noise in a raw image. Specifically, this tag models the amount of signal-

dependent photon (shot) noise and signal-independent sensor readout noise, two common sources of noise in raw

images.

EXIF:TimeCodes

The optional TimeCodes tag shall contain an ordered array of time codes. All time codes shall be 8 bytes and in

binary format. The tag may contain from 1 to 10 time codes. When the tag contains more than one time code, the first

one shall be the default time code.

EXIF:FrameRate

The optional FrameRate tag shall specify the video frame rate in number of image frames per second, expressed as a

signed rational number. The numerator shall be non-negative and the denominator shall be positive.

EXIF:TStop

The optional TStop tag shall specify the T-stop of the actual lens, expressed as an unsigned rational number. T-stop is

also known as T-number or the photometric aperture of the lens.(F-number is the geometric aperture of the lens).

When the exact value is known, the T-stop shall be specified using a single number. Alternately, two numbers shall be

used to indicate a T-stop range, in which case the first number shall be the minimum T-stop and the second number

shall be the maximum T-stop.

EXIF:ReelName

The optional ReelName tag shall specify a name for a sequence of images, where each image in the sequence has a

unique image identifier (including but not limited to file name, frame number, date time, time code).

Bulk Rename Utility Operations Manual Page 688 of 715

EXIF Metadata Reference

EXIF:CameraLabel

The optional CameraLabel tag shall specify a text label for how the camera is used or assigned in this clip.

EXIF:Photo:ExposureTime

Exposure time, given in seconds (sec).

EXIF:Photo:FNumber

The F number.

EXIF:Photo:ExposureProgram

The class of the program used by the camera to set exposure when the picture is taken.

EXIF:Photo:SpectralSensitivity

Indicates the spectral sensitivity of each channel of the camera used.

EXIF:Photo:ISOSpeedRatings

Indicates the ISO Speed and ISO Latitude of the camera or input device as specified in ISO 12232.

EXIF:Photo:OECF

Indicates the Opto-Electoric Conversion Function (OECF) specified in ISO 14524. <OECF> is the relationship

between the camera optical input and the image values.

EXIF:Photo:SensitivityType

The SensitivityType tag indicates which one of the parameters of ISO12232 is the PhotographicSensitivity tag.

EXIF:Photo:StandardOutputSensitivity

This tag indicates the standard output sensitivity value of a camera or input device defined in ISO 12232.

EXIF:Photo:RecommendedExposureIndex

This tag indicates the recommended exposure index value of a camera or input device defined in ISO 12232.

EXIF:Photo:ISOSpeed

This tag indicates the ISO speed value of a camera or input device that is defined in ISO 12232.

EXIF:Photo:ISOSpeedLatitudeyyy

This tag indicates the ISO speed latitude yyy value of a camera or input device that is defined in ISO 12232

EXIF:Photo:ISOSpeedLatitudezzz

This tag indicates the ISO speed latitude zzz value of a camera or input device that is defined in ISO 12232.

EXIF:Photo:EXIFVersion

The version of this standard supported. Nonexistence of this field is taken to mean nonconformance to the standard.

EXIF:Photo:DateTimeOriginal

The date and time when the original image data was generated. For a digital still camera the date and time the picture

was taken are recorded.

Bulk Rename Utility Operations Manual Page 689 of 715

EXIF Metadata Reference

EXIF:Photo:DateTimeDigitized

The date and time when the image was stored as digital data.

EXIF:Photo:ComponentsConfiguration

Information specific to compressed data.

EXIF:Photo:CompressedBitsPerPixel

Information specific to compressed data. The compression mode used for a compressed image is indicated in unit bits

per pixel.

EXIF:Photo:ShutterSpeedValue

Shutter speed. The unit is the APEX (Additive System of Photographic Exposure) setting.

EXIF:Photo:ApertureValue

The lens aperture. The unit is the APEX value.

EXIF:Photo:BrightnessValue

The value of brightness. The unit is the APEX value.

EXIF:Photo:ExposureBiasValue

The exposure bias. The units is the APEX value

EXIF:Photo:MaxApertureValue

The smallest F number of the lens. The unit is the APEX value.

EXIF:Photo:SubjectDistance

The distance to the subject, given in meters.

EXIF:Photo:MeteringMode

The metering mode.

EXIF:Photo:LightSource

The kind of light source.

EXIF:Photo:Flash

This tag is recorded when an image is taken using a strobe light (flash).

EXIF:Photo:FocalLength

The actual focal length of the lens, in mm. Conversion is not made to the focal length of a 35 mm film camera.

EXIF:Photo:SubjectArea

This tag indicates the location and area of the main subject in the overall scene.

EXIF:Photo:MakerNote

A tag for manufacturers of EXIF writers to record any desired information. The contents are up to the manufacturer.

Bulk Rename Utility Operations Manual Page 690 of 715

EXIF Metadata Reference

EXIF:Photo:UserComment

A tag for EXIF users to write keywords or comments on the image besides those in <ImageDescription>, and without

the character code limitations of the <ImageDescription> tag.

EXIF:Photo:SubSecTime

A tag used to record fractions of seconds for the <DateTime> tag.

EXIF:Photo:SubSecTimeOriginal

A tag used to record fractions of seconds for the <DateTimeOriginal> tag.

EXIF:Photo:SubSecTimeDigitized

A tag used to record fractions of seconds for the <DateTimeDigitized> tag.

EXIF:Photo:FlashpixVersion

The FlashPix format version supported by a FPXR file.

EXIF:Photo:ColorSpace

The colour space information tag is always recorded as the colour space specifier. Normally sRGB is used to define

the colour space based on the PC monitor conditions and environment. If a colour space other than sRGB is used,

Uncalibrated is set.

EXIF:Photo:PixelXDimension

Information specific to compressed data. When a compressed file is recorded, the valid width of the meaningful

image must be recorded in this tag, whether or not there is padding data or a restart marker.

EXIF:Photo:PixelYDimension

Information specific to compressed data. When a compressed file is recorded, the valid height of the meaningful

image must be recorded in this tag, whether or not there is padding data or a restart marker.

EXIF:Photo:RelatedSoundFile

This tag is used to record the name of an audio file related to the image data. The only relational information recorded

here is the EXIF audio file name and extension (a string consisting of 8 characters + ':' + 3 characters). The path is not

recorded.

EXIF:Photo:InteroperabilityTag

Interoperability IFD is composed of tags which stores the information to ensure the Interoperability and pointed by

the following tag located in EXIF IFD.

EXIF:Photo:FlashEnergy

Indicates the strobe energy at the time the image is captured, as measured in Beam Candle Power Seconds (BCPS).

EXIF:Photo:SpatialFrequencyResponse

This tag records the camera or input device spatial frequency table and SFR values in the direction of image width,

image height, and diagonal direction, as specified in ISO 12233.

EXIF:Photo:FocalPlaneXResolution

Indicates the number of pixels in the image width (X) direction per <FocalPlaneResolutionUnit> on the camera focal

plane.

Bulk Rename Utility Operations Manual Page 691 of 715

EXIF Metadata Reference

EXIF:Photo:FocalPlaneYResolution

Indicates the number of pixels in the image height (V) direction per <FocalPlaneResolutionUnit> on the camera focal

plane.

EXIF:Photo:FocalPlaneResolutionUnit

Indicates the unit for measuring <FocalPlaneXResolution> and <FocalPlaneYResolution>. This value is the same as

the <ResolutionUnit>.

EXIF:Photo:SubjectLocation

Indicates the location of the main subject in the scene. The value of this tag represents the pixel at the center of the

main subject relative to the left edge, prior to rotation processing as per the <Rotation> tag. The first value indicates

the X column number and second indicates the Y row number.

EXIF:Photo:ExposureIndex

Indicates the exposure index selected on the camera or input device at the time the image is captured.

EXIF:Photo:SensingMethod

Indicates the image sensor type on the camera or input device.

EXIF:Photo:FileSource

Indicates the image source.

EXIF:Photo:SceneType

Indicates the type of scene.

EXIF:Photo:CFAPattern

Indicates the colour filter array (CFA) geometric pattern of the image sensor when a one-chip colour area sensor is

used. It does not apply to all sensing methods.

EXIF:Photo:CustomRendered

This tag indicates the use of special processing on image data, such as rendering geared to output.

EXIF:Photo:ExposureMode

This tag indicates the exposure mode set when the image was shot. In auto-bracketing mode, the camera shoots a

series of frames of the same scene at different exposure settings.

EXIF:Photo:WhiteBalance

This tag indicates the white balance mode set when the image was shot.

EXIF:Photo:DigitalZoomRatio

This tag indicates the digital zoom ratio when the image was shot. If the numerator of the recorded value is 0, this

indicates that digital zoom was not used.

EXIF:Photo:FocalLengthIn35mmFilm

This tag indicates the equivalent focal length assuming a 35mm film camera, in mm. A value of 0 means the focal

length is unknown. Note that this tag differs from the <FocalLength> tag.

Bulk Rename Utility Operations Manual Page 692 of 715

EXIF Metadata Reference

EXIF:Photo:SceneCaptureType

This tag indicates the type of scene that was shot. It can also be used to record the mode in which the image was shot.

Note that this differs from the <SceneType> tag.

EXIF:Photo:GainControl

This tag indicates the degree of overall image gain adjustment.

EXIF:Photo:Contrast

This tag indicates the direction of contrast processing applied by the camera when the image was shot.

EXIF:Photo:Saturation

This tag indicates the direction of saturation processing applied by the camera when the image was shot.

EXIF:Photo:Sharpness

This tag indicates the direction of sharpness processing applied by the camera when the image was shot.

EXIF:Photo:DeviceSettingDescription

This tag indicates information on the picture-taking conditions of a particular camera model.

EXIF:Photo:SubjectDistanceRange

This tag indicates the distance to the subject.

EXIF:Photo:ImageUniqueID

This tag indicates an identifier assigned uniquely to each image. It is recorded as a string equivalent to hexadecimal

notation and 128-bit fixed length.

EXIF:Photo:CameraOwnerName

This tag records the owner of a camera used in photography as an ASCII string.

EXIF:Photo:BodySerialNumber

This tag records the serial number of the body of the camera that was used in photography as an ASCII string.

EXIF:Photo:LensSpecification

This tag notes minimum focal length, maximum focal length, minimum F number in the minimum focal length, and

minimum F number in the maximum focal length, which are specification information for the lens that was used in

photography. When the minimum F number is unknown, the notation is 0/0

EXIF:Photo:LensMake

This tag records the lens manufacturer as an ASCII string.

EXIF:Photo:LensModel

This tag records the lens's model name and model number as an ASCII string.

EXIF:Photo:LensSerialNumber

This tag records the serial number of the interchangeable lens that was used in photography as an ASCII string.

EXIF:Iop:InteroperabilityIndex

Indicates the identification of the Interoperability rule

Bulk Rename Utility Operations Manual Page 693 of 715

EXIF Metadata Reference

EXIF:Iop:InteroperabilityVersion

Interoperability version.

EXIF:Iop:RelatedImageFileFormat

File format of image file.

EXIF:Iop:RelatedImageWidth

Image width.

EXIF:Iop:RelatedImageLength

Image height.

EXIF:GPSInfo:GPSVersionID

Indicates the version of <GPSInfoIFD>.

EXIF:GPSInfo:GPSLatitudeRef

Indicates whether the latitude is north or south latitude. The ASCII value 'N' indicates north latitude, and 'S' is south

latitude.

