

Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall and South Bay Ocean Outfall

2016

City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division

June 30, 2017

David W. Gibson, Executive Officer California Regional Water Quality Control Board San Diego Region 2375 Northside Drive, Suite 100 San Diego, CA 92108

Attention: POTW Compliance Unit

Dear Mr. Gibson:

Enclosed is the 2016 Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall and South Bay Ocean Outfall as per requirements set forth in Order No. R9-2009-0001 for the City of San Diego's Point Loma Wastewater Treatment Plant (NPDES No. CA0107409), Order No. R9-2013-0006 as amended by Order No. R9-2014-0071 for the City of San Diego's South Bay Water Reclamation Plant (NPDES No. CA0109045), and Order No. R9-2014-0009 as amended by Order No. R9-2014-0094 for the United States Section of the International Boundary and Water Commission's South Bay International Wastewater Treatment Plant (NPDES No. CA0108928). This combined report for the Point Loma and South Bay outfall regions approved by the San Diego Water Board and USEPA contains data summaries, analyses, and preliminary assessments of all main portions of the ocean monitoring program conducted during calendar year 2016, including water quality monitoring, benthic condition monitoring, and fish and invertebrate monitoring.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Peter S. Vroom, Ph.D. Deputy Director, Public Utilities Department

TS/akl

cc:

U.S. Environmental Protection Agency, Region 9 International Boundary and Water Commission, U.S. Section

Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall and South Bay Ocean Outfall, 2016

Point Loma Wastewater Treatment Plant

(Order No. R9-2009-0001; NPDES Permit No. CA0107409)

South Bay Water Reclamation Plant (Order No. R9-2013-0006; NPDES Permit No. CA0109045)

South Bay International Wastewater Treatment Plant (Order No. R9-2014-0009; NPDES Permit No. CA0108928)

Prepared by:

City of San Diego Ocean Monitoring Program

Environmental Monitoring & Technical Services Division

Timothy D. Stebbins, Editor

Ami K. Latker, Managing Editor

June 2016

Table of Contents

	iii
Executive Summary T. Stebbins, A. Latker	1
Chapter 1. General Introduction T. Stebbins	7
Program Requirements & Objectives Background	
Receiving Waters Monitoring	
Report Components & Organization Literature Cited	
Chapter 2. Water Quality A. Latker, A. Brownlee, W. Enright, T. Stebbins	15
Ŭ	1.5
Introduction	
Results Literature Cited	
Chapter 3. Benthic Conditions A. Latker, R. Velarde, T. Stebbins	25
Introduction	
Materials and Methods	
Results Literature Cited	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates R. Gartman, A. Latker, T. Stebbins	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates R. Gartman, A. Latker, T. Stebbins Introduction Materials and Methods Results	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates R. Gartman, A. Latker, T. Stebbins Introduction Materials and Methods	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates R. Gartman, A. Latker, T. Stebbins Introduction Materials and Methods Results	
Chapter 4. Demersal Fishes and Megabenthic Invertebrates <i>R. Gartman, A. Latker, T. Stebbins</i> Introduction Materials and Methods Results Literature Cited Chapter 5. Bioaccumulation of Contaminants in Fish Tissues	
 Chapter 4. Demersal Fishes and Megabenthic Invertebrates	
 Chapter 4. Demersal Fishes and Megabenthic Invertebrates	37 37 38 41 41 45 45 45 47

Table of Contents

Chapter 6. San Diego Regional Survey — Benthic Conditions	50
Introduction	
Materials and Methods	51
Results	53
Literature Cited	57

APPENDICES

Appendix A: General Introduction Figures and Tables

Appendix B: Water Quality Figures and Tables

Appendix C: Benthic Conditions Figures and Tables

Appendix D: Demersal Fishes and Megabenthic Invertebrates Figures and Tables

Appendix E: Bioaccumulation of Contaminants in Fish Tissues Figures and Tables

Appendix F: San Diego Regional Survey — Benthic Conditions Figures and Tables

PRODUCTION CREDITS AND ACKNOWLEDGEMENTS

Senior Editor:

T. Stebbins

Managing Editor:

A. Latker

Associate Editors:

K. Beauchamp, W. Enright, K. Langan, R. Velarde, G. Welch

Production Editors:

K. Barboza, K. Beauchamp, W. Enright, R. Gartman, A. Latker, M. Nelson

GIS Graphics: *M. Kasuya, D. Olson*

Cover Photo:

City of San Diego Marine Biology Laboratory crew sorting large haul of the pelagic red crab, *Pleuroncodes planipes*, trawled off Point Loma, San Diego, California during summer 2016. GoPro image courtesy of Greg Welch.

Acknowledgments:

We are grateful to the personnel of the City's Marine Biology, Marine Microbiology, and Environmental Chemistry Services Laboratories for their assistance in the collection and/or processing of all samples, and for discussions of the results. The completion of this report would not have been possible without their continued efforts and contributions. Complete staff listings for the above labs and additional details concerning relevant QA/QC activities for the receiving waters monitoring data reported herein are available online in the 2016 Annual Receiving Waters Monitoring & Toxicity Testing Quality Assurance Report (www.sandiego.gov/mwwd/environment/reports.shtml).

How to cite this document:

City of San Diego. (2017). Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall and South Bay Ocean Outfall, 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

This page intentionally left blank

The City of San Diego (City) conducts an extensive ocean monitoring program to evaluate potential environmental effects associated with the discharge of treated wastewater to the Pacific Ocean via the Point Loma and South Bay ocean outfalls (PLOO and SBOO, respectively). The data collected are used to determine compliance with receiving water conditions as specified in the NPDES permits and associated orders issued by the U.S. Environmental Protection Agency (USEPA) and San Diego Regional Water Quality Control Board (San Diego Water Board) for the City's Point Loma Wastewater Treatment Plant (NPDES No. CA0107409, Order No. R9-2009-0001) and South Bay Water Reclamation Plant (NPDES No. CA0109045, Order No. R9-2013-0006), as well as the South Bay International Wastewater Treatment Plant (NPDES No. CA0108928, Order No. R9-2014-0009) operated by the U.S. Section of the International Boundary and Water Commission. Since treated effluent from the two South Bay facilities commingle before discharge to the ocean via the SBOO, a single monitoring and reporting program approved by the San Diego Water Board and USEPA is conducted to comply with these two permits.

The principal objectives of the combined ocean monitoring efforts for both the PLOO and SBOO regions include:

- Measure and document compliance with NPDES permit requirements and California Ocean Plan (Ocean Plan) water quality objectives.
- Monitor changes in ocean conditions and the health and status of the San Diego marine ecosystem over space and time.
- Assess any impact of wastewater discharge or other anthropogenic or natural influences on the local marine environment, including effects on coastal water quality, seafloor sediments, and marine life.

Overall, the state of San Diego's coastal ocean waters remains in good condition based on the comprehensive scientific assessment of the Point Loma and South Bay outfall monitoring regions. Although governed by three separate NPDES permits as described above, this combined annual report approved by the San Diego Water Board and USEPA summarizes the purpose, scope, methods and findings of all ocean monitoring activities conducted in both regions during calendar year 2016.

Regular (core) monitoring was conducted on a weekly, quarterly, semiannual or annual basis at a total of 142 discrete sites that are arranged in grids surrounding the Point Loma and South Bay ocean outfalls. The PLOO terminates at a discharge depth of about 100 m located approximately 7.2 km west of the Point Loma Wastewater Treatment Plant on the Point Loma peninsula, whereas the SBOO terminates at a discharge depth of about 27 m located approximately 5.6 km offshore of southern San Diego and just north of the USA/Mexico border. Core monitoring in the PLOO region extends from Mission Beach southward to the tip of Point Loma along the shore, and in nearshore to offshore waters overlying the continental shelf at depths of about 9 to 116 m. Core monitoring in the SBOO region extends from Coronado, San Diego southward to Playa Blanca in northern Baja California at the shore stations, while offshore monitoring occurs in waters overlying the continental shelf at depths of about 9 to 55 m. In addition to monitoring at the permanent core stations, an annual survey of benthic conditions (sediment quality, macrobenthic communities) is typically conducted each year at 40 randomly selected stations that range from near the international border to northern San Diego County and that extend further offshore to continental slope depths as deep as 500 m. These broader geographic surveys are useful

for evaluating patterns over the entire San Diego region and provide information important for distinguishing reference areas from those impacted by human activities. Additional information on background conditions for San Diego's coastal marine environment is also available from pre-discharge baseline studies conducted by the City for the PLOO region (1991–1994) and SBOO region (1995–1998).

Details of the results of all receiving waters monitoring activities conducted for the PLOO and SBOO regions from January through December 2016 are presented in the following six chapters, while tabular and graphical summaries and supplemental data are presented in Appendices A–F. Chapter 1 represents a general introduction and overview of the combined ocean monitoring program, while chapters 2–6 include results of the different monitoring components conducted at the core and regional stations. Chapter 2 presents data characterizing the results of shoreline (beach) and offshore water quality monitoring at 103 different core stations, including measurements of fecal indicator bacteria and oceanographic data to evaluate dispersal of the PLOO and SBOO wastewater plumes and to assess compliance with Ocean Plan water contact standards. Assessments of benthic sediment quality and the status of macrobenthic invertebrate communities at 49 core benthic stations are presented in Chapter 3, while results for the 2016 summer survey of 40 randomly selected benthic stations in order to monitor communities of bottom dwelling (demersal) fishes and large (megabenthic) invertebrates. Finally, the results of bioaccumulation assessments to measure contaminant levels in the tissues of San Diego marine fishes collected from nine trawl and four rig fishing zones are presented in Chapter 5. A summary of the main findings for each of the main monitoring components is included below.

OCEAN WATER QUALITY

Oceanographic conditions off San Diego in 2016 in terms of ocean temperatures, salinity, dissolved oxygen (DO) concentrations, pH, transmissivity (water clarity), and concentrations of chlorophyll *a* were generally within historical ranges reported for the PLOO and SBOO monitoring regions. Conditions typically indicative of coastal upwelling were most evident during the spring months, while maximum stratification or layering of the water column occurred during mid-summer, after which the waters became more mixed in the winter. Decreases in water clarity or transmissivity tended to be associated with terrestrial runoff or outflows from rivers and bays, the re-suspension of nearshore bottom sediments due to waves or storm activity, or the presence of phytoplankton blooms.

Ocean water quality was excellent in both the PLOO and SBOO regions during 2016. Overall compliance with Ocean Plan single sample maximum (SSM) and geometric mean standards for fecal indicator bacteria (i.e., total coliforms, fecal coliforms, *Enterococcus*) was 98% for all shore, kelp bed and other offshore stations located within California State waters. Compliance with both the SSM and geometric mean standards was typically a little higher at the PLOO stations than at the SBOO stations. Compliance rates also tended to be higher at the nearshore kelp bed and other offshore stations compared to the shore stations. Reduced compliance with the various water contact standards tended to occur during the wet season. This relatively common pattern of higher contamination during or following seasonal storm events, especially at some of the shore stations located nearer the Tijuana River, is likely due to coastal runoff from both point and non-point sources.

Compliance was also very high with Ocean Plan narrative objectives for natural light (i.e., transmissivity), pH, and DO in coastal waters where the plumes are most likely to occur. For example, potential plume signatures were detected in fewer than 17% of the CTD casts performed during the year (i.e., n=43). Results from only nine of these CTD casts (3 PLOO, 6 SBOO) showed any significant depression of natural light levels, while only four casts (2 PLOO, 2 SBOO) showed any depression of DO concentrations at stations

located within State waters. Although about 67% of the potential PLOO plume detections corresponded to elevated *Enterococcus* densities, these samples were all collected from depths \geq 60 m. In contrast, none of the potential plume signals for the SBOO region were coincident with elevated bacterial levels.

BENTHIC SEDIMENT QUALITY

Ocean sediments varied throughout the San Diego region during 2016 in terms of both particle (grain) size composition and the presence of different types of contaminants. Sediments sampled off Point Loma during the year were composed primarily of fine silts and clays (percent fines) and fine sands. In contrast, particle size composition was much more diverse in sediments across the SBOO region. Overall, there were no changes in the amount of fine sediments that could be attributed to wastewater discharge, nor was there any other apparent relationship between particle size distributions and proximity to either outfall. Instead, most spatial differences observed between the PLOO and SBOO core monitoring sites are probably due to factors such as the offshore disposal of dredged sediments, the deposition of detrital materials, the presence of residual construction materials near the outfalls, and the geological origin of different sediment types.

As in previous years, sediment quality was very high at the PLOO and SBOO stations, with overall contaminant loads remaining relatively low compared to available effects-range low (ERL) or effects-range median (ERM) thresholds and levels present in other southern California coastal sediments. Only five trace metals were detected at concentrations greater than their respective ERLs at a few stations, including cadmium at PLOO station B10, copper and lead at PLOO station E1, and silver at PLOO station E11 during the summer survey, and arsenic at SBOO station I21 during both the winter and summer surveys. There was no evidence of contaminant accumulation associated with wastewater discharge. Concentrations of the above and other metals, as well as various organic loading indicators (e.g., BOD, TOC, sulfides), pesticides (e.g., DDT), PCBs and PAHs varied widely throughout both regions, and there were no patterns that could be attributed to either outfall or other point sources. The only evidence of possible organic enrichment was slightly higher sulfide and BOD levels at a few stations located within about 200 m of the PLOO discharge site.

The composition of sediments at the 40 randomly selected benthic stations sampled in July 2016 was also typical for continental shelf and upper slope benthic habitats off southern California, and consistent with the findings from previous regional surveys off San Diego as well as at the core PLOO and SBOO monitoring stations. Overall, San Diego sediments varied between the inner shelf, mid-shelf, outer shelf and upper slope strata as expected, and there was no evidence of habitat degradation. While various indicators of organic loading, trace metals, pesticides, PCBs and PAHs were detected, concentrations of most were relatively low compared to many other areas of the Southern California Bight. Almost all contaminants detected in these regional sediments occurred at levels below available ERL and ERM thresholds. Furthermore, there was no evidence of disturbance at any of the regional sites that could be attributed to wastewater discharges from either the PLOO or SBOO. Instead, concentrations of several chemical parameters increased with depth along with corresponding increases in percent fines. For example, the highest levels of most contaminants occurred in sediments along the upper slope where some of the finest sediments were present.

BENTHIC MACROFAUNAL COMMUNITIES

Benthic macrofaunal communities surrounding the PLOO and SBOO were similar in 2016 to those observed in previous years. The benthic communities present off Point Loma remained dominated by polychaete worm and ophiuroid (brittle star) assemblages that are common in similar southern California mid-shelf habitats. Specifically, the brittle star *Amphiodia urtica* was the most abundant

species off Point Loma in 2016, although its populations have shown a region-wide decrease over the past 25 years. In contrast, the SBOO assemblages present in 2016 were dominated by polychaete worm species that occur in shallower, often sandier shelf sediments off southern California. For example, the spionid polychaete Spiophanes norrisi was again the most abundant and most widely distributed species recorded in the South Bay region, which is similar to patterns observed since 2007. Benthic communities inhabiting both outfall regions appear to be in good condition, remain structurally similar to those observed prior to outfall operations, and are representative of natural indigenous communities. For example, values for important community metrics such as species richness, abundance, diversity, and dominance were within historical ranges and representative of those occurring in similar habitats throughout the Southern California Bight. Additionally, benthic response index (BRI) values for 95% of the PLOO samples and 80% of the SBOO samples remained characteristic of undisturbed habitats. In the PLOO region, only the BRI values for the two samples collected at near-ZID station E14 were indicative of a possible minor deviation from reference condition. In contrast, a total of 11 samples from eight of the SBOO stations had BRI values that may correspond to a similar minor deviation. However, none of these slightly higher BRI values occurred at the SBOO near-ZID stations, which suggests that factors other than wastewater discharge may be affecting these few assemblages. Overall, there was no evidence that wastewater discharge has caused degradation of the marine benthos at any of the PLOO or SBOO core monitoring stations.

Results of the summer 2016 regional survey of randomly selected benthic sites off San Diego continue support the findings from previous years that the major macrofaunal assemblages segregate by habitat characteristics such as depth and sediment type. For example, the inner to mid-shelf assemblages present off San Diego in July 2016 were similar to those found in other shallow, sandy habitats across the Southern California Bight, and were characterized by species of polychaete worms such as *Spiophanes* norrisi, S. duplex, and Mediomastus sp. Assemblages occurring in somewhat finer, but more mixed sediments along the outer shelf, were dominated by the bivalves Axinopsida serricata, Nuculana sp A, and Tellina carpenteri, as well as the polychaetes Spiophanes kimballi, Petaloclymene pacifica, and Mediomastus sp. Similar to patterns described in previous monitoring reports, upper slope habitats off San Diego were characterized by a high percentage of fine sediments with associated species assemblages distinct from those at most shelf stations. These upper slope assemblages were dominated by the polychaete Maldane sarsi, the scaphopod Cadulus californicus, and the gastropod Lirobittium calenum. Although benthic communities off San Diego vary across depth and sediment gradients, there was no evidence of disturbance during the 2016 regional surveys that could be attributed to wastewater discharges, offshore dredged materials disposal sites, or other point sources. Benthic habitats appear to be in good condition overall, with 100% of the shelf sites being classified in reference condition based on assessments using the BRI. This pattern is consistent with recent findings for the entire Southern California Bight mainland shelf.

Demersal Fishes & Megabenthic Invertebrates

Results for the demersal fish and megabenthic invertebrate communities trawled off San Diego in 2016 were difficult to compare to previous years due to the presence of exceptionally large populations of pelagic red crabs (*Pleuroncodes planipes*) that had invaded the region and impacted trawling operations at many stations. The impact was most pronounced off Point Loma where total trawling time had to be reduced from 10 minutes to one minute at most stations in order to limit the red crab catch so that the trawl net could be safely retrieved and brought onboard ship for processing. Consequently, it was not possible to determine if observed differences or changes in trawl-caught fish and invertebrate populations

off San Diego during the year were due to unequal trawling times, direct impacts caused by the pelagic red crabs, or other factors. In spite of these limitations, some patterns could still be identified. For example, although reduced in total numbers Pacific Sanddabs continued to dominate the demersal fish assemblages surrounding the PLOO. In contrast, the SBOO fish assemblages were dominated by species such as the California Lizardfish and Speckled Sanddab that are more common at those shallower depths. The dominant trawl-caught invertebrate at the SBOO stations in 2016 was the shrimp *Sicyonia penicillata*, while the pelagic red crab accounted for about 99% of invertebrate catch at the PLOO stations. Where comparisons could be made to previous surveys, the findings indicated that demersal fish and megabenthic invertebrate communities in both the PLOO and SBOO regions remain unaffected by wastewater discharge. Although highly variable, spatial patterns in the abundance and distribution of individual species were similar at stations located near the outfalls and farther away. Finally, external examinations of the fish captured during the year indicated that fish populations remain healthy off San Diego, with less than 1% of all fish having external parasites or showing any evidence of disease or other abnormalities.

CONTAMINANT BIOACCUMULATION IN FISHES

The accumulation of chemical contaminants in San Diego marine fishes was assessed by analyzing liver tissues from flatfish collected from trawl zones and muscle tissues from rockfish collected at rig fishing zones. Results from both analyses indicated no evidence that contaminant loads in fishes from the PLOO or SBOO regions were affected by wastewater discharge in 2016. Although several metals, pesticides, and PCB congeners were detected in both tissue types, these contaminants occurred in fishes distributed throughout the region with no patterns that could be attributed to wastewater discharge. While all of the rockfish muscle samples exceeded international standards for arsenic and selenium, all samples were within state and federal (USFDA) action limits. Furthermore, concentrations of all contaminants were within ranges reported previously for southern California fishes. Consequently, the occurrence of some metals and chlorinated hydrocarbons in some local fishes is likely due or related to other factors such as the widespread distribution of many contaminants in southern California sediments, differences in the physiology and life history traits of various species of fish, different exposure pathways, and differences in the migration habits of various species. For example, an individual fish may be exposed to contaminants at a polluted site but then migrate to an area that is less contaminated. This is of particular concern for fishes collected in the vicinity of the PLOO and the SBOO, as there are many other potential point and non-point sources of contamination.

CONCLUSIONS

The findings and conclusions for the ocean monitoring efforts conducted for the Point Loma and South Bay ocean outfall monitoring regions during calendar year 2016 were consistent with previous years. Overall, there were few changes to local receiving waters, benthic sediments, and marine invertebrate and fish communities that could be attributed to wastewater discharge or other human activities. Coastal water quality conditions and compliance with Ocean Plan standards were excellent, and there was no evidence that wastewater plumes from the outfalls were transported shoreward into nearshore recreational waters. There were also no clear outfall related patterns in sediment contaminant distributions or differences between invertebrate and fish assemblages at the different monitoring sites. Additionally, benthic habitats surrounding both outfalls and throughout the entire San Diego region remained in generally good condition similar to reference conditions for much of the Southern California Bight. Finally, the low level of contaminant bioaccumulation and general lack of physical anomalies or other symptoms of disease or stress in local fishes was also indicative of a healthy marine environment off San Diego. This page intentionally left blank

PROGRAM REQUIREMENTS & OBJECTIVES

Ocean monitoring within the Point Loma and South Bay outfall regions is conducted by the City of San Diego (City) in accordance with requirements set forth in National Pollution Discharge Elimination System (NPDES) permits and associated orders for the Point Loma Wastewater Treatment Plant (PLWTP: NPDES No. CA0107409), South Bay Water Reclamation Plant (SBWRP: NPDES No. CA0109045), and South Bay International Wastewater Treatment Plant (SBIWTP: NPDES No. CA0108928) (see Table A.1). These documents specify the terms and conditions that allow treated effluent to be discharged to the Pacific Ocean via the Point Loma Ocean Outfall (PLOO) and the South Bay Ocean Outfall (SBOO). In addition, the Monitoring and Reporting Program (MRP) included within each of these orders defines the requirements for monitoring ocean (receiving) waters surrounding the two outfalls, including sampling design, frequency of sampling, field operations and equipment, regulatory compliance criteria, types of laboratory tests and analyses, data management and analysis, statistical methods and procedures, environmental assessment, and reporting guidelines.

Overall, the City's combined Ocean Monitoring Program is designed to assess the impact of wastewater discharged through the PLOO and SBOO on the coastal marine environment off San Diego. The main objectives of the program are to: 1) provide data that satisfy NPDES permit requirements, 2) demonstrate compliance with California Ocean Plan (Ocean Plan) water-contact standards in state waters, 3) track movement and dispersion of the wastewater fields or plumes discharged via the outfalls, and 4) identify any biological or chemical changes that may be associated with wastewater discharge. These data are then used to evaluate and document any effects of wastewater discharge, other man-made influences (e.g., storm water discharge, urban runoff), or natural factors (e.g., climate changes) on coastal water quality, seafloor sediment conditions, and local marine organisms.

BACKGROUND

Point Loma Ocean Outfall

The City began operation of the PLWTP and original PLOO off Point Loma in 1963, at which time treated effluent was discharged approximately 3.9 km offshore of the facility at a depth of about 60 m. The plant operated as a primary treatment facility from 1963 to 1985, after which it was upgraded to full advanced primary treatment between mid-1985 and July 1986. This improvement involved the addition of chemical coagulation to the treatment process, which resulted in an increase in removal of total suspended solids (TSS) to about 75%. Since then, treatment has been further enhanced over the years with the addition of more sedimentation basins, expanded aerated grit removal, and refinements in chemical treatment, which together further reduced mass emissions from the plant. For example, TSS removals are now consistently greater than the 80% required by the NPDES permit.

The physical structure of the PLOO was modified in the early 1990s when it was extended approximately 3.3 km farther offshore to prevent intrusion of the waste field into nearshore waters and to increase

compliance with Ocean Plan standards for water-contact sports areas. Discharge from the original 60-m terminus was discontinued in November 1993 following completion of the outfall extension. The present "deep-water" PLOO extends approximately 7.2 km west of the PLWTP to a depth of about 94 m, where the main outfall pipe splits into a Y-shaped (wye) multiport diffuser system. The two diffuser legs extend an additional 762 m to the north and south, each terminating at a depth of about 98 m. The average discharge of effluent through the PLOO was about 136 million gallons per day (mgd) in 2016.

South Bay Ocean Outfall

The SBOO is located just north of the border between the United States and Mexico where it terminates approximately 5.6 km offshore and west of Imperial Beach at a depth of about 27 m. Unlike all other southern California outfalls that lie on the surface of the seafloor, the SBOO pipeline begins as a tunnel on land that extends from the SBWRP and SBIWTP facilities to the coastline, and then continues beneath the seabed to a distance of about 4.3 km offshore. From there, the pipe connects to a vertical riser assembly that conveys effluent to a pipeline buried just beneath the surface of the seafloor. This subsurface outfall pipe then splits into a Y-shaped (wye) multiport diffuser system with the two diffuser legs each extending an additional 0.6 km to the north and south. The outfall was originally designed to discharge wastewater through 165 diffuser ports and risers, which included one riser at the center of the wye and 82 others spaced along each diffuser leg. Since discharge began, however, low flow rates have required closure of all ports along the northern diffuser leg and many along the southern diffuser leg in order for the outfall to operate effectively. Consequently, wastewater discharge is restricted primarily to the distal end of the southern diffuser leg and to a few intermediate points at or near the center of the wye. The average discharge of effluent through the SBOO was about 28.3 mgd in 2016, including about 3.3 mgd of tertiary treated effluent from the SBWRP and about 25 mgd of secondary treated effluent from the SBIWTP.

Receiving Waters Monitoring

The total monitoring area for the PLOO and SBOO programs combined spans about 881 km² of coastal marine waters from Northern San Diego County to Northern Baja California. Core monitoring for the Point Loma region is conducted at 82 different stations located from the shore seaward to a depth of about 116 m, while core monitoring for the South Bay region is conducted at 53 stations ranging from along the shore to offshore depths of about 61 m (Figure A.1). Each of the core monitoring stations is sampled for specific parameters as specified in the appropriate MRPs. A summary of the results for all quality assurance procedures performed during calendar year (CY) 2016 in support of these requirements for both regions can be found in City of San Diego (2017). Data files, detailed methodologies, completed reports, and other pertinent information submitted to the California Regional Water Quality Control Board, San Diego Region (San Diego Water Board) and the U.S. Environmental Protection Agency (USEPA), Region IX during the year are available online at the City's website (www.sandiego.gov/mwwd/environment/oceanmonitor.shtml).

Prior to 1994, the City conducted an extensive ocean monitoring program off Point Loma surrounding the original 60-m discharge site. This program was subsequently expanded with the construction and operation of the deeper outfall as referenced previously. Data from the last year of regular monitoring near the original PLOO discharge site are presented in City of San Diego (1995b), while the results of a 3-year "recovery study" are summarized in City of San Diego (1998). Additionally, a more detailed

assessment of spatial and temporal patterns surrounding the original discharge site is available in Zmarzly et al. (1994). From 1991 through 1993, the City also conducted "pre-discharge" monitoring for the new PLOO discharge site in order to collect baseline data prior to wastewater discharge into these deeper waters (City of San Diego 1995a, b). All permit mandated monitoring for the South Bay region has similarly been performed by the City since wastewater discharge through the SBOO began in 1999. This included pre-discharge monitoring for 3½ years (July 1995–December 1998) in order to provide background information against which post-discharge conditions could be compared (City of San Diego 2000). Results of NPDES mandated monitoring for the extended PLOO from 1994 to 2015 and the SBOO from 1999 to 2015 are available in previous annual receiving waters monitoring reports (e.g., City of San Diego 2016a, b).

In addition, the City has conducted annual region-wide surveys off the coast of San Diego since 1994 either as part of regular South Bay outfall monitoring requirements (e.g., City of San Diego 1999, 2016b) or as part of larger, multi-agency surveys of the entire Southern California Bight (SCB). The latter include the 1994 Southern California Bight Pilot Project (Allen et al. 1998, Bergen et al. 1998, 2001, Schiff and Gossett 1998) and subsequent Bight'98, Bight'03, Bight'08 and Bight'13 programs in 1998, 2003, 2008 and 2013 respectively (Allen et al. 2002, 2007, 2011, Noblet et al. 2002, Ranasinghe et al. 2003, 2007, 2012, Schiff et al. 2006, 2011, Dodder et al. 2016, Gillett et al. 2017, Walther et al. 2017). These large-scale surveys are useful for characterizing the ecological health of diverse coastal areas and in distinguishing reference sites from those impacted by wastewater or storm water discharges, urban runoff, or other sources of contamination. In addition to the above activities, the City participates as a member of the Region Nine Kelp Survey Consortium to fund aerial surveys of all the major kelp beds in San Diego and Orange Counties (e.g., MBC Applied Environmental Sciences 2016).

Special Studies

The City has been actively working on or supporting a number of important special projects or enhanced ocean monitoring studies over the past 10 years or more. Many of these projects were identified as the result a scientific review of the City's Ocean Monitoring Program and environmental monitoring needs for the region that was conducted by a team of scientists from the Scripps Institution of Oceanography (SIO) and other institutions (SIO 2004), as well as in consultation with staff from the San Diego Water Board, USEPA, Southern California Coastal Water Research Project (SCCWRP) and others. Examples of special projects or enhanced monitoring efforts that have been recently completed, are presently underway, or that are just being initiated include:

• Point Loma Ocean Outfall Plume Behavior Study: This project was designed to determine the characteristic fates of the PLOO wastewater plume in the coastal waters off Point Loma using a combination of observational and modeling approaches. The study was successfully completed in 2012 and resulted in several important conclusions and recommendations (see Rogowski et al. 2012a, b, 2013, and Appendix F in City of San Diego 2015a). The City is currently in the process of implementing the major recommendations of this study (see next project below).

• Real-Time Observing Systems for the Point Loma and South Bay Ocean Outfalls: This project addresses the primary recommendation of the Point Loma plume behavior study described above, as well as a similar study completed several years ago for the South Bay outfall region (Terrill et al. 2009). The study involves installation of a new real-time ocean observing system that will span both

outfall regions. The project began in late 2015 with initial deployment of the SBOO mooring system completed in December 2016 and deployment of the PLOO mooring scheduled for Fall 2017. This project is being conducted in partnership between the City and the Ocean Time Series Group of SIO who presently operates a similar mooring system off Del Mar. The project is expected to significantly enhance the City's environmental monitoring capabilities in order to address current and emerging issues relevant to the health of San Diego's coastal waters, including plume dispersion, subsurface current patterns, ocean acidification, hypoxia, nutrient sources, and coastal upwelling.

• Deep Benthic Habitat Assessment Study: This project represents an ongoing, long-term project designed to assess the condition of deeper (>200 m) continental slope habitats off San Diego. A summary report of the current status of this project for data collected from 2003 through 2013 is included in Appendix C.5 of City of San Diego (2015a).

• Remote Sensing of the San Diego / Tijuana Coastal Region: This project represents a long-term effort funded by the City and the International Boundary and Water Commission since 2002 to utilize satellite and aerial imagery to better understand regional water quality conditions off San Diego. The project is conducted by Ocean Imaging (Solana Beach, CA), and is focused on detecting and tracking the dispersion of wastewater plumes from local ocean outfalls and nearshore sediment plumes caused by stormwater runoff or outflows from local bays and rivers. Results from this project for CY2016 are available in Svejkovsky (2017), while a comprehensive multi-year report and peer-reviewed publication are expected to be completed in 2017.

• San Diego Kelp Forest Ecosystem Monitoring Project: This project represents continuation of a long-term commitment by the City to support this important research conducted by SIO. Overall, this work is essential to assessing the health of San Diego's kelp forests and to monitoring the effects of wastewater discharge on the local coastal ecosystem relative to other factors. The final project report for the most recent 4-year agreement (2010–2014) with SIO is available in Parnell et al. (2014), while work on a new 5-year agreement through June 2019 is currently underway.

REPORT COMPONENTS & ORGANIZATION

This report presents summaries and preliminary assessments of the results of all receiving waters monitoring activities conducted during CY2016 (January–December 2016) for both the Point Loma and South Bay outfall regions. A more comprehensive assessment, including detailed comparisons of long-term spatial and temporal changes and trends, will be prepared as part of the first Biennial Receiving Waters Monitoring and Assessment Report for calendar years 2016-2017 to be submitted to the San Diego Water Board and USEPA by July 1, 2018. Included herein are results from all regular core stations that comprise the fixedsite monitoring grids surrounding the two outfalls (Figure A.1), as well as results from the summer 2016 benthic survey of randomly selected sites that range from near the USA/Mexico border to northern San Diego County (Figure A.2). The major components of the combined monitoring program are covered in the following chapters and associated appendices: Executive Summary; General Introduction (Chapter 1, Appendix A); Water Quality (Chapter 2, Appendix B); Benthic Conditions (Chapter 3, Appendix C); Demersal Fishes and Megabenthic Invertebrates (Chapter 4, Appendix D); Contaminants in Fish Tissues (Chapter 5, Appendix E); Regional Benthic Conditions (Chapter 6, Appendix F). Not included in this report are results from the summer 2016 (Year 1) sediment toxicity testing activities for the Point Loma and South Bay outfall regions; these results will be presented following completion of the Year 3 survey as described in the approved Sediment Toxicity Monitoring Plan (City of San Diego 2015b).

LITERATURE CITED

- Allen, M.J., S.L. Moore, K.C. Schiff, S.B. Weisberg, D. Diener, J.K. Stull, A. Groce, J. Mubarak, C.L. Tang, and R. Gartman. (1998). Southern California Bight 1994 Pilot Project: V. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project, Westminster, CA.
- Allen, M.J., A.K. Groce, D. Diener, J. Brown, S.A. Steinert, G. Deets, J.A. Noblet, S.L. Moore, D. Diehl, E.T. Jarvis, V. Raco-Rands, C. Thomas, Y. Ralph, R. Gartman, D. Cadien, S.B. Weisberg, and T. Mikel. (2002). Southern California Bight 1998 Regional Monitoring Program: V. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project. Westminster, CA.
- Allen, M.J., T. Mikel, D. Cadien, J.E. Kalman, E.T. Jarvis, K.C. Schiff, D.W. Diehl, S.L. Moore, S. Walther, G. Deets, C. Cash, S. Watts, D.J. Pondella II, V. Raco-Rands, C. homas, R. Gartman, L. Sabin, W. Power, A.K. Groce, and J.L. Armstrong. (2007). Southern California Bight 2003 Regional Monitoring Program: IV. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Allen, M.J., D. Cadien, E. Miller, D.W. Diehl, K. Ritter, S.L. Moore, C. Cash, D.J. Pondella, V. Raco-Rands, C. Thomas, R. Gartman, W. Power, A.K. Latker, J. Williams, J.L. Armstrong, and K. Schiff. (2011). Southern California Bight 2008 Regional Monitoring Program: Volume IV. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project, Costa Mesa, CA.
- Bergen, M., S.B. Weisberg, D. Cadien, A. Dalkey, D. Montagne, R.W. Smith, J.K. Stull, and R.G. Velarde. (1998). Southern California Bight 1994 Pilot Project: IV. Benthic Infauna. Southern California Coastal Water Research Project, Westminster, CA.
- Bergen, M., S.B. Weisberg, R.W. Smith, D.B. Cadien, A. Dalkey, D.E. Montagne, J.K. Stull, R.G. Velarde, and J.A. Ranasinghe. (2001). Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California. Marine Biology, 138: 637–647.
- City of San Diego. (1995a). Outfall Extension Pre-Construction Monitoring Report (July 1991–October 1992). City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (1995b). Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 1994. City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (1998). Recovery Stations Monitoring Report for the Original Point Loma Ocean Outfall (1991–1996). City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (1999). San Diego Regional Monitoring Report for 1994–1997. City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

- City of San Diego. (2000). Final Baseline Monitoring Report for the South Bay Ocean Outfall (1995– 1998). City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015a). Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements for Biochemical Oxygen Demand and Total Suspended Solids, Point Loma Ocean Outfall and Point Loma Wastewater Treatment Plant. Volumes I-X, Appendices A-V. The City of San Diego, Public Utilities Department, San Diego, CA.
- City of San Diego. (2015b). Sediment Toxicity Monitoring Plan for the South Bay Ocean Outfall and Point Loma Ocean Outfall Monitoring Regions, San Diego, California. Submitted by City of San Diego Public Utilities Department to San Diego Water Board and USEPA, Region IX August 28, 2015. [Approved by SDWB via email, 9/29/15]
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2017). Annual Receiving Waters Monitoring & Toxicity Testing Quality Assurance Report, 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Dodder, N., K. Schiff, A. Latker, C-L Tang. (2016). Southern California Bight 2013 Regional Monitoring Program: IV. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- Gillett, D.J., L.L. Lovell, and K.C. Schiff. (2017). Southern California Bight 2013 Regional Monitoring Program: Volume VI. Benthic Infauna. Technical Report 971. Southern California Coastal Water Research Project. Costa Mesa, CA.
- MBC Applied Environmental Sciences. (2016). Status of the Kelp Beds 2015, Kelp Bed Surveys: Ventura, Los Angeles, Orange, and San Diego Counties. Final Report, July 2016. MBC Applied Environmental Sciences, Costa Mesa, CA.
- Noblet, J.A., E.Y. Zeng, R. Baird, R.W. Gossett, R.J. Ozretich, and C.R. Phillips. (2002). Southern California Bight 1998 Regional Monitoring Program: VI. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- Parnell, P.E., P. Dayton, K. Riser, and B. Bulach. (2014). Evaluation of Anthropogenic Effects on the San Diego Coastal Ecosystem. Final Project Report (2010-2014). Prepared for City of San Diego Public Utilities Department by Scripps Institution of Oceanography, University of California, San Diego, CA.
- Ranasinghe, J.A., D.E. Montagne, R.W. Smith, T.K. Mikel, S.B. Weisberg, D. Cadien, R. Velarde, and A. Dalkey. (2003). Southern California Bight 1998 Regional Monitoring Program: VII. Benthic Macrofauna. Southern California Coastal Water Research Project. Westminster, CA.

- Ranasinghe, J.A., A.M. Barnett, K. Schiff, D.E. Montagne, C. Brantley, C. Beegan, D.B. Cadien, C. Cash, G.B. Deets, D.R. Diener, T.K. Mikel, R.W. Smith, R.G. Velarde, S.D. Watts, and S.B. Weisberg. (2007). Southern California Bight 2003 Regional Monitoring Program: III. Benthic Macrofauna. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Ranasinghe, J.A., K.C. Schiff, C.A. Brantley, L.L. Lovell, D.B. Cadien, T.K. Mikel, R.G. Velarde, S. Holt, and S.C. Johnson. (2012). Southern California Bight 2008 Regional Monitoring Program:VI. Benthic Macrofauna. Technical Report No. 665, Southern California Coastal Water Research Project, Costa Mesa, CA.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, S.Y. Kim, P.E. Parnell, and P. Dayton. (2012a). Final Report: Point Loma Ocean Outfall Plume Behavior Study. Prepared for City of San Diego Public Utilities Department by Scripps Institution of Oceanography, University of California, San Diego, CA.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, and W. Middleton. (2012b). Mapping ocean outfall plumes and their mixing using Autonomous Underwater Vehicles. Journal of Geophysical Research, 117: C07016.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, and W. Middleton. (2013). Ocean outfall plume characterization using an Autonomous Underwater Vehicle. Water Science & Technology, 67(4): 925–933.
- Schiff, K.C., and R.W. Gossett. (1998). Southern California Bight 1994 Pilot Project: III. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- Schiff, K., R. Gossett, K. Ritter, L. Tiefenthaler, N. Dodder, W. Lao, and K. Maruya. (2011). Southern California Bight 2008 Regional Monitoring Program: III. Sediment Chemistry. Southern California Coastal Water Research Project, Costa Mesa, CA.
- Schiff, K., K. Maruya, and K. Christenson. (2006). Southern California Bight 2003 Regional Monitoring Program: II. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- [SIO] Scripps Institution of Oceanography. (2004). Point Loma Outfall Project, Final Report, September 2004. Scripps Institution of Oceanography, University of California, La Jolla, CA.
- Svejkovsky, J. (2017). Satellite and Aerial Coastal Water Quality Monitoring in the San Diego/Tijuana Region. Annual Summary Report, 1 January, 2016 – 31 December 2016. Ocean Imaging, Solana Beach, CA.
- Terrill, E., K. Sung Yong, L. Hazard, and M. Otero. (2009). IBWC/Surfrider Consent Decree Final Report. Coastal Observations and Monitoring in South Bay San Diego. Scripps Institution of Oceanography, University of California, San Diego, CA.
- Walther, S.M., J.P. Williams, A. Latker, D. Cadien, D. Diehl, K. Wisenbaker, E. Miller, R. Gartman, C. Stransky, and K. Schiff. (2017). Southern California Bight 2013 Regional Monitoring Program: Volume VII. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Zmarzly, D.L., T.D. Stebbins, D. Pasko, R.M. Duggan, and K.L. Barwick. (1994). Spatial patterns and temporal succession in soft-bottom macroinvertebrate assemblages surrounding an ocean outfall on the southern San Diego shelf: relation to anthropogenic and natural events. Marine Biology, 118: 293–307.

This page intentionally left blank

INTRODUCTION

The City of San Diego conducts extensive monitoring along the shoreline and in offshore coastal waters surrounding the Point Loma and South Bay ocean outfalls (PLOO and SBOO, respectively) to characterize regional water quality conditions and to identify possible impacts of wastewater discharge or other contaminant sources on the marine environment. A comprehensive suite of oceanographic data is collected, including measurements of sea temperatures, salinity, light transmittance or water clarity, dissolved oxygen, pH, chlorophyll *a*, and colored dissolved organic material. Densities of several types of fecal indicator bacteria are also measured to provide information useful to monitoring the dispersion of wastewater discharged into the ocean through each outfall and to assess effects associated with coastal runoff from local watersheds during storm events. In addition, the City's water quality monitoring efforts are designed to assess compliance with the water contact standards specified in the California Ocean Plan (Ocean Plan) in order to protect the beneficial uses of California's ocean waters (SWRCB 2012).

This chapter presents a summary of the purpose, materials and methods, and results of the oceanographic and microbiological data collected during calendar year 2016 at a total of 103 water quality monitoring stations surrounding the PLOO and SBOO. Detailed figures and tables supporting these results are presented in Appendix B.

MATERIALS AND METHODS

Field Sampling

Shore Stations

Seawater samples were collected weekly at 19 shore stations to monitor concentrations of fecal indicator bacteria (FIB) in waters adjacent to public beaches (Figure B.1). Sixteen of these stations are located in California State waters and are therefore subject to Ocean Plan water contact standards (Table B.1, SWRCB 2012). These include eight PLOO stations (D4, D5, D7, D8/D8-A, D9–D12) located from Mission Beach southward to the tip of Point Loma and eight SBOO stations (S4–S6, S8–S12) located between the USA/Mexico border and Coronado. The other three SBOO shore stations (S0, S2, S3) are located south of the border and are not subject to Ocean Plan requirements.

Seawater samples were collected from the surf zone at each shore station in sterile 250-mL bottles, transported on blue ice to the City of San Diego Marine Microbiology Laboratory, and analyzed to determine concentrations of three types of FIB, including total coliform, fecal coliform, and *Enterococcus* bacteria. In addition, weather conditions and visual observations of water color, surf height, and human or animal activity were recorded at the time of collection.

Kelp Bed and Other Offshore Stations

Fifteen stations located in relatively shallow waters within or near the Point Loma or Imperial Beach kelp beds (i.e., referred to as "kelp" stations herein) were monitored five times each month to assess water quality

conditions and Ocean Plan compliance in nearshore areas used for recreational activities such as SCUBA diving, surfing, fishing, and kayaking (Figure B.1). These included PLOO stations C4, C5 and C6 located along the 9-m depth contour near the inner edge of the Point Loma kelp forest, PLOO stations A1, A6, A7, C7 and C8 located along the 18-m depth contour near the outer edge of the Point Loma kelp forest, SBOO stations I25, I26 and I39 located at depths of 9–18 m contiguous to the Imperial Beach kelp bed, and SBOO stations I19, I24, I32 and I40 located in other nearshore waters along the 9-m depth contour.

An additional 69 offshore stations were sampled quarterly to monitor water quality and to estimate dispersion of the PLOO and SBOO wastewater plumes. These stations were monitored during February, May, August and November in 2016 with the 36 PLOO and 33 SBOO stations sampled over four and three consecutive days, respectively, during each survey (Table B.2). Stations F1–F36 are arranged in a grid surrounding the PLOO along or adjacent to the 18, 60, 80 and 100-m depth contours, while stations I1–I40 are arranged in a grid surrounding the SBOO along the 9, 19, 28, 38 and 55-m depth contours (Figure B.1). Of these, 15 of the PLOO stations (i.e., F01–F03, F06–F14, F18–F20) and 15 of the SBOO stations (i.e., I12, I14, I16–I18, I22–I23, I27, I31, I33–I38) are located within State jurisdictional waters (i.e., within 3 nautical miles of shore) and therefore subject to the Ocean Plan compliance standards.

Seawater samples for analyses of total coliform, fecal coliform, and *Enterococcus* bacteria were collected from three discrete depths at all PLOO and SBOO kelp stations and 21 other SBOO offshore stations using a rosette sampler fitted with Niskin bottles (Table B.3). Seawater samples for FIB analysis were also collected from three discrete depths at the 18-m and 60-m offshore PLOO stations, four depths at the 80-m offshore PLOO stations, and five depths at the 100-m offshore PLOO stations. These offshore PLOO samples were analyzed for *Enterococcus* bacteria only. During the quarterly sampling surveys, additional aliquots for analysis of ammonium, total suspended solids (TSS), and oil and grease (O&G) were collected with FIB samples. Ammonium samples were collected from all depths at the SBOO kelp and offshore stations located within State waters. TSS samples were collected from all depths at the SBOO kelp and other offshore stations, while O&G samples were collected from surface waters only at these same stations. All FIB and ammonium samples were refrigerated at sea onboard the City monitoring vessel and then transported on blue ice to the City's Marine Microbiology and Toxicology Labs for processing and analysis, respectively. TSS and O&G samples were analyzed at the City's Environmental Chemistry Services Laboratory.

Oceanographic data were collected at all kelp and other offshore stations using a Sea-Bird conductivity, temperature, and depth instrument (CTD). The CTD was lowered through the water column at each station to collect continuous measurements of water temperature, conductivity (used to calculate salinity), pressure (used to calculate depth), dissolved oxygen (DO), pH, transmissivity (proxy for water clarity), chlorophyll *a* (proxy for phytoplankton), and colored dissolved organic material (CDOM). Vertical water column profiles of each parameter were constructed for each station by averaging the data values recorded within each 1-m depth bin. This data reduction ensured that physical measurements used in subsequent analyses would correspond to the discrete sampling depths required for FIB assessments. Visual observations of weather and water conditions were recorded at each station just prior to each CTD cast.

Laboratory Analyses

The City Marine Microbiology Laboratory follows guidelines issued by the U.S. Environmental Protection Agency (USEPA) Water Quality Office, and the California Department of Public Health (CDPH) Environmental Laboratory Accreditation Program (ELAP) with respect to sampling and analytical

procedures (Bordner et al. 1978, APHA 2005, CDPH 2000, USEPA 2006). All bacterial analyses were performed within eight hours of sample collection and conformed to standard membrane filtration techniques (APHA 2005).

FIB densities were determined and validated in accordance with USEPA and APHA guidelines (Bordner et al. 1978, APHA 2005, USEPA 2006). Plates with FIB counts above or below the ideal counting range were given greater than (>), greater than or equal to (\geq), less than (<), or estimated (e) qualifiers. However, these qualifiers were dropped and the counts treated as discrete values when calculating means and in determining compliance with Ocean Plan standards.

Quality assurance tests were performed routinely on bacterial samples to ensure that analyses and sampling variability did not exceed acceptable limits. Bacteriological laboratory and field duplicate samples were processed according to method requirements to measure analyst precision and variability between samples, respectively. Results of these procedures were reported under separate cover (City of San Diego 2017).

Ammonium (nitrogen) samples were analyzed by the City's Toxicology Laboratory using a Hach DR850 colorimeter and the Salicylate Method (Bower and Holm-Hansen 1980). Quality assurance tests for these analyses were performed using sample blanks.

Data Analyses

Oceanographic Conditions

Water column parameters measured in 2016 were summarized as quarterly means pooled over all "F", "I" and kelp stations (collected within one week of the quarterly stations) by the following depth layers: PLOO stations = 1–20 m, 21–60 m, 61–80 m, and 81–100 m; SBOO stations = 1–9 m, 10–19 m, 20–28 m, 29–38 m, and 39–55 m. The top depth layer is herein referred to as surface waters while the subsurface layers account for mid and bottom waters. Unless otherwise noted, analyses were performed using R (R Core Team, 2016) and various functions within the dplyr, fields, Hmisc, mixOmics, oce, reshape2, Rmisc, RODBC, and zoo packages (Zeileis and Grothendieck 2005, Wickham 2007, Hope 2013, Harrell et al. 2015, Kelley and Richards 2015, Nychka et al. 2015, Ripley and Lapsley 2015, Le Cao et al. 2016, Wickham and Francois 2016).

Water Quality

Compliance with Ocean Plan water contact standards was summarized as the number of times per sampling period that each shore, kelp, and offshore station within State waters exceeded geometric mean or single sample maximum (SSM) standards for total coliforms, fecal coliforms, and *Enterococcus* (Table B.1, SWRCB 2012). Ammonium, TSS, and O&G concentrations were summarized by quarter for the kelp and other offshore stations. These analyses were performed using R (R Core Team, 2016) and various functions within the gtools, Hmisc, psych, reshape2, RODBC, and tidyr packages (Wickham 2007, 2017, Harrell et al. 2015, Ripley and Lapsley 2015, Warnes et al. 2015, Revelle 2015).

Wastewater Plume Dispersion

Presence or absence of the wastewater plume was estimated at the offshore PLOO and SBOO stations by evaluation of a combination of oceanographic parameters (i.e., detection criteria). All stations along the 9-m depth contour were excluded from analyses due to the potential for coastal runoff or sediment resuspension in shallow nearshore waters to confound any CDOM signal that could be associated with wastewater plume dispersion from the outfalls. Previous monitoring has consistently found that the PLOO plume remains trapped below the pycnocline with no evidence of surfacing throughout the year (City of San Diego 2010a–2016a, Rogowski et al. 2012a, b, 2013), while the SBOO plume stays trapped below the pycnocline during seasonal periods of water column stratification, but may rise to the surface when stratification breaks down (City of San Diego 2010b–2016b, Terrill et al. 2009). Water column stratification and pycnocline depth were quantified using buoyancy frequency (BF, cycles²/min²) calculations for each quarterly survey. This measure of the water column's static stability was used to quantify the magnitude of stratification for each survey and was calculated as follows:

$$BF^2 = g/\rho * (d\rho/dz)$$

where g is the acceleration due to gravity, ρ is the seawater density, and dp/dz is the density gradient (Mann and Lazier 1991). The depth of maximum BF was used as a proxy for the depth at which stratification was the greatest. If the water column was determined to be stratified (i.e., maximum BF >32 cycles²/min²), subsequent analyses were limited to depths below the pycnocline.

Identification of potential plume signal at each monitoring station was based on a combination of CDOM, chlorophyll *a* and salinity levels, as well as a visual review of the overall water column profile. Detection thresholds for the PLOO and SBOO stations were adaptively set for each quarterly sampling period according to the criteria described in City of San Diego (2016a, b). It should be noted that these thresholds are based on observations of ocean properties specific to the distinct PLOO and SBOO monitoring regions, and are thus constrained to use within those regions. Finally, water column profiles were visually interpreted to remove stations with spurious signals (e.g., CDOM signals near the sea floor that were likely caused by resuspension of sediments). All analyses were performed using R (R Core Team, 2016) and the various functions within the oce, reshape2, Rmisc, and RODBC packages (Wickham 2007, Hope 2013, Kelley and Richards 2015, Ripley and Lapsley 2015).

The effect of any potential "plume detection" on local water quality was evaluated by comparing mean values of DO, pH, and transmissivity within the possible plume boundaries to thresholds calculated for the same depths from reference stations. Any station where all its CDOM values were below the 85th percentile for a given survey were considered outside the plume and therefore used as a reference station (Table B.4). Individual stations were then determined to be out-of-range (OOR) compared to the reference stations if values for the above parameters exceeded narrative water quality standards defined in the Ocean Plan (see Table B.1). For example, the Ocean Plan defines OOR thresholds for DO as a 10% reduction from that which occurs naturally, for pH as a 0.2 pH unit change, and for transmissivity as below the lower 95% confidence interval from the mean. For purposes of this report, "naturally" is defined for DO as the mean concentration minus one standard deviation (see Nezlin et al. 2016).

RESULTS

Oceanographic Conditions in 2016

Ocean temperatures, salinity, DO, pH, transmissivity, and chlorophyll *a* recorded in 2016 for the PLOO and SBOO monitoring regions are summarized in Tables B.5 and B.6, respectively. These same parameters are plotted by depth and survey for all outfall discharge depth stations associated with each outfall (i.e., 100-m stations for the PLOO, 28-m stations for the SBOO) (Figures B.2–B.13). All water quality data and associated visual observations have been previously reported in the 2016 monthly receiving waters monitoring reports submitted to the San Diego Regional Water Board (see City of San Diego 2016-2017 a, b).

Values for all parameters were generally within historical ranges reported for the PLOO and SBOO monitoring regions (e.g., City of SanDiego 2016a, b). During 2016, ocean temperatures ranged from 9.7 to 24.0°C across the PLOO region, and from 10.6 to 23.1°C across the SBOO region. Temperatures and thermal stratification varied seasonally as expected, with maximum surface temperatures and the greatest difference between surface and bottom waters occurring in August. Salinity ranged from 33.20 to 33.97 ppt at the PLOO stations and from 33.16 to 33.62 ppt at the SBOO stations. As with ocean temperatures, salinity varied seasonally. For example, the highest salinity values occurred in May at bottom depths for both regions. These relatively high salinity values corresponded with the lowest water temperatures recorded during the year and may be indicative of local coastal upwelling (see Jackson 1986).

DO concentrations ranged from 3.1 to 10.0 mg/L at the PLOO stations and from 3.7 to 9.4 at the SBOO stations, while pH ranged from 7.7 to 8.4 in both areas. Changes in pH and DO were closely linked since both parameters reflect fluctuations in dissolved carbon dioxide associated with biological activity in coastal waters (Skirrow 1975). As with ocean temperatures, the lowest DO and pH values occurred in May at both the PLOO and SBOO stations, which was likely due to the upwelling of cold, saline, oxygen poor water in these regions. Conversely, higher DO and pH values during the year were often associated with phytoplankton blooms that were evident from relatively high chlorophyll *a* concentrations.

Transmissivity ranged from 1 to 91% at the PLOO stations and from 7 to 89% at the SBOO stations. The lowest transmissivity values recorded during 2016 were found at a depth of 11 m at PLOO station C4 in November, and at a depth of 14 m at SBOO station I5 in February (City of San Diego 2016-2017 a, b). Reduced transmissivity in these regions has historically been associated with coastal runoff and sediment resuspension due to nearshore wave activity or the presence of phytoplankton blooms (e.g., City of San Diego 2016a, b). Concentrations of chlorophyll *a* ranged from 0.1 to 11.9 μ g/L at the PLOO stations, and from 0.4 to 17.3 μ g/L at the SBOO stations. The highest chlorophyll *a* values were recorded at a depth of 11 m at PLOO station C4 in November (coinciding with the low transmissivity mentioned above), and at a depth of 4 m from SBOO station I26 in May.

Water Quality in 2016

Bacteriological Compliance

All seawater samples collected from the PLOO and SBOO water quality stations that contained elevated FIB densities are listed in Tables B.7 and B.8. Compliance rates for the three geometric mean and four single sample maximum (SSM) Ocean Plan water contact standards (see Table B.1) are summarized in Figures B.14–B.16. All water quality data and associated visual observations have been previously reported in 2016 monthly receiving waters monitoring reports submitted to the San Diego Regional Water Board (see City of San Diego 2016-2017 a, b).

Water quality conditions in the PLOO and SBOO regions were excellent in 2016. Of the 4483 seawater samples analyzed during the year, only 3% (n=132) had elevated FIB, which translates to an overall 98% compliance with Ocean Plan water contact standards at these stations. Compliance with the 30-day geometric mean standards at the eight SBOO shore stations located in California State waters ranged from 79 to 100% for total coliforms, 88 to 100% for fecal coliforms, and 31 to 100% for *Enterococcus*. In contrast, compliance with these geometric mean standards was \geq 92% at the eight PLOO shore stations. Compliance with the SSM standards at the eight SBOO shore stations in State waters ranged from 71 to 100% for total coliforms, 76 to 100% for fecal coliforms, 52 to 100% for *Enterococcus*, and from 73 to

100% for the fecal:total coliform (FTR) criterion. As with the geometric mean standards, compliance with the SSM standards was higher at the PLOO shore stations at \geq 93%. Compliance rates also tended to be higher at the kelp and other offshore stations compared to the shore stations. For example, compliance with the geometric mean standards at the PLOO and SBOO "kelp" stations was 100%, while compliance with the SSM standards was \geq 92% at the PLOO kelp stations and \geq 94% at the SBOO kelp stations. Additionally, compliance with the SSM standards was 100% at the 10 offshore SBOO stations and \geq 92% at the 15 offshore PLOO stations located within State waters. Reduced compliance with the various standards tended to occur during the wet season (e.g., January–April, October–December) when 73% (n=97) of the seawater samples with elevated FIB were collected. This pattern of higher contamination occurring during or following rain events is similar to that observed during previous years and is likely due to runoff from terrestrial point and non-point sources (e.g., City of San Diego 2016a, b).

Ammonium

Ammonium concentrations measured in the coastal waters off Point Loma in 2016 are summarized in Table B.9. This parameter is not measured at any of the SBOO stations. Overall, ammonium was detected in only about 7% of the 288 samples collected during the year from the 23 kelp or other offshore PLOO stations located within State waters. Additionally, all concentrations were ≤ 0.05 mg/L, which is two orders of magnitude lower than the water quality objectives for ammonium as defined in the Ocean Plan (i.e., instant maximum of 6.0 mg/L, daily maximum of 2.4 mg/L; SWRCB 2012).

Total Suspended Solids and Oil and Grease

Total suspended solids (TSS) and oil and grease results for 2016 are summarized in Table B.10 for the SBOO region (i.e., this parameter is not measured at any of the PLOO stations). Of the 112 samples collected from the various SBOO kelp and other offshore stations in 2016, none contained detectable levels of oil and grease. In contrast, detection rates for TSS samples collected from the SBOO kelp stations ranged from 67% in August to 100% in February, with concentrations $\leq 24.8 \text{ mg/L}$. Detection rates for TSS samples collected from other SBOO offshore stations ranged from 22% in November to 92% in February, with concentrations $\leq 9.6 \text{ mg/L}$. Overall, 16 of the 368 samples collected from SBOO kelp stations, while the remaining six were collected from other SBOO offshore stations. Two of these elevated TSS samples were also associated with elevated FIB samples collected February 9–10, including one sample collected from a depth of 11 m at station I5 and one sample collected from a depth of 9 m at station I25.

Wastewater Plume Dispersion and Effects

The dispersion of wastewater plumes in 2016 and their effects on natural light, DO and pH levels in local ocean waters off San Diego were assessed by evaluating the results of 144 CTD profile casts performed at the PLOO offshore stations and another 112 CTD casts performed at the SBOO offshore stations (n=256 casts total). These results are summarized in Tables B.4, and B.11–B.12, and Figures B.17–B.18. Although 67 of these 256 casts were found to have CDOM in exceedance of the 95th percentile, only 43 (~17% of all CTD casts) were subsequently considered possible indicators of the PLOO or SBOO plumes using the criteria described previously (see Materials and Methods section). These potential plume signals included: a) 30 signals from 21 different PLOO stations; b) 13 signals from seven different SBOO stations.

About 27% of the possible PLOO plume detections (n=8) occurred at the three nearfield stations located along the 100-m depth contour and closest to the outfall's discharge zone (i.e., stations F29, F30, and F31). The remaining 22 possible PLOO plume detections occurred at other offshore monitoring stations located

further away north or south along the 100-m depth contour as well as towards shore along the 60-m and 80-m depth contours. A total of 20 (~67%) of the potential PLOO plume detections corresponded with elevated *Enterococcus* densities; these samples were all collected from depths \geq 60 m (see Table B.7).

For each of the above possible plume detections at the PLOO stations, mean values for natural light (% transmissivity), DO and pH within the estimated plume were compared to thresholds calculated for similar depths at non-plume reference stations. Based on these comparisons, a total of 18 out-of-range (OOR) events were identified for the PLOO region. These included 11 OOR events for natural light, seven OOR events for DO, and no OOR events for pH. Only three of the OOR events for natural light and two of the OOR events for DO occurred at stations located within State jurisdictional waters where Ocean Plan compliance standards apply.

In the SBOO region, nine of the potential plume detections occurred at the four stations located nearest the primary discharge zone (i.e., stations I12, I14, I15, and I16). Three of these possible plume detections occurred at a depth of 2 m during February, which corresponded with near-surface dispersion patterns observed by satellite imagery (Svejkovsky 2017). None of the potential plume signals for the SBOO were coincident with elevated *Enterococcus* levels (see Table B.8). Additionally, the four potential plume signals that occurred at other offshore stations were likely spurious due to their greater distance from the outfall and/or proximity to other known sources of organic matter. For example, station I34 is located within the possible influence of outflows from San Diego Bay, while stations I27 and I39 are located within the possible influence of the Tijuana River. A total of 10 OOR events were identified for the SBOO region, including eight OOR events for transmissivity and two OOR events for DO. There were no OOR events for pH at the SBOO stations. Six of the OOR events for natural light and each of the OOR events for DO occurred at stations located within State jurisdictional waters where Ocean Plan compliance standards apply.

LITERATURE CITED

- [APHA] American Public Health Association. (2005). Standard Methods for the Examination of Water and Wastewater, 21st edition. A.D. Eaton, L.S. Clesceri, E.W. Rice and A.E. Greenberg (eds.). American Public Health Association, American Water Works Association, and Water Pollution Control Federation.
- Bordner, R., J. Winter, and P. Scarpino, eds. (1978). Microbiological Methods for Monitoring the Environment: Water and Wastes, EPA Research and Development, EPA-600/8-78-017.
- Bower, C. E., and T. Holm-Hansen. (1980). A Salicylate-Hypochlorite Method for Determining Ammonia in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37: 794–798.
- [CDPH] California State Department of Public Health. (2000). Regulations for Public Beaches and Ocean Water-Contact Sports Areas. Appendix A: Assembly Bill 411, Statutes of 1997, Chapter765. http://www.cdph.ca.gov/HealthInfo/environhealth/water/Pages/Beaches/APPENDIXA.pdf.
- City of San Diego. (2010a). Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 2009. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2010b). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2009. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

- City of San Diego. (2011a). Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 2010. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2011b). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2010. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2012a). Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 2011. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2012b). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2011. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2013a). Annual Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 2012. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2013b). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2012. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2014a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2014b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015a). Appendix Q. Initial Dilution Simulation Models. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, Point Loma Ocean Outfall. Volume X, Appendices P thru V. Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015b). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015c). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016-2017a). Monthly receiving waters monitoring reports for the Point Loma Ocean Outfall, January–December 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016-2017b). Monthly receiving waters monitoring reports for the South Bay Ocean Outfall, January–December 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2017). Annual Receiving Waters Monitoring and Toxicity Testing Quality Assurance Report, 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Harrell, F.E. Jr, C. Dupont, and many others. (2015). Hmisc: Harrell Miscellaneous. R package version 3.17-0. http://CRAN.R-project.org/package=Hmisc.
- Hope, R.M. (2013). Rmisc: Ryan Miscellaneous. R package version 1.5. http://CRAN.R-project.org/ package=Rmisc.
- Jackson, G.A. (1986). Physical Oceanography of the Southern California Bight. In: R. Eppley (ed.). Plankton Dynamics of the Southern California Bight. Springer Verlag, New York. P 13-52.
- Kelley, D. and C. Richards. (2015). oce: Analysis of Oceanographic Data. R package version 0.9-17. http://CRAN.R-project.org/package=oce.
- Le Cao, K-M., F. Rohart, I. Gonzalez, S. Dejean, B. Gautier, F. Bartolo, P. Monget, J. Coquery, F. Yao, and B. Liquet. (2016). mixOmics: Omics Data Integration Project. R package version 6.1.0. https:// CRAN.R-project.org/package=mixOmics.
- Mann, K.H. and J.R.N Lazier. (1991). Dynamics of Marine Ecosystems, Biological-Physical Interactions in the Oceans. Blackwell Scientific Publications, Boston.
- Nezlin, N.P, J.A.T. Booth, C. Beegan, C.L. Cash, J.R. Gully, A. Latker, M.J. Mengel, G.L. Robertson, A. Steele, and S.B. Weisberg. (2016). Assessment of wastewater impact on dissolved oxygen around southern California's submerged ocean outfalls. Regional Studies in Marine Science, 7: 177–184.
- Nychka, D., R. Furrer, J. Paige, and S. Sain. (2015). fields: Tools for spatial data. R package version 8.3-5. http://CRAN.R-project.org/package=fields.
- R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Revelle, W. (2015). psych: Procedures for Personality and Psychological Research. R package version 1.5.8. http://CRAN.R-project.org/package=psych.

- Ripley, B. and M. Lapsley. (2015). RODBC: ODBC Database Access. R package version 1.3-12. http:// CRAN.R-project.org/package=RODBC.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, S.Y. Kim, P.E. Parnell, and P. Dayton. (2012a). Final Report: Point Loma Ocean Outfall Plume Behavior Study. Prepared for City of San Diego Public Utilities Department by Scripps Institution of Oceanography, University of California, San Diego, CA.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, and W. Middleton. (2012b). Mapping ocean outfall plumes and their mixing using Autonomous Underwater Vehicles. Journal of Geophysical Research, 117: C07016.
- Rogowski, P., E. Terrill, M. Otero, L. Hazard, and W. Middleton. (2013). Ocean outfall plume characterization using an Autonomous Underwater Vehicle. Water Science & Technology, 67: 925–933.
- Skirrow, G. (1975). Chapter 9. The Dissolved Gases-Carbon Dioxide. In: J.P. Riley and G. Skirrow (eds.). Chemical Oceanography. Academic Press, London. Vol. 2. P 1-181.
- Svejkovsky J. (2017). Satellite and Aerial Coastal Water Quality Monitoring in the San Diego/Tijuana Region: Annual Summary Report for: 1 January 2016 – 31 December 2016. Solana Beach, CA.
- [SWRCB] California State Water Resources Control Board. (2012). California Ocean Plan, Water Quality Control Plan, Ocean Waters of California. California Environmental Protection Agency, Sacramento, CA.
- Terrill, E., K. Sung Yong, L. Hazard, and M. Otero. (2009). IBWC/Surfrider Consent Decree Final Report. Coastal Observations and Monitoring in South Bay San Diego. Scripps Institution of Oceanography, University of California, San Diego, CA.
- [USEPA] United States Environmental Protection Agency. (2006). Method 1600: Enterococci in Water by Membrane Filtration Using membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI). EPA Document EPA-821-R-06-009. Office of Water (4303T), Washington, DC.
- Warnes, G., B. Bolker, and T. Lumley. (2015). gtools: Various R Programming Tools. R package version 3.5.0. http://CRAN.R-project.org/package=gtools.
- Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1-20. URL http://www.jstatsoft.org/v21/i12/.
- Wickham, H. and R. Francois. (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=dplyr.
- Wickham, H. (2017). tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R package version 0.6.1. http://CRAN.R-project.org/package=tidyr.
- Zeileis, A and G. Grothendieck. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1-27. URL http://www.jstatsoft.org/v14/i06/.

INTRODUCTION

The City of San Diego conducts extensive monitoring of benthic sediments and associated communities of small macrobenthic invertebrates (macrofauna) surrounding the Point Loma Ocean Outfall (PLOO) and South Bay Ocean Outfalls (SBOO) in order to characterize regional conditions and to identify possible effects of anthropogenic inputs such as wastewater discharge on the marine environment. Benthic macrofauna are targeted for monitoring because these organisms play important ecological roles in coastal marine ecosystems off southern California and throughout the world (e.g., Fauchald and Jones 1979, Thompson et al. 1993, Snelgrove et al. 1997). Additionally, because many benthic species live relatively long and stationary lives, they may integrate the effects of pollution or other disturbances over time (Hartley 1982, Bilyard 1987). The response of many of these species to environmental stressors is also well documented, and therefore monitoring changes in discrete populations or more complex communities can help identify locations impacted by anthropogenic inputs (Pearson and Rosenberg 1978, Bilyard 1987, Warwick 1993, Smith et al. 2001). Physical and chemical characteristics of benthic sediments (i.e., sediment quality) are analyzed because together they define the primary microhabitats for benthic invertebrates that live within or on the seafloor, and therefore can directly influence the distribution and presence of various species. Additionally, analyses of various sediment contaminants are conducted because anthropogenic inputs to the marine ecosystem, including municipal wastewater, can lead to increased concentrations of pollutants within the local environment. The relative percentages of sand, silt, clay, and other particle size parameters are examined because concentrations of some compounds are known to be directly linked to sediment composition (Emery 1960, Eganhouse and Venkatesan 1993).

This chapter presents a summary of the purpose, materials and methods, and results of the sediment particle size, sediment chemistry, and macrofaunal data collected during calendar year 2016 at a total of 49 core benthic monitoring stations surrounding the PLOO and SBOO. Detailed figures and tables supporting these results are presented in Appendix C. Results for the separate summer 2016 survey of 40 additional randomly selected benthic stations distributed throughout the entire San Diego region are summarized in Chapter 6.

MATERIALS AND METHODS

Collection and Processing of Samples

Benthic samples were collected at 49 different core monitoring stations surrounding the Point Loma or South Bay outfalls during both the winter (January) and summer (July) of 2016 in order to monitor sediment quality and macrofaunal community condition off San Diego (Figure C.1). These included 22 PLOO stations at depths of about 88–116 m and 27 SBOO stations at depths of about 19–55 m. The PLOO monitoring sites comprise 12 primary stations located along the 98-m depth contour (i.e., PLOO discharge depth) and 10 secondary stations located along or adjacent to the shallower 88-m or deeper 116-m depth contour. The SBOO monitoring sites comprise 12 primary stations located along or adjacent to the shallower 88-m or deeper 116-m depth contour. SBOO discharge depth) and 15 secondary stations located along or adjacent to the 19, 38, or 55-m

depth contours. The three stations located within 200 m of the boundary of the zone of initial dilution (ZID) for each outfall (i.e., ~100m for PLOO and ~30m for SBOO) are considered to represent near-ZID conditions. These include PLOO stations E11, E14 and E17, and SBOO stations I12, I14 and I16. while the next closet nearfield station to each outfall include station E15 located about 751 m west of the PLOO wye diffuser structure (i.e., ~651 m beyond the ZID), and station I15 located about 502 m west of the SBOO wye (i.e., ~472 m beyond the ZID).

Samples for benthic analyses were collected using a double 0.1-m² Van Veen grab, with one grab per cast used for sediment quality analysis and one grab per cast used for benthic community analysis. Sub-samples of the sediment grab for chemical and particle size analysis (see 'Laboratory Analyses' section below) were taken from the top 2 cm of the sediment surface and handled according to standard guidelines available in USEPA (1987). The other grab from the same cast was used for macrofaunal community analysis. A second replicate grab sample for community analysis was taken on a subsequent cast at just the PLOO stations and archived for future analysis if necessary following preservation and sorting of the animals.

Criteria established by the U.S. Environmental Protection Agency (USEPA) to ensure consistency of samples for benthic community analysis were followed with regard to sample disturbance and depth of penetration (USEPA 1987). All samples were brought aboard ship, the sediments and benthic organisms transferred to a wash table and rinsed with seawater, and then sieved through a 1.0-mm mesh screen. The macrobenthic invertebrates (macrofauna or infauna) retained on the screen were then collected, transferred to sample jars, and relaxed for 30 minutes in a magnesium sulfate solution before being fixed with buffered formalin. After a minimum of 72 hours in formalin, each sample was thoroughly rinsed with fresh water and transferred to 70% ethanol for final preservation. All macrofaunal organisms were separated from the raw material and sorted into the following major taxonomic groups by an external contract lab: Annelida, Arthropoda, Mollusca, non-ophiuroid Echinodermata, Ophiuroidea, and miscellaneous other taxa or phyla (e.g., flatworms, nemerteans, cnidarians). The sorted samples were then returned to the City's Marine Biology Laboratory where the animals were identified to species or the lowest taxon possible and enumerated by staff marine biologists. All identifications followed nomenclatural standards established by the Southern California Association of Marine Invertebrate Taxonomists (SCAMIT 2014).

Laboratory Analyses

All sediment chemistry and particle size analyses were performed at the City's Environmental Chemistry Services Laboratory. A detailed description of the analytical protocols can be found in City of San Diego (2017). Briefly, sediment sub-samples were analyzed on a dry weight basis to determine concentrations of biochemical oxygen demand (BOD; PLOO stations only), total organic carbon (TOC), total nitrogen (TN), total sulfides, total volatile solids, 18 trace metals, nine chlorinated pesticides (e.g., DDT), 40 polychlorinated biphenyl compound congeners (PCBs), and 24 polycyclic aromatic hydrocarbons (PAHs). Data were generally limited to values above the method detection limit (MDL) for each parameter (see Table C.1). However, concentrations below MDLs were included as estimated values if the presence of a specific constituent was verified by mass-spectrometry.

Particle size analysis was performed using either a Horiba LA-950V2 laser scattering particle analyzer or a set of nested sieves. The Horiba measures particles ranging in size from 0.5 to 2000 μ m. Coarser sediments were removed and quantified prior to laser analysis by screening samples through a 2000 μ m mesh sieve. These data were later combined with the Horiba results to obtain a complete distribution of

particle sizes totaling 100%, and then classified into 11 sub-fractions and four main size fractions based on the Wentworth scale (Folk 1980) (see Table C.2). When a sample contained substantial amounts of coarse sand, gravel, or shell hash that could damage the Horiba analyzer and/or where the general distribution of sediments would be poorly represented by laser analysis, a set of nested sieves with mesh sizes of 2000 μ m, 1000 μ m, 500 μ m, 250 μ m, 125 μ m, and 63 μ m was used to divide the samples into seven sub-fractions.

Data Analyses

Sediments

Data summaries for the various sediment parameters included detection rate, minimum, maximum, and mean values for all samples combined. All means were calculated using detected values only; no substitutions were made for non-detects in the data (i.e., analyte concentrations < MDL). Total chlordane, total DDT (tDDT), total endosulfan, total endrin, total hexachlorocyclohexane (tHCH), total PCB (tPCB), and total PAH (tPAH) were calculated for each sample as the sum of all constituents with reported values. These analyses were performed using R (R Core Team 2016) and various functions within the dplyr, plyr, reshape2, tidyr, and zoo packages (Zeileis and Grothendieck 2005, Wickham 2007, 2011, 2016b, Wickham and Francios 2016). Contaminant concentrations were compared to the Effects Range Low (ERL) and Effects Range Median (ERM) sediment quality guidelines of Long et al. (1995) when available. The ERLs represent chemical concentrations below which adverse biological effects are rarely observed, while values above the ERL but below the ERM represent levels at which effects occasionally occur. Concentrations above the ERM indicate likely biological effects, although these are not always validated by toxicity testing (Schiff and Gossett 1998).

Macrobenthic Communities

The following community structure parameters were determined for each station per 0.1-m² grab: species richness (number of taxa), abundance (number of individuals), Shannon diversity index (H'), Pielou's evenness index (J'), Swartz dominance (see Swartz et al. 1986, Ferraro et al. 1994), and benthic response index (BRI; see Smith et al. 2001). Unless otherwise noted, analyses were performed using R (R Core Team 2016) and various functions within the plyr, reshape2, Rmisc, RODBC, stringr, and vegan packages (Wickham 2007, 2011, 2016a, Hope 2013, Oksanen et al. 2015, Ripley and Lapsley 2015).

To examine spatial and temporal patterns among benthic habitats and communities in the PLOO and SBOO regions, multivariate analyses were performed on sediment particle size and macrofaunal abundance data using methods available in PRIMER v7 (see Clarke et al. 2008, 2014). These methods included hierarchical agglomerative clustering (cluster analysis) with group-average linking and similarity profile analysis (SIMPROF) to confirm the non-random structure of resultant cluster dendrograms. For particle size data, the proportions of silt and clay sub-fractions were combined as percent fines to accommodate sieved samples, and Euclidean distance was used as the basis for cluster analysis. For macrofaunal abundance data, the Bray-Curtis measure of similarity was used as the basis for clustering, and data were square-root transformed prior to analysis to lessen the influence of overly abundant species and to increase the importance of rare species. Major ecologically-relevant clusters receiving SIMPROF support were retained. A RELATE test was used to compare patterns of rank abundance in the macrofauna Bray-Curtis similarity matrices with rank percentages in the sediment Euclidean distance matrices. A BEST test using the BIO-ENV procedure was conducted to determine which subset of sediment sub-fractions was the best explanatory variable for similarity between the sediment and macrofaunal resemblance matrices.

RESULTS

Sediment Quality in 2016

Particle Size Distribution

The composition of ocean sediments found during 2016 for the PLOO and SBOO monitoring regions are summarized in Tables C.3–C.6. Sediments sampled off Point Loma during the year were composed primarily of fine silt and clay particles (i.e., percent fines) and fine sands. More specifically, PLOO sediments were comprised of 20–66 percent fines per sample, 33–71% fine sands, 0.1–29% medium-coarse sands, and 0–21% coarse particles. The coarser sediments often included shell hash, rock, black sand, and/or gravel. Overall, there were no spatial patterns in sediment composition relative to the PLOO discharge site. Sediments collected from the three near-ZID PLOO stations ranged from 27 to 36% fines and 51 to 71% fine sands per sample, while sediments located farther away from the outfall ranged from 20 to 66% fines and 33 to 71% fine sands per sample. These results are consistent with the findings from long term analyses reported previously through calendar year 2015 (e.g., City of San Diego 2014a, 2015a, c, 2016a).

In contrast to the Point Loma region, seafloor sediments were much more diverse across the SBOO region during 2016. Percent fines ranged from 0 to 39% per sample at the SBOO stations, while fine sands ranged from 2 to 92%, medium-coarse sands ranged from 1 to 91%, and coarse particles ranged from 0 to 42%. Coarser particles at the SBOO stations often comprised red relict sands, black sands, and/or shell hash. During 2016, sediments from near-ZID stations I12 and I14 were composed predominantly of fine sands and were similar to sediments found at stations located to the north. In contrast, sediments from near-ZID station I16 and station I15 were predominantly a mixture of fine and medium-coarse sands, which more closely resembled sediments from stations located south and west of the outfall. These results are somewhat consistent with the findings from calendar year 2015 (City of San Diego 2016b). Historical analysis of particle size data revealed considerable temporal variability at some SBOO stations and relative stability at others, with no clear patterns evident relative to depth or proximity to the outfall or other sediment plume sources (e.g., San Diego Bay, Tijuana River) (City of San Diego 2014b).

Indicators of Organic Loading

Concentrations of biochemical oxygen demand (BOD), sulfides, total nitrogen (TN), total organic carbon (TOC), and total volatile solids found in sediments during 2016 for the PLOO and SBOO regions are summarized in Tables C.3–C.4 and C.7–C.8. Each of these five organic loading indicators was detected in 100% of the sediment samples collected from the PLOO region during the year, while only TVS was detected in all SBOO sediment samples (i.e., BOD is not analyzed for SBOO sediments). Detection rates for sulfides, TN and TOC were lower in the SBOO region, ranging from 54 to 98%.

Sediments off of Point Loma had concentrations of BOD ranging from 146 to 592 ppm, while sulfides ranged from 2.3 to 50.9 ppm, TN ranged from 0.023 to 0.90% weight, TOC ranged from 0.13 to 2.46% weight, and TVS ranged from 1.4 to 3.8% weight. Sediments surrounding the SBOO had concentrations of sulfides ranging from non-detected to 48.2 ppm, while TN ranged from non-detected to 0.061% weight, TOC ranged from non-detected to 0.56% weight, and TVS ranged from 0.2 to 8.2% weight. Overall, there was little evidence of any significant organic enrichment near either discharge site, with the highest concentrations of most organic loading indicators being widely distributed throughout each survey area. Exceptions included slightly higher values of BOD and sulfides at PLOO station E14, a pattern which

is consistent with previous findings of possible minor organic enrichment at this near-ZID station (see City of San Diego 2014a, 2015a, c, 2016a). In contrast, levels of all the measured organic indicators have been fairly consistent at the primary core SBOO stations, with no patterns indicative of organic enrichment evident since discharge began in 1999 (e.g., City of San Diego 2014b, 2015d, 2016b).

Trace Metals

Concentrations of the 18 trace metals analyzed in the PLOO and SBOO sediment samples collected during 2016 are summarized in Tables C.3–C.4 and C.9–C.10. Ten of these metals were detected in all PLOO sediment samples analyzed, including aluminum, arsenic, barium, chromium, iron, lead, manganese, mercury, nickel, and zinc. Four of the remaining metals (antimony, copper, selenium, and tin) were detected at lower rates between 61–98% in PLOO sediments, while beryllium, cadmium, and silver were detected rarely in \leq 5% of the samples. Thallium was not detected in any of the PLOO sediment samples collected during the year. Of the nine metals that have published ERLs and ERMs (see Long et al. 1995), only four from three different stations sampled during the summer in 2016 exceeded any of these limits. These included cadmium at station B10, copper and lead at station E1, and silver at station E11. As in previous surveys (City of San Diego 2014a, 2015a, c, 2016a), there were no discernible patterns relative to the PLOO, and all sediment samples from this region had metal concentrations within ranges reported elsewhere off southern California (Dodder et al. 2016).

Nine trace metals were detected in all sediment samples collected from the SBOO region during 2016, including aluminum, arsenic, barium, chromium, iron, lead, manganese, nickel, and zinc. Antimony, copper, and mercury were detected at rates between 41–67%, while cadmium, selenium, silver and tin were each detected in \leq 19% of the samples. Beryllium and thallium were not detected in any of the SBOO sediment samples during the year. Of the metals that have published ERLs and ERMs (Long et al. 1995), only arsenic was reported at levels above its ERL threshold. As in previous years, elevated arsenic was found at station I21 during both the winter and summer surveys. There were no discernible patterns relative to the SBOO, and all sediment samples had metal concentrations within ranges reported elsewhere in southern California (Dodder et al. 2016). These results are consistent with long term analyses reported previously (City of San Diego 2014b, 2015d, 2016b).

Pesticides, PCBs, and PAHs

Concentrations of chlorinated pesticides, PCBs, and PAHs found in sediments during 2016 for the PLOO and SBOO regions are summarized in Tables C.3-C.4 and C.11-C.14. A total of five chlorinated pesticides were detected in these sediments during the year, including DDT, hexachlorobenzene (HCB), chlordane, hexachlorocyclohexane (HCH), and mirex. Total DDT (primarily p,p-DDE) was detected in 100% of the PLOO samples and 74% of the SBOO samples at concentrations up to 1320 ppt, all of which were below the ERL for this pesticide (see Long et al. 1995). Total chlordane was detected at concentrations up to 985 ppt in 21% of the PLOO sediment samples and 7% of the SBOO sediment samples. Total DDT and total chlordane concentrations were well within ranges reported elsewhere in the SCB (Dodder et al. 2016). HCB was detected at concentrations up to 6200 ppt in 78% of the PLOO sediment samples and 61% of the SBOO sediment samples. Total HCH was detected at concentrations up to 179 ppt in 5 and 6% of the PLOO and SBOO sediment samples, respectively. Mirex was detected in only one sample collected from SBOO station I18 during summer 2016, at a concentration of 17 ppt. Four other pesticides analyzed for during the year (i.e., aldrin, dieldrin, endosulfan, and endrin) were not detected in any of the PLOO or SBOO sediment samples collected. As in previous surveys (City of San Diego 2014a, b, 2015a, c, d, 2016a, b), there were no discernible patterns relative to the PLOO or the SBOO discharge sites. Instead, several of the highest concentrations of DDT, HCH, and chlordane were found at PLOO stations E1 or E3 located relatively near the LA-5 dredged material disposal site.

PCBs were detected in 81% of the sediment samples collected around the PLOO in 2016 at concentrations up to 18,226 ppt. In contrast, PCBs were detected in only 48% of the SBOO sediment samples collected during the year, at concentrations up to 3607 ppt. The highest total PCB values reported during the year were found at PLOO station E3 near the LA-5 dumpsite. Although no ERL or ERM thresholds exist for PCB congeners, all PCB values recorded during the year were within ranges reported elsewhere in the SCB (Dodder et al. 2016), with no discernable patterns relative to either outfall. These results are consistent with the findings from long term analyses reported previously (City of San Diego 2014a, b, 2015a, c, d, 2016a, b).

PAHs were found in 74% of the PLOO sediment samples and 19% of the SBOO sediment samples during 2016. Concentrations of total PAH reached 400 ppb during the past year, which is well below the ERL threshold of 4022 ppb (Long et al. 1995) as well as the Bight'13 maximum of 2900 ppb (Dodder et al. 2016). The highest values of total PAH reported during the year were found at PLOO stations E1 and E3 during winter and summer surveys. Historically, detection rates for total PAH at both PLOO and SBOO stations have been low with all reported values less than the ERL, and no patterns indicative of a wastewater impact have been evident (City of San Diego 2014a, b, 2015a, c, d, 2016a, b).

Macrobenthic Communities in 2016

Community Parameters

Benthic community parameters, including species richness, abundance, diversity (H'), Pielou's evenness (J') and Swartz dominance, are summarized for each PLOO and SBOO benthic station by survey in Table C.15 and Table C.16, respectively. A total of 23,499 macrobenthic invertebrates were identified during the 2016 winter and summer surveys combined for both regions. Of the 712 taxa represented, 82% (n=584) were identified to species, while the rest could only be identified to higher taxonomic levels. Most taxa occurred at multiple stations, although 21% (n=149) were recorded only once. Two taxa not previously reported by the City's Ocean Monitoring Program were encountered during the year. These included the amphinomid polychaete *Paramphinome* sp and the nemertean Heteronemertea sp SD3, both of which were collected in the SBOO region.

For all the PLOO benthic stations sampled in 2016, species richness ranged from 28 to 102 taxa per grab, abundance ranged from 56 to 337 individuals per grab, diversity (H') ranged from 2.5 to 4.3 per grab, evenness (J') ranged from 0.71 to 0.94 per grab, and dominance ranged from 9 to 45 species per grab. For each of these metrics, no clear patterns relative to the PLOO discharge site, depth, or sediment particle size were evident. These results are consistent with long term analyses reported previously for the region (City of San Diego 2015a, b, 2016a) and those reported elsewhere in the SCB (Gillette et al. 2017).

For all SBOO benthic stations sampled in 2016, species richness ranged from 15 to 103 taxa per grab, abundance ranged from 27 to 866 individuals per grab, diversity (H') ranged from 0.6 to 4.0 per grab, evenness (J') ranged from 0.18 to 0.96 per grab, and dominance ranged from 1 to 36 species per grab. For each of these metrics, no clear patterns relative to the SBOO discharge site, depth, or sediment particle size were evident. These results are consistent with long term analyses reported previously within the SBOO region (City of San Diego 2016b) and those reported elsewhere in the SCB (Gillette et al. 2017).

Benthic Response Index

The benthic response index (BRI) is an important tool for gauging anthropogenic impacts to coastal seafloor habitats throughout the SCB. BRI values below 25 are considered indicative of reference conditions, while values above 34 represent increasing levels of disturbance or environmental degradation (Smith et al. 2001). In 2016, 95% of the individual benthic samples collected off Point Loma were characteristic of reference

conditions (Table C.15). Only the two samples collected at near-ZID station E14 had BRI scores indicative of a possible minor deviation in benthic condition (BRI=28-33). Historically, changes in BRI values at station E14 have been largely driven by a long-term decline in resident brittle star populations (i.e., *Amphiodia urtica*) as well as temporary increases in populations of opportunistic species such as *Capitella teleta*. Although these results are consistent with an outfall related pattern, the effect appears minor, restricted to this near-ZID site, and not linked to changes in organics or sediment particle size (see City of San Diego 2015a, b, 2016a).

Within the SBOO region, about 80% of the samples had BRI values <25 that may be considered characteristic of reference conditions (Table C.16). A total of 11 samples from eight different stations had BRI values in the range of 25–29 that may correspond to a minor deviation from reference condition. However, none of these slightly higher BRI values occurred at the near-ZID stations which suggests that factors other than wastewater discharge may be affecting these assemblages. Instead, six of these higher-BRI stations (i.e., 19, 114, 115, 122, 127, 130) are located along the 28-m outfall discharge depth contour from 2.3 km south to 6.5 north of the outfall, one (i.e., station I8) is located along the 38-m depth contour about 2.4 km southwest of the outfall. The slightly higher BRI values at the 19 and 28-m stations are not unexpected because of the higher levels of organic matter that may occur naturally at depths < 30 m (Smith et al. 2001). However, there were no clear patterns in BRI results relative to wastewater discharge via the SBOO, depth, or sediment type. These results are consistent with long term analyses reported previously for the region (City of San Diego 2016b).

Dominant Taxa

The 25 most abundant taxa collected during 2016 at PLOO and SBOO benthic stations are summarized in Tables C.17 and C.18, respectively. The most abundant species collected from the PLOO stations included 18 polychaetes, one crustacean, two echinoderms, and four molluscs. Together these species accounted for about 61% of all invertebrates identified from these sites during the year. The brittle star *Amphiodia urtica* was the most abundant species collected off Point Loma during the year, accounting for ~10% of all invertebrates collected, and occurring in 91% of grabs with a mean abundance of ~20 individuals per grab. The bivalve *Nuculana* sp A was ubiquitous in this region, occurring in all samples from all PLOO sites; in addition, this bivalve accounted for 7% of all macrobenthic invertebrates collected during the year with an average abundance of ~13 individuals per grab. The remaining 23 species occurred in 48 to 95% of the grabs collected at the PLOO stations and averaged ≤ 8 individuals per grab.

The most abundant species collected from the SBOO stations included 20 polychaetes, one crustacean, two molluses, one nemertean, and probably a mixed-species group of nematodes. Together these species accounted for about 64% of all invertebrates identified from these sites during the year. The spionid polychaete *Spiophanes norrisi* was by far the most abundant species during the year, accounting for 40% of invertebrates collected. This species occurred in 85% of grabs with a mean abundance of ~110 individuals per grab. Overall, *S. norrisi* has been the most abundant species recorded in the SBOO region since 2007, with up to 3009 individuals found in a single grab from station I6 during the summer of 2010 (City of San Diego 2011, 2016b). The terebellid polychaete *Pista wui* and another spionid, *Spiophanes duplex*, were the next two most abundant species, averaging about 9 and 8 individuals per grab, respectively. All other species averaged ≤ 3 individuals per grab.

Classification of Macrobenthic Assemblages

Classification (cluster) analysis was used to discriminate between macrofaunal assemblages from a total of 44 grab samples collected at 22 PLOO benthic monitoring stations in 2016, resulting in six ecologically relevant SIMPROF-supported groups (Figure C.2). These assemblages (referred to herein as cluster

groups A-F) represented 1–34 grabs each and varied in terms of the specific species present, as well as their relative abundances, and occurred at sites distinguished by different sediment microhabitats. For example, similar patterns of variation occurred in the benthic macrofaunal similarity matrix and sediment dissimilarity matrix used to generate the cluster dendrograms, thus confirming that the local PLOO assemblages were somewhat correlated to sediment composition (RELATE $\rho = 0.59$, p = 0.001). The sediment sub-fractions that were most highly correlated to the PLOO macrofaunal assemblages included percent fines, very fine sand, medium sand, and very coarse sand (BEST $\rho = 0.597$, p = 0.001). Mean species richness ranged from 28 to 84 taxa per grab for these different cluster groups, while mean abundance ranged from 56 to 259 individuals per grab. Cluster group A represented the two macrofaunal assemblages sampled during the winter and summer surveys at near-ZID station E14 in 2016. Cluster group B represented a single, unique assemblage collected at farfield "reference" station B8 during the winter survey. Cluster group C represented a second unique assemblage sampled during the winter at farfield station E21. Cluster group D represented the main group of 34 macrofaunal assemblages present in the PLOO region during 2016, comprising about 77% of the samples analyzed during the year from 18 different stations. Cluster group E represented the two assemblages found during the winter and summer surveys at southern farfield station E3. Cluster group F represented the four assemblages found during the winter and summer surveys at northern farfield "reference" stations B10 and B12.

Classification analysis was also used to discriminate between macrofaunal assemblages from a total of 54 grab samples collected at the 27 SBOO benthic monitoring stations in 2016, resulting in six ecologically relevant groups that were SIMPROF-supported (Figure C.3). These assemblages (referred to herein as cluster groups A–F) represented 1–28 grabs each and varied in terms of the specific taxa present, as well as their relative abundances, and occurred at sites separated by different depth and/or sediment microhabitats. For example, similar patterns of variation occurred in the benthic macrofaunal and sediment similarity/ dissimilarity matrices used to generate cluster dendrograms (RELATE $\rho = 0.613$, p = 0.001). The sediment sub-fractions that were most highly correlated to the SBOO macrofaunal communities included percent fines, coarse sand, and very coarse sand (BEST $\rho = 0.698$, p = 0.001). Mean species richness ranged from 25 to 71 taxa per grab for these groups, while mean abundance ranged from 110 to 365 individuals per grab. Cluster group A represented a single, unique macrofaunal assemblage collected at northern farfield station I34 during the winter survey. Cluster group B represented 13 assemblages from eight different stations sampled in 2016 (i.e., 24% of samples); these included samples taken from southern farfield stations I2, I3, I4, I6 and I8 during both winter and summer, nearfield station I15 in summer, near-ZID station I16 in winter, and farfield staion I34 in summer. Cluster groups C, D, and E represented a combined total of 12 macrofaunal assemblages found during the winter and/or summer at farfield stations I1, I7, 113, 120, 121 and 128 located offshore of the SBOO along the 38 and 55-m depth contours. Cluster group F represented the main group of 28 macrofaunal assemblages present in the SBOO region during 2016, comprising about 52% of the samples analyzed during the year from 15 different stations, including six of the eight samples collected from near-ZID stations I12, I14 and I16 plus nearfield station I15.

LITERATURE CITED

- Bilyard, G.R. (1987). The value of benthic infauna in marine pollution monitoring studies. Marine Pollution Bulletin, 18(11): 581–585.
- City of San Diego. (2011). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2010. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

- City of San Diego. (2014a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2014b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015a). Appendix C.1. Benthic Sediments, Invertebrate and Fishes. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, Point Loma Ocean Outfall. Volume V, Appendices C thru D. Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015b). Appendix C.2. 18-Year San Diego Regional Benthic Assessment and Reference Tolerant Intervals. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, Point Loma Ocean Outfall. Volume V, Appendices C thru D. Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015c). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015d). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2017). 2016 Annual Reports and Summary: Point Loma Wastewater Treatment Plant and Ocean Outfall. City of San Diego, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Clarke, K.R., R.N. Gorley, P.J. Somerfield, and R.M. Warwick. (2014). Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. PRIMER-E, Plymouth, England.
- Clarke, K.R., P.J. Somerfield, and R.N. Gorley. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology, 366: 56–69.
- Dodder, N., K. Schiff, A. Latker, and C-L Tang. (2016). Southern California Bight 2013 Regional Monitoring Program: IV. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.

Eganhouse, R.P. and M.I. Venkatesan. (1993). Chemical Oceanography and Geochemistry. In: M.D. Dailey, D.J. Reish, and J.W. Anderson (eds.). Ecology of the Southern California Bight: A Synthesis and Interpretation. University of California Press, Berkeley, CA. p 71–189.

Emery, K.O. (1960). The Sea off Southern California. John Wiley, New York, NY.

- Fauchald, K. and G.F. Jones. (1979). Variation in community structures on shelf, slope, and basin macrofaunal communities of the Southern California Bight. Report 19, Series 2. In: Southern California Outer Continental Shelf Environmental Baseline Study, 1976/1977 (Second Year) Benthic Program. Principal Investigators Reports, Vol. II. Science Applications, Inc. La Jolla, CA.
- Ferraro, S.P., R.C. Swartz, F.A. Cole, and W.A. Deben. (1994). Optimum macrobenthic sampling protocol for detecting pollution impacts in the Southern California Bight. Environmental Monitoring and Assessment, 29: 127–153.
- Folk, R.L. (1980). Petrology of Sedimentary Rocks. Hemphill, Austin, TX.
- Gillett, D.J., L.L. Lovell, and K.C. Schiff. (2017). Southern California Bight 2013 Regional Monitoring Program: Volume VI. Benthic Infauna. Technical Report 971. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Hartley, J.P. (1982). Methods for monitoring offshore macrobenthos. Marine Pollution Bulletin, 12: 150-54.
- Hope, R.M. (2013). Rmisc: Ryan Miscellaneous. R package version 1.5. http://CRAN.R-project.org/ package=Rmisc.
- Long, E.R., D.L. MacDonald, S.L. Smith, and F.D. Calder. (1995). Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environmental Management, 19(1): 81–97.
- Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, and H. Wagner. (2015). vegan: Community Ecology Package. R package version 2.3-1. http://CRAN.R-project.org/package=vegan.
- Pearson, T.H. and R. Rosenberg. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16: 229–311.
- R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Ripley, B. and M. Lapsley. (2015). RODBC: ODBC Database Access. R package version 1.3-12. http://CRAN.R-project.org/package=RODBC.
- [SCAMIT] Southern California Association of Marine Invertebrate Taxonomists. (2014). A taxonomic listing of benthic macro- and megainvertebrates from infaunal and epibenthic monitoring programs in the Southern California Bight, edition 9. Southern California Association of Marine Invertebrate Taxonomists, Natural History Museum of Los Angeles County Research and Collections, Los Angeles, CA.

- Schiff, K.C. and R.W. Gossett. (1998). Southern California Bight 1994 Pilot Project: III. Sediment Chemistry. Southern California Coastal Water Research Project. Westminster, CA.
- Smith, R.W., M. Bergen, S.B. Weisberg, D.B. Cadien, A. Dalkey, D.E. Montagne, J.K. Stull, and R.G. Velarde. (2001). Benthic response index for assessing infaunal communities on the southern California mainland shelf. Ecological Applications, 11(4): 1073–1087.
- Snelgrove, P.V.R., T.H. Blackburn, P.A. Hutchings, D.M. Alongi, J.F. Grassle, H. Hummel, G. King, I. Koike, P.J.D. Lambshead, N.B. Ramsing, and V. Solis-Weiss. (1997). The importance of marine sediment biodiversity in ecosystem processes. Ambio, 26: 578–583.
- Swartz, R.C., F.A. Cole, and W.A. Deben. (1986). Ecological changes in the Southern California Bight near a large sewage outfall: benthic conditions in 1980 and 1983. Marine Ecology Progress Series, 31: 1–13.
- Thompson, B.E., J. Dixon, S. Schroeter, and D.J. Reish. (1993). Chapter 8. Benthic invertebrates. In: M.D. Dailey, D.J. Reish, and J.W. Anderson (eds.). Ecology of the Southern California Bight: A Synthesis and Interpretation. University of California Press, Berkeley, CA. p 369–458.
- [USEPA] United States Environmental Protection Agency. (1987). Quality Assurance and Quality Control for 301(h) Monitoring Programs: Guidance on Field and Laboratory Methods. EPA Document 430/9-86-004. Office of Marine and Estuary Protection, Washington, DC.
- Warwick, R.M. (1993). Environmental impact studies on marine communities: pragmatical considerations. Australian Journal of Ecology, 18: 63–80.
- Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1-20. URL http://www.jstatsoft.org/v21/i12/.
- Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. URL http://www.jstatsoft.org/v40/i01/.
- Wickham, H. (2016a). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.1.0. https://CRAN.R-project.org/package=stringr.
- Wickham, H. (2016b). tidyr: Easily Tidy Data with `spread()` and `gather()` Functions. R package version 0.6.0. https://CRAN.R-project.org/package=tidyr.
- Wickham, H. and R. Francois. (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=dplyr.
- Zeileis, A and G. Grothendieck. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1-27. URL http://www.jstatsoft.org/v14/i06/.

This page intentionally left blank

Chapter 4. Demersal Fishes and Megabenthic Invertebrates

INTRODUCTION

The City of San Diego (City) collects bottom dwelling (demersal) fishes and large (megabenthic) mobile invertebrates by otter trawl to examine the potential effects of wastewater discharge or other disturbances on the marine environment surrounding the Point Loma and South Bay ocean outfalls (PLOO and SBOO, respectively). These fish and invertebrate communities are targeted for monitoring because they are known to play critical ecological roles on the southern California coastal shelf (e.g., Allen et al. 2006, Thompson et al. 1993a, b). Because trawled species live on or near the seafloor, they may be impacted by sediment conditions affected by both point and non-point sources such as discharges from ocean outfalls, runoff from watersheds, outflows from rivers and bays, or the disposal of dredged sediments. For these reasons, assessment of fish and invertebrate communities has become an important focus of ocean monitoring programs throughout the world, but especially in the Southern California Bight (SCB) where they have been sampled extensively on the mainland shelf for the past four decades (e.g., Stein and Cadien 2009).

This chapter presents a summary of the purpose, materials and methods, and results of the demersal fish and megabenthic invertebrate data collected during calendar year 2016 at a total of 13 trawl stations surrounding the PLOO and SBOO. Detailed figures and tables supporting these results are presented in Appendix D.

MATERIALS AND METHODS

Field Sampling

Trawls were conducted at 13 stations to monitor demersal fishes and megabenthic invertebrates during winter and summer of 2016 (Figure D.1, Table D.1). These included six PLOO stations located along the 100-m depth contour (i.e., PLOO discharge depth) ranging from 9 km south to 8 km north of the PLOO, and seven SBOO stations located along the 28-m depth contour (i.e., SBOO discharge depth) ranging from 7 km south to 8.5 km north of the SBOO. The two PLOO stations (i.e., SD10, SD12) and two SBOO stations (i.e., SD17, SD18) located within 1000 m of the outfall structures are considered to represent nearfield conditions.

A single trawl was performed at each station during each survey using a 7.6-m Marinovich otter trawl fitted with a 1.3-cm cod-end mesh net. Although standard procedures require towing the net for a total of 10 minutes bottom time per trawl at a speed of about 2 knots, this was not possible at many of the PLOO stations in 2016 when exceptionally large hauls of the pelagic red crab *Pleuroncodes planipes* proved too heavy to be brought onboard ship. In these cases, only one minute trawls were able to be successfully conducted (see Table D.1). The catch from each successful trawl was sorted and inspected aboard ship. All individual fish and invertebrates captured were identified to species or to the lowest taxon possible based on accepted taxonomic protocols for the region (i.e., Eschmeyer and Herald 1998, Lawrence et al. 2013, SCAMIT 2014). If an animal could not be accurately identified to species in the field, it was returned to the laboratory for further identification. The total number of individuals and total biomass (kg, wet

weight) were recorded for each species of fish. Additionally, each fish was inspected for the presence of physical anomalies (e.g., tumors, lesions, fin erosion, discoloration) or external parasites (e.g., copepods, cymothoid isopods, leeches). The length of each individual fish was measured to the nearest centimeter to determine size class distributions; total length (TL) was measured for cartilaginous fishes and standard length (SL) was measured for bony fishes (SCCWRP 2013). For trawl-caught invertebrates, only the total number of individuals was recorded for each species.

Data Analyses

The following community structure parameters were calculated per trawl for both fishes and invertebrates captured during the PLOO and SBOO surveys: species richness (number of species), total abundance (number of individuals), and Shannon diversity index (H'). Total biomass was also calculated for each fish species captured. These analyses were performed using R (R Core Team 2015) and various functions within the gtools, plyr, reshape2, RODBC, sqldf, and vegan packages (Wickham 2007, 2011, Grothendieck 2014, Oksanen et al. 2015, Ripley and Lapsley 2015, Warnes et al. 2015).

Multivariate analyses were performed using PRIMER v7 software to determine spatial patterns in the demersal fish and megabenthic invertebrate data collected only at the SBOO stations in 2016 (see Clarke 1993, Warwick 1993, Clarke et al. 2014). Similar analyses could not be performed for data collected at the PLOO stations due to lack of comparability between 10-minute and 1-minute trawls as described above under 'Field Sampling.' Analyses included hierarchical agglomerative clustering (cluster analysis) with group-average linking and similarity profile analysis (SIMPROF) to confirm the non-random structure of the resultant cluster dendrogram (Clarke et al. 2008). The Bray-Curtis measure of similarity was used as the basis for the cluster analysis, and abundance data were square-root transformed to lessen the influence of the most abundant species and increase the importance of rare species.

RESULTS

Demersal Fishes

Community Parameters

Results for the demersal fish communities sampled in the PLOO and SBOO monitoring regions during 2016 are summarized in Tables D.2–D.9. A total of 5284 fishes were captured from the 26 trawls conducted during the year (i.e., 13 trawls/survey), representing at least 53 different species from 27 families. The total catch of 928 fishes at the PLOO stations in 2016 represented about 82% fewer fish than reported for the same number of trawls at the same sites in 2015 (see City of San Diego 2016a). However, this large reduction in fish catch off Point Loma was related to significantly less total trawling time in 2016 compared to 2015 (i.e., 39 minutes vs. 120 minutes; Table D.1) caused by the necessity to limit bottom time to only one minute for most PLOO trawls due to the presence of excessive populations of pelagic red crabs (see Materials & Methods).

Despite the above decrease in total fish numbers, Pacific Sanddabs continued to dominate PLOO fish assemblages in 2016, occurring in almost every haul and accounting for ~45% of the fishes collected. In contrast to the pattern described for PLOO fishes, the total catch of 4356 fishes at the SBOO stations in 2016 was about 127% larger than the catch reported for 2015 (City of San Diego 2016b). As in most previous years, SBOO fish assemblages were dominated by California Lizardfish and Speckled Sanddabs, each of which occurred in at least 93% of the hauls, and with lizardfish accounting for ~37% (n=1611) and sanddabs ~32% (n=1391) of the fishes collected from this region.

More than 99% of the fishes collected in the PLOO and SBOO monitoring regions were <30 cm in length. Larger fishes included four species of cartilaginous fish and five species of bony fish. The cartilaginous fishes included three Shovelnose Guitarfish measuring 37–74 cm total length, two California Skate measuring 34–38 cm total length, two Round Stingray measuring 34–36 cm total length, and one Horn Shark measuring 56 cm total length. The large bony fishes included four California Halibut measuring 31–48 cm standard length, one Fantail Sole measuring 30 cm standard length, one Petrale Sole measuring 36 cm standard length, one Spotted Ratfish measuring 34 cm standard length, and one unidentified Pipefish measuring 30 cm standard length.

As with total catch as indicated above, species richness, abundance, diversity (H') and biomass values for the demersal fish assemblages sampled off Point Loma in 2016 were not fully comparable to each other because of the differences in trawling time (i.e., 10-minute vs. 1-minute trawls) and therefore area of coverage at the different PLOO stations. Consequently, the results presented in Table D.7 are summarized separately below for the regular 10-minute trawls and reduced 1-minute trawls. The three 10 minute trawls conducted at the southernmost PLOO station SD7 during both winter and summer, and at the next most southern PLOO station SD8 in winter only, had species richness ranging from 11 to 16 species per haul, total abundance ranging from 157 to 277 fish per haul, diversity (H') ranging from 1.4 to 1.9, and total fish biomass ranging from 4.6 to 6.7 kg per haul. In contrast, the nine 1-minute trawls conducted at station SD8 in the summer and all other PLOO stations (i.e., SD10, SD12, SD13, SD14) during both winter and summer had species richness ranging from 1 to 9 species per haul, abundance ranging from 1 to 65 individuals per haul, diversity (H') ranging from 0.1 to 1.4 kg per haul. Overall, there were no spatial patterns in the demersal fish community metrics relative to the PLOO discharge site. Additionally, results from the regular 10-minute trawls are consistent with the findings from long term analyses reported previously within the PLOO region (City of San Diego 2016a) and elsewhere in the SCB (Walther et al. 2017).

In contrast to the PLOO surveys, all 14 of the SBOO trawls were conducted for 10 minutes bottom time and are therefore directly comparable to each other as well as to historical values. Species richness ranged from 4 to 15 species per haul for the SBOO stations in 2016, abundance ranged from 59 to 710 individuals per haul, diversity (H') ranged from 0.6 to 1.7, and total biomass ranged from 0.6 to 15.1 kg per haul. Overall, there were no spatial patterns in the demersal fish community metrics relative to the SBOO discharge site. These results are consistent with the findings from long term analyses reported previously within the SBOO region (City of San Diego 2016b) and elsewhere in the SCB (Walther et al. 2017).

Classification of Demersal Fish Assemblages

As described previously in the Materials and Methods section, classification analysis of the 2016 fish assemblages off San Diego was limited to the SBOO region due to the incomparability of 1-minute versus 10-minute trawls at the PLOO stations. Results of the subsequent cluster analysis discriminated between three main types of fish assemblages (cluster groups) present in the South Bay outfall region during 2016 (Figure D.2). Cluster groups A (n=1) and B (n=6) comprised all seven of the winter survey trawls, while cluster group C comprised all seven of the summer survey trawls. This pattern is consistent with the natural seasonal variation evident in previous studies (e.g., City of San Diego 1997, 2013), with there being no discernible effects associated with proximity to the SBOO or wastewater discharge.

Physical Abnormalities and Parasitism

Demersal fish populations appeared healthy in the PLOO and SBOO regions during 2016. There were no incidences of fin rot, skin lesions, or tumors on any fish sampled during the year, while other recorded abnormalities were limited to two instances of ambicoloration, one on a Spotted Turbot and one on a Speckled Sanddab (Table D.9). Both of these fishes were collected from SBOO station SD17 during the summer.

Evidence of parasitism was also very low (0.15%) for trawl-caught fishes from these regions. The copepod eye parasite *Phrixocephalus cincinnatus* infested two Pacific Sanddabs collected at PLOO station SD8 in the winter and one Longfin Sanddab captured at SBOO station SD18 in the summer. An unidentified species of leech (Phylum Annelida, Class Clitellata, Subclass Hirudinea) was found on a Hornyhead Turbot collected from station SD17 during the winter. The cymothoid isopod *Elthusa vulgaris* (a gill parasite of fishes) was reported from four different fish, including one Speckled Sanddab collected from SBOO station SD18 in the winter, two Pacific Sanddabs collected from SBOO station SD15 in the summer, and one Speckled Sanddab collected from SBOO station SD18 in the summer. Additionally, another 111 individuals of *E. vulgaris* were identified as part of the trawl invertebrate catches during the year. Since *E. vulgaris* often become detached from their hosts during retrieval and sorting of the trawl catch, it is unknown which fishes were actually parasitized by these isopods. However, *E. vulgaris* is known to be especially common on Sanddab and California Lizardfish in southern California waters, where it may reach infestation rates of 3% and 80%, respectively (see Brusca 1978, 1981).

Megabenthic Invertebrates

Community Parameters

The megabenthic invertebrate communities sampled in the PLOO and SBOO monitoring regions during 2016 are summarized in Tables D.10–D.14. A total of 76,584 invertebrates, representing 49–50 species from five different phyla (i.e., Arthropoda, Echinodermata, Mollusca, Cnidaria, and Silicea), were captured during the 26 trawls conducted during the year. This total catch for 2016 comprised 75,341 trawled invertebrates collected from PLOO stations, 99% of which were the pelagic red crab *Pleuroncodes planipes*. This marks a 373% increase in total megabenthic invertebrates at PLOO stations in 2016 verses 2015, despite significantly less total trawling time in 2016 (i.e., 39 minutes vs. 120 minutes; Table D.1). In contrast, the total catch of 1243 invertebrates from the SBOO stations was about 28% smaller than the catch for 2015 (City of San Diego 2016b). The dominant trawled invertebrate at the SBOO stations was the shrimp *Sicyonia penicillata*, which occurred in all 14 trawls during both surveys and accounted for 46% of the total invertebrate catch for the year.

As described for demersal fishes, species richness, abundance, diversity (H') and biomass values for the trawl-caught invertebrates at the PLOO stations in 2016 were not comparable to each other because of the reduced trawling times required at most PLOO stations due to the presence of excessively large numbers of pelagic red crabs (*Pleuroncodes planipes*). Consequently, the results presented in Table D.13 are summarized again here for the few regular 10-minute trawls and separately for the reduced 1-minute trawls. The three 10 minute trawls conducted at the southernmost PLOO station SD7 during both surveys, and at the next most southern station SD8 during only the winter had species richness ranging from 4 to 7 species per haul, abundance ranging from 192 to 310 individuals per haul, and diversity (H') ranging from 0.82 to 0.94 per haul. In contrast, the nine 1-minute trawls conducted at all the remaining PLOO stations had species richness ranging from 1 to 6 species per haul, abundance ranging from 2389 to 18,641 individuals per haul, and very low diversity (H') ranging from 0 to 0.07 per haul. These reduced trawls were almost entire dominated by pelagic red crabs.

In contrast to the PLOO surveys, all of the SBOO trawls were conducted for 10 minutes bottom time and were therefor directly comparable to each other as well to previous surveys. Species richness ranged from 4 to 13 species per haul, abundance ranged from 21 to 228 individuals per haul, and diversity (H') ranged from 0.6 to 2.0 per haul.

Overall, there were no spatial patterns in the megabenthic invertebrate community metrics relative to either the PLOO or SBOO discharge sites. Additionally, results from the 10-minute trawls are consistent with

the findings from long term analyses reported previously within the PLOO and SBOO regions (City of San Diego 2016a, b) and elsewhere throughout the SCB (Walther et al. 2017).

Classification Analysis of Invertebrate Assemblages

Classification (cluster) analysis of the 2016 megabenthic invertebrate assemblages was also limited to the SBOO region because of the incomparability of the 1-minute vs. 10-minute trawls at the PLOO stations as described in the Materials and Methods section and in the demersal fish results. Results of the subsequent cluster analysis discriminated between three main types (cluster groups) of trawled invertebrate assemblages present in the South Bay outfall region during 2016 (Figure D.3). Cluster groups A (n=1) and B (n=6) included all seven of the winter trawls, while cluster group C included all seven of the summer trawls. This pattern is consistent with the natural seasonal variation evident in previous studies (e.g., City of San Diego 1997, 2013), with there being no discernible effects due to wastewater discharge or with proximity to the outfall.

LITERATURE CITED

- Allen, L.G., D.J. Pondella II, and M.H. Horn. (2006). The Ecology of Marine Fishes: California and Adjacent Waters. University of California Press, Berkeley, CA.
- Brusca, R.C. (1978). Studies on the cymothoid fish symbionts of the eastern Pacific (Crustacea: Cymothoidae). II. Systematics and biology of Livoneca vulgaris Stimpson 1857. Occasional Papers of the Allan Hancock Foundation. (New Series), 2: 1–19.
- Brusca, R.C. (1981). A monograph on the Isopoda Cymothoidae (Crustacea) of the eastern Pacific. Zoological Journal of the Linnean Society, 73: 117–199.
- City of San Diego. (1997). Receiving Waters Monitoring Report for the Point Loma Ocean Outfall, 1996. City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2013). Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant), 2012. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117–143.
- Clarke, K.R., R.N. Gorley, P.J. Somerfield, and R.M. Warwick. (2014). Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. PRIMER E, Plymouth, England.

- Clarke, K.R., P.J. Somerfield, and R.N. Gorley. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology, 366: 56–69.
- Grothendieck, G. (2014). sqldf: Perform SQL Selects on R Data Frames. R package version 0.4-10. http:// CRAN.R-project.org/package=sqldf.
- Eschmeyer, W.N. and E.S. Herald. (1998). A Field Guide to Pacific Coast Fishes of North America. Houghton and Mifflin Company, New York.
- Lawrence, P. M., H. Espinosa-Pérez, L. T. Findley, C. R. Gilbert, R. N. Lea, N. E. Mandrak, R. L. Mayden, and J. S. Nelson. (2013). Common and Scientific names of fishes from the United States, Canada and Mexico. Special Publication 34. The American Fisheries Society, Bethesda Maryland.
- Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. (2015). vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan.
- R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Ripley, B. and M. Lapsley. (2015). RODBC: ODBC Database Access. R package version 1.3-12.http:// CRAN.R-project.org/package=RODBC.
- [SCAMIT] Southern California Association of Marine Invertebrate Taxonomists. (2014). A taxonomic listing of benthic macro- and megainvertebrates from infaunal and epibenthic monitoring programs in the Southern California Bight, edition 9. Southern California Associations of Marine Invertebrate Taxonomists, Natural History Museum of Los Angeles County, Research and Collections, Los Angeles, CA.
- [SCCWRP] Southern California Coastal Water Research Project. (2013). Southern California Bight 2013 Regional Monitoring Program: Contaminant Impact Assessment Field Operations Manual. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Stein, E.D. and D.B. Cadien. (2009). Ecosystem response to regulatory and management actions: The southern California experience in long-term monitoring. Marine Pollution Bulletin, 59: 91–100.
- Thompson, B., J. Dixon, S. Schroeter, and D.J. Reish. (1993a). Chapter 8. Benthic invertebrates. In: M.D. Dailey, D.J. Reish, and J.W. Anderson (eds.). Ecology of the Southern California Bight: A Synthesis and Interpretation. University of California Press, Berkeley, CA. pp. 369–458.
- Thompson, B., D. Tsukada, and J. Laughlin. (1993b). Megabenthic assemblages of coastal shelves, slopes, and basins off Southern California. Bulletin of the Southern California Academy of Sciences, 92: 25–42.
- Walther, S.M., J.P. Williams, A. Latker, D. Cadien, D. Diehl, K. Wisenbaker, E. Miller, R. Gartman, C. Stransky, and K. Schiff. (2017). Southern California Bight 2013 Regional Monitoring Program: Volume VII. Demersal Fishes and Megabenthic Invertebrates. Southern California Coastal Water Research Project. Costa Mesa, CA.

- Warnes, G.R., B. Bolker, and T. Lumley. (2015). gtools: Various R Programming Tools. R package version 3.4.2. http://CRAN.R-project.org/package=gtools.
- Warwick, R.M. (1993). Environmental impact studies on marine communities: pragmatical considerations. Australian Journal of Ecology, 18: 63–80.
- Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1–20. URL http://www.jstatsoft.org/v21/i12/.
- Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1–29. URL http://www.jstatsoft.org/v40/i01/.

This page intentionally left blank

Chapter 5. Bioaccumulation of Contaminants in Fish Tissues

INTRODUCTION

Bottom dwelling (demersal) fishes are collected as part of the City of San Diego's (City) Ocean Monitoring Program to evaluate if contaminants in wastewater discharged from the Point Loma and South Bay ocean outfalls (PLOO and SBOO, respectively) are bioaccumulating in their tissues. This portion of the City's monitoring program consists of two components: (1) analyzing liver tissues from mostly trawl-caught fishes; (2) analyzing muscle tissues from fishes collected by more traditional hook and line techniques (rig fishing). Species targeted by trawling activities are considered representative of the general demersal fish community, and the chemical analysis of liver tissues in these fishes is important for assessing population level effects since this is the organ where contaminants typically bioaccumulate. In contrast, fish targeted for capture by rig fishing represent species that are more characteristic of a typical sport fisher's catch, and are therefore considered more directly relevant to seafood safety and public health issues. Consequently, muscle samples are analyzed from these fishes because it is the tissue most often consumed by humans. All fish tissue samples collected during the year are analyzed for contaminants as specified in the NPDES permits that govern monitoring requirements for the PLOO and SBOO (see Chapter 1). Most of these contaminants are also sampled for NOAA's National Status and Trends Program, which was initiated to detect and monitor changes in the environmental quality of the nation's estuarine and coastal waters by tracking contaminants of environmental concern (Lauenstein and Cantillo 1993).

This chapter presents a summary of the purpose, materials and methods, and results of all chemical analyses performed on the tissues of fishes collected during calendar year 2016 from the PLOO and SBOO monitoring regions. Detailed figures and tables summarizing these results are presented in Appendix E.

MATERIALS AND METHODS

Field Collection

Fishes were collected during October 2016 from a total of nine trawl zones (TZ1–TZ9) and four rig fishing zones (RF1–RF4) spanning the PLOO or SBOO discharge sites (Figure E.1). Each trawl zone represents an area centered on one or two trawl stations as specified in Chapter 4. Trawl Zone 1 includes the "nearfield" area within a 1-km radius of PLOO stations SD10 and SD12 located just south and north of the outfall discharge site, respectively. Trawl Zone 2 includes the area within a 1-km radius surrounding northern "farfield" PLOO stations SD13 and SD14. Trawl Zone 3 represents the area within a 1-km radius surrounding "farfield" PLOO station SD8, which is located south of the outfall near the LA-5 dredged material disposal site. Trawl Zone 4 is the area within a 1-km radius surrounding "farfield" PLOO station SD7 located several kilometers south of the outfall near the non-active LA-4 disposal site. Trawl Zone 5 includes the area located within a 1-km radius of SBOO stations SD17 and SD18 located just south and north of the outfall discharge site, respectively. Trawl Zone 5 includes the area located within a 1-km radius of SBOO stations SD17 and SD18 located just south and north of the outfall discharge site, respectively. Trawl Zone 6 includes the area within 1-km radius surrounding northern SBOO stations SD19 and SD20, while Trawl Zone

7 includes the area within a 1-km radius of northern SBOO station SD21. Trawl Zone 8 represents the area within a 1-km radius surrounding southern SBOO station SD16, while Trawl Zone 9 represents the area within a 1-km radius surrounding southern SBOO station SD15. Rig Fishing Zones 1–4 represent the areas within a 1-km radius of the nominal coordinates for stations RF1, RF2, RF3 and RF4. Stations RF1 and RF3 are located within 1 km of the PLOO and SBOO discharge sites, respectively, and are considered the "nearfield" rig fishing sites. In contrast, station RF2 is located about 11 km northwest of the PLOO, while station RF4 is located about 13.2 km southeast of the SBOO. These two stations are considered "farfield" for the analyses herein.

A total of 16 species of fish were collected for analysis of liver and muscle tissues at the PLOO and SBOO stations during 2016 (Table E.1). Five different species of flatfish were collected from the nine trawl zones for analysis of liver tissues, including Pacific Sanddab (Citharichthys sordidus), Longfin Sanddab (Citharichthys xanthostigma), Fantail Sole (Xystreurys liolepis), Hornyhead Turbot (Pleuronichthys verticalis), and Spotted Turbot (Pleuronichthrys ritteri). In contrast, 11 different species of rockfish were collected for the analysis of muscle tissues at the rig fishing stations. These species included California Scorpionfish (Scorpaena guttata), Brown Rockfish (Sebastes auriculatus), Copper Rockfish (Sebastes caurinus), Flag Rockfish (Sebastes rubrivinctus), Greenstriped Rockfish (Sebastes elongatus), Olive Rockfish (Sebastes serranoides), Rosy Rockfish (Sebastes rosaceus), Speckled Rockfish (Sebastes ovalis), Starry Rockfish (Sebastes constellatus), Treefish (Sebastes serviceps), and Vermilion Rockfish (Sebastes miniatus). Only fishes with standard lengths ≥ 11 cm were retained in order to facilitate collection of sufficient tissue for analysis. These fishes were sorted into three composite samples per station, with a minimum of three individuals in each composite. All fishes were wrapped in aluminum foil, labeled, sealed in re-sealable plastic bags, placed on dry ice, and then transported to the City's Marine Biology Laboratory where they were stored at -20°C prior to dissection and tissue processing.

Tissue Processing and Chemical Analyses

All dissections were performed according to standard techniques for tissue analysis. A brief summary follows, but see City of San Diego (in prep) for additional details. Prior to dissection, each fish was partially defrosted, cleaned with a paper towel to remove loose scales and excess mucus, and the standard length (cm) and weight (g) were recorded (Tables E.2 and E.3). Dissections were carried out on Teflon® pads that were cleaned between samples. The liver or muscle tissues from each fish were removed and placed in separate glass jars for each composite sample, sealed, labeled, and stored in a freezer at -20°C prior to chemical analyses.

All tissue analyses were performed at the City of San Diego's Environmental Chemistry Services Laboratory. A detailed description of the analytical protocols can be found in City of San Diego (2017). Briefly, fish tissue samples were analyzed on a wet weight basis to determine the concentrations of total lipids, 18 trace metals, nine chlorinated pesticides, 40 polychlorinated biphenyl compound congeners (PCBs), and 24 polycyclic aromatic hydrocarbons (PAHs); only SBOO fish tissue samples were analyzed for PAHs due to different regulatory requirements. Data were generally limited to values above the method detection limit (MDL) for each parameter (Table E.4). However, concentrations below MDLs were included as estimated values if the presence of the specific constituent was verified by mass-spectrometry.

Data Analyses

Total chlordane, total DDT, total endosulfan, total endrin, total hexachlorocyclohexane (HCH), total PCB, and total PAH were calculated for each sample as the sum of all constituents with reported values.

Detection rates were calculated as the number of samples with detected values/total number of samples analyzed. Non-reportable values were not included in the total number of samples. All data analyses were performed using SAS software v9.3.

Contaminant levels in muscle tissue samples were compared to state, national, and international limits and standards in order to address seafood safety and public health issues. These included: (1) fish contaminant goals for chlordane, DDT, methylmercury, selenium, and PCBs developed by the California Office of Environmental Health Hazard Assessment (OEHHA) (Klasing and Brodberg 2008); (2) action limits on the amount of mercury, DDT, and chlordane in seafood that is to be sold for human consumption, set by the U.S. Food and Drug Administration (USFDA) (Mearns et al. 1991); (3) international standards for acceptable concentrations of various metals and DDT (Mearns et al. 1991).

RESULTS

Contaminants in Fish Liver Tissues

Trace Metals

Concentrations of trace metals detected in liver tissues of flatfishes collected in the PLOO and SBOO regions in 2016 are listed by trawl zone in Table E.5. Ten metals were detected in all liver tissues sampled from PLOO fish during the year, including arsenic, cadmium, chromium, copper, iron, manganese, mercury, selenium, tin, and zinc. Aluminum and nickel were also detected but in only 8–17% of the samples. Six other metals targeted for analysis, including antimony, barium, beryllium, lead, silver and thallium were not detected in any liver tissue samples collected in the PLOO region during the year. A total of eight metals were detected in all liver tissue samples of flatfishes collected in the SBOO region during 2016. These included arsenic, cadmium, copper, iron, manganese, mercury, selenium and zinc. Barium, chromium, nickel, silver and tin were also detected, but in only 7–87% of the samples, while aluminum, antimony, beryllium, lead and thallium lead were not detected in any liver tissue samples collected at these sites during the year. The different metals were found at variable concentrations in fishes sampled across the PLOO and SBOO trawl zones, with no discernable patterns relative to either outfall. These results are consistent with findings of other assessments of bioaccumulation in fishes off San Diego (City of San Diego 2007, 2015, 2016a, b, Parnell et al. 2008).

Pesticides, PCBs, PAHs, and Lipids

Concentrations of six different types of pesticides (total chlordane, total DDT, total endosulfan, total HCH, HCB, and mirex), total PCBs, and lipids analyzed for and detected in liver tissues of flatfishes collected in the PLOO and SBOO regions during 2016 are summarized by trawl zone in Table E.6, while values for the individual constituents of each of these contaminants are listed in Table E.9. Although tissues were also analyzed for the pesticides aldrin, dieldrin and endrin, as well as for PAHs (at the SBOO stations only), these contaminants were either not detected in any samples (i.e., aldrin and PAHs) or the results were determined to be not reportable (i.e., dieldrin and endrin).

Total DDT was detected in all liver tissue samples from the PLOO and SBOO trawl zones during the year, with concentrations ranging from about 9 to 932 ppb. Although HCB was analyzed in all samples, only about 37% of these results were determined to be reportable at concentrations ranging from 0.3 to 21.5 ppb. Total HCH was detected in about 93% of the samples at concentrations ranging from ~0.8 to 5.3 ppb. Total chlordane was detected in about 59% of the liver tissue samples at concentrations ranging from ~0.1 to 9.8 ppb. Mirex was detected in about 37% of the samples at concentrations ranging from

 \sim 0.4 to 1.2 ppb. Finally, total endosulfan was detected in only two samples from two different SBOO trawl zones at concentrations of 0.08–0.19 ppb. Overall, there did not appear to be any significant pattern between pesticide concentrations in local fishes and proximity to either outfall.

PCBs were detected in all liver tissue samples collected from the PLOO and SBOO regions during 2016 at concentrations ranging from about 10 to 471 ppb. There did not appear to be any significant relationship between proximity to the outfalls and PCB levels in San Diego fishes, Similar to the results presented above for pesticides, the findings for PCBs in 2016 was consistent with those of other bioaccumulation assessments for fishes off San Diego (City of San Diego 2007, 2015, 2016a, b, Parnell et al. 2008). Total lipids occurred at levels of 3.5 to 56.8 % weight.

Contaminants in Fish Muscle Tissues

Concentrations of trace metals, pesticides, PCBs, PAHs and lipids detected in muscle tissue samples from the 11 different species of rockfishes collected at the PLOO and SBOO rig fishing zones in 2016 are listed in Tables E.7 and E.8, while Table E.9 includes values for the individual constituents. Only six trace metals were found in all muscle tissue samples during the year, including arsenic, iron, mercury, selenium, tin and zinc. Manganese was also detected in all PLOO muscle tissue samples but in only 33% of the SBOO muscle tissue samples. Chromium was detected in 33 and 50% of the PLOO and SBOO muscle tissues, respectively. Barium was detected in 50% of the PLOO samples, but was not detected in any SBOO sample. Finally, aluminum, antimony, beryllium, cadmium, copper, lead, nickel, silver and thallium were not detected in any of the muscle tissue samples collected at the PLOO and SBOO rig fishing stations and with no discernable patterns relative to either outfall. These results are consistent with findings of previous assessments of bioaccumulation in fishes off San Diego (City of San Diego 2007, 2015, 2016a, b, Parnell et al. 2008).

Only three pesticides were detected with reportable values for muscle tissues collected from rockfishes in the PLOO and SBOO regions during 2016. Total DDT was detected in all samples, but at fairly low concentrations of 0.29–1.69 ppb. Total HCH was detected in about 67% of the samples at concentrations of 0.02–0.14 ppb. Total chlordane was found in only two (~17%) of the samples at concentrations of 0.07–0.13 ppb. Although muscle tissues were also analyzed for levels of aldrin, dieldrin, endosulfan, endrin, HCB and mirex, these six pesticides were either not detected in any samples (i.e., aldrin, endosulfan, mirex) or the results were determined to be not reportable (i.e., dieldrin, endrin, HCB).

Similar to the results for liver tissues, PCBs were detected in all muscle tissues collected from the PLOO and SBOO stations in 2016, whereas PAHs, analyzed for only at the SBOO stations, were not detected in any sample. Total PCBs were detected at low concentrations ranging from about 0.2 to 1.6 ppb. There did not appear to be any distinct relationship between proximity to the outfalls and PCB levels in San Diego fishes. These results are consistent with findings of other assessments of bioaccumulation in fishes off San Diego (City of San Diego 2007, 2015, 2016a, b, Parnell et al. 2008). Lipids occurred at low levels of 0.17–0.68 % weight for all but one composite muscle sample of Starry Rockfish that had a lipid level ~38 % weight.

Most contaminants detected in fish muscle tissues during 2016 occurred at concentrations below state, national, and international limits and standards (Tables E.7 and E.8). Exceptions included arsenic and selenium, which occurred at levels higher than the median international standard in every muscle sample from all four rig fishing zones. These results are also consistent with previous findings for fishes off San Diego (City of San Diego 2007, 2015, 2016a, b, Parnell et al. 2008).

LITERATURE CITED

- City of San Diego. (2007). Appendix F. Bioaccumulation Assessment. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, Point Loma Ocean Outfall. Volume IV, Appendices A thru F. Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015). Appendix D. Bioaccumulation Assessment. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements Point Loma Ocean Outfall. Volume V, Appendices C thru D. Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2017). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2016. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (in prep). Quality Assurance Project Plan for Coastal Receiving Waters Monitoring. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Klasing, S. and R. Brodberg. (2008). Development of Fish Contaminant Goals and Advisory Tissue Levels for Common Contaminants in California Sport Fish: Chlordane, DDTs, Dieldrin, Methylmercury, PCBs, Selenium, and Toxaphene. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Sacramento, CA.
- Lauenstein, G.G. and A.Y. Cantillo, eds. (1993). Sampling and Analytical Methods of the NOAA National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984–1992: Vol. I–IV. Technical Memorandum. NOS ORCA 71. NOAA/NOS/ORCA, Silver Spring, MD.
- Mearns, A.J., M. Matta, G. Shigenaka, D. MacDonald, M. Buchman, H. Harris, J. Golas, and G. Lauenstein. (1991). Contaminant Trends in the Southern California Bight: Inventory and Assessment. NOAA Technical Memorandum NOS ORCA 62. Seattle, WA.
- Parnell, P.E., A.K. Groce, T.D. Stebbins, and P.K. Dayton. (2008). Discriminating sources of PCB contamination in fish on the coastal shelf off San Diego, California (USA). Marine Pollution Bulletin, 56: 1992–2002.

This page intentionally left blank

Chapter 6. San Diego Regional Survey Benthic Conditions

INTRODUCTION

The City of San Diego has conducted annual surveys of randomly selected benthic stations off the coast of San Diego since 1994 (see Chapter 1). The primary objectives of these regional surveys, which typically range from offshore of Del Mar in northern San Diego County southward to the USA/Mexico border, are to: (1) describe the overall condition and quality of the diverse benthic habitats that occur in the offshore coastal waters off San Diego; (2) characterize the ecological health of the soft-bottom marine benthos in the region; (3) gain a better understanding of regional variation in order to distinguish between changes due to anthropogenic influences or natural factors. These surveys typically occur at an array of 40 stations selected each year using a probability-based, random stratified sampling design as described in Bergen (1996), Stevens (1997), and Stevens and Olsen (2004). During 1995-1997, 1999-2002 and 2005–2007, the surveys off San Diego were restricted to continental shelf depths <200 m. Beginning in 2009, however, the survey region was expanded to include deeper habitats along the upper continental slope (i.e., 200-500 m). No separate San Diego regional survey of randomly selected sites was conducted in 2004 due to sampling for a special sediment mapping project (Stebbins et al. 2004), while the regional surveys in 1994, 1998, 2003, 2008, and 2013 were conducted as part of the larger, multi-agency Southern California Bight (SCB) Regional Monitoring Program (Bergen et al. 1998, 2001, Schiff and Gossett 1998, Noblet et al. 2002, Schiff et al. 2006, 2011, Maruya and Schiff 2009, Ranasinghe et al. 2003, 2007, 2010, 2012, Dodder et al. 2016, Gillett et al. 2017).

This chapter presents a summary of the purpose, materials and methods, and results of the sediment particle size, sediment chemistry, and benthic macrofaunal data collected during the 2016 regional survey of the continental shelf and upper slope off San Diego. Detailed figures and tables summarizing these results are presented in Appendix F.

MATERIALS AND METHODS

Collection and Processing of Samples

The July 2016 regional benthic survey covered an area ranging from north of La Jolla southward to the USA/Mexico border (Figure F.1). A total of 40 stations were sampled at depths ranging from 5 to 437 m spanning four distinct depth strata characterized by the SCB Regional Monitoring Program. These included six stations along the inner shelf (5–30 m), 19 stations along the mid-shelf (30–120 m), 10 stations along the outer shelf (120–200 m), and five stations on the upper slope (200–500 m). Samples for sediment quality and benthic community analyses were collected using a double 0.1-m² Van Veen grab. Sub-samples for the various sediment particle size and chemistry parameters were taken from the top 2 cm of the sediment surface of one grab and handled according to standard guidelines available in USEPA (1987). The second grab sample from each cast was used for analysis of the benthic macrofaunal community.

Criteria established by the USEPA to ensure consistency of grab samples were followed with regard to sample disturbance and depth of penetration (USEPA 1987). All samples were brought aboard ship,

washed with seawater, and sieved through a 1.0-mm mesh screen. The organisms retained on the screen were then collected, transferred to sample jars, and relaxed for 30 minutes in a magnesium sulfate solution before being fixed with buffered formalin. After a minimum of 72 hours, each sample was rinsed with fresh water and transferred to 70% ethanol for final preservation. All macrofaunal organisms were separated from the raw material and sorted into six higher taxonomic groups (see Chapter 3) by a subcontract lab. The sorted samples were then returned to the City's Marine Biology Laboratory where the animals were identified to species or the lowest taxon possible and enumerated by staff marine biologists. All identifications followed nomenclatural standards established by the Southern California Association of Marine Invertebrate Taxonomists (e.g., SCAMIT 2014).

Laboratory Analyses

All sediment chemistry and particle size analyses were performed at the City of San Diego's Environmental Chemistry Services Laboratory. A detailed description of the analytical protocols can be found in City of San Diego (2017). Briefly, sediment sub-samples were analyzed on a dry weight basis to determine concentrations of various indicators of organic loading (i.e., biochemical oxygen demand, total organic carbon, total nitrogen, total sulfides, total volatile solids), 18 trace metals, nine chlorinated pesticides (e.g., DDT), 40 polychlorinated biphenyl compound congeners (PCBs), and 24 polycyclic aromatic hydrocarbons (PAHs). Data were generally limited to values above the method detection limit (MDL) for each parameter (see Table C.1). However, concentrations below MDLs were included as estimated values if the presence of a specific constituent was verified by mass-spectrometry.

Particle size analysis was performed using either a Horiba LA-950V2 laser scattering particle analyzer or a set of nested sieves. The Horiba measures particles ranging in size from 0.5 to 2000 μ m. Coarser sediments were removed and quantified prior to laser analysis by screening samples through a 2000 μ m mesh sieve. These data were later combined with the Horiba results to obtain a complete distribution of particle sizes totaling 100%, and then classified into 11 sub-fractions and four main size fractions based on the Wentworth scale (Folk 1980) (see Table C.2). When a sample contained substantial amounts of coarse sand, gravel, or shell hash that could damage the Horiba analyzer and/ or where the general distribution of sediments would be poorly represented by laser analysis, a set of nested sieves with mesh sizes of 2000 μ m, 1000 μ m, 500 μ m, 250 μ m, 125 μ m, and 63 μ m was used to divide the samples into seven sub-fractions.