EXIF:GPSInfo:GPSLatitude

Indicates the latitude. The latitude is expressed as three RATIONAL values giving the degrees, minutes, and seconds,

respectively. When degrees, minutes and seconds are expressed, the format is dd/1,mm/1,ss/1. When degrees and

minutes are used and, for example, fractions of minutes are given up to two decimal places, the format is

dd/1,mmmm/100,0/1.

EXIF:GPSInfo:GPSLongitudeRef

Indicates whether the longitude is east or west longitude. ASCII 'E' indicates east longitude, and 'W' is west longitude.

EXIF:GPSInfo:GPSLongitude

Indicates the Longitude. The Longitude is expressed as three RATIONAL values giving the degrees, minutes, and

seconds, respectively. When degrees, minutes and seconds are expressed, the format is ddd/1,mm/1,ss/1. When

degrees and minutes are used and, for example, fractions of minutes are given up to two decimal places, the format is

ddd/1,mmmm/100,0/1.

EXIF:GPSInfo:GPSAltitudeRef

Indicates the altitude used as the reference altitude. If the reference is sea level and the altitude is above sea level, 0 is

given. If the altitude is below sea level, a value of 1 is given and the altitude is indicated as an absolute value in the

GSPAltitude tag. The reference unit is meters. Note that this tag is BYTE type, unlike other reference tags.

EXIF:GPSInfo:GPSAltitude

Indicates the altitude based on the reference in GPSAltitudeRef.Altitude is expressed as one RATIONAL value. The

reference unit is meters.

EXIF:GPSInfo:GPSTimeStamp

Indicates the time as UTC (Coordinated Universal Time). <TimeStamp> is expressed as three RATIONAL values

giving the hour, minute, and second (atomic clock).

Bulk Rename Utility Operations Manual Page 694 of 715

EXIF Metadata Reference

EXIF:GPSInfo:GPSSatellites

Indicates the GPS satellites used for measurements. This tag can be used to describe the number of satellites, their ID

number, angle of elevation, azimuth, SNR and other information in ASCII notation. The format is not specified. If the

GPS receiver is incapable of taking measurements, value of the tag is set to NULL.

EXIF:GPSInfo:GPSStatus

Indicates the status of the GPS receiver when the image is recorded. "A" means measurement is in progress, and "V"

means the measurement is Interoperability.

EXIF:GPSInfo:GPSMeasureMode

Indicates the GPS measurement mode."2" means two-dimensional measurement and "3" means three-dimensional

measurement is in progress.

EXIF:GPSInfo:GPSDOP

Indicates the GPS DOP (data degree of precision). An HDOP value is written during two-dimensional measurement,

and PDOP during three-dimensional measurement.

EXIF:GPSInfo:GPSSpeedRef

Indicates the unit used to express the GPS receiver speed of movement. "K" "M" and "N" represents kilometers per

hour, miles per hour, and knots.

EXIF:GPSInfo:GPSSpeed

Indicates the speed of GPS receiver movement.

EXIF:GPSInfo:GPSTrackRef

Indicates the reference for giving the direction of GPS receiver movement. "T" denotes true direction and "M" is

magnetic direction.

EXIF:GPSInfo:GPSTrack

Indicates the direction of GPS receiver movement.

EXIF:GPSInfo:GPSImgDirectionRef

Indicates the reference for giving the direction of the image when it is captured. "T" denotes true direction and "M" is

magnetic direction.

EXIF:GPSInfo:GPSImgDirection

Indicates the direction of the image when it was captured.

EXIF:GPSInfo:GPSMapDatum

Indicates the geodetic survey data used by the GPS receiver. If the survey data is restricted to Japan, the value of this

tag is "TOKYO" or "WGS-84".

EXIF:GPSInfo:GPSDestLatitudeRef

Indicates whether the latitude of the destination point is north or south latitude. The ASCII value "N" indicates north

latitude, and "S" is south latitude.

Bulk Rename Utility Operations Manual Page 695 of 715

EXIF Metadata Reference

EXIF:GPSInfo:GPSDestLatitude

Indicates the latitude of the destination point. The latitude is expressed as three RATIONAL values giving the

degrees, minutes, and seconds, respectively. If latitude is expressed as degrees, minutes and seconds, a typical format

would be dd/1,mm/1,ss/1. When degrees and minutes are used and, for example, fractions of minutes are given up to

two decimal places, the format would be dd/1,mmmm/100,0/1.

EXIF:GPSInfo:GPSDestLongitudeRef

Indicates whether the longitude of the destination point is east or west longitude. ASCII "E" indicates east longitude,

and "W" is west longitude.

EXIF:GPSInfo:GPSDestLongitude

Indicates the longitude of the destination point. The longitude is expressed as three RELATIVE values giving the

degrees, minutes, and seconds, respectively. If longitude is expressed as degrees, minutes and seconds, a typical

format would be ddd/1,mm/1,ss/1. When degrees and minutes are used and, for example, fractions of minutes are

given up to two decimal places, the format would be ddd/1,mmmm/100,0/1.

EXIF:GPSInfo:GPSDestBearingRef

Indicates the reference used for giving the bearing to the destination point. ASCII "T" denotes true direction and "M"

is magnetic direction.

EXIF:GPSInfo:GPSDestBearing

Indicates the bearing to the destination point.

EXIF:GPSInfo:GPSDestDistanceRef

Indicates the unit used to express the distance to the destination point. ASCII "K", "M" and "N" represent kilometers,

miles and knots.

EXIF:GPSInfo:GPSDestDistance

Indicates the distance to the destination point.

EXIF:GPSInfo:GPSProcessingMethod

A character string recording the name of the method used for location finding. The first byte indicates the character

code used, and this is followed by the name of the method.

EXIF:GPSInfo:GPSAreaInformation

A character string recording the name of the GPS area. The first byte indicates the character code used, and this is

followed by the name of the GPS area.

EXIF:GPSInfo:GPSDateStamp

A character string recording date and time information relative to UTC (Coordinated Universal Time).The format is

"YYYY:MM:DD:".

EXIF:GPSInfo:GPSDifferential

Indicates whether differential correction is applied to the GPS receiver.

Bulk Rename Utility Operations Manual Page 696 of 715

EXIF Metadata Reference

Note:

DNG Image is a Adobe Digital Negative Raw Image file.

Source Material this section: exiv2.org

Bulk Rename Utility Operations Manual Page 697 of 715

ASCII Character Codes

Bulk Rename Utility Operations Manual Page 698 of 715

ASCII Character Chart (Version 1)

I have provided two different versions

Here are the ASCII tables for reference values 0- 127:

Notes:

1. Chart 1 is referred to as standard ASCII.

2. With the exception of a few characters, most can be entered directly using a standard keyboard. For the others use

 ALT + <decimal equivalent> from the numeric keypad to display the character.

For example, to enter ⌂ (Dec 127)

Alt + 127

3. Some characters can not be displayed. They have no visual identity. i.e. values 0-29.

Bulk Rename Utility Operations Manual Page 699 of 715

ASCII Character Chart (Version 1)

Here are the ASCII tables for reference values 128 - 255:

Notes:

1. Chart 2 is called extended or higher ASCII.

2. To enter these values you use the Numeric keypad and enter ALT + <decimal equivalent>.

For example, to enter the character ‘Ç’,

Alt + 128

3. The value for 255 can not be displayed. It has no visual identity.

Bulk Rename Utility Operations Manual Page 700 of 715

ASCII Character Chart (Version 2) Page 1

 (larger version)

Bulk Rename Utility Operations Manual Page 701 of 715

ASCII Character Chart (Version 2) Page 2

 (larger version)

Bulk Rename Utility Operations Manual Page 702 of 715

ASCII Character Chart (Version 2) Page 3

 (larger version)

Bulk Rename Utility Operations Manual Page 703 of 715

ASCII Character Chart (Version 2) Page 4

 (larger version)

Bulk Rename Utility Operations Manual Page 704 of 715

ASCII Character Chart (Version 2) Page 5

 (larger version)

Bulk Rename Utility Operations Manual Page 705 of 715

ASCII Character Chart (Version 2) Page 6

 (larger version)

Bulk Rename Utility Operations Manual Page 706 of 715

ASCII Character Chart (Version 2) Page 7

 (larger version)

Bulk Rename Utility Operations Manual Page 707 of 715

ASCII Character Chart (Version 2) Page 8

 (larger version)

Source Material this section: eso.org

Bulk Rename Utility Operations Manual Page 708 of 715

ASCII Character Chart (Version 2) Page 9

 (larger version)

Bulk Rename Utility Operations Manual Page 709 of 715

Extended ASCII Character Chart

ALT+0128 €

ALT+0129 •

ALT+0130 ‚

ALT+0131 ƒ

ALT+0132 „

ALT+0133 …

ALT+0134 †

ALT+0135 ‡

ALT+0136 ˆ

ALT+0137 ‰

ALT+0138 Š

ALT+0139 ‹

ALT+0140 Œ

ALT+0141 •

ALT+0142 Ž

ALT+0143 •

ALT+0144 •

ALT+0145 ‘

ALT+0146 '

ALT+0147 "

ALT+0148 "

ALT+0149 •

ALT+0150 –

ALT+0151 —

ALT+0152 ˜

ALT+0153 ™

ALT+0154 š

ALT+0155 ›

ALT+0156 œ

ALT+0157 •

ALT+0158 ž

ALT+0159 Ÿ

ALT+0160

ALT+0161 ¡

ALT+0162 ¢

ALT+0163 £

ALT+0164 ¤

ALT+0165 ¥

ALT+0166 ¦

ALT+0167 §

ALT+0168 ¨

ALT+0169 ©

ALT+0170 ª

ALT+0171 «

ALT+0172 ¬

ALT+0173

ALT+0174 ®

ALT+0175 ¯

ALT+0176 °

ALT+0177 ±

ALT+0178 ²

ALT+0179 ³

ALT+0180 ´

ALT+0181 µ

ALT+0182 ¶

ALT+0183 ·

ALT+0184 ¸

ALT+0185 ¹

ALT+0186 º

ALT+0187 »

ALT+0188 ¼

ALT+0189 ½

ALT+0190 ¾

ALT+0191 ¿

ALT+0192 À

ALT+0193 Á

ALT+0194 Â

ALT+0195 Ã

ALT+0196 Ä

ALT+0197 Å

ALT+0198 Æ

ALT+0199 Ç

ALT+0200 È

ALT+0201 É

ALT+0202 Ê

ALT+0203 Ë

ALT+0204 Ì

ALT+0205 Í

ALT+0206 Î

ALT+0207 Ï

ALT+0208 Ð

ALT+0209 Ñ

ALT+0210 Ò

ALT+0211 Ó

ALT+0212 Ô

ALT+0213 Õ

ALT+0214 Ö

ALT+0215 ×

ALT+0216 Ø

ALT+0217 Ù

ALT+0218 Ú

ALT+0219 Û

ALT+0220 Ü

ALT+0221 Ý

ALT+0222 Þ

ALT+0223 ß

ALT+0224 à

ALT+0225 á

ALT+0226 â

ALT+0227 ã

ALT+0228 ä

ALT+0229 å

ALT+0230 æ

ALT+0231 ç

ALT+0232 è

ALT+0233 é

ALT+0234 ê

ALT+0235 ë

ALT+0236 ì

ALT+0237 í

ALT+0238 î

ALT+0239 ï

ALT+0240 ð

ALT+0241 ñ

ALT+0242 ò

ALT+0243 ó

ALT+0244 ô

ALT+0245 õ

ALT+0246 ö

ALT+0247 ÷

ALT+0248 ø

ALT+0249 ù

ALT+0250 ú

ALT+0251 û

ALT+0252 ü

ALT+0253 ý

ALT+0254 þ

ALT+0255 ÿ

Source Material this section: irongeek.com

Bulk Rename Utility Operations Manual Page 710 of 715

PC Extended ASCII Character Chart

ALT+0

ALT+1 ☺

ALT+2 ☻

ALT+3 ♥

ALT+4 ♦

ALT+5 ♣

ALT+6 ♠

ALT+7

ALT+8

ALT+9

ALT+10

ALT+11 ♂

ALT+12 ♀

T+13

ALT+14 ♫

ALT+15 ☼

ALT+16 ►

ALT+17 ◄

ALT+18 ↕

ALT+19 ‼

ALT+20 ¶

ALT+21 §

ALT+22 ▬

ALT+23 ↨

ALT+24 ↑

ALT+25 ↓

ALT+26 →

ALT+27 ←

ALT+28 ∟

ALT+29 ↔

ALT+30 ▲

ALT+31 ▼

ALT+32

ALT+33 !