Data Analyses

Sediments

Data summaries for the various sediment parameters included detection rate, minimum, maximum, and mean values for all samples combined. Average values were also calculated for each depth stratum. All means were calculated using detected values only; no substitutions were made for non-detects in the data (i.e., analyte concentrations < MDL). Total chlordane, total DDT (tDDT), total endosulfan, total endrin, total hexachlorocyclohexane (tHCH), total PCB (tPCB), and total PAH (tPAH) were calculated for each sample as the sum of all constituents with reported values. These analyses were performed using R (R Core Team 2016) and various functions within the dplyr, plyr, reshape2, tidyr, and zoo packages (Zeileis and Grothendieck 2005, Wickham 2007, 2011, 2016b, Wickham and Francios 2016). Contaminant concentrations were compared to the Effects Range Low (ERL) and Effects Range Median (ERM) sediment quality guidelines of Long et al. (1995) when available. The ERLs represent chemical concentrations below which adverse biological effects are rarely observed, while values above the ERL but below the ERM represent levels at which effects

occasionally occur. Concentrations above the ERM indicate likely biological effects, although these are not always validated by toxicity testing (Schiff and Gossett 1998).

Macrobenthic Communities

The following community structure parameters were determined for each station per 0.1-m² grab: species richness (number of taxa), abundance (number of individuals), Shannon diversity index (H'), Pielou's evenness index (J'), Swartz dominance (see Swartz et al. 1986, Ferraro et al. 1994), and benthic response index (BRI) (see Smith et al. 2001). Unless otherwise noted, analyses were performed using R (R Core Team 2016) and various functions within the plyr, reshape2, Rmisc, RODBC, stringr, and vegan packages (Wickham 2007, 2011, 2016a, Hope 2013, Oksanen et al. 2015, Ripley and Lapsley 2015).

To examine spatial patterns among benthic communities in the San Diego region, multivariate analyses were performed on sediment particle size and macrofaunal abundance data using methods available in PRIMER v7, which included hierarchical agglomerative clustering (cluster analysis) with group-average linking and similarity profile analysis (SIMPROF) to confirm the non-random structure of resultant cluster dendrograms (see Clarke et al. 2008, 2014). For sediment particle size data, proportions of silt and clay sub-fractions were combined as percent fines to accommodate sieved samples and Euclidean distance was used as the basis for the cluster analysis. For macrofaunal abundance data, the Bray-Curtis measure of similarity was used as the basis for clustering, and data were square-root transformed to lessen the influence of overly abundant species and increase the importance (or presence) of rare species. Major ecologically-relevant clusters receiving SIMPROF support were retained. A RELATE test was used to compare patterns of rank abundance in the macrofauna Bray-Curtis similarity matrices with rank percentages in the sediment Euclidean distance matrices. A BEST test using the BIO-ENV procedure was conducted to determine which subset of sediment sub-fractions was the best explanatory variable for similarity between the sediment and macrofaunal resemblance matrices.

RESULTS

Regional Sediment Quality in 2016

Particle Size Distribution

The composition of seafloor sediments at the 40 San Diego regional benthic stations in 2016 is summarized in Tables F.1 and F.2. Overall, the distribution of fine silts and clays (i.e., percent fines), sands, and coarser sediments (e.g., gravel, black sands, shell fragments) varied widely across the region. For example, percent fines ranged from 2.2% to 87% per station, fine sands from 1.8% to 89.9%, medium-coarse sands from 0.1% to 84.4%, and coarse particles from 0 to 22%. Although variable, sediment composition did show some expected patterns between the different depth strata. For example, percent fines increased from about 9% per sample along the inner shelf, to 34% on the mid-shelf, to 48% on the outer shelf, to 75% on the upper slope. In contrast, percentages of fine and medium-coarse sands decreased from 67% and 20% per station on the inner shelf to 25% and <1% on the upper slope, respectively. Coarser particles were found at only seven of the stations sampled off San Diego. These included one station on the inner shelf, four stations on the mid-shelf and two stations on the outer shelf. No coarse particles were present in sediments sampled along the upper slope.

Indicators of Organic Loading

Concentrations of sulfides, total nitrogen (TN), total organic carbon (TOC), and total volatile solids found in sediments from the regional benthic stations in 2016 are summarized in Tables F.1 and F.3. Sulfides were detected in all of the regional sediment samples at concentrations ranging from about 0.2 to 31.9 ppm.

Sulfide concentrations generally increased with depth, averaging 2.05 ppm on the inner shelf, 5.71 ppm on the mid-shelf, 8.37 ppm on the outer shelf, and 19.11 on the upper slope. TVS was also detected in all samples at concentrations ranging from about 0.4 to 9.2 weight. TN was detected in ~93% of the sediment samples at concentrations of about "0" (not detected) to 0.24 weight. TOC was detected in ~98% of the samples at concentrations of about "0" (not detected) to 5.07 weight. Similar to sulfides, TN, TOC, and TVS values tended to increase with depth from the inner shelf to the upper slope, a pattern likely due to differences in sediment particle composition since all of these parameters are known to co-vary with percent fines (e.g., City of San Diego 2014). Finally, concentrations of TN and TOC were within ranges reported elsewhere in the SCB (Dodder et al. 2016).

Trace Metals

Concentrations of trace metals found in sediments from the regional stations in 2016 are summarized in Tables F.1 and F.4. Nine metals were detected in sediments from all stations sampled during the year, including aluminum, arsenic, barium, chromium, iron, lead, manganese, nickel, and zinc. Antimony, copper, mercury, and tin were detected at 83–95% of the stations, while beryllium, cadmium, selenium, and silver were detected at only 3-28% of the stations. Thallium was not detected at any of the regional sites. Concentrations of most metals were within ranges previously reported from elsewhere in the SCB (Dodder et al. 2016); exceptions included antimony, beryllium, and lead. Mean values of aluminum, antimony, barium, chromium, copper, iron, manganese, mercury, nickel, and zinc increased with depth from the inner shelf to the upper slope, which was likely associated with similar increases in percent fines since these parameters are known to co-vary (e.g., City of San Diego 2014). Only three of the nine metals that have published Effects Range Low (ERL) and Effects Range Median (ERM) sediment quality guidelines (see Long et al. 1995) exceeded either of these thresholds, and these exceedances were limited to only two of the regional stations as follows: (1) lead exceeded both its ERL and ERM at station 8542 located at a depth of 147 m at the bottom of the Coronado Bank; (2) silver also exceeded its ERL at station 8542; (3) mercury exceeded its ERL at station 8516 located northwest of the LA-5 dredged material dumpsite at a depth of 200 m. Additionally, the lead value of 534 ppm found in the sediments from station 8542 is the highest value ever recorded off San Diego by the City's Ocean Monitoring Program (City of San Diego 2014a, b, 2015a, b, c, 2016a, b).

Pesticides, PCBs, and PAHs

Concentrations of chlorinated pesticides, PCBs, and PAHs detected in the regional benthic sediments are summarized in Tables F.1, F.5 and F.6. Only three chlorinated pesticides, DDT, chlordane and hexachlorobenze (HCB), were detected during the 2016 survey, while Aldrin, Dieldrin, Endosulfan, Endrin, HCH and Mirex were not detected in any samples. Total DDT, composed primarily of p,p-DDE, was detected at all stations at concentrations of 47–2164 ppt. Mean values of DDT were lowest on the inner shelf and increased across the mid-shelf, outer shelf, and upper slope. DDT concentrations exceeded the ERL of 1580 ppt at three stations, including station 8519 on the outer shelf and stations 8537 and 8540 on the upper slope. However, all values were well within ranges reported elsewhere in the SCB (Dodder et al. 2016). Detectable levels of chlordane were found at 23% of the regional stations at concentrations up to 258 ppt. HCB was detected at station 8536 at a concentration of 140 ppt. Concentrations of total DDT and total chlordane were within ranges previously reported from elsewhere in the SCB (Dodder et al. 2016).

PCBs were detected in 97% of the regional sediment samples at total PCB concentrations up to 24,314 ppt. No ERL or ERM thresholds exist for PCBs measured as congeners; however, PCB values reported for the 2016 survey were within ranges of those reported from elsewhere in the SCB (Dodder et al. 2016). No clear patterns were evident in terms of PCB distributions with average PCB concentrations lowest on the inner shelf at ~280 ppt and highest on the mid-shelf at ~2493 ppt.

However, the five highest PCB values of 2,117–24,314 ppt were all found at stations located in the southwest region of the survey area and not too far from the LA-5 dredged material disposal site (i.e., stations 8507, 8509, 8512, 8510, and 8504).

PAHs were detected in sediments from 87% of the 2016 regional stations. All concentrations were \leq 365 ppb and well below threshold values of ~4022 ppb and within the range of values reported elsewhere in the SCB (Dodder et al. 2016). Mean PAH concentrations increased from 27 ppb on the inner shelf, to 46 ppb on the mid-shelf, to 78 ppb on the outer shelf, to 95 ppb per station on the upper slope.

Regional Macrobenthic Communities in 2016

Community Parameters

Species richness, total macrofaunal abundance, Shannon diversity (H'), Pielou's evenness (J'), and Swartz dominance, are summarized for each of the 2016 regional benthic stations in Table F.7 and by stratum in Figure F.2. A total of 8,836 macrobenthic invertebrates were identified during the 2016 survey. Of the 571 taxa represented, 475 (~83%) were identified to species, while the rest could only be identified to higher taxonomic levels. Most taxa occurred at multiple stations, although 29% (n=163) were recorded only once. Four species not previously reported by the City's Ocean Monitoring Program were encountered during this survey, including the polychaete *Aglaophamus paucilamellata*, the cumacean *Eudorella redacticruris*, the scaphopod *Antalis pretiosa*, and the nemertean *Tetrastemma* sp HYP1.

Species richness ranged from 14 to 133 species per grab across the survey area in 2016 (Table F.7). Such a wide variation in species richness is common for the region and is consistent with values observed during previous regional surveys (City of San Diego 2015a, c, 2016). Species richness also varied between the major depth strata during this survey (Figure F.2). For example, mean species richness was highest along the mid-shelf at about 71 species per grab, followed by 58 species per grab on the outer shelf, 42 species per grab on the inner shelf, and 28 species per grab on the upper slope. This variation by depth strata corresponds to similar patterns reported previously for the region (City of San Diego 2015a, c, 2016) and elsewhere throughout the SCB (Gillett et al. 2017).

Total macrofaunal abundance ranged from 40 to 830 individuals per grab at the regional benthic stations in 2016 (Table F.7), which was within the range of values reported historically for the region (e.g., City of San Diego 2015a, c, 2016). As with species richness, abundance varied between depth strata with the lowest average values of 58 individuals per grab occurring on the upper slope. In contrast, abundance averaged 178 individuals per grab at the inner shelf stations, 287 individuals per grab at the mid-shelf stations, and 203 individuals per grab at the outer shelf stations. This variation between strata generally corresponds with what has been reported previously for the San Diego region (City of San Diego 2015a, c, 2016).

Shannon diversity index (H'), Pielou's evenness index (J'), and Swartz dominance index values for the 2016 regional stations were generally within historical ranges (City of San Diego 2015a, c, 2016). H' ranged from 1.9 to 4.2, with 80% of the stations sampled having H' values of 3.0–4.0. J' ranged from 0.61 to 0.96, and Swartz dominance index values ranged from 3 to 42 taxa per grab. Mean values for all three indices were lowest along the inner shelf, while diversity and dominance values were typically highest at mid-shelf stations.

Benthic response index (BRI)

The benthic response index (BRI) is an important tool for gauging anthropogenic impacts to coastal seafloor habitats at depths ranging from about 5–200 m throughout the SCB. BRI values below 25 at these depths are considered indicative of reference conditions (Smith et al. 2001). During 2016, all 34 of the

regional stations that occurred at BRI-validated depths had BRI values indicative of reference conditions, with values ranging from -3 to 24 (Table F.7). Average BRI values varied slightly with depth, ranging from about 14 on the mid-shelf to 17 on the inner shelf.

Dominant Taxa

The most abundant (dominant) species collected from each depth stratum during the 2016 regional survey are summarized in Table F.8. As expected, the numerically dominant species characteristic of the benthic assemblages off San Diego varied between strata. For example, the 10 most abundant species along the inner shelf included four polychaete worms, one amphipod, four gastropod molluscs, and one echinoderm. Of these, the spionid polychaete *Spiophanes norrisi* was clearly dominant, accounting for 28% of all animals collected on the inner shelf and averaging 74 animals per occurrence. The remaining numerical dominants on the inner shelf accounted for $\leq 6\%$ of the total abundance and averaged ≤ 11 individuals per grab. The most widely distributed species at these depths included *S. norrisi*, the capitellid polychaete *Mediomastus* sp, the phoxocephalid amphipod *Rhepoxynius menziesi*, and the ampharetid polychaete *Ampharete labrops*, all four species which occurred at 67% of the sites.

The 10 most abundant species along the mid-shelf included eight polychaetes, one ophiuroid, and one bivalve. The spionid polychaete *Spiophanes duplex* was both the most abundant and widely distributed species at mid-shelf depths, accounting for 10% of the total abundance and occurring at 95% of the mid-shelf sites. In contrast, *Spiophanes norrisi* occurred at fewer (42%) of the mid-shelf stations but in higher numbers of 64 animals per occurrence compared to *S. duplex*. Each of the remaining accounted for $\leq 5\%$ of the total abundance at an average of ≤ 14 individuals per grab.

The top 10 species along the outer shelf included five polychaetes, four bivalves, and one ophiuroid. Densities of these species were relatively low overall with none exceeding 11% of the total abundance. The bivalves *Axinopsida serricata* and *Tellina carpenteri* occurred at all 10 outer shelf stations and averaged 22 and 12 individuals per grab, respectively. The spionid polychaete *Spiophanes kimballi*, the bivalve *Nuculana* sp A, the maldanid polychaete *Petaloclymene pacifica*, and the capitellid polychaete *Mediomastus* sp each occurred at 80% of the stations with averages of 9–19 animals per occurrence. All other species at these depths occurred at $\leq 70\%$ of the outer shelf stations and averaged ≤ 5 individuals per grab.

Total macrofaunal abundances were relatively low on the upper slope with only six species being represented by at least 10 individuals each. The maldanid polychaete *Maldane sarsi* and the chaetopterid polychaete *Phyllochaetopterus limicolus* were the two most abundant species at these depths, accounting for 10% and 8% of the macrofauna, respectively. The other four most abundant species that accounted for about 3-5% of the total abundance each included the gastropods *Lirobittium calenum* and *L. paganicum*, the cirratulid polychaete *Aphelochaeta monilaris*, and the capitellid polychaete *Mediomastsus* sp. All other species collected along the upper slope occurred at densities ≤ 6 individual per grab.

Classification of Regional Shelf and Slope Assemblages

Classification (cluster) analysis of the macrofaunal abundance data collected from the 40 regional benthic stations in 2016 resulted in seven ecologically-relevant SIMPROF-supported groups (Figures F.3 and F.4). These assemblages (referred to herein as cluster groups A–G) represented between 1 and 21 grabs (stations) each and varied in terms of the specific species present, as well as the relative abundance of each species, and occurred at sites separated by different depth and/or sediment microhabitats. For example, similar patterns of variation occurred in the benthic macrofaunal and sediment similarity/ dissimilarity matrices used to generate the cluster dendrograms (RELATE ρ =0.752, *p*=0.001). The

sediment subfractions that were most highly correlated to macrofaunal communities included granules, very coarse sand, fine sand, very fine sand, and percent fines (BEST $\rho = 0.771$, p = 0.001). Mean species richness ranged from 14 to 92 species per grab for these cluster groups, while mean abundance ranged from 51 to 441 individuals per grab. Cluster group A represented macrofaunal assemblages from two relatively shallow (22-36 m) inner to mid-shelf stations located off of Point Loma and La Jolla; this group had an average species richness of 23 species and an average abundance of 137 animals per grab. Cluster group B represented the assemblage from the single shallowest station (5 m) located west of the southern end of San Diego Bay; this group had the lowest species richness of 14 species and the second lowest abundance of 73 animals per grab. Cluster group C represented the assemblages from four of the five upper slope stations located at depths of 340–437 m; this group had an average species richness of 26 species and the lowest average abundance of 51 animals per grab. Cluster group D represented the assemblages from a total of 21 mid-shelf to outer shelf stations (81-240 m) distributed from near the USA/Mexico border to northern La Jolla; this group averaged the second highest species richness of 60 species and second highest abundance of 200 animals per grab. Cluster group E represented a single assemblage from a mid-shelf (48 m) station located offshore and northwest of the SBOO discharge area; this group had a species richness of 39 species and an abundance of 94 animals per grab. Cluster group F represented the assemblages from three shallow inner shelf stations (17-20 m) located between the SBOO and the mouth of San Diego Bay; this group averaged the third highest species richness of 46 species and third highest abundance of 151 animals per grab. Cluster group G represented the assemblages from four inner shelf to mid-shelf stations (26-57 m) located southwest of the tip of Point Loma to northwest of Mission Bay; this group averaged the highest species richness of 92 species and the highest abundance of 441 animals per grab.

LITERATURE CITED

- Bergen, M. (1996). The Southern California Bight Pilot Project: Sampling Design. In: M.J. Allen, C. Francisco, D. Hallock (eds.). Southern California Coastal Water Research Project: Annual Report 1994–1995. Southern California Coastal Water Research Project, Westminster, CA.
- Bergen, M., S.B. Weisberg, D. Cadien, A. Dalkey, D. Montagne, R.W. Smith, J.K. Stull, and R.G. Velarde. (1998). Southern California Bight 1994 Pilot Project: IV. Benthic Infauna. Southern California Coastal Water Research Project, Westminster, CA.
- Bergen, M., S.B. Weisberg, R.W. Smith, D.B. Cadien, A. Dalkey, D.E. Montagne, J.K. Stull, R.G. Velarde, and J.A. Ranasinghe. (2001). Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California. Marine Biology, 138: 637–647.
- City of San Diego. (2014a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2014b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2013. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015a). Appendix C.2. San Diego Benthic Tolerance Intervals. In: Application for Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, Point

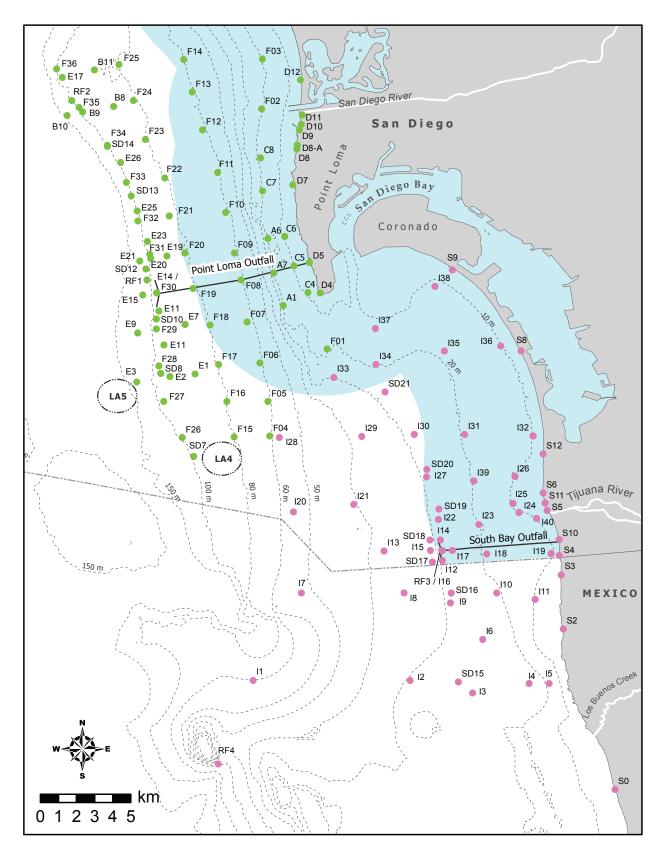
Loma Ocean Outfall. Volume V, Appendices C & D. Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

- City of San Diego. (2015b). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2015c). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2014. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016a). Point Loma Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016b). South Bay Ocean Outfall Annual Receiving Waters Monitoring and Assessment Report, 2015. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- City of San Diego. (2016). 2016 Annual Reports and Summary: Point Loma Wastewater Treatment Plant and Ocean Outfall. City of San Diego, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.
- Clarke, K.R., R.N. Gorley, P.J. Somerfield, and R.M. Warwick. (2014). Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. PRIMER-E, Plymouth, England.
- Clarke, K.R., P.J. Somerfield, and R.N. Gorley. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology, 366: 56–69.
- Dodder, N., K. Schiff, A. Latker, and C-L Tang. (2016). Southern California Bight 2013 Regional Monitoring Program: IV. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- Ferraro, S.P., R.C. Swartz, F.A. Cole, and W.A. Deben. (1994). Optimum macrobenthic sampling protocol for detecting pollution impacts in the Southern California Bight. Environmental Monitoring and Assessment, 29: 127–153.
- Folk, R.L. (1980). Petrology of Sedimentary Rocks. Hemphill, Austin, TX.
- Gillett, D.J., L.L. Lovell, and K.C. Schiff. (2017). Southern California Bight 2013 Regional Monitoring Program: Volume VI. Benthic Infauna. Technical Report 971. Southern California Coastal Water Research Project. Costa Mesa, CA.
- Hope, R.M. (2013). Rmisc: Ryan Miscellaneous. R package version 1.5. http://CRAN.R-project.org/package=Rmisc.
- Long, E.R., D.L. MacDonald, S.L. Smith, and F.D. Calder. (1995). Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environmental Management, 19(1): 81–97.

- Maruya, K.A. and K. Schiff. (2009). The extent and magnitude of sediment contamination in the Southern California Bight. Geological Society of America Special Paper, 454: 399–412.
- Noblet, J.A., E.Y. Zeng, R. Baird, R.W. Gossett, R.J. Ozretich, and C.R. Phillips. (2002). Southern California Bight 1998 Regional Monitoring Program: VI. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.
- Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. (2015). vegan: Community Ecology Package. R package version 2.3-1. http://CRAN.R-project.org/package=vegan.
- R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Ranasinghe, J.A., A.M. Barnett, K. Schiff, D.E. Montagne, C. Brantley, C. Beegan, D.B. Cadien, C. Cash,
 G.B. Deets, D.R. Diener, T.K. Mikel, R.W. Smith, R.G. Velarde, S.D. Watts, and S.B. Weisberg.
 (2007). Southern California Bight 2003 Regional Monitoring Program: III. Benthic Macrofauna.
 Southern California Coastal Water Research Project. Costa Mesa, CA.
- Ranasinghe, J.A., D. Montagne, R.W. Smith, T.K. Mikel, S.B. Weisberg, D. Cadien, R. Velarde, and A. Dalkey. (2003). Southern California Bight 1998 Regional Monitoring Program: VII. Benthic Macrofauna. Southern California Coastal Water Research Project. Westminster, CA.
- Ranasinghe, J.A., K.C. Schiff, C.A. Brantley, L.L. Lovell, D.B. Cadien, T.K. Mikel, R.G. Velarde, S. Holt, and S.C. Johnson. (2012). Southern California Bight 2008 Regional Monitoring Program:VI. Benthic Macrofauna. Technical Report No. 665, Southern California Coastal Water Research Project, Costa Mesa, CA.
- Ranasinghe, J.A., K.C. Schiff, D.E. Montagne, T.K. Mikel, D.B. Cadien, R.G. Velarde, and C.A. Brantley. (2010). Benthic macrofaunal community condition in the Southern California Bight, 1994–2003. Marine Pollution Bulletin, 60: 827–833.
- Ripley, B. and M. Lapsley. (2015). RODBC: ODBC Database Access. R package version 1.3-12. http://CRAN.R-project.org/package=RODBC.
- [SCAMIT] Southern California Association of Marine Invertebrate Taxonomists. (2014). A taxonomic listing of benthic macro- and megainvertebrates from infaunal and epibenthic monitoring programs in the Southern California Bight, edition 9. Southern California Associations of Marine Invertebrate Taxonomists, Natural History Museum of Los Angeles County Research and Collections, Los Angeles, CA.
- Schiff, K.C. and R.W. Gossett. (1998). Southern California Bight 1994 Pilot Project: III. Sediment Chemistry. Southern California Coastal Water Research Project. Westminster, CA.
- Schiff, K., R. Gossett, K. Ritter, L. Tiefenthaler, N. Dodder, W. Lao, and K. Maruya. (2011). Southern California Bight 2008 Regional Monitoring Program: III. Sediment Chemistry. Southern California Coastal Water Research Project, Costa Mesa, CA.
- Schiff, K., K. Maruya, and K. Christenson. (2006). Southern California Bight 2003 Regional Monitoring Program: II. Sediment Chemistry. Southern California Coastal Water Research Project, Westminster, CA.

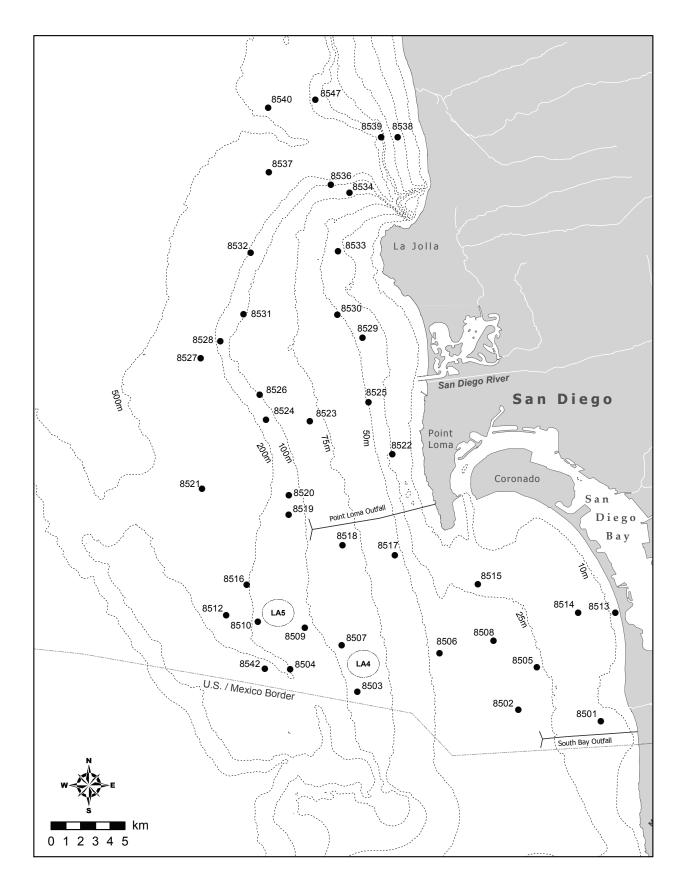
- Smith, R.W., M. Bergen, S.B. Weisberg, D. Cadien, A. Dalkey, D. Montagne, J.K. Stull, and R.G. Velarde. (2001). Benthic response index for assessing infaunal communities on the southern California mainland shelf. Ecological Applications, 11(4): 1073–1087.
- Stebbins, T.D., K.C. Schiff, and K. Ritter. (2004). San Diego Sediment Mapping Study: Workplan for Generating Scientifically Defensible Maps of Sediment Conditions in the San Diego Region. City of San Diego, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, and Southern California Coastal Water Research Project, Westminster, CA.
- Stevens Jr., D.L. (1997). Variable density grid-based sampling designs for continuous spatial populations. Environmetrics, 8: 167–195.
- Stevens Jr., D.L. and A.R. Olsen. (2004). Spatially-balanced sampling of natural resources in the presence of frame imperfections. Journal of the American Statistical Association, 99: 262–278.
- Swartz, R.C., F.A. Cole, and W.A. Deben. (1986). Ecological changes in the Southern California Bight near a large sewage outfall: benthic conditions in 1980 and 1983. Marine Ecology Progress Series, 31: 1–13.
- [USEPA] United States Environmental Protection Agency. (1987). Quality Assurance and Quality Control (QA/QC) for 301(h) Monitoring Programs: Guidance on Field and Laboratory Methods. EPA Document 430/9-86-004. Office of Marine and Estuarine Protection.
- Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1–20. URL http://www.jstatsoft.org/v21/i12/.
- Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1–29. URL http://www.jstatsoft.org/v40/i01/.
- Wickham, H. (2016a). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.1.0. https://CRAN.R-project.org/package=stringr.
- Wickham, H. (2016b). tidyr: Easily Tidy Data with `spread()` and `gather()` Functions. R package version 0.6.0. https://CRAN.R-project.org/package=tidyr.
- Wickham, H. and R. Francois. (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=dplyr.
- Zeileis, A and G. Grothendieck. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1–27. URL http://www.jstatsoft.org/v14/i06/.

Appendices


Appendix A

Chapter 1. General Introduction

Figures & Tables


Appendix A

FIGURES

Figure A.1

Receiving waters monitoring stations sampled around the Point Loma Ocean Outfall (green) and South Bay Ocean Outfall (pink) as part of the City of San Diego's Ocean Monitoring Program. Light blue shading represents State jurisdictional waters.

Figure A.2

Regional random benthic survey stations sampled during July 2016 as part of the City of San Diego's Ocean Monitoring Program.

Appendix A

TABLES

Table A.1

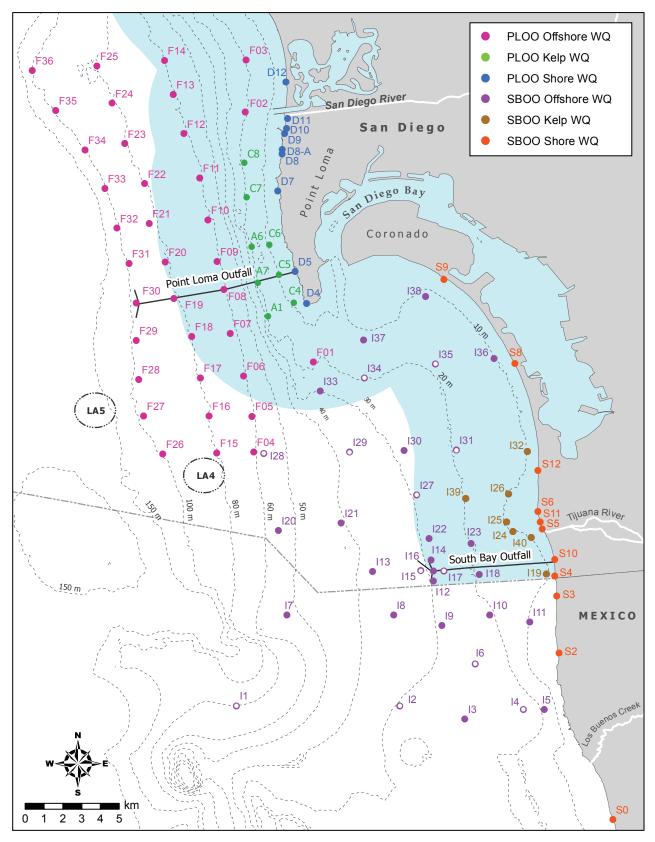
NPDES permits and associated orders issued by the San Diego Water Board for the Point Loma Wastewater Treatment Plant (PLWTP), South Bay Water Reclamation Plant (SBWRP), and South Bay International Wastewater Treatment Plant (SBIWTP) discharges to the Pacific Ocean via the Point Loma Ocean Outfall (PLOO) and South Bay Ocean Outfall (SBOO).

Facility	Outfall	NPDES Permit No.	Order No.	Effective Dates
PLWTP	PLOO	CA0107409	R9-2009-0001	August 1, 2010–July 31, 2015ª
SBWRP	SBOO	CA0109045	R9-2013-0006 ^b	April 4, 2013–April 3, 2018
SBIWTP	SBOO	CA0108928	R9-2014-0009°	August 1, 2014–July 31, 2019

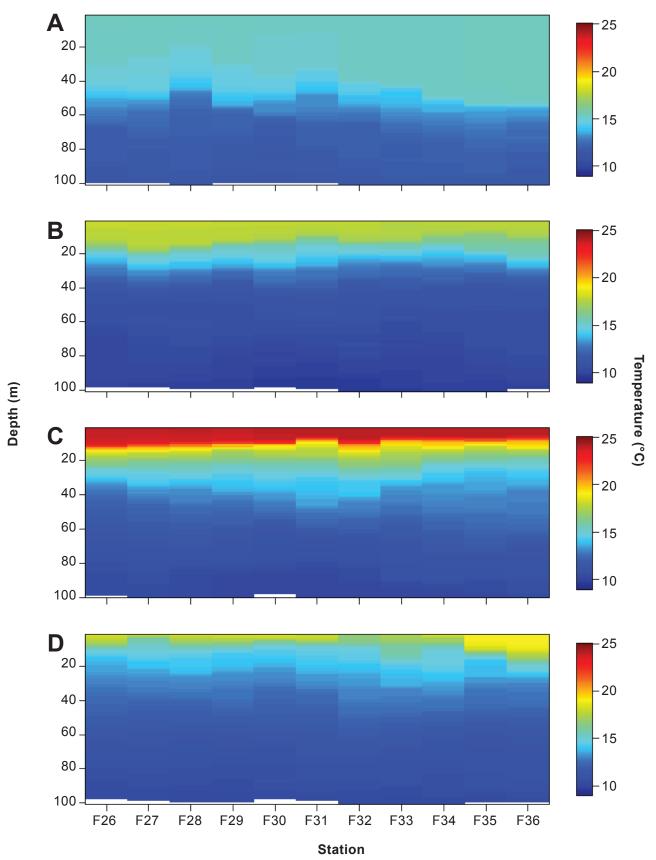
^aOrder R9-2009-0001 administratively extended by San Diego Water Board effective February 19, 2015

^bOrder R9-2013-0006 amended November 12, 2014 by Order R9-2014-0071

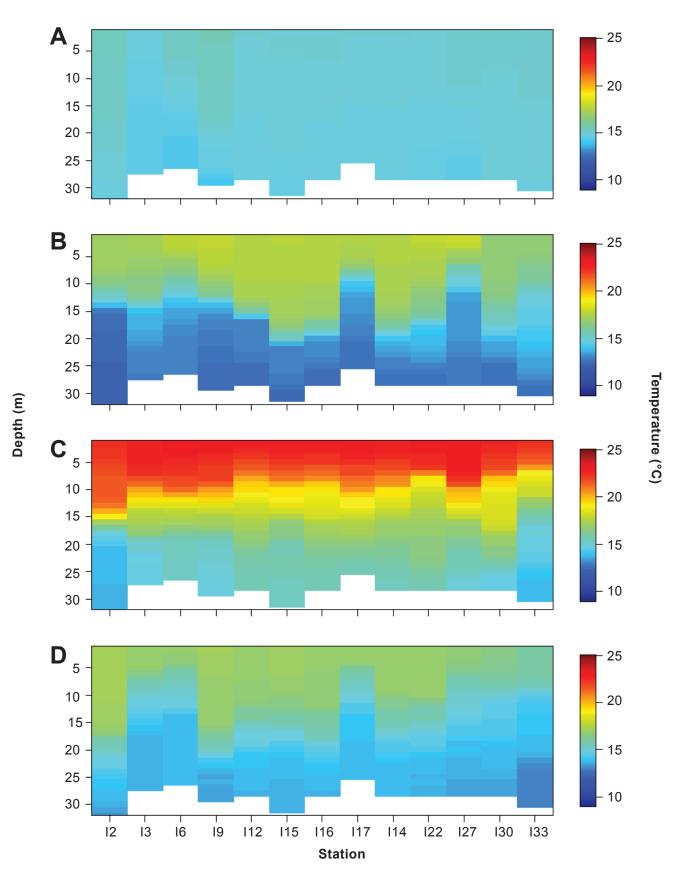
^cOrder R9-2014-0009 amended November 12, 2014 by Order R9-2014-0094

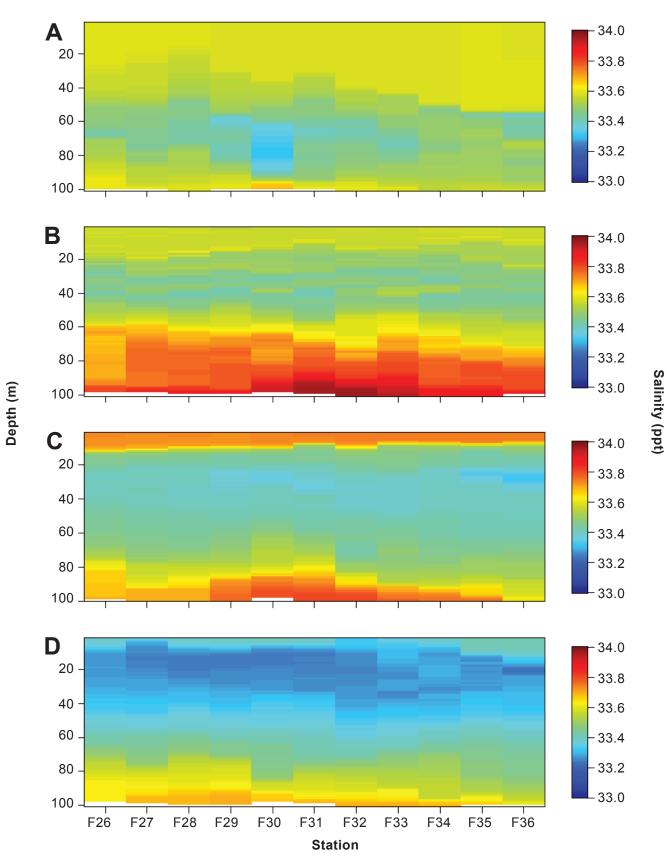

Appendix B

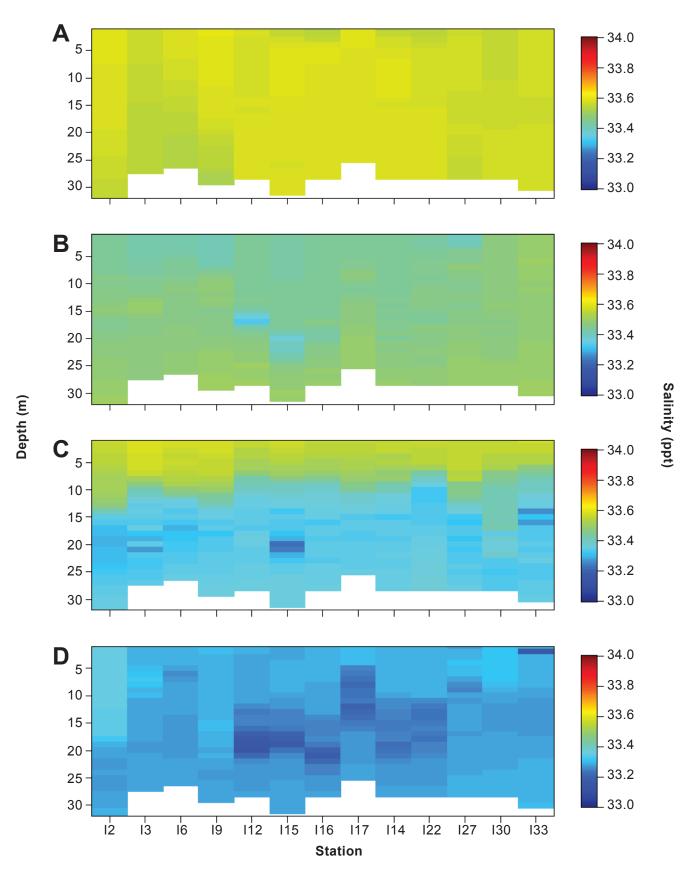
Chapter 2. Water Quality

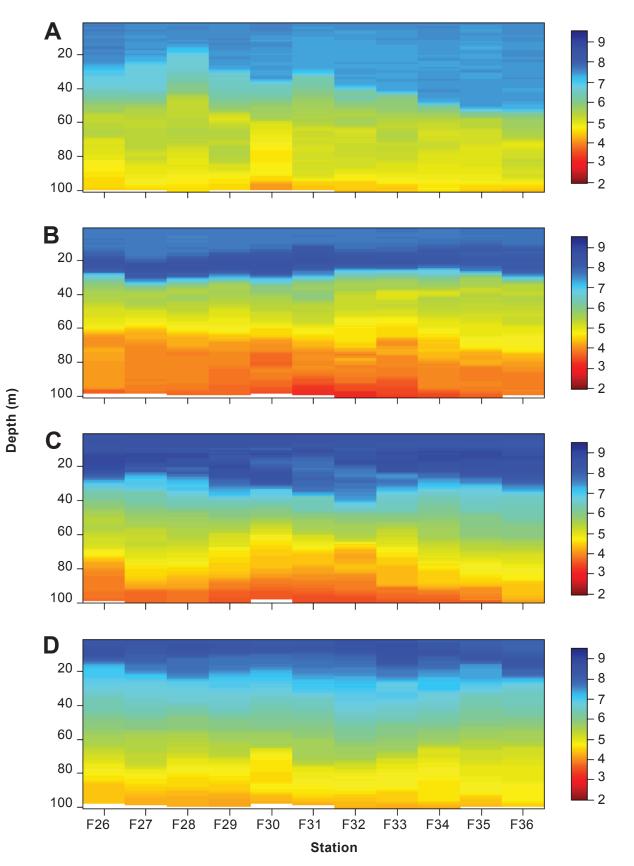

Figures & Tables

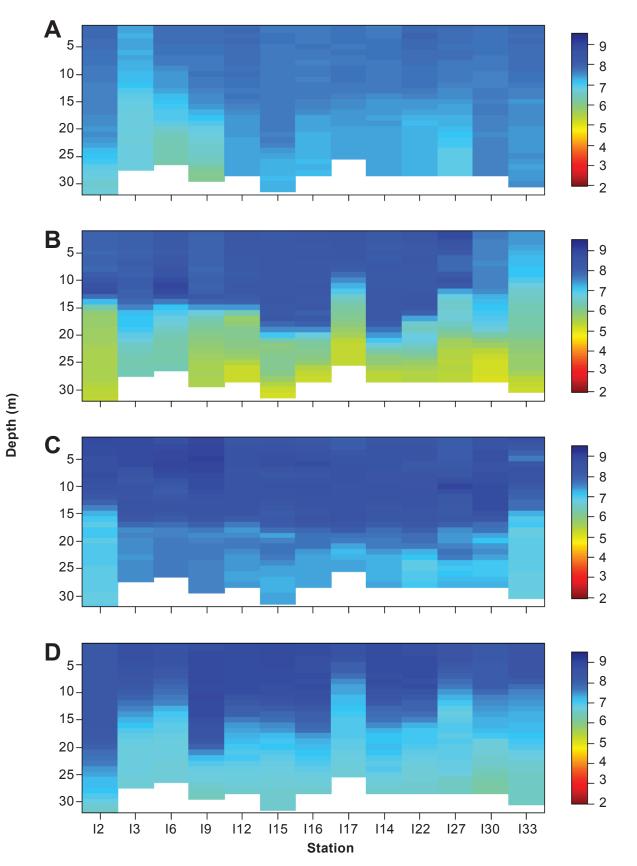
Appendix B


FIGURES

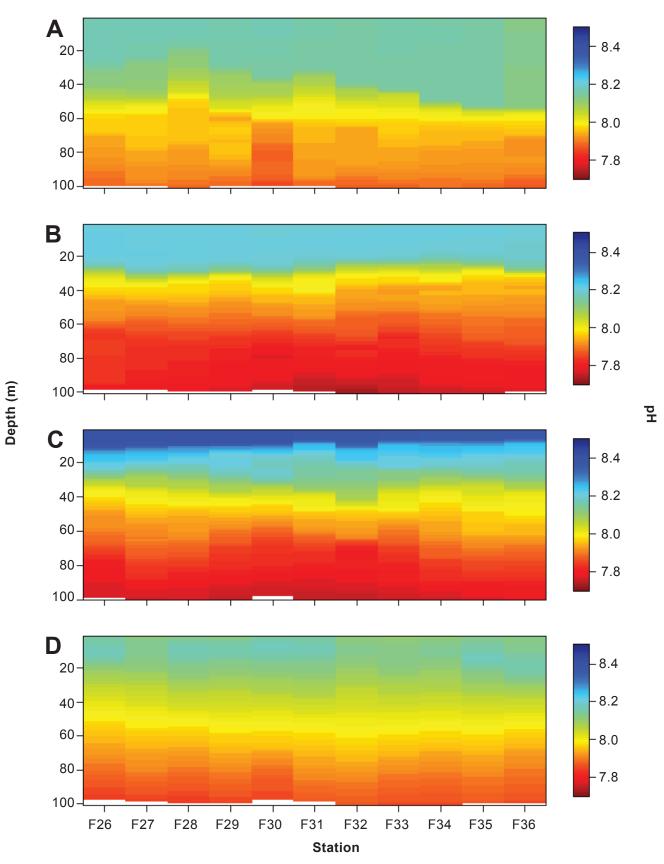

Water quality (WQ) monitoring station locations sampled around the Point Loma and South Bay Ocean Outfalls as part of the City of San Diego's Ocean Monitoring Program. Light blue shading represents State jurisdictional waters. Open circles are sampled by CTD only.


Ocean temperatures recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.

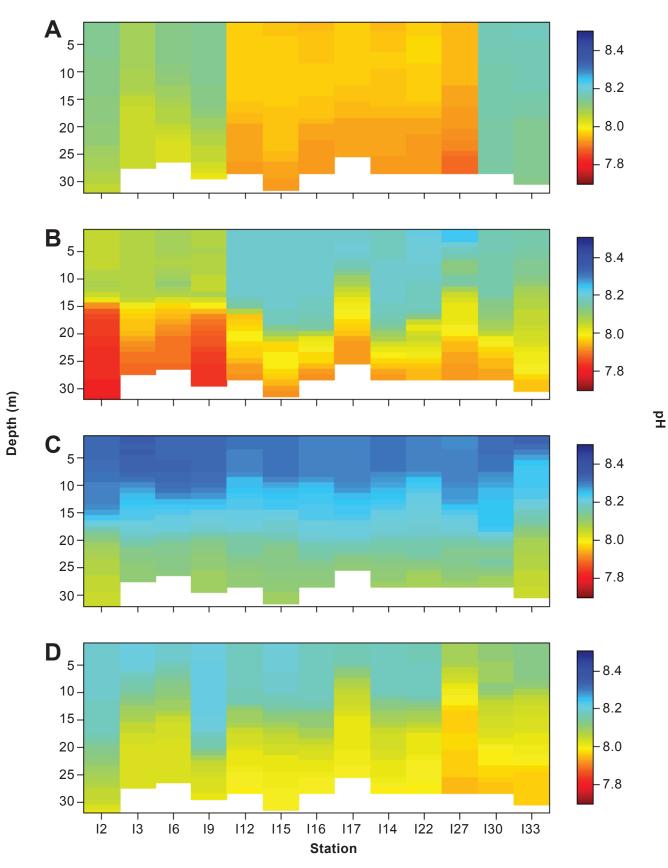

Ocean temperatures recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.


Ocean salinity recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.

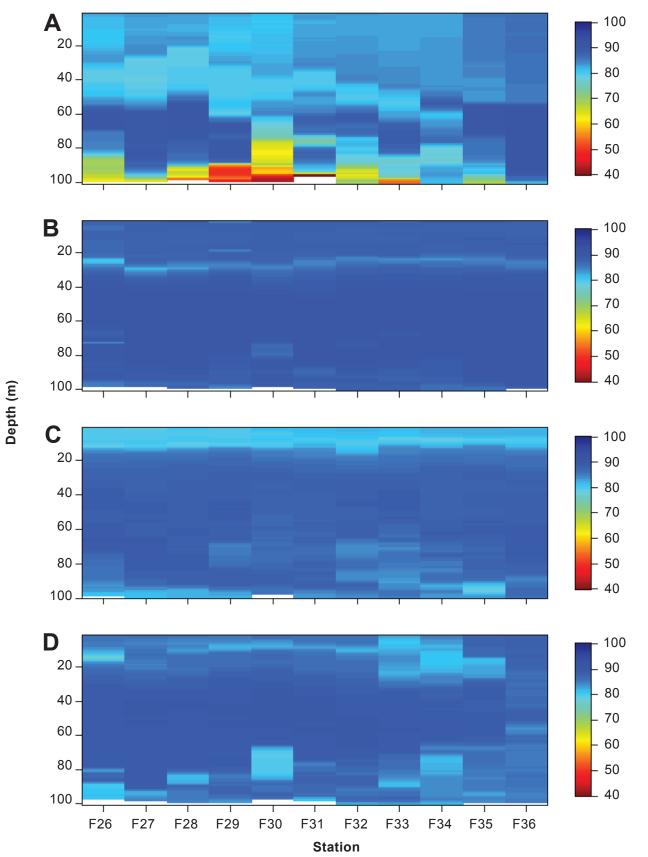
Ocean salinity recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.

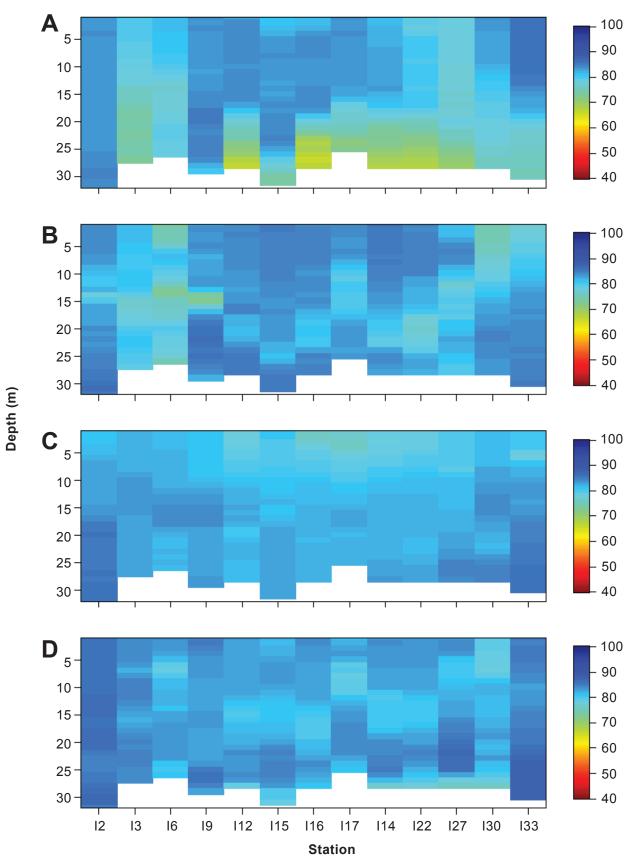


Dissolved oxygen recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.



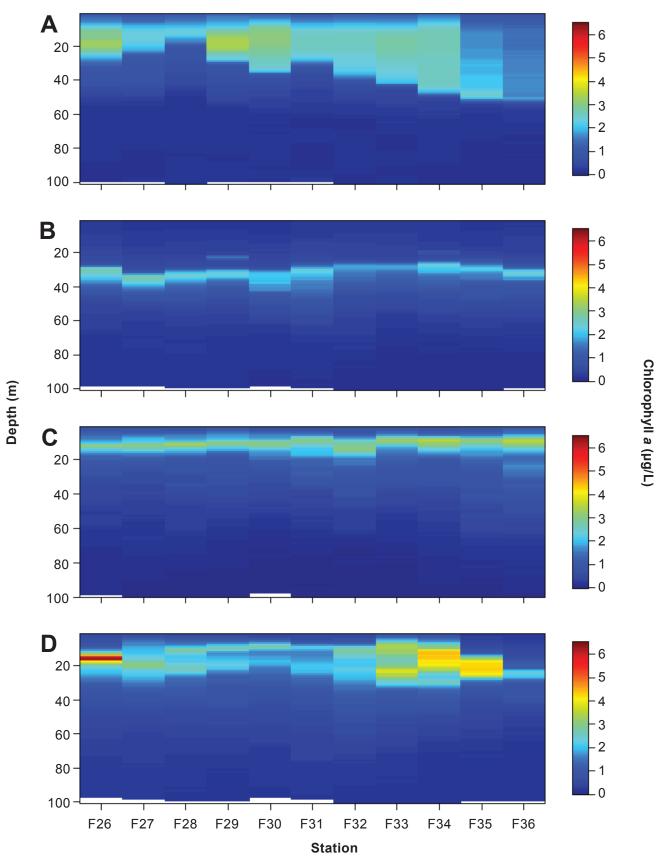
Dissolved oxygen recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.


Dissolved Oxygen (mg/L)


Measurements of pH recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.

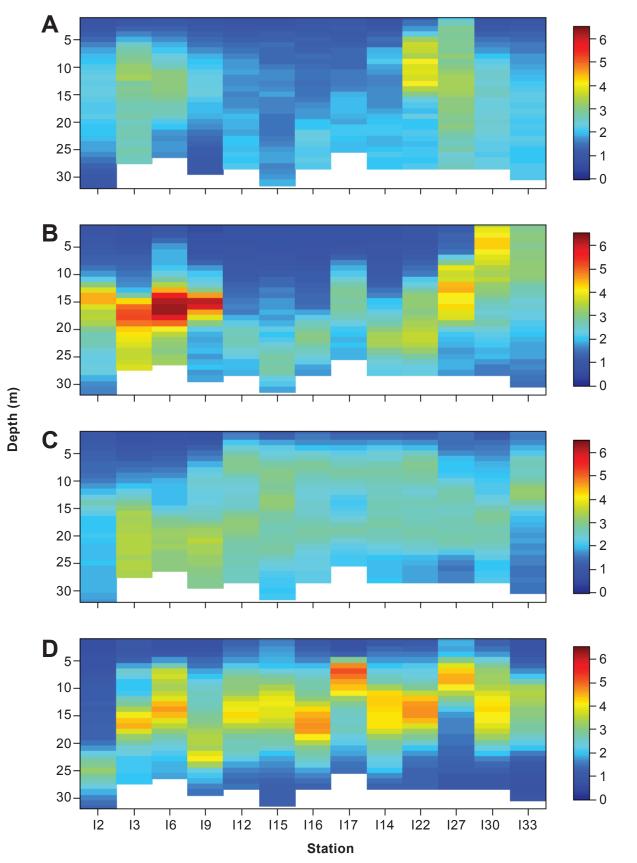
Measurements of pH recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.

Transmissivity recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.



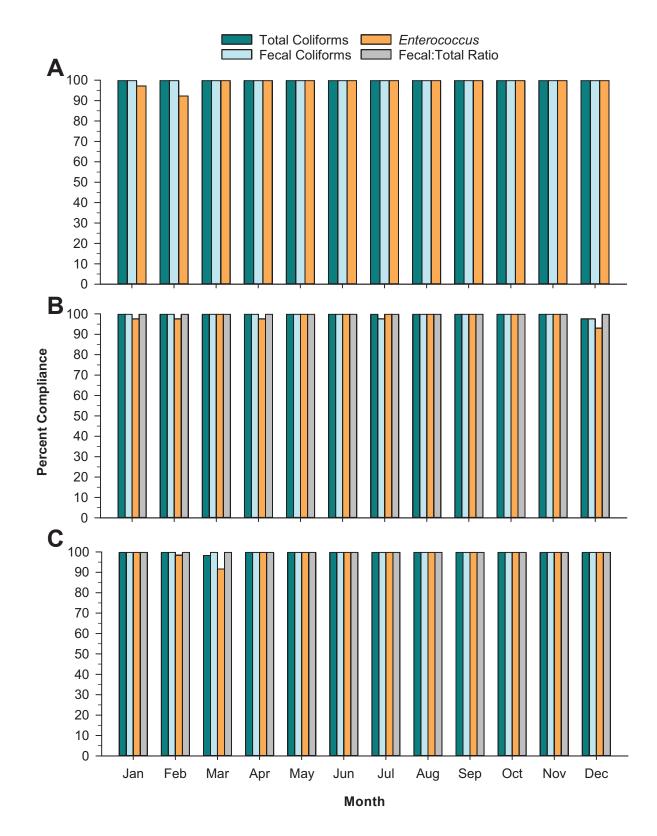
Transmissivity (%)

Figure B.11


Transmissivity recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.

This page intentionally left blank

Concentrations of chlorophyll *a* in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.


This page intentionally left blank

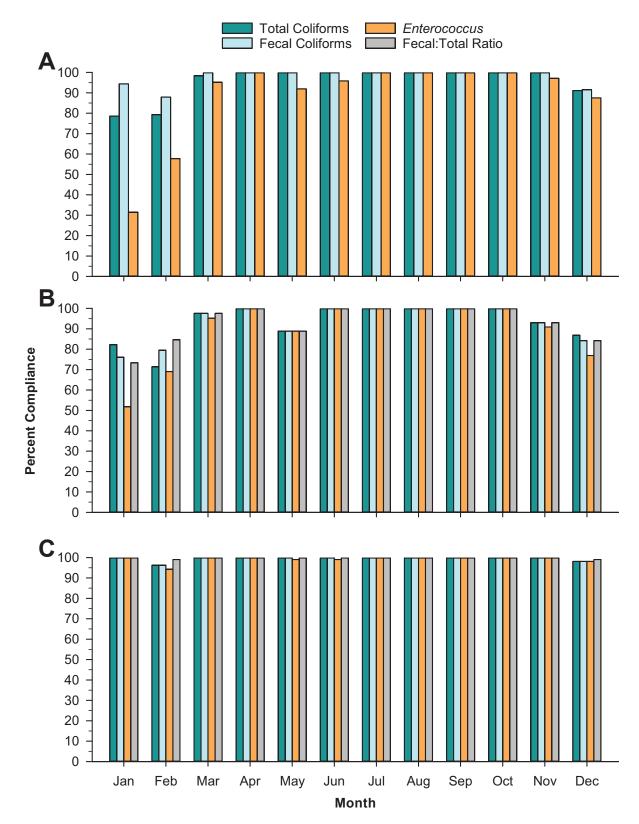
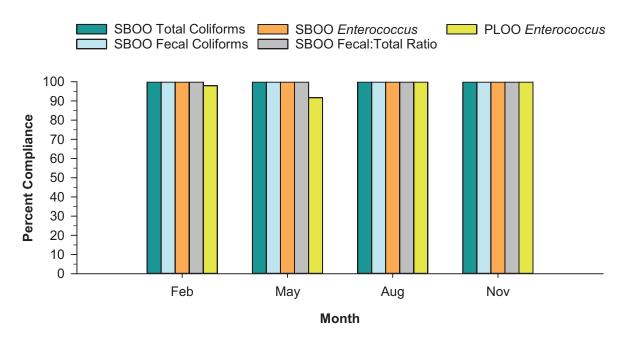
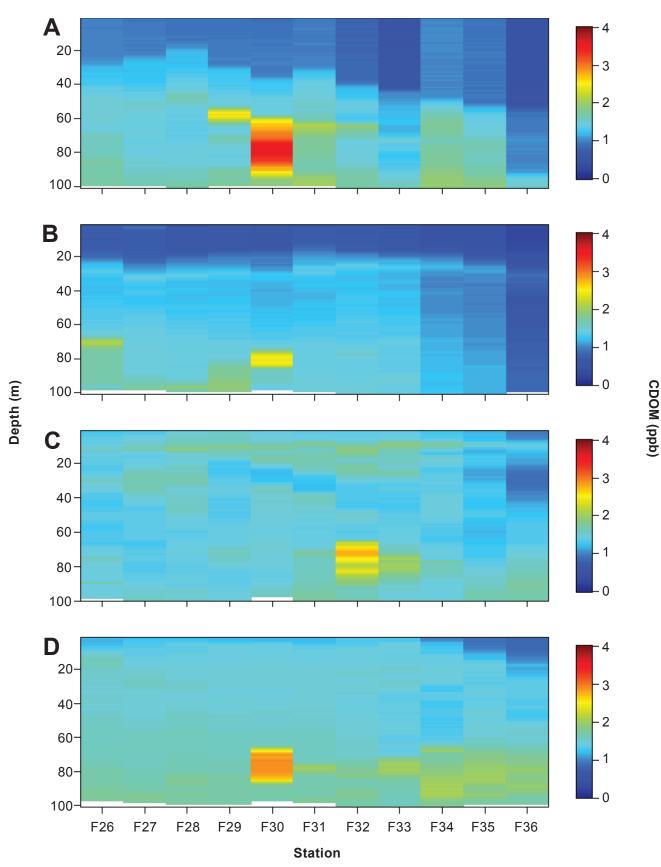

Chlorophyll a (µg/L)

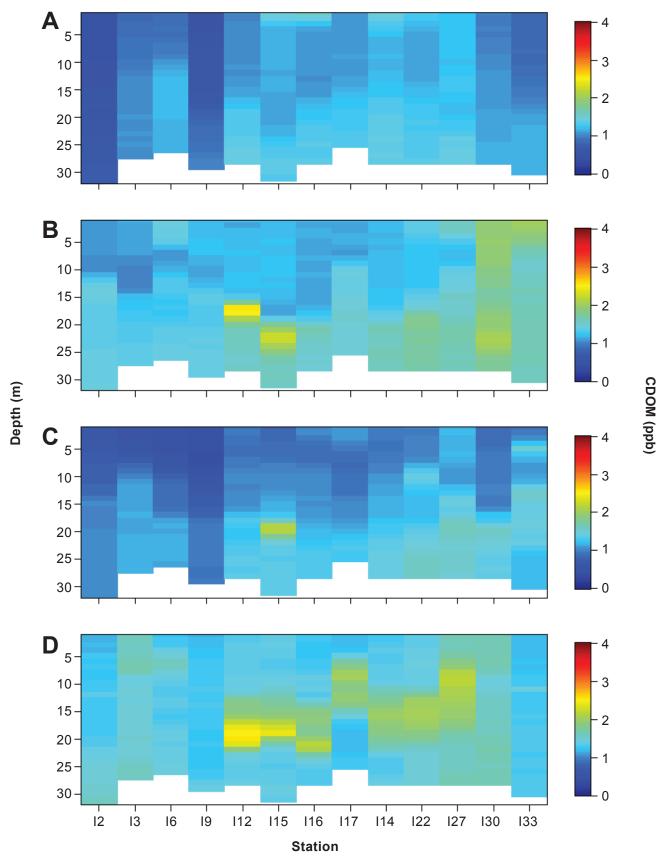
Figure B.13 Concentrations of chlorophyll *a* recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.


This page intentionally left blank

Compliance rates for (A) the three geometric mean water contact standards at the PLOO shore stations, and for the four single sample maximum water contact standards from (B) the PLOO shore stations, and (C) the PLOO kelp stations. Compliance was 100% for the three geometric mean standards at the kelp stations.



Compliance rates for (A) the three geometric mean water contact standards at the SBOO shore stations, and for the four single sample maximum water contact standards from (B) the SBOO shore stations, and (C) the SBOO kelp stations. Compliance was 100% for the three geometric mean standards at the kelp stations.


Compliance rates for the four single sample maximum water contact standards at PLOO and SBOO offshore stations during 2016. Total and fecal coliform bacteria are not sampled at the PLOO offshore stations.

This page intentionally left blank

Figure B.17 Concentrations of CDOM recorded in the PLOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November in 2016. Data were collected on the same day during each survey.

This page intentionally left blank

Figure B.18 Concentrations of CDOM recorded in the SBOO region at outfall depth stations during (A) February, (B) May, (C) August, and (D) November. Data were collected over 3 days during each survey.

This page intentionally left blank

Appendix B

TABLES

Water quality objectives for water contact areas, California Ocean Plan (SWRCB 2012).

A. Bacterial Characteristics – Water Contact Standards; CFU = colony forming units

(a) 30-day Geometric Mean - The following standards are based on the geometric mean of the five most recent samples from each site:

- 1) Total coliform density shall not exceed 1000 CFU/100 mL
- 2) Fecal coliform density shall not exceed 200 CFU/100 mL
- 3) Enterococcus density shall not exceed 35 CFU/100 mL
- (b) Single Sample Maxium:
 - 1) Total coliform density shall not exceed 10,000 CFU/100 mL
 - 2) Fecal coliform density shall not exceed 400 CFU/100 mL
 - 3) Enterococcus density shall not exceed 104 CFU/100 mL
 - 4) Total coliform density shall not exceed 1000 CFU/100 mL when the fecal coliform:total coliform ratio exceeds 0.1
- **B.** Physical Characteristics
 - (a) Floating particulates and oil and grease shall not be visible
 - (b) The discharge of waste shall not cause aesthetically undesirable discoloration of the ocean surface
 - (c) Natural light shall not be significantly reduced at any point outside of the initial dilution zone as the result of the discharge of waste
- C. Chemical Characteristics
 - (a) The dissolved oxygen concentration shall not at any time be depressed more than 10 percent from what occurs naturally, as a result of the discharge of oxygen demanding waste materials
 - (b) The pH shall not be changed at any time more than 0.2 units from that which occurs naturally

Sample dates for quarterly oceanographic surveys conducted during 2016. All stations in each station group were sampled on a single day (see Figure B.1 for stations and locations).

PL	PLOO Sampling Dates					SBOO Sampling Dates					
Station Group	Feb	Мау	Aug	Nov	Station Group	Feb	Мау	Aug	Nov		
Kelp WQ	4	5	11	10	North WQ	11	11	3	3		
18&60-m WQ	3	3	8	8	Mid WQ ^a	10	10	4	1		
80-m WQ	2	4	9	9	South WQ	9	9	2	2		
100-m WQ	5	2	10	7							

^aIncludes kelp stations

Station		F	PLO) Sar	nple	Dept	th (m	I)		Station		SE	300 S	amp	ole D	epth	(m)	
Contour	1	3	9	12	18	25	60	80	98		2	6	9/11	12	18	27	37	55
Kelp Bed										Kelp Bed								
9-m	х	х	х							9-m	х	х	Xa					
18-m	х			х	х					19-m	х			х	х			
Offshore										Offshore								
18-m	х			х	х					9-m	х	х	Xa					
60-m	х					х	х			19-m	х			х	х			
80-m	х					х	Х	х		28-m	х				х	х		
100-m	х					х	х	х	х	38-m	х				х		х	
										55-m	х				х			х

Depths from which seawater samples are collected for bacteriological analysis from kelp and offshore stations.

^a Stations I25, I26, I32, and I40 sampled at 9 m; stations I11, I19, I24, I36, I37, and I38 sampled at 11 m

Summary of PLOO and SBOO reference stations used during 2016 to calculate out-of-range thresholds (see text for details).

Month	Stations
February PLOO SBOO	F01, F02, F03, F04, F05, F06, F07, F25, F27, F28, F33, F36 I1, I2, I3, I6, I7, I8, I9, I10, I13, I20, I21, I28, I29, I30, I31, I33, I34, I35
May PLOO SBOO	F02, F03, F11, F13, F14, F34, F35, F36 I1, I2, I3, I6, I7, I8, I9, I10, I13, I14, I16, I17, I18, I20, I21, I22, I23, I27, I28, I29
August PLOO SBOO	F04, F05, F15, F16, F21 I1, I2, I3, I6, I7, I8, I9, I10, I12, I13, I16, I17, I20, I21, I28, I29
November PLOO SBOO	F02, F03, F04, F05, F06, F07, F08, F09, F10, F11, F12, F13, F14, F15, F16, F17, F18, F20, F21, F22, F23, F24, F25 I1, I2, I3, I6, I7, I8, I9, I13, I18, I20, I21, I28, I29, I30, I31, I33, I34, I35

Summary of temperature, salinity, dissolved oxygen (DO), pH, transmissivity, and chlorophyll *a* for various depth layers as well as the entire water column for all PLOO stations during 2016. For each quarter: $n \ge 834$ (1–20 m), n = 1320 (21–60 m), $n \ge 448$ (61–80 m), $n \ge 220$ (81–100 m). Sample sizes differed due to variations in bottom depth at individual stations.