ALT+34 "

ALT+35 #

ALT+36 $

ALT+37 %

ALT+38 &

ALT+39 '

ALT+40 (

ALT+41)

ALT+42 *

ALT+43 +

ALT+44 ,

ALT+45 -

ALT+46 .

ALT+47 /

ALT+48 0

ALT+49 1

ALT+50 2

ALT+51 3

ALT+52 4

ALT+53 5

ALT+54 6

ALT+55 7

ALT+56 8

ALT+57 9

ALT+58 :

ALT+59 ;

ALT+60 <

ALT+61 =

ALT+62 >

ALT+63 ?

ALT+64 @

ALT+65 A

ALT+66 B

ALT+67 C

ALT+68 D

ALT+69 E

ALT+70 F

ALT+71 G

ALT+72 H

ALT+73 I

ALT+74 J

ALT+75 K

ALT+76 L

ALT+77 M

ALT+78 N

ALT+79 O

ALT+80 P

ALT+81 Q

ALT+82 R

ALT+83 S

ALT+84 T

ALT+85 U

ALT+86 V

ALT+87 W

ALT+88 X

ALT+89 Y

ALT+90 Z

ALT+91 [

ALT+92 \

ALT+93]

ALT+94 ^

ALT+95 _

ALT+96 `

ALT+97 a

ALT+98 b

ALT+99 c

ALT+100 d

ALT+101 e

ALT+102 f

ALT+103 g

ALT+104 h

ALT+105 i

ALT+106 j

ALT+107 k

ALT+108 l

ALT+109 m

ALT+110 n

ALT+111 o

ALT+112 p

ALT+113 q

ALT+114 r

ALT+115 s

ALT+116 t

ALT+117 u

ALT+118 v

ALT+119 w

ALT+120 x

ALT+121 y

ALT+122 z

ALT+123 {

ALT+124 |

ALT+125 }

ALT+126 ~

ALT+127 ⌂

Bulk Rename Utility Operations Manual Page 711 of 715

PC Extended ASCII Character Chart Page 2

ALT+128 Ç

ALT+129 ü

ALT+130 é

ALT+131 â

ALT+132 ä

ALT+133 à

ALT+134 å

ALT+135 ç

ALT+136 ê

ALT+137 ë

ALT+138 è

ALT+139 ï

ALT+140 î

ALT+141 ì

ALT+142 Ä

ALT+143 Å

ALT+144 É

ALT+145 æ

ALT+146 Æ

ALT+147 ô

ALT+148 ö

ALT+149 ò

ALT+150 û

ALT+151 ù

ALT+152 ÿ

ALT+153 Ö

ALT+154 Ü

ALT+155 ¢

ALT+156 £

ALT+157 ¥

ALT+158 ₧

ALT+159 ƒ

ALT+160 á

ALT+161 í

ALT+162 ó

ALT+163 ú

ALT+164 ñ

ALT+165 Ñ

ALT+166 ª

ALT+167 º

ALT+168 ¿

ALT+169 ⌐

ALT+170 ¬

ALT+171 ½

ALT+172 ¼

ALT+173 ¡

ALT+174 «

ALT+175 »

ALT+176 ░

ALT+177 ▒

ALT+178 ▓

ALT+179 │

ALT+180 ┤

ALT+181 ╡

ALT+182 ╢

ALT+183 ╖

ALT+184 ╕

ALT+185 ╣

ALT+186 ║

ALT+187 ╗

ALT+188 ╝

ALT+189 ╜

ALT+190 ╛

ALT+191 ┐

ALT+192 └

ALT+193 ┴

ALT+194 ┬

ALT+195 ├

ALT+196 ─

ALT+197 ┼

ALT+198 ╞

ALT+199 ╟

ALT+200 ╚

ALT+201 ╔

ALT+202 ╩

ALT+203 ╦

ALT+204 ╠

ALT+205 ═

ALT+206 ╬

ALT+207 ╧

ALT+208 ╨

ALT+209 ╤

ALT+210 ╥

ALT+211 ╙

ALT+212 ╘

ALT+213 ╒

ALT+214 ╓

ALT+215 ╫

ALT+216 ╪

ALT+217 ┘

ALT+218 ┌

ALT+219 █

ALT+220 ▄

ALT+221 ▌

ALT+222 ▐

ALT+223 ▀

ALT+224 α

ALT+225 ß

ALT+226 Γ

ALT+227 π

ALT+228 Σ

ALT+229 σ

ALT+230 µ

ALT+231 τ

ALT+232 Φ

ALT+233 Θ

ALT+234 Ω

ALT+235 δ

ALT+236 ∞

ALT+237 φ

ALT+238 ε

ALT+239 ∩

ALT+240 ≡

ALT+241 ±

ALT+242 ≥

ALT+243 ≤

ALT+244 ⌠

ALT+245 ⌡

ALT+246 ÷

ALT+247 ≈

ALT+248 °

ALT+249 ∙

ALT+250 ·

ALT+251 √

ALT+252 ⁿ

ALT+253 ²

ALT+254 ■

ALT+255

 [This Page Intentionally Blank]

Last Word

What started as a simple instructional text to my File Manager, to expand upon a program I found had a
better search and replace feature, became a written guide for my personal use and then a supplemental manual
to BRU’s manual, to a total rewrite of the manual itself, and finally, this book.

From a user's point of view, not as an expert, I detailed what it was I experienced or discovered, and
documented it to help myself and others and share what I have learned along the way.

And, in doing so,

I hope you have enjoyed this journey together.

Timothy R. Mongeon

 [This Page Intentionally Blank]

i

Index by Topic

A
Alternate

Alternate, 13, 58, 434–436, 438, 549, 593,
 642–660
Alternative, 259, 301, 363, 375, 423, 433,
 529, 549, 569, 641, 647, 649, 660
Vertical bar, 423, 433–436, 599

Always on Top
Always on Top, 11, 332

Appendix
Appendix, 6, 13, 47, 50–51, 65, 67, 74, 106,
 131, 181, 188, 258, 295, 364, 396, 400,
 417, 546

ASCII
Apostrophe, 515
ASCII, 13, 27, 59, 103, 125, 127, 131, 162,
 379, 391, 400, 429, 515, 680, 692–695,
 697–711
ASCII Character Chart (Version 1), 13,
 698–699
ASCII Character Chart (Version 2), 13,
 700–708
ASCII Character Codes, 13, 697

Extended ASCII Character Chart, 13,
 709–711
PC Extended ASCII Character Chart, 13,
 710–711

AutoNumber
Alpha Base, 223, 231, 241
AutoNumber, 11, 23, 232–236, 368–369
Base, 211, 223, 229, 231, 241–243, 573

Changeover, 241–243
Case Conversion, 8, 92–93, 228–229, 231
Numbering, 9, 23, 28, 101, 222–246, 306,
 324, 351, 353–354, 368–369, 371
Resetting an (Auto) Numbering back to start
 value, 237

Break, 210, 237, 240, 368, 395, 426,
 429, 437, 440, 489, 491, 494, 630,
 632–635, 638–641, 647
Using Break and Folder Options
 Together, 240

Retain Autonumber, 11, 368–369
Roman Numerals Section Removed and
 Placed under 'Type' Section, 9, 228
Using The Special Character ' : ' Colon, 234

ii

Index by Topic

B
Before I begin

Before I begin, 3, 8, 509

Beginning of Line
Beginning of Line, 424, 436, 454, 462, 505,
 534, 602

Braces
Angular Brackets, 49, 58, 103, 106, 158,
 161, 361–362, 567
Braces, 398, 424, 576
Curly Braces, 424
Parentheses, 48, 51, 64, 68, 160–161,
 361–362, 425, 430, 436, 438–448,
 590–591, 593–594, 599, 603, 642

Closed Parenthesis, 74, 591
Open Parenthesis, 56, 74, 591
Parenthesis, 56, 72–81, 425, 599

Square Brackets, 49, 425, 427, 429, 442

C
Capture Group

Capture Group, 8, 13, 48–49, 51–60, 68, 86,
 89, 91–93, 106, 421, 424–425, 430–432,
 434–436, 438–441, 443–444, 446–451,
 455–458, 475, 477–478, 486–487, 490,
 492, 494–495, 501–503, 506, 512–519,
 521–524, 530, 533–539, 541–542,
 544–545, 547–548, 551–554, 556–565,
 567, 569–572, 574–575, 577–586,
 588–594, 596–597, 599–605, 607–611,
 613–616, 619–626, 628, 630, 632–635,
 638–662
Grouping, 425, 438, 515, 590, 649, 651, 661
Named Capture Group, 8, 49, 53–60,

 596–597
Mixing Named and Unnamed Capture
 Groups, 56
Using Named Backreferences with
 Capture Groups, 8, 54

Nested Capture Group, 59, 440, 601,
 645–656

Nested, 59, 440–441, 495, 599, 601,
 643–657

Null, 21, 42, 49, 51, 55, 110, 387, 393, 453,
 510, 517, 523–524, 533–534, 546, 572,
 599, 603, 609–610, 619, 623, 631,
 644–648, 652–659, 665–666, 694
Numbered Capture Group, 53–54, 56–57, 60
Undefined, 49, 642–643, 645–646, 651–653,
 655–660
Using Alternates with Capture Groups, 13,
 642–660
Using multiple Capture Groups to locate
 Partial Words, 13, 600–601

Change File Attributes
Change File Attributes, 12, 272, 338, 383

Character Translations
Character Translation Table, 391
Character Translations, 12, 27, 272, 391,
 395

Clipboard
Clipboard, 9–10, 12, 111, 164, 281–282,
 289–290, 313, 410–414
Clipboard Copy, 12, 410–413

<clip>, 111, 164
Copy all Available Column Data for
 Highlighted Files using the Clipboard
 Copy, 413
Extended File Details, 410–411
New Filename, 68, 312, 347, 354,
 410–411, 445
Open Containing Folder, 12, 412
Original Filename with New Filename,
 410
Pathname, and Paste to Location, 410

Colours
Active Criteria, 11, 42, 348

iii

Index by Topic

Changing the Colours, 11, 349
Colours, 11, 347, 349, 674, 685–686
Highlight Active Criteria, 11, 348
New Name - Invalid, 347
New Name - Ok, 347