				Depth (m)		
Temperature (°C)	1–20	21–60	61–80	81–100	1–100
February	min	14.2	11.8	11.5	11.3	11.3
	max	15.7	15.6	13.3	12.3	15.7
	mean	15.2	14.0	12.1	11.8	13.9
May	min	11.8	10.2	10.0	9.7	9.7
	max	18.6	15.5	10.8	10.6	18.6
	mean	16.5	11.7	10.4	10.0	12.8
August	min	14.7	11.4	10.5	10.1	10.1
	max	24.0	16.9	12.5	11.5	24.0
	mean	19.8	13.4	11.4	10.6	14.8
November	min	13.0	11.4	10.7	10.3	10.3
	max	19.1	15.0	12.6	11.5	19.1
	mean	15.8	12.6	11.4	10.7	13.2
Annual	min	11.8	10.2	10.0	9.7	9.7
	max	24.0	16.9	13.3	12.3	24.0
	mean	16.8	12.9	11.3	10.8	13.7
Salinity (ppt)						
February	min	33.52	33.37	33.31	33.32	33.31
	max	33.64	33.60	33.68	33.68	33.68
	mean	33.59	33.52	33.51	33.53	33.54
May	min	33.37	33.41	33.55	33.70	33.37
	max	33.65	33.79	33.81	33.97	33.97
	mean	33.55	33.53	33.71	33.81	33.59
August	min	33.26	33.26	33.41	33.47	33.26
-	max	33.79	33.48	33.64	33.80	33.80
	mean	33.51	33.39	33.48	33.64	33.46
November	min	33.20	33.20	33.35	33.46	33.20
	max	33.42	33.44	33.59	33.70	33.70
	mean	33.30	33.33	33.45	33.59	33.36
Annual	min	33.20	33.20	33.31	33.32	33.20
	max	33.79	33.79	33.81	33.97	33.97
	mean	33.49	33.44	33.54	33.64	33.49

Table B.5 continued

				Depth (m)		
DO (mg/L)		1–20	21–60	61–80	81–100	1–100
February	min	5.9	4.6	4.3	4.2	4.2
	max	7.7	7.5	5.7	5.4	7.7
	mean	7.3	6.2	5.0	4.8	6.2
May	min	4.2	3.5	3.6	3.1	3.1
	max	8.7	8.6	5.0	4.3	8.7
	mean	7.6	5.4	4.2	3.8	5.7
August	min	5.1	4.8	4.2	3.5	3.5
	max	9.2	8.9	5.9	4.8	9.2
	mean	8.0	6.6	5.0	4.1	6.6
November	min	6.1	5.4	4.6	4.2	4.2
	max	10.0	7.9	6.2	5.3	10.0
	mean	8.1	6.3	5.4	4.6	6.6
Annual	min	4.2	3.5	3.6	3.1	3.1
	max	10.0	8.9	6.2	5.4	10.0
	mean	7.8	6.1	4.9	4.4	6.3
pH February	min	8.1	7.9	7.9	7.9	7.9
-	min max	8.1 8.2	7.9 8.2	7.9 8.0	7.9 8.0	7.9 8.2
-						
February	max	8.2	8.2	8.0	8.0	8.2
February	max mean	8.2 8.2	8.2 8.1	8.0 7.9	8.0 7.9	8.2 8.1
February	max mean min	8.2 8.2 7.9	8.2 8.1 7.8	8.0 7.9 7.7	8.0 7.9 7.7	8.2 8.1 7.7
February May	max mean min max	8.2 8.2 7.9 8.2	8.2 8.1 7.8 8.2	8.0 7.9 7.7 7.9	8.0 7.9 7.7 7.8	8.2 8.1 7.7 8.2
February May	max mean min max mean	8.2 8.2 7.9 8.2 8.2	8.2 8.1 7.8 8.2 7.9	8.0 7.9 7.7 7.9 7.8	8.0 7.9 7.7 7.8 7.8	8.2 8.1 7.7 8.2 8.0
February May	max mean min max mean min	8.2 8.2 7.9 8.2 8.2 8.1	8.2 8.1 7.8 8.2 7.9 7.9	8.0 7.9 7.7 7.9 7.8 7.8	8.0 7.9 7.7 7.8 7.8 7.8	8.28.17.78.28.07.8
February May August	max mean min max mean min max	8.2 8.2 7.9 8.2 8.2 8.1 8.4	8.2 8.1 7.8 8.2 7.9 7.9 8.2	8.0 7.9 7.7 7.9 7.8 7.8 8.0	8.0 7.9 7.7 7.8 7.8 7.8 7.8 7.9	 8.2 8.1 7.7 8.2 8.0 7.8 8.4
February May August	max mean min max mean min max mean	 8.2 8.2 7.9 8.2 8.2 8.1 8.4 8.3 	 8.2 8.1 7.8 8.2 7.9 7.9 8.2 8.0 	8.0 7.9 7.7 7.9 7.8 7.8 8.0 7.9	8.0 7.9 7.7 7.8 7.8 7.8 7.8 7.9 7.8	 8.2 8.1 7.7 8.2 8.0 7.8 8.4 8.1
February May August	max mean min max mean min max mean min	 8.2 8.2 7.9 8.2 8.2 8.1 8.4 8.3 8.0 	 8.2 8.1 7.8 8.2 7.9 7.9 8.2 8.0 8.0 	8.0 7.9 7.7 7.9 7.8 7.8 8.0 7.9 7.9	8.0 7.9 7.7 7.8 7.8 7.8 7.8 7.9 7.8 7.8	 8.2 8.1 7.7 8.2 8.0 7.8 8.4 8.1 7.8
pH February May August November Annual	max mean min max mean min max mean min max	 8.2 8.2 7.9 8.2 8.2 8.1 8.4 8.3 8.0 8.3 	 8.2 8.1 7.8 8.2 7.9 7.9 8.2 8.0 8.0 8.0 8.2 	8.0 7.9 7.7 7.9 7.8 7.8 8.0 7.9 7.9 8.0	8.0 7.9 7.7 7.8 7.8 7.8 7.8 7.9 7.8 7.8 7.8 8.0	 8.2 8.1 7.7 8.2 8.0 7.8 8.4 8.1 7.8 8.3
February May August November	max mean min max mean min max mean min max mean	 8.2 8.2 7.9 8.2 8.2 8.1 8.4 8.3 8.0 8.3 8.2 	 8.2 8.1 7.8 8.2 7.9 7.9 8.2 8.0 8.0 8.0 8.2 8.1 	8.0 7.9 7.7 7.9 7.8 7.8 8.0 7.9 7.9 8.0 8.0 8.0	8.0 7.9 7.7 7.8 7.8 7.8 7.8 7.9 7.8 7.8 7.8 8.0 7.9	 8.2 8.1 7.7 8.2 8.0 7.8 8.4 8.1 7.8 8.3 8.1

Table B.5 continued

				Depth (m)		
Transmissivity	(%)	1–20	21–60	61–80	81–100	1–100
February	min	56	63	58	28	28
	max	87	91	91	91	91
	mean	79	82	85	75	81
May	min	61	59	46	23	23
	max	89	90	90	90	90
	mean	85	87	88	88	87
August	min	70	75	77	74	70
C C	max	87	89	89	89	89
	mean	82	88	87	85	86
November	min	1	66	72	70	1
-	max	88	89	89	89	89
	mean	82	87	87	85	85
Annual	min	1	59	46	23	1
	max	89	91	91	91	91
	mean	82	86	87	83	85
Chlorophyll a (0.2	0.2	0.1	0.2	0.1
February	min	0.3	0.2	0.1	0.2	
	may	3.4	2 /	0.5	0.3	
	max	3.4 1.5	3.4	0.5	0.3	3.4
	mean	1.5	0.8	0.2	0.2	3.4 0.9
Мау	mean min	1.5 0.2	0.8 0.2	0.2 0.2	0.2 0.2	3.4 0.9 0.2
May	mean min max	1.5 0.2 8.9	0.8 0.2 10.2	0.2 0.2 0.5	0.2 0.2 0.3	3.4 0.9 0.2 10.2
	mean min max mean	1.5 0.2 8.9 0.9	0.8 0.2 10.2 1.3	0.2 0.2 0.5 0.3	0.2 0.2 0.3 0.2	3.4 0.9 0.2 10.2 0.9
	mean min max mean min	1.5 0.2 8.9 0.9 0.6	0.8 0.2 10.2 1.3 0.2	0.2 0.2 0.5 0.3 0.1	0.2 0.2 0.3 0.2 0.1	3.4 0.9 0.2 10.2 0.9 0.1
	mean min max mean min max	1.5 0.2 8.9 0.9 0.6 6.1	0.8 0.2 10.2 1.3 0.2 3.4	0.2 0.2 0.5 0.3 0.1 0.7	0.2 0.2 0.3 0.2 0.1 0.3	3.4 0.9 0.2 10.2 0.9 0.1 6.1
	mean min max mean min	1.5 0.2 8.9 0.9 0.6	0.8 0.2 10.2 1.3 0.2	0.2 0.2 0.5 0.3 0.1	0.2 0.2 0.3 0.2 0.1	3.4 0.9 0.2 10.2 0.9 0.1
August	mean min max mean min max mean min	1.5 0.2 8.9 0.9 0.6 6.1 2.1 0.3	0.8 0.2 10.2 1.3 0.2 3.4 0.8 0.3	0.2 0.2 0.5 0.3 0.1 0.7 0.2 0.2	0.2 0.2 0.3 0.2 0.1 0.3 0.1 0.2	3.4 0.9 0.2 10.2 0.9 0.1 6.1 1.1 0.2
August	mean min max mean min max mean min max	1.5 0.2 8.9 0.9 0.6 6.1 2.1 0.3 11.9	0.8 0.2 10.2 1.3 0.2 3.4 0.8 0.3 7.0	0.2 0.2 0.5 0.3 0.1 0.7 0.2 0.2 0.7	0.2 0.2 0.3 0.2 0.1 0.3 0.1 0.2 0.4	3.4 0.9 0.2 10.2 0.9 0.1 6.1 1.1 0.2 11.9
August	mean min max mean min max mean min	1.5 0.2 8.9 0.9 0.6 6.1 2.1 0.3	0.8 0.2 10.2 1.3 0.2 3.4 0.8 0.3	0.2 0.2 0.5 0.3 0.1 0.7 0.2 0.2	0.2 0.2 0.3 0.2 0.1 0.3 0.1 0.2	3.4 0.9 0.2 10.2 0.9 0.1 6.1 1.1 0.2
May August November Annual	mean min max mean min max mean min max	1.5 0.2 8.9 0.9 0.6 6.1 2.1 0.3 11.9	0.8 0.2 10.2 1.3 0.2 3.4 0.8 0.3 7.0	0.2 0.2 0.5 0.3 0.1 0.7 0.2 0.2 0.7	0.2 0.2 0.3 0.2 0.1 0.3 0.1 0.2 0.4	3.4 0.9 0.2 10.2 0.9 0.1 6.1 1.1 0.2 11.9
August November	mean min max mean min max min max mean	1.5 0.2 8.9 0.9 0.6 6.1 2.1 0.3 11.9 2.0	0.8 0.2 10.2 1.3 0.2 3.4 0.8 0.3 7.0 1.0	0.2 0.2 0.5 0.3 0.1 0.7 0.2 0.2 0.7 0.4	0.2 0.2 0.3 0.2 0.1 0.3 0.1 0.2 0.4 0.3	3.4 0.9 0.2 10.2 0.9 0.1 6.1 1.1 0.2 11.9 1.2

Summary of temperature, salinity, DO, pH, transmissivity, and chlorophyll *a* for various depth layers as well as the entire water column from all SBOO stations during 2016. For each quarter: n=360 (1–9 m), $n\geq307$ (10–19 m), n=185 (20–28 m), $n\geq87$ (29–38 m), $n\geq72$ (39–55 m). Sample sizes differed due to slight variations in depth at individual stations.

				Dept	h (m)		
Temperature (°C)	1–9	10–19	20–28	29–38	39–55	1–55
February	min	14.5	14.4	14.3	14.3	13.8	13.8
	max	16.0	15.7	15.6	15.5	15.5	16.0
	mean	15.2	15.1	15.0	15.1	14.9	15.1
May	min	13.8	12.1	11.6	11.2	10.6	10.6
	max	18.1	17.5	15.3	12.8	11.8	18.1
	mean	16.6	14.8	12.8	11.9	11.0	14.6
August	min	16.8	14.4	13.3	12.7	11.9	11.9
	max	23.1	21.6	17.0	15.4	13.2	23.1
	mean	21.1	17.5	14.9	13.4	12.4	17.6
November	min	14.2	13.8	13.0	12.5	11.8	11.8
	max	18.0	17.2	15.5	13.8	13.2	18.0
	mean	16.2	15.0	13.9	13.2	12.5	14.9
Annual	min	13.8	12.1	11.6	11.2	10.6	10.6
	max	23.1	21.6	17.0	15.5	15.5	23.1
	mean	17.3	15.6	14.1	13.4	12.7	15.5
	min	33.51	33.54	33.53	33.52	33.54	33.51
	min max	33.51 33.60		33.53 33.60	33.52 33.60		33.51 33.60
			33.54 33.60 33.58			33.54 33.59 33.56	
February	max	33.60	33.60	33.60	33.60	33.59	33.60
February	max mean	33.60 33.58	33.60 33.58	33.60 33.57	33.60 33.57	33.59 33.56	33.60 33.58
February	max mean min	33.60 33.58 33.20	33.60 33.58 33.34	33.60 33.57 33.37	33.60 33.57 33.49	33.59 33.56 33.52	33.60 33.58 33.20
February May	max mean min max	33.60 33.58 33.20 33.51	33.60 33.58 33.34 33.53	33.60 33.57 33.37 33.51	33.60 33.57 33.49 33.54	33.59 33.56 33.52 33.62	33.60 33.58 33.20 33.62
February May	max mean min max mean	33.60 33.58 33.20 33.51 33.46	33.60 33.58 33.34 33.53 33.47	33.60 33.57 33.37 33.51 33.48	33.60 33.57 33.49 33.54 33.51	33.59 33.56 33.52 33.62 33.57	33.60 33.58 33.20 33.62 33.48
February May	max mean min max mean min	33.60 33.58 33.20 33.51 33.46 33.30	33.60 33.58 33.34 33.53 33.47 33.26	33.60 33.57 33.37 33.51 33.48 33.22	33.60 33.57 33.49 33.54 33.51 33.33	33.59 33.56 33.52 33.62 33.57 33.37	33.60 33.58 33.20 33.62 33.48 33.22
February May August	max mean min max mean min max	33.60 33.58 33.20 33.51 33.46 33.30 33.59	33.60 33.58 33.34 33.53 33.47 33.26 33.52	33.60 33.57 33.37 33.51 33.48 33.22 33.38	33.60 33.57 33.49 33.54 33.51 33.33 33.39	33.59 33.56 33.52 33.62 33.57 33.37 33.44	33.60 33.58 33.20 33.62 33.48 33.22 33.59
February May August	max mean min max mean min max mean	33.60 33.58 33.20 33.51 33.46 33.30 33.59 33.50	33.60 33.58 33.34 33.53 33.47 33.26 33.52 33.37	33.60 33.57 33.51 33.48 33.22 33.38 33.34	33.60 33.57 33.49 33.54 33.51 33.33 33.39 33.36	33.59 33.56 33.52 33.62 33.57 33.37 33.44 33.40	33.60 33.58 33.20 33.62 33.48 33.22 33.59 33.41
February May August	max mean min max mean min max mean min	33.60 33.58 33.20 33.51 33.46 33.30 33.59 33.50 33.18	33.60 33.58 33.34 33.53 33.47 33.26 33.52 33.37 33.17	33.60 33.57 33.51 33.48 33.22 33.38 33.34 33.16	33.60 33.57 33.49 33.54 33.51 33.33 33.39 33.36 33.27	33.59 33.56 33.52 33.62 33.57 33.37 33.44 33.40 33.30	33.60 33.58 33.20 33.62 33.48 33.22 33.59 33.41 33.16
Salinity (ppt) February May August November Annual	max mean min max mean min max mean min max	33.60 33.58 33.20 33.51 33.46 33.30 33.59 33.50 33.18 33.49	33.60 33.58 33.34 33.53 33.47 33.26 33.52 33.37 33.17 33.39	33.60 33.57 33.51 33.48 33.22 33.38 33.34 33.16 33.30	33.60 33.57 33.49 33.54 33.51 33.33 33.39 33.36 33.27 33.33	33.59 33.56 33.52 33.62 33.57 33.37 33.44 33.40 33.30 33.41	33.60 33.58 33.20 33.62 33.48 33.22 33.59 33.41 33.16 33.49
February May August	max mean min max mean min max mean min max mean	33.60 33.58 33.20 33.51 33.46 33.30 33.59 33.50 33.18 33.49 33.30	33.60 33.58 33.34 33.53 33.47 33.26 33.52 33.37 33.17 33.39 33.28	33.60 33.57 33.51 33.48 33.22 33.38 33.34 33.16 33.30 33.28	33.60 33.57 33.49 33.54 33.51 33.33 33.39 33.36 33.27 33.33 33.30	33.59 33.56 33.52 33.62 33.57 33.37 33.44 33.40 33.30 33.41 33.34	33.60 33.58 33.20 33.62 33.48 33.22 33.59 33.41 33.16 33.49 33.29

				Dept	h (m)		
DO (mg/L)		1–9	10–19	20–28	29–38	39–55	1–55
February	min	7.0	6.2	6.1	6.1	5.9	5.9
	max	8.4	8.3	7.8	7.6	7.4	8.4
	mean	7.7	7.5	7.3	7.1	7.0	7.5
May	min	4.8	3.7	4.9	4.7	4.3	3.7
	max	8.9	9.0	7.4	5.5	4.9	9.0
	mean	7.7	7.0	5.8	5.0	4.6	6.7
August	min	5.3	5.2	6.4	6.0	5.3	5.2
	max	9.4	9.2	8.7	7.6	6.5	9.4
	mean	8.2	7.9	7.3	6.6	5.8	7.6
November	min	6.1	5.8	6.2	6.1	5.7	5.7
	max	8.9	8.9	8.0	7.0	6.7	8.9
	mean	8.2	7.5	6.9	6.5	6.2	7.5
Annual	min	4.8	3.7	4.9	4.7	4.3	3.7
	max	9.4	9.2	8.7	7.6	7.4	9.4
	mean	7.9	7.5	6.8	6.3	5.9	7.3

рН							
February	min	7.9	7.9	7.9	7.9	8.0	7.9
	max	8.2	8.2	8.2	8.1	8.1	8.2
	mean	8.1	8.1	8.1	8.1	8.1	8.1
May	min	7.9	7.8	7.8	7.7	7.7	7.7
	max	8.3	8.2	8.1	8.0	7.9	8.3
	mean	8.1	8.0	7.9	7.8	7.8	8.0
August	min	8.1	8.0	8.0	8.0	7.9	7.9
	max	8.4	8.3	8.2	8.1	8.0	8.4
	mean	8.3	8.2	8.1	8.0	8.0	8.2
November	min	7.9	7.9	8.0	8.0	7.9	7.9
	max	8.2	8.2	8.2	8.1	8.0	8.2
	mean	8.1	8.1	8.0	8.0	8.0	8.1
Annual	min	7.9	7.8	7.8	7.7	7.7	7.7
	max	8.4	8.3	8.2	8.1	8.1	8.4
	mean	8.1	8.1	8.0	8.0	7.9	8.1

Table B.6 continued

Table B.6 continued

				Dept	h (m)		
Transmissivity	· (%)	1–9	10–19	20–28	29–38	39–55	1–55
February	min	49	7	66	74	84	7
	max	86	86	87	88	88	88
	mean	78	78	80	85	85	79
May	min	41	39	73	81	85	39
	max	88	89	89	89	89	89
	mean	77	80	84	87	87	81
August	min	69	66	80	82	87	66
	max	84	86	87	88	88	88
	mean	79	82	84	86	87	82
November	min	60	59	73	78	86	59
	max	88	88	88	89	89	89
	mean	81	81	84	87	88	83
Annual	min	41	7	66	74	84	7
	max	88	89	89	89	89	89
	mean	79	80	83	86	87	81

Chlorophyll a (µg/L)

Chiorophyn a ((µg/⊏)						
February	min	0.7	1.4	1.1	0.8	0.6	0.6
	max	5.8	7.9	3.1	2.5	1.6	7.9
	mean	2.0	2.6	2.1	1.5	1.2	2.1
May	min	0.5	0.7	0.9	1.0	0.5	0.5
	max	17.3	6.3	4.3	2.3	2.1	17.3
	mean	2.5	2.7	2.2	1.4	0.9	2.3
August	min	0.7	1.5	1.4	0.9	0.5	0.5
	max	4.3	4.5	4.3	3.5	1.3	4.5
	mean	2.1	2.7	2.5	1.7	0.8	2.2
November	min	0.4	0.6	0.9	0.7	0.4	0.4
	max	7.7	8.1	5.2	1.9	0.9	8.1
	mean	2.1	3.4	2.1	1.1	0.7	2.3
Annual	min	0.4	0.6	0.9	0.7	0.4	0.4
	max	17.3	8.1	5.2	3.5	2.1	17.3
	mean	2.2	2.8	2.2	1.4	0.9	2.2

Summary of elevated bacteria densities in samples collected from PLOO shore, kelp, and offshore stations during 2016. Bold values exceed benchmarks for total coliform (>10,000 CFU/100 mL), fecal coliform (>400 CFU/100 mL), *Enterococcus* (>104 CFU/100 mL), and/or the FTR criterion (total coliforms > 1000 CFU/100 mL and F:T > 0.10).

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
Shore Stations						
D8	28 Jan 16	_	660	130	7000	0.20
D8	9 Feb 16	—	20	4	6200	0.20
D11	3 Apr 16	_	180	6	500	0.03
D8-A	21 Jul 16	—	960	800	4	0.83
D10	12 Dec 16	—	740	500	30	0.68
D10	24 Dec 16	_	680	40	220	0.06
D11	24 Dec 16	—	16,000	400	2000	0.03
D12	24 Dec 16	_	400	60	120	0.15
Kelp Stations						
A1	20 Feb 16	1	2	2	1200	1.00
A1	20 Feb 16	18	360	36	2200	0.10
A1	10 Mar 16	12	720	32	340	0.04
A1	10 Mar 16	18	13,000	76	960	0.01
A6	10 Mar 16	18	14,000	82	700	0.01
A7	10 Mar 16	12	260	10	120	0.04
A7	10 Mar 16	18	1000	46	720	0.05
A1ª	12 Mar 16	18	220	_	120	
A7ª	12 Mar 16	18		—	180	
A6	14 Mar 16	18	120	10	160	0.08
A7	14 Mar 16	12	280	2	130	0.01
A7	14 Mar 16	18	160	10	110	0.06
Offshore Stations						
F20	2 Feb 16	60	_	_	320	
F21	2 Feb 16	60	—	—	320	
F29	5 Feb 16	60	_	_	880	
F30	5 Feb 16	80	_	_	760	
F31	5 Feb 16	80	_	_	110	
F33	5 Feb 16	80	—	_	280	
F26	2 May 16	80	_	_	160	
F26	2 May 16	98	_	_	110	
F27	2 May 16	98	_	_	260	

^a Resample

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
F28	2 May 16	98			120	
F29	2 May 16	80	_	—	320	_
F29	2 May 16	98	_	—	420	_
F30	2 May 16	80	—	—	820	—
F05	3 May 16	60	_	_	120	_
F06	3 May 16	60	—	—	960	—
F15	4 May 16	80	_	_	520	_
F16	4 May 16	80	—	—	520	—
F17	4 May 16	80	—	—	500	—
F18	4 May 16	80	—	—	420	—
F19	4 May 16	80	—	—	380	—
F20	4 May 16	80	_	_	220	
F32	10 Aug 16	80	_	_	1200	_
F33	10 Aug 16	80	—	—	240	—
F34	10 Aug 16	80	_	—	110	
F31	7 Nov 16	80	_	_	110	_
F32	7 Nov 16	80	—	—	110	—
F33	7 Nov 16	80	—	—	340	—
F34	7 Nov 16	80	—	—	200	—
F35	7 Nov 16	80	_	_	120	_

Table B.7 continued

Summary of elevated bacteria densities in samples collected from SBOO shore, kelp, and offshore stations during 2016. Bold values exceed benchmarks for total coliform (>10,000 CFU/100 mL), fecal coliform (>400 CFU/100 mL), *Enterococcus* (>104 CFU/100 mL), and/or the FTR criterion (total coliforms > 1000 CFU/100 mL and F:T > 0.10).

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
Shore Stations Sout	th of USA/Mexico	Border				
S0	5 Jan 16	_	1800	180	580	0.10
S2	5 Jan 16	_	15,000	2200	4200	0.15
S3	5 Jan 16	—	16,000	3200	3400	0.20
S0	12 Jan 16	_	400	34	120	0.09
S0	19 Jan 16	_	800	36	240	0.05
S0	2 Feb 16	_	10,000	360	560	0.04
S3	2 Feb 16	—	16,000	1800	2600	0.11
S0	9 Feb 16		4200	320	760	0.08
S3	9 Feb 16	_	9400	440	160	0.05
S0	23 Feb 16	_	200	290	200	1.45
S0	1 Mar 16	—	1800	380	860	0.21
S0	8 Mar 16	_	2800	180	800	0.06
S2	8 Mar 16	—	1400	120	180	0.09
SO	15 Mar 16	_	2800	140	740	0.05
S0	29 Mar 16	—	4000	220	260	0.06
S0	5 Apr 16	—	960	72	180	0.08
S0	26 Apr 16	—	4800	120	1400	0.03
S2	17 May 16	_	320	22	420	0.07
S0	24 May 16	—	2200	160	700	0.07
S0	21 Jun 16	—	320	100	240	0.31
S0	5 Jul 16	—	16,000	2400	4000	0.15
S2	19 Jul 16	_	64	32	340	0.50
S3	19 Jul 16		2	2	260	1.00
SO	2 Aug 16	—	5400	560	1200	0.10
S0	16 Aug 16	_	8200	80	3200	0.01

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
S2	20 Sep 16	_	3000	180	2400	0.06
S3	20 Sep 16	—	16,000	5600	9600	0.35
S0	27 Sep 16	—	4800	120	440	0.03
S0	4 Oct 16	—	7600	220	780	0.03
S0	11 Oct 16	_	6200	100	380	0.02
S2	11 Oct 16	—	240	12	110	0.05
S0	18 Oct 16		4000	240	120	0.06
S2	18 Oct 16	_	200	96	320	0.48
S3	18 Oct 16	—	1000	96	560	0.10
SO	25 Oct 16	_	380	120	160	0.32
SO	1 Nov 16	_	200	100	190	0.50
S3	8 Nov 16	—	1500	110	140	0.07
S0	15 Nov 16	—	2800	120	240	0.04
S0	22 Nov 16	_	1600	20	130	0.01
S3	22 Nov 16	—	5200	240	200	0.05
SO	29 Nov 16	_	1800	60	120	0.03
S0	6 Dec 16	—	800	62	110	0.08
S0	27 Dec 16	_	740	62	320	0.08
S3	27 Dec 16	—	120	20	120	0.17
Shore Stations Nort	h of USA/Mexico	Border				
S10	5 Jan 16	—	6200	1000	780	0.16
S11	5 Jan 16	—	16,000	12,000	12,000	0.75
S12	5 Jan 16		16,000	8200	5400	0.51
S4	5 Jan 16	—	16,000	1400	2400	0.09
S5	5 Jan 16	—	16,000	12,000	12,000	0.75
S6	5 Jan 16	—	16,000	12,000	7600	0.75
S8	5 Jan 16	—	2600	360	180	0.14
S9	5 Jan 16	—	3600	520	360	0.14
S10ª	7 Jan 16	—	16,000	8200	12,000	0.51
S11ª	7 Jan 16	—	3200	340	1600	0.11
S12ª	7 Jan 16	—	16,000	1600	5200	0.10
S4 ^a	7 Jan 16	—	2800	120	980	0.04

^aResample

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
S5ª	7 Jan 16		4000	60	1200	0.02
S6ª	7 Jan 16	—	4400	220	800	0.05
S8ª	7 Jan 16	—	7600	580	1400	0.08
S10ª	8 Jan 16		16,000	12,000	12,000	0.75
S11ª	8 Jan 16	—	1000	200	460	0.20
S12ª	8 Jan 16	—	1800	160	760	0.09
S4ª	8 Jan 16	—	_	_	12,000	
S5ª	8 Jan 16	—	_	_	160	
S6ª	8 Jan 16		—	—	480	
S10ª	10 Jan 16	_	1200	320	160	0.27
S11ª	10 Jan 16	—	1800	320	100	0.18
S12ª	10 Jan 16	—	_	_	120	
S5ª	10 Jan 16	—	_	—	280	
S6ª	10 Jan 16	_	—	—	140	_
S5	19 Jan 16	_	5600	160	140	0.03
S10	2 Feb 16	_	16,000	3000	16,000	0.19
S4	2 Feb 16	—	16,000	4000	3400	0.25
S5	2 Feb 16	_	16,000	5000	13,000	0.31
S10ª	4 Feb 16	_	16,000	3200	3000	0.20
S4ª	4 Feb 16	—	5800	80	360	0.01
S5ª	4 Feb 16	—	16,000	12,000	12,000	0.75
S10ª	5 Feb 16	—	16,000	420	720	0.03
S4 ^a	5 Feb 16		_	_	620	
S5ª	5 Feb 16		16,000	8200	12,000	0.51
S10ª	7 Feb 16	_	16,000	240	400	0.02
S4ª	7 Feb 16	—	—	—	140	
S5ª	7 Feb 16	_	16,000	540	880	0.03
S10	9 Feb 16	—	16,000	400	680	0.03
S10ª	11 Feb 16	—	16,000	—	40	
S10ª	12 Feb 16	_	16,000	_	_	
S4	8 Mar 16	_	1000	72	110	0.07
S5	15 Mar 16	—	16,000	2600	600	0.16
S11	10 May 16	_	16,000	11,000	10,000	0.69

Table B.8 continued

^aResample

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
S5	10 May 16	_	16,000	12,000	12,000	0.75
S6	10 May 16	—	16,000	1800	880	0.11
S5ª	12 May 16	—	16,000	7000	8800	0.44
S5ª	13 May 16	_	16,000	6400	1800	0.40
S10	22 Nov 16	_	16,000	4600	3000	0.29
S4	22 Nov 16	—	9200	400	380	0.04
S5	22 Nov 16	—	16,000	12,000	12,000	0.75
S5ª	23 Nov 16	_	16,000	12,000	6600	0.75
S5	6 Dec 16	—	16,000	2400	600	0.15
S5ª	8 Dec 16	—	2600	300	30	0.12
S5	20 Dec 16	—	12,000	540	120	0.05
S5ª	22 Dec 16	—	16,000	12,000	12,000	0.75
S5ª	24 Dec 16	—	5200	580	1300	0.11
S5ª	26 Dec 16	—	16,000	8400	12,000	0.53
S5	27 Dec 16	_	16,000	4400	5000	0.28
S6	27 Dec 16	—	280	32	110	0.11
S5ª	29 Dec 16	—	1800	140	130	0.08
S5ª	30 Dec 16	—	—	_	2800	_
Kelp Stations						
124	10 Feb 16	2	16,000	1200	360	0.08
124	10 Feb 16	6	13,000	760	80	0.06
125	10 Feb 16	2	16,000	960	280	0.06
125	10 Feb 16	6	5200	240	120	0.05
125	10 Feb 16	9	1500	140	120	0.09
139	10 Feb 16	2	1200	160	66	0.13
140	10 Feb 16	2	17,000	1200	220	0.07
140	10 Feb 16	6	2600	200	130	0.08
124	10 May 16	2	2800	82	120	0.03
119	4 Jun 16	6	660	54	120	0.08

^aResample

Station Group	Date	Depth (m)	Total	Fecal	Entero	F:T
125	1 Dec 16	6	11,000	500	110	0.05
125	1 Dec 16	9	1800	240	48	0.13
119	17 Dec 16	2	14,000	600	340	0.04
Offshore Stations						
15	9 Feb 16	2	700	70	110	0.10
15	9 Feb 16	6	1100	300	100	0.27
15	9 Feb 16	11	2000	240	300	0.12

Summary of ammonia concentrations in samples collected from the 23 PLOO kelp bed and offshore stations located within State jurisdictional waters during 2016. Data include the number of samples per month (n) and detection rate, as well as the minimum, maximum, and mean^a detected concentrations for each month. The method detection limit for ammonia=0.01 mg/L; nd=not detected.

	Feb	Мау	Aug	Nov
9-m Depth Contour (n = 9)				
Detection Rate (%)	0	22	22	0
Min	—	nd	nd	
Max	—	0.02	0.01	
Mean	—	0.02	0.01	
18-m Depth Contour (n=24)				
Detection Rate (%)	4	0	4	4
Min	nd	_	nd	nd
Max	0.01	_	0.01	0.02
Mean	0.01	_	0.01	0.02
<i>60-m Depth Contour</i> (n = 27)				
Detection Rate (%)	15	4	0	0
Min	nd	nd	_	_
Max	0.04	0.02	_	_
Mean	0.02	0.02	_	_
<i>80-m Depth Contour</i> (n = 12)				
Detection Rate (%)	42	8	25	0
Min	nd	nd	nd	—
Max	0.05	0.01	0.02	
Mean	0.02	0.01	0.01	_

^aMinimum and maximum values were based on all samples whereas means were calculated on detected values only

Summary of total suspended solids (TSS) and oil and grease (O&G) concentrations in samples collected from the SBOO kelp bed and other offshore stations during 2016. Data include the number of samples per month (n) and detection rate, as well as the minimum, maximum, and mean^a of detected concentrations for each month. The method detection limit=0.2 mg/L for both TSS and O&G with the exception of O&G samples analyzed in August when the method detection limit was 5.1 mg/L; nd=not detected.

	Feb	Мау	Aug	Nov
Kelp Bed Stations				
Total Suspended Solids (n=21)				
Detection Rate (%)	100	90	67	71
Min	3.5	nd	nd	nd
Max	24.8	11.3	7.3	10.0
Mean	7.1	5.0	2.4	3.5
Oil and Grease (n=7)				
Detection Rate (%)	0	0	0	0
Min	_			_
Max	_			_
Mean	—	—	—	—
Non-Kelp Bed Stations				
Total Suspended Solids (n=63)				
Detection Rate (%)	92	73	30	22
Min	nd	nd	nd	nd
Мах	9.6	8.7	3.6	5.5
Mean	4.3	3.0	1.0	0.9
<i>Oil and Grease</i> (n=21)				
Detection Rate (%)	0	0	0	0
Min	_	_	_	_
Max	_	_	_	_
Mean	_	—	_	_

^aMinimum and maximum values were based on all samples whereas means were calculated on detected values only

~	
Ω	
Φ	
ρ	
J.	

Summary of oceanographic data within potential detected plume at PLOO offshore stations and corresponding reference values during 2016. Plume depth is the minimum depth at which CDOM exceeds the 95th percentile while plume width is the number of meters across which that exceedance occurs. Out-of-range values are indicated with an asterisk. MC=meets criteria (=bold rows; see Materials and Methods); DO=dissolved oxygen; XMS = transmissivity; SD = standard deviation; CI = confidence interval.

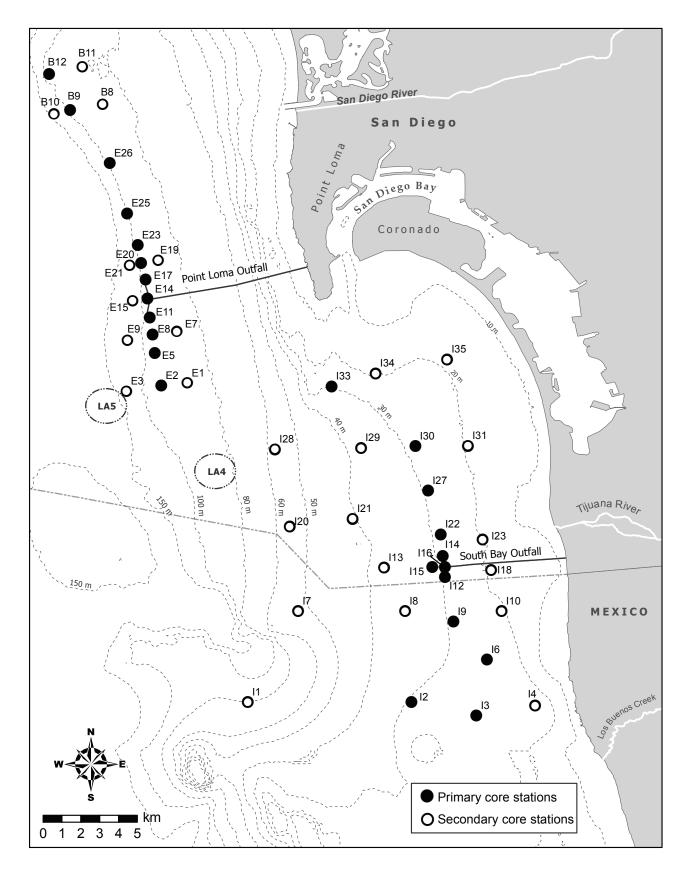
				Poten	Potential Plume				Reference	ce
Station	Date	Depth (m)	Width (m)	MC	Mean DO	Mean pH	Mean XMS	DO (Mean-SD)	pH (Mean)	XMS (Mean -95% CI)
F19 ^a	2-Feb-16	50	8	۲	5.1	8.0	87	5.2	8.0	78
F20ª	2-Feb-16	53	14	≻	4.8	7.9	86	5.2	8.0	81
F21	2-Feb-16	44	23	≻	4.7	7.9	84	5.1	8.0	83
F22	2-Feb-16	48	19	≻	4.8	8.0	84	5.1	8.0	80
F23	2-Feb-16	54	7	≻	5.0	8.0	85	5.2	8.0	77
F29	5-Feb-16	55	ω	≻	5.2	8.0	81	5.3	8.0	80
F30	5-Feb-16	60	37	≻	4.8	7.9	*69	5.0	7.9	80
F31	5-Feb-16	63	11	≻	5.1	8.0	80	5.0	8.0	80
F34	5-Feb-16	94	5	≻	4.7	7.9	83	4.7	7.9	61
F26	2-May-16	68	28	≻	4.2	7.8	89	4.1	7.8	89
F27	2-May-16	93	ო	≻	3.9	7.8	89	3.9	7.8	87
F28	2-May-16	94	ო	≻	3.9	7.8	88	3.9	7.8	87
F29	2-May-16	84	13	≻	3.8	7.8	88	3.9	7.8	88
F30	2-May-16	75	13	≻	3.8	7.8	*88 8	4.1	7.8	89
F06ª	3-May-16	48	4	≻	3.6	7.8	77*	3.9	7.9	86
F15	4-May-16	71	6	≻	3.9*	7.8	87*	4.3	7.8	06
F16	4-May-16	65	15	≻	3.8*	7.8	82*	4.4	7.9	06
F17	4-May-16	70	10	≻	3.8*	7.8	88*	4.4	7.9	06
F18ª	4-May-16	76	5	≻	3.8*	7.8	88*	4.2	7.8	06
F19ª	4-May-16	80	-	≻	3.7*	7.8	87*	4.1	7.8	06
F23	4-May-16	68	-	≻	4.0*	7.8	89*	4.5	7.9	06
F25	4-May-16	55	. 	z	4.9	7.9	06	3.8	7.9	82
^a Station loc	^a Station located within State jurisdictional waters	te jurisdictional	waters							

				Poten	otential Plume				Reference	0
Station	Date	Depth (m)	Width (m)	MC	Mean DO	Mean pH	Mean XMS	DO (Mean-SD)	pH (Mean)	XMS (Mean -95% CI)
F01ª	8-Aug-16	10	9	z	7.0	8.1	85	8.4	8.3	83
F02ª	8-Aug-16	14	ო	z	6.7	8.1	83	8.4	8.2	84
F03ª	8-Aug-16	10	7	z	7.1	8.1	83	8.4	8.3	83
F06ª	8-Aug-16	12	7	z	7.4	8.2	85	8.4	8.3	84
F07ª	8-Aug-16	10	ø	z	7.2	8.1	86	8.5	8.3	84
F08ª	8-Aug-16	10	10	z	7.3	8.1	86	8.5	8.2	84
F09ª	8-Aug-16	14	с	z	7.2	8.2	86	8.4	8.2	84
F10 ^a	8-Aug-16	10	ო	z	7.5	8.2	84	8.5	8.3	82
F11 ^a	8-Aug-16	13	ო	z	7.4	8.2	84	8.3	8.2	84
F14ª	8-Aug-16	11	2	z	7.5	8.2	83	8.5	8.3	83
F23	9-Aug-16	15	б	z	7.8	8.2	85	8.5	8.2	85
F24	9-Aug-16	18	-	z	7.4	8.2	87	8.6	8.2	85
F28	10-Aug-16	11	ო	z	8.5	8.3	80	8.4	8.3	83
F29	10-Aug-16	10	ი	z	8.3	8.3	80	8.5	8.3	82
F30	10-Aug-16	10	4	z	8.0	8.3	83	8.6	8.3	83
F31 ^b	10-Aug-16	nr	nr	≻	5.8	8.0	85	6.5	8.1	82
F32 b	10-Aug-16	nr	nr	≻	5.0*	7.9	84	6.3	8.0	84
F33 b	10-Aug-16	nr	nr	≻	4.9	7.9	85	6.1	8.0	84
F30	7-Nov-16	66	23	≻	4.7	7.9	81*	5.2	8.0	85
F31	7-Nov-16	76	9	≻	5.0	7.9	86	5.1	7.9	83
F33	7-Nov-16	73	11	≻	4.9	7.9	86	5.1	8.0	84
F34	7-Nov-16	66	25	≻	4.8	7.9	84	5.2	8.0	84
F35	7-Nov-16	70	27	≻	4.9	7.9	85	5.1	8.0	84
F36	7-Nov-16	74	20	≻	4.9	7.9	86	5.1	8.0	83

2	
Υ.	
D	
θ	
p	
ם.	

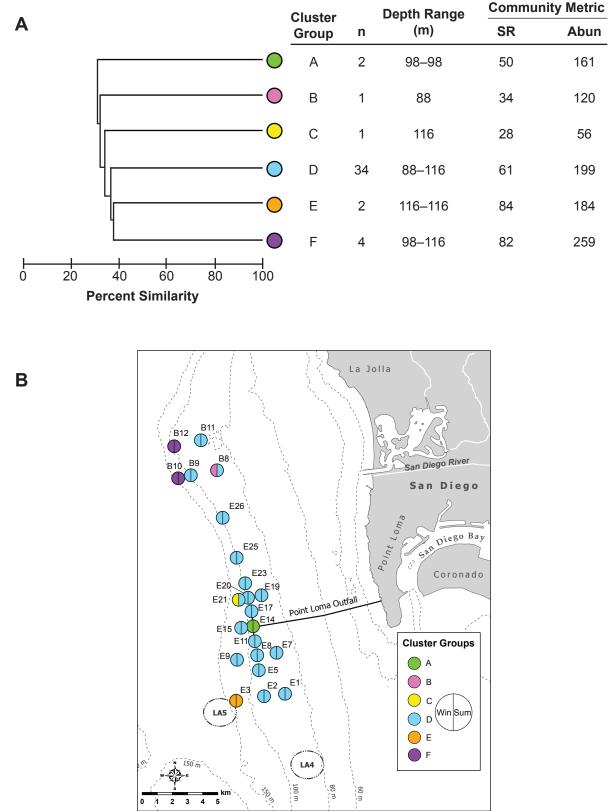
Plume depth is the minimum depth at which CDOM exceeds the 95th percentile while plume width is the number of meters across which that exceedance occurs. Out-of-range values are indicated with an asterisk. MC=meets criteria (=bold rows; see Materials and Methods); DO=dissolved oxygen; XMS=transmissivity; SD=standard deviation; CI=confidence interval. Summary of oceanographic data within potential detected plume at SBOO offshore stations and corresponding reference values during 2016.

				Poter	Potential Plume				Reference	0
Station	Date	Depth (m)	Width (m)	MC	Mean DO	Mean pH	Mean XMS	DO (Mean-SD)	pH (Mean)	XMS (Mean-95% CI)
112ª	10-Feb-16	23	e	z	7.4	7.9	73	7.0	8.1	81
114 ^a	10-Feb-16	7	ω	≻	7.4	7.9	75*	7.1	8.1	81
115	10-Feb-16	7	ы	≻	7.5	8.0	79 *	7.5	8.1	83
116ª	10-Feb-16	7	ი	≻	7.4	7.9	74*	7.3	8.1	82
127 ^a	10-Feb-16	23	ო	≻	7.0	7.9	74*	7.0	8.1	81
139ª	10-Feb-16	2	14	z	7.6	7.9	64	7.4	8.1	82
112 ^a	10-May-16	18	-	≻	5.9	8.0	83	5.9	8.0	81
115	10-May-16	22	7	≻	6.0	8.0	83	5.4	7.9	82
139ª	10-May-16	13	-	z	6.0	8.0	78	6.9	8.1	80
134ª	11-May-16	Q	12	z	6.2	8.1	71	7.2	8.1	80
115	4-Aug-16	19	ę	≻	7.6	8.2	83	7.1	8.2	83
131 ^a	3-Aug-16	15	7	z	7.1	8.2	81	7.7	8.2	83
134ª	3-Aug-16	10	7	≻	7.1*	8.2	81*	8.1	8.3	82
135ª	3-Aug-16	10	c	z	7.0	8.2	79	8.1	8.3	82
127 ^a	4-Aug-16	19	ы	≻	7.5	8.2	83	7.1	8.2	83
139ª	4-Aug-16	1	5	≻	7.2*	8.1	82	8.2	8.3	82
112 ^a	1-Nov-16	18	4	≻	7.1	8.0	82*	6.9	8.1	83
115	1-Nov-16	18	7	≻	7.2	8.1	82*	6.9	8.1	83
116ª	1-Nov-16	21	ы	≻	7.1	8.0	82*	6.7	8.1	84
123ª	1-Nov-16	11	-	z	7.0	8.0	77	7.6	8.1	82
139ª	1-Nov-16	13	3	z	6.8	7.9	79	7.2	8.1	81
^a Station	^a Station located within State jurisdictional waters	tate jurisdictior	nal waters							

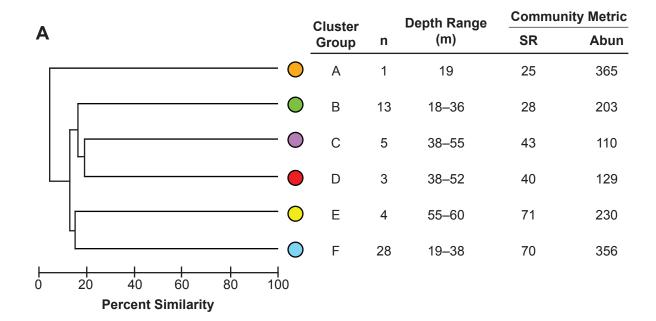

Appendix C

Chapter 3. Benthic Conditions

Figures & Tables


Appendix C

FIGURES


Figure C.1

Benthic station locations sampled around the Point Loma and South Bay Ocean Outfalls as part of the City of San Diego's Ocean Monitoring Program.

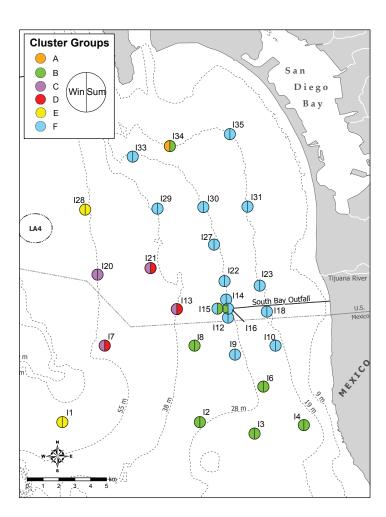


Figure C.2

Results of cluster analysis of macrofaunal assemblages at PLOO benthic stations sampled during 2016. Data are presented as: (A) dendrogram of main cluster groups with community metrics presented as means across all stations within a cluster group (n) and (B) distribution of cluster groups in the PLOO region. SR = species richness; Abun = abundance.

В

Figure C.3

Results of cluster analysis of macrofaunal assemblages at SBOO benthic stations sampled during 2016. Data are presented as: (A) dendrogram of main cluster groups with community metrics presented as means across all stations within a cluster group (n) and (B) distribution of cluster groups in the SBOO region. SR = species richness; Abun = abundance.

This page intentionally left blank

Appendix C

TABLES

Constituents and method detection limits (MDL) used for the analysis of sediments during 2016.

Parameter	MDL	Parameter	MDL
	Organic I	ndicators	
Biological Oxygen Demand (BOD, ppm)	2	Total Sulfides (ppm)	0.14
Total Nitrogen (TN, % wt.)	0.01	Total Volatile Solids (TVS, % wt.)	0.11
Total Organic Carbon (TOC, % wt.)	0.04		
	Metals	(ppm)	
Aluminum (AI) ^a	2, 2.4	Lead (Pb) ^a	0.8, 0.3
Antimony (Sb) ^a	0.3, 0.79	Manganese (Mn)ª	0.08, 0.19
Arsenic (As) ^a	0.33, 0.308	Mercury (Hg)	0.004
Barium (Ba)ª	0.02, 0.08	Nickel (Ni) ^a	0.1,0.3
Beryllium (Be)ª	0.01, 0.02	Selenium (Se)	0.24
Cadmium (Cd)ª	0.06, 0.13	Silver (Ag) ^a	0.04, 0.206
Chromium (Cr) ^a	0.1, 0.136	Thallium (TI)ª	0.5, 0.43
Copper (Cu)ª	0.2, 0.695	Tin (Sn)ª	0.3, 0.409
Iron (Fe) ^a	9, 2.88	Zinc (Zn)ª	0.25, 1.45
	Chlorinated P	esticides (ppt)	
	Hexachlorocycl	ohexane (HCH)	
HCH, Alpha isomer ^a	730, 62.7	HCH, Delta isomer ^a	160, 47.1
HCH, Beta isomer ^a	50, 52.7	HCH, Gamma isomer ^a	500, 40.1
	Total Cl	nlordane	
Alpha (cis) Chlordane ^a	170, 49.7	Heptachlor epoxide ^a	76, 29.6
Cis Nonachlor ^a	210, 81.9	Methoxychlor ^a	250, 66
Gamma (trans) Chlordane ^a	61, 52.2	Oxychlordane ^a	210, 78.2
Heptachlor ^a	76, 29.6	Trans Nonachlor ^a	150, 25.3
Total	Dichlorodipheny	ltrichloroethane (DDT)	
o,p-DDDª	90, 31.2	p,p-DDEª	90, 31.4
o,p-DDEª	110, 31.8	p,p-DDMUª	46, 15.4
o,p-DDTª	73, 43.3	p,p-DDTª	52, 47.7
p,p-DDDª	120, 53.3		
	Miscellaneo	us Pesticides	
Aldrin ^a	300, 41.6	Endrin ^a	1000, 128
Alpha Endosulfan ^a	380, 53.6	Endrin aldehyde ^a	1800, 72.9
Beta Endosulfan ^a	230, 138	Hexachlorobenzene (HCB) ^a	64, 90.7
Dieldrin ^a	370, 103	Mirex ^a	61, 25.8
Endosulfan Sulfate ^a	570, 75.5		

^aMDL differed between winter and summer samples for this parameter

Parameter	MDL	Parameter	MDL
Polyc	hlorinated Bipheny	l Congeners (PCBs) (ppt)	
PCB 18ª	90, 53.8	PCB 126ª	98, 25.5
PCB 28ª	96, 40.3	PCB 128ª	110, 34.3
PCB 37ª	47, 16.9	PCB 138ª	39, 45.5
PCB 44ª	37, 38.8	PCB 149ª	54, 59.6
PCB 49ª	32, 34.4	PCB 151ª	81, 56.2
PCB 52ª	37, 36.6	PCB 153/168ª	100, 104
PCB 66ª	72, 16.5	PCB 156ª	57, 28.6
PCB 70 ^a	58, 21.8	PCB 157ª	62, 23.0
PCB 74ª	51, 17.9	PCB 158ª	57, 26.7
PCB 77ª	110, 23.9	PCB 167ª	37, 23.2
PCB 81 ^a	18, 22.3	PCB 169ª	58, 17.3
PCB 87ª	44, 30.7	PCB 170ª	72, 44.2
PCB 99ª	80, 31.0	PCB 177 ^a	37, 25.8
PCB 101 ^a	50, 30.0	PCB 180ª	100, 56.7
PCB 105ª	37, 23.4	PCB 183ª	55, 28.5
PCB 110 ^ª	48, 53.6	PCB 187ª	96, 36.6
PCB 114ª	78, 33.0	PCB 189ª	26, 17.8
PCB 118ª	110, 30.8	PCB 194ª	110, 31.0
PCB 119ª	59, 27.3	PCB 201 ^a	51, 21.4
PCB 123ª	79, 31.3	PCB 206ª	68, 26.1
Poly	cyclic Aromatic Hyd	drocarbons (PAHs) (ppb)	
1-methylnaphthalene ^a	20, 14.1	Benzo[G,H,I]perylene ^a	20, 16.4
1-methylphenanthrene ^a	20, 22.5	Benzo[K]fluoranthene ^a	20, 13.9
2,3,5-trimethylnaphthalene ^a	20, 17.7	Biphenyl ^a	30, 21.3
2,6-dimethylnaphthalene ^a	20, 20.2	Chrysene ^a	40, 14.8
2-methylnaphthalene ^a	20, 23.2	Dibenzo(A,H)anthracene ^a	20, 12.0
3,4-benzo(B)fluoranthene ^a	20, 9.93	Fluoranthene ^a	20, 13.6
Acenaphthene ^a	20, 17.6	Fluoreneª	20, 17.9
Acenaphthylene ^a	30, 15.7	Indeno(1,2,3-CD)pyrene ^a	20, 11.7
Anthracene ^a	20, 16.2	Naphthalene ^a	30, 32.9
Benzo[A]anthraceneª	20, 13.5	Perylene ^a	30, 14.6
Benzo[A]pyreneª	20, 12.5	Phenanthrene ^a	30, 14.3
Benzo[e]pyrene ^a	20, 11.4	Pyrene ^a	20, 15.4

^aMDL differed between winter and summer samples for this parameter

Particle size classification schemes (based on Folk 1980) used in the analysis of sediments during 2016. Included is a subset of the Wentworth scale presented as "phi" categories with corresponding Horiba channels, sieve sizes, and size fractions.

			Wentworth Sca	le	
	Но	ribaª			
Phi size	Min µm	Max µm	Sieve Size	Sub-Fraction	Fraction
-1	_		SIEVE_2000	Granules	Coarse Particles
0	1100	2000	SIEVE_1000	Very coarse sand	Coarse Particles
1	590	1000	SIEVE_500	Coarse sand	Med-Coarse Sands
2	300	500	SIEVE_250	Medium sand	Med-Coarse Sands
3	149	250	SIEVE_125	Fine sand	Fine Sands
4	64	125	SIEVE_63	Very fine sand	Fine Sands
5	32	62.5	SIEVE_0 ^b	Coarse silt	Fine Particles ^c
6	16	31	_	Medium silt	Fine Particles ^c
7	8	15.6	_	Fine silt	Fine Particles ^c
8	4	7.8	_	Very fine silt	Fine Particles ^c
9	≤	3.9	—	Clay	Fine Particles ^c

^aValues correspond to Horiba channels; particles >2000 µm measured by sieve

^bSIEVE_0=sum of all silt and clay, which cannot be distinguished for samples processed by nested sieves

Summary of particle sizes and chemistry concentrations in sediments from PLOO benthic stations sampled during 2016. Data include the detection rate (DR), mean, minimum, and maximum values for the entire survey area. The maximum value from the pre-discharge period (i.e., 1991–1993) is also presented. ERL=Effects Range Low threshold; ERM=Effects Range Median threshold; na=not available; nd=not detected.

		2016 Sum	mary ^a	Р	re-discharge		
Parameter	DR (%)	Mean	Min	Max	Max	ERL⁵	ERM ^b
Particle Size							
Coarse Particles(%)	23	1.5	0.0	20.5	26.4	na	na
Med-Coarse Sands (%)	100	4.9	0.1	28.6	41.6	na	na
Fine sands (%)	100	54.2	32.9	71.4	72.6	na	na
Fines (%)	100	39.4	19.8	65.6	74.4	na	na
Organic Indicators							
BOD (ppm)	100	295	146	592	656	na	na
Sulfides (ppm)	100	9.51	2.27	50.90	20.0	na	na
TN (% weight)	100	0.052	0.023	0.090	0.158	na	na
TOC (% weight)	100	0.53	0.13	2.46	1.57	na	na
TVS (% weight)	100	2.10	1.40	3.80	5.0	na	na
Trace Metals (ppm)							
Aluminum	100	8334	5500	12,600	na	na	na
Antimony	93	0.9	nd	1.7	8.0	na	na
Arsenic	100	2.55	1.02	5.95	6.6	8.2	70
Barium	100	35.1	18.6	61.3	na	na	na
Beryllium	5	0.03	nd	0.03	2.01	na	na
Cadmium	5	1.38	nd	2.67	6.80	1.2	9.6
Chromium	100	19.0	12.2	32.1	51.0	81	370
Copper	98	7.4	nd	72.7	34.0	34	270
Iron	100	12,023	7090	21,300	26,200	na	na
Lead	100	6.6	2.2	107.0	18.0	46.7	218
Manganese	100	94.1	57.9	136.0	na	na	na
Mercury	100	0.024	0.011	0.050	0.096	0.15	0.71
Nickel	100	6.1	3.1	9.7	14.0	20.9	51.6
Selenium	61	0.35	nd	0.82	0.90	na	na
Silver	2	3.2	nd	3.2	7.00	1.0	3.7
Tin	98	0.7	nd	3.2	na	na	na
Zinc	100	28.2	18.0	42.3	67.0	150	410
Pesticides (ppt)							
Total DDT	100	561	204	1300	13,200	1580	46,100
Total HCH	5	169	nd	179	na	na	na
Total Chlordane	21	240	nd	985	na	na	na
HCB	78	453	nd	1650	na	na	na
Total PCB (ppt)	81	1947	nd	18,226	na	na	na
Total PAH (ppb)	74	50	nd	400	na	4022	44,792

^a Minimum and maximum values were based on all samples (n=44), whereas means were calculated on detected values only (n \leq 44)

^bFrom Long et al. 1995

_

Summary of particle sizes and chemistry concentrations in sediments from SBOO benthic stations sampled during 2016. Data include the detection rate (DR), mean, minimum and maximum values for the entire survey area. The maximum value from the pre-discharge period (i.e., 1995–1998) is also presented. ERL=Effects Range Low threshold; ERM=Effects Range Median threshold; na=not available; nd=not detected.

	:	2016 Summa	aryª		Pre-discharge		
Parameter	DR (%)	Mean	Min	Max	Max	ERL⁵	ERM [♭]
Particle Size							
Coarse Particles (%)	46	2.9	0.0	41.9	52.5	na	na
Med-Coarse sands (%)	100	37.2	0.6	91.3	99.8	na	na
Fine Sands (%)	100	50.3	1.6	91.5	97.4	na	na
Fines (%)	85	9.6	0.0	39.1	47.2	na	na
Organic Indicators							
Sulfides (ppm)	98	3.88	nd	48.20	222.0	na	na
TN (% weight)	54	0.030	nd	0.061	0.077	na	na
TOC (% weight)	78	0.15	nd	0.56	0.64	na	na
TVS (% weight)	100	0.87	0.20	8.20	9.20	na	na
Trace Metals (ppm)							
Aluminum	100	3730	564	12,000	15,800	na	na
Antimony	50	0.6	nd	1.5	5.6	na	na
Arsenic	100	2.51	0.79	10.50	10.9	8.2	70
Barium	100	19.3	1.2	56.4	54.3	na	na
Cadmium	11	0.07	nd	0.08	0.41	1.2	9.6
Chromium	100	9.8	2.9	28.7	33.8	81	370
Copper	67	2.5	nd	9.2	11.1	34	270
Iron	100	5910	1200	16,900	17,100	na	na
Lead	100	2.1	0.9	5.8	6.8	46.7	218
Manganese	100	49.8	5.4	134.0	162.0	na	na
Mercury	41	0.008	nd	0.017	0.078	0.15	0.71
Nickel	100	2.7	0.7	9.3	13.6	20.9	51.6
Selenium	2	0.24	nd	0.24	0.6	na	na
Silver	6	0.18	nd	0.29	na	1.0	3.7
Tin	19	0.7	nd	1.1	na	na	na
Zinc	100	12.3	2.2	40.9	46.9	150	410
Pesticides (ppt)							
Total DDT	74	180	nd	1320	23,380	1580	46,100
Total HCH	6	64	nd	134	3880	na	na
Total Chlordane	7	28	nd	38	1260	na	na
HCB	61	838	nd	6200	na	na	na
Mirex	2	17	nd	16.8	na	na	na
Total PCB (ppt)	48	370	nd	3607	na	na	na
Total PAH (ppb)	19	27	nd	121	1942	4022	44,792

^a Minimum and maximum values were based on all samples (n=54), whereas means were calculated on detected values only (n≤54)

^bFrom Long et al. 1995

Iable C.5 Summary of particle size parameters (%) for each PLOO station sampled during winter 2016. Visual observations are from sieved "grunge" (i.e., particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). Gran = Granules; VCS = Very Coarse Sand; CS = Coarse Sand; MS = Medium Sand; FS = Fine Sand; VFS = Very Fine Sand; CS = Coarse Silt; MS = Medium Silt; FS = Fine Silt; VFS = Very Fine Silt.	size para sh scree S = Fine	ameters in and Sand;	s (%) fc preserv VFS= ^v	or each 'ed with Very Fir	PLOO i infaun ie San	station a for be d; CSi=	sampl enthic c Coars	ed dur commu e Silt; ľ	ing win nity ana MSi = M	ter 2016 alysis). (edium S	5. Visua Gran = (Silt; FSi	al obse Granule = Fine	rvation es; VCS Silt; VF	S = Very Si= Ve	retained on 1-mm mesh stree parameters (%) for each FLOO station sampled during winter zo to. Visual observations are notifisteved grunge (r.e., particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). Gran = Granules; VCS = Very Coarse Sand; CS = Coarse Sand; MS = Medium Sand; FS = Fine Sand; VFS = Very Fine Sand; CS = Coarse Sand; MS = Medium Sand; FS = Fine Sand; VFS = Very Fine Sand; OS = Coarse Sand; MS = Medium Silt; FS = Fine Silt; VFS = Very Fine Silt.
	Coars	Coarse Particles	ĺ	Med-Coarse Sands	arse S	ands	Fin	Fine Sands	s		Ë	Fine Particles	ticles		
	Gran	VCS	Total	SS	MS	Total	FS	VFS	Total	CSi	MSi	FSi	VFSi	Clay	Total Visual Observations
88-m Stations B11 ^s	19.5	1.0	20.5	1.7	5.1	6.8	13.9	25.6	39.5	33.2	I	Ι	I	I	33.2 pea gravel, rock
B8	0.0	0.0	0.0	0.0	0.1	0.1	6.3	31.8	38.1	29.0	13.1	14.7	4.8	0.2	61.8
E19	0.0	0.0	0.0	0.0	0.1	0.1	7.1	39.0	46.1	29.8	9.7	10.6	3.6	0.1	53.8
E7	0.0	0.0	0.0	0.0	0.2	0.2	9.9	41.1	51.0	26.5	8.6	9.6	3.8	0.3	48.8 shell hash, organic debris
E1	0.0	0.0	0.0	0.0	5.4	5.4	20.3	30.6	50.9	18.9	9.2	11.4	4.1	0.2	43.7 gravel, rock, shell hash
98-m Stations B12 ^s	0.3	1.3	1.6	4.3	20.5	24.8	25.5	28.3	53.8	19.8	I	Ι	Ι	I	19.8 gravel, shell hash
B9	0.0	0.0	0.0	0.0	1.6	1.6	15.1	38.5	53.6	19.1	8.4	12.5	4.6	0.2	44.8 pea gravel, shell hash
E26	0.0	0.0	0.0	0.0	0.2	0.2	10.2	40.3	50.5	23.9	8.7	11.0	5.1	0.7	49.3 shell hash, pea gravel
E25 ^s	0.2	0.1	0.3	0.2	0.4	0.6	3.8 .8	50.0	53.8	45.3	Ι	I	I	I	45.3 shell hash, organic debris
E23	0.0	0.0	0.0	0.0	0.2	0.2	10.9	44.6	55.5	24.2	7.5	9.1	3.4	0.1	44.3 shell hash
E20	0.0	0.0	0.0	0.0	0.5	0.5	12.6	46.5	59.1	22.0	6.5	8.2	3.4	0.2	40.3 shell hash, organic debris
E17 ^a	0.0	0.0	0.0	0.0	0.7	0.7	17.3	51.1	68.4	17.7	4.5	6.0	2.5	0.1	30.8
E14 ^a	0.0	0.0	0.0	0.0	0.7	0.7	17.4	53.5	70.9	14.2	3.5	6.6	3.8	0.2	28.3 black sand, shell hash, org deb
E11 ^a	0.0	0.0	0.0	0.0	0.8	0.8	15.6	47.8	63.4	19.9	5.6	7.4	2.9	0.1	35.9
E8	0.0	0.0	0.0	0.0	1.5	1.5	17.5	45.0	62.5	19.3	6.0	7.4	3.1	0.2	36.0 shell hash, organic debris
E5	0.0	0.0	0.0	0.0	1.2	1.2	17.0	44.3	61.3	18.6	6.6	8.9	3.4	0.1	37.5
E2	0.0	0.0	0.0	0.0	4.7	4.7	19.2	34.6	53.8	18.4	8.0	11.0	4.1	0.1	41.6 gravel, shell hash
116-m Stations B10 ^s	0.5	0.3	0.8	0.4	2.1	2.4	10.2	61.2	71.4	25.5	I	I	I	I	25.5 shell hash
E21	0.0	0.0	0.0	0.0	0.6	0.6	14.9	49.3	64.2	18.2	5.5	8.1	3.4	0.1	35.3
E15	0.0	0.0	0.0	0.0	0.8	0.8	17.8	50.3	68.1	16.2	4.5	6.7	3.4	0.3	31.1 gravel, shell hash
E9°	1.7	13.2	14.9	14.4	3.6	18.0	5.2	27.7	32.9	34.2	I	I	I		34.2 black sand
E3°	0.7	2.2	2.8	5.7	13.3	19.0	39.1	18.8	57.9	20.2		Ι		Ι	20.2 gravel, shell hash, org debris
^a Near-ZID station; ^s measured by sieve (not Horiba; silt	easured	by sie	ve (not	Horiba		d clay 1	raction	s are ii	ndisting	and clay fractions are indistinguishable)	e)				

C12

continued
S
Ö
e
ρ
a

Summary of particle size parameters (%) for each PLOO station sampled during summer 2016. Visual observations are from sieved "grunge" (i.e., particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). Gran = Granules; VCS = Very Coarse Sand; CS = Coarse Sand; MS = Medium Sand; FS = Fine Sand; VFS = Very Fine Sand; CS = Coarse Silt; MSi = Medium Sand; FSi = Fine Silt.