Column
Autofit All Columns (Ctrl + Alt + +), 342
Column, 9, 11–12, 18, 20, 37, 47–49, 161,
 178, 180, 184, 189, 205, 223, 254,
 256–257, 261, 281, 310, 312–313,
 328–329, 334–342, 353–354, 356–357,
 360–365, 378, 385, 387, 391, 410,
 413–414, 421, 604, 644, 672–674, 677,
 681, 691
Column Headers, 37, 223, 354
Custom Column, 11, 356–357, 360–362

Set Content of Custom Column, 356–357
Show File Sizes as, 11, 333, 336
Show Gridlines, 11, 332
Show Icons, 11, 13, 333, 419

Header Name, 37
Select Columns, 11, 334–341

Consideration
Command Line options, 4
Consideration, 4–5, 8, 115, 175, 180, 183,
 188, 192, 199, 210, 214, 386, 421, 494
INI File, 5
Portability, 5
Recursive Scan, 5, 13, 253, 259, 419

Content Pane
Auto-Select All Items After Listing a Folder,
 10, 308
Clear All Items from Current List, 10, 308
Clear All non-Selected Items from Current
 List (Ctrl + 0, 309
Content Pane, 5, 15–18, 20–22, 30, 36–37,
 45, 47–48, 103, 175, 189, 223, 245, 251,
 254, 259, 280–281, 283, 293–294, 299,
 302–303, 308–309, 311, 325, 327, 332,
 334, 341, 343, 345, 350–351, 356,
 358–359, 365, 375, 378, 383–385, 401,
 403, 410–412, 415, 419
File List, 5, 11, 15, 17, 22, 30, 34, 37, 47,
 103, 165, 223, 254, 258–259, 302–303,

 305, 316, 340, 343–346, 354, 363, 401,
 406
Refresh Files (F5), 10, 302
Remove From List (Delete key), 305
Reposition, 10, 37, 223, 280, 303–305, 351,
 353–354, 566

Move Bottom Selected Item (Ctrl + Alt +
 PgDn), 304
Move Down Selected Item (Ctrl + Alt +
 Down Arrow), 304
Move Top Selected Item (Ctrl + Alt +
 PgUp), 304
Move Up Selected Item (Ctrl + Alt + Up
 Arrow), 304
Swap Two Selected Items (Ctrl + Alt +
 S), 305

Show Only Items Affected by Renaming
 Criteria (Ctrl + 9), 307

Copy/Move to Location
Copy/Move to Location, 10, 18, 262–270,
 297, 329, 339, 341, 375–376
Moving Files from one Directory to Another
 Location with Files content, 10, 268
Only Files can be Copied or Moved, not the
 Directories with their File Contents, 265

Criteria
Criteria, 8, 10–11, 18–19, 21, 23, 25–26,
 29–32, 34–36, 38–42, 47, 64, 100, 103,
 151, 224, 246, 255, 264, 267, 272–273,
 276–277, 303, 307–308, 317–320, 325,
 327, 329, 343, 348, 354, 368–369, 373,
 377–379, 402, 406, 408, 416
Order of Evaluation, 26, 36, 100, 320, 371,
 402, 440, 642
Order of Expression Evaluation, 8, 26–31
Reset All Renaming Criteria (Ctrl + T), 10,
 327
Revert All Criteria to Last Saved (Ctrl + E),
 10, 327

Custom Date
Custom Date, 27, 319
Custom Format, 173, 175, 177

iv

Index by Topic

D
Delimiter

Delimiter, 61, 66, 68, 82–85, 95–97, 104,
 113, 125, 147, 233, 236, 252, 391,
 427–428, 448–449, 554
Separator Character, 172, 175, 217, 233
Understanding the Importance of Delimiters
 in Simple, 82

Drag and Drop
Drag and Drop from Explorer, 8, 15–16, 259
Windows Explorer, 12, 15–17, 23, 39, 149,
 151, 159, 223, 268, 286, 288, 296, 299,
 301–302, 338, 354, 383–384, 409–410,
 412, 415–416

E
End of Line

End of Line, 50, 66, 70, 424, 436, 454, 463,
 505, 530, 588, 602

F
Favourite

Favourite, 3–4, 8, 10, 21, 23, 35, 39–45,
 276–277, 327, 369, 395, 416
Favourite file, 4, 39, 41, 45, 276–277, 327,
 395, 416
New (Ctrl + N), 10, 276
Open (Ctrl + O), 10, 276

Recent, 10, 40, 179, 277, 387
Save (Ctrl + S), 10, 276
Save As, 10, 39, 44, 276
Save On Exit, 8, 10, 39–40, 44, 276–277,
 327, 416
Store Pathname, 8, 10, 39, 45, 277
Understanding Favourites, 8, 39–45, 276–277

Filters
Boolean Operator, 252

Exclamation point, 252, 508
BRU's Sub Dir Column vs Full path, 9, 256

Long File Paths, 257, 295
Long Path Support, 257
Max_Path, 257, 295
Sub Dir., 256–257, 334
WinAPI, 257

Condition, 12, 258–259, 404, 406, 690, 692
File Name Minimum Length/ Maximum
 Length, 255
Filespec, 251–252
Filters, 5, 9, 13, 18, 221, 238, 240, 250–261,
 302, 334, 338, 341, 383, 404, 406, 419,
 683
Mask, 30, 251, 258–259
Path Minimum Length/ Maximum Length,
 255
Recursion, 5, 9, 238, 253–254, 256–257,
 268–269, 316, 341, 416
Set Subfolder Level to Control Recursive
 Scanning, 9, 260
Wildcard, 23, 133, 251

Font
Font, 6, 11, 350, 411
Use Larger Font, 11, 350
Use Smaller Font, 11, 350

I

v

Index by Topic

Introduction to the 2nd
 Edition of Volume I

Introduction to the 2nd Edition of Volume I,
 6, 8
TGRMN, 3, 65, 67–68, 86–87, 118, 207,
 214, 246, 255, 257, 311, 363, 403, 422
v3.4 New Additions, 8–13, 51–93, 104–111,
 187–215, 283–301, 309, 315–317,
 356–366, 413–414, 419, 422
v3.42 New Additions, 9, 218–221, 260–261,
 390
v3.43 New Additions, 8–9, 94–98, 114–121,
 227–231
Volume II, 6, 38, 47, 50, 55, 62, 65, 67, 74,
 87, 91, 98, 105–106, 188, 258, 273, 295,
 312, 364, 398, 400, 422, 461, 515, 540,
 546, 588–589, 606, 645

Item Date
Anomalies, 205, 210–211, 214

J
JavaScript

About Conditional Renaming, 12, 401
Conditional Renaming, 12, 401, 404, 406
JavaScript Condition, 258–259, 406

Code Entry Form, 5, 38, 42, 259, 273, 327,
 396, 398–400, 406

Avoid Common Errors: <spaces>, 398
Avoid Common Errors: ASCII Mistakes,
 400
Avoid Common Errors: CASE
 SENSITIVITY, 399
Handling Syntax Errors, 12, 398
Understanding the JavaScript Code Entry
 Form Colour Coding, 398
Using the Test facility, 12, 397

JavaScript, 5, 12–13, 18, 23, 28–29, 38,

 41–42, 64–65, 82, 87, 89, 91, 148, 159,
 165, 217, 258–259, 272–273, 318,
 325–327, 377–378, 396–406, 408, 412,
 419, 667–670, 672
JavaScript (Extension) Libraries, 405

Date.js, 5, 12, 396, 405, 408
Sugar.js, 5, 12, 396, 405

JavaScript Bulk Rename Utility Constants and
 Variables, 13, 667

JavaScript BRU Constants and Variables,
 13, 668
JavaScript BRU Utility Functions, 13,
 669–670

JavaScript Renaming (Ctrl + F7), 396
Use JavaScript in Renaming, 272

Jump to Path (Ctrl + J)
Jump to Path (Ctrl + J), 10, 283–301
Network/UNC Paths are Supported, 10, 283

Network, 6, 10, 254, 283–285, 288–289,
 291–292, 295, 298–301, 359
UNC, 10, 283–284, 290–291, 293–295,
 297–299, 301, 315
UNC Path, 10, 283, 290–291, 294–295,
 299, 301, 315
Universal Naming Convention, 283

Share, 183, 199, 211, 283–289, 291–292,
 296–297, 299, 713

Create a Share, 286
Mapped Drive, 295, 333
Net Share, 292
Share Name, 283, 291
Sharing, 284–285, 300, 359

Troubleshooting UNC under Jump to Path,
 10, 299

Function Discovery Resource Publication
 (fdPHost), 301
Net View, 300
Network and Sharing Center, 300
Network Discovery, 299–300

vi

Index by Topic

L
Last Word

Last Word, 13, 436, 453, 460, 474, 571, 713

Literal
Backslash, 51–52, 105, 217, 310, 374, 421,
 423, 426, 428, 447–449, 524, 604, 646,
 652
Escape, 51, 61, 105–106, 423, 426, 428,
 437, 551
Literal, 13, 49, 52, 66, 68, 74, 77–78, 84,
 105–106, 362, 391, 421, 423, 426, 428,
 447–448, 468, 470–471, 473–474,
 476–478, 482, 505–506, 510, 515–519,
 521, 524, 536, 541–545, 547, 551, 554,
 556–557, 559–561, 563–565, 567, 569,
 572, 574–575, 577, 579, 599, 604, 646,
 652
The Escape (backslash), 426

M
Match string

Analysis, 6, 53–55, 65, 94–98, 330, 366,
 396, 401, 432, 435, 439, 443–444,
 455–458, 475, 477–478, 480–481, 486,
 488, 490, 492, 495, 509, 513–521, 534,
 536, 538–539, 542, 545, 547, 551–552,
 556–557, 559–561, 563–567, 569, 573,
 575, 577, 589, 599, 601, 605–619, 621,
 625–626, 628, 653, 655–656, 658–660,
 663, 665–666
Component, 509, 565, 570, 573, 597,
 672–673, 675–677
Evaluation, 6, 8, 21, 26–31, 36, 50, 54, 56,
 64, 100, 111, 246, 318, 320, 325, 329,

 371, 402, 440–442, 480, 497, 521, 533,
 539, 555, 563, 569, 580, 586, 593, 596,
 601–602, 607, 622, 631, 635, 637–642,
 648, 655–660, 663

Backtrack, 50, 53–54, 106, 435, 439,
 456, 486, 506, 512–514, 518–521,
 536–539, 547, 550, 552, 555–557,
 560–567, 569, 573, 577–580, 582,
 601, 605, 608–611, 613–616, 621,
 626
Consumed, 50, 587, 602
Parsing, 50, 62, 85, 661
Permutations, 555, 559, 569, 573
Recalculate, 555, 563
Reevaluate, 569, 578, 585–586

Expression, 8, 13, 18, 21, 23, 26–31, 47–98,
 224, 258, 265, 329, 360, 391, 420–426,
 429, 436–438, 440–445, 448, 450–452,
 456, 477, 483–484, 486, 490, 492–493,
 496, 510, 512, 514–519, 522–523, 529,
 533–534, 537–538, 546, 548, 555, 559,
 563, 565–569, 571, 573–574, 576–577,
 582–584, 590–591, 593–594, 596–599,
 601–604, 607, 609, 613–614, 620,
 622–623, 626–627, 630–631, 635–636,
 641–642, 645–646, 648, 656, 661
Input String, 47, 50, 438, 442, 452–453,
 566–569, 604
Match string, 47, 51, 53–55, 67–70, 72,
 75–78, 80, 82–84, 86, 95–96, 106, 511,
 513, 535, 632, 635, 638, 660, 664
Pattern, 3, 23, 47–48, 50, 82, 103, 425,
 431–432, 435, 438, 443–445, 448–453,
 455–457, 508, 539–540, 555, 566–570,
 573, 577, 580, 582, 587, 590–592, 600,
 656, 661, 664, 677, 681, 683, 691
Sub-expression, 48, 50, 53, 55, 425,
 450–451, 456, 490, 492–493, 496, 512,
 514, 517–519, 523, 533–534, 538, 555,
 566–567, 569, 573, 577, 582, 590, 597,
 607, 622–623, 661