INS = Medium Sand; FS = Fine Sand; VFS = Very Fine S	0 = FINE	oand,	- つ - >	very ru		n, Col						ח ד ד		0 1 0	aria; cole coarse oin; molemeanum oin; fole fine oin; vfole very fine oin.
	Coars	Coarse Particles	cles	Med-Coars	Jarse S	e Sands	Fin	Fine Sands	s		Ē	Fine Particles	ticles		
	Gran	VCS	Total	cs	MS	Total	FS	VFS	Total	CSi	MSi	FSi	VFSi	Clay	Total Visual Observations
88-m Stations B11	0.0	4.7			7.8	13.5	13.1	21.5	34.6	13.8	9.7	15.6	6.8	0.7	46.5 pea gravel, shell hash
B8	0.0	0.0	0.0	0.0	0.1	0.1	5.4	28.8	34.2	28.3	13.8	15.9	6.6	1.0	65.6
E19	0.0	0.0			0.2	0.2	7.8	38.5	46.3	28.1	9.6	11.0	4.4	0.4	53.5
E7	0.0	0.0			0.5	0.5	10.2	38.8	49.0	25.0	9.3	11.3	4.6	0.4	50.6 shell hash, worm tubes
E1	0.0	0.0			5.2	5.2	19.6	29.7	49.3	18.0	9.3	12.5	5.2	0.5	45.5 pea gravel, rock, shell hash
98-m Stations B12	0.0	0.5			18.7	28.6	23.4	19.4	42.8	10.3	4.9	7.1	5.1	0.8	28.1 pea gravel. shell hash
	0.0	0.0	0.0	0.0	1.5	1.5	13.7	37.4	51.1	20.0	8.9	12.6	5.4	0.5	
E26	0.0	0.0			0.2	0.2	10.3	40.0	50.3	23.4	9.1	11.9	4.9	0.4	49.6 shell hash
E25	0.0	0.0			0.6	0.6	10.6	40.3	50.9	24.4	8.5	10.8	4.4	0.3	48.5 shell hash, worm tubes
E23	0.0	0.0			0.5	0.5	11.3	44.2	55.5	23.8	7.2	8.7	3.9	0.4	44.0
E20	0.0	0.0			0.6	0.6	13.3	47.3	60.6	21.0	6.2	8.1	3.3	0.1	38.8
E17 ^a	0.0	0.0			0.7	0.7	16.0	49.7	65.7	18.8	5.2	6.8	2.7	0.1	33.6
E14 ^a	0.0	10.3	`		2.6	11.9	10.6	40.2	50.8	13.5	3.1	5.8	4.3	0.4	27.0 black sand, shell hash
E11 ^a	0.0	0.0			1.3	1.3	17.0	46.8	63.8	17.8	5.8	7.9	3.2	0.1	34.9 shell hash
E8	0.0	0.0			1.3	1.3	17.1	46.0	63.1	18.4	5.7	7.8	3.4	0.3	35.6 worm tubes
E5	0.0	0.0			1.7	1.7	18.7	44.4	63.1	17.5	5.9	8.2	3.4	0.2	35.2 shell hash
E2	0.0	0.0			3.2	3.2	18.0	34.0	52.0	18.7	9.0	12.6	4.4	0.1	44.8 pea gravel, rock, shell hash
116-m Stations B10		0.0			2.6	2.6	23.4	47.1	70.5	12.7	3.2	6.1	4.6	0.4	26.9 shell hash
E21		0.0			0.6	0.6	14.7	50.7	65.4	18.9	5.1	6.8	3.1	0.2	34.1
E15	0.0	0.0	0.0	0.0	0.8	0.8	14.5	44.9	59.4	18.6	7.1	9.8	4.0	0.3	39.8 black sand, shell hash
E9		10.0			3.8	21.5	7.9	27.1	35.0	17.7	4.3	6.0	4.9	0.7	33.6 black sand
E3		0.0			20.4	26.0	28.2	16.3	44.5	10.3	6.2	8.2	4.5	0.4	29.6 pea gravel, shell hash
^a Near-ZID station															

IMO = IMEGIURI VARIO, FO = FIRE VARIO, VFO = VEIY FIRE V		le oal						alse o				I = LINE		aria; col=coarse olit; Mol=Medium olit; rol=Fine olit, Vrol= very Fine olit.
	Coarse Particles	e Part		Med-Coarse S	oarse S	ands	Fin	Fine Sands	S		Fine F			
	Gran	VCS	Total	cs	MS	Total	FS	VFS	Total	CSi	MSi FSi	VFSi	Clay	Total Visual Observations
19-m Stations 135	0.0	0.0	0.0	0.0	2.0	2.0	17.4	41.5	58.9	22.6	7.7 6.4	2.3	0.1	39.1 organic debris ^b
134 ^s	18.0	23.9	41.9	27.7	22.1	49.8	7.1	0.2	7.3	0.9			I	0.9 shell hash
131	0.0	0.0	0.0	0.0	1.2	1.2	19.8	71.7	91.5	4.8	0.0 0.7	1.6	0.2	7.3
123 ^s	0.2	0.5	0.7	1. 4	3.6	5.0	4.0	79.0	83.0	11.4			I	11.4 shell hash, organic debris ^b
118	0.0	0.0	0.0	0.0	0.8	0.8	18.4	72.0	90.4	7.1	0.0 0.4	1.1	0.3	8.8 black sand, organic debris ^b
110	0.0	0.0	0.0	0.0	2.0	2.0	25.6	63.9	89.5	5.2	0.0 1.3	1.8	0.1	8.5
4 s	1.7	0.9	2.6	33.5	53.6	87.1	8.9	1.0	9.9	0.4			Ι	0.4 shell hash
28-m Stations 133	0.0	0.0	0.0	0.0	2.1	2.1	35.0	52.9	87.9	3.7	0.8 2.8	2.6	0.1	10.0 organic debris ^b
130	0.0	0.0	0.0	0.0	0.7	0.7	13.8	67.4	81.2	13.0	0.8 1.9	2.2	0.3	18.2
127	0.0	0.0	0.0	0.0	0.6	0.6	14.1	70.0	84.1	11.4	0.2 1.3	2.0	0.3	15.2 organic debris $^\circ$
122	0.0	0.0	0.0	1.2	13.7	14.9	35.4	38.1	73.5	7.2	1.0 1.9	1.5	0.0	11.6 fouling hydroids
114 ^a	0.0	0.0	0.0	0.0	2.1	2.1	20.7	60.0	80.7	11.9	0.9 2.1	2.2	0.1	17.3 organic debris ^b
116 a,s	0.4	0.4	0.8	18.9	58.9	77.8	18.7	1.2	19.9	1.4		I	I	1.4 shell hash
115	0.0	0.0	0.0	5.7	39.8	45.5	34.0	14.5	48.5	3.4	0.9 1.3	0.5	0.0	6.0 organic debris ^b
112 ^a	0.0	0.0	0.0	2.4	17.5	19.9	32.8	37.5	70.3	6.7	0.7 1.2	1.1	0.0	9.7
61	0.0	0.0	0.0	0.0	0.7	0.7	14.6	65.0	79.6	15.3	1.1 1.7	1.5	0.1	19.7
l6°	0.1	0.2	0.3	20.5	62.4	82.9	12.2	1.4	13.6	3.3			Ι	3.3 Shell hash
12	0.0	0.1	0.1	12.2	57.5	69.7	27.8	2.4	30.2	0.1	0.0 0.0	0.0	0.0	0.1
13	0.0	2.7	2.7	32.1	54.6	86.7	10.2	0.4	10.6	0.0	0.0 0.0	0.0	0.0	0.0
38-m Stations 129	0.0	0.2	0.2	4.6	9.3	13.9	15.9	41.6	57.5	20.9	2.9 2.8	1.8	0.1	28.5 organic debris ^b
121	0.0	5.1	5.1	47.7	41.9	89.6	5.1	0.2	5.3	0.0	0.0 0.0	0.0	0.0	0.0 red relict sand, shell hash, org debris $^{\circ}$
113	1.4	4. 4	5.8	41.5	46.5	88.0	5.7	0.4	6.1	0.0	0.0 0.0	0.0	0.0	0.0 red relict sand, shell hash, org debris $^\circ$
8	0.0	0.9	0.9	20.6	58.3	78.9	17.0	2.2	19.2	0.2	0.2 0.6	0.0	0.0	0.9
55-m Stations 128 [°]	5.5	10.7	16.2	22.4	13.2	35.6	4.1	22.0	26.1	22.1			I	22.1 black sand
120	0.0	18.0	18.0	64.2	13.6	77.8	3.1	0.4	3.5	0.0	0.0 0.0	0.1	0.0	0.7 red relict sand
21	0.0	7.9	7.9	70.6	20.0	90.6	1.6	0.0	1.6	0.0	0.0 0.0	0.0	0.0	0.0 red relict sand
Ξ					۲ ۲	7	101	07	010	т С		с с	0	8 d

Summary of particle size parameters (%) for each SBOO station sampled during summer 2016. Visual observations are from sieved "grunge" (i.e., particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). Gran=Granules; VCS=Very Coarse Sand; CS=Coarse Sand; MS=Medium Sand; FS=Fine Sand; VFS=Very Fine Sand; CSi=Coarse Silt; MSi=Medium Silt; FSi=Fine Silt; VFSi=Very Fine Silt.

	Coars	Coarse Particles		Med-C(Med-Coarse Sa	ands	Fin	Fine Sands	S		Ē	Fine Particles	ticles		
1	Gran	VCS	Total	CS	MS	Total	FS	VFS	Total	CSI	MSi	FSi	VFSi	Clay	Total Visual Observations
19-m Stations 135	0.0	0.0	0.0	0.0	2.6	2.6	18.2	42.4	60.6	21.3	6.9	6.4	2.2	0.0	36.8 algae, organic debris $^{ m b}$
134	0.0	0.0	0.0	5.4	49.0	54.4	42.5	3.0	45.5	0.1	0.0	0.0	0.0	0.0	0.1 shell hash
131	0.0	0.0	0.0	0.0	0.8	0.8	18.6	72.9	91.5	5.3	0.0	0.8	1.6	0.1	7.8 organic debris ^b
123	0.0	0.0	0.0	0.0	1.4	1.4	20.8	67.5	88.3	6.5	0.1	1.6	2.0	0.1	10.3 shell hash, organic debris ^b
118	0.0	0.0	0.0	0.0	1.2	1.2	18.7	70.9	89.6	6.9	0.0	0.8	1. 4	0.1	9.2
110	0.0	0.0	0.0	0.0	1.8	1.8	24.7	65.1	89.8	5.3	0.0	1.3	1.7	0.1	8.4 shell hash, algae
4	0.0	4.6	4.6	49.9	41.4	91.3	3.8	0.4	4.2	0.0	0.0	0.0	0.0	0.0	0.0 shell hash, pea gravel, rock
28-m Stations 133	0.0	0.0	0.0	0.0	3.3	3.3	35.5	47.8	83.3	4.4	1.5	4.4	3.1	0.1	13.5 shell hash, organic debris ^b
130	0.0	0.0	0.0	0.0	0.6	0.6	13.4	66.5	79.9	14.1	1.2	2.2	1.9	0.1	19.5
127	0.0	0.0	0.0	0.0	0.7	0.7	14.0	68.4	82.4	11.7	0.7	1.9	2.3	0.3	16.9 organic debris ^b
122	0.0	0.0	0.0	0.0	3.4	3.4	23.3	57.6	80.9	10.4	0.9	2.1	2.1	0.1	15.6 organic debris ^b
114ª	0.0	0.0	0.0	0.0	1.7	1.7	17.2	63.2	80.4	12.5	0.8	2.0	2.5	0.2	18.0 organic debris ^b
116 ^a	0.0	0.0	0.0	1.6	21.7	23.3	45.3	25.1	70.4	3.4	0.8	1.4	0.6	0.0	6.2 organic debris ^b
115	0.0	0.5	0.5	15.9	60.4	76.3	16.9	3.3	20.2	1.2	0.7	0.9	0.1	0.0	2.9 organic debris ^b
112 ^a	0.0	0.0	0.0	1.9	20.1	22.0	37.9	31.0	68.9	5.7	0.9	1.5	1:2	0.0	9.3 shell hash, organic debris $^{\scriptscriptstyle b}$
61	0.0	0.0	0.0	0.0	0.7	0.7	14.6	62.6	77.2	15.3	1.7	2.9	2.1	0.1	22.1
91	0.0	1.6	1.6	27.6	57.3	84.9	11.8	1.5	13.3	0.2	0.0	0.0	0.0	0.0	0.2 red relict sand, shell hash
12	0.0	0.0	0.0	8.9	56.2	65.1	30.7	2.5	33.2	0.2	0.5	0.9	0.1	0.0	1.7
13	0.0	0.4	0.4	14.7	64.5	79.2	19.6	0.7	20.3	0.0	0.0	0.0	0.0	0.0	0.0 algae
38-m Stations 129	0.0	0.0	0.0	0.0	1.6	1.6	16.7	53.1	69.8	21.0	3.3	3.6	1.8	0.0	29.7 organic debris ^b
121	0.0	6.6	6.6	55.4	31.7	87.1	3.4	1.0	4.4	0.3	0.4	1.0	0.3	0.0	2.0 red relict sand, shell hash
113	0.0	6.7	6.7	53.1	37.2	90.3	2.9	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0 red relict sand, shell hash
8	0.0	1.2	1.2	21.2	57.2	78.4	17.1	1.9	19.0	0.2	0.4	0.9	0.1	0.0	1.6 urchin spines, organic debris ^b
55-m Stations 128	0.0	7.7	7.7	27.3	8.6	35.9	7.8	24.1	31.9	13.5	2.8	4.4	3.5	0.4	24.6 black sand
120	0.0	9.8	9.8	62.8	21.1	83.9	5.6	0.7	6.3	0.0	0.0	0.0	0.0	0.0	0.0 red relict sand
21	0.0	15.3	15.3	62.8		78.6	2.7	1.0	3.7	0.4	0.6	1.0	0.3	0.0	2.3 red relict sand
	0.0	0.0	000	0.1	8.3 0.3	8.4	51.0	32.3	83.3	3.0	1.0	2.5	1.9	0.0	8.4

Concentrations of organic loading indicators detected in sediments from PLOO stations sampled during winter and summer 2016. See Table C.1 for MDLs; na = not analyzed.

			Winter	-				Summe	-	
	BOD (ppm)	Sulfides (ppm)	TN (% wt)	TOC (% wt)	TVS (% wt)	BOD (ppm)	Sulfides (ppm)	TN (% wt)	TOC (% wt)	TVS (% wt)
88-m Depth Contour										
B11	476	16.10	0.073	0.65	3.1	476	3.02	0.090	1.80	3.8
B8	460	9.23	0.078	0.71	3.0	378	2.94	0.070	0.65	2.9
E19	390	50.90	0.060	0.57	2.2	350	3.16	0.050	0.46	2.3
E7	424	3.43	0.055	0.49	2.0	261	8.21	0.059	0.50	2.1
E1	252	3.28	0.059	0.53	2.1	240	3.86	0.057	0.51	2.0
98-m Depth Contour										
B12	469	7.23	0.052	0.51	2.5	433	4.69	0.060	2.46	2.7
B9	302	2.69	0.058	0.54	2.6	298	2.69	0.060	0.58	2.6
E26	290	13.70	0.055	0.50	2.2	317	2.80	0.060	0.50	2.1
E25	193	14.90	0.048	0.40	1.8	262	3.08	0.060	0.46	2.2
E23	301	11.80	0.023	0.13	2.2	264	2.47	0.044	0.39	2.0
E20	189	3.29	0.049	0.41	1.8	225	7.12	0.050	0.40	1.8
E17ª	252	10.20	0.040	0.33	1.5	na	8.05	0.042	0.34	1.6
E14ª	592	9.34	0.040	0.29	1.4	393	36.00	0.040	0.33	1.7
E11ª	246	6.45	0.044	0.34	1.7	328	9.21	0.039	0.28	1.8
E8	218	5.71	0.043	0.37	1.6	213	4.11	0.037	0.31	1.9
E5	229	15.20	0.045	0.39	1.8	194	3.02	0.044	0.39	1.8
E2	294	29.50	0.062	0.54	2.4	228	5.03	0.069	0.56	2.4
116-m Depth Contour										
B10	200	7.66	0.044	0.39	2.1	269	3.26	0.041	0.59	2.0
E21	235	4.49	0.045	0.37	1.6	173	2.27	0.047	0.39	na
E15	239	43.20	0.042	0.35	1.6	226	2.95	0.039	0.31	1.9
E9	287	6.83	0.058	0.58	2.0	202	3.40	0.055	0.91	2.0
E3	290	18.80	0.051	0.47	1.8	146	3.10	0.050	0.45	1.6
Detection Rate (%)	100	100	100	100	100	100	100	100	100	100

^aNear-ZID station

Concentrations of organic indicators detected in sediments from SBOO stations sampled during winter and summer 2016. See Table C.1 for MDLs; nd = not detected.

		Wi	nter			Sun	nmer	
	Sulfides (ppm)	TN (% wt)	TOC (% wt)	TVS (% wt)	Sulfides (ppm)	TN (% wt)	TOC (% wt)	TVS (% wt)
19-m Stations								
135	48.20	0.033	0.31	1.4	3.58	0.042	0.29	1.3
134	0.80	nd	nd	0.7	0.69	nd	nd	0.4
131	5.55	nd	0.10	0.7	1.64	nd	0.07	0.7
123	3.86	0.022	0.08	0.8	1.89	0.030	0.12	0.8
118	10.60	nd	0.07	0.6	2.05	nd	0.07	0.7
110	7.19	0.011	0.09	0.7	1.60	nd	0.09	0.7
14	0.38	nd	nd	0.3	0.05	nd	nd	0.2
28-m Stations								
133	5.09	0.024	0.13	1.2	2.61	0.029	0.14	1.1
130	5.19	0.028	0.18	0.9	2.43	0.029	0.15	1.2
127	4.78	0.024	0.12	8.2	2.73	0.025	0.13	0.9
122	12.20	0.034	0.30	0.7	3.31	0.032	0.19	0.9
I14 ª	21.60	0.029	0.14	1.1	1.72	0.035	0.20	0.9
I16ª	1.34	nd	nd	0.4	1.61	nd	0.09	0.5
115	5.30	0.025	0.11	0.8	0.64	0.022	0.11	0.4
I12 ª	5.10	nd	0.08	0.7	2.03	0.025	0.14	0.8
19	4.95	0.025	0.14	1.1	4.63	0.029	0.14	1.2
16	0.35	nd	0.07	0.5	0.20	nd	0.05	0.4
12	0.54	nd	nd	0.4	0.52	0.028	0.08	0.4
13	0.25	nd	nd	0.4	0.19	nd	0.04	0.4
38-m Stations								
129	5.84	0.030	0.20	1.4	2.94	0.034	0.21	1.5
121	0.23	nd	nd	0.5	0.22	nd	nd	0.5
113	0.22	nd	nd	0.5	0.20	nd	nd	0.4
18	0.92	nd	0.07	0.4	0.57	0.024	0.10	0.5
55-m Stations								
128	10.30	0.061	0.56	1.5	3.26	0.057	0.46	1.2
120	0.42	0.023	0.10	0.4	0.27	nd	0.10	0.2
17	nd	nd	nd	0.4	0.18	nd	0.07	0.5
l1	1.84	0.029	0.13	0.9	1.05	0.026	0.14	0.9
Detection Rate (%)	96	52	70	100	100	56	85	100

^aNear-ZID station

C.9
Θ
Q
Ца

s of trace metals (ppm) detected in sediments from PLOO stations sampled during winter 2016. See Table C.1 for MDLs and translation	c table symbols; nd = not detected; nr = not reportable; na = not available.
Concentrations of trace meta	of periodic table symbols; nd

of periodic table symbols; nd = not detected; nr = not	ools; nd = n	ot deter	cted; nr	= not rep	reportable; na=not available	na=not	avallaple.									
	AI	Sb	As	Ba	Be	Cd	c	Cu	Fe	Pb	Mn	Hg	ïZ	Se	Sn	Zn
88-m Depth Contour																
B11	6730	0.5	5.55	23.8	pu	pu	17.4	ъ.	12,700	3.1	75.5	nr	4.9	0.43	0.5	24.9
B8	10,900	0.9	3.52	53.6	pu	pu	21.4	8.6	14,700	6.7	127.0	nr	9.7	0.33	3.2	34.5
E19	12,600	0.8	2.60	56.5	pu	pu	20.6	с.	14,400	4.9	136.0	0.031	9.1	0.24	0.8	35.4
E7	10,200	0.6	3.00	44.0	pu	pu	16.7	ø.	11,800	4.0	114.0	0.027	7.3	0.29	0.8	28.9
E1	10,600	0.6	3.17	48.8	pu	pu	17.0	ø.	13,300	6.7	115.0	nr	7.1	0.25	0.9	31.6
98-m Depth Contour																
, B12	7050	0.8	5.95	21.0	0.02	pu	27.3	2.5	20,500	3.9	76.5	nr	5.4	0.39	0.6	31.2
B9	7830	0.8	2.59	61.3	pu	pu	20.4	5.0	14,200	4.3	98.0	nr	7.1	0.27	0.7	30.7
E26	0096	0.7	3.11	36.2	pu	pu	16.2	5.4	11,800	3.7	108.0	nr	7.0	0.28	0.6	26.9
E25	9010	0.6	2.32	33.4	pu	pu	15.3	5.1	10,900	3.3	102.0	nr	6.5	pu	0.6	25.3
E23	9610	0.7	2.61	37.4	pu	pu	16.2	5.9	11,500	3.8	107.0	nr	7.1	0.32	0.7	27.4
E20	8660	0.6	2.29	32.0	pu	pu	14.5	4.8	10,600	3.3	96.9	nr	6.6	pu	0.4	24.5
E17 ^a	7320	0.6	2.39	24.6	pu	pu	12.7	4.1	9200	2.9	85.4	0.015	5.5	pu	0.5	21.5
E14ª	6270	0.5	2.05	22.9	pu	0.09	12.2	4.7	8010	2.5	76.3	0.015	5.2	pu	0.5	21.2
E11 ^a	7360	0.5	2.54	24.5	pu	pu	13.1	4.1	9400	2.7	84.1	nr	5.3	pu	0.4	21.7
E8	8140	0.6	2.75	28.2	pu	pu	13.8	4.6	10,100	3.0	92.3	0.017	5.7	0.26	0.4	23.3
E5	8130	0.7	2.48	30.7	pu	pu	13.7	5.0	10,000	3.4	91.0	0.050	5.7	0.26	0.5	23.7
E2	11,500	0.8	2.63	54.1	pu	pu	18.5	9.6	14,500	5.0	126.0	nr	7.5	0.27	0.7	34.1
116-m Depth Contour																
B10	9050	0.8	3.41	39.0	pu	pu	23.9		20,200	4.8	111.0	nr	6.9	0.28	0.7	33.9
E21	7560	0.4	2.43	25.6	pu	pu	13.3	4.1	9500	3.1	85.1	nr	5.8	pu	0.5	21.7
E15	6960	0.5	1.67	22.8	pu	pu	12.8		8730	2.8	79.1	0.016	5.1	pu	0.4	21.0
E9	7610	0.7	2.48	26.6	pu	pu	17.6	11.8	12,000	4.8	85.8	0.019	5.8	0.29	0.7	40.5
E3	8750	0.7	2.45	53.4	pu	pu	13.3		11,600	26.0	101.0	0.043	5.3	pu	0.7	36.1
Detection Rate (%)	100	100	100	100	5	2	100	100	100	100	100	100	100	64	100	100
ERLb	na	na	8.2	na	na	1.2	81	34	na	46.7	na	0.15	20.9	na	na	150
ERM ^b	na	na	70.0	na	na	9.6	370	270	na	218	na	0.71	51.6	na	na	410
^a Near-ZID station ^b From Long et al. 1995	ю															

continued
ດ
U
Φ
ρ
a

 Table C.9 continued

 Concentrations of trace metals (ppm) detected in sediments from PLOO stations sampled during summer 2016. See Table C.1 for MDLs and translation

of periodic table symbols; nd = not detected; na = not a	nbols; nd=	= not d€	stected;	na=not a	available	ġ											
	AI	Sb	As	Ba	Be	Cd	c	Cu	Fe	Рb	Mn	Hg	Ni	Se	Ag	Sn	Zn
88-m Depth Contour																	
B11	9860	1.5	2.34	39.7	pu	pu	26.2	ŝ	7,000		98.6	0.048	7.2	0.82	pu	0.8	38.3
B8	6420	pu	1.02	32.0	pu	pu	13.6	œ	7090		69.4	0.031	3.1	0.55	pu	pu	18.0
E19	10,200	1.1	2.25	44.1	pu	pu	27.0	6.0 1	2,800	4.2	114.0	0.026	7.4	0.43	pu	0.8	30.1
E7	0906	1.0	1.67	41.7	pu	pu	22.9	٥.	1,200		101.0	0.026	6.9	0.19	pu	0.6	28.5
	10,200	1.1	2.24	49.6	pu	pu	25.1	\sim	13,400 1	07	109.0	0.035	6.6	pu	pu	1.1	32.3
98-m Depth Contour																	
B12	6200	1.7	4.59	18.6	0.03	pu	29.0		1,300	3.2	57.9	0.011	4.5	0.43	pu	0.5	35.6
B9	9750	1.7	2.17	46.8		pu	32.1	4.8	17,600	5.5	113.0	0.028	7.6	0.53	pu	0.9	39.2
E26	8750	1.2	1.99	35.8	pu	pu	19.3		1,800	3.9	95.7	0.031	0.0	0.22	pu	0.7	28.7
E25	0006	1.0	1.90	36.6	pu	pu	23.0		1,400	4.1	99.8	0.020	6.5	0.37	pu	0.6	27.2
E23	8400	1.0	1.99	34.5	pu	pu	21.6		0,800	3.4	96.3	0.022	6.2	0.26	pu	0.6	25.0
E20	7800	0.9	2.01	29.9	pu	pu	19.4		0,100	3.0	89.3	0.016	5.8	0.37	pu	0.5	23.3
E17ª	7080	0.8	2.04	27.6	pu	pu	18.2		9280	2.9	91.4	0.024	5.4	pu	pu	0.5	21.9
E14ª	5500	0.8	1.63	21.0	pu	pu	14.7		7750	2.4	70.5	0.013	4.8	pu	pu	0.5	21.3
E11 a	6030	pu	1.96	22.7	pu	pu	15.3		8400	2.4	68.9	0.015	4.5	pu	3.15	0.4	20.2
E8	7000	0.9	1.45	28.6	pu	pu	17.5		9400	3.1	79.4	0.017	5.4	0.26	pu	0.6	23.5
E5	6880	0.9	1.86	28.0	pu	pu	17.3		9620	3.1	78.7	0.018	4.9	pu	pu	0.6	23.1
E2	0666	1.2	1.72	49.3	pu	pu	25.2		3,300	4.6	105.0	0.037	6.5	pu	pu	0.8	33.6
116-m Depth Contoui	r																
B10	6480	pu	5.21	22.3		2.67	19.5		2,900	3.1	74.1	0.014	4.7	0.42	pu	0.4	31.4
E21	7190	0.8	2.07	27.8	pu	pu	18.4		0696	3.2	83.3	0.017	5.6	pu	pu	0.5	22.3
E15	6630	0.8	2.23	23.7	pu	pu	17.5		9460	2.7	76.9	0.014	4.9	pu	pu	0.5	21.3
E9	7370	1.2	2.26	29.5	pu	pu	22.7	9.9 1	11,700	5.1	77.0	0.023	5.6	0.40	pu	0.6	42.3
E3	9450	1.2	1.48	55.2	pu	pu	22.1		3,400	6.7	119.0	0.037	5.1	pu	pu	0.7	34.8
Detection Rate (%)	100	86	100	100	2	14	100	95	100	100	100	100	100	59	2	95	100
ERL ^b	na	na	8.2	na	na	1.2	81	34	na	46.7	na	0.15	20.9	na	1.0	na	150
ERM ^b	na	na	70.0	na	na	9.6	370	270	na	218	na	0.71	51.6	na	3.7	na	410
^a Near-ZID station ^b From Long et al. 1995	95																

0
-
0
Φ
Г
ä

tions of trace metals (ppm) detected in sediments from SBOO stations sampled during winter 2016. See Table C.1 for MDLs and translation of	iodic table symbols; nd=not detected; na=not available.
Concentrations of trace m	periodic table symbols; nd

periodic table symbols; nd=not detected; na=not availabl	ils; nd=not (letected;	na=not av	/ailable.										
	A	Sb	As	Ba	Cd	с С	Cu	Fe	Pb	Mn	Ï	Ag	Sn	Zn
19-m Stations														
135	9890	0.8	2.63	56.4	0.07	17.4	6.5	12,100	4.2	131.0	6.6	pu	0.6	32.9
134	1040	pu	2.44	3.6	pu	2.9	0.7	3000	1.4	23.4	1.1	pu	pu	5.6
131	3230	0.5	1.22	18.5	0.07	7.4	1.0	3750	1.3	57.4	2.1	pu	pu	8.6
123	4720	0.6	1.54	31.5	pu	9.7	2.6	5460	1.7	69.0	3.0	pu	pu	13.8
118	4740	0.5	1.57	48.9	pu	12.9	1.6	7190	1.9	84.6	3.3	pu	pu	14.5
110	4990	0.5	1.52	29.4	pu	9.9	1.8	6310	1.6	71.4	3.1	pu	pu	14.6
4	729	pu	1.03	2.1	pu	4.3	0.3	1590	1.1	14.7	0.9	pu	pu	4.3
28-m Stations														
133	4270	0.4	1.83	21.1	pu	8.1	2.2	5810	2.9	70.8	3.0	pu	0.5	14.5
130	6140	0.5	1.64	33.4	0.06	11.3	2.7	6520	2.0	68.5	4.0	pu	pu	17.4
127	6020	0.5	1.65	32.3	pu	10.8	2.8	6360	1.7	68.9	4.0	pu	pu	16.8
122	4130	0.3	1.45	18.7	pu	8.8	1.6	4760	1.6	50.5	3.2	pu	pu	11.5
114 a	6750	0.6	1.41	39.0	pu	12.0	2.9	7380	2.0	83.7	4.4	pu	0.3	19.8
116ª	1720	pu	1.56	5.8	pu	3.8	0.2	3080	0.9	29.2	1.2	0.19	pu	7.4
115	2290	0.5	2.09	7.6	pu	9.2	0.3	4670	1.9	32.2	1.8	pu	pu	8.9
112 ^a	5310	0.5	1.43	35.4	pu	10.2	1.8	6470	1.6	73.2	3.3	pu	pu	16.6
6	7530	0.6	1.80	44.0	pu	12.5	3.2	8040	1.8	90.0	4.8	pu	pu	22.2
91	996	0.4	4.39	3.2	pu	8.1	pu	3920	1.7	13.3	1.0	pu	pu	4.4
12	1010	0.3	0.85	2.5	pu	5.7	0.3	1310	1.0	11.1	1.1	0.05	pu	4.7
13	671	pu	1.10	1.2	pu	5.4	pu	1280	0.9	5.5	1.0	pu	pu	4.1
38-m Stations														
129	5610	0.5	2.09	27.8	0.08	11.2	2.9	6850	2.4	65.6	4.4	pu	0.4	15.7
121	1030	0.5	9.16	1.8	pu	11.7	pu	8620	3.5	13.7	1.3	pu	pu	6.5
113	882	0.5	6.54	1.7	pu	9.4	pu	5770	2.5	16.1	1.1	pu	pu	5.7
8	1540	0.4	2.27	3.4	pu	8.4	pu	3810	1.4	19.8	1.4	pu	pu	7.5
55-m Stations														
128	5240	0.5	2.16	25.2	0.05	10.3	4.2	7100	3.4	60.5	5.7	0.29	0.5	15.1
120	1290	0.3	2.65	2.6	pu	5.8	pu	5290	1.9	18.9	1.2	pu	pu	6.6
17	875	0.5	6.56	1.8	pu	8.6	pu	7260	2.7	13.3	1.0	pu	pu	5.9
1	2510	0.4	1.08	7.7	0.06	6.8	1.0	3480	1.6	39.5	2.9	pu	pu	9.0
Detection Rate (%)	100	85	100	100	22	100	74	100	100	100	100	11	19	100
ERL ^b	na	na	8.2	na	1.2	81	34	na	46.7	na	20.9	1.0	na	150
ERM ^b	na	na	70.0	na	9.6	370	270	na	218	na	51.6	3.7	na	410
^a Near-ZID station; ^b From Long et al.	From Long	et al. 19	1995											

inued
conti
:.10
le C
Tab

Concentrations of trace metals (ppm) detected in sediments from SBOO stations sampled during summer 2016. See Table C.1 for MDLs and translation of g

AI Sb As Ba	A	Sb	As	Ba	ບັ	Cu	Fe	Pb	Mn	Hg	ī	Se	Sn	Zn
19-m Stations														
135	12,000	1.5	2.02	55.4	28.7	9.2	16,900	5.8	134.0	0.017	9.3	pu	1.1	40.9
134	9520	1.3	2.07	51.6	25.9	5.8	16,600	5.3	125.0	0.005	6.3	pu	1.0	37.7
131	9060	1.0	1.56	49.5	21.1	5.9	12,100	3.9	121.0	pu	5.1	pu	0.7	33.5
123	4370	pu	1.60	24.9	8.8	1.3	5010	1.7	55.6	0.005	2.6	pu	pu	10.9
118	4540	pu	1.73	33.5	11.2	1.3	6410	1.7	66.1	pu	2.9	pu	pu	12.4
110	4790	pu	1.51	27.9	9.2	1.5	6010	1.7	66.7	pu	2.9	pu	pu	13.4
4	564	pu	1.77	1.3	3.7	pu	1520	1.3	11.3	pu	0.7	pu	pu	2.2
28-m Stations														
133	9360	1.1	2.48	47.5	22.1	6.9	13,200	5.8	114.0	0.015	6.6	pu	1.1	33.2
130	1690	pu	1.13	6.7	4.8	pu	3820	1.9	31.9	0.005	0.7	pu	pu	6.2
127	5330	pu	1.72	26.6	9.8	2.0	5830	1.8	59.2	pu	3.1	pu	pu	14.1
122	4590	pu	1.53	23.3	9.8	1.9	5350	1.8	57.3	0.005	3.0	pu	pu	12.5
114 ^a	5730	pu	1.98	32.2	10.6	2.3	6480	1.8	67.3	0.004	3.6	pu	pu	15.9
116 ^a	3080	pu	1.34	14.9	7.7	0.8	4360	1.5	45.4	pu	2.0	pu	pu	9.7
115	1760	pu	2.67	9.1	7.9	pu	3970	1.7	20.6	pu	1.3	pu	pu	6.9
112 ^a	3910	pu	1.67	24.5	8.0	1.9	5300	1.5	55.7	pu	2.5	pu	pu	12.4
6	6820	pu	2.16	40.6	11.7	2.7	7810	1.8	83.3	pu	4.7	pu	pu	19.4
16	898	pu	4.55	2.3	7.5	pu	3550	1.7	10.6	pu	0.9	pu	pu	3.3
12	957	pu	1.15	2.1	5.3	pu	1200	0.9	9.6	0.004	1.0	pu	pu	2.4
13	683	pu	1.31	1.3	5.5	pu	1220	1.0	5.4	pu	0.8	pu	pu	2.2
38-m Stations														
129	4800	pu	1.37	20.4	10.3	2.6	6830	3.4	76.3	0.010	2.4	pu	0.5	17.4
121	006	pu	10.50	2.0	10.7	pu	8410	3.3	14.8	pu	1.1	pu	pu	5.5
113	873	pu	7.27	1.9	9.0	pu	5750	2.4	14.4	pu	0.9	pu	pu	4.7
8	1560	pu	2.60	4.0	8.0	pu	3910	1.4	19.9	pu	1.3	pu	pu	6.7
55-m Stations														
128	3710	pu	0.79	19.3	9.5	1:2	4310	1.5	54.9	0.013	1.7	pu	pu	9.7
120	1160	pu	3.48	2.1	5.0	pu	4990	1.7	15.3	pu	0.9	pu	pu	5.4
17	1370	pu	6.84	2.8	8.9	pu	7770	2.8	23.5	pu	1.2	pu	pu	6.1
11	2290	pu	1.28	9.9	6.3	1.0	3330	1.6	35.0	0.005	2.5	0.24	pu	6.8
Detection Rate (%)	100	15	100	100	100	59	100	100	100	41	100	4	19	100
ERL ^b	na	na	8.2	na	81	34	na	46.7	na	0.15	20.9	na	na	150
ERM ^b	na	na	70.0	na	370	270	na	218	na	0.71	51.6	na	na	410
^a Near-ZID station ^b From Long et al. 1995	95													

Concentrations of pesticides, PCB and PAH detected in sediments from PLOO stations sampled during winter and summer 2016. See Table C.1 for MDLs; tChlor = total chlordane; nd = not detected; nr = not reportable; ns = not sampled; DR = detection rate; na = not available.

		\	Vinter						Sumr	ner		
-	tChlor	tDDT	HCB	tPCB	tPAH	_	tChlor	tDDT	tHCH	HCB	tPCB	tPAH
	(ppt)	(ppt)	(ppt)	(ppt)	(ppb)		(ppt)	(ppt)	(ppt)	(ppt)	(ppt)	(ppb)
88-m Stations												
B11	nd	650	nd	104	nd		211	1189	nd	nr	1102	25
B8	nd	213	31	26	7		nd	1275	nd	nr	1228	29
E19	nd	470	1650	157	nd		77	869	nd	nr	1179	28
E7	nd	360	1200	888	30		nd	553	nd	nr	2809	17
E1	62	1300	60	2083	149		210	702	nd	nr	5007	249
98-m Stations												
B12	nd	400	82	nd	nd		70	793	nd	nr	517	9
B9	nd	580	1600	nd	3		nd	864	nd	nr	871	15
E26	nd	400	180	nd	14		nd	799	nd	nr	1011	18
E25	nd	590	nd	nd	nd		nd	754	nd	nr	633	12
E23	nd	480	79	134	13		nd	690	nd	nr	700	12
E20	nd	450	88	79	nd		nd	578	nd	nr	584	9
E17 ^a	nd	280	1100	261	nd		ns	ns	ns	ns	ns	7
E14 ^a	nd	260	110	nd	nd		nd	476	nd	nr	529	11
E11 ^a	nd	320	200	64	7		nd	275	nd	nr	393	9
E8	nd	390	430	nd	nd		nd	491	nd	nr	921	9
E5	nd	390	54	261	10		nd	376	nd	nr	762	7
E2	nd	485	1000	1928	80		116	624	159	nr	3849	80
116-m Stations												
B10	nd	570	nd	nd	nd		89	682	nd	nr	701	9
E21	nd	300	77	nd	nd		ns	ns	ns	ns	ns	ns
E15	nd	330	nd	47	nd		nd	313	nd	nr	591	7
E9	nd	350	nd	1262	54		nd	204	nd	nr	4477	23
E3	985	850	126	12,514	400		337	650	179	88	18,226	253
DR (%)	9	100	77	64	50		35	100	10	100	100	100
ERL⁵	na	1580	na	na	4022		na	1580	na	na	na	4022
ERM♭	na	46,100	na	na	44,792		na	46,100	na	na	na	44,792

^aNear-ZID station

^bFrom Long et al. 1995

Concentrations of pesticides, PCB and PAH detected in sediments from SBOO stations sampled during winter and summer 2016. See Table C.1 for MDLs; t Chlor = chlordane; nd = not detected; nr=not reportable; DR = detection rate; na=not available.

		Win	ter				S	ummer	•		
	tDDT	HCB	tPCB	tPAH	tChlor	tDDT	tHCH	HCB	Mirex	tPCB	tPAH
	(ppt)	(ppt)	(ppt)	(ppb)	(ppt)	(ppt)	(ppt)	(ppt)	(ppt)	(ppt)	(ppb)
19-m Stations											
135	170	360	48	33	nd	288	nd	nr	nd	384	nd
134	nd	82	nd	nd	nd	nd	nd	nr	nd	nd	nd
131	nd	160	nd	nd	nd	34	nd	nr	nd	nd	nd
123	130	nd	nd	nd	nd	101	nd	nr	nd	317	nd
I18	nd	650	nd	nd	34	74	nd	nr	17	122	nd
110	69	nd	nd	nd	nd	73	134	nr	nd	57	nd
14	nd	nd	nd	nd	nd	17	nd	nr	nd	3607	nd
28-m Stations											
133	100	35	nd	nd	nd	75	nd	nr	nd	126	13
130	140	nd	nd	7	nd	146	nd	nr	nd	82	8
127	165	144	nd	nd	38	261	35	nr	nd	445	nd
122	99	nd	nd	nd	nd	223	nd	nr	nd	55	7
 14 ª	300	nd	nd	nd	nd	152	nd	nr	nd	nd	nd
116ª	nd	82	nd	nd	24	92	nd	nr	nd	147	nd
115	130	nd	nd	nd	nd	35	nd	nr	nd	nd	nd
I12 ª	nd	nd	nd	56	nd	76	nd	nr	nd	17	nd
19	140	650	nd	nd	15	216	nd	nr	nd	116	nd
16	nd	6200	nd	nd	nd	39	nd	nr	nd	nd	nd
12	nd	120	130	nd	nd	31	nd	nr	nd	132	nd
13	nd	75	70	nd	nd	nd	nd	nr	nd	18	nd
38-m Stations											
129	530	nd	nd	6	nd	1320	nd	nr	nd	445	6
I21	76	nd	nd	nd	nd	38	nd	nr	nd	nd	nd
I13	nd	2800	nd	nd	nd	nd	nd	nr	nd	7	nd
18	nd	55	nd	nd	nd	61	nd	nr	nd	59	nd
55-m Stations											
128	570	1100	485	nd	nd	849	nd	nr	nd	1256	8
120	42	1100	nd	nd	nd	32	nd	nr	nd	45	nd
17	nd	110	nd	nd	nd	29	nd	nr	nd	16	nd
11	56	nd	100	nd	nd	133	21	521	nd	1333	121
DR (%)	56	59	19	15	15	89	11	100	4	78	22
ERL⁵	1580	na	na	4022	na	1580	na	na	na	na	4022
ERM⁵	46,100	na	na	44,792	na	46,100	na	na	na	na	44,792

^aNear-ZID station

^bFrom Long et al. 1995

Summary of the constituents that make up total chlordane, total DDT, total HCH, total PCB, and total PAH in sediments from the PLOO region during 2016; nd = not detected.

Station	Class	Constituent	Winter	Summer	Units
B8	DDT	o,p-DDE	23	47	ppt
B8	DDT	o,p-DDT	nd	52	ppt
B8	DDT	p,-p-DDMU	nd	72	ppt
B8	DDT	p,p-DDD	nd	86	ppt
B8	DDT	p,p-DDE	190	903	ppt
B8	DDT	p,p-DDT	nd	115	ppt
B8	PAH	2,6-dimethylnaphthalene	nd	13	ppb
B8	PAH	Benzo[e]pyrene	nd	4	ppb
B8	PAH	Benzo[G,H,I]perylene	nd	4	ppb
B8	PAH	Pyrene	7	8	ppb
B8	PCB	PCB 18	nd	11	ppt
B8	PCB	PCB 28	nd	36	ppt
B8	PCB	PCB 44	nd	19	ppt
B8	PCB	PCB 49	10	26	ppt
B8	PCB	PCB 52	16	26	ppt
B8	PCB	PCB 66	nd	45	ppt
B8	PCB	PCB 70	nd	37	ppt
B8	PCB	PCB 74	nd	18	ppt
B8	PCB	PCB 77	nd	11	ppt
B8	PCB	PCB 99	nd	57	ppt
B8	PCB	PCB 101	nd	50	ppt
B8	PCB	PCB 105	nd	37	ppt
B8	PCB	PCB 110	nd	69	ppt
B8	PCB	PCB 118	nd	98	ppt
B8	PCB	PCB 123	nd	14	ppt
B8	PCB	PCB 128	nd	48	ppt
B8	PCB	PCB 138	nd	121	ppt
B8	PCB	PCB 149	nd	90	ppt
B8	PCB	PCB 151	nd	21	ppt
B8	PCB	PCB 153/168	nd	167	ppt
B8	PCB	PCB 177	nd	22	ppt
B8	PCB	PCB 180	nd	67	ppt
B8	PCB	PCB 183	nd	26	ppt
B8	PCB	PCB 187	nd	69	ppt
B8	PCB	PCB 206	nd	42	ppt
B9	DDT	p,-p-DDMU	nd	50	ppt
B9	DDT	p,p-DDD	nd	73	ppt
B9	DDT	p,p-DDE	580	658	ppt
B9	DDT	p,p-DDT	nd	82	ppt
B9	PAH	2,6-dimethylnaphthalene	3	15	ppb
B9	PCB	PCB 18	nd	10	ppt
B9	PCB	PCB 28	nd	24	ppt
B9	PCB	PCB 44	nd	12	ppt
B9	PCB	PCB 49	nd	17	ppt
B9	PCB	PCB 52	nd	18	ppt
B9	PCB	PCB 66	nd	27	ppt
B9	PCB	PCB 70	nd	21	ppt
B9	PCB	PCB 74	nd	9	ppt
B9	PCB	PCB 99	nd	45	ppt
B9	PCB	PCB 101	nd	56	ppt
B9	PCB	PCB 105	nd	40	ppt

Station	Class	Constituent	Winter	Summer	Units
B9	PCB	PCB 110	nd	57	ppt
B9	PCB	PCB 118	nd	86	ppt
B9	PCB	PCB 123	nd	13	ppt
B9	PCB	PCB 138	nd	94	ppt
B9	PCB	PCB 149	nd	77	ppt
B9	PCB	PCB 153/168	nd	131	ppt
B9	PCB	PCB 180	nd	84	
B9	PCB	PCB 187		50	ppt
Da	РСБ	FCB 107	nd	50	ppt
B10	Chlordane	Alpha(cis)Chlordane	nd	51	ppt
B10	Chlordane	Gamma(trans)Chlordane	nd	38	ppt
B10	DDT	o,p-DDD	nd	23	ppt
B10	DDT	o,p-DDE	nd	43	ppt
B10	DDT	p,-p-DDMU	nd	44	ppt
B10	DDT	p,p-DDD	nd	40	ppt
B10	DDT	p,p-DDE	570	467	ppt
B10	DDT	p,p-DDT	nd	65	ppt
B10	PAH		nd	9	
		2,6-dimethylnaphthalene			ppb
B10	PCB	PCB 18	nd	11	ppt
B10	PCB	PCB 28	nd	19	ppt
B10	PCB	PCB 44	nd	15	ppt
B10	PCB	PCB 49	nd	25	ppt
B10	PCB	PCB 52	nd	20	ppt
B10	PCB	PCB 66	nd	22	ppt
B10	PCB	PCB 70	nd	21	ppt
B10	PCB	PCB 74	nd	13	ppt
B10	PCB	PCB 77	nd	13	ppt
B10	PCB	PCB 81	nd	16	ppt
B10	PCB	PCB 99	nd	39	
					ppt
B10	PCB	PCB 101	nd	35	ppt
B10	PCB	PCB 105	nd	21	ppt
B10	PCB	PCB 110	nd	32	ppt
B10	PCB	PCB 118	nd	42	ppt
B10	PCB	PCB 119	nd	11	ppt
B10	PCB	PCB 128	nd	27	ppt
B10	PCB	PCB 138	nd	54	ppt
B10	PCB	PCB 149	nd	58	ppt
B10	PCB	PCB 151	nd	16	ppt
B10	PCB	PCB 153/168	nd	84	ppt
B10	PCB	PCB 158	nd	12	
					ppt
B10	PCB	PCB 183	nd	23	ppt
B10	PCB	PCB 187	nd	40	ppt
B10	PCB	PCB 206	nd	32	ppt
B11	Chlordane	Alpha(cis)Chlordane	nd	60	ppt
B11	Chlordane	Gamma(trans)Chlordane	nd	39	ppt
B11	Chlordane	Methoxychlor	nd	112	ppt
B11	DDT	o,p-DDE	nd	48	ppt
B11	DDT	o,p-DDT	nd	52	ppt
B11	DDT	p,-p-DDMU	nd	82	
B11					ppt
	DDT	p,p-DDD	nd	56	ppt
B11	DDT	p,p-DDE	650	850	ppt
B11	DDT	p,p-DDT	nd	101	ppt
B11	PAH	2,6-dimethylnaphthalene	nd	16	ppb
B11	PAH	3,4-benzo(B)fluoranthene	nd	9	ppb

Table C.13 col					
Station	Class	Constituent	Winter	Summer	Units
B11	PCB	PCB 18	nd	13	ppt
B11	PCB	PCB 44	nd	21	ppt
B11	PCB	PCB 49	nd	24	ppt
B11	PCB	PCB 52	nd	27	ppt
B11	PCB	PCB 66	43	44	ppt
B11	PCB	PCB 70	nd	29	ppt
B11 B11	PCB PCB	PCB 74 PCB 99	nd	15	ppt
B11	PCB	PCB 99 PCB 101	nd nd	49 45	ppt
B11	PCB	PCB 101 PCB 105	nd	45 38	ppt
B11	PCB	PCB 105	nd	57	ppt
B11	PCB	PCB 118	nd	98	ppt ppt
B11	PCB	PCB 128	nd	45	ppt
B11	PCB	PCB 138	nd	108	ppt
B11	PCB	PCB 149	61	72	ppt
B11	PCB	PCB 151	nd	27	ppt
B11	PCB	PCB 153/168	nd	159	ppt
B11	PCB	PCB 180	nd	88	ppt
B11	PCB	PCB 183	nd	28	ppt
B11	PCB	PCB 187	nd	74	ppt
B11	PCB	PCB 206	nd	41	ppt
B12	Chlordane	Gamma(trans)Chlordane	nd	37	ppt
B12	Chlordane	Heptachlor	nd	32	ppt
B12	DDT	o,p-DDE	nd	56	ppt
B12	DDT	p,-p-DDMU	nd	40	ppt
B12	DDT	p,p-DDE	400	644	ppt
B12	DDT	p,p-DDT	nd	54	ppt
B12	PAH	2,6-dimethylnaphthalene	nd	9	ppb
B12	PCB	PCB 18	nd	11	ppt
B12	PCB	PCB 44	nd	11	ppt
B12	PCB	PCB 49	nd	7	ppt
B12	PCB	PCB 52	nd	19	ppt
B12	PCB	PCB 66	nd	29	ppt
B12	PCB	PCB 70	nd	23	ppt
B12	PCB	PCB 74	nd	11	ppt
B12 B12	PCB	PCB 99 PCB 101	nd	27	ppt
B12 B12	PCB PCB	PCB 101 PCB 110	nd	33 39	ppt
B12 B12	PCB	PCB 118	nd nd	39 45	ppt
B12 B12	PCB	PCB 138	nd	45	ppt ppt
B12	PCB	PCB 149	nd	67	ppt
B12	PCB	PCB 153/168	nd	107	ppt
B12	PCB	PCB 187	nd	42	ppt
E1	Chlordane	Alpha(cis)Chlordane	62	80	ppt
E1	Chlordane	Gamma(trans)Chlordane	nd	70	ppt
E1	Chlordane	TransNonachlor	nd	60	ppt
E1	DDT	o,p-DDD	nd	24	ppt
E1	DDT	p,-p-DDMU	nd	43	ppt
E1	DDT	p,p-DDD	nd	102	ppt
E1	DDT	p,p-DDE	700	433	ppt
E1	DDT	p,p-DDT	600	99	ppt
E1	PAH	2,6-dimethylnaphthalene	7	11	ppb
E1	PAH	3,4-benzo(B)fluoranthene	23	37	ppb

Station	Class	Constituent	Winter	Summer	Units
E1	PAH	Anthracene	7	3	ppb
E1	PAH	Benzo[A]pyrene	18	29	ppb
E1	PAH	Benzo[e]pyrene	13	21	ppb
E1	PAH	Benzo[G,H,I]perylene	14	24	ppb
E1	PAH	Benzo[K]fluoranthene	10	12	ppb
E1	PAH	Chrysene	24	18	ppb
E1	PAH	Fluoranthene	11	32	ppb
E1	PAH	Indeno(1,2,3-CD)pyrene	10	18	ppb
E1	PAH	Phenanthrene	nd	11	ppb
E1	PAH	Pyrene	14	33	ppb
E1	PCB	PCB 18	nd	23	ppt
E1	PCB	PCB 28	nd	58	ppt
E1	PCB	PCB 44	50 56	93 75	ppt
E1 E1	PCB PCB	PCB 49 PCB 52	56 73	75	ppt
E1	PCB	PCB 52 PCB 66	97	166 89	ppt
E1	PCB	PCB 00 PCB 70	84	118	ppt ppt
E1	PCB	PCB 74	36	41	ppt
E1	PCB	PCB 87	nd	180	ppt
E1	PCB	PCB 99	90	165	ppt
E1	PCB	PCB 101	170	400	ppt
E1	PCB	PCB 105	77	146	ppt
E1	PCB	PCB 110	200	360	ppt
E1	PCB	PCB 118	270	370	ppt
E1	PCB	PCB 119	nd	28	ppt
E1	PCB	PCB 128	nd	132	ppt
E1	PCB	PCB 138	210	400	ppt
E1	PCB	PCB 149	220	400	ppt
E1	PCB	PCB 151	nd	98	ppt
E1	PCB	PCB 153/168	340	620	ppt
E1	PCB	PCB 156	nd	69	ppt
E1	PCB	PCB 158	nd	82	ppt
E1	PCB	PCB 167	nd	24	ppt
E1	PCB	PCB 170	nd	127	ppt
E1	PCB	PCB 177	nd	77	ppt
E1	PCB	PCB 180	nd	330	ppt
E1 E1	PCB PCB	PCB 183 PCB 187	nd 110	73 190	ppt
E1	PCB	PCB 187 PCB 201	nd	190	ppt
E1	PCB	PCB 201 PCB 206	nd	56	ppt ppt
	FCD	F CB 200	nu	50	ppt
E2	Chlordane	Alpha(cis)Chlordane	nd	42	ppt
E2	Chlordane	Gamma(trans)Chlordane	nd	44	ppt
E2	Chlordane	TransNonachlor	nd	30	ppt
E2	DDT	p,-p-DDMU	95	39	ppt
E2	DDT	p,p-DDE	390	396	ppt
E2	DDT	p,p-DDT	nd	189	ppt
E2	HCH	HCH, Beta isomer	nd	159	ppt
E2	PAH	2,6-dimethylnaphthalene	nd	10	ppb
E2	PAH	3,4-benzo(B)fluoranthene	nd	19	ppb
E2	PAH	Anthracene	15	nd	ppb
E2	PAH	Benzo[A]pyrene	12	13	ppb
E2	PAH	Benzo[e]pyrene	10	10	ppb
E2 E2		Benzo[G,H,I]perylene	11	9 nd	ppb
E2	PAH	Biphenyl	6	nd	ppb

Station	Class	Constituent	Winter	Summer	Units
E2	PAH	Fluoranthene	11	9	ppb
E2	PAH	Pyrene	15	10	ppb
E2	PCB	PCB 18	nd	31	ppt
E2	PCB	PCB 28	49	50	ppt
E2	PCB	PCB 44	73	69	ppt
E2	PCB	PCB 49	54	55	ppt
E2	PCB	PCB 52	110	143	ppt
E2	PCB	PCB 66	86	65	ppt
E2	PCB	PCB 70	70	93	ppt
E2	PCB	PCB 74	nd	29	ppt
E2	PCB	PCB 77	nd	20	ppt
E2	PCB	PCB 87	nd	123	ppt
E2	PCB	PCB 99 PCB 101	110	116	ppt
E2 E2	PCB PCB	PCB 101 PCB 105	200 76	300 118	ppt
E2 E2	PCB	PCB 105 PCB 110	220	310	ppt
E2 E2	PCB	PCB 118	220	310	ppt
E2	PCB	PCB 119	nd	17	ppt
E2	PCB	PCB 123	nd	40	ppt ppt
E2	PCB	PCB 128	nd	102	ppt
E2	PCB	PCB 138	160	350	ppt
E2	PCB	PCB 149	170	300	ppt
E2	PCB	PCB 151	nd	72	ppt
E2	PCB	PCB 153/168	280	430	ppt
E2	PCB	PCB 156	nd	63	ppt
E2	PCB	PCB 157	nd	27	ppt
E2	PCB	PCB 158	nd	46	ppt
E2	PCB	PCB 167	nd	23	ppt
E2	PCB	PCB 170	nd	100	ppt
E2	PCB	PCB 177	nd	61	ppt
E2	PCB	PCB 180	nd	177	ppt
E2	PCB	PCB 183	nd	49	ppt
E2	PCB	PCB 187	nd	98	ppt
E2	PCB	PCB 206	nd	63	ppt
E3	Chlordane	Alpha(cis)Chlordane	245	128	ppt
E3	Chlordane	CisNonachlor	150	nd	ppt
E3	Chlordane	Gamma(trans)Chlordane	405	123	ppt
E3	Chlordane	TransNonachlor	185	86	NA
E3	DDT	o,p-DDE	nd	18	ppt
E3	DDT	p,-p-DDMU	nd	35	ppt
E3	DDT	p,p-DDD	nd	169	ppt
E3	DDT	p,p-DDE	850	309	ppt
E3	DDT	p,p-DDT	nd	119	ppt
E3	HCH	HCH, Beta isomer	nd	179	ppt
E3	PAH	2,6-dimethylnaphthalene	7	8	ppb
E3 E3	PAH PAH	3,4-benzo(B)fluoranthene	59	40 nd	ppb
E3 E3	PAH PAH	Acenaphthylene Anthracene	6 9	nd 10	ppb
E3 E3	PAH	Benzo[A]anthracene	9 25	20	ppb
E3 E3	PAH	Benzo[A]pyrene	25 46	30	ppb ppb
E3 E3	PAH	Benzo[e]pyrene	38	22	ppb ppb
E3	PAH	Benzo[G,H,I]perylene	46	15	ppb
E3	PAH	Benzo[K]fluoranthene	20	17	ppb
			20		

Table C.13 continued

Table C.13 co	ntinued				
Station	Class	Constituent	Winter	Summer	Units
E3	PAH	Fluoranthene	31	17	ppb
E3	PAH	Indeno(1,2,3-CD)pyrene	30	15	ppb
E3	PAH	Naphthalene	nd	6	ppb
E3	PAH	Perylene	nd	7	ppb
E3	PAH	Phenanthrene	15	13	ppb
E3	PAH	Pyrene	50	13	ppb
E3	PCB	PCB 18	130	170	ppt
E3	PCB	PCB 28	220	170	ppt
E3	PCB	PCB 37	nd	60	ppt
E3	PCB	PCB 44	390	440	ppt
E3	PCB	PCB 49	350	250	ppt
E3	PCB	PCB 52	520	870	ppt
E3	PCB	PCB 66	540	300	ppt
E3	PCB	PCB 70	490	650	ppt
E3	PCB	PCB 74	240	180	ppt
E3	PCB	PCB 77	nd	59	ppt
E3	PCB	PCB 87	360	740	ppt
E3	PCB	PCB 99	440	590	ppt
E3	PCB	PCB 101	910	1500	ppt
E3	PCB	PCB 105	360	620	ppt
E3	PCB	PCB 110	960	1700	ppt
E3	PCB	PCB 118	1200	1300	ppt
E3	PCB	PCB 119	nd	93	ppt
E3	PCB	PCB 123	nd	130	ppt
E3	PCB	PCB 126	nd	23	ppt
E3	PCB	PCB 128	260	370	ppt
E3	PCB	PCB 138	1000	1200	ppt
E3	PCB	PCB 149	820	1000	ppt
E3	PCB	PCB 151	120	250	ppt
E3	PCB	PCB 153/168	1400	1600	ppt
E3	PCB	PCB 156	70	250	ppt
E3	PCB	PCB 157	nd	65	ppt
E3	PCB	PCB 158	84	230	ppt
E3	PCB	PCB 167	nd	86	ppt
E3	PCB	PCB 170	220	270	ppt
E3	PCB	PCB 177	nd	190	ppt
E3	PCB	PCB 180	550	940	ppt
E3	PCB	PCB 183	240	230	ppt
E3	PCB	PCB 187	450	540	ppt
E3	PCB	PCB 194	nd	600	ppt
E3	PCB	PCB 201	190	111	ppt
E3	PCB	PCB 206	nd	450	ppt
E5	DDT	p,-p-DDMU	nd	26	ppt
E5	DDT	p,p-DDD	nd	40	ppt
E5	DDT	p,p-DDE	390	256	ppt
E5	DDT	p,p-DDT	nd	54	ppt
E5	PAH	2,6-dimethylnaphthalene	nd	7	ppb
E5	PAH	Chrysene	7	nd	ppb
E5	PAH	Pyrene	3	nd	ppb
E5	PCB	PCB 28	nd	18	ppt
E5	PCB	PCB 44	nd	12	ppt
E5	PCB	PCB 52	nd	18	ppt
E5	PCB	PCB 66	41	23	ppt
E5	PCB	PCB 70	nd	19	ppt

Table C.13 co	ontinued				
Station	Class	Constituent	Winter	Summer	Units
E5	PCB	PCB 74	nd	11	ppt
E5	PCB	PCB 87	nd	13	ppt
E5	PCB	PCB 99	nd	34	ppt
E5	PCB	PCB 101	nd	48	ppt
E5	PCB	PCB 105	nd	19	ppt
E5	PCB	PCB 110	nd	55	ppt
E5	PCB	PCB 118	110	49	ppt
E5	PCB	PCB 128	nd	28	ppt
E5	PCB	PCB 138	nd	75	ppt
E5	PCB	PCB 149	nd	64	ppt
E5	PCB	PCB 153/168	110	125	ppt
E5	PCB PCB	PCB 156	nd	10	ppt
E5 E5	PCB	PCB 180 PCB 183	nd	39 23	ppt
E5 E5	PCB	PCB 183 PCB 187	nd nd	23 49	ppt
E5	PCB	PCB 206	nd	49 31	ppt
ED	FCB	FCB 200	nu	51	ppt
E7	DDT	o,p-DDE	nd	26	ppt
E7	DDT	p,-p-DDMU	nd	36	ppt
E7	DDT	p,p-DDD	nd	42	ppt
E7	DDT	p,p-DDE	360	393	ppt
E7	DDT	p,p-DDT	nd	57	ppt
E7	PAH	2,6-dimethylnaphthalene	7	10	ppb
E7	PAH	3,4-benzo(B)fluoranthene	9	7	ppb
E7	PAH	Benzo[e]pyrene	7	nd	ppb
E7	PAH	Pyrene	7	nd	ppb
E7	PCB	PCB 18	nd	20	ppt
E7	PCB	PCB 28	nd	38	ppt
E7 E7	PCB	PCB 44	23 28	73 34	ppt
E7 E7	PCB PCB	PCB 49 PCB 52	20 51	152	ppt
E7	PCB	PCB 52 PCB 66	44	55	ppt
E7 E7	PCB	PCB 70	44 48	111	ppt
E7	PCB	PCB 74	nd	27	ppt ppt
E7	PCB	PCB 77	nd	10	ppt
E7	PCB	PCB 87	nd	144	ppt
E7	PCB	PCB 99	nd	99	ppt
E7	PCB	PCB 101	94	250	ppt
E7	PCB	PCB 105	nd	110	ppt
E7	PCB	PCB 110	120	330	ppt
E7	PCB	PCB 118	120	270	ppt
E7	PCB	PCB 128	nd	82	ppt
E7	PCB	PCB 138	140	240	ppt
E7	PCB	PCB 149	90	190	ppt
E7	PCB	PCB 153/168	130	267	ppt
E7	PCB	PCB 156	nd	28	ppt
E7	PCB	PCB 158	nd	36	ppt
E7	PCB	PCB 167	nd	18	ppt
E7	PCB	PCB 170	nd	65	ppt
E7	PCB	PCB 180	nd	86	ppt
E7	PCB	PCB 183	nd	22	ppt
E7	PCB	PCB 187	nd	52	ppt
E8	DDT	o,p-DDD	nd	18	ppt
E8	DDT	o,p-DDE	nd	33	ppt
	501	0,p 222			222

Table C.13 continued

Table C.13 co	Table C.13 continued					
Station	Class	Constituent	Winter	Summer	Units	
E8	DDT	o,p-DDT	nd	22	ppt	
E8	DDT	p,-p-DDMU	nd	45	ppt	
E8	DDT	p,p-DDD	nd	32	ppt	
E8	DDT	p,p-DDE	390	297	ppt	
E8	DDT	p,p-DDT	nd	44	ppt	
E8	PAH	2,6-dimethylnaphthalene	nd	9	ppb	
E8	PCB	PCB 18	nd	21	ppt	
E8	PCB	PCB 44	nd	19	ppt	
E8	PCB	PCB 49	nd	16	ppt	
E8	PCB	PCB 52	nd	24	ppt	
E8	PCB	PCB 66	nd	35	ppt	
E8	PCB	PCB 70	nd	32	ppt	
E8	PCB	PCB 74	nd	22	ppt	
E8	PCB	PCB 77	nd	16	ppt	
E8	PCB	PCB 81	nd	16	ppt	
E8	PCB	PCB 99	nd	44	ppt	
E8	PCB	PCB 101	nd	43	ppt	
E8	PCB	PCB 105	nd	26	ppt	
E8	PCB	PCB 110	nd	64	ppt	
E8	PCB	PCB 118	nd	64	ppt	
E8	PCB	PCB 128	nd	30	ppt	
E8	PCB	PCB 138	nd	70	ppt	
E8	PCB	PCB 149	nd	70	ppt	
E8	PCB	PCB 153/168	nd	107	ppt	
E8	PCB	PCB 158	nd	17	ppt	
E8	PCB	PCB 170	nd	34	ppt	
E8	PCB	PCB 180	nd	52	ppt	
E8	PCB	PCB 183	nd	22	ppt	
E8	PCB	PCB 187	nd	50	ppt	
E8	PCB	PCB 206	nd	27	ppt	
E9	DDT	p,-p-DDMU	nd	21	ppt	
E9	DDT	p,p-DDD	nd	18	ppt	
E9	DDT	p,p-DDE	350	165	ppt	
E9	PAH	2-methylnaphthalene	nd	7	ppb	
E9	PAH	2,6-dimethylnaphthalene	7	7	ppb	
E9	PAH	3,4-benzo(B)fluoranthene	15	9	ppb	
E9	PAH	Benzo[A]pyrene	9	nd	ppb	
E9	PAH	Benzo[e]pyrene	9	nd	ppb	
E9	PAH	Benzo[G,H,I]perylene	7	nd	ppb	
E9	PAH	Pyrene	7	nd	ppb	
E9	PCB	PCB 18	nd	67	ppt	
E9	PCB	PCB 28	nd	53	ppt	
E9	PCB	PCB 44	35	161	ppt	
E9	PCB	PCB 49	42	98	ppt	
E9	PCB	PCB 52	79	270	ppt	
E9	PCB	PCB 66	56	124	ppt	
E9	PCB	PCB 70	50	210	ppt	
E9	PCB	PCB 74	nd	78	ppt	
E9	PCB	PCB 87	nd	153	ppt	
E9	PCB	PCB 99	66	136	ppt	
E9	PCB	PCB 101	120	300	ppt	
E9	PCB	PCB 105	74	152	ppt	
E9	PCB	PCB 110	150	350	ppt	
E9	PCB	PCB 118	120	330	ppt	

Table C.13 continued					
Station	Class	Constituent	Winter	Summer	Units
E9	PCB	PCB 119	nd	21	ppt
E9	PCB	PCB 128	nd	64	ppt
E9	PCB	PCB 138	190	300	ppt
E9	PCB	PCB 149	110	300	ppt
E9	PCB	PCB 151	nd	92	ppt
E9	PCB	PCB 153/168	170	410	ppt
E9	PCB	PCB 156	nd	50	ppt
E9	PCB	PCB 158	nd	60	ppt
E9	PCB	PCB 170	nd	118	ppt
E9	PCB	PCB 177	nd	84	ppt
E9	PCB	PCB 180	nd	250	ppt
E9	PCB	PCB 183	nd	58	ppt
E9	PCB	PCB 187	nd	149	ppt
E9	PCB	PCB 206	nd	38	ppt
E11	DDT	p,-p-DDMU	nd	37	ppt
E11	DDT	p,p-DDE	320	238	ppt
E11	PAH	2,6-dimethylnaphthalene	7	9	ppb
E11	PCB	PCB 44	nd	12	ppt
E11	PCB	PCB 49	nd	18	ppt
E11	PCB	PCB 52	nd	25	ppt
E11	PCB	PCB 66	nd	28	ppt
E11	PCB	PCB 70	nd	19	ppt
E11	PCB	PCB 99	nd	30	ppt
E11	PCB	PCB 101	nd	42	ppt
E11	PCB	PCB 110	nd	39	ppt
E11	PCB	PCB 138	nd	48	ppt
E11	PCB	PCB 149	64	41	ppt
E11	PCB	PCB 153/168	nd	56	ppt
E11	PCB	PCB 156	nd	13	ppt
E11	PCB	PCB 187	nd	24	ppt
E14	DDT	p,-p-DDMU	nd	58	ppt
E14	DDT	p,p-DDD	nd	52	ppt
E14	DDT	p,p-DDE	260	366	ppt
E14	PAH	2,6-dimethylnaphthalene	nd	11	ppb
E14	PCB	PCB 18	nd	8	ppt
E14	PCB	PCB 28	nd	16	ppt
E14	PCB	PCB 44	nd	15	ppt
E14	PCB	PCB 49	nd	23	ppt
E14	PCB	PCB 52	nd	21	ppt
E14	PCB	PCB 66	nd	29	ppt
E14	PCB	PCB 70	nd	18	ppt
E14	PCB	PCB 99	nd	30	ppt
E14	PCB	PCB 101	nd	46	ppt
E14	PCB	PCB 105	nd	22	ppt
E14	PCB	PCB 118	nd	50	ppt
E14	PCB	PCB 128	nd	20	ppt
E14	PCB	PCB 138	nd	57	ppt
E14	PCB	PCB 151	nd	14	ppt
E14	PCB	PCB 153/168	nd	93	ppt
E14	PCB	PCB 158	nd	9	ppt
E14	PCB	PCB 183	nd	16	ppt
E14	PCB	PCB 187	nd	43	ppt

Station	Class	Constituent	Winter	Summer	Units	
E15	DDT	p,-p-DDMU	nd	38	ppt	
E15	DDT	p,p-DDE	330	275	ppt	
E15	PAH	2,6-dimethylnaphthalene	nd	7	ppb	
E15	PCB	PCB 18	nd	18	ppt	
E15	PCB	PCB 28	nd	37	ppt	
E15	PCB	PCB 44	nd	30	ppt	
E15	PCB	PCB 49	nd	27	ppt	
E15	PCB	PCB 52	nd	32	ppt	
E15	PCB	PCB 66	nd	28	ppt	
E15	PCB	PCB 70	nd	29	ppt	
E15	PCB	PCB 74	nd	15	ppt	
E15	PCB	PCB 99	nd	39	ppt	
E15	PCB	PCB 101	nd	40	ppt	
E15	PCB	PCB 105	nd	20	ppt	
E15	PCB	PCB 110	nd	35	ppt	
E15	PCB	PCB 118	nd	59	ppt	
E15	PCB	PCB 149	47	45	ppt	
E15 E15	PCB	PCB 153/168	nd	88		
E15 E15	PCB	PCB 153/106 PCB 183	nd	00 14	ppt	
					ppt	
E15	PCB	PCB 187	nd	36	ppt	
E17	DDT	p,p-DDE	280	nd	ppt	
E17	PAH	2,6-dimethylnaphthalene	nd	7	ppb	
E17	PCB	PCB 66	53	nd	ppt	
E17	PCB	PCB 118	70	nd	ppt	
E17	PCB	PCB 149	44	nd	ppt	
E17	PCB	PCB 153/168	94	nd	ppt	
E19	Chlordane	Alpha(cis)Chlordane	nd	50	ppt	
E19	Chlordane	Gamma(trans)Chlordane	nd	27	ppt	
E19	DDT	o,p-DDD	nd	26	ppt	
E19	DDT	o,p-DDE	nd	48	ppt	
E19	DDT	p,-p-DDMU	nd	65	ppt	
E19	DDT	p,p-DDD	nd	66	ppt	
E19	DDT	p,p-DDE	470	582	ppt	
E19	DDT	p,p-DDT	nd	83		
E19 E19	PAH	2,6-dimethylnaphthalene		13	ppt ppb	
E19 E19	PAH		nd	8	ppb	
E19 E19	PAH PAH	3,4-benzo(B)fluoranthene	nd	8 7	ppb	
	PAH PCB	Pyrene PCB 44	nd		ppb	
E19			26	23	ppt	
E19	PCB	PCB 49	20	21	ppt	
E19	PCB	PCB 52	34	33	ppt	
E19	PCB	PCB 66	46	42	ppt	
E19	PCB	PCB 70	28	39	ppt	
E19	PCB	PCB 74	16	22	ppt	
E19	PCB	PCB 77	nd	15	ppt	
E19	PCB	PCB 99	nd	42	ppt	
E19	PCB	PCB 101	67	54	ppt	
E19	PCB	PCB 105	nd	45	ppt	
E19	PCB	PCB 110	47	66	ppt	
E19	PCB	PCB 118	75	87	ppt	
E19	PCB	PCB 128	nd	33	ppt	
E19	PCB	PCB 138	nd	100	ppt	
E19	PCB	PCB 149	35	78	ppt	
E19	PCB	PCB 151	nd	31	ppt	