Menus
Actions Menu, 10, 20–21, 29, 34, 37, 40,
 43, 45, 180, 223, 279–330, 333,
 339–340, 351, 353–354, 373, 378, 408,

vii

Index by Topic

 416
Context Menu, 12, 159, 165, 180, 182, 184,
 200, 205, 305, 375, 378, 409–416
Display Options Menu, 11, 13, 22, 36, 155,
 223, 254, 280, 331–366, 419
File Menu, 10, 21, 39–41, 43, 45, 275–277,
 327, 369
Menus, 10, 45, 177, 273–274
Renaming Options Menu, 11, 13, 23, 37,
 148, 150, 153, 167, 178, 180, 184, 189,
 217, 223, 263, 280, 337, 339, 351, 354,
 365, 367–381, 387, 408, 419, 421, 550,
 664
Special Menu, 12, 174, 176–177, 259,
 272–273, 325, 338, 382–408

Metadata
EXIF, 9, 11–13, 23, 148, 150–153, 159,
 165–169, 171, 175, 178–182, 184–185,
 187–193, 196–198, 258, 337, 339,
 356–358, 361, 363–364, 366, 377–378,
 386–387, 390, 406, 408, 412, 419,
 671–696

Exchangeable image file format, 181, 189
EXIF Metadata Reference, 13, 671–696
EXIF Properties as Dates and Numbers,
 9, 168
EXIFTool, 151, 181, 189, 366
Extract-EXIF data (Photos), 153

CaptureDate, 181
CreateDate, 181, 187, 189, 364
EXIF DateTime, 179, 181
EXIF DateTimeDigitized, 179, 181
EXIF DateTimeOriginal, 178–181,
 190–192, 197–198, 364, 386–387
Extract EXIF Data (Photos), 11, 150,
 178, 180, 337, 378, 387
Show List of EXIF Info (.JPG Files),
 12, 412
System.DateAccessed, 182, 360
System.DateCreated, 182, 360
System.DateModified, 182, 212, 360
Using the EXIF property 'Taken
 (Original)', 9, 178

File Metadata Stored Within the File Itself,
 184

File Header, 182
ID3/ EXIF Data / File Properties, 148, 150

Extract ID3 Data (MP3), 11, 148, 339,
 377

Metadata, 6, 13, 23, 64, 149, 151–153, 159,
 168, 178, 180–193, 196–200, 203–207,
 209–211, 213–215, 337, 339, 356–358,
 363–364, 366, 377–378, 387, 389, 412,
 419, 671–696
Metadata when Copying and Moving Folders
 in a Directory Sub-Structure, 186
Metadata when Moving or Copying Files and
 Folders, 185
Understanding EXIF and Windows Properties
 as they apply to BRU, 181
Windows Properties, 148, 151, 153,
 159–161, 176, 181–182, 184–185, 187,
 190, 192–193, 196–198, 200, 205, 212,
 215, 336, 359–360, 363, 378, 404, 408,
 412

Date Accessed, 23, 151, 182–185,
 194–196, 199–200, 202, 205, 207,
 215, 272, 336, 360, 385–386
Date Created, 23, 151, 176, 182–186,
 188–190, 192–205, 207, 209,
 211–215, 272, 336, 360, 363–364,
 385–387, 389
Date Modified, 23, 151, 171, 182–186,
 190, 192–205, 207, 209, 211–215,
 272, 336, 360, 363–364, 385–386
Extract Windows File Properties, 11, 153,
 184, 189, 365, 378

File / Folder Extensions, 379
Master File Table, 183, 336

$MFT, 183
MFT, 183, 186, 336

Resident Attributes, 183, 207
Show List of File Properties, 12, 159,
 182, 184, 199–200, 378, 412
Standard Attribute, 183, 200, 207
The Windows File System Metadata, 183

exFAT, 182
FAT32, 182–183, 186
File System, 180, 182–186, 189,
 199–200, 205, 207, 209, 211, 215,

viii

Index by Topic

 295, 336, 359
NTFS, 183, 186

Understanding Metadata, 183, 215
XDM, 184–185

Extensible Device Metadata, 184

Modifier
Added Ability to use \E \L \l \U \u Modifiers
 in the Replace Field of the 'Simple' RegEx,
 8, 94
Case Conversion, 8, 92–93, 228–229, 231
Case Insensitive /i, 8, 91

Case Insensitive, 8, 13, 91, 258,
 591–595, 600

Comments, 13, 150, 152, 378, 598, 690
Comments in Exact-Spacing, 598
Comments in Free-Space, 598

Exact-Spacing, 596, 598
Free-Space Option, 13, 596–598

Free-Space, 13, 596–598
Global Switch, 8, 86–90, 105, 422, 445,
 447–448, 511, 518, 575
Modifier, 8–9, 87, 91, 94, 97, 108–109, 422,
 591–594

N
Navigation Pane

Directory, 3–4, 9–10, 16, 19, 23, 39, 45, 47,
 183, 185–186, 217–220, 238–240,
 252–257, 259–261, 263–270, 277,
 280–283, 286, 290–291, 293–296,
 298–299, 310–312, 315–316, 327,
 334–335, 352, 373–375, 379, 383, 386,
 405–406, 410, 412, 415–416, 419
Directory Structure, 3, 186, 256, 266, 268,
 270, 295, 298, 315–316
Folders, 3, 5, 11, 15–18, 23, 26, 185–186,
 221, 251, 253–255, 258, 260, 292,
 302–303, 308, 329, 333, 338, 355, 373,
 375, 381, 383, 406, 416, 567

Navigation Pane, 16–17, 19, 22, 45, 238,
 251, 254, 282–283, 288, 290, 292, 294,
 296, 299, 302, 308, 311, 327, 333, 340,
 374–375, 410–411
Refresh Tree (Ctrl + F5), 10, 302
Show/Hide Tree (F11), 10, 302
subdirectory, 5, 16–17, 186, 218–220,
 238–239, 253–254, 257, 259, 266, 270,
 315, 334, 375, 419
Subfolder, 5, 9, 13, 23, 221, 238, 253–254,
 257, 259–260, 419
Tree, 3, 10, 17, 22, 254, 288, 299, 302,
 345, 374, 675
Tree Hierarchy, 254, 288, 299, 302

non-Marking Groups
If Then Else, 13, 599

Conditional Statement, 599
Lookarounds: Lookahead and Lookbehind,
 13, 602–641

Lookahead, 13, 545–546, 599, 602–641
Lookahead asserts, 603
Lookahead: Negative, 619
Lookahead: Positive, 604–606
Negative Lookahead, 546, 603,
 619–621, 623, 627, 630, 633, 639
Positive Lookahead, 545, 621–622,
 630, 632, 638
Understanding the Current Position in
 Lookaheads, 622–624
Using Capture Groups within
 Lookaheads, 607
Using Expressions within Lookaheads,
 603

Lookarounds, 13, 546, 602–641
Lookbehind, 13, 602–641, 666

Lookbehind asserts, 625–629
Negative Lookbehind, 625, 630, 634,
 641
Positive Lookbehind, 625, 627, 630,
 635–637, 640

non-Marking Groups, 13, 590, 603
Using Lookarounds Before and After the
 Match, 630–631

Lookaround After the Match, 635–641
After the Match, 474, 503, 533, 551,

ix

Index by Topic

 614–615, 623, 627, 630–631,
 635–641, 664

Lookaround Before the Match, 603,
 632–634

Before the Match, 521, 572, 602–603,
 609–610, 619, 625, 627, 631–634

Zero Length Assertion, 497, 511, 632–633,
 637
Zero Length Match, 510–511, 513, 534,
 572, 645
Zero Occurrence Match, 55, 511, 513, 517,
 523–524, 532–534, 546, 572, 609–610,
 645–646

P
Program Notes

Program Notes, 8, 32–38, 280, 351, 354

Q
Quantifiers

Greedy, 54–55, 67–70, 72–74, 76, 78,
 80–82, 85–86, 89, 94–97, 439, 442–443,
 447–448, 451, 455, 457, 480–481, 493,
 496, 510–514, 516–519, 521–522,
 529–530, 533–539, 541, 552, 555–557,
 559–561, 566–569, 572, 575, 577, 579,
 582, 587–589, 607–608, 613, 619, 628

Asterisk, 133, 164, 251, 424, 588
Plus Sign, 423–424, 567
Zero or More Times, 424, 510, 516–517,
 533, 555, 572

Lazy, 13, 55, 67–71, 73, 76, 78, 80, 82–83,
 85–86, 94, 97, 511, 522, 529–533,

 537–539, 563, 566–587, 663
non-Greedy, 522, 530, 533, 566, 569
Optional, 38, 65, 174, 424, 438, 441,
 511, 522–523, 525–534, 536–539,
 547, 562–566, 569, 572–573, 599,
 676, 678, 684, 687–688
Question Mark, 424, 438, 522, 530, 537,
 562, 566, 569, 587, 599
Reluctant, 522, 566
Zero or One Time, 424, 522, 530, 562

Posix Character Class (Bracket Expression),
 429
Possessive Quantifiers, 555, 559, 562, 589

Possessive, 555–556, 559–566, 589
Quantifiers, 50, 59, 424, 509–566, 569, 589,
 626
Range Quantifier, 424, 541–545, 547–548,
 551–553, 564, 627, 632–633, 635, 639,
 641

Iteration, 62, 424, 442–444, 448,
 450–451, 490, 492, 569, 627
Range delimiter, 428

R
Regular Expressions

Boost, 13, 58, 65, 98, 419, 422, 576
BRU Supports PCRE v2 with Boost, 13, 422
ECMAScript, 65, 396
PCRE, 6, 8, 13, 50–52, 56–60, 65, 87–88,
 98, 419, 422, 430, 433–434, 442, 445,
 447, 533, 568, 576
PCRE (v1), 58
PCRE Engine, 50, 56–57, 65, 568, 576
PCRE v1, 6, 51–52, 56, 58–59, 88, 98, 422,
 430, 433–434, 442, 445, 447
PCRE v2, 6, 13, 51–52, 56, 58, 60, 65,
 87–88, 98, 419, 422, 434, 445, 447, 533
PCRE2 (v2), 58
Perl, 50, 65, 98, 422

x

Index by Topic

Personal examples, 13, 661–666
Fix Author's Initials, 665
Fix Version Numbers, 661–664
Remove Excess Spaces after an Author's
 Initials, 666

Regex Buddy, 88, 91, 224, 430, 455, 476,
 487, 498–500, 505, 520, 553, 567, 573,
 584, 588, 602, 605–606, 611–612, 616,
 622–623, 631, 633–634, 637, 639–640,
 662
Regex101.com, 444, 482, 515, 569, 573, 636
Regular Expressions, 8, 13, 23, 47–98, 224,
 258, 420–426, 522, 546, 576, 599, 602
Regular Expressions (RegEx) Manual, 13,
 420–426
Size limitations in PCRE and PCRE2, 8, 59

code units, 59
Unicode, 5, 59, 103, 311, 380
UTF-8, 59, 685–686

Specifying Multiple Regular Expressions
 Using The (?X) Separator, 8, 61
v1, 6, 8, 23, 50–52, 56, 58–59, 64–66,
 86–89, 91, 98, 148, 358, 377, 422, 430,
 433–434, 442, 445, 447–448, 493, 526,
 539, 548, 574, 576–577
v2, 6, 8, 13, 23, 50–52, 56, 58–61, 63–65,
 86–89, 91, 93, 98, 153, 187, 377, 419,
 422, 434, 445, 447–448, 518, 533,
 574–576
v2 vs v1 & Simple, 8, 65

Rename (Ctrl + R)
Allow Overwrite / Delete Existing Files During
 Renaming If Needed, 11, 263, 376

Log Renaming Activity to File (Ctrl + L),
 380
Rename File Extensions as being Part of
 File Name, 11, 379, 550, 664
Rename Folder Extensions as being Part
 of Folder Name, 11, 379
Show Confirmation Message After
 Renaming, 11, 381
Show Warning Message Before
 Renaming, 11, 373, 381

Allow Using '\' in Renaming Criteria for
 Creation of New Folders, 11, 373

Bulk Rename Here, 12, 415–416
Create Undo Batch File, 10, 330
Debug New Name, 10, 29, 318, 325, 330,
 380
Import Rename-Pairs (Rename from a Text
 File), 10, 310, 315–317

Clear Imported-Pairs, 311, 314
Directory List Method, 312
Full Path Support, 10, 315
Import Rename-Pairs, 10, 43, 310–313,
 315–317
Spreadsheet Program Method, 312
View Imported Rename Pairs, 311, 314

Prevent Duplicates, 11, 217, 263, 372,
 376–377
Preview (Ctrl + P), 10, 328
Rename (Ctrl + R), 10, 329
Rename in Reverse Order, 11, 37, 223, 280,
 351, 354, 370
Rename Object Manually (F2), 10, 302
Undo Rename (Ctrl + Z), 10, 329

Undo, 10, 20, 33, 254, 329–330, 339,
 373, 375, 377, 380–381

Replace String
Alternate Syntax, 58
Backreference, 8, 48–49, 51–57, 59–60, 92,
 94–97, 448, 569, 571–572, 574, 577,
 582, 603–604, 608–610, 613–615, 646,
 661
Illegal, 234, 347, 421, 448, 524, 537, 567,
 604, 652
Invalid, 11, 52, 106, 168, 347, 421,
 447–448, 523–524, 591, 604, 626, 646,
 648–652
Named Backreferences, 8, 51, 53–55, 60
Numbered Backreferences, 8, 51, 54, 56, 60
Numbered Backreferences using the $
 Substitution Syntax, 51
Replace String, 49, 52–57, 68, 78, 86, 90,
 94–98, 106, 108, 422, 430, 433, 439,
 445, 447–449, 510, 517, 521, 523–524,
 554, 574, 576, 604, 661, 664
Substituted Backreferences, 60
substitution Syntax, 51, 53

xi

Index by Topic

S
Select

Consecutive Selection, 32, 244, 354
Shift + Down arrow, 20, 32, 103
Shift + Up Arrow, 32

Deselect All (Ctrl + D), 10, 280
Ctrl + D, 10, 20, 280

Deselecting a File with a non-Consecutive
 Selection Also Deselects the Previous File
 that held Focus, 244
Invert Selection (Ctrl + I), 10, 280
non-Consecutive Selection, 32, 244, 354

Ctrl + Left Mouse Click, 32, 103, 280, 354
Ctrl + Mouse Click, 20
Individually Select with Keyboard and
 Mouse, 280

Select, 10–11, 15–17, 19–20, 26, 32, 34,
 45, 58, 72, 103, 137–138, 141, 159, 161,
 165–166, 171–172, 179–180, 182, 189,
 200, 217, 224, 245–246, 252, 256, 264,
 267–269, 280–282, 284–285, 288–290,
 292, 305, 307–308, 310–311, 313, 317,
 330, 332, 334–342, 347, 349, 353, 356,
 365, 378, 384, 388, 401, 403, 405, 415,
 421, 495, 549
Select All (Ctrl + A), 10, 103, 280

Ctrl + A, 10, 20, 103, 244, 280
Select From Clipboard, 10, 281–282

Show Picture Viewer (Ctrl +
 W)

Show Picture Viewer (Ctrl + W), 11, 334

Simple
longest Match, 67–68, 70, 78, 85–86

Long, 5, 52, 67–68, 85, 87, 94, 161,
 167, 199, 211, 254, 257, 295, 330,
 364, 375, 391, 419, 451, 497, 543,
 590, 646, 652, 659

Shortest Match, 67–68, 70–71, 78, 85–86
Short, 67–68, 85, 94, 185

Simple, 8, 23, 39, 50, 58, 61, 64–65, 67–68,

 70, 72, 78, 82, 85–86, 94, 98, 147, 183,
 208, 297, 334, 373, 386, 401, 404, 440,
 442, 449, 460, 493–494, 496, 520, 620,
 655, 660, 686, 713
Tag, 9, 23, 65–68, 70–80, 82–86, 94–97,
 111, 116–120, 148–154, 156–158, 161,
 165–168, 178, 181, 184, 191–192, 319,
 337, 356–358, 360, 363, 377–378, 408,
 412, 567, 672–674, 676–678, 680–694

Sort
Absolute Sorting, 351–352
Ascending Sort, 353, 355
Descending Sort, 355
Displayed sequence, 36, 223, 280, 351, 354,
 370
Group Affected, 11, 354
Logical Sorting, 11, 351–352
Order of Processing, 36, 351
Order of the Displayed Sequence, 36, 223,
 280, 351, 354, 370
Random Order, 306
Sort, 10–11, 37, 211, 223, 280, 305–306,
 351–355, 385, 414
Sort Files and Folders Together, 11, 355
Sorting, 11, 36–37, 223, 280, 306, 351–353,
 375

Special Characters
Anchor, 424, 436, 452–454, 461, 496–497,
 530–532, 543, 545, 549, 602

Caret, 424–425, 427, 436
Dollar Sign, 424, 436

Class, 47, 54–55, 89, 423–425, 427–429,
 431–432, 442, 449, 451, 455–456,
 460–467, 474, 483, 488, 490, 492–493,
 497, 505, 522, 530, 545–546, 559–562,
 569, 572, 575, 577, 582, 663–664, 678,
 688

Character Class, 425, 427–429, 431–432,
 442, 449, 451, 455–456
Character Class (or just Class), 427–428
Negating Character Class, 425

Dot Metacharacter, 428, 430, 442–443, 451,
 512, 519, 521, 533, 537, 551–552,
 556–557, 567, 569, 572, 577, 579, 630,

xii

Index by Topic

 632, 640
Metacharacter, 13, 51, 92, 106, 423–565,
 567, 569, 572, 577, 579, 591, 602, 608,
 613, 626, 628, 630, 632, 640, 642
non-Numeric Digit, 425, 451
non-Printable Characters, 426
non-Whitespace character, 426, 432
non-Word Boundary, 423, 497–508, 640
non-Word Characters, 456, 460, 465, 467,
 477, 497, 499–501, 505–506, 508

punctuation, 49, 423, 427, 429, 456,
 460, 465, 467, 477, 496–497,
 505–506, 508, 515

Numeric Digits, 241–242, 425, 427–429,
 449, 451, 455, 488, 490, 492–493,
 548–549, 554, 603, 607, 613, 630,
 632–635, 638–641, 661–664
Special Characters, 13, 47, 106, 423–426,
 437
Whitespace, 423, 426–427, 429, 431–432,
 455–456, 460, 464, 466, 477, 497, 505,
 587, 596–597
Word Boundaries, 423, 460–461, 477,
 481–482, 488, 493, 495–496, 498–500,
 602, 640, 662
Word Characters, 423, 429, 455–456,
 460–461, 465, 467, 477, 480–481, 488,
 497–501, 505–506, 508, 628

Speeding up the Program
Speeding up the Program, 5, 13, 418–419

Substitute Tags
File Size, 9, 11, 155, 188, 333, 336, 413–414
Hash Value Tags, 156

Cyclic Redundancy Check (CRC), 156
Checksum, 156, 158
CRC-32, 156
Keccak, 156–157, 360

Hash, 9, 156–158, 356–357, 360–361,
 363
Secure Hash Algorithm (SHA), 157

MD5, 158, 360–361, 686
MD5 (Message-Digest), 158
SHA-1, 157
SHA-2, 157

SHA-3, 157
Property Formatting Markers, 162, 168

File Properties as Dates and Numbers, 9,
 162

Using EXIF Tags, 9, 165, 167, 184,
 337, 378, 408, 412
Using Windows Clipboard Data, 9, 164

Removed Tag <removed>, 154
<removed>, 154

Substitute Tags, 165, 377–378
Substitution Tags available for JPEG image
 files, 150
Substitution Tags available for MP3 files, 148
Using Substitution Tags, 9, 148, 377, 408

System.ItemDate
Epoch, 188, 364
EXIF:Photo.DateTimeDigitized, 187
GIGO, 11, 366
HEIC, 188, 364
Item Date, 9, 11–12, 23, 187–190, 192–215,
 341, 363–366, 386, 390, 413–414
Nirsoft, 205–207, 214
non-Document or Other Filetype Breaks
 Microsoft's Rules, 210

System.DateImported, 211–212, 360
Windows Properties' Date Modified is
 Earlier than the Date Created value,
 215

RAW, 156, 179–180, 188, 364, 680–687, 696
System.Photo.DateTaken, 163, 187,
 191–193, 364
The Tests Used, 194

Content Created, 199–200, 210–214, 360
Date Last Saved, 190, 192, 199–204,
 210–214, 360–361
Document Files, 192, 204, 207
Document Filetype, 192–193, 198–199,
 203–204, 210–211, 214, 363
Document Metadata, 199, 210–211,
 213–214
How I Tested Document Metadata, 199,
 211
System.Document.DateCreated, 199,
 211–212, 360
System.Document.DateSaved, 192–193,

xiii

Index by Topic

 199–200, 211–212, 360–361
XMP:DateTimeOriginal, 187

T
Technical Notes

Technical Notes, 3

The 14 Sections Used to
 Specify the Criteria

Section # 10 - Numbering, 9, 222
Section #10: Numbering, 28, 101, 227,
 229, 232, 306, 351, 368–369

Section # 11 - Extension, 9, 247
Section #11: Extension, 28, 64, 379

Section # 12 - Filters, 9, 250
Section #12: Filters, 5, 13, 221, 238,
 240, 257, 260, 302, 334, 338, 341,
 383, 404, 406, 419

Section # 13 - Copy/Move to Location, 10,
 262

Section #13: Copy/Move to Location,
 297, 375–376

Section # 14 - Special, 10, 271
Section #14: Special, 27–31, 41,
 176–177, 321, 325, 336, 382,
 401–402, 408

Section # 1: Regular Expressions, 47–98
Section #1: RegEx, 6, 26, 47, 65, 100,
 105–106, 232, 258, 320, 419

Section # 2 - (File) Name, 99
Section #2: Name, 100, 320

Section # 3 - Replace, 9, 102
Section #3: Replace, 26, 41, 105–106,
 125, 263, 297, 320, 375

Multiple Replacements, 9, 104
Pipe, 104–106, 310, 312, 423, 642
Position Modifier, 9, 108–109