Station Class Constituent Winter Summer Units E19 PCB PCB 155 nd 19 ppt E19 PCB PCB 155 nd 19 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 183 nd 39 ppt E20 DDT $pp.DDMU$ nd 51 ppt E20 DDT $p.p.DDD$ nd 81 ppt E20 DDT $p.p.DDT$ nd 19 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 49 nd 16 ppt E20 PCB PCB 44 nd 29 ppt E20 PCB PCB 101 nd	Table C.13 co	Table C.13 continued					
E19 PCB PCB 156 nd 19 ppt E19 PCB PCB 180 nd 21 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 187 nd 35 ppt E20 DDT p,-p-DDM nd 51 ppt E20 DDT p,-p-DDE 450 406 ppt E20 DDT p,-p-DDE 450 406 ppt E20 DT p,-p-DT nd 81 ppt E20 DCF PCB44 nd 9 ppt E20 PCB PC849 nd 16 ppt E20 PCB PC844 nd 7 ppt E20 PCB PC844 nd 7 ppt E20 PCB PC870 nd 18 ppt	Station	Class	Constituent	Winter	Summer	Units	
E19 PCB PCB 188 nd 15 ppt E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 187 nd 75 ppt E19 PCB PCB 206 nd 75 ppt E20 DDT p,-p-DDN nd 39 ppt E20 DDT p,-p-DDF nd 81 ppt E20 DDT p,-DDF nd 81 ppt E20 DDT p,-DDT nd 81 ppt E20 PCB PCB 49 nd 81 ppt E20 PCB PCB 49 nd 16 ppt E20 PCB PCB 52 nd 12 ppt E20 PCB PCB 66 nd 31 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 105 nd 21 ppt			PCB 153/168	70	144	ppt	
E19 PCB PCB 180 nd 91 pt E19 PCB PCB 187 nd 75 ppt E19 PCB PCB 206 nd 85 ppt E20 DDT $p,-p-DDMU$ nd 51 ppt E20 DDT $p,-p-DDE$ 450 406 ppt E20 DDT $p,-DDT$ nd 81 ppt E20 DDT $p,-DDT$ nd 81 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 44 nd 18 ppt E20 PCB PCB 44 nd 18 ppt E20 PCB PCB 52 nd 12 ppt E20 PCB PCB 64 nd 7 ppt E20 PCB PCB 171 nd 12 ppt E20 PCB PCB 101 nd 27 p						ppt	
E19 PCB PCB 183 nd 21 ppt E19 PCB PCB 206 nd 85 ppt E20 DDT p,-p-DDD nd 39 ppt E20 DDT p,-p-DDE 450 406 ppt E20 DDT p,-p-DDT nd 81 ppt E20 PCH 2.6-dimethylnaphthalene nd 9 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 43 nd 12 ppt E20 PCB PCB 43 nd 12 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 70 nd 18 ppt E20 PCB PCB 105 nd 27 ppt E20 PCB PCB 110 nd 38				nd		ppt	
E19 PCB PCB 187 nd 75 ppt E19 PCB PCB 206 nd 85 ppt E20 DDT p,p-DDD nd 39 ppt E20 DDT p,p-DDT nd 81 ppt E20 DDT p,p-DDT nd 81 ppt E20 DDT p,p-DDT nd 81 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 44 nd 7 ppt E20 PCB PCB 52 nd 12 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 103 nd 43 ppt E20 PCB PCB 133 nd 46 ppt						ppt	
E19 PCB PCB 206 nd 85 ppt E20 DDT p,-p-DDD nd 39 ppt E20 DDT p,-p-DDE 450 406 ppt E20 DDT p,-p-DDE 450 406 ppt E20 DDT p,-p-DDT nd 81 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 49 nd 16 ppt E20 PCB PCB 52 nd 12 ppt E20 PCB PCB 66 nd 31 ppt E20 PCB PCB 70 nd 18 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 101 nd 38 ppt E20 PCB PCB 118 nd 45 ppt E20 PCB PCB 153/168 79 107 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
E D pp-DDWU nd 51 pt E20 DDT pp-DDE 450 406 ppt E20 DDT pp-DDT nd 81 ppt E20 DDT pp-DDT nd 81 ppt E20 PCH PCB 450 406 ppt E20 PCB PCB 450 406 ppt E20 PCB PCB 446 nd 9 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 44 nd 7 ppt E20 PCB PCB 70 nd 18 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 103 nd 45 ppt E20 PCB PCB 138 nd 46 ppt E							
E20 DDT p.p-DDD nd 39 ppt E20 DDT p.p-DDT nd 81 ppt E20 DDT p.p-DDT nd 81 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 44 nd 12 ppt E20 PCB PCB 70 nd 13 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 118 nd 45 ppt E20 PCB PCB 128 nd 59 ppt E20 PCB PCB 128 nd 46 ppt E20 PCB PCB 138 nd 46 ppt	E19	PCB	PCB 206	nd	85	ppt	
E20 DDT p.p.DDE 450 406 ppt E20 DDT p.p.DDT nd 81 ppt E20 PAH 2.6-dimethylnaphthalene nd 9 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 42 nd 16 ppt E20 PCB PCB 82 nd 13 ppt E20 PCB PCB 70 nd 18 ppt E20 PCB PCB 70 nd 25 ppt E20 PCB PCB 70 nd 25 ppt E20 PCB PCB 105 nd 21 ppt E20 PCB PCB 118 nd 45 ppt E20 PCB PCB 128 nd 23 ppt E20 PCB PCB 138 nd 16 ppt E20 PCB PCB 187 nd 30						ppt	
E20 DDT $p.p.DDT$ nd 81 ppt E20 PCB PCB 44 nd 9 ppt E20 PCB PCB 49 nd 16 ppt E20 PCB PCB 49 nd 12 ppt E20 PCB PCB 822 nd 12 ppt E20 PCB PCB 70 nd 31 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 101 nd 21 ppt E20 PCB PCB 110 nd 45 ppt E20 PCB PCB 138 nd 59 ppt E20 PCB PCB 133 nd 64 ppt E20 PCB PCB 183 nd 16 ppt E20 PCB PCB 183 nd 16 ppt							
E20 PAH $2,6 - dimethylnaphthalene$ nd 9 ppb E20 PCB PCB 44 nd 16 ppt E20 PCB PCB 52 nd 12 ppt E20 PCB PCB 66 nd 18 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 74 nd 7 ppt E20 PCB PCB 74 nd 27 ppt E20 PCB PCB 101 nd 27 ppt E20 PCB PCB 105 nd 21 ppt E20 PCB PCB 112 nd 45 ppt E20 PCB PCB 138 nd 59 ppt E20 PCB PCB 133 nd 54 ppt E20 PCB PCB 183 nd 54 ppt E20 PCB PCB 183 nd 16							
E20PCBPCB 44nd9pptE20PCBPCB 49nd16pptE20PCBPCB 72nd31pptE20PCBPCB 70nd31pptE20PCBPCB 70nd7pptE20PCBPCB 74nd7pptE20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 118nd45pptE20PCBPCB 118nd45pptE20PCBPCB 128nd23pptE20PCBPCB 138nd46pptE20PCBPCB 138nd46pptE20PCBPCB 133/16879107pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCB 187nd16pptE20PCBPCB 183nd16pptE20PCBPCB 188nd16pptE21DDTp,p-DDDnd19pptE23DDTp,p-DDDnd19pptE23DTp,PDDTnd10pptE23PCBPCB 18nd </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E20PCBPCB 49nd16pptE20PCBPCB 52nd12pptE20PCBPCB 74nd18pptE20PCBPCB 74nd7pptE20PCBPCB 74nd25pptE20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 105nd38pptE20PCBPCB 118nd45pptE20PCBPCB 128nd23pptE20PCBPCB 138nd69pptE20PCBPCB 153/16879107pptE20PCBPCB 183nd54pptE20PCBPCB 183nd54pptE20PCBPCB 183nd54pptE20PCBPCB 183nd51pptE20PCBPCB 183nd51pptE20PCBPCB 183nd51pptE20PCBPCB 183nd51pptE21DDTp.p-DDE480468pptE23DDTp.p-DDE480468pptE23PCBPCB 18nd10pptE23PCBPCB 18nd10pptE23PCBPCB 18nd10pptE23PCBPCB 101<							
E20PCBPCB 52nd12ptE20PCBPCB 66nd31pptE20PCBPCB 70nd18pptE20PCBPCB 74nd7pptE20PCBPCB 99nd25pptE20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 110nd38pptE20PCBPCB 128nd45pptE20PCBPCB 138nd46pptE20PCBPCB 138nd46pptE20PCBPCB 138nd46pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE21DDT p,p -DDDnd43pptE23DDT $p,p-DDD$ nd19pptE23DDT $p,p-DDT$ nd109pptE23PCBPCB 18nd13pptE23PCBPCB 18nd13pptE23PCBPCB 18nd16pptE23PCBPCB 18n							
E20PCBPCB 66nd31ptE20PCBPCB 74nd7ptE20PCBPCB 99nd25ptE20PCBPCB 101nd27ptE20PCBPCB 105nd21ptE20PCBPCB 118nd45ptE20PCBPCB 128nd23ptE20PCBPCB 138nd46ptE20PCBPCB 138nd46ptE20PCBPCB 138nd59ptE20PCBPCB 138nd69ptE20PCBPCB 138nd69ptE20PCBPCB 138nd69ptE20PCBPCB 180nd64ptE20PCBPCB 183nd16ptE20PCBPCB 183nd16ptE20PCBPCB 187nd30ptE23DDTp.p-DDDnd43ptE23DDTp.p-DDTnd109ptE23DDTp.p-DDTnd13ptE23PCBPCB 18nd13ptE23PCBPCB 44nd10ptE23PCBPCB 49nd16ptE23PCBPCB 664928ptE23PCBPCB 610nd33pt <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E20PCBPCB 70nd18pptE20PCBPCB 74nd7pptE20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 110nd38pptE20PCBPCB 110nd38pptE20PCBPCB 128nd45pptE20PCBPCB 128nd46pptE20PCBPCB 133nd46pptE20PCBPCB 133nd46pptE20PCBPCB 133nd69pptE20PCBPCB 133nd69pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd19pptE23DDTp.p-DDDnd43pptE23DDTp.p-DDDnd43pptE23DDTp.p-DDTnd109pptE23PCBPCB 44nd10pptE23PCBPCB 49nd16pptE23PCBPCB 49nd16pptE23PCBPCB 62nd18pptE23PCBPCB 74nd </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E20PCBPCB 74nd7pptE20PCBPCB 99nd25pptE20PCBPCB 101nd27pptE20PCBPCB 110nd38pptE20PCBPCB 118nd45pptE20PCBPCB 118nd45pptE20PCBPCB 128nd23pptE20PCBPCB 149nd46pptE20PCBPCB 149nd46pptE20PCBPCB 183nd59pptE20PCBPCB 183nd6pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE23DDTp.p-DDE480468pptE23DDTp.p-DDTnd19pptE23PCBPCB 18nd13pptE23PCBPCB 18nd13pptE23PCBPCB 49nd16pptE23PCBPCB 18nd13pptE23PCBPCB 49nd16pptE23PCBPCB 74nd9pptE23PCBPCB 74nd							
E20PCBPCB 99nd25pptE20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 118nd45pptE20PCBPCB 128nd33pptE20PCBPCB 128nd46pptE20PCBPCB 133nd46pptE20PCBPCB 149nd46pptE20PCBPCB 13/16879107pptE20PCBPCB 183nd54pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCDDDnd19pptE23DDTp.p-DDE480468pptE23DDTp.p-DDE480468pptE23PAH2.6-dimethylnaphthalene612ppbE23PCBPCB 44nd10pptE23PCBPCB 44nd10pptE23PCBPCB 52nd18pptE23PCBPCB 52nd18pptE23PCBPCB 664928pptE23PCB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
E20PCBPCB 101nd27pptE20PCBPCB 105nd21pptE20PCBPCB 110nd38pptE20PCBPCB 128nd45pptE20PCBPCB 128nd59pptE20PCBPCB 138nd46pptE20PCBPCB 153/16879107pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE20PCBPCB 187nd16pptE21DDTp.p-DDE300ndpptE23DDTp.p-DDDnd19pptE23DDTp.p-DDE480468pptE23DDTp.p-DDTnd109pptE23PCBPCB 18nd13pptE23PCBPCB 44nd10pptE23PCBPCB 52nd18pptE23PCBPCB 664928pptE23PCBPCB 652nd18pptE23PCBPCB 74nd9pptE23PCBPCB 74nd9pptE23PCBPCB 74<							
E20PCBPCB 105nd21pptE20PCBPCB 110nd38pptE20PCBPCB 128nd23pptE20PCBPCB 128nd59pptE20PCBPCB 149nd46pptE20PCBPCB 153/16879107pptE20PCBPCB 183nd54pptE20PCBPCB 183nd64pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE20PCBPCB 187nd30pptE21DDTp.p-DDDnd19pptE23DDTp.p-DDDnd43pptE23DDTp.p-DDDnd43pptE23DDTp.p-DDTnd109pptE23DDTp.P-DDTnd109pptE23PCBPCB 188nd13pptE23PCBPCB 18nd10pptE23PCBPCB 18nd10pptE23PCBPCB 18nd10pptE23PCBPCB 18nd16pptE23PCBPCB 18nd16pptE23PCBPCB 664928pptE23PCBPCB 664920pptE3PCBPCB 101 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
E20 PCB PCB 110 nd 38 ppt E20 PCB PCB 128 nd 45 ppt E20 PCB PCB 138 nd 59 ppt E20 PCB PCB 138 nd 59 ppt E20 PCB PCB 149 nd 46 ppt E20 PCB PCB 153/168 79 107 ppt E20 PCB PCB 183 nd 16 ppt E20 PCB PCB 187 nd 30 pdt E21 DDT o,p-DDD nd 19 ppt E23 DDT p,p-DDT nd 109 ppt E23 DAH 2,6-dimethylnaphthalene 6 12 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E20 PCB PCB 118 nd 45 ppt E20 PCB PCB 128 nd 23 ppt E20 PCB PCB 128 nd 59 ppt E20 PCB PCB 128 nd 46 ppt E20 PCB PCB 153/168 79 107 ppt E20 PCB PCB 183 nd 16 ppt E20 PCB PCB 183 nd 16 ppt E20 PCB PCB 183 nd 16 ppt E20 PCB PCB 187 nd 30 ppt E21 DDT p,p-DDE 300 nd 19 E23 DDT p,p-DDMU nd 51 ppt E23 DDT p,p-DDD nd 468 ppt E23 DDT p,p-DDT nd 109 ppt E23 DAT p,p-DDT nd 109 ppt E23 PCB PCB 18 nd 10 ppt							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
E20PCBPCB 149nd46pptE20PCBPCB 153/16879107pptE20PCBPCB 180nd54pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE21DDTp,p-DDE300ndpptE23DDTo,p-DDUnd19pptE23DDTp,p-DDE480468pptE23DDTp,p-DDE480468pptE23DDTp,p-DDTnd109pptE23DDTp,P-DDTnd109pptE23DDTp,P-DDTnd109pptE23PCBPCB 18nd10pptE23PCBPCB 18nd13pptE23PCBPCB 44nd10pptE23PCBPCB 52nd18pptE23PCBPCB 52nd18pptE23PCBPCB 664928pptE23PCBPCB 70nd20pptE23PCBPCB 74nd9pptE23PCBPCB 74nd33pptE23PCBPCB 70nd33pptE23PCBPCB 101nd37pptE23PCBPCB 101nd37pptE23PCBPCB 105 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E20PCBPCB 153/16879107pptE20PCBPCB 180nd54pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE21DDTp,p-DDE300ndpptE23DDTo,p-DDDnd19pptE23DDTp,-p-DDMUnd51pptE23DDTp,p-DDDnd43pptE23DDTp,p-DDTnd09pptE23DDTp,p-DDTnd19pptE23DDTp,P-DDTnd19pptE23PAH2,6-dimethylnaphthalene612ppbE23PCBPCB 18nd13pptE23PCBPCB 49nd16pptE23PCBPCB 52nd18pptE23PCBPCB 52nd18pptE23PCBPCB 52nd18pptE23PCBPCB 74nd9pptE23PCBPCB 70nd39pptE23PCBPCB 74nd39pptE23PCBPCB 74nd37pptE23PCBPCB 74nd33pptE23PCBPCB 105nd33pptE23PCBPCB 101nd37pptE23PCBP							
E20PCBPCB 180nd54pptE20PCBPCB 183nd16pptE20PCBPCB 187nd30pptE21DDTp,p-DDE300ndpptE23DDTp,p-DDDnd51pptE23DDTp,p-DDDnd43pptE23DDTp,p-DDDnd43pptE23DDTp,p-DDE480468pptE23DDTp,p-DDTnd109pptE23DDTp,P-DDE480468pptE23PAH2,6-dimethylnaphthalene612ppbE23PCBPCB 18nd13pptE23PCBPCB 44nd10pptE23PCBPCB 44nd16pptE23PCBPCB 52nd18pptE23PCBPCB 664928pptE23PCBPCB 70nd20pptE23PCBPCB 74nd9pptE23PCBPCB 101nd33pptE23PCBPCB 101nd33pptE23PCBPCB 105nd39pptE23PCBPCB 101nd37pptE23PCBPCB 105nd33pptE23PCBPCB 105nd33pptE23PCB							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
E20PCBPCB 187nd30pptE21DDT $p,p-DDE$ 300nd ppt E23DDT $p,p-DDD$ nd19 ppt E23DDT $p,p-DDMU$ nd51 ppt E23DDT $p,p-DDD$ nd43 ppt E23DDT $p,p-DDE$ 480468 ppt E23DDT $p,p-DDE$ 480468 ppt E23DDT $p,p-DDT$ nd109 ppt E23PAH2,6-dimethylnaphthalene612 ppb E23PCBPCB 18nd13 ppt E23PCBPCB 22nd16 ppt E23PCBPCB 44nd10 ppt E23PCBPCB 52nd18 ppt E23PCBPCB 664928 ppt E23PCBPCB 70nd20 ppt E23PCBPCB 74nd9 ppt E23PCBPCB 70nd39 ppt E23PCBPCB 105nd33 ppt E23PCBPCB 101nd37 ppt E23PCBPCB 110nd37 ppt E23PCBPCB 118nd46 ppt E23PCBPCB 118nd46 ppt E23PCBPCB 118 pt pt pt E23PCBPCB 118 pt </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
E23 DDT o,p-DDD nd 19 ppt E23 DDT p,-p-DDMU nd 51 ppt E23 DDT p,p-DDD nd 43 ppt E23 DDT p,p-DDE 480 468 ppt E23 DDT p,p-DDT nd 109 ppt E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppb E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt							
E23 DDT p,-p-DDMU nd 51 ppt E23 DDT p,p-DDD nd 43 ppt E23 DDT p,p-DDE 480 468 ppt E23 DDT p,p-DDT nd 109 ppt E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppt E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 101 nd 35 <td>E21</td> <td>DDT</td> <td>p,p-DDE</td> <td>300</td> <td>nd</td> <td>ppt</td>	E21	DDT	p,p-DDE	300	nd	ppt	
E23 DDT p,p-DDD nd 43 ppt E23 DDT p,p-DDE 480 468 ppt E23 DDT p,p-DDT nd 109 ppt E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppt E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 70 nd 39 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 105 nd 33 ppt </td <td></td> <td>DDT</td> <td></td> <td>nd</td> <td></td> <td>ppt</td>		DDT		nd		ppt	
E23 DDT p,p-DDE 480 468 ppt E23 DDT p,p-DDT nd 109 ppt E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppt E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 18 nd 10 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 44 nd 16 ppt E23 PCB PCB 49 nd 18 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt				nd		ppt	
E23 DDT p,p-DDT nd 109 ppt E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppb E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt							
E23 PAH 2,6-dimethylnaphthalene 6 12 ppb E23 PAH Pyrene 7 nd ppb E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 18 nd 10 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
E23 PAH Pyrene 7 nd ppb E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 105 nd 37 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E2							
E23 PCB PCB 18 nd 13 ppt E23 PCB PCB 44 nd 10 ppt E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 99 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23PCBPCB 44nd10pptE23PCBPCB 49nd16pptE23PCBPCB 52nd18pptE23PCBPCB 664928pptE23PCBPCB 70nd20pptE23PCBPCB 74nd9pptE23PCBPCB 74nd39pptE23PCBPCB 101nd35pptE23PCBPCB 105nd33pptE23PCBPCB 110nd37pptE23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23 PCB PCB 49 nd 16 ppt E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 70 nd 9 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23 PCB PCB 52 nd 18 ppt E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 99 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23 PCB PCB 66 49 28 ppt E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 74 nd 39 ppt E23 PCB PCB 99 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23 PCB PCB 70 nd 20 ppt E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 99 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23 PCB PCB 74 nd 9 ppt E23 PCB PCB 99 nd 39 ppt E23 PCB PCB 101 nd 35 ppt E23 PCB PCB 105 nd 33 ppt E23 PCB PCB 110 nd 37 ppt E23 PCB PCB 118 nd 46 ppt E23 PCB PCB 138 85 75 ppt							
E23PCBPCB 99nd39pptE23PCBPCB 101nd35pptE23PCBPCB 105nd33pptE23PCBPCB 110nd37pptE23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23PCBPCB 101nd35pptE23PCBPCB 105nd33pptE23PCBPCB 110nd37pptE23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23PCBPCB 105nd33pptE23PCBPCB 110nd37pptE23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23PCBPCB 110nd37pptE23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23PCBPCB 118nd46pptE23PCBPCB 1388575ppt							
E23 PCB PCB 138 85 75 ppt							

Station	Class	Constituent	Winter	Summer	Units
E23	PCB	PCB 153/168	nd	94	
E23	PCB	PCB 153/168 PCB 158		94 19	ppt
E23	PCB	PCB 156 PCB 177	nd	26	ppt
E23	PCB		nd		ppt
		PCB 180	nd	58	ppt
E23	PCB	PCB 187	nd	35	ppt
E23	PCB	PCB 206	nd	39	ppt
E25	DDT	o,p-DDD	nd	18	ppt
E25	DDT	o,p-DDE	nd	25	ppt
E25	DDT	o,p-DDT	nd	23	ppt
E25	DDT	p,-p-DDMU	nd	43	ppt
E25	DDT	p,p-DDD	nd	51	ppt
E25	DDT	p,p-DDE	590	512	ppt
E25	DDT	p,p-DDT	nd	82	ppt
E25	PAH	2,6-dimethylnaphthalene	nd	12	ppb
E25	PCB	PCB 44	nd	11	ppt
E25	PCB	PCB 49	nd	17	ppt
E25	PCB	PCB 52	nd	15	ppt
E25	PCB	PCB 66	nd	20	ppt
E25	PCB	PCB 70	nd	19	ppt
E25	PCB	PCB 74	nd	10	ppt
E25	PCB	PCB 99	nd	25	ppt
E25	PCB	PCB 101	nd	31	ppt
E25	PCB	PCB 105	nd	29	ppt
E25	PCB	PCB 110	nd	53	ppt
E25	PCB	PCB 118	nd	51	ppt
E25	PCB	PCB 138	nd	68	ppt
E25	PCB	PCB 149	nd	72	ppt
E25	PCB	PCB 153/168	nd	94	ppt
E25	PCB	PCB 180	nd	47	ppt
E25	PCB	PCB 183	nd	20	ppt
E25	PCB	PCB 187	nd	53	ppt
E26	DDT	o,p-DDD	nd	24	ppt
E26	DDT	o,p-DDE	nd	35	ppt
E26	DDT	p,-p-DDMU	nd	53	ppt
E26	DDT	p,p-DDD	nd	44	ppt
E26	DDT	p,p-DDE	400	574	ppt
E26	DDT	p,p-DDT	nd	69	ppt
E26	PAH	2,6-dimethylnaphthalene	6	11	ppb
E26	PAH	3,4-benzo(B)fluoranthene	8	7	ppb
E26	PCB	PCB 18	nd	15	ppt
E26	PCB	PCB 28	nd	28	ppt
E26	PCB	PCB 44	nd	18	ppt
E26	PCB	PCB 49	nd	16	ppt
E26	PCB	PCB 52	nd	33	
E26	PCB	PCB 52 PCB 66	nd	36	ppt
E26	PCB	PCB 00 PCB 70	nd	30	ppt
E26	PCB	PCB 70 PCB 74	nd	15	ppt
E26	PCB	PCB 74 PCB 77		6	ppt
E26	PCB	PCB 77 PCB 99	nd		ppt
			nd	42	ppt
E26	PCB	PCB 101	nd	59 25	ppt
E26	PCB	PCB 105	nd	35	ppt
E26	PCB	PCB 110	nd	72	ppt
E26	PCB	PCB 118	nd	97	ppt

Station	Class	Constituent	Winter	Summer	Units
E26	PCB	PCB 123	nd	14	ppt
E26	PCB	PCB 128	nd	35	ppt
E26	PCB	PCB 138	nd	98	ppt
E26	PCB	PCB 149	nd	95	ppt
E26	PCB	PCB 153/168	nd	140	ppt
E26	PCB	PCB 180	nd	70	ppt
E26	PCB	PCB 187	nd	55	ppt

Table C.14

Summary of the constituents that make up total chlordane, total DDT, total HCH, total PCB, and total PAH in sediments from the SBOO region during 2016; nd = not detected.

Station	Class	Constituent	Winter	Summer	Units
11	DDT	p,p-DDD	nd	18	ppt
I1	DDT	p,p-DDE	56	94	ppt
I1	DDT	p,p-DDT	nd	21	ppt
I1	HCH	HCH, Beta isomer	nd	21	ppt
I1	PAH	1-methylnaphthalene	nd	7	ppb
I1	PAH	3,4-benzo(B)fluoranthene	nd	10	ppb
11	PAH	Anthracene	nd	6	ppb
I1	PAH	Benzo[A]anthracene	nd	16	ppb
I1	PAH	Benzo[A]pyrene	nd	9	ppb
11	PAH	Benzo[e]pyrene	nd	8	ppb
11	PAH	Benzo[K]fluoranthene	nd	11	ppb
I1	PAH	Chrysene	nd	15	ppb
11	PAH	Fluoranthene	nd	13	ppb
11	PAH	Indeno(1,2,3-CD)pyrene	nd	3	ppb
11	PAH	Perylene	nd	6	ppb
11	PAH	Phenanthrene	nd	5	ppb
11	PAH	Pyrene	nd	13	ppb
11	PCB	PCB 18	nd	99	ppt
11	PCB	PCB 28	nd	150	ppt
11	PCB	PCB 37	nd	33	ppt
11	PCB	PCB 44	nd	91	ppt
11	PCB	PCB 49	nd	51	ppt
11	PCB	PCB 52	nd	78	ppt
11	PCB	PCB 66	nd	19	ppt
11	PCB	PCB 70	nd	24	ppt
11	PCB	PCB 74	nd	11	ppt
11	PCB	PCB 101	nd	86	ppt
11	PCB	PCB 110	nd	38	ppt
11	PCB	PCB 128	nd	7	ppt
11	PCB	PCB 138	nd	86	ppt
11	PCB	PCB 149	nd	190	ppt
11	PCB	PCB 151	nd	64	ppt
11	PCB	PCB 153/168	nd	150	ppt
11	PCB	PCB 177	nd	25	ppt
I1	PCB	PCB 180	nd	45	ppt
I1	PCB	PCB 183	nd	21	ppt
I1	PCB	PCB 187	nd	65	ppt
11	PCB	PCB 206	100	nd	ppt
	1.05	1 00 200	100	na	PPt
12	DDT	p,p-DDE	nd	31	ppt
12	PCB	PCB 18	nd	10	ppt
12	PCB	PCB 28	nd	11	ppt
12	PCB	PCB 49	nd	6	ppt
12	PCB	PCB 66	nd	10	ppt
12	PCB	PCB 74	nd	13	ppt
12	PCB	PCB 81	nd	11	ppt
12	PCB	PCB 99	nd	9	ppt
12	PCB	PCB 101	nd	8	ppt
12	PCB	PCB 118	nd	21	ppt
12	PCB	PCB 138	nd	7	ppt
12	PCB	PCB 149	nd	10	ppt
12	PCB	PCB 153/168	nd	18	ppt
12	PCB	PCB 206	130	nd	
۱۷	FUD	r GD 200	130	nu	ppt

Station	Class	Constituent	Winter	Summer	Units
13	PCB	PCB 28	nd	7	ppt
13	PCB	PCB 66	nd	4	ppt
13	PCB	PCB 74	nd	7	ppt
13	PCB	PCB 206	70	nd	ppt
14	DDT	p,p-DDE	nd	17	ppt
14	PCB	PCB 18	nd	270	ppt
14	PCB	PCB 28	nd	300	
14	PCB	PCB 20 PCB 37		69	ppt
			nd		ppt
14	PCB	PCB 44	nd	250	ppt
14	PCB	PCB 49	nd	124	ppt
14	PCB	PCB 52	nd	240	ppt
14	PCB	PCB 66	nd	37	ppt
14	PCB	PCB 74	nd	32	ppt
14	PCB	PCB 101	nd	240	ppt
14	PCB	PCB 110	nd	111	ppt
14	PCB	PCB 118	nd	50	ppt
14	PCB	PCB 128	nd	25	ppt
14	PCB	PCB 138	nd	220	ppt
14	PCB	PCB 149	nd	530	ppt
14	PCB	PCB 151	nd	210	ppt
14	PCB	PCB 153/168	nd	490	ppt
14	PCB	PCB 156	nd	15	
14	PCB	PCB 158		38	ppt
			nd		ppt
14	PCB	PCB 170	nd	23	ppt
14	PCB	PCB 177	nd	40	ppt
14	PCB	PCB 180	nd	101	ppt
14	PCB	PCB 183	nd	61	ppt
14	PCB	PCB 187	nd	133	ppt
16	DDT	p,p-DDE	nd	39	ppt
17	DDT	p,p-DDE	nd	29	ppt
17	PCB	PCB 180	nd	16	ppt
18	DDT	o,p-DDE	nd	12	ppt
18	DDT	p,p-DDE	nd	50	ppt
18	PCB	PCB 18	nd	9	ppt
18	PCB	PCB 28	nd	8	ppt
18	PCB	PCB 52	nd	9	ppt
18	PCB	PCB 52 PCB 66	nd	10	ppt
18	PCB	PCB 00 PCB 70	nd	6	
				7	ppt
18	PCB	PCB 74	nd		ppt
18	PCB	PCB 138	nd	10	ppt
19	Chlordane	TransNonachlor	nd	15	ppt
19	DDT	p,-p-DDMU	nd	35	ppt
19	DDT	p,p-DDE	140	181	ppt
19	PCB	PCB 18	nd	9	ppt
19	PCB	PCB 37	nd	10	ppt
19	PCB	PCB 49	nd	9	ppt
19	PCB	PCB 52	nd	14	ppt
19	PCB	PCB 66	nd	16	ppt
19	PCB	PCB 70	nd	13	ppt
19	PCB	PCB 74	nd	14	ppt

Station	Class	Constituent	Winter	Summer	Units
19	PCB	PCB 77	nd	12	ppt
19	PCB	PCB 187	nd	20	ppt
110	DDT	p,-p-DDMU	nd	13	ppt
110	DDT	p,p-DDE	69	59	ppt
110	HCH	HCH, Delta isomer	nd	134	ppt
110	PCB	PCB 49	nd	7	
110	PCB	PCB 66		5	ppt
			nd		ppt
110	PCB	PCB 74	nd	6	ppt
110	PCB	PCB 81	nd	9	ppt
I10	PCB	PCB 138	nd	10	ppt
110	PCB	PCB 153/168	nd	19	ppt
112	DDT	p,p-DDE	nd	76	ppt
112	PAH	3,4-benzo(B)fluoranthene	7	nd	ppb
112	PAH	Benzo[A]anthracene	16	nd	ppb
112	PAH	Benzo[A]pyrene	5	nd	ppb
112	PAH		8		
		Benzo[K]fluoranthene		nd	ppb
112	PAH	Chrysene	12	nd	ppb
112	PAH	Fluoranthene	3	nd	ppb
112	PAH	Pyrene	5	nd	ppb
112	PCB	PCB 153/168	nd	17	ppt
113	PCB	PCB 52	nd	7	ppt
114	DDT	p,-p-DDMU	nd	16	ppt
114	DDT	p,p-DDD	nd	15	ppt
114	DDT	p,p-DDE	300	121	ppt
115	DDT	p,p-DDE	130	35	ppt
116	Chlordane	Gamma(trans)Chlordane	nd	24	ppt
116	DDT	p,-p-DDMU	nd	19	ppt
116	DDT	p,p-DDE	nd	73	ppt
116	PCB	PCB 49	nd	13	ppt
116	PCB	PCB 52		11	
		PCB 52 PCB 66	nd		ppt
116	PCB		nd	11	ppt
116	PCB	PCB 74	nd	8	ppt
116	PCB	PCB 77	nd	9	ppt
116	PCB	PCB 138	nd	12	ppt
I16	PCB	PCB 149	nd	21	ppt
I16	PCB	PCB 151	nd	19	ppt
I16	PCB	PCB 153/168	nd	32	ppt
116	PCB	PCB 158	nd	12	ppt
118	Chlordane	Alpha(cis)Chlordane	nd	19	ppt
118	Chlordane	Gamma(trans)Chlordane	nd	15	ppt
118	DDT	p,-p-DDMU	nd	10	
			80		ppt
118	DDT	p,p-DDE		64	ppt
118	PCB	PCB 49	nd	5	ppt
118	PCB	PCB 66	nd	12	ppt
118	PCB	PCB 74	nd	9	ppt
118	PCB	PCB 77	nd	8	ppt

Table C.14 co	ntinued				
Station	Class	Constituent	Winter	Summer	Units
I18	PCB	PCB 101	nd	13	ppt
118	PCB	PCB 105	nd	9	ppt
118	PCB	PCB 118	nd	16	ppt
118	PCB	PCB 123	nd	9	ppt
118	PCB	PCB 149	nd	13	ppt
118	PCB	PCB 151	nd	9	ppt
118	PCB	PCB 153/168	nd	20	ppt
120	DDT	p,p-DDE	42	32	ppt
120	PCB	PCB 44	nd	6	ppt
120	PCB	PCB 66	nd	7	ppt
120	PCB	PCB 70	nd	9	ppt
120	PCB	PCB 74	nd	6	ppt
120	PCB	PCB 138	nd	7	ppt
120	PCB	PCB 187	nd	11	ppt
121	DDT	p,p-DDE	76	38	ppt
122	DDT	o,p-DDD	nd	10	ppt
122	DDT	p,-p-DDMU	nd	17	ppt
122	DDT	p,p-DDE	99	196	ppt
122	PAH	2,6-dimethylnaphthalene	nd	7	ppb
122	PCB	PCB 138	nd	16	ppt
122	PCB	PCB 149	nd	17	ppt
122	PCB	PCB 153/168	nd	23	ppt
123	DDT	p,p-DDE	130	101	ppt
123	PCB	PCB 28	nd	14	ppt
123	PCB	PCB 44	nd	12	ppt
123	PCB	PCB 52	nd	13	ppt
123	PCB	PCB 66	nd	15	ppt
123	PCB	PCB 70	nd	11	ppt
123	PCB	PCB 110	nd	21	ppt
123	PCB	PCB 118	nd	20	ppt
123	PCB	PCB 123	nd	9	ppt
123	PCB	PCB 138	nd	26	ppt
123	PCB	PCB 149	nd	34	ppt
123	PCB	PCB 151	nd	15	ppt
123	PCB	PCB 153/168	nd	57	ppt
123	PCB	PCB 180	nd	41	ppt
123	PCB	PCB 187	nd	30	ppt
127	Chlordane	Alpha(cis)Chlordane	nd	17	ppt
127	Chlordane	Gamma(trans)Chlordane	nd	20	ppt
127	DDT	o,p-DDD	nd	15	ppt
127	DDT	o,p-DDE	nd	14	ppt
127	DDT	o,p-DDT	nd	16	ppt
127	DDT	p,-p-DDMU	nd	27	ppt
127	DDT	p,p-DDD	nd	9	ppt
127	DDT	p,p-DDE	165	157	ppt
127	DDT	p,p-DDT	nd	22	ppt
127	HCH	HCH, Beta isomer	nd	35	ppt
127	PCB	PCB 18	nd	12	ppt
127	PCB	PCB 28	nd	13	ppt
127	PCB	PCB 49	nd	7	ppt

Station	Class	Constituent	Winter	Summer	Units
127	PCB	PCB 52	nd	10	ppt
127	PCB	PCB 66	nd	16	ppt
127	PCB	PCB 74	nd	10	ppt
127	PCB	PCB 77	nd	11	ppt
127	PCB	PCB 81	nd	13	ppt
127	PCB	PCB 99	nd	9	ppt
127	PCB	PCB 101	nd	13	ppt
127	PCB	PCB 105	nd	9	ppt
127	PCB	PCB 110	nd	12	ppt
127	PCB	PCB 118	nd	21	ppt
127	PCB	PCB 119	nd	8	ppt
127	PCB	PCB 126	nd	13	ppt
127	PCB	PCB 128	nd	17	ppt
127	PCB	PCB 138	nd	23	ppt
127	PCB	PCB 149	nd	24	ppt
127	PCB	PCB 151	nd	11	ppt
127	PCB	PCB 153/168	nd	41	ppt
127	PCB	PCB 156	nd	14	ppt
127	PCB	PCB 157	nd	10	ppt
127	PCB	PCB 158	nd	12	ppt
127	PCB	PCB 167	nd	10	ppt
127	PCB	PCB 177	nd	16	ppt
127	PCB	PCB 180	nd	18	ppt
127	PCB	PCB 183	nd	19	ppt
127	PCB	PCB 187	nd	26	ppt
127	PCB	PCB 201	nd	10	ppt
127	PCB	PCB 206	nd	19	ppt
	1.05	1 00 200		10	ppt
128	DDT	p,-p-DDMU	nd	72	ppt
128	DDT	p,p-DDD	nd	64	ppt
128	DDT	p,p-DDE	570	631	ppt
128	DDT	p,p-DDT	nd	82	ppt
128	PAH	2,6-dimethylnaphthalene	nd	8	ppb
128	PCB	PCB 18	nd	10	ppt
128	PCB	PCB 28	nd	34	ppt
128	PCB	PCB 49	40	24	ppt
128	PCB	PCB 52	42	39	ppt
128	PCB	PCB 66	nd	43	ppt
128	PCB	PCB 70	nd	39	ppt
128	PCB	PCB 77	nd	8	ppt
128	PCB	PCB 99	65	64	ppt
128	PCB	PCB 101	69	92	ppt
128	PCB	PCB 105	nd	42	ppt
128	PCB	PCB 110	nd	87	ppt
128	PCB	PCB 118	nd	120	ppt
128	PCB	PCB 128	nd	34	ppt
128	PCB	PCB 138	92	116	ppt
128	PCB	PCB 149	57	109	ppt
128	PCB	PCB 151	nd	18	ppt
128	PCB	PCB 153/168	120	147	ppt
128	PCB	PCB 156	nd	23	ppt
128	PCB	PCB 158	nd	17	ppt
128	PCB	PCB 170	nd	42	ppt

Table C.14 continued

Station	Class	Constituent	Winter	Summer	Units
128	PCB	PCB 180	nd	58	ppt
128	PCB	PCB 183	nd	22	ppt
128	PCB	PCB 187	nd	68	ppt
129	DDT	o,p-DDD	nd	37	ppt
129	DDT	p,-p-DDMU	nd	115	ppt
129	DDT	p,p-DDD	nd	95	ppt
129	DDT	p,p-DDE	530	1020	ppt
129	DDT	p,p-DDT	nd	52	ppt
129	PAH	2,6-dimethylnaphthalene	nd	6	ppb
129	PAH	Pyrene	6	nd	ppb
129	PCB	PCB 49	nd	13	ppt
129	PCB	PCB 52	nd	15	ppt
129	PCB	PCB 99	nd	23	ppt
129	PCB	PCB 101	nd	44	ppt
129	PCB	PCB 105	nd	17	ppt
129	PCB	PCB 110	nd	33	ppt
129	PCB	PCB 118	nd	40	ppt
129	PCB	PCB 128	nd	40 15	ppt
129	PCB	PCB 138	nd	54	
129	PCB	PCB 138	nd	47	ppt
129	PCB	PCB 153/168	nd	69	ppt
129	PCB	PCB 133/108		34	ppt
129	PCB	PCB 183	nd	16	ppt
129	PCB		nd		ppt
129	РСБ	PCB 187	nd	26	ppt
130	DDT	p,p-DDE	140	146	ppt
130	PAH	1-methylnaphthalene	nd	8	ppb
130	PAH	Biphenyl	7	nd	ppb
130	PCB	PCB 49	nd	9	ppt
130	PCB	PCB 52	nd	10	ppt
130	PCB	PCB 66	nd	11	ppt
130	PCB	PCB 70	nd	8	ppt
130	PCB	PCB 128	nd	10	ppt
130	PCB	PCB 153/168	nd	28	ppt
130	PCB	PCB 177	nd	7	ppt
131	DDT	p,p-DDE	nd	34	ppt
133	DDT	p,p-DDE	100	75	ppt
133	PAH	2,6-dimethylnaphthalene	nd	7	ppb
133	PAH	Benzo[e]pyrene	nd	6	ppb
133	PCB	PCB 66	nd	11	ppt
133	PCB	PCB 99	nd	15	ppt
133	PCB	PCB 101	nd	18	ppt
133	PCB	PCB 118	nd	20	ppt
133	PCB	PCB 153/168	nd	40	ppt
133	PCB	PCB 187	nd	22	ppt
135	DDT	p,p-DDE	170	249	ppt
135	DDT	p,p-DDT	nd	39	ppt
135	PAH	3,4-benzo(B)fluoranthene	7	nd	ppb
135	PAH	Benzo[A]pyrene	7	nd	ppb
135	PAH	Fluoranthene	7	nd	ppb
135	PAH	Phenanthrene	6	nd	ppb

able C.14 co	able C.14 continued											
Station	Class	Constituent	Winter	Summer	Units							
135	PAH	Pyrene	7	nd	ppb							
135	PCB	PCB 49	nd	10	ppt							
135	PCB	PCB 52	nd	13	ppt							
135	PCB	PCB 66	nd	25	ppt							
135	PCB	PCB 101	48	nd	ppt							
135	PCB	PCB 105	nd	19	ppt							
135	PCB	PCB 118	nd	43	ppt							
135	PCB	PCB 128	nd	19	ppt							
135	PCB	PCB 138	nd	52	ppt							
135	PCB	PCB 149	nd	45	ppt							
135	PCB	PCB 153/168	nd	71	ppt							
135	PCB	PCB 180	nd	43	ppt							
135	PCB	PCB 187	nd	44	ppt							

Table C.15

Macrofaunal community parameters by grab for PLOO benthic stations sampled during 2016. SR = species richness; Abun = abundance; H'= Shannon diversity index; J'= Pielou's evenness; Dom = Swartz dominance; BRI = benthic response index. Stations are listed north to south from top to bottom for each depth contour.

Depth								
Contour	Station	Survey	SR	Abun	Η'	J'	Dom	BRI
88-m	B11	winter	66	147	3.8	0.90	30	10
		summer	99	337	4.1	0.89	39	12
	B8	winter	34	120	2.5	0.71	9	7
		summer	59	214	3.3	0.80	18	7
	E19	winter	53	197	3.2	0.81	18	8
		summer	50	196	2.9	0.75	15	7
	E7	winter	55	192	3.4	0.85	20	4
		summer	49	135	3.4	0.88	21	12
	E1	winter	68	287	3.4	0.81	22	6
		summer	66	234	3.5	0.83	19	9
00.0								
98-m	B12	winter	77	184	3.9	0.90	33	13
		summer	88	242	3.9	0.88	36	13
	B9	winter	53	139	3.6	0.90	22	5
		summer	73	226	3.7	0.86	27	5
	E26	winter	61	157	3.6	0.87	27	5
		summer	64	217	3.6	0.86	23	8
	E25	winter	55	209	3.4	0.84	19	4
		summer	66	292	3.5	0.85	22	7
	E23	winter	57	167	3.5	0.87	23	8
		summer	59	206	3.6	0.88	23	9
	E20	winter	61	182	3.6	0.88	26	7
		summer	56	176	3.6	0.89	22	9
	E17ª	winter	73	239	3.7	0.87	25	9
		summer	43	125	3.3	0.87	16	15
	E14ª	winter	50	174	3.3	0.85	15	33
		summer	50	147	3.4	0.88	19	28
	E11 ª	winter	64	188	3.6	0.88	25	9
		summer	63	186	3.6	0.86	22	13
	E8	winter	54	148	3.6	0.91	25	4
		summer	62	192	3.6	0.88	23	6
	E5	winter	43	94	3.2	0.86	20	6
		summer	59	219	3.5	0.86	20	3
	E2	winter	62	188	3.6	0.88	24	4
		summer	64	169	3.7	0.89	26	7

^aNear-ZID station

Depth								
Contour	Station	Quarter	SR	Abun	Н'	J'	Dom	BRI
116-m	B10	winter	78	283	3.8	0.87	26	15
		summer	85	328	3.7	0.84	26	13
	E21	winter	28	56	3.1	0.92	15	7
		summer	51	137	3.4	0.88	19	8
	E15	winter	62	218	3.5	0.84	20	12
		summer	48	197	3.0	0.78	14	7
	E9	winter	102	317	4.1	0.89	36	10
		summer	64	244	3.7	0.88	24	10
	E3	winter	66	138	3.9	0.94	32	10
		summer	102	229	4.3	0.93	45	7
		Mean	62	197	3.5	0.86	23	9
		95% CI	5	18	0.1	0.01	2	2
		Minimum	28	56	2.5	0.71	9	3
		Maximum	102	337	4.3	0.94	45	33

Table C.16

Macrofaunal community parameters by grab for SBOO benthic stations sampled during 2016. SR = species richness; Abun = abundance; H'= Shannon diversity index; J'= Pielou's evenness; Dom = Swartz dominance; BRI = benthic response index. Stations are listed north to south from top to bottom for each depth contour.

Depth Contour	Station	Survey	SR	Abun	Н'	J'	Dom	BRI
19-m	135	winter	86	298	3.9	0.87	28	28
		summer	82	336	3.7	0.84	25	27
	134	winter	25	365	2.2	0.69	5	9
		summer	21	72	2.3	0.75	7	8
	131	winter	44	338	1.4	0.36	1	10
		summer	59	298	2.6	0.63	8	21
	123	winter	51	170	2.5	0.64	15	21
		summer	70	140	4.0	0.93	36	18
	118	winter	48	379	1.6	0.40	3	18
		summer	45	142	3.3	0.86	16	24
	110	winter	36	149	2.1	0.58	9	21
		summer	72	210	3.7	0.86	27	18
	14	winter	20	117	2.4	0.81	7	0
		summer	15	27	2.5	0.93	9	0
28-m	133	winter	87	589	2.0	0.45	7	23
		summer	99	659	2.8	0.61	16	24
	130	winter	64	269	2.7	0.65	14	26
		summer	69	226	3.0	0.71	20	25
	127	winter	43	199	2.3	0.60	9	23
		summer	56	269	2.6	0.64	13	29
	122	winter	72	386	2.3	0.53	9	22
		summer	103	637	3.0	0.64	17	26
	114 ª	winter	80	457	2.6	0.60	13	26
		summer	90	570	2.6	0.58	13	24
	116ª	winter	24	225	1.6	0.49	3	13
		summer	80	314	3.2	0.72	20	21
	115	winter	52	535	1.6	0.42	2	27
		summer	36	369	1.5	0.42	2	18
	112ª	winter	53	219	2.3	0.57	9	22
		summer	88	866	2.1	0.46	4	23
	19	winter	69	196	3.6	0.85	27	28
		summer	85	454	3.3	0.74	19	21
	16	winter	33	141	2.1	0.60	5	7
		summer	41	178	2.3	0.62	9	12
	12	winter	27	89	2.4	0.71	7	13
		summer	30	712	0.6	0.18	1	13
	13	winter	23	96	2.1	0.67	6	10
		summer	44	224	2.3	0.60	7	14

^aNear-ZID station

Depth Contour	Station	Quarter	SR	Abun	н.	J'	Dom	BRI
38-m	129	winter	101	341	<u>н</u> 4.0	0.86	31	24
00 111	129							
		summer	88	327	3.8	0.85	29	19
	121	winter	48	124	3.4	0.89	20	10
		summer	33	130	2.4	0.68	9	16
	I13	winter	35	61	3.4	0.96	20	12
		summer	46	174	2.6	0.69	12	9
	18	winter	23	156	2.4	0.78	7	25
		summer	31	227	2.3	0.67	6	27
55-m	128	winter	91	239	4.0	0.89	36	15
		summer	88	294	4.0	0.88	33	15
	120	winter	45	117	3.5	0.91	18	14
		summer	24	40	3.0	0.96	15	3
	17	winter	61	209	3.4	0.83	19	5
		summer	40	82	3.4	0.91	20	8
	11	winter	53	239	2.7	0.67	13	10
		summer	52	147	3.4	0.85	21	21
		Mean	55	275	2.7	0.69	14	18
		95% CI	7	50	0.2	0.05	3	2
		Minimum	15	27	0.6	0.18	1	0
		Maximum	103	866	4.0	0.96	36	29

Table C.17

The 25 most abundant macroinvertebrate taxa collected from PLOO benthic stations during 2016. Data are expressed as percent abundance (number of individuals per species/total abundance of all species), frequency of occurrence (percentage of grabs in which a species occurred) and abundance per grab (mean number of individuals per grab, n=44).

Species	Taxonomic Classification	Percent Abundance	Frequency of Occurrence	Abundance per Grab
Amphiodia urtica	Echinodermata: Ophiuroidea	10	91	20
<i>Nuculana</i> sp A	Mollusca: Bivalvia	7	100	13
Chaetozone hartmanae	Annelida: Cirratulidae	4	95	8
Praxillella pacifica	Annelida: Maldanidae	4	86	7
Eclysippe trilobata	Annelida: Ampharetidae	3	86	7
Axinopsida serricata	Mollusca: Bivalvia	3	82	6
Tellina carpenteri	Mollusca: Bivalvia	3	84	6
Prionospio (Prionospio) dubia	Annelida: Spionidae	3	93	6
Phisidia sanctaemariae	Annelida: Terebellidae	3	77	5
Sternaspis affinis	Annelida: Sternaspidae	2	91	5
Spiophanes duplex	Annelida: Spionidae	2	82	5
Ennucula tenuis	Mollusca: Bivalvia	2	93	4
Rhepoxynius bicuspidatus	Arthropoda: Phoxocephalidae	2	82	4
Amphiodia sp	Echinodermata: Ophiuroidea	2	84	3
Prionospio (Prionospio) jubata	Annelida: Spionidae	1	84	2
Scoloplos armiger Cmplx	Annelida: Orbiniidae	1	75	2
Lanassa venusta venusta	Annelida: Terebellidae	1	77	2
Clymenura gracilis	Annelida: Maldanidae	1	80	2
<i>Mediomastus</i> sp	Annelida: Capitellidae	1	61	2
Rhodine bitorquata	Annelida: Maldanidae	1	70	2
Anobothrus gracilis	Annelida: Ampharetidae	1	68	2
Lysippe sp A	Annelida: Ampharetidae	1	75	2
Lumbrineris cruzensis	Annelida: Lumbrineridae	1	59	2
Euclymeninae	Annelida: Maldanidae	1	48	2
Nephtys ferruginea	Annelida: Nephtyidae	1	70	2

Table C.18

The 25 most abundant macroinvertebrate taxa collected from SBOO benthic stations during 2016. Data are expressed as percent abundance (number of individuals per species/total abundance of all species), frequency of occurrence (percentage of grabs in which a species occurred) and abundance per grab (mean number of individuals per grab, n=54).

Species	Taxonomic Classification	Percent Abundance	Frequency of Occurrence	Abundance per Grab
Spiophanes norrisi	Annelida: Spionidae	40	85	110
Pista wui	Annelida: Terebellidae	3	41	9
Spiophanes duplex	Annelida: Spionidae	3	59	8
Tellina modesta	Mollusca: Bivalvia	1	48	3
Notomastus latericeus	Annelida: Capitellidae	1	39	3
Praxillella pacifica	Annelida: Maldanidae	1	35	3
Glycera oxycephala	Annelida: Glyceridae	1	35	3
Pisione sp	Annelida: Pisionidae	1	6	3
Lumbrinerides platypygos	Annelida: Lumbrineridae	1	33	3
<i>Mediomastus</i> sp	Annelida: Capitellidae	1	48	3
NEMATODA	Nematoda	1	59	2
Ampharete labrops	Annelida: Ampharetidae	1	59	2
Monticellina siblina	Annelida: Cirratulidae	1	52	2
Metasychis disparidentatus	Annelida: Maldanidae	1	33	2
Pseudofabriciola californica	Annelida: Fabriciidae	1	4	2
Euclymeninae sp B	Annelida: Maldanidae	1	56	2
Carinoma mutabilis	Nemertea: Anopla	1	52	2
Rhepoxynius heterocuspidatus	Arthropoda: Phoxocephalidae	1	28	2
Paraprionospio alata	Annelida: Spionidae	1	50	2
Nuculana taphria	Mollusca: Bivalvia	1	46	2
Sigalion spinosus	Annelida: Sigalionidae	1	50	2
Sthenelanella uniformis	Annelida: Sigalionidae	1	28	2
Spiochaetopterus costarum Cmplx	Annelida: Chaetopteridae	1	35	2
Dialychone veleronis	Annelida: Sabellidae	1	35	2
Protodorvillea gracilis	Annelida: Dorvilleidae	1	28	2

This page intentionally left blank

Appendix D

Chapter 4. Demersal Fishes and Megabenthic Invertebrates

Figures & Tables

Appendix D

FIGURES

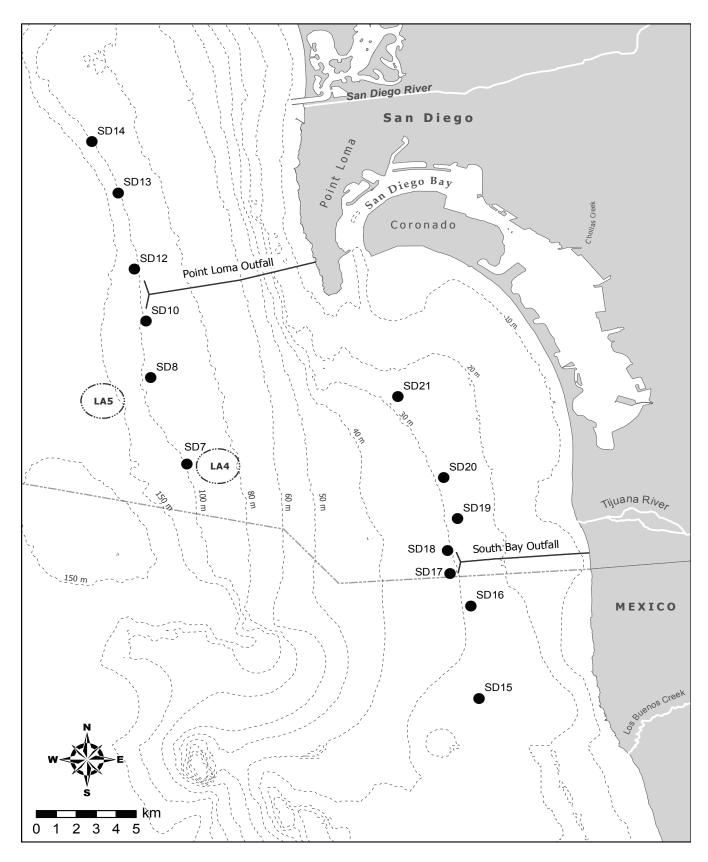
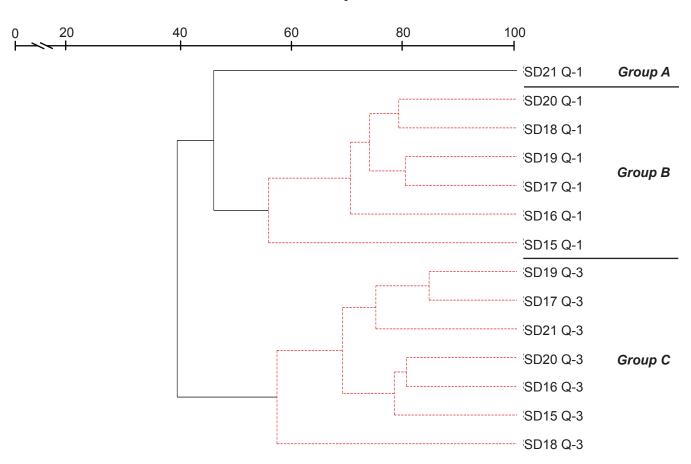
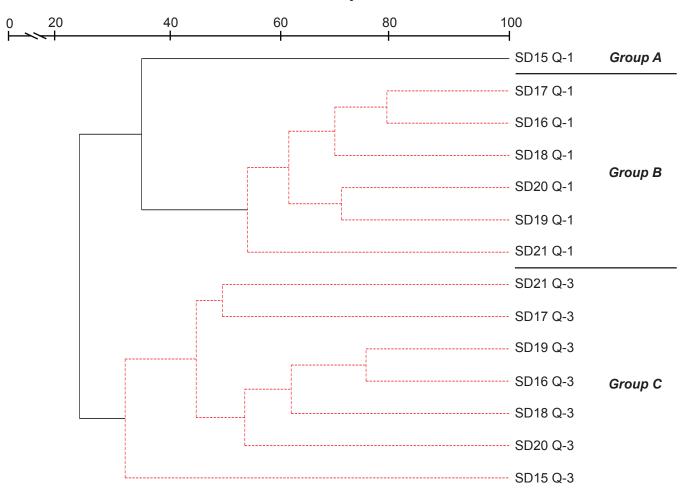



Figure D.1 Trawl station locations sampled around the Point Loma and South Bay Ocean Outfalls as part of the City of San Diego's Ocean Monitoring Program.



Percent Similarity

Figure D.2

Results of cluster analysis of demersal fish assemblages from SBOO trawl stations sampled during 2016. Solid black lines indicate non-random structures of the dendrogram that have been confirmed by SIMPROF; Q-1=winter survey, Q-3=summer survey.

Percent Similarity

Figure D.3

Results of cluster analysis of megabenthic invertebrate assemblages from SBOO trawl stations sampled during 2016. Solid black lines indicate non-random structures of the dendrogram that have been confirmed by SIMPROF; Q-1=winter survey, Q-3=summer survey.

This page intentionally left blank

Appendix D

TABLES

Table D.1Trawl sample dates and sample duration for trawls conducted in the PLOO and SBOO regions during 2016.

Trawl Station	Survey	Date Sampled	Trawl Duration
PLOO Stations			
SD7	Winter	21-Mar-2016	10 minutes
	Summer	14-July-2016	10 minutes
SD8	Winter	21-Mar-2016	10 minutes
	Summer	27-Sep-2016	1 minute
SD10	Winter	21-Mar-2016	1 minute
	Summer	27-Sep-2016	1 minute
SD12	Winter	21-Mar-2016	1 minute
	Summer	27-Sep-2016	1 minute
SD13	Winter	21-Mar-2016	1 minute
	Summer	27-Sep-2016	1 minute
SD14	Winter	28-Mar-2016	1 minute
	Summer	27-Sep-2016	1 minute
SBOO Stations			
SD15	Winter	25-Jan-2016	10 minutes
	Summer	25-Aug-2016	10 minutes
SD16	Winter	25-Jan-2016	10 minutes
	Summer	08-July-2016	10 minutes
SD17	Winter	25-Jan-2016	10 minutes
	Summer	08-Jul-2016	10 minutes
SD18	Winter	25-Jan-2016	10 minutes
	Summer	12-Jul-2016	10 minutes
SD19	Winter	26-Jan-2016	10 minutes
	Summer	12-Jul-2016	10 minutes
SD20	Winter	26-Jan-2016	10 minutes
	Summer	25-Aug-2016	10 minutes
SD21	Winter	20-Jan-2016	10 minutes
	Summer	12-Jul-2016	10 minutes

Table D.2

Summary taxonomic listing of demersal fish species captured at all PLOO and SBOO trawl stations during 2016 (see Table D.1). Data are total number of fish (n), biomass (BM, wet weight, kg), minimum (Min), maximum (Max), and mean length (standard length, cm). Taxonomic arrangement and scientific names are of Eschmeyer and Herald (1998) and Lawrence et al. (2013).