Section # 4 - Case, 9, 112
Section #4: Case, 27, 29, 223, 227–229,

 325, 401–402
<clear>, 116–118
<ic>, 119
<rnlo>, 120
<rnup>, 120
New Changes in the Except(ion) Field,
 116
New York Times Title Case, 9, 114
Title Enhanced, 114, 116–121

Section # 5 - Remove, 9, 122
Section #5: Remove, 27, 154, 393

Removed Tag <removed>, 154
Section # 6 - Move/Copy Parts, 9, 136

Section # 6: Move/Copy Parts, 137–143
Section # 7 - Add, 9, 144, 363

Section #7: Add, 27, 100, 148, 159–160,
 167, 184, 337, 375, 377–378, 387,
 408, 672

Section # 8 - Auto Date, 9, 170
Section #8: Auto Date, 6, 27, 181–182,
 341, 377–378, 387, 389

Section # 9 - Append Folder Name, 9, 216
Section #9: Append Folder Name, 27,
 218, 257, 375

The 14 Sections Used to Specify the Criteria,
 8, 25

The Program Screen
Data Entry Field, 47–48, 53, 132, 147, 155,
 159, 161, 166, 173, 225, 248, 258–259,
 303, 361, 378, 388, 406, 425, 439
Expand File List (Ctrl + F9), 11, 343–344
Filter Refresh, 15, 252
Maximize File List (F9), 11, 343, 345–346
Status Bar, 20, 39, 41–43, 254, 277, 294
The Program Screen, 8, 17–20
Up/Down Indicators, 145, 174, 225
User Interface, 8, 21–22, 272, 329, 343, 345

Expansion Button, 22
Preview, 10, 20–21, 26, 34, 149, 151,
 297–298, 310, 328–329, 374, 399,
 401, 430, 686
Rename Action, 21, 227, 248, 254, 310,
 330, 368, 421
Reset, 10–11, 21, 35, 41–42, 237–240,
 276, 327, 341, 350, 366, 368, 401

xiv

Index by Topic

Revert, 10, 21, 40, 327, 416
Zoom Feature, 21

Timestamp
12 Hour format, 174
24 Hour Military Time, 172, 174
Adding a New Date & Timestamp, 9, 171,
 176
Change File Timestamps, 12, 151, 176, 272,
 385, 390

Status Not Set, 272
Change File Timestamps Function Allows
 Item Date, 390
Military Time Conversion, 177
Offset, 174–175, 389, 673, 675–676, 678
Timestamp, 9, 12, 18, 21, 23, 31, 151, 168,
 171, 174–177, 179, 181–182, 184–189,
 194, 196, 198–203, 208–211, 213,
 272–273, 325, 328–329, 336, 366, 375,
 380, 385–387, 389–390, 401, 693
Understanding Delta, 12, 389

Type of Date Data
Accessed (Current), 171, 182
Accessed (New), 176
Creation (New), 176
Creation Date (Current), 171
Current, 5, 10, 21, 37, 39, 42, 89, 100–101,
 111, 139–140, 159–161, 167, 171,
 174–176, 182, 185–186, 194–195, 198,
 200–201, 203, 211, 218–220, 223,
 227–228, 248, 253, 256–257, 264, 266,
 270, 276–277, 280, 292–294, 305–309,
 316, 327, 330, 334, 336–337, 342, 351,
 354, 364, 368, 373, 386, 389, 396, 412,
 416, 419, 423, 439, 442–445, 449, 456,
 461, 472, 474, 483, 486, 519, 534,
 536–539, 545, 547, 552, 556–557,
 560–561, 563–565, 567, 569–570, 572,
 577, 579, 582, 588–589, 592, 594, 602,
 607–610, 614–615, 619, 621–625,
 632–633, 635, 637, 641, 663–664, 681,
 683–684
Modified (New), 176
Modified Date (Current), 171
Taken (Digitized), 179, 181, 387

Taken (Modified), 179–181, 387
Taken (Original), 9, 151, 171, 175, 178–181,
 188, 190, 192–193, 196–197, 205, 337,
 341, 363–364, 366, 378, 387, 390,
 413–414
Taken (Recent), 179, 387
Type of Date Data, 171

	Before I Begin
	Technical Notes
	Considerations
	Introduction to the 2nd Edition of Volume I
	Table of Contents
	Drag and Drop from Explorer
	The Program Screen
	Navigation Pane
	Content Pane

	User Interface
	First Glance Features
	Zoom Feature
	Preview
	Reset
	Revert
	Rename

	With Bulk Rename Utility aka BRU, You can:
	The 14 Sections Used to Specify the Criteria
	Order of Expression Evaluation
	Program Notes
	Consecutive/Non-Consecutive Selection
	Undo Rename
	Preview
	Favourites
	displayed sequence of Processing
	sorting options
	Reposition
	Apply Random Sort
	Sorting the Column Headers

	JavaScript function

	Understanding Favourites
	Save On Exit
	Store Pathname
	File Menu: New

	Section # 1 - RegEx
	Match
	Replace
	v3.4 New Additions
	Numbered Backreferences using the $ Substitution Syntax
	Named Capture Groups
	Using Named Backreferences with Capture Groups
	Mixing Named and Unnamed Capture Groups
	Size limitations in PCRE and PCRE2
	Specifying Multiple Regular Expressions Using The (?X) Separator
	v2 vs v1 & Simple
	Understanding the Importance of Delimiters in Simple

	The Global Switch /g
	Case Insensitive /i
	Case Conversion
	Added ability to use \E \L \l \U \u modifiers in the Replace field of the ‘Simple’ RegEx.
	Summary

	Section # 2 – (File) Name
	Keep Filename
	Remove Filename
	Fixed Filename
	Reverse Filename

	Section # 3 - Replace
	(Search) & Replace <pattern> with
	v3.4 New Additions
	Multiple Replacements
	First Match
	Position Modifier

	Section # 4 - Case
	Same Case
	Lowercase
	Uppercase
	Title Case
	Sentence Case
	Excep.(tions)
	v3.43 New Additions
	Title Enhanced: New York Times Title Case
	New Changes in the Except(ions) field
	<clear>
	<ic>
	<rnlo>
	<rnup>

	Section # 5 - Remove
	Remove First n chars
	Remove Last n chars
	Remove From n to n
	Remove (specified) Chars (characters)
	Remove Words
	Remove Accents
	D/S Remove Double Spaces
	Remove (all alpha-numeric) Chars (characters)
	Remove (all non- alpha-numeric characters) Sym(bols)
	Remove Lead(ing) Dots
	None - Leave as is (default)
	. Remove single leading dot
	.. Remove Double Leading Dots
	Both - Remove One or the Other (First Come)

	Remove (numeric) Digits
	Trim - Remove Leading and Trailing Spaces
	Remove High ASCII (ASCII 128 to ASCII 255)
	Extended ASCII Chart

	Crop - Remove Text before or after Specified text

	Section # 6 - Move/Copy Parts
	Select What you want to Do
	None (default) – do nothing
	Copy first n characters
	Copy last n characters
	Move first n characters
	Move last n characters

	Select the characters to copy
	Specify where you want to place the string
	None (default) – do nothing
	To end of Filename
	To start of Filename
	To pos(ition) within Filename

	Sep(arator) Text - delimiter between text

	Section # 7 – Add
	Prefix Added Text
	Suffix Added Text
	Insert Added Text at Pos(ition) within Filename
	Word Space - Add Space before any Uppercase Word
	Using Substitution Tags
	MP3 file
	JPEG image files
	Other Tags Available in BRU
	<removed>
	File Size %z
	Hash Value Tags

	Using Windows File Properties
	Tip: If you have a problem getting BRU to recognize the tag

	File Properties as Dates and Numbers
	Using Windows Clipboard Data
	Using EXIF Tags
	EXIF Properties as Dates and Numbers

	Section # 8 - Auto Date
	Mode
	None (default) – no additions
	Prefix – add date at beginning of filename
	Suffix – add date at end of filename

	Type (of Date Data)
	Creation date (Current)
	Modified date (Current)
	Accessed (Current)
	Current

	Fmt
	Separator character (between date and text)
	Segment character - Character used between date sections
	Century (express year as YYYY)
	Custom Format
	Offset – Alter Date (by Hours)
	Adding a New Date & Timestamp
	Type: Creation (New)
	Type: Modified (New)
	Type: Accessed (New)
	Entering 12 Hour and 24 Hour Military Time
	Tim Tidbit - Miltray Time Verbally properly expressed
	Tim Tidbit - Military Time Conversion
	Tim Tidbit - Military Time Conversion trick

	Using the EXIF property ‘Taken (Original)’
	Type: Taken (Original)
	Type: Taken (Digitized)
	Type: Taken (Modified)
	Type: Taken (Recent)-

	Understanding EXIF and Windows Properties as they apply to BRU
	EXIF (Exchangeable Image File Format)
	EXIF:DateTimeOriginal/ Type: Taken (Original)
	EXIF:DateTimeDigitized/ Type: Taken (Digitized)
	EXIF.DateTime/ Type: Taken (Modified)

	Windows File Properties
	Date Created/ Type: Created (Current)
	Date Modified/ Type: Modified (Current)
	Date Accessed/ Type: Accessed (Current)

	Understanding Metadata
	The Windows File System Metadata
	MFT
	Standard Attributes

	File Metadata Stored Within the Windows File System
	Date Created
	Date Modified
	Date Accessed

	File Metadata Stored Within the File Itself
	EXIF Timestamps Metadata
	ID3

	Metadata when Moving or Copying Files and Folders
	If the target location is a different volume
	If target location is on the same volume

	Metadata when Copying and Moving Folders in a Directory Sub-Structure
	Under NTFS
	Under FAT or FAT32

	v3.4 New Additions
	Item Date
	Comparison Item Date and Taken (Original)
	Item Date Sources: EXIF DateTimeOriginal
	Item Date Sources: Date Created/Date Modified
	Item Date Sources: Date Last Saved
	Tests and Conclusions
	Anomalies: exe
	Anomalies: Non-Document or Other Filetype Breaks Microsoft’s Rules
	Windows Properties’ Date Modified is Earlier than the Date Created value

	Section # 9 - Append Folder Name
	Select where to append
	Select Sep.(arator)
	Select how many directory levels
	v3.42 New Additions
	Append Negative Value for Specific Directory Name

	Section # 10 - Numbering
	order of the displayed sequence
	Mode
	None – no changes made (default)
	Prefix – append at the beginning of filename
	Suffix – append at the end of filename
	Pre. + Suff. – append at both the beginning and end of the filename

	Start - Specify a starting number
	Pad - Specify how many places sequence should occupy
	Roman Numerals
	v3.43 New Additions
	Roman Numerals section removed and placed under ‘Type’ section.
	Case

	Sep(arator) text
	Using The Special Character ‘ : ’ Colon

	Resetting an (Auto) Numbering back to start value
	Use Break to reset the ‘counter’ when the specified character position changes.
	Folder - reset 'counter' for each new Directory
	Using Break and Folder options together

	Type- Specify Numeric or Alpha Base
	Base Chart

	Deselecting a File with a Non-Consecutive Selection Also Deselects the Previous File that held Focus

	Section # 11 - Extension
	Same – no changes are made
	Lower/ Upper/Title – change the Case
	Fixed – specify an extension to use for all selected files
	Remove – remove the current file extension
	Extra – add a secondary extension

	Section # 12 - Filters
	Mask – used to enter a filespec
	Wildcard *
	not Boolean operator
	Specifying multiple selections (using <space> delimiter)

	Include sub-section
	Files – all files in the selected directories (default)
	Folders – include folders
	Hidden – include hidden files
	Subfolders (Recursion)

	File Name Minimum Length/ Maximum Length
	Path Minimum Length/ Maximum Length
	BRU’s Sub Dir Column vs Full path
	Long Path Support
	Match Case
	RegEx (Use a RegEx Filter Condition)
	Condition (Use a JavaScript Filter Condition)
	v3.42 New Additions
	Set Subfolder Level to Control Recursive Scanning

	Section # 13 – Copy/Move to Location
	copy or move Renamed files to a different specified directory
	Only files can be copied or moved, not the directories themselves with their file contents
	Tim Tip - Moving Files from one Directory to Another Location with Files content!

	Section # 14 – Special
	Change File Attributes
	Change File Timestamps
	Character Translations
	JavaScript

	Menus
	File Menu
	New (Ctrl + N)
	Open (Ctrl + O)
	Save (Ctrl + S)
	Save As
	Recent
	Favourites
	Save on Exit
	Store Pathname

	Actions Menu
	Selection
	Individually Select with Keyboard and Mouse
	Select All (Ctrl + A)
	Deselect All (Ctrl + D)
	Invert Selection (Ctrl + I)
	Select From Clipboard

	Jump to Path (Ctrl + J)
	Jump to Path (Ctrl + J): v3.4 New Additions
	Network/UNC Paths are Supported.
	find the UNC Network path name for a share
	Create a share
	view all the available shares on the current computer
	Advantages over other methods:
	remove the share
	Troubleshooting UNC under Jump to Path
	Network Discovery
	Net View Error

	Rename Object Manually (F2)
	Refresh Files (F5)
	Refresh Tree (Ctrl + F5)
	Show/Hide Tree (F11)
	Zoom (F8)
	List
	Reposition
	Move Up Selected Item (Ctrl + Alt + Up Arrow)
	Move Down Selected Item (Ctrl + Alt + Down Arrow)
	Move Top Selected Item (Ctrl + Alt + PgUp)
	Move Bottom Selected Item (Ctrl + Alt + PgDn)
	Swap Two Selected Items (Ctrl + Alt + S)
	Remove From List (Delete key)

	Apply Random Sort to Current List (Ctrl + 8)
	Show Only Items Affected by Renaming Criteria (Ctrl + 9)
	Clear All Items from Current List
	Auto-Select All Items After Listing a Folder
	Clear All Non-Selected Items from Current List (Ctrl + 0)

	Import Rename-Pairs (Rename from a Text File)
	Import Rename-Pairs
	make the listing
	Directory List Method
	Spreadsheet Program Method

	View Imported Rename Pairs
	Clear Imported-Pairs
	v3.4 New Additions: Import Rename-Pairs (Rename from a Text File)
	Full Path Support

	Debug New Name
	Reset All Renaming Criteria (Ctrl + T)
	Revert All Criteria to Last Saved (Ctrl + E)
	Preview (Ctrl + P)
	Rename (Ctrl + R)
	Undo Rename (Ctrl + Z)
	Create Undo Batch File (Ctrl + B)

	Display Options Menu
	Always on Top
	List
	Show Gridlines
	Show Icons
	Show File Sizes as
	Show Picture Viewer (Ctrl + W)
	Select Columns
	Sub Dir.(rectories)
	Type (Filetype)
	Created, Modified, Accessed
	Size
	Length
	Taken (Original)
	Attributes
	Read-only
	Archive
	Hidden
	System

	Track
	Copy/ Move to Location (13)
	Status
	Reset (back to default columns)
	Show All

	Autofit All Columns (Ctrl + Alt + +)
	Expand File List (Ctrl + F9)
	Maximize File List (F9)

	Colours
	New Name – Ok
	New Name – Invalid
	Active Criteria
	Highlight Active Criteria
	Changing the Colours

	Font
	Use Larger Font (default)
	Use Smaller Font

	Sorting
	order of the displayed sequence
	Logical Sorting
	Absolute Sorting
	Make a group of files sort by a numeric value
	Group Affected
	Sort Files and Folders Together

	v3.4 New Additions
	Custom Column
	Set Content of Custom Column
	Item Date
	A Brief primer on EXIF Date Taken accuracy- GIGO

	Renaming Options Menu
	Retain Autonumber
	Rename in Reverse Order
	Prevent Duplicates
	Advanced Options
	Allow Using ‘\’ in Renaming Criteria for Creation of New Folders
	Allow Overwrite / Delete Existing Files During Renaming If Needed

	ID3 / EXIF Data / Files Properties
	Extract ID3 Data (MP3)
	Extract EXIF Data (Photos)
	Extract Windows File Properties

	File / Folder Extensions
	Rename File Extensions as being Part of File Name
	Rename Folder Extensions as being Part of Folder Name

	Log Renaming Activity to File (Ctrl + L)
	Show Warning Message Before Renaming
	Show Confirmation Message After Renaming

	Special Menu
	Change File Attributes
	Read-only
	Archive
	System
	To Display System Files in Windows Explorer

	Hidden
	To Display Hidden Files (non-system) in Windows Explorer

	Change File Timestamps
	Date Created
	Date Modified
	Date Accessed
	options
	No Change – no modification
	Current – set to current date and timestamp
	Modified – use the existing Modified Date as the new timestamp
	Taken(Original) – use the EXIF DateTimeOriginal as the new timestamp
	Created - use the existing Date Created as the new timestamp
	Fixed – use the specified date and time as the new timestamp
	use the Fixed option

	Delta – individual timestamps can be adjusted by Days, Hours, Minutes and Seconds
	Understanding Delta

	Taken (Original) (aka Date Taken) –
	v3.42 New Additions
	Change File Timestamps to Allow Item Date

	Character Translations
	Character (Literal)
	Hex Value
	Decimal Value
	examples of translations
	Alpha word to Alpha Word
	Expand $ to text - $ to Dollar and vice versa
	Replace signs with a space
	Replace signs with an underscore
	Replace signs with nothing
	Translate German umlautes
	Shorten file names
	Replace a group of signs or one sign with an another sign or group
	Roman Numerals Translation List
	URL encoded files decoding

	Preserving Character Translations

	JavaScript Renaming (Ctrl + F7)
	JavaScript Code Entry Form
	Using the Test facility
	Error Correction
	Handling Syntax Errors
	Understanding the JavaScript Code Entry Form Colour Coding
	Avoid Common Errors: <spaces>
	Avoid Common Errors: CASE SENSITIVITY
	Avoid Common Errors: ASCII Mistakes

	About Conditional Renaming
	JavaScript (Extension) Libraries
	sugar.js
	date.js

	JavaScript Filter Condition
	JavaScript Filter Condition Examples

	Context Menu
	Clipboard Copy
	Navigation Pane
	Pathname
	Pathname, and paste to Location (13)
	Example of using Clipboard Copy from Navigation Pane

	Content Pane
	Pathname
	Filename
	New Filename
	Original Filename with New Filename
	Examples of using Clipboard Copy from Content Pane

	Open Containing Folder
	Show List of File Properties
	Show List of EXIF Info (.JPG Files)
	v3.4 New Additions
	Copy all available column data for highlighted files using the Clipboard Copy menu option ‘All’ or Ctrl + C

	Windows Explorer Context menu
	Bulk Rename Here

	Appendix
	Speeding up the Program
	Display Options Menu
	List - Show Icons

	Renaming Options menu
	ID3 / EXIF Data / File Properties

	Section #12: Filters
	Subfolders option (Recursive Scan)

	v3.4 New Additions
	Section #1: RegEx
	Enabling v2 (PCRE v2 with Boost)

	Regular Expressions (RegEx) Manual
Volume I
	Applying example to BRU – Review Time
	v3.4 New Additions
	BRU Supports PCRE v2 with Boost

	Literal
	Special Characters (aka Metacharacters
	Metacharacters in Depth
	Character class (or just class)
	Posix Character Class (Bracket Expression)
	Dot Metacharacter
	\s Matches any single Whitespace character
	\S Matches any single non-Whitespace character
	| The vertical bar is used to distinguish between alternatives
	() Parentheses
	Create a set of optional characters
	Grouping (Capture Groups)
	Nested Parentheses in Capture Groups
	When used with a Quantifier

	Invalid
	\d Matches any single numeric digit
	\D Matches any single non-numeric digit
	Anchor Metacharacters
	^ (BOL) - require any match to occur at beginning of string
	$ (EOL) - require any match to occur at end of string
	\w Matches any single Word Character
	\W Matches any single non-Word Character
	\b A Word Boundary
	Word Characters
	Whitespace
	non-Word Characters
	Movement between characters
	The Rules
	At the beginning of string
	At the end of a string
	a position between a non-word Character and a Word Character (beginning of word within string)
	a position between a Word Character and a non-Word Character (end of word within string)

	Word Boundaries are applicable to alpha characters and numeric digits

	\B A non-Word Boundary
	Word Characters
	Whitespace
	non-Word Characters
	The Rules
	a position between two Word Characters (a character, or substring within a word)
	a position between two non-Word Characters

	Quantifiers
	* Match the previous character, expression or metacharacter zero or more times
	Zero Length Match
	A Zero Occurrence Match

	+ Matches the previous character, expression or metacharacter one or more times
	? Matches the previous (character or metacharacter, Capture Group or class) zero or one time
	?? Matches the previous (character or metacharacter, Capture Group or class) zero or one time
	*? Match the previous character, expression or metacharacter zero or more times
	+? Matches the previous character, expression or metacharacter one or more times
	Range Quantifiers
	{n} specifies exactly how many matches are allowed
	{min, max} limits how many times a character or character set can be repeatedly matched
	{n,} specifies that it can match n or more times

	Possessive Quantifiers
	*+ Match the previous character, expression or metacharacter zero or more times
	++ Matches the previous character, expression or metacharacter one or more times
	?+ Matches the previous (character or metacharacter, Capture Group or class) zero or one time
	Range Quantifiers
	{#, #}+ or {#,}+ or {#}+

	Greed and Lazy
	Greed
	* match zero or more
	+ match 1 or more
	{min,max} specified no. of matches (Range)
	Possessive

	Lazy

	Backtracking
	Non-marking Groups
	Case Insensitive
	Free-Space Option
	Comments
	Comments in Free-Space
	Comments in Exact-Spacing

	If Then Else
	Using multiple Capture Groups to locate Partial Words
	Lookarounds: Lookahead and Lookbehind
	Lookahead asserts
	Using Expressions within Lookaheads
	Lookahead: Positive
	Examples of not capturing using a Lookahead
	Using Capture groups within Lookaheads
	Lookahead: Negative
	Understanding the current position in Lookaheads.

	Lookbehind asserts
	Lookahead: Positive
	Lookahead: Negative

	Using Lookarounds Before and After the Match
	Lookaround Before the Match
	Lookaround After the Match

	Using Alternates with Capture Groups
	Using ONE Capture Group with two alternates
	Using ONE Capture Group and three alternates
	Using TWO Capture Groups and three alternates
	Using THREE Capture Groups and three alternates
	Nested Capture Groups
	Using FOUR Capture Groups and three alternates

	Personal examples
	Fix Version Numbers
	Fix Author’s Initials
	Remove Excess Spaces after an Author’s Initials

	JavaScript Bulk Rename Utility Constants and Variables
	JavaScript BRU Constants and Variables
	JavaScript BRU Utility Functions

	EXIF Metadata Reference
	ASCII Character Codes
	ASCII Character Chart (Version 1)
	ASCII Character Chart (Version 2)
	Extended ASCII Character Chart
	PC Extended ASCII Character Chart

	Last Word