RAJIFORMES Rhinobatios productus Shovelnose Guitarfish ^a 3 2.4 37 74 50 Rajidae Raja inornata California Skate ^a 3 0.9 23 38 32 MYLIOBATIFORMES Urolophida California Skate ^a 3 0.9 23 38 32 ARGENTINIFORMES Urolophida Vorbatis halleri Round Stingray ^a 2 1.0 34 36 35 ARGENTINIFORMES Urobatis halleri Round Stingray ^a 2 0.1 5 7 6 ALLOPIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps Basketweave Cusk-eel 4 0.2 11 16 13 Ophidion scrippsae Basketweave Cusk-eel 5 0.2 10 14							Ler	ngth (cm)
Chimaeridae Hydrolagus calliei Spotted Ratfish® 1 0.2 34 34 34 HETERODONTIFORMES Heterodontidae Heterodontius francisci Horn Shark® 1 1.4 56 56 56 RAJIFORMES Rhinobatidae Rhinobatidae 1 1.4 56 56 56 Rajidae Rajidae Raja inornata California Skate® 3 0.9 23 38 32 MYLIOBATIFORMES Raja inornata California Skate® 3 0.9 23 38 32 MYLIOBATIFORMES Urobatis halleri Round Stingray® 2 1.0 34 36 35 Argentinidae Argentina sialis Pacific Argentine 2 0.1 5 7 6 AULOPIFORMES Synodous lucioceps California Lizardfish 1623 18.8 7 25 11 Ophidiidae Synodus lucioceps California Lizardfish 1623 18.8 7 25 14 Ophi	Order	Family	Scientific Name	Common Name	n	BM	Min	Мах	Mean
Hydrolagus colliei Spotted Ratfish ^a 1 0.2 34 34 34 HETERODONTIFORMES Heterodontidae Heterodontidae 1 1.4 56 56 56 RAJIFORMES Rhinobatidae Rhinobatidae 3 2.4 37 74 50 Rajidae Raja inomata California Skate ^a 3 0.9 23 38 32 MYLIOBATIFORMES Urobatis halleri Round Stingray ^a 2 1.0 34 36 35 Argentinidae Urobatis halleri Round Stingray ^a 2 1.0 34 36 35 Argentinidae Urobatis halleri Round Stingray ^a 2 0.1 5 7 6 AULOPIFORMES Synodontidae Synodontidae 1 16 13 Ophididae Synodons scrippsae Basketweave Cusk-eel 4 0.2 11 16 13 Dohidinos scrippsae Basketweave Cusk-eel 5 0.2 10 14 <td< td=""><td>CHIMA</td><td>ERIFORMES</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	CHIMA	ERIFORMES							
HETERODONTIFORMES Heterodontidae Heterodontidae Heterodontus francisci Horn Shark ^a 1 1.4 56 56 RAJIFORMES Rhinobatidae Rhinobatidae 3 2.4 37 74 50 Rajidae Rajidae Raja inornata California Skate ^a 3 0.9 23 38 32 MYLIOBATIFORMES Urolophidae Urobatis halleri Round Stingray ^a 2 1.0 34 36 35 ARGENTINIFORMES Argentina sialis Pacific Argentine 2 0.1 5 7 66 AULOPIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 Ophidioa Chilara taylori Spotted Cusk-eel 4 0.2 10 14 11 BATRACHOIDIFORMES Batrachoididae Porichthys myriaster Specklefin Midshipman 131 2.1 8 19 11 GASTEROSTEIFORMES Syng		Chimaeridae							
HeterodontidaeHeterodontidae francisciHorn Shark ^a 11.4.56.56.56.RAJIFORMESRhinobatidaeRhinobatidaeRhinobatos productusShovelnose Guitarfish ^a 32.4.37.74.50.RajidaeRaja inornataCalifornia Skate ^a 30.9.23.38.32.MUIOBATIFORMESUrolophidaeCalifornia Skate ^a 30.9.23.38.35.Argentina sialisPacific Argentine20.1.54.77.66.Argentina sialisPacific Argentine20.1.55.77.66.Ophidiloper colspan="2">California Lizardfish1623.18.8.77.25.11.Ophidiloper colspan=Spondus luciocepsCalifornia Lizardfish1623.18.8.77.25.11.Ophidion scrippsaeBasketweave Cusk-eel40.2.11.16.13.14.11.BatracholidiaeSpondus luciocepsSpecklefin Midshipman11.0.5.10.18.14.13.11.11.11.SorpaenidaeSpecklefin Midshipman13.2.1.8.19.11.11.SorpaenidaeSpecklefin Midshipman13.0.1.11.11.11.11.SorpaenidaeSpongathus spUnident				Spotted Ratfish ^a	1	0.2	34	34	34
Heterodontus francisciHorn Sharka11.4565656RAJIFORMES RhinobatidadRhinobatos productusShovelnose Guitarfisha32.4377450RajidaeRaja inornataCalifornia Skatea30.9233832MYLIOBATIFORMES UrolophidaeUrobatis halleriRound Stingraya21.0343635ARGENTINIFORMES ArgentinidaeArgentina sialisPacific Argentine20.1576AULOPIFORMES SynodontidaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphididaeSynodus luciocepsCalifornia Lizardfish162318.872511OphidioneChilara tayloriSpotted Cusk-eel40.2111613OphidioneChilara tayloriSpotted Cusk-eel50.2101411BATRACHOIDIFORMES BatrachoildaeParichthys myriaster Porichthys notatusSpecklefin Midshipman110.5101814GASTEROSTEIFORMES SyngnathidaeSyngnathus sp Hippocampus ingensPacific Seahorse10.1111111SCORPAENIFORMES ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117Sebastes elongatusGreenstriped Rockfish10.1777Sebastes elongatusBrown Rockfish10.177 <t< td=""><td>HEIER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HEIER								
RAJIFORMES Rhinobatios productus Shovelnose Guitarfish ^a 3 2.4 37 74 50 Rajidae Raja inornata California Skate ^a 3 0.9 23 38 32 MYLIOBATIFORMES Urolophida California Skate ^a 3 0.9 23 38 32 ARGENTINIFORMES Urolophida Vorbatis halleri Round Stingray ^a 2 1.0 34 36 35 ARGENTINIFORMES Urobatis halleri Round Stingray ^a 2 0.1 5 7 6 ALLOPIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Synodus lucioceps Basketweave Cusk-eel 4 0.2 11 16 13 Ophidion scrippsae Basketweave Cusk-eel 5 0.2 10 14		Theterodonnide		Horn Shark ^a	1	1.4	56	56	56
Rhinobatos productusShovelnose Guitarfisha32.4377450RajidaeRaja inornataCalifornia Skatea30.9233832MYLIOBATIFORMES UrolophidaeUrobatis halleriRound Stingraya21.0343635ARGENTINIFORMES ArgentinadaArgentina sialisPacific Argentine20.15766AULOPIFORMES Synodus luciocepsCalifornia Lizardfish162318.872511OPHIDIFORMES OphidiidaeSynodus luciocepsCalifornia Lizardfish162318.872511BATRACHOIDIFORMES BatrachoididaeSpotted Cusk-eel40.2111613BATRACHOIDIFORMES SyngathidaePariehthys myriasterSpecklefin Midshipman110.5101814BATRACHOIDIFORMES SyngathidseSyngathus spUnidentified Pipefish120.8123021GASTEROSTEIFORMES ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117Sebastis auriculatusBrown Rockfish10.144444ASebastes auriculatusBrown Rockfish10.1777	RAJIFO	DRMES							
RajidaeRaja inornataCalifornia Skateª30.9233832MYLIOBATIFORMES UrolophidaeUrobatis halleriRound Stingrayª21.0343635ARGENTINIFORMES ArgentinidaeArgentina sialisPacific Argentine20.1576AULOPIFORMES SynodontidaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphidiidaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIFORMES Ophidion scrippsaeBasketweave Cusk-eel40.21116131411BATRACHOIDIFORMES BatrachoididaePorichthys myriasterSpecklefin Midshipman110.510181414BATRACHOIDIFORMES SyngnathidaeSyngnathus spUnidentified Pipefish120.812302111 </td <td></td> <td>Rhinobatidae</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Rhinobatidae							
Raja inornataCalifornia Skatea30.9233832MYLIOBATIFORMES UrolophidaeUrobatis halleriRound Stingraya21.0343635ARGENTINIFORMES ArgentinidaeArgentina sialisPacific Argentine20.1576AULOPIFORMES SynodontidaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphididaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIFORMES OphididaeOphidion scrippsaeBasketweave Cusk-eel40.2111613DatrachoididaePorichthys myriaster Hopocampus ingensSpecklefin Midshipman110.5101814GASTEROSTEIFORMES ScorpaenidaeSyngnathus sp Hipocampus ingensUnidentified Pipefish120.812302117Scorpaenidae SebastidaeScorpaenidaeI0.114444Sebastes auriculatusBrown Rockfish10.1777			Rhinobatos productus	Shovelnose Guitarfish ^a	3	2.4	37	74	50
MYLIOBATIFORMES Urolophidae Urobatis halleri Round Stingrayª 2 1.0 34 36 35 ARGENTINIFORMES Argentinidae Argentina sialis Pacific Argentine 2 0.1 5 7 6 AULOPIFORMES Synodontidae Synodus lucioceps California Lizardfish 1623 18.8 7 25 11 OPHIDIIFORMES Ophidiidae Chilara taylori Spotted Cusk-eel 4 0.2 11 16 13 Ophidoina scrippsae Basketweave Cusk-eel 5 0.2 10 14 11 BATRACHOIDIFORMES Batrachoididae Porichthys myriaster Specklefin Midshipman 11 0.5 10 18 14 GASTEROSTEIFORMES Syngnathudae Syngnathus sp Unidentified Pipefish 12 0.8 12 30 21 Scorpaenidae Scorpaena guttata California Scorpionfish 8 1.4 13 21 17 Sebastidae Unidentified Rockfish 1 0.1 7 7 7		Rajidae			-				
UrolophidaeUrobatis halleriRound Stingraya21.0343635ArgentinidaeArgentina sialisPacific Argentine20.1576ALLOPIFORMESSynodontidaeSynodontidae162318.872511OPHIDIIFORMESSynodos luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMESOphidiaSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMESChilara tayloriSpotted Cusk-eel40.2111613OphidiaeOphidion scrippsaeBasketweave Cusk-eel50.2101411BatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814Porichthys notatusPlainfin Midshipman132.181911GASTEROSTEIFORMESSyngnathudasPacific Seahorse10.1111111ScorpaenidaeSignathus spUnidentified Pipefish120.8123021StorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes elongatusBrown Rockfish10.1777Sebastes elongatusGreenstriped Rockfish10.1777			Raja inornata	California Skate ^a	3	0.9	23	38	32
Urobatis halleriRound Stingraya21.0343635ARGENTINIFORMES ArgentinidaeArgentina sialisPacific Argentine20.1576AULOPIFORMES SynodontidaeSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphidiidaeChilara tayloriSpotted Cusk-eel40.2111613Ophidion scrippsaeBasketweave Cusk-eel40.2111613BatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814Porichthys notatusPlainfin Midshipman132.181911GASTEROSTEIFORMES SyngnathidaeSyngnathus spUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.111111111ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes elongatusBrown Rockfish10.1777									
ARGENTINIFORMES Argentinidae Argentinidae Argentinidae AuLOPIFORMES Synodontidae Synodus lucioceps Ophidiidae Chilara taylori Ophidion scrippsae Batrachoididae Chilara taylori Ophidion scrippsae Batrachoididae Porichthys myriaster Batrachoididae Porichthys myriaster Syngnathus p Hippocampus ingens Scorpaenidae Scorpaena guttata Sebastidae Sebastes sp Unidentified Rockfish Sebastes sp Unidentified Rockfish 1 0.1 4 4 4 Sebastes sp Unidentified Rockfish 1 0.1 7 7 7 Sebastes elongatus Greenstriped Rockfish 1 0.1 7 7 7 Sebastes elongatus California Scorpion 8 California Scorpion 8 2 0.1 5 7 6 California Lizardfish 1 0.2 11 5 7 0 8 12 0 1 0.1 11 11 1 0.5 10 1 0.1 7 7 7 7 0 7 0 7 0 7 0 7 0 7 0 7		Orolopilidae	Urobatis halleri	Round Stingrav ^a	2	10	34	36	35
Argentina sialisPacific Argentine20.1576AULOPIFORMES Synodus luciocepsSynodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphidiidaeChilara tayloriSpotted Cusk-eel40.2111613OphidiidaeChilara tayloriSpotted Cusk-eel40.2111613Ophidion scrippsaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMES BatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814Porichthys notatusPlainfin Midshipman1312.181911GASTEROSTEIFORMES SyngnathidaeSyngnathus spUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.11111111111Scorpaenidae ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes elongatusBrown Rockfish10.1777	ARGEN	TINIFORMES			_		•		
AULOPIFORMES Synodontidae Synodus lucioceps Ophidiidae Chilara taylori Ophidiion scrippsae Batracholdidae Porichthys myriaster Porichthys notatus Syngnathidae Syngnathus sp Hippocampus ingens Scorpaenidae Scorpaenidae Scorpaena guttata Sebastidae Sebastes sp Unidentified Rockfish Sebastes elongatus State Scorpaena guttata Sebastes elongatus State Sp Sebastes elongatus State Sp Sebastes elongatus State Sp State Sp Sebastes elongatus State Sp State Sp State Sp Sebastes elongatus State Sp State Sp St		Argentinidae							
SynodontidaeOPHIDIIFORMESOphidiidaeChilara tayloriSpotted Cusk-eel40.2111613Ophidion scrippsaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMESBatrachoididaeVV111613Chilara tayloriSpotted Cusk-eel40.2111613BATRACHOIDIFORMESBasketweave Cusk-eel50.2101411BATRACHOIDIFORMESVVariation110.5101814Porichthys myriasterSpecklefin Midshipman110.5101814GASTEROSTEIFORMESVariationsPlainfin Midshipman1312.181911SyngnathidaeVariations pUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.111111111ScorpaenidaeScorpaenidaeVariationaSebastes spVariationa Scorpionfish81.4132117Sebastes spUnidentified Rockfish10.1444444Sebastes auriculatusBrown Rockfish10.1777Sebastes elongatusGreenstriped Rockfish10.1777			Argentina sialis	Pacific Argentine	2	0.1	5	7	6
Synodus luciocepsCalifornia Lizardfish162318.872511OPHIDIIFORMES OphidiidaeChilara tayloriSpotted Cusk-eel40.2111613Ophidion scrippsaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMES BatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814GASTEROSTEIFORMES SyngnathidaePlainfin Midshipman132.181911SCORPAENIFORMES ScorpaenidaeSyngnathus sp Hippocampus ingensUnidentified Pipefish120.8123021ScorpaenidaeScorpaenidaeScorpaenidae10.111111111ScorpaenidaeScorpaenidaeScorpaenidae10.1444SebastidaeGalifornia Scorpionfish81.4132117Sebastes auriculatus Sebastes elongatusBrown Rockfish10.1777	AULOP								
OPHIDIIFORMES Ophidiidae Chilara taylori Spotted Cusk-eel 4 0.2 11 16 13 Ophidion scrippsae Basketweave Cusk-eel 5 0.2 10 14 11 BATRACHOIDIFORMES Batrachoididae Vorichthys myriaster Specklefin Midshipman 11 0.5 10 18 14 Porichthys myriaster Specklefin Midshipman 131 2.1 8 19 11 GASTEROSTEIFORMES Syngnathidae Vinidentified Pipefish 12 0.8 12 30 21 Hippocampus ingens Pacific Seahorse 1 0.1 11 11 11 11 SCORPAENIFORMES Scorpaenidae Scorpaenidae Vinidentified Rockfish 1 0.1 13 21 17 Sebastidae Vinidentified Rockfish 1 0.1 4 4 4 Sebastes auriculatus Brown Rockfish 1 0.1 7 7 7		Synodontidae			4000	40.0	-	05	
OphidiidaeChilara tayloriSpotted Cusk-eel40.2111613Ophidion scrippsaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMESBatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814Porichthys notatusPlainfin Midshipman1312.181911GASTEROSTEIFORMESSyngnathidae10.1111111SCORPAENIFORMESScorpaenidae3021Mippocampus ingensPacific Seahorse10.1111111SCORPAENIFORMES44Scorpaenidae17Sebastidae111111Scorpaenidae44Sebastes spUnidentified Rockfish10.1444Sebastes elongatusGreenstriped Rockfish10.1777			Synodus lucioceps	California Lizardfish	1623	18.8	1	25	11
Chilara taylori Ophidion scrippsaeSpotted Cusk-eel40.2111613BATRACHOIDIFORMES BatrachoididaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMES BatrachoididaePorichthys myriaster Porichthys notatusSpecklefin Midshipman110.5101814GASTEROSTEIFORMES SyngnathidaePlainfin Midshipman1312.181911GASTEROSTEIFORMES SyngnathidaeSyngnathus spUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.111111111SCORPAENIFORMES ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes elongatusBrown Rockfish10.1777	OPHID								
Ophidion scrippsaeBasketweave Cusk-eel50.2101411BATRACHOIDIFORMESBatrachoididaePorichthys myriasterSpecklefin Midshipman110.5101814Porichthys notatusPlainfin Midshipman1312.181911GASTEROSTEIFORMESSyngnathidaeSyngnathus spUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.1111111SCORPAENIFORMESScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes elongatusBrown Rockfish10.1777		Opinandae	Chilara tavlori	Spotted Cusk-eel	4	0.2	11	16	13
BATRACHOIDIFORMES Batrachoididae Porichthys myriaster Specklefin Midshipman 11 0.5 10 18 14 Porichthys notatus Plainfin Midshipman 131 2.1 8 19 11 GASTEROSTEIFORMES Syngnathidae Vinidentified Pipefish 12 0.8 12 30 21 Hippocampus ingens Pacific Seahorse 1 0.1 11 11 11 11 SCORPAENIFORMES Scorpaenidae Scorpaenidae Vinidentified Rockfish 1 0.1 4 4 Sebastidae Sebastes sp Unidentified Rockfish 1 0.1 4 4 Sebastes elongatus Brown Rockfish 1 0.1 7 7 7			-						11
Porichthys myriaster Porichthys notatusSpecklefin Midshipman110.5101814GASTEROSTEIFORMES SyngnathidaeImage: SyngnathidaeImage: Syngnathidae<	BATRA	CHOIDIFORME							
Porichthys notatusPlainfin Midshipman1312.181911GASTEROSTEIFORMESSyngnathidaeSyngnathus spUnidentified Pipefish120.8123021Hippocampus ingensPacific Seahorse10.1111111SCORPAENIFORMESScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes auriculatusBrown Rockfish10.1777Sebastes elongatusGreenstriped Rockfish10.1777		Batrachoidida	e						
GASTEROSTEIFORMES SyngnathidaeSyngnathus sp Hippocampus ingensUnidentified Pipefish120.8123021SCORPAENIFORMES ScorpaenidaePacific Seahorse10.1111111SCORPAENIFORMES SebastidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes auriculatus Sebastes elongatusBrown Rockfish10.1777									14
SyngnathidaeSyngnathus sp Hippocampus ingensUnidentified Pipefish Pacific Seahorse120.8123021SCORPAENIFORMESScorpaenidae<			-	Plainfin Midshipman	131	2.1	8	19	11
Syngnathus sp Hippocampus ingensUnidentified Pipefish Pacific Seahorse120.8123021SCORPAENIFORMES ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes sp Sebastes auriculatus Sebastes elongatusUnidentified Rockfish10.1444Sebastes elongatusGreenstriped Rockfish10.1777	GASTE								
Hippocampus ingensPacific Seahorse10.1111111SCORPAENIFORMES ScorpaenidaeScorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes auriculatus Sebastes elongatusBrown Rockfish10.1777		Synghathidae		I Inidentified Pinefish	12	0.8	12	30	21
SCORPAENIFORMES Scorpaenidae Scorpaena guttata California Scorpionfish 8 1.4 13 21 17 Sebastidae Sebastes sp Unidentified Rockfish 1 0.1 4 4 Sebastes auriculatus Brown Rockfish 1 0.1 7 7 Sebastes elongatus Greenstriped Rockfish 1 0.1 7 7									11
Scorpaena guttataCalifornia Scorpionfish81.4132117SebastidaeSebastes spUnidentified Rockfish10.1444Sebastes auriculatusBrown Rockfish10.1777Sebastes elongatusGreenstriped Rockfish10.1777	SCORF	AENIFORMES				••••			
SebastidaeUnidentified Rockfish10.144Sebastes auriculatusBrown Rockfish10.177Sebastes elongatusGreenstriped Rockfish10.177		Scorpaenidae	9						
Sebastes spUnidentified Rockfish10.1444Sebastes auriculatusBrown Rockfish10.1777Sebastes elongatusGreenstriped Rockfish10.1777			Scorpaena guttata	California Scorpionfish	8	1.4	13	21	17
Sebastes auriculatusBrown Rockfish10.177Sebastes elongatusGreenstriped Rockfish10.177		Sebastidae							
Sebastes elongatus Greenstriped Rockfish 1 0.1 7 7 7			•				-		4
							-		7
			Sebastes eiongatus Sebastes miniatus	Vermilion Rockfish	6	0.1	3	ر 11	7 8

^aLength measured as total length, not standard length (see text)

Table D.2 continued

						Ler	ngth (cm)
Order	Family	Scientific Name	Common Name	n	BM	Min	Мах	Mean
		Sebastes roscues	Rosy Rockfish	1	0.1	8	8	8
		Sebastes rubrivinctus	Flag Rockfish	1	0.1	7	7	7
		Sebastes saxicola	Stripetail Rockfish	95	1.3	5	10	7
		Sebastes semicinctus	Halfbanded Rockfish	24	0.8	7	13	10
	Hexagrammi	dae						
		Zaniolepis frenata	Shortspine Combfish	12	0.6	13	17	15
		Zaniolepis latipinnis	Longspine Combfish	110	2.3	8	15	11
	Cottidae							
		Chitonotus pugetensis	Roughback Sculpin	13	0.5	6	10	8
		Icelinus filamentosus	Threadfin Sculpin	3	0.1	10	11	11
		Icelinus quadriseriatus	Yellowchin Sculpin	69	0.7	6	9	7
	Agonidae		•					
	0	Odontopyxis trispinosa	Pygmy Poacher	3	0.2	8	13	11
		Xeneretmus latifrons	Blacktip Poacher	1	0.1	13	13	13
PERCIF	ORMES							
	Malacanthida	e						
		Caulolatilus princeps	Ocean Whitefish	1	0.1	6	6	6
	Haemulidae							
		Haemulon californiensis	Salema	3	0.1	6	7	7
	Sciaenidae							
		Genyonemus lineatus	White Croaker	83	2.8	7	20	12
		Seriphus politus	Queenfish	47	0.3	6	19	8
	Embiotocidae					÷		-
		Zalembius rosaceus	Pink Seaperch	37	0.5	5	11	7
	Pomacentrida			01	0.0	Ũ		·
		Chromis punctipinnis	Blacksmith	1	0.1	7	7	7
	Uranoscopida		Diaditati		0.1			·
	eraneeeeprat	Kathetostoma averruncus	Smooth Stargazer	2	0.1	11	12	12
	Clinidae		enroeth etalgazor	-	0.1			
	Omnade	Heterostichus rostratus	Giant Kelpfish	1	0.1	14	14	14
	Labrisomidae				0.1	14	14	14
	Labrisonnaac	Neoclinus blanchardi	Sarcastic Fringehead	1	0.1	9	9	9
	Stromateidae		Carcastic i migeneau		0.1	5	0	0
	Stromateidae	Peprilus simillimus	Pacific Pompano	1	0.1	14	14	14
	ONECTIFORM	•	r acilie r ompano		0.1	17	17	14
LEON	Paralichthyid							
	T aranchitryida	Citharichthys sordidus	Pacific Sanddab	421	10.4	4	24	10
		Citharichthys stigmaeus	Speckled Sanddab	1570	13.5	4	12	8
		Citharichthys xanthostigma	Longfin Sanddab	593	10.1	4	20	о 8
		Hippoglossina stomata	•		0.1		20 18	0 18
			Bigmouth Sole	2		17		
		Paralichthys californicus	California Halibut	11	5.9	26	48	31
		Xystreurys liolepis	Fantail Sole	9	3.0	16	30	21

Table D.2 continued

						Ler	ngth (o	cm)
Order	Family	Scientific Name	Common Name	n	BM	Min	Мах	Mean
	Pleuronecti	dae						
		Eopsetta jordani	Petrale Sole	1	0.1	36	36	36
		Lyopsetta exilis	Slender Sole	6	0.3	5	19	11
		Microstomus pacificus	Dover Sole	42	0.7	5	20	8
		Parophrys vetulus	English Sole	9	1.0	15	24	19
		Pleuronichthys decurrens	Curlfin Sole	1	0.1	4	4	4
		Pleuronichthys guttulatus	Diamond Turbot	1	0.1	15	15	15
		Pleuronichthys ritteri	Spotted Turbot	3	0.2	10	15	12
		Pleuronichthys verticalis	Hornyhead Turbot	76	3.6	4	18	11
	Cynoglossio							
		Symphurus atricaudus	California Tonguefish	214	1.9	7	17	11

Table D.3

Total abundance by species and station for demersal fish collected at PLOO trawl stations during 2016.

	Winter 2016						
Species	SD7	SD8	SD10ª	SD12ª	SD13ª	SD14ª	Species Abundance by Survey
Pacific Sanddab	93	97	13	1	8		212
Longspine Combfish	4	65	2				71
Plainfin Midshipman	16	26					42
Pink Seaperch	22	12	1		1		36
Dover Sole	2	26					28
Yellowchin Sculpin		22					22
Stripetail Rockfish	6	2	4	4	2		18
Halfbanded Rockfish	1	12	1		1		15
Shortspine Combfish	6	1		1			8
California Lizardfish		3			2	1	6
California Scorpionfish	4						4
English Sole	2						2
California Tonguefish		2					2
California Skate		2					2
Bigmouth Sole		2					2
Spotted Ratfish		1					1
Specklefin Midshipman	1						1
Slender Sole				1			1
Greenstriped Rockfish		1					1
Blacktip Poacher		1					1
Survey Total	157	275	21	7	14	1	475

^aOne minute trawl, see Table D.1

	Summer 2016						
Species	SD7	SD8ª	SD10ª	SD12ª	SD13ª	SD14 ^a	Species Abundance by Survey
Pacific Sanddab	137	17	30	10	9	2	205
Stripetail Rockfish	12	31	5	14	11	4	77
Plainfin Midshipman	76				1		77
Longspine Combfish	23	2	2				27
Dover Sole	9	3	1	1			14
Halfbanded Rockfish		7	1		1		9
California Lizardfish	2				2	2	6
Slender Sole	4			1			5
Shortspine Combfish	2	1		1			4
Yellowchin Sculpin	1	2					3
Vermilion Rockfish						3	3
Spotted Cusk-eel				3			3
California Tonguefish	3						3
California Scorpionfish		1	1		1		3
Smooth Stargazer	2						2
Pacific Argentine	2						2
Hornyhead Turbot	1		1				2
English Sole	2						2
Roughback Sculpin		1					1
Rosy Rockfish			1				1
Unidentified Rockfish						1	1
Pink Seaperch	1						1
Flag Rockfish						1	1
Brown Rockfish				1			1
Survey Total	277	65	42	31	25	13	453
Annual Total	434	340	63	38	39	14	928

^aOne minute trawl, see Table D.1

Total abundance by species and station for demersal fish collected at SBOO trawl stations during 2016.

			Wir	nter 201	6			
Species	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Abundance by Survey
Speckled Sanddab	50	32	59	41	73	53	37	345
White Croaker		1	8	3	10	3	58	83
California Tonguefish		8	15	12	20	9	18	82
Queenfish							47	47
California Lizardfish	7	8	3	4	8	13		43
Hornyhead Turbot		5	10	3	12	8	2	40
Longfin Sanddab			3	1	8	3		15
Unidentified Pipefish	3	3	1			1	1	9
Basketweave Cusk-eel			1				4	5
Fantail Sole		1	2			1		4
Shovelnose Guitarfish				1		1	1	3
Salema							3	3
California Halibut				1		1	1	3
Round Stingray				1			1	2
Vermilion Rockfish	1							1
Spotted Cusk-eel							1	1
Sarcastic Fringehead							1	1
Pacific Seahorse						1		1
Pacific Pompano			1					1
Ocean Whitefish					1			1
Horn Shark							1	1
Giant Kelpfish							1	1
Diamond Turbot		1						1
California Skate			1					1
Blacksmith				1				1
Survey Total	61	59	104	68	132	94	177	695

Table D.4 continued

			Sum	nmer 20	16			
Species	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Abundance by Survey
California Lizardfish	283	199	116	357	108	223	282	1568
Speckled Sanddab	173	183	232	179	215	167	76	1046
Longfin Sanddab		13	153	113	125	56	118	578
Pacific Sanddab	2					2		183
California Tonguefish	7	6	24	32	27	5	26	127
Yellowchin Sculpin			4	3	4		33	44
Hornyhead Turbot	4	2	5	8	1	10	4	34
Roughback Sculpin	5	2	2	3				12
Plainfin Midshipman		1		4	2	3	2	12
Longspine Combfish		1		5	6			12
Specklefin Midshipman	1		4	2		3		10
California Halibut	1			1	2	3	1	8
Fantail Sole	1		1			3		5
English Sole		1		2		1	1	5
Threadfin Sculpin						3		3
Spotted Turbot			2				1	3
Pygmy Poacher			1				2	3
Unidentified Pipefish		1	1			1		3
Vermilion Rockfish							2	2
Petrale Sole				1				1
Curlfin Sole	1							1
California Scorpionfish							1	1
Survey Total	478	409	545	710	490	480	549	3661
Annual Total	539	468	649	778	622	574	726	4356

Biomass (kg) by species and station for demersal fish collected at PLOO trawl stations during 2016.

			Winter 2	2016			
Species	SD7	SD8	SD10 ^ª	SD12ª	SD13ª	SD14 ^a	Species Biomass by Survey
Pacific Sanddab	2.8	3.2	0.3	0.1	0.1		6.5
Longspine Combfish	0.1	1.2	0.1				1.4
California Skate		0.8					0.8
California Scorpionfish	0.6						0.6
Stripetail Rockfish	0.1	0.1	0.1	0.1	0.1		0.5
Halfbanded Rockfish	0.1	0.2	0.1		0.1		0.5
Pink Seaperch	0.1	0.1	0.1		0.1		0.4
English Sole	0.4						0.4
California Lizardfish		0.1			0.2	0.1	0.4
Shortspine Combfish	0.1	0.1		0.1			0.3
Spotted Ratfish		0.2					0.2
Plainfin Midshipman	0.1	0.1					0.2
Dover Sole	0.1	0.1					0.2
Yellowchin Sculpin		0.1					0.1
Specklefin Midshipman	0.1						0.1
Slender Sole				0.1			0.1
Greenstriped Rockfish		0.1					0.1
California Tonguefish		0.1					0.1
Blacktip Poacher		0.1					0.1
Bigmouth Sole		0.1					0.1
Survey Total	4.6	6.7	0.7	0.4	0.6	0.1	13.1

^aOne minute trawl, see Table D.1

Table D.5 continued

			Summe	er 2016			
Species	SD7	SD8 ª	SD10ª	SD12ª	SD13ª	SD14 ^a	Species Biomass by Survey
Pacific Sanddab	2.7	0.3	0.3	0.2	0.1	0.1	3.7
Plainfin Midshipman	1.3				0.1		1.4
Stripetail Rockfish	0.2	0.2	0.1	0.1	0.1	0.1	0.8
California Scorpionfish		0.3	0.1		0.3		0.7
Longspine Combfish	0.4	0.1	0.1				0.6
Dover Sole	0.2	0.1	0.1	0.1			0.5
California Lizardfish	0.3				0.1	0.1	0.5
Shortspine Combfish	0.1	0.1		0.1			0.3
Halfbanded Rockfish		0.1	0.1		0.1		0.3
Yellowchin Sculpin	0.1	0.1					0.2
Slender Sole	0.1			0.1			0.2
Hornyhead Turbot	0.1		0.1				0.2
Vermilion Rockfish						0.1	0.1
Spotted Cusk-eel				0.1			0.1
Smooth Stargazer	0.1						0.1
Roughback Sculpin		0.1					0.1
Pink Seaperch	0.1						0.1
Pacific Argentine	0.1						0.1
Flag Rockfish						0.1	0.1
English Sole	0.1						0.1
California Tonguefish	0.1						0.1
Undentified Rockfish						0.1	0.1
Rosy Rockfish			0.1				0.1
Brown Rockfish				0.1			0.1
Survey Total	6.0	1.4	1.0	0.8	0.8	0.6	10.6
Annual Total	10.6	8.1	1.7	1.2	1.4	0.7	23.7

^aOne minute trawl, see Table D.1

 Table D.6

 Biomass (kg) by species and station for demersal fish collected at SBOO trawl stations during 2016.

			Wir	nter 201	6			On a size Diamage
Name	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Biomass by Survey
White Croaker		0.1	0.2	0.1	0.3	0.1	2.0	2.8
California Halibut				0.6		0.3	1.7	2.6
Shovelnose Guitarfish				0.2		0.3	1.9	2.4
Speckled Sanddab	0.2	0.3	0.3	0.2	0.4	0.3	0.2	1.9
Horn Shark							1.4	1.4
Round Stingray				0.6			0.4	1.0
Hornyhead Turbot		0.2	0.3	0.1	0.1	0.1	0.1	0.9
Fantail Sole		0.4	0.3			0.2		0.9
California Lizardfish	0.2	0.1	0.1	0.1	0.1	0.2		0.8
California Tonguefish		0.1	0.1	0.1	0.1	0.1	0.2	0.7
Unidentified Pipefish	0.1	0.1	0.1			0.1	0.1	0.5
Longfin Sanddab			0.1	0.1	0.1	0.1		0.4
Queenfish							0.3	0.3
Basketweave Cusk-eel			0.1				0.1	0.2
Vermilion Rockfish	0.1							0.1
Spotted Cusk-eel							0.1	0.1
Sarcastic Fringehead							0.1	0.1
Salema							0.1	0.1
Pacific Seahorse						0.1		0.1
Pacific Pompano			0.1					0.1
Ocean Whitefish					0.1			0.1
Giant Kelpfish							0.1	0.1
Diamond Turbot		0.1						0.1
California Skate			0.1					0.1
Blacksmith				0.1				0.1
Survey Total	0.6	1.4	1.8	2.2	1.2	1.9	8.8	17.9

Table D.6 continued

			Sum	nmer 20 [°]	16			
Name	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Biomass by Survey
California Lizardfish	2.5	1.8	4.0	2.3	0.9	2.8	2.8	17.1
Speckled Sanddab	1.5	1.7	3.4	1.3	1.6	1.4	0.7	11.6
Longfin Sanddab		0.3	4.4	0.8	0.9	1.3	2.0	9.7
California Halibut	0.4			0.1	0.8	1.6	0.4	3.3
Hornyhead Turbot	0.1	0.1	1.2	0.3	0.1	0.6	0.1	2.5
Fantail Sole	0.1		1.2			0.8		2.1
Pacific Sanddab	0.1					0.1		1.2
California Tonguefish	0.1	0.1	0.3	0.1	0.1	0.1	0.2	1.0
Plainfin Midshipman		0.1		0.1	0.1	0.1	0.1	0.5
English Sole		0.1		0.2		0.1	0.1	0.5
Yellowchin Sculpin			0.1	0.1	0.1		0.1	0.4
Specklefin Midshipman	0.1		0.1	0.1		0.1		0.4
Roughback Sculpin	0.1	0.1	0.1	0.1				0.4
Unidentified Pipefish		0.1	0.1			0.1		0.3
Longspine Combfish		0.1		0.1	0.1			0.3
Spotted Turbot			0.1				0.1	0.2
Pygmy Poacher			0.1				0.1	0.2
Vermilion Rockfish							0.1	0.1
Threadfin Sculpin						0.1		0.1
Petrale Sole				0.1				0.1
Curlfin Sole	0.1							0.1
California Scorpionfish							0.1	0.1
Survey Total	5.1	4.5	15.1	5.7	4.7	9.2	6.9	51.2
Annual Total	5.7	5.9	16.9	7.9	5.9	11.1	15.7	69.1

Summary of demersal fish community parameters for PLOO trawl stations sampled during 2016. Data are included for species richness, abundance, diversity (H'), and biomass (kg, wet weight). Highlighted/bold values indicate 10 minute trawls, all others were 1 minute in duration.

Station	Winter	Summer	Station	Winter	Summer
Species Richness	5		Abundance		
SD7	11	15	SD7	157	277
SD8	16	9	SD8	275	65
SD10	5	8	SD10	21	42
SD12	4	7	SD12	7	31
SD13	5	6	SD13	14	25
SD14	1	6	SD14	1	13
Diversity			Biomass		
SD7	1.4	1.5	SD7	4.6	6.0
SD8	1.9	1.5	SD8	6.7	1.4
SD10	1.1	1.1	SD10	0.7	1.0
SD12	1.2	1.4	SD12	0.4	0.8
SD13	1.3	1.3	SD13	0.6	0.8
SD14	0.0	1.7	SD14	0.1	0.6

Summary of demersal fish community parameters for SBOO trawl stations sampled during 2016. Data are included for species richness, abundance, diversity (H'), and biomass (kg, wet weight).

Station	Winter	Summer	Station	Winter	Summer
Species Richness			Abundance		
SD15	4	10	SD15	61	478
SD16	8	10	SD16	59	409
SD17	11	12	SD17	104	545
SD18	10	13	SD18	68	710
SD19	7	9	SD19	132	490
SD20	11	13	SD20	94	480
SD21	15	13	SD21	177	549
Diversity			Biomass		
SD15	0.6	0.9	SD15	0.6	5.1
SD16	1.4	1.0	SD16	1.4	4.5
SD17	1.5	1.4	SD17	1.8	15.1
SD18	1.4	1.3	SD18	2.2	5.7
SD19	1.4	1.4	SD19	1.2	4.7
SD20	1.5	1.3	SD20	1.9	9.2
SD21	1.7	1.4	SD21	8.8	6.9

Summary of demersal fish abnormalities and parasites at trawl stations sampled during 2016. A= ambicoloration; PE = eye parasite; PG = gill parasite; PL= leech^a.

Region	Survey	Station	Species	Size Class	Count	Туре	Abnormalities/Parasite
PLOO	Winter	SD8	Pacific Sanddab	11	1	PE	Phrixocephalus cincinnatus
PLOO	Winter	SD8	Pacific Sanddab	8	1	PE	Phrixocephalus cincinnatus
SBOO	Winter	SD17	Hornyhead Turbot	6	1	PL	subclass Hirudinea (unidentified)
SBOO	Winter	SD18	Speckled Sanddab	7	1	PG	Elthusa vulgaris
SBOO	Summer	SD15	Pacific Sanddab	11	1	PG	Elthusa vulgaris
SBOO	Summer	SD15	Pacific Sanddab	12	1	PG	Elthusa vulgaris
SBOO	Summer	SD17	Spotted Turbot	10	1	А	Ambicoloration
SBOO	Summer	SD17	Speckled Sanddab	7	1	А	Ambicoloration
SBOO	Summer	SD18	Longfin Sanddab	11	1	PE	Phrixocephalus cincinnatus
SBOO	Summer	SD18	Speckled Sanddab	8	1	PG	Elthusa vulgaris

^aAn additional 111 *Elthusa vulgaris* were identified as part of invertebrate trawl catches during the year; see Tables D.10–D.12

Summary taxonomic listing of megabenthic invertebrate taxa captured at all PLOO and SBOO trawl stations during 2016 (see Table D.1). Data are number of individuals (n). Taxonomic arrangement from SCAMIT (2014).

Phylum	Class	Family	Taxon	n
SILICEA				
	Demospongiae			
		Suberitidae	Suberites latus	1
CNIDARIA				
	Anthozoa			
		Plexauridae	<i>Thesea</i> sp B	1
		Virgulariidae	Acanthoptilum sp	7
			Stylatula elongata	2
		Actiniaria ^a	Actiniaria (unidentified)	1
MOLLUSCA	O s stas a s d s			
	Gastropoda	Dunaida a	Orrange to supertrive and	0
		Bursidae	Crossata ventricosa	6
		Epitoniidae	Epitonium bellastriatum	1
		Buccinidae	Kelletia kelletii	16
		Nassariidae	Hinea insculpta	7
		Pseudomelatomidae	Crassispira semiinflata	1
		Philinidae	Philine alba	1
		Onchidarididaa	Philine auriformis	8
		Onchidorididae Dendronotidae	Acanthodoris rhodoceras	2
	Bivalvia	Dendronolidae	Dendronotus iris	1
	Divalvia	Pectinidae	Lantanaatan latiauratua	1
	Cephalopoda	recliniuae	Leptopecten latiauratus	I
	Cephalopoua	Sepiolidae	Rossia pacifica	1
		Octopodidae	Octopus rubescens	23
ARTHROPODA		Octopouldae	Octopus rubescens	20
	Malacostraca			
	Malabootraba	Hemisquillidae	Hemisquilla californiensis	12
		Cymothoidae	Elthusa vulgaris	111
		Sicyoniidae	Sicyonia ingentis	164
		Cloyonnado	Sicyonia penicillata	573
		Alpheidae	Alpheus clamator	1
		Hippolytidae	Heptacarpus palpator	1
		1.1.2.2.2.2	Heptacarpus stimpsoni	1
		Crangonidae	Crangon alba	1
		0	Crangon nigromaculata	107
		Diogenidae	Paguristes bakeri	1
		5	Paguristes turgidus	1
		Paguridae	Pagurus spilocarpus	2
		Munididae	Pleuroncodes planipes	74,548
		Calappidae	Platymera gaudichaudii	2
		Leucosiidae	Randallia ornata	3
		Epialtidae	Pugettia producta	1
			Loxorhynchus grandis	1
		Inachidae	Ericerodes hemphillii	2

^aOrder; family unknown

Table D.10 continued

Taxon/Species				n
		Inachoididae	Pyromaia tuberculata	4
		Cancridae		2
			Metacarcinus anthonyi	1
			Metacarcinus gracilis	3
		Portunidae	Portunus xantusii	153
ECHINODERMATA	Actoroidee			
	Asteroidea	Luidiidae	Luidia armata	1
		Luiuliuae		1
			Luidia asthenosoma	1
			Luidia foliolata	3
		Astropectinidae	Astropecten californicus	24
			Astropecten ornatissimus	3
	Ophiuroidea			
		Ophiuridae	Ophiura luetkenii	2
		Ophiotricidae	Ophiothrix spiculata	2
	Echinoidea		, ,	
		Toxopneustidae	Lytechinus pictus	744
		Dendrasteridae	Dendraster terminalis	25
	Holothuroidea			
		Stichopodidae	Parastichopus californicus	4

Total abundance by species and station for megabenthic invertebrates captured at PLOO trawl stations during 2016.

				Creation Abundance			
Species	SD7	SD8	SD10 ^ª	SD12ª	SD13ª	SD14ª	Species Abundance by Survey
Pleuroncodes planipes	38	30	3112	3360	3717	2389	12,646
Lytechinus pictus	172	221	38		5		436
Sicyonia ingentis	31	51					82
Astropecten californicus		3					3
Octopus rubescens		2					2
Elthusa vulgaris		2					2
Parastichopus californicus	1						1
Luidia foliolata		1					1
Luidia asthenosoma			1				1
Survey Total	242	310	3151	3360	3722	2389	13,174

^aOne minute trawl, see Table D.1

Table D.11 continued

			Summ	er 2016			
Species	SD7	SD8 ^a	SD10 ^a	SD12ª	SD13ª	SD14 ^a	Species Abundance by Survey
Pleuroncodes planipes	106	17,286	13,068	18,630	6140	6526	61,756
Lytechinus pictus	74	141	74	4	2	13	308
Sicyonia ingentis	8	31	10	6	24	3	82
Hinea insculpta						7	7
Parastichopus californicus	1	2					3
Astropecten californicus	1		2				3
Luidia foliolata			1		1		2
Elthusa vulgaris		1	1				2
Suberites latus	1						1
Platymera gaudichaudii				1			1
Paguristes turgidus						1	1
Paguristes bakeri	1						1
Survey Total	192	17,461	13,156	18,641	6167	6550	62,167
Annual Total	434	17,771	16,307	22,001	9889	8939	75,341

^aOne minute trawl, see Table D.1

Total abundance by species and station for megabenthic invertebrates captured at SBOO trawl stations during 2016.

			Wii	nter 20 [.]	16			
Species	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Abundance by Survey
Sicyonia penicillata	9	36	41	46	117	140	85	474
Portunus xantusii	5	22	21	7	38	16	43	152
Crangon nigromaculata		3	5	3	4		90	105
Hemisquilla californiensis		1	2	3	3	3		12
Astropecten californicus	1	4				5		10
Pleuroncodes planipes				1		1	3	5
Elthusa vulgaris			1	3			1	5
Randallia ornata	1		2					3
Pyromaia tuberculata					2		1	3
Metacarcinus gracilis		1	1	1				3
Stylatula elongata	1	1						2
Ophiothrix spiculata					1		1	2
Kelletia kelletii				2				2
Dendraster terminalis	2							2
Cancridae							2	2
Rossia pacifica	1							1
Pugettia producta					1			1
Philine auriformis				1				1
Pagurus spilocarpus			1					1
Octopus rubescens					1			1
Luidia armata						1		1
Heptacarpus palpator							1	1
Crangon alba	1							1
Alpheus clamator							1	1
Actiniaria				1				1
Survey Total	21	68	74	68	167	166	228	792

Table D.12 continued

			Sum	nmer 20)16			
Species	SD15	SD16	SD17	SD18	SD19	SD20	SD21	Species Abundance by Survey
Pleuroncodes planipes	3	44	7	29	57		1	141
Elthusa vulgaris	7	24	7	8	30	21	5	102
Sicyonia penicillata	1	1	24	4	20	4	45	99
Dendraster terminalis	23							23
Octopus rubescens	3	2	6	1	2	4	2	20
Kelletia kelletii		2	7	5				14
Astropecten californicus		1		4		3		8
Philine auriformis			6		1			7
Acanthoptilum sp	7							7
Crossata ventricosa	3			2			1	6
Astropecten ornatissimus	3							3
Ophiura luetkenii	2							2
Ericerodes hemphillii				2				2
Crangon nigromaculata	2							2
Acanthodoris rhodoceras							2	2
<i>Thesea</i> sp B			1					1
Pyromaia tuberculata							1	1
Portunus xantusii			1					1
Platymera gaudichaudii			1					1
Philine alba	1							1
Pagurus spilocarpus			1					1
Metacarcinus anthonyi							1	1
Loxorhynchus grandis					1			1
Leptopecten latiauratus				1				1
Heptacarpus stimpsoni				1				1
Epitonium bellastriatum	1							1
Dendronotus iris			1					1
Crassispira semiinflata	1							1
Survey Total	57	74	62	57	111	32	58	451
Annual Total	78	142	136	125	278	198	286	1243

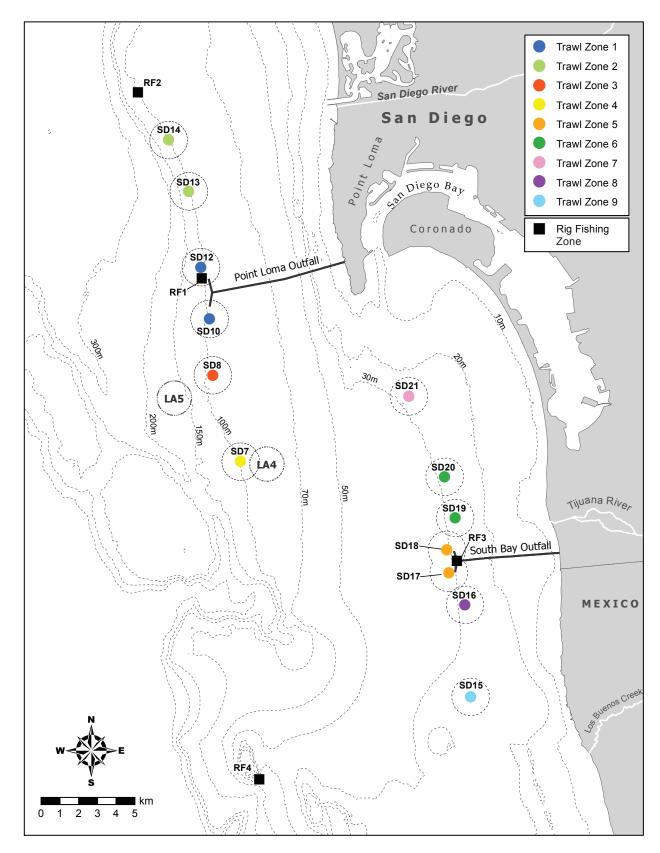
Summary of megabenthic invertebrate community parameters for PLOO trawl stations sampled during 2016. Data are included for species richness, abundance, and diversity (H'). Highlighted/bold values indicate 10 minute trawls, all others were 1 minute in duration.

Station	Winter	Summer	Station	Winter	Summe
Species Richness			Abundance		
SD7	4	7	SD7	242	192
SD8	7	5	SD8	310	17,461
SD10	3	6	SD10	3151	13,156
SD12	1	4	SD12	3360	18,641
SD13	2	4	SD13	3722	6167
SD14	1	5	SD14	2389	6550
Diversity					
SD7	0.82	0.94			
SD8	0.89	0.06			
SD10	0.07	0.04			
SD12	0.00	0.01			
SD13	0.01	0.03			
SD14	0.00	0.03			

Summary of megabenthic invertebrate community parameters for SBOO stations sampled during 2016. Data are included for species richness, abundance, and diversity (H').

Station	Winter	Summer	Station	Winter	Summer
Species Richness			Abundance		
SD15	8	13	SD15	21	57
SD16	7	6	SD16	68	74
SD17	8	11	SD17	74	62
SD18	10	10	SD18	68	57
SD19	8	6	SD19	167	111
SD20	6	4	SD20	166	32
SD21	10	8	SD21	228	58
Diversity					
SD15	1.7	2.0			
SD16	1.2	1.0			
SD17	1.2	1.9			
SD18	1.3	1.7			
SD19	0.9	1.2			
SD20	0.6	1.0			
SD21	1.3	0.9			

This page intentionally left blank


Appendix E

Chapter 5. Bioaccumulation of Contaminants in Fish Tissues

Figures & Tables

Appendix E

FIGURES and TABLES

Figure E.1

Trawl and rig fishing zone locations sampled around the Point Loma and South Bay Ocean Outfalls as part of the City of San Diego's Ocean Monitoring Program.

Species of fish collected from each trawl and rig fishing zones during 2016.

Zone	Composite 1	Composite 2	Composite 3
PLOO			
Rig Fishing Zone 1 (RF1)	Vermilion Rockfish	Vermilion Rockfish	Mixed Rockfish ^a
Rig Fishing Zone 2 (RF2)	Speckled Rockfish	Mixed Rockfish ^b	Mixed Rockfish ^c
Trawl Zone 1 (TZ1)	Pacific Sanddab	Pacific Sanddab	Pacific Sanddab
Trawl Zone 2 (TZ2)	Pacific Sanddab	Pacific Sanddab	Pacific Sanddab
Trawl Zone 3 (TZ3)	Pacific Sanddab	Pacific Sanddab	Pacific Sanddab
Trawl Zone 4 (TZ4)	Pacific Sanddab	Pacific Sanddab	Pacific Sanddab
SBOO			
Rig Fishing Zone 3 (RF3)	California Scorpionfish	Mixed Rockfish ^d	Mixed Rockfish ^e
Rig Fishing Zone 4 (RF4)	Treefish	Treefish	Starry Rockfish
Trawl Zone 5 (TZ5)	Fantail Sole	Hornyhead Turbot	Longfin Sanddab
Trawl Zone 6 (TZ6)	Longfin Sanddab	Longfin Sanddab	Longfin Sanddab
Trawl Zone 7 (TZ7)	Longfin Sanddab	Longfin Sanddab	Longfin Sanddab
Trawl Zone 8 (TZ8)	Longfin Sanddab	Longfin Sanddab	Fantail Sole
Trawl Zone 9 (TZ9)	Fantail Sole	Spotted Turbot	Hornyhead Turbot

^a Includes Copper and Rosy Rockfish; ^bincludes Greenstriped and Starry Rockfish; ^cincludes Vermilion, Flag and Copper Rockfish; ^dincludes Olive and Brown Rockfish; ^eincludes Vermilion and Olive Rockfish

Lengths and weights of fishes used for each composite (Comp) tissue sample from PLOO trawl and rig fishing zones during 2016. Data are summarized as number of individuals (n), minimum, maximum, and mean values.

				Length	(cm, si	ze class)		Weight (g)
Zone	Comp	Species	n	Min	Мах	Mean	Min	Мах	Mean
RF1	1	Vermilion Rockfish	3	21	25	23	261	415	344
RF1	2	Vermilion Rockfish	4	15	25	18	104	402	185
RF1	3	Mixed Rockfish	3	15	26	22	96	553	384
RF2	1	Speckled Rockfish	3	26	28	27	348	620	485
RF2	2	Mixed Rockfish	4	17	23	21	137	227	184
RF2	3	Mixed Rockfish	3	25	35	28	380	1200	663
TZ1	1	Pacific Sanddab	3	17	20	19	84	128	112
TZ1	2	Pacific Sanddab	4	17	18	18	69	100	84
TZ1	3	Pacific Sanddab	4	16	18	17	64	103	85
TZ2	1	Pacific Sanddab	3	16	21	19	67	178	119
TZ2	2	Pacific Sanddab	3	17	22	19	89	187	128
TZ2	3	Pacific Sanddab	3	19	24	22	106	231	188
TZ3	1	Pacific Sanddab	3	18	20	19	117	124	121
TZ3	2	Pacific Sanddab	3	16	19	17	76	149	101
TZ3	3	Pacific Sanddab	3	17	19	18	80	117	98
TZ4	1	Pacific Sanddab	3	20	24	22	107	230	172
TZ4	2	Pacific Sanddab	3	18	20	19	88	137	119
TZ4	3	Pacific Sanddab	4	18	19	18	89	106	99

Lengths and weights of fishes used for each composite (Comp) tissue sample from SBOO trawl and rig fishing stations during 2016. Data are summarized as number of individuals (n), minimum, maximum, and mean values.

				Length	(cm, si	ze class)		Weight (g)
Zone	Comp	Species	n	Min	Мах	Mean	Min	Max	Mean
RF3	1	California Scorpionfish	3	18	26	23	198	620	442
RF3	2	Mixed Rockfish	3	17	20	18	150	245	187
RF3	3	Mixed Rockfish	3	21	26	23	268	441	372
RF4	1	Treefish	3	21	24	22	274	400	343
RF4	2	Treefish	3	22	24	23	343	400	376
RF4	3	Starry Rockfish	3	23	23	23	289	315	304
TZ5	1	Fantail Sole	5	17	24	21	97	305	208
TZ5	2	Honyhead Turbot	8	11	18	14	34	130	77
TZ5	3	Longfin Sanddab	8	12	18	14	35	119	63
TZ6	1	Longfin Sanddab	8	13	18	14	42	120	60
TZ6	2	Longfin Sanddab	14	11	13	12	32	52	39
TZ6	3	Longfin Sanddab	13	12	14	12	32	59	39
TZ7	1	Longfin Sanddab	11	13	18	14	40	131	56
TZ7	2	Longfin Sanddab	6	13	18	15	51	127	67
TZ7	3	Longfin Sanddab	3	12	22	17	47	217	135
TZ8	1	Longfin Sanddab	10	13	14	13	39	56	46
TZ8	2	Longfin Sanddab	11	12	17	14	35	112	50
TZ8	3	Fantail Sole	4	22	27	25	254	397	337
TZ9	1	Fantail Sole	8	13	21	18	39	185	121
TZ9	2	Spotted Turbot	6	13	19	16	51	160	103
TZ9	3	Hornyhead Turbot	7	12	15	13	31	111	54

Constituents and method detection limits (MDL) used for the analysis of liver and muscle tissues of fishes collected from the PLOO and SBOO region during 2016. nr = not reportable.

	М	DL		м	DL
Parameter	Liver	Muscle	Parameter	Liver	Muscle
		Met	tals (ppm)		
Aluminum (Al)	2.4	2.4	Lead (Pb)	0.326	0.326
Antimony (Sb)	0.79	0.79	Manganese (Mn)	0.19	0.19
Arsenic (As)	0.308	0.308	Mercury (Hg)	0.002	0.002
Barium (Ba)	0.08	0.08	Nickel (Ni)	0.3	0.3
Beryllium (Be)	0.02	0.02	Selenium (Se)	0.19	0.19
Cadmium (Cd)	0.13	0.13	Silver (Ag)	0.206	0.206
Chromium (Cr)	0.136	0.136	Thallium (TI)	0.43	0.43
Copper (Cu)	0.69	0.69	Tin (Sn)	0.33	0.33
Iron (Fe)	2.88	2.88	Zinc (Zn)	1.45	1.45
		Chlorinated	d Pesticides (ppb)		
		Hexachlorod	cyclohexane (HCH)		
HCH, Alpha isomer	1.58	0.16	HCH, Delta isomer	3.47	0.34
HCH, Beta isomer	4.5	0.45	HCH, Gamma isomer	3.68	0.37
		Tota	l Chlordane		
Alpha (cis) chlordane	5.89	0.59	Heptachlor epoxide	2.97	0.29
Cis nonachlor	6.06	0.61	Methoxychlor	13.10	nr
Gamma (trans) chlordane	3.84	0.38	Oxychlordane	2.81	0.28
Heptachlor	1.86	0.19	Trans nonachlor	5.12	0.51
	Tota	al Dichlorodiphe	enyltrichloroethane (DDT)		
o,p-DDD	2.03	0.21	p,p-DDD	2.62	0.26
o,p-DDE	3.16	0.31	p,p-DDE	1.75	0.18
o,p-DDT	2.92	0.29	p,p-DDT	2.66	0.27
p,-p-DDMU	3.44	0.34			
		Miscellar	eous Pesticides		
Aldrin	2.98	0.30	Endrin	nr	nr
Alpha endosulfan	1.77	0.17	Endrin aldehyde	nr	nr
Beta endosulfan	nr	nr	Hexachlorobenzene (HCB)	26.8	2.68
Dieldrin	nr	nr	Mirex	1.99	0.20
Endosulfan sulfate	2.31	0.23			

	N	IDL		ľ	MDL
Parameter	Liver	Muscle	Parameter	Liver	Muscle
	Polychlor	inated Biphenyl	s Congeners (PCBs) (ppb)		
PCB 18	1.21	0.12	PCB 126	1.34	0.13
PCB 28	1.65	0.16	PCB 128	1.43	0.14
PCB 37	1.43	0.14	PCB 138	2.51	0.25
PCB 44	1.16	0.12	PCB 149	1.79	0.18
PCB 49	0.97	0.10	PCB 151	1.31	0.14
PCB 52	1.27	0.12	PCB 153/168	2.79	0.28
PCB 66	1.16	0.12	PCB 156	1.86	0.19
PCB 70	1.40	0.14	PCB 157	3.20	0.32
PCB 74	1.09	0.11	PCB 158	1.45	0.14
PCB 77	1.81	0.18	PCB 167	1.59	0.16
PCB 81	1.63	0.16	PCB 169	2.72	0.27
PCB 87	1.39	0.14	PCB 170	2.02	0.21
PCB 99	1.25	0.12	PCB 177	2.31	0.23
PCB 101	1.49	0.15	PCB 180	2.54	0.26
PCB 105	1.83	0.19	PCB 183	1.14	0.11
PCB 110	1.42	0.14	PCB 187	1.16	0.12
PCB 114	1.31	0.13	PCB 189	1.44	0.14
PCB 118	2.38	0.24	PCB 194	1.76	0.18
PCB 119	1.96	0.20	PCB 201	1.68	0.17
PCB 123	1.94	0.19	PCB 206	1.31	nr
	Polycyc	lic Aromatic Hyd	drocarbons (PAHs) (ppb)		
1-methylnaphthalene	27.9	26.4	Benzo[G,H,I]perylene	27.2	59.5
1-methylphenanthrene	17.4	23.3	Benzo[K]fluoranthene	32.0	37.3
2,3,5-trimethylnaphthalene	21.7	21.6	Biphenyl	38.0	19.9
2,6-dimethylnaphthalene	21.7	19.5	Chrysene	18.1	23.0
2-methylnaphthalene	35.8	13.2	Dibenzo(A,H)anthracene	37.6	40.3
3,4-benzo(B)fluoranthene	30.2	26.8	Fluoranthene	19.9	12.9
Acenaphthene	28.9	11.3	Fluorene	27.3	11.4
Acenaphthylene	24.7	9.1	Indeno(1,2,3-CD)pyrene	25.6	46.5
Anthracene	25.3	8.4	Naphthalene	34.2	17.4
Benzo[A]anthracene	47.3	15.9	Perylene	18.5	50.9
Benzo[A]pyrene	42.9	18.3	Phenanthrene	11.6	12.9
Benzo[e]pyrene	41.8	40.6	Pyrene	9.1	16.6

Table E.4 continued

S	
ш	
θ	
9	
Ta	

Concentrations of metals (ppm) detected in liver tissues of fishes collected from PLOO and SBOO trawl zones during 2016. See Table E.4 for MDLs and names of each metal represented by periodic table symbol; nd = not detected.

			-						ľ	Trace Metals	letals						I
Trawl Zone	one	Comp	Species	AI	As	Ba	Cd	c	Cu	Fe	Mn	Hg	Ni	Se	Ag	Sn	Zn
	TZ1	~	Pacific Sanddab	pu	5.1	pu	0.9	0.2	2.2	61	0.7	0.037	pu	0.56	pu	0.7	19
		5	Pacific Sanddab	pu	6.4	pu	1.0	0.6	3.0	105	0.8	0.038	pu	0.59	pu	0.4	21
		က	Pacific Sanddab	pu	5.7	pu	2.2	0.2	2.5	87	0.6	0.061	р	0.70	pu	0.5	20
	TZ2	-	Pacific Sanddab	5.0	6.1	pu	3.8	0.3	3.2	143	0.7	0.059	pu	0.73	pu	0.6	23
0		2	Pacific Sanddab	pu	5.9	pu	1.8	0.2	3.2	06	0.7	0.052	pu	0.63	pu	0.5	19
ГО		ო	Pacific Sanddab	pu	4.9	pu	2.3	1.0	0.9	52	0.6	0.042	pu	0.73	pu	0.5	22
Ь	TZ3	-	Pacific Sanddab	pu	12.0	pu	2.0	1.3	6.1	75	1.3	0.039	0.6	0.95	pu	1.0	38
		2	Pacific Sanddab	pu	3.3	pu	0.8	0.7	2.3	33	0.5	0.036	pu	0.69	pu	0.5	15
		ო	Pacific Sanddab	pu	5.9	pu	1.3	0.8	4.4	49	0.8	0.037	pu	0.70	pu	0.6	23
	TZ4	~	Pacific Sanddab	pu	6.2	pu	2.8	0.7	4.7	42	0.7	0.043	pu	0.83	pu	0.6	23
		2	Pacific Sanddab	pu	6.7	pu	1.6	0.6	3.4	39	0.9	0.040	pu	1.05	pu	0.5	24
		с	Pacific Sanddab	pu	3.5	pu	0.8	1.0	2.0	27	0.5	0.028	0.3	0.49	pu	0.5	15
			Detection Rate (%)	ω	100	0	100	100	100	100	100	100	17	100	0	100	100
	TZ5	~	Fantail Sole	pu	20.1	pu	2.1	0.5	27.4	167	1.9	0.066	ри	0.68	pu	0.4	73
		2	Hornyhead Turbot	pu	11.1	pu	5.9	0.5	8.3	82	1.3	0.237	pu	1.77	0.2	0.5	76
		ო	Longfin Sanddab	pu	12.1	pu	1.9	0.5	5.7	78	1.2	0.077	pu	1.22	pu	0.5	25
	TZ6	~	Longfin Sanddab	pu	9.2	pu	1.4	0.5	4.9	92	1.1	0.074	pu	0.86	pu	0.5	26
		7	Longfin Sanddab	pu	5.8	pu	1.0	0.6	6.4	75	1.1	0.059	pu	0.97	pu	0.5	23
(ო	Longfin Sanddab	pu	7.2	pu	1.2	0.7	6.2	91	1.2	0.066	pu	1.41	pu	0.5	27
208	TZ7	~	Longfin Sanddab	pu	9.1	pu	1.2	0.5	4.3	70	1.1	0.100	pu	0.94	pu	0.5	22
SE		0	Longfin Sanddab	pu	0.0	pu	<u>-</u>	0.5	4.5	59	<u>-</u> -	0.088	þ	0.7	pu	0.6	24
		ო	Longfin Sanddab	pu	8.7	pu	1. 4	0.7	4.2	68		0.110	0.3	1.14	pu	0.5	28
	TZ8	~	Longfin Sanddab	pu	10.6	pu	1.7	pu	7.1	111	1.7	0.088	ри	0.95	pu	0.5	28
		7	Longfin Sanddab	pu	10.9	pu	1.3	pu	6.7	91	0.9	0.080	ри	1.00	pu	0.5	24
		ო	Fantail Sole	pu	39.4	0.236	4.0	0.2	16.4	188	2.6	0.130	ри	0.74	pu	0.4	61
	TZ9	, - 1	Fantail Sole	pu	33.2	pu	2.1	pu	17.8	205	1.1	0.073	pu	1.07	pu	pu	55
		N 00	Spotted Turbot Hornvhead Turbot	pu	4.4 5.2	pu pu	3.5 4	nd 0.3	2.3	64 80	0.8	0.094 0.080	ם פ	1.57 1.53	pu pu	nd 4.0	22 47
			Detection Rate (%)	0	100	2	100	73	100	100	100	100	2	100	2	87	100

Concentrations of pesticides (ppb), tPCB (ppb), tPAH (ppb, SBOO samples only) and lipids (% weight) detected in liver tissues of fishes collected from PLOO and SBOO trawl zones during 2016. See Table E.4 for list of constituents with MDLs and Table E.9 for values of individual constituents summed for total chlordane (tChlor), total DDT, total endosulfan (tEndo), total HCH, total PCB, and total PAH; nd = not detected; na = not available; nr = not reportable.

					Pesticides						
Trawl Z	Zone	Comp	Species	tChlor ^a	tDDT	tEndo	tHCH	НСВ	Mirex	tPCB	Lipids
	TZ1	1 2 3	Pacific Sanddab Pacific Sanddab Pacific Sanddab	0.28 nd 6.19	436.5 421.3 591.5	nd nd nd	3.29 2.96 2.28	nr nr nr	nd nd 0.59	249.7 207.0 342.5	45.5 49.8 52.8
PLOO	TZ2	1 2 3	Pacific Sanddab Pacific Sanddab Pacific Sanddab	3.24 2.15 nd	295.4 310.8 403.7	nd nd nd	5.33 3.22 3.83	nr 9.3 14.1	nd nd nd	149.9 127.7 176.3	51.4 49.5 47.0
Ľ	TZ3	1 2 3	Pacific Sanddab Pacific Sanddab Pacific Sanddab	nd 3.50 8.20	345.1 388.0 389.3	nd nd nd	2.26 2.47 4.44	nr nr nr	0.40 nd nd	227.0 200.1 275.1	43.9 56.8 51.7
	TZ4	1 2 3	Pacific Sanddab Pacific Sanddab Pacific Sanddab	nd nd 1.73	276.0 308.1 305.3	nd nd nd	3.36 2.34 2.00	nr nr nr	0.92 nd nd	294.8 200.9 219.6	44.3 52.3 49.2
			Detection Rate (%)	58	100	0	100	na	25	100	100
	TZ5	1 2 3	Fantail Sole Hornyhead Turbot Longfin Sanddab	nd nd 4.14	50.7 53.5 439.7	nd nd nd	2.12 0.81 2.26	0.3 0.4 nr	nd nd 0.78	44.1 28.1 239.6	9.9 6.1 31.9
	TZ6	1 2 3	Longfin Sanddab Longfin Sanddab Longfin Sanddab	7.08 4.23 9.76	838.7 589.3 931.8	nd nd 0.19	2.64 2.64 3.74	nr nr nr	1.19 0.91 nd	366.0 287.6 471.2	38.2 39.6 44.3
SBOO	TZ7	1 2 3	Longfin Sanddab Longfin Sanddab Longfin Sanddab	1.01 nd nd	410.0 445.6 417.3	0.08 nd nd	4.85 2.61 1.80	5.1 3.3 4.8	1.19 1.02 nd	369.2 432.6 346.9	30.3 30.8 40.4
	TZ8	1 2 3	Longfin Sanddab Longfin Sanddab Fantail Sole	1.65 5.42 nd	671.7 536.6 16.5	nd nd nd	3.90 2.60 nd	11.4 14.1 21.5	1.00 1.14 nd	396.5 321.9 9.7	41.3 38.1 3.8
	TZ9	1 2 3	Fantail Sole Spotted Turbot Hornyhead Turbot	0.48 0.08 nd	47.5 8.9 26.6	nd nd nd	nd 0.84 0.89	nr nr nr	nd nd nd	46.1 17.6 16.1	3.6 3.5 8.1
			Detection Rate (%)	60	100	13	87	na	47	100	100

^aMethoxychlor was not reportable for all samples from TZ1–TZ4, TZ7, TZ8, and composites 1 and 2 from TZ5

Concentrations of metals (ppm) detected in muscle tissues of fishes collected from PLOO and SBOO rig fishing zones during 2016. Highlighted/bold values meet or exceed OEHHA fish contaminant goals, USFDA action limits (AL), or median international standards (IS). See Table E.4 for names of each metal represented by periodic table symbol; nd = not detected; na = not available.

				Trace Metals								
RF Z	one	Comp	Species	As	Ва	Cr	Fe	Mn	Hg	Se	Sn	Zn
	RF1	1	Vermilion Rockfish	8.6	nd	0.3	12.0	2.1	0.046	0.35	0.4	4
0		2	Vermilion Rockfish	6.9	0.144	nd	38.0	5.3	0.027	0.50	0.4	4
PLOO		3	Mixed Rockfish	3.7	0.105	nd	16.0	4.0	0.060	0.52	0.4	4
	RF2	1	Speckled Rockfish	2.9	nd	0.3	13.0	4.2	0.136	0.52	0.4	4
		2	Mixed Rockfish	3.0	nd	nd	13.0	3.9	0.112	0.40	0.4	4
		3	Mixed Rockfish	5.3	0.092	nd	20.0	3.6	0.137	0.55	0.4	4
			Detection Rate (%)	100	50	33	100	100	100	100	100	100
	RF3	1	CA Scorpionfish	4.4	nd	nd	6.5	1.85	0.216	0.31	0.4	3
0		2	Mixed Rockfish	2.3	nd	nd	9.5	nd	0.070	0.38	0.4	4
SBOO		3	Mixed Rockfish	5.9	nd	nd	4.0	2.6	0.044	0.46	0.5	4
	RF4	1	Treefish	1.9	nd	0.5	4.5	nd	0.141	0.53	0.6	4
		2	Treefish	2.0	nd	0.4	3.0	nd	0.213	0.54	0.4	3
		3	Starry Rockfish	1.7	nd	0.7	4.5	nd	0.152	0.64	0.4	3
			Detection Rate (%)	100	0	50	100	33	100	100	100	100
OEH	HAa			na	na	na	na	na	0.22	7.4	na	na
USFE	DA Acti	on Limit ^ı	b	na	na	na	na	na	1.0	na	na	na
Media	an IS⁵			1.4	na	1.0	na	na	0.50	0.3	175	70

^aFrom the California OEHHA (Klasing and Brodberg 2008)

^b From Mearns et al. 1991. USFDA action limits for mercury and all international standards are for shellfish, but are often applied to fish

Concentrations of pesticides (ppb), total PCB (ppb), total PAH (ppb, SBOO samples only) and lipids (% weight) detected in muscle tissues of fishes collected from PLOO and SBOO rig fishing zones during 2016. See Table E.4 for list of constituents with MDLs and Table E.9 for values of individual constituents summed for total chlordane (tChlor), total DDT, total HCH, and total PCB; nd = not detected; nr = not reportable; na = not analyzed.

RF Zone	Comp	Species	tChlorª	tDDT	tHCH	tPCB	Lipids
RF1	1	Vermilion Rockfish	0.13	1.11	0.12	0.92	0.35
0	2	Vermilion Rockfish	nd	0.34	0.09	0.27	0.33
PLOO	3	Mixed Rockfish	nd	0.73	nd	0.57	0.25
RF2	1	Speckled Rockfish	nd	0.28	0.04	0.15	0.17
	2	Mixed Rockfish	nd	1.69	0.09	1.08	0.68
	3	Mixed Rockfish	nd	0.81	nd	0.65	0.62
		Detection Rate (%)	17	100	67	100	100
RF3	1	CA Scorpionfish	nd	1.47	0.02	1.60	0.33
0	2	Mixed Rockfish	nd	0.59	nd	0.48	0.32
SBOO	3	Mixed Rockfish	0.07	0.29	0.07	0.23	0.36
RF4	1	Treefish	nd	0.90	0.10	0.19	0.33
	2	Treefish	nd	0.37	nd	0.38	0.38
	3	Starry Rockfish	nd	0.45	0.14	0.17	0.25
		Detection Rate (%)	17	100	67	100	100
OEHHA⁵			5.6	21	na	3.6	
USFDA Action	Limit°		300	5000	na	na	_
Median IS ^c			100	5000	na	na	_

^a Missing methoxychlor

^bFrom the California OEHHA (Klasing and Brodberg 2008)

^cFrom Mearns et al. 1991. USFDA action limits for mercury and all international standards are for shellfish, but are often applied to fish

Summary of constituents that make up total chlordane, total DDT, total endosulfan, total HCH, total PCB, and total PAH in composite (Comp) tissue samples from the PLOO and SBOO regions during 2016.

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
RF1	1	Vermilion Rockfish	Muscle	Chlordane	Heptachlor epoxide	0.005	ppb
RF1	1	Vermilion Rockfish	Muscle	Chlordane	Oxychlordane	0.13	ppb
RF1	1	Vermilion Rockfish	Muscle	DDT	o,p-DDE	0.015	ppb
RF1	1	Vermilion Rockfish	Muscle	DDT	p,p-DDE	1.06	ppb
RF1	1	Vermilion Rockfish	Muscle	DDT	p,-p-DDMU	0.035	ppb
RF1	1	Vermilion Rockfish	Muscle	HCH	HCH, Alpha isomer	0.025	ppb
RF1	1	Vermilion Rockfish	Muscle	HCH	HCH, Beta isomer	0.025	ppb
RF1	1	Vermilion Rockfish	Muscle	HCH	HCH, Gamma isomer	0.07	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 28	0.03	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 37	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 49	0.025	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 52	0.035	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 66	0.035	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 70	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 74	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 77	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 99	0.065	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 101	0.025	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 105	0.04	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 110	0.015	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 118	0.065	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 123	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 128	0.015	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 138	0.105	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 149	0.015	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 153/168	0.145	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 156	0.015	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 167	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 169	0.01	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 170	0.035	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 180	0.055	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 187	0.04	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 194	0.025	ppb
RF1	1	Vermilion Rockfish	Muscle	PCB	PCB 206	0.07	ppb
RF1	2	Vermilion Rockfish	Muscle	DDT	o,p-DDE	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	DDT	p,p-DDE	0.31	ppb
RF1	2	Vermilion Rockfish	Muscle	DDT	p,-p-DDMU	0.01	ppb
RF1	2	Vermilion Rockfish	Muscle	HCH	HCH, Beta isomer	0.09	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 37	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 49	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 81	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 99	0.01	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 101	0.01	
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 101 PCB 105	0.02	ppb ppb
NE I	۷		iviuscie	FVD		0.01	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
 RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 118	0.02	
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 119	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 153/168	0.07	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 180	0.07	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 194	0.02	ppb
RF1	2	Vermilion Rockfish	Muscle	PCB	PCB 194 PCB 206	0.02	ppb
	2		MUSCIE	FUD	F GB 200	0.04	ppb
RF1	3	Mixed Rockfish	Muscle	DDT	o,p-DDE	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	DDT	p,p-DDE	0.72	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 28	0.02	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 37	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 49	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 52	0.02	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 66	0.02	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 70	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 74	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 99	0.03	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 101	0.03	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 118	0.05	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 128	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 138	0.08	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 149	0.01	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 153/168	0.12	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 180	0.05	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 187	0.03	ppb
RF1	3	Mixed Rockfish	Muscle	PCB	PCB 206	0.06	ppb
RF2	1	Speckled Rockfish	Muscle	DDT	o,p-DDE	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	DDT	p,p-DDE	0.27	ppb
RF2	1	Speckled Rockfish	Muscle	HCH	HCH, Alpha isomer	0.02	ppb
RF2	1	Speckled Rockfish	Muscle	HCH	HCH, Beta isomer	0.02	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 28	0.02	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 44	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 49	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 52	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 70	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 99	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 128	0.01	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 138	0.02	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 153/168	0.02	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 187	0.03	ppb
RF2	1	Speckled Rockfish	Muscle	PCB	PCB 206	0.02	ppb
DE2	0	Mixed Decklich	Mussla	דחח		0.00	~~~
RF2	2	Mixed Rockfish	Muscle	DDT	o,p-DDE	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	DDT	p,p-DDE	1.64	ppb
RF2 RF2	2 2	Mixed Rockfish Mixed Rockfish	Muscle Muscle	DDT HCH	p,p-DDT HCH, Alpha isomer	0.03 0.02	ppb ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
RF2	2	Mixed Rockfish	Muscle	HCH	HCH, Beta isomer	0.07	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 37	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 44	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 49	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 52	0.04	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 66	0.04	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 70	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 99	0.05	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 101	0.06	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 105	0.04	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 110	0.03	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 118	0.09	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 128	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 138	0.12	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 149	0.06	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 153/168	0.18	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 167	0.01	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 169	0.01	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 170	0.05	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 177	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 180	0.06	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 187	0.05	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 194	0.02	ppb
RF2	2	Mixed Rockfish	Muscle	PCB	PCB 206	0.05	ppb
RF2	3	Mixed Rockfish	Muscle	DDT	o,p-DDE	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	DDT	p,p-DDE	0.8	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 28	0.03	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 44	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 49	0.02	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 52	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 66	0.02	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 74	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 99	0.05	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 105	0.02	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 110	0.03	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 118	0.03	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 128	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 138	0.06	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 149	0.03	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 153/168	0.09	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 156	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 180	0.09	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 183	0.01	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 187	0.04	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 194	0.02	ppb
RF2	3	Mixed Rockfish	Muscle	PCB	PCB 206	0.06	ppb

Table	E.9 con	tinued				0.02 0.02 0.03 0.01 0.04 0.05 0.01 0.02 0.02 0.02 0.13 0.03 0.2 0.05 0.51 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.01 0.02 0.01 0.02 0.01 0.05 0.03 0.03 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.02 0.02 0.01 0.05 0.02		
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units	
RF3	1	California Scorpionfish	Muscle	DDT	p,p-DDE	1.47	ppb	
RF3	1	California Scorpionfish	Muscle	HCH	HCH, Alpha isomer	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 49	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 52	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 66	0.03	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 70	0.01	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 99	0.04	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 101	0.05	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 105	0.01	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 110	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 114	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 118	0.13	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 128	0.03	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 138	0.2	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 149	0.05	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 153/168	0.51	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 156	0.01	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 158	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 167	0.02	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 170	0.05	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 177	0.03	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 180	0.08	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 183	0.03	ppb	
RF3	1	California Scorpionfish		PCB	PCB 187	0.13	ppb	
RF3	1	California Scorpionfish		PCB	PCB 194	0.03	ppb	
RF3	1	California Scorpionfish	Muscle	PCB	PCB 206	0.06	ppb	
RF3	2	Mixed Rockfish	Muscle	DDT	p,p-DDE	0.58	ppb	
RF3	2	Mixed Rockfish	Muscle	DDT	p,-p-DDMU	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 49	0.02	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 52	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 99	0.02	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 101	0.02	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 105	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 118	0.05	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 128	0.02	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 138	0.05	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 149	0.02	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 153/168	0.1	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 156	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 180	0.04	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 183	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 187	0.04	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 189	0.01	ppb	
RF3	2	Mixed Rockfish	Muscle	PCB	PCB 206	0.05	ppb	
RF3	3	Mixed Rockfish	Muscle	Chlordane	Oxychlordane	0.07	ppb	

Table	E.9 con	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
RF3	3	Mixed Rockfish	Muscle	DDT	o,p-DDE	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	DDT	p,p-DDE	0.28	ppb
RF3	3	Mixed Rockfish	Muscle	HCH	HCH, Beta isomer	0.05	ppb
RF3	3	Mixed Rockfish	Muscle	HCH	HCH, Gamma isomer	0.02	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 52	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 66	0.02	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 70	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 101	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 110	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 118	0.03	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 138	0.02	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 149	0.01	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 153/168	0.06	ppb
RF3	3	Mixed Rockfish	Muscle	PCB	PCB 206	0.05	ppb
RF4	1	Treefish	Muscle	DDT	p,p-DDD	0.01	ppb
RF4	1	Treefish	Muscle	DDT	p,p-DDE	0.89	ppb
RF4	1	Treefish	Muscle	HCH	HCH, Alpha isomer	0.04	ppb
RF4	1	Treefish	Muscle	HCH	HCH, Beta isomer	0.06	ppb
RF4	1	Treefish	Muscle	PCB	PCB 28	0.03	ppb
RF4	1	Treefish	Muscle	PCB	PCB 66	0.02	ppb
RF4	1	Treefish	Muscle	PCB	PCB 99	0.01	ppb
RF4	1	Treefish	Muscle	PCB	PCB 151	0.01	ppb
RF4	1	Treefish	Muscle	PCB	PCB 153/168	0.03	ppb
RF4	1	Treefish	Muscle	PCB	PCB 18	0.05	ppb
RF4	1	Treefish	Muscle	PCB	PCB 206	0.04	ppb
RF4	2	Treefish	Muscle	DDT	o,p-DDD	0.01	ppb
RF4	2	Treefish	Muscle	DDT	o,p-DDE	0.01	ppb
RF4	2	Treefish	Muscle	DDT	p,p-DDE	0.33	ppb
RF4	2	Treefish	Muscle	DDT	p,-p-DDMU	0.01	ppb
RF4	2	Treefish	Muscle	DDT	p,p-DDT	0.01	ppb
RF4	2	Treefish	Muscle	PCB	PCB 44	0.005	ppb
RF4	2	Treefish	Muscle	PCB	PCB 52	0.01	ppb
RF4	2	Treefish	Muscle	PCB	PCB 66	0.02	ppb
RF4	2	Treefish	Muscle	PCB	PCB 74	0.005	ppb
RF4	2	Treefish	Muscle	PCB	PCB 87	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 99	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 101	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 110	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 118	0.035	ppb
RF4	2	Treefish	Muscle	PCB	PCB 128	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 138	0.035	ppb
RF4	2	Treefish	Muscle	PCB	PCB 149	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 153/168	0.07	ppb
RF4	2	Treefish	Muscle	PCB	PCB 156	0.01	ppb
RF4	2	Treefish	Muscle	PCB	PCB 158	0.005	ppb

Table	E.9 con	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
RF4	2	Treefish	Muscle	PCB	PCB 167	0.005	ppb
RF4	2	Treefish	Muscle	PCB	PCB 169	0.005	ppb
RF4	2	Treefish	Muscle	PCB	PCB 180	0.015	ppb
RF4	2	Treefish	Muscle	PCB	PCB 183	0.005	ppb
RF4	2	Treefish	Muscle	PCB	PCB 187	0.01	ppb
RF4	2	Treefish	Muscle	PCB	PCB 194	0.01	ppb
RF4	2	Treefish	Muscle	PCB	PCB 206	0.05	ppb
RF4	3	Starry Rockfish	Muscle	DDT	o,p-DDE	0.01	ppb
RF4	3	Starry Rockfish	Muscle	DDT	p,p-DDD	0.02	ppb
RF4	3	Starry Rockfish	Muscle	DDT	p,p-DDE	0.42	ppb
RF4	3	Starry Rockfish	Muscle	HCH	HCH, Beta isomer	0.07	ppb
RF4	3	Starry Rockfish	Muscle	HCH	HCH, Delta isomer	0.07	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 37	0.02	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 66	0.04	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 99	0.03	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 118	0.03	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 157	0.01	ppb
RF4	3	Starry Rockfish	Muscle	PCB	PCB 206	0.04	ppb
TZ1	1	Pacific Sanddab	Liver	Chlordane	Oxychlordane	0.275	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	o,p-DDE	0.995	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	o,p-DDT	0.69	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	p,p-DDD	3.09	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	p,p-DDE	416.0	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	p,-p-DDMU	12.3	ppb
TZ1	1	Pacific Sanddab	Liver	DDT	p,p-DDT	3.43	ppb
TZ1	1	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.73	ppb
TZ1	1	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.56	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 28	1.32	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 44	0.48	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 49	1.69	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 52	1.43	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 66	5.01	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 70	1.85	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 74	1.52	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 87	1.59	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 99	13.5	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 101	7.14	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 105	9.52	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 110	4.1	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 118	25.2	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 128	12.5	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 138	34.7	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 149	4.24	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 151	0.96	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 153/168	50.0	ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 156	3.68	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 157	0.47	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 158	2.14	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 167	2.23	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 169	0.385	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 170	6.88	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 177	3.93	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 180	21.3	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 183	5.34	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 187	15.2	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 194	5.67	ppb
TZ1	1	Pacific Sanddab	Liver	PCB	PCB 206	5.75	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	o,p-DDE	1.69	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	o,p-DDT	0.57	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	p,p-DDD	2.56	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	p,p-DDE	401.0	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	p,-p-DDMU	13.1	ppb
TZ1	2	Pacific Sanddab	Liver	DDT	p,p-DDT	2.4	ppb
TZ1	2	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.34	ppb
TZ1	2	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.62	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 44	0.6	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 49	1.8	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 52	1.84	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 66	4.48	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 70	1.63	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 74	1.23	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 81	0.04	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 87	1.01	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 99	11.1	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 101	4.83	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 105	5.33	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 110	4.02	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 118	16.2	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 123	2.72	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 128	6.12	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 138	25.6	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 149	3.96	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 151	1.42	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 153/168	46.4	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 156	3.27	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 157	1.24	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 167	1.28	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 170	5.72	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 177	2.95	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 180	17.1	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 183	4.98	ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 187	13.7	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 189	0.26	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 194	5.81	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 201	1.43	ppb
TZ1	2	Pacific Sanddab	Liver	PCB	PCB 206	8.89	ppb
TZ1	3	Pacific Sanddab	Liver	Chlordane	Trans nonachlor	6.19	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	o,p-DDE	3.19	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	o,p-DDT	0.76	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	p,p-DDD	3.3	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	p,p-DDE	567.0	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	p,-p-DDMU	13.9	ppb
TZ1	3	Pacific Sanddab	Liver	DDT	p,p-DDT	3.35	ppb
TZ1	3	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.4	ppb
TZ1	3	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	0.88	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 44	0.87	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 49	2.24	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 52	3.42	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 66	6.28	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 70	2.37	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 74	1.85	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 99	18.2	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 101	8.0	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 105	8.02	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 110	6.6	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 118	25.9	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 119	1.1	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 123	4.11	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 128	11.6	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 138	45.6	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 149	6.33	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 151	3.23	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 153/168	79.9	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 156	4.74	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 157	1.32	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 158	2.69	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 167	2.88	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 170	8.37	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 177	3.72	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 180	27	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 183	8.32	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 187	24.1	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 194	9.0	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 201	3.34	ppb
TZ1	3	Pacific Sanddab	Liver	PCB	PCB 206	11.4	ppb
TZ2	1	Pacific Sanddab	Liver	Chlordane	Trans nonachlor	3.24	ppb

lable	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ2	1	Pacific Sanddab	Liver	DDT	o,p-DDE	1.02	ppb
TZ2	1	Pacific Sanddab	Liver	DDT	o,p-DDT	0.4	ppb
TZ2	1	Pacific Sanddab	Liver	DDT	p,p-DDD	1.62	ppb
TZ2	1	Pacific Sanddab	Liver	DDT	p,p-DDE	276.0	ppb
TZ2	1	Pacific Sanddab	Liver	DDT	p,-p-DDMU	14.6	ppb
TZ2	1	Pacific Sanddab	Liver	DDT	p,p-DDT	1.71	ppb
TZ2	1	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.35	ppb
TZ2	1	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	3.98	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 28	1.06	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 44	0.42	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 49	0.87	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 52	1.26	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 66	3.5	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 70	1.05	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 74	0.78	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 87	0.63	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 99	7.68	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 101	3.82	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 105	4.81	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 110	3.15	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 118	14.4	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 128	5.3	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 138	20.4	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 149	2.24	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 151	0.59	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 153/168	36.5	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 156	1.74	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 158	1.27	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 167	1.19	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 169	1.17	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 170	4.45	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 177	1.26	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 180	11.1	
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 183	4.28	ppb
TZ2	1	Pacific Sanddab	Liver	PCB	PCB 183	9.08	ppb
		Pacific Sanddab		PCB	PCB 187 PCB 194	2.8	ppb
TZ2 TZ2	1 1	Pacific Sanddab	Liver Liver	PCB	PCB 194 PCB 206	2.0 3.14	ppb ppb
			21101		1 00 200	0.111	660
TZ2	2	Pacific Sanddab	Liver	Chlordane	Trans nonachlor	2.15	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	o,p-DDE	1.42	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	o,p-DDT	0.52	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	p,p-DDD	2	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	p,p-DDE	294.0	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	p,-p-DDMU	11.1	ppb
TZ2	2	Pacific Sanddab	Liver	DDT	p,p-DDT	1.75	ppb
TZ2	2	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.1	ppb
TZ2	2	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	2.12	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Valuo	Units
	-	•					
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 28	1.01	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 44	0.4	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 49	1.23	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 52	1.01	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 66	3.35	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 70	1.11	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 74	1.0	ppb
TZ2	2	Pacific Sanddab	Liver	HCH	PCB 77	0.45	ppb
TZ2	2	Pacific Sanddab	Liver	HCH	PCB 99	6.35	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 101	2.64	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 105	3.7	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 110	2.38	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 118	11.0	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 119	0.45	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 123	1.7	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 128	3.47	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 138	16.3	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 149	2.66	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 151	0.83	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 153/168	29.1	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 156	1.74	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 157	0.51	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 158	0.86	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 167	1.02	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 170	4.63	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 177	1.94	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 180	9.88	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 183	2.11	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 187	7.84	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 194	3.57	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 201	0.28	ppb
TZ2	2	Pacific Sanddab	Liver	PCB	PCB 206	3.18	ppb
TZ2	3	Pacific Sanddab	Liver	DDT	o,p-DDE	0.73	ppb
TZ2	3	Pacific Sanddab	Liver	DDT	p,p-DDD	2.52	ppb
TZ2	3	Pacific Sanddab	Liver	DDT	p,p-DDE	386.0	ppb
TZ2	3	Pacific Sanddab	Liver	DDT	p,-p-DDMU	12.7	ppb
TZ2	3	Pacific Sanddab	Liver	DDT	p,p-DDT	1.73	ppb
TZ2	3	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.03	ppb
TZ2	3	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	2.8	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 28	1.25	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 44	0.42	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 49	1.24	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 52	1.2	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 66	4.07	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 70	1.03	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 74	1.14	ppb

Table	E.9 con	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 77	0.39	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 99	7.72	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 101	3.97	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 105	5.78	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 110	2.59	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 118	14.6	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 123	2.23	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 128	5.03	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 138	24.2	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 149	3.02	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 151	1.19	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 153/168	40.7	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 156	2.61	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 157	0.59	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 158	1.34	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 167	1.59	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 170	5.98	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 177	2.8	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 180	14.7	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 183	4.05	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 187	11.5	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 194	4.66	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 201	0.64	ppb
TZ2	3	Pacific Sanddab	Liver	PCB	PCB 206	4.05	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	o,p-DDE	1.41	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	o,p-DDT	0.14	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	p,p-DDD	1.62	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	p,p-DDE	330.0	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	p,-p-DDMU	9.99	ppb
TZ3	1	Pacific Sanddab	Liver	DDT	p,p-DDT	1.97	ppb
TZ3	1	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.45	ppb
TZ3	1	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	0.81	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 28	1.31	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 44	0.77	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 49	3.65	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 52	3.6	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 66	4.13	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 70	2.08	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 74	1.32	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 77	0.26	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 87	1.36	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 99	14.0	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 101	6.26	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 105	5.74	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 110	5.19	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 118	18.4	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
	· · · ·	Pacific Sanddab		PCB			
TZ3	1	Pacific Sanddab	Liver Liver	PCB PCB	PCB 123 PCB 128	2.31	ppb
TZ3 TZ3	1	Pacific Sanddab		PCB	PCB 120 PCB 138	4.97	ppb
	1	Pacific Sanddab	Liver Liver	PCB	PCB 130 PCB 149	29.5	ppb
TZ3	1	Pacific Sanddab		PCB	PCB 149 PCB 151	3.23	ppb
TZ3	1	Pacific Sanddab	Liver Liver	PCB PCB	PCB 151 PCB 153/168	0.68	ppb
TZ3 TZ3	1 1	Pacific Sanddab	Liver	PCB PCB	PCB 153/100 PCB 156	43.7 3.11	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 150 PCB 157	0.56	ppb
		Pacific Sanddab		PCB	PCB 157 PCB 158		ppb
TZ3	1		Liver			2.09	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 167	1.57	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 170	5.98	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 177	4.0	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 180	19.4	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 183	5.66	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 187	16.8	ppb
TZ3	1	Pacific Sanddab Pacific Sanddab	Liver	PCB	PCB 194	6.52	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 201	2.52	ppb
TZ3	1	Pacific Sanddab	Liver	PCB	PCB 206	6.35	ppb
TZ3	2	Pacific Sanddab	Liver	Chlordane	Oxychlordane	0.89	ppb
TZ3	2	Pacific Sanddab	Liver	Chlordane	Trans nonachlor	2.61	ppb
TZ3	2	Pacific Sanddab	Liver	DDT	o,p-DDE	2.42	ppb
TZ3	2	Pacific Sanddab	Liver	DDT	p,p-DDD	2.4	ppb
TZ3	2	Pacific Sanddab	Liver	DDT	p,p-DDE	369.0	ppb
TZ3	2	Pacific Sanddab	Liver	DDT	p,-p-DDMU	11.7	ppb
TZ3	2	Pacific Sanddab	Liver	DDT	p,p-DDT	2.45	ppb
TZ3	2	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.11	ppb
TZ3	2	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.36	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 28	1.58	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 44	0.71	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 49	2.69	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 52	3.56	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 66	4.21	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 70	1.75	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 74	1.56	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 87	1.5	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 99	11.7	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 101	5.25	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 105	3.94	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 110	3.65	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 118	17.1	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 123	2.5	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 128	9.41	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 138	26.1	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 149	3.7	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 151	1.2	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 153/168	34.3	ppb

Table	E.9 con	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 156	2.64	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 157	0.5	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 158	1.58	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 167	1.5	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 170	5.13	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 177	3.45	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 18	0.03	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 180	16.4	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 183	4.01	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 187	17.6	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 194	4.46	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 201	1.17	ppb
TZ3	2	Pacific Sanddab	Liver	PCB	PCB 206	5.26	ppb
TZ3	3	Pacific Sanddab	Liver	Chlordane	Oxychlordane	1.75	ppb
TZ3	3	Pacific Sanddab	Liver	Chlordane	Trans nonachlor	6.45	ppb
TZ3	3	Pacific Sanddab	Liver	DDT	o,p-DDE	1.21	ppb
TZ3	3	Pacific Sanddab	Liver	DDT	p,p-DDD	1.84	ppb
TZ3	3	Pacific Sanddab	Liver	DDT	p,p-DDE	373.0	ppb
TZ3	3	Pacific Sanddab	Liver	DDT	p,-p-DDMU	11.1	ppb
TZ3	3	Pacific Sanddab	Liver	DDT	p,p-DDT	2.18	ppb
TZ3	3	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.44	ppb
TZ3	3	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	2.55	ppb
TZ3	3	Pacific Sanddab	Liver	HCH	HCH, Gamma isomer	0.45	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 28	1.29	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 44	0.9	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 49	2.25	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 52	1.41	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 66	5.42	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 70	1.94	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 74	1.69	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 87	1.46	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 99	16.2	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 101	9.24	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 105	8.5	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 110	7.24	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 118	26.1	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 123	3.72	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 128	12.6	
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 138	36.2	ppb ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 149	5.52	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 151	0.58	
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 151 PCB 153/168	55.8	ppb ppb
TZ3	3	Pacific Sanddab		PCB			ppb
			Liver		PCB 156	3.57	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 157	0.96	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 158	2.5	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 167	2.42	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 170	7.44	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 177	4.45	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 180	20.5	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 183	6.5	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 187	14.0	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 189	0.31	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 194	6.43	ppb
TZ3	3	Pacific Sanddab	Liver	PCB	PCB 206	7.99	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	o,p-DDE	0.85	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	o,p-DDT	0.61	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	p,p-DDD	1.72	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	p,p-DDE	263.0	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	p,-p-DDMU	7.09	ppb
TZ4	1	Pacific Sanddab	Liver	DDT	p,p-DDT	2.68	ppb
TZ4	1	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	1.82	ppb
TZ4	1	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.54	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 28	0.98	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 44	0.62	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 49	1.25	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 52	2.51	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 66	4.55	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 70	1.77	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 74	2.12	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 87	1.8	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 99	12.8	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 101	6.26	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 105	11.1	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 110	4.51	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 114	0.79	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 118	34.2	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 123	3.0	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 128	13.4	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 138	39.2	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 149	4.68	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 151	1.69	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 153/168	58.7	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 156	5.52	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 157	1.44	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 158	3.05	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 167	3.01	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 169	1.65	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 170	7.01	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 177	3.54	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 180	22.2	ppb
TZ4	1	Pacific Sanddab	Liver	PCB	PCB 183	8.2	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
		-		PCB	PCB 187		
TZ4 TZ4	1	Pacific Sanddab Pacific Sanddab	Liver Liver	PCB	PCB 187 PCB 194	19.3 6.82	ppb
TZ4 TZ4	1 1	Pacific Sanddab	Liver	PCB	PCB 194 PCB 206	0.02 7.14	ppb
124	I	Facilic Sanudab	LIVEI	FCD	FCB 200	7.14	ppb
TZ4	2	Pacific Sanddab	Liver	DDT	o,p-DDE	1.71	ppb
TZ4	2	Pacific Sanddab	Liver	DDT	o,p-DDT	0.25	ppb
TZ4	2	Pacific Sanddab	Liver	DDT	p,p-DDE	293.0	ppb
TZ4	2	Pacific Sanddab	Liver	DDT	p,-p-DDMU	10.5	ppb
TZ4	2	Pacific Sanddab	Liver	DDT	p,p-DDT	2.62	ppb
TZ4	2	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	0.96	ppb
TZ4	2	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.38	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 28	1.07	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 44	0.57	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 49	1.3	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 52	1.83	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 66	3.56	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 70	1.26	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 74	1.42	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 87	0.97	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 99	13.3	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 101	6.1	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 105	5.85	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 110	3.4	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 118	18.4	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 123	2.34	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 128	9.46	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 138	25.5	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 149	3.51	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 151	1.27	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 153/168	39.6	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 156	2.24	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 157	0.87	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 158	1.65	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 167	1.62	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 170	6.33	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 177	1.25	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 180	15.9	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 183	5.26	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 187	14.1	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 194	4.71	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 201	1.55	ppb
TZ4	2	Pacific Sanddab	Liver	PCB	PCB 206	4.71	ppb
TZ4	3	Pacific Sanddab	Liver	Chlordane	Oxychlordane	1.73	ppb
TZ4	3	Pacific Sanddab	Liver	DDT	o,p-DDE	1.04	ppb
TZ4	3	Pacific Sanddab	Liver	DDT	p,p-DDD	1.07	ppb
TZ4	3	Pacific Sanddab	Liver	DDT	p,p-DDE	290.0	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ4	3	Pacific Sanddab	Liver	DDT	p,-p-DDMU	11.5	ppb
TZ4	3	Pacific Sanddab	Liver	DDT	p,p-DDT	1.66	ppb
TZ4	3	Pacific Sanddab	Liver	HCH	HCH, Alpha isomer	0.2	ppb
TZ4	3	Pacific Sanddab	Liver	HCH	HCH, Beta isomer	1.8	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 28	1.09	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 49	1.65	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 52	1.63	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 66	4.13	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 70	1.67	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 74	1.24	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 87	1.06	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 99	12.5	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 101	6.56	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 105	6.81	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 110	3.91	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 114	0.17	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 118	20.1	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 119	1.14	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 128	11.2	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 138	25.4	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 149	3.28	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 151	1.57	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 153/168	41.3	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 156	2.84	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 158	1.84	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 167	1.71	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 170	6.32	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 177	3.87	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 180	20.8	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 183	5.5	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 187	15.8	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 189	0.14	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 194	6.32	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 201	1.37	ppb
TZ4	3	Pacific Sanddab	Liver	PCB	PCB 206	6.72	ppb
TZ5	1	Fantail Sole	Liver	DDT	o,p-DDE	0.22	ppb
TZ5	1	Fantail Sole	Liver	DDT	p,p-DDD	0.59	ppb
TZ5	1	Fantail Sole	Liver	DDT	p,p-DDE	47.8	ppb
TZ5	1	Fantail Sole	Liver	DDT	p,-p-DDMU	1.7	ppb
TZ5	1	Fantail Sole	Liver	DDT	p,p-DDT	0.42	ppb
TZ5	1	Fantail Sole	Liver	HCH	HCH, Beta isomer	1.74	ppb
TZ5	1	Fantail Sole	Liver	HCH	HCH, Gamma isomer	0.38	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 28	0.22	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 44	0.18	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 49	0.29	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 52	0.39	ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ5	1	Fantail Sole	Liver	PCB	PCB 66	1.0	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 70	0.36	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 74	0.27	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 87	0.18	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 99	3.04	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 101	1.26	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 105	1.26	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 110	0.37	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 118	4.83	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 128	1.05	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 138	5.1	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 149	0.84	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 151	0.24	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 153/168	10.3	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 156	0.91	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 158	0.51	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 167	0.52	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 170	1.13	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 177	0.37	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 180	3.1	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 183	0.6	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 187	2.76	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 194	0.95	ppb
TZ5	1	Fantail Sole	Liver	PCB	PCB 206	2.08	ppb
TZ5	2	Hornyhead Turbot	Liver	DDT	o,p-DDD	0.14	ppb
TZ5	2	Hornyhead Turbot	Liver	DDT	o,p-DDE	0.66	ppb
TZ5	2	Hornyhead Turbot	Liver	DDT	p,p-DDD	0.72	ppb
TZ5	2	Hornyhead Turbot	Liver	DDT	p,p-DDE	50.2	ppb
TZ5	2	Hornyhead Turbot	Liver	DDT	p,-p-DDMU	1.81	ppb
TZ5	2	Hornyhead Turbot	Liver	HCH	HCH, Alpha isomer	0.29	ppb
TZ5	2	Hornyhead Turbot	Liver	HCH	HCH, Beta isomer	0.52	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 49	0.41	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 52	0.36	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 66	0.55	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 70	0.32	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 77	0.11	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 99	1.23	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 101	1.16	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 105	0.34	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 118	1.97	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 128	0.41	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 138	2.77	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 149	1.07	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 151	0.63	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 153/168	7.48	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 156	0.39	ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 167	0.2	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 170	0.89	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 177	0.76	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 180	1.78	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 183	0.74	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 187	2.25	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 194	0.85	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 201	0.18	ppb
TZ5	2	Hornyhead Turbot	Liver	PCB	PCB 206	1.26	ppb
TZ5	3	Longfin Sanddab	Liver	Chlordane	Oxychlordane	0.255	ppb
TZ5	3	Longfin Sanddab	Liver	Chlordane	Trans nonachlor	3.88	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	o,p-DDD	0.96	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	o,p-DDE	4.76	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	o,p-DDT	0.425	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	p,p-DDD	4.0	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	p,p-DDE	415.0	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	p,-p-DDMU	11.2	ppb
TZ5	3	Longfin Sanddab	Liver	DDT	p,p-DDT	3.34	ppb
TZ5	3	Longfin Sanddab	Liver	НСН	HCH, Alpha isomer	0.7	ppb
TZ5	3	Longfin Sanddab	Liver	НСН	HCH, Beta isomer	1.56	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 28	0.895	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 44	0.17	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 49	1.17	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 52	1.3	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 66	3.12	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 70	0.66	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 74	1.17	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 87	0.745	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 99	12.3	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 101	4.79	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 105	4.59	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 110	2.18	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 118	17.2	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 119	0.27	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 123	2.52	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 128	5.1	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 138	29.9	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 149	5.07	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 151	2.09	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 153/168	60.7	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 156	2.73	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 157	0.84	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 158	1.85	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 167	1.85	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 169	1.27	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 170	7.55	ppb

	E.9 cont						
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 177	4.4	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 180	20.3	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 183	5.85	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 187	21.9	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 189	0.38	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 194	7.98	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 201	1.0	ppb
TZ5	3	Longfin Sanddab	Liver	PCB	PCB 206	5.72	ppb
TZ6	1	Longfin Sanddab	Liver	Chlordane	Cis nonachlor	0.41	ppb
TZ6	1	Longfin Sanddab	Liver	Chlordane	Trans nonachlor	6.67	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	o,p-DDD	0.95	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	o,p-DDE	6.55	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	o,p-DDT	0.66	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	p,p-DDD	5.75	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	p,p-DDE	806.0	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	p,-p-DDMU	15.5	ppb
TZ6	1	Longfin Sanddab	Liver	DDT	p,p-DDT	3.32	ppb
TZ6	1	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.81	ppb
TZ6	1	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.83	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 28	1.63	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 44	0.43	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 49	1.35	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 52	1.94	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 66	5.31	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 70	0.84	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 74	1.71	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 87	1.36	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 99	18.5	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 101	8.64	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 105	7.47	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 110	3.72	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 118	28	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 119	0.53	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 123	3.59	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 128	7.56	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 138	47.9	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 149	9.67	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 151	4.7	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 153/168	95.5	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 156	4.26	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 157	0.98	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 158	2.44	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 167	2.95	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 170	11.2	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 177	6.5	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 180	30.8	ppb

Table	E.9 con	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 183	7.25	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 187	31.1	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 189	0.55	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 194	9.81	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 201	0.76	ppb
TZ6	1	Longfin Sanddab	Liver	PCB	PCB 206	7.05	ppb
TZ6	2	Longfin Sanddab	Liver	Chlordane	Alpha (cis) chlorodane	0.93	ppb
TZ6	2	Longfin Sanddab	Liver	Chlordane	Trans nonachlor	3.3	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	o,p-DDD	1.08	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	o,p-DDE	5.57	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	o,p-DDT	0.48	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	p,p-DDD	5.53	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	p,p-DDE	562.0	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	p,-p-DDMU	11.2	ppb
TZ6	2	Longfin Sanddab	Liver	DDT	p,p-DDT	3.45	ppb
TZ6	2	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.7	ppb
TZ6	2	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.94	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 28	1.51	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 37	0.5	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 44	0.51	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 49	1.25	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 52	2.02	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 66	3.99	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 70	0.93	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 74	1.73	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 87	0.86	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 99	15.4	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 101	6.76	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 105	5.45	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 110	3.39	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 118	21.1	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 119	0.92	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 123	3.43	
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 126	0.51	ppb
	2	•	Liver	PCB	PCB 128	6.18	ppb
TZ6		Longfin Sanddab			PCB 128		ppb
TZ6	2	Longfin Sanddab	Liver	PCB		35.3	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 149	8.12	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 151	4.27	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 153/168	75.5	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 156	3.45	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 158	2.29	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 167	2.59	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 170	8.95	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 177	6.18	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 180	19.9	ppb

	E.9 cont						
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 183	6.36	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 187	25.1	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 189	0.61	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 194	6.78	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 201	0.82	ppb
TZ6	2	Longfin Sanddab	Liver	PCB	PCB 206	4.94	ppb
TZ6	3	Longfin Sanddab	Liver	Chlordane	Cis nonachlor	2.67	ppb
TZ6	3	Longfin Sanddab	Liver	Chlordane	Trans nonachlor	7.09	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	o,p-DDD	1.59	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	o,p-DDE	7.21	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	p,p-DDD	7.28	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	p,p-DDE	894.0	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	p,-p-DDMU	16.8	ppb
TZ6	3	Longfin Sanddab	Liver	DDT	p,p-DDT	4.96	ppb
TZ6	3	Longfin Sanddab	Liver	Endosulfan	Endosulfan Sulfate	0.19	ppb
TZ6	3	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.88	ppb
TZ6	3	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.97	ppb
TZ6	3	Longfin Sanddab	Liver	HCH	HCH, Gamma isomer	0.89	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 28	1.6	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 44	0.45	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 49	1.43	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 52	2.6	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 66	5.8	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 70	0.87	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 74	2.2	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 87	1.14	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 99	25.1	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 101	8.9	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 105	11.1	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 110	4.25	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 118	41.2	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 119	0.93	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 123	5.35	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 128	10.3	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 138	60.7	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 149	9.32	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 151	6.0	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 153/168	118.0	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 156	6.52	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 157	1.82	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 158	4.3	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 167	4.3	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 170	16.4	
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 177	9.41	ppb
TZ6	3	•		PCB	PCB 180	9.41 37.5	ppb
TZ6	3	Longfin Sanddab Longfin Sanddab	Liver	РСВ	PCB 183	37.5 11.9	ppb
120	5		Liver	FUD	1 00 103	11.9	ppb

	E.9 cont	mucu					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 187	39.7	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 189	0.66	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 194	11.9	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 201	1.23	ppb
TZ6	3	Longfin Sanddab	Liver	PCB	PCB 206	8.31	ppb
TZ7	1	Longfin Sanddab	Liver	Chlordane	Heptachlor	0.47	ppb
TZ7	1	Longfin Sanddab	Liver	Chlordane	Oxychlordane	0.54	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	o,p-DDD	0.65	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	o,p-DDE	4.56	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	o,p-DDT	0.51	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	p,p-DDD	3.83	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	p,p-DDE	387.0	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	p,-p-DDMU	10.3	ppb
TZ7	1	Longfin Sanddab	Liver	DDT	p,p-DDT	3.1	ppb
TZ7	1	Longfin Sanddab	Liver	Endosulfan	Endosulfan Sulfate	0.08	ppb
TZ7	1	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.96	ppb
TZ7	1	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	2.16	ppb
TZ7	1	Longfin Sanddab	Liver	HCH	HCH, Delta isomer	0.48	ppb
TZ7	1	Longfin Sanddab	Liver	HCH	HCH, Gamma isomer	1.25	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 28	1.79	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 44	0.55	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 49	2.06	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 52	3.32	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 66	5.63	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 70	1.23	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 74	1.99	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 87	1.52	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 99	19.4	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 101	8.97	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 105	7.42	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 110	4.35	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 118	30.6	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 123	3.79	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 128	8.75	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 138	46.1	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 149	8.72	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 151	4.26	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 153/168	89.5	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 156	4.34	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 157	1.17	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 158	2.73	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 167	3.17	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 170	11.0	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 177	6.76	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 18	0.27	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 180	27.7	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
	-	•					
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 183	9.45	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 187	32.1	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 189	0.53	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 194	10.5	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 201	1.3	ppb
TZ7	1	Longfin Sanddab	Liver	PCB	PCB 206	8.26	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	o,p-DDD	0.94	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	o,p-DDE	3.82	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	o,p-DDT	0.41	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	p,p-DDD	3.45	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	p,p-DDE	424.0	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	p,-p-DDMU	9.25	ppb
TZ7	2	Longfin Sanddab	Liver	DDT	p,p-DDT	3.71	ppb
TZ7	2	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.8	ppb
TZ7	2	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.81	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 28	1.94	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 37	0.34	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 44	0.61	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 49	2.23	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 52	2.63	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 66	5.61	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 70	1.4	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 74	2.4	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 87	1.25	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 99	21.0	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 101	8.84	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 105	7.09	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 110	4.32	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 118	30.3	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 123	3.72	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 128	10.4	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 138	60.1	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 149	10.1	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 151	3.85	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 153/168	120.0	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 156	5.3	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 157	1.75	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 158	3.71	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 167	3.66	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 170	13.8	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 177	5.84	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 18	0.35	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 180	35.9	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 183	10.3	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 187	30.2	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 189	0.71	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ7	2	-	Liver	PCB	PCB 194		
TZ7	2	Longfin Sanddab Longfin Sanddab	Liver	PCB	PCB 194 PCB 201	12.5 1.27	ppb
TZ7	2	Longfin Sanddab	Liver	PCB	PCB 206	9.18	ppb
121	2	Longin Sanddab	LIVEI	FCB	FCB 200	9.10	ppb
TZ7	3	Longfin Sanddab	Liver	DDT	o,p-DDE	2.56	ppb
TZ7	3	Longfin Sanddab	Liver	DDT	p,p-DDD	5.44	ppb
TZ7	3	Longfin Sanddab	Liver	DDT	p,p-DDE	394.0	ppb
TZ7	3	Longfin Sanddab	Liver	DDT	p,-p-DDMU	13.0	ppb
TZ7	3	Longfin Sanddab	Liver	DDT	p,p-DDT	2.28	ppb
TZ7	3	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.8	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 28	1.58	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 44	0.54	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 49	2.52	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 52	3.2	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 66	5.92	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 70	1.61	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 74	2.2	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 87	1.48	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 99	22.3	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 101	9.41	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 105	7.24	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 110	5.55	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 118	27.1	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 119	0.95	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 123	3.4	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 128	8.59	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 138	45.3	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 149	8.31	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 151	4.36	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 153/168	85.2	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 156	4.08	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 157	1.39	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 158	2.73	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 167	2.67	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 170	8.84	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 177	5.21	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 18	0.21	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 180	23.9	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 183	6.72	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 187	26.8	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 189	0.41	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 194	9.15	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 201	1.0	ppb
TZ7	3	Longfin Sanddab	Liver	PCB	PCB 206	7	ppb
TZ8	1	Longfin Sanddab	Liver	Chlordane	Gamma (trans) chlordane	0.33	ppb
TZ8	1	Longfin Sanddab	Liver	Chlordane	Heptachlor epoxide	0.27	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ8	1	Longfin Sanddab	Liver	Chlordane	Oxychlordane	1.05	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	o,p-DDD	1.13	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	o,p-DDE	6.63	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	o,p-DDT	0.9	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	p,p-DDD	5.39	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	p,p-DDE	641.0	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	p,-p-DDMU	12.4	ppb
TZ8	1	Longfin Sanddab	Liver	DDT	p,p-DDT	4.21	ppb
TZ8	1	Longfin Sanddab	Liver	НСН	HCH, Alpha isomer	1.2	ppb
TZ8	1	Longfin Sanddab	Liver	НСН	HCH, Beta isomer	1.88	ppb
TZ8	1	Longfin Sanddab	Liver	НСН	HCH, Delta isomer	0.82	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 28	1.46	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 37	0.46	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 44	0.58	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 49	1.29	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 52	2.3	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 66	5.04	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 70	1.02	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 74	1.95	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 77	0.83	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 87	1.01	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 99	19.2	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 101	6.1	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 105	8.62	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 110	2.84	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 118	29.1	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 123	4.16	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 126	0.56	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 128	10.2	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 138	48.5	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 149	7.7	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 151	3.86	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 153/168	95.0	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 156	5.51	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 157	2.16	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 158	2.72	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 167	3.53	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 170	12.6	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 177	7.38	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 18	0.24	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 180	32.2	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 183	9.57	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 187	36.1	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 189	0.87	ppb
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 194	15.1	ppt
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 201	2.13	ppt

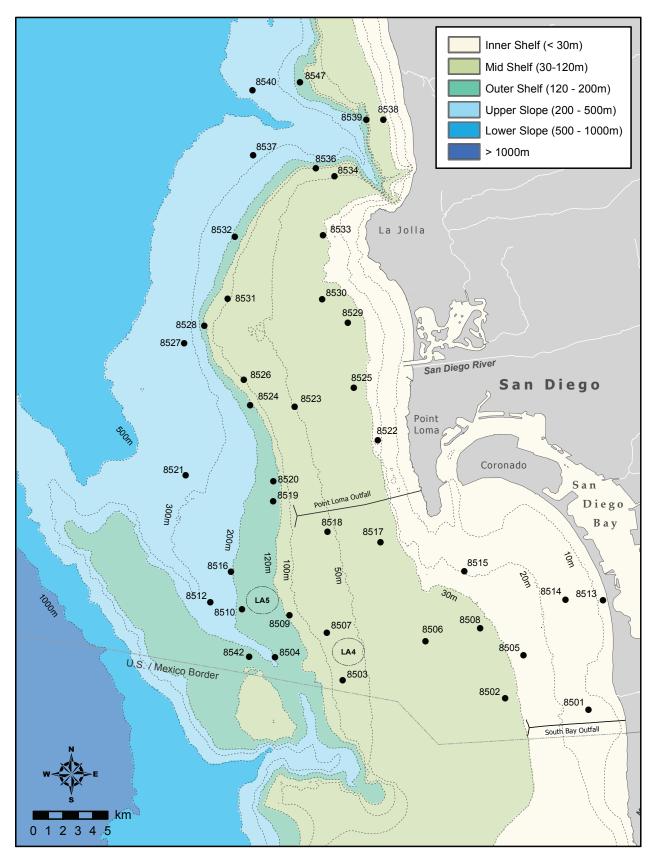
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ8	1	Longfin Sanddab	Liver	PCB	PCB 206	14.6	ppb
TZ8	2	Longfin Sanddab	Liver	Chlordane	Alpha (cis) chlordane	0.92	ppb
TZ8	2	Longfin Sanddab	Liver	Chlordane	Trans nonachlor	4.5	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	o,p-DDD	0.715	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	o,p-DDE	7.22	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	o,p-DDT	0.935	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	p,p-DDD	5.1	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	p,p-DDE	503.0	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	p,-p-DDMU	13.7	ppb
TZ8	2	Longfin Sanddab	Liver	DDT	p,p-DDT	5.9	ppb
TZ8	2	Longfin Sanddab	Liver	HCH	HCH, Alpha isomer	0.91	ppb
TZ8	2	Longfin Sanddab	Liver	HCH	HCH, Beta isomer	1.69	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 28	1.16	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 44	0.43	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 49	1.25	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 52	1.57	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 66	4.29	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 70	0.825	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 74	1.54	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 87	0.875	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 99	16.1	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 101	5.78	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 105	7.56	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 110	2.97	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 118	24.2	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 119	0.21	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 123	3.63	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 128	8.55	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 138	43.5	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 149	6.54	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 151	3.81	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 153/168	83.5	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 156	3.95	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 157	0.45	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 158	2.22	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 167	2.86	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 169	1.29	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 170	9.92	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 177	5.67	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 180	24.5	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 183	7.55	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 187	28.2	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 189	0.43	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 194	8.84	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 201	1.08	ppb
TZ8	2	Longfin Sanddab	Liver	PCB	PCB 206	6.67	ppb

Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ8	3	Fantail Sole	Liver	DDT	o,p-DDE	0.23	ppb
TZ8	3	Fantail Sole	Liver	DDT	p,p-DDE	15.9	ppb
TZ8	3	Fantail Sole	Liver	DDT	p,-p-DDMU	0.38	ppb
TZ8	3	Fantail Sole	Liver	HCB	Hexachlorobenzene	21.5	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 37	0.17	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 49	0.2	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 52	0.15	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 66	0.45	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 70	0.21	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 74	0.14	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 99	0.45	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 105	0.39	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 128	0.23	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 138	1.04	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 149	0.22	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 153/168	2.2	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 156	0.23	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 158	0.13	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 177	0.27	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 180	0.49	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 183	0.41	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 187	0.79	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 189	0.25	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 194	0.37	ppb
TZ8	3	Fantail Sole	Liver	PCB	PCB 206	0.96	ppb
TZ9	1	Fantail Sole	Liver	Chlordane	Trans nonachlor	0.48	ppb
TZ9	1	Fantail Sole	Liver	DDT	o,p-DDE	0.23	ppb
TZ9	1	Fantail Sole	Liver	DDT	p,p-DDD	0.75	ppb
TZ9	1	Fantail Sole	Liver	DDT	p,p-DDE	44.8	ppb
TZ9	1	Fantail Sole	Liver	DDT	p,-p-DDMU	1.27	ppb
TZ9	1	Fantail Sole	Liver	DDT	p,p-DDT	0.41	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 28	0.46	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 37	0.14	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 44	0.22	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 49	0.48	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 52	0.73	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 66	1.35	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 70	0.46	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 74	0.8	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 87	0.51	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 99	2.36	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 101	2.77	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 110	1.34	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 118	3.84	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 119	0.17	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 123	0.62	ppb

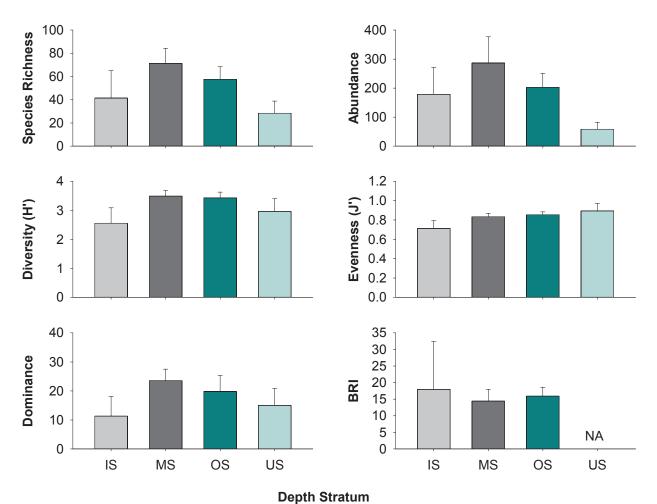
Table	E.9 cont	tinued					
Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ9	1	Fantail Sole	Liver	PCB	PCB 128	0.72	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 138	4.58	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 149	1.49	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 151	0.62	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 153/168	9.71	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 156	0.68	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 157	0.24	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 158	0.55	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 167	0.55	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 170	1.42	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 177	0.73	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 180	3.18	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 183	1.11	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 187	2.81	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 194	0.75	ppb
TZ9	1	Fantail Sole	Liver	PCB	PCB 206	0.7	ppb
TZ9	2	Spotted Turbot	Liver	Chlordane	Trans nonachlor	0.08	ppb
TZ9	2	Spotted Turbot	Liver	DDT	p,p-DDE	8.89	ppb
TZ9	2	Spotted Turbot	Liver	HCH	HCH, Alpha isomer	0.34	ppb
TZ9	2	Spotted Turbot	Liver	HCH	HCH, Beta isomer	0.5	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 44	0.11	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 49	0.34	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 52	0.29	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 66	0.24	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 70	0.11	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 74	0.15	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 87	0.09	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 99	0.68	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 101	0.74	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 105	0.18	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 110	0.21	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 118	1.16	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 128	0.32	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 138	2.45	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 149	0.44	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 151	0.19	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 153/168	4.86	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 156	0.17	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 170	0.65	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 177	0.05	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 180	1.5	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 183	0.43	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 187	0.93	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 194	0.55	ppb
TZ9	2	Spotted Turbot	Liver	PCB	PCB 206	0.73	ppb
TZ9	3	Hornyhead Turbot	Liver	DDT	o,p-DDD	0.14	ppb

Zone	Comp	Species	Tissue	Class	Constituent	Value	Units
TZ9	3	Hornyhead Turbot	Liver	DDT	o,p-DDE	0.78	ppb
TZ9	3	Hornyhead Turbot	Liver	DDT	p,p-DDD	0.49	ppb
TZ9	3	Hornyhead Turbot	Liver	DDT	p,p-DDE	24.4	ppb
TZ9	3	Hornyhead Turbot	Liver	DDT	p,-p-DDMU	0.49	ppb
TZ9	3	Hornyhead Turbot	Liver	DDT	p,p-DDT	0.32	ppb
TZ9	3	Hornyhead Turbot	Liver	HCH	HCH, Alpha isomer	0.41	ppb
TZ9	3	Hornyhead Turbot	Liver	HCH	HCH, Beta isomer	0.48	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 44	0.07	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 49	0.21	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 52	0.25	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 66	0.35	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 70	0.17	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 74	0.15	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 99	1.14	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 101	0.78	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 105	0.3	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 110	0.27	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 118	1.1	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 128	0.19	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 138	1.75	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 149	0.87	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 151	0.37	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 153/168	4.37	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 156	0.15	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 170	0.35	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 180	1.23	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 183	0.68	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 194	0.57	ppb
TZ9	3	Hornyhead Turbot	Liver	PCB	PCB 206	0.78	ppb

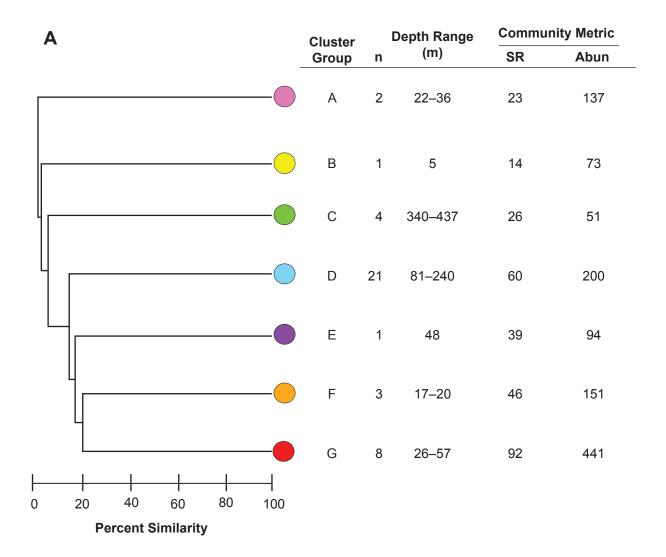
This page intentionally left blank

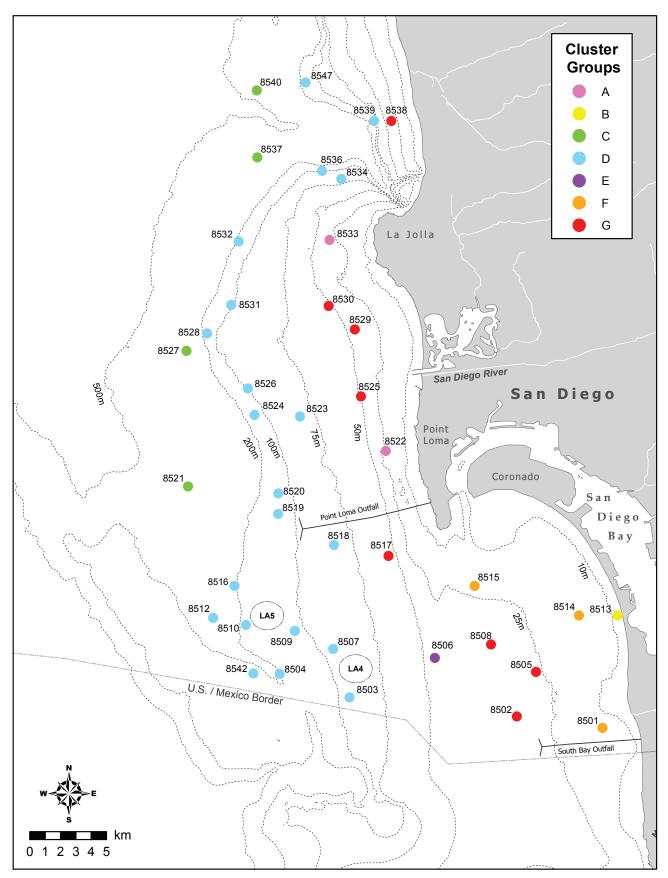

Appendix F

Chapter 6. San Dlego Regional Survey — Benthic Conditions


Figures & Tables

Appendix F


FIGURES


Randomly generated regional benthic survey stations sampled during July 2016 as part of the City of San Diego's Ocean Monitoring Program.

Comparison of macrofaunal community structure metrics for the four major depth strata sampled during the 2016 regional benthic survey off San Diego. Data are expressed as means + 95% confidence intervals per stratum; NA=not applicable, BRI not calculated for upper slope stations.

Results of cluster analysis of macrofaunal assemblages from San Diego regional benthic stations sampled during 2016. Data are presented as a dendrogram of main cluster groups with community metrics presented as mean values over all stations in each group (n). SR=species richness; Abun=abundance.

Spatial distribution of cluster groups in the San Diego region. Colors of each circle correspond to colors in Figure F.3.

Appendix F

TABLES

Summary of particle sizes and chemistry concentrations in sediments from San Diego regional benthic stations sampled during 2016. Data include detection rate (DR), minimum, maximum, and mean values for the entire survey area, as well as mean value by depth stratum; n=number of stations; nd = not detected.

						Depti	n Strata	
	2	2016 Su	rvey Area	а	Inner	Mid-	Outer	Upper
Parameters	DR (%)	Min	Мах	Mean	Shelf n=6	Shelf n=19	Shelf n=10	Slope n=5
Particle Size (%)								
Coarse particles	18	0.0	22.0	1.0	3.7	0.8	0.5	0.0
Med-coarse sands	100	0.1	84.4	10.9	20.3	13.2	6.5	0.1
Fine sands	100	1.8	89.9	49.0	66.7	52.1	44.7	24.7
Fines	100	2.2	87.3	39.0	9.4	34.0	48.2	75.2
Organic Indicators								
Sulfides (ppm)	100	0.20	31.90	7.50	2.05	5.71	8.37	19.11
TN (% weight)	93	nd	0.239	0.076	0.034	0.049	0.082	0.187
TOC (% weight)	98	nd	5.07	1.06	0.73	0.71	1.31	2.21
TVS (% weight)	100	0.40	9.20	2.81	0.71	1.96	3.31	7.42
Trace Metals (ppm)								
Aluminum	100	1940	27,500	10,123	4213	8417	11,580	20,780
Antimony	83	nd	4.1	1.7	nd	1.3	1.9	2.6
Arsenic	100	0.72	4.18	1.96	1.58	2.09	1.72	2.39
Barium	100	5.1	129.0	47.2	21.9	40.1	51.6	95.2
Beryllium	3	nd	0.31	0.31	nd	nd	0.31	nd
Cadmium	18	nd	0.60	0.25	nd	nd	0.34	0.19
Chromium	100	6.0	69.6	24.5	9.1	20.1	28.0	52.5
Copper	95	nd	31.8	8.5	1.3	5.9	10.2	22.2
Iron	100	4350	28,100	13,343	5477	12,189	15,444	22,960
Lead	100	1.3	534.0	17.6	2.0	3.8	58.5	6.8
Manganese	100	17.2	218.0	105.3	61.5	99.4	110.0	170.6
Mercury	88	nd	0.226	0.037	0.006	0.021	0.057	0.070
Nickel	100	1.0	20.5	7.2	2.0	5.1	9.0	18.2
Selenium	28	nd	0.87	0.53	nd	0.48	0.60	0.49
Silver	3	nd	1.70	1.70	nd	nd	1.70	nd
Tin	83	nd	81.8	3.4	0.6	0.7	9.2	1.5
Zinc	100	8.0	83.5	34.7	13.1	31.0	38.9	66.2
Pesticides (ppt)								
Total DDT	100	47	2164	728	116	652	922	1347
Total Chlordane	23	nd	258	144	nd	161	112	258
HCB	100	140	140	140	nd	nd	140	nd
Total PCB (ppt)	97	nd	24,314	1776	280	2493	1300	1646
Total PAH (ppb)	87	nd	365	62	27	46	78	95

^aMinimum and maximum values were calculated using all samples (n=40), whereas means were calculated on detected values only (n \leq 40)

Poppin Canses Particles Mod.Canses Sands Fune Sands Fune Sands Fune Sands Fune Sands Fune Sands Fune Sands	Table F.2 Summary of (i.e., particle: CS=Coarse	Table F.2Summary of particle size parameters (%) for each San Diego regional benthic station sampled during 2016. Visual(i.e., particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). GranCS=Coarse Sand; MS=Medium Sand; FS=Fine Sand; VFS=Very Fine Sand; CSi=Coarse Silt; MSi=Medium Silt;	icle size ained or d; MS=N	param 1-mr Aediur	eters (^c ո mesh າ Sand;	%) for e screer FS=Fi	ach Sε and ρ ne San	an Dieg breserv id; VFS	o regio ed with = Very	nal ber infaun Fine S	nthic sta la for b and; C\$	ation sa enthic (Si = Coa	mpled commu rse Silt	during nity an ; MSi=	2016. \ alysis). Mediun	/isual (Gran : Silt; F	bbserv = Gran =Si = F	Table F.2Summary of particle size parameters (%) for each San Diego regional benthic station sampled during 2016. Visual observations are from sieved "grunge"Summary of particle size parameters (%) for each San Diego regional benthic station sampled during 2016. Visual observations are from sieved "grunge"Summary of particle size parameters (%) for each San Diego regional benthic station sampled during 2016. Visual observations are from sieved "grunge"Summary of particles retained on 1-mm mesh screen and preserved with infauna for benthic community analysis). Gran=Granules; VCS=Very Coarse Sand;SS=Coarse Sand; MS=Medium Sand; FS=Fine Sand; VFS=Very Fine Sand; CSi=Coarse Silt; MSi=Medium Silt; FSi=Fine Silt; VFSi=Very Fine Silt.												
n (m) Gran VCS Total CS MS Total FS VTS Total CS MS Total CS MS Total CS MS Total CS MS Total Cal VFS Clay VFS VFS Clay VFS Clay VFS VFS Clay VFS Total VFS Total VFS Total VFS TS VFS Total VFS Total VFS VFS Total VFS <t< th=""><th></th><th>Depth</th><th>Coars</th><th>ie Part</th><th>icles</th><th>Med-C</th><th>oarse S</th><th>ands</th><th>Ē</th><th>le San</th><th>sp</th><th></th><th>Ē</th><th>ne Parl</th><th>icles</th><th></th><th></th><th></th></t<>		Depth	Coars	ie Part	icles	Med-C	oarse S	ands	Ē	le San	sp		Ē	ne Parl	icles															
Shelf 0.0 </th <th>Station</th> <th>(m)</th> <th>Gran</th> <th>VCS</th> <th>Total</th> <th>CS</th> <th>MS</th> <th>Total</th> <th>FS</th> <th></th> <th>Total</th> <th>CSi</th> <th>MSi</th> <th></th> <th></th> <th></th> <th>Fotal</th> <th>Visual Observations</th>	Station	(m)	Gran	VCS	Total	CS	MS	Total	FS		Total	CSi	MSi				Fotal	Visual Observations												
0 0								1 0					1																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8513	Ω	0.0	0.0	0.0	3.2	29.5	32.1	0.00	<u>ч</u> .ч	04.9	<u>.</u>	0.7	0.4	0.0	0.0	7	snell nasn												
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 11.0 15.5 285 86.0 0.8 0.0 1.0 1.1 0.0 2.2 22 7.0 15.0 22.0 52.7 21.6 7.3 1.6 0.2 1.8 2.2 0.0 1.0 1.1 0.0 2.9 25 0.0 0.0 0.0 0.0 0.0 1.1 1.6 0.2 1.8 2.2 0.3 17.5 35 0.0 0.0 0.0 0.0 0.0 1.6 1.6 1.5 5.7 5.8 6.9 1.7 1.8 1.7 1.75 35 0.0 0.0 0.0 0.0 1.6 1.6 1.5 5.7 5.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8	8501	17	0.0	0.0	0.0	0.0	1.9	1.9	17.1	59.1	76.2	15.8	1.7	2.4	1.9	0.1	21.9	shell hash												
20 0.0 0.0 0.1 11.0 11.1 57.5 28.5 86.0 0.8 0.0 1.1 0.0 2.2 22 7.0 15.0 22.0 52.7 21.6 74.3 1.6 0.2 1.8 2.2 0.3 17.5 25 0.0 0.0 0.0 0.0 0.0 1.4 1.4 2.2 0.3 1.7 1.8 2.2 0.3 1.75 1.8 2.2 0.3 1.75 1.8 2.2 0.3 1.75 1.8 2.2 0.3 1.75 1.8 2.2 0.3 1.75 1.8 2.8 3.7 1.75 2.8 2.8 5.9 3.3 1.7 2.8 2.8 2.7 0.3 1.75 3.78	8514	18	0.0	0.0	0.0	0.0	0.8	0.8	18.2	71.7	89.9	6.3	0.0	1.2	1.8	0.1	9.4													
22 7.0 15.0 22.0 52.7 21.6 74.3 1.6 0.2 1.8 2.2 - - - - - 2 1.6 0.7 1.8 2.2 0.3 17.5 25.helf . . 0.0 0.0 0.0 0.0 0.0 1.6 1.6 16.2 53.4 69.6 19.7 3.4 4.0 1.8 0.0 22.8 35 0.0 0.0 0.0 0.0 0.0 2.8 2.1.1 48.3 69.4 18.7 2.9 3.4 2.5 0.3 27.8 35 0.0 0.0 0.0 0.0 1.6 1.6 1.5 1.3 16.5 0.1 1.1 1.8 3.4 0.3 2.7 0.1 2.0 2.2 0.3 2.7 0.1 2.8 3.4 3.4 3.4 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	8515	20	0.0	0.0	0.0	0.1	11.0	11.1	57.5	28.5	86.0	0.8	0.0	1.0	1.1	0.0	2.9	shell hash, organic debris ^ª												
26 0.0	8522°	22	7.0	15.0	22.0	52.7	21.6	74.3	1.6	0.2	1.8	2.2		I		I	2.2	gravel, shell hash												
le Shelf le Shelf <th <="" colspan="12" td="" th<=""><td>8505</td><td>26</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.9</td><td>0.9</td><td>14.0</td><td>67.6</td><td>81.6</td><td>12.6</td><td>0.7</td><td>1.8</td><td>2.2</td><td>0.3</td><td>17.5</td><td>organic debris^ª</td></th>	<td>8505</td> <td>26</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.9</td> <td>0.9</td> <td>14.0</td> <td>67.6</td> <td>81.6</td> <td>12.6</td> <td>0.7</td> <td>1.8</td> <td>2.2</td> <td>0.3</td> <td>17.5</td> <td>organic debris^ª</td>												8505	26	0.0	0.0	0.0	0.0	0.9	0.9	14.0	67.6	81.6	12.6	0.7	1.8	2.2	0.3	17.5	organic debris ^ª
34 0.0	Middle S	shelf																												
35 0.0 0.0 0.0 0.0 0.0 2.8 21.1 48.3 69.4 18.7 2.9 34 2.5 0.3 27.3 36 0.0 10.5 10.5 25.6 44.8 70.4 15.2 1.3 16.5 0.0 0.4 1.2 0.5 0.0 2.4 45 0.0 0.0 0.0 0.0 0.0 0.8 16.1 55.0 71.1 15.8 38 5.7 2.7 0.1 28.4 48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 48.4 8.1 2.0 17.1 58 57 2.7 0.1 28.4 48 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 396 53.6 19.1 83 12.3 34.3 57 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 396<	8508	34	0.0	0.0	0.0	0.0	1.6	1.6	16.2	53.4	69.6	19.7	3.4	4.0	1.8	0.0	28.9	organic debris ^a												
36 0.0 10.5 10.5 25.6 44.8 70.4 15.2 1.3 16.5 0.0 0.4 1.2 0.5 0.0 23.4 37 0.0 0.0 0.0 0.0 0.0 3.1 3.1 20.6 47.8 68.4 18.3 4.0 3.9 2.1 0.1 28.4 45 0.0 0.0 0.0 0.0 0.16 1.6 1.6 5.0 71.1 15.8 5.7 2.7 0.1 28.4 48 0.0 0.0 0.0 0.0 1.6 1.6 1.8 4.1 5.1 5.7 0.1 28.4 5.7 2.7 0.1 28.4 57 0.0 0.0 0.0 0.0 1.4 1.4 1.4 3.6 64.3 17.1 5.8 5.7 3.7 3.4 3.4 57 0.0 0.0 0.0 0.0 0.0 1.4 1.4 17.5 5.8 4	8502	35	0.0	0.0	0.0	0.0	2.8	2.8	21.1	48.3	69.4	18.7	2.9	3.4	2.5	0.3	27.8	organic debris ^ª												
37 0.0	8533	36	0.0	10.5	10.5	25.6	44.8	70.4	15.2	1.3	16.5	0.0	0.4	1.2	0.5	0.0	2.2	shell hash												
	8538	37	0.0	0.0	0.0	0.0	3.1	3.1	20.6	47.8	68.4	18.3	4.0	3.9	2.1	0.1	28.4	surfgrass, organic debrisª												
480.02.92.935.049.484.48.12.010.10.90.4100.40.026480.00.00.00.01.61.618.749.768.416.44.16.13.20.230.0570.00.00.00.01.41.414.039.653.619.18.312.05.20.545.1570.00.00.00.01.41.417.546.864.317.15.87.83.30.334.3810.00.00.00.01.41.417.546.864.317.15.87.83.30.334.3870.00.00.00.00.10.10.16.18.441.65.667.45.20.758.6850.00.00.00.00.10.10.18.445.654.056.16.98.60.445.6850.00.00.00.00.18.445.654.026.16.70.835.5910.00.00.00.00.00.18.445.654.056.813.36.910.76.70.8910.00.00.00.00.00.00.18.445.654.056.813.36.910.670.435.792	8529	45	0.0	0.0	0.0	0.0	0.8	0.8	16.1	55.0	71.1	15.8	3.8	5.7	2.7	0.1	28.1	organic debris ^a												
48 0.0 0.0 0.0 0.0 1.6 1.8.7 49.7 68.4 16.4 4.1 6.1 3.2 0.2 30.0 57 0.0 0.0 0.0 1.4 1.4 14.0 39.6 53.6 19.1 8.3 12.0 5.2 0.5 45.1 57 0.0 0.0 0.0 1.4 1.4 1.4.7 54.6 64.3 17.1 5.8 7.8 3.3 0.3 3.4.3 81 0.0 0.0 0.0 0.0 0.1 1.4 1.4.7 54.6 64.3 17.1 5.8 7.8 3.3 0.3 3.4.3 85 0.0 0.0 0.0 0.0 0.1 0.1 8.4 45.6 54.0 52.8 17.3 53.3 13.3 53.3 53.4 85 0.0 0.0 0.0 0.0 0.0 0.1 1.4 1.4.5 56.8 13.3 10.5 67.7 13.3	8506	48	0.0	2.9	2.9	35.0	49.4	84.4	8.1	2.0	10.1	0.9	0.4	1.0	0.4	0.0	2.6	shell hash, organic debris												
520.00.00.01.41.414.039.653.619.18.312.05.20.545.1570.00.00.00.01.41.417.546.864.317.15.87.83.30.334.3810.00.00.00.00.11.417.546.864.317.15.87.83.30.334.3850.00.00.00.00.10.10.16.035.641.630.610.711.84.80.558.4850.00.00.00.00.10.18.445.654.026.16.9864.00.445.9910.00.00.00.00.10.18.445.654.026.16.9864.00.445.9920.00.00.00.00.00.10.18.445.654.026.16.9864.00.445.9920.00.00.00.00.00.02.62.62.656.813.36.910.56.70.836.4910.00.00.00.00.02.62.62.62.656.813.36.910.56.70.836.41010.00.00.00.00.00.02.62.62.62.640.410.6<	8525	48	0.0	0.0	0.0	0.0	1.6	1.6	18.7	49.7	68.4	16.4	4.1	6.1	3.2	0.2	30.0	shell hash, organic debris ^ª												
570.00.00.00.01.41.417.546.864.317.15.87.83.30.334.3810.00.00.00.00.20.27.334.041.329.011.312.45.20.758.6850.00.00.00.10.10.16.035.641.630.610.711.84.80.558.4850.00.00.00.00.10.18.445.654.026.16.98.64.00.445.9910.00.00.00.00.10.18.445.654.026.16.98.64.00.445.9910.00.00.00.00.00.10.12.628.235.663.811.66.19.95.60.433.5920.00.00.00.00.00.02.628.235.663.811.66.19.95.60.433.51000.00.00.00.00.00.00.011.238.049.221.410.05.50.640.41010.00.00.00.00.00.711.238.049.221.49.613.35.40.455.40.41010.00.00.00.00.00.711.238.049.221.4<	8530	52	0.0	0.0	0.0	0.0	1.4	1.4	14.0	39.6	53.6	19.1	8.3	12.0	5.2	0.5	45.1	shell hash, organic debris ^a												
81 0.0	8517	57	0.0	0.0	0.0	0.0	1.4	1.4	17.5	46.8	64.3	17.1	5.8	7.8	3.3	0.3	34.3	shell hash, organic debris ^{a}												
85 0.0 0.0 0.0 0.0 0.1 0.1 6.0 35.6 41.6 30.6 10.7 11.8 4.8 0.5 58.4 85 0.0 0.0 0.0 0.1 0.1 8.4 45.6 54.0 26.1 6.9 8.6 4.0 0.4 45.9 91 0.0 0.0 0.0 0.0 5.1 5.1 5.1 24.6 32.2 56.8 13.3 6.9 10.5 6.7 0.8 38.2 92 0.0 0.0 0.0 2.0 5.1 5.1 24.6 55.8 13.3 6.9 10.5 6.7 0.8 38.2 92 0.0 0.0 0.0 2.0 2.1 5.1 24.6 51.3 17.0 7.4 10.0 6.7 0.8 38.3 101 0.0 0.0 0.0 0.0 29.1 51.1 21.3 61.4 10.0 7.4 10.0 61.4	8523	81	0.0	0.0	0.0	0.0	0.2	0.2	7.3	34.0	41.3	29.0	11.3	12.4	5.2	0.7	58.6													
85 0.0 0.0 0.0 0.0 0.1 0.1 8.4 45.6 54.0 26.1 6.9 8.6 4.0 0.4 45.9 91 0.0 0.0 0.0 0.0 5.1 5.1 5.1 24.6 32.2 56.8 13.3 6.9 10.5 6.7 0.8 38.2 92 0.0 0.0 0.0 2.0 2.6 2.8.2 35.6 63.8 11.6 6.1 9.9 5.6 0.4 35.5 100 0.0 0.0 0.0 2.0 2.1 21.7 29.6 51.3 17.0 7.4 10.0 55 0.6 40.4 101 0.0 0.0 0.0 0.0 0.7 0.7 11.2 38.0 49.2 21.4 9.6 13.3 5.4 0.4 50.1 103 0.0 0.0 0.0 0.0 0.0 26.3 24.8 16.4 41.2 10.6 6.5	8518	85	0.0	0.0	0.0	0.0	0.1	0.1	6.0	35.6	41.6	30.6	10.7	11.8	4.8	0.5	58.4													
91 0.0 0.0 0.0 0.0 0.0 5.1 5.1 24.6 32.2 56.8 13.3 6.9 10.5 6.7 0.8 38.2 92 0.0 0.0 0.0 0.0 2.6 2.6 2.8.2 35.6 63.8 11.6 6.1 9.9 5.6 0.4 33.5 100 0.0 0.0 0.0 2.0 2.6 2.8.2 35.6 63.8 11.6 6.1 9.9 5.6 0.4 33.5 100 0.0 0.0 0.0 0.0 0.0 2.1 11.2 38.0 49.2 21.4 9.6 13.3 5.4 0.4 30.4 101 0.0 0.0 0.0 0.0 0.0 0.1 11.2 38.0 49.2 21.4 9.6 13.3 5.4 0.4 50.1 112 0.0 0.0 0.0 3.3 19.3 39.1 58.4 16.8 10.1 4.3 </td <td>8534</td> <td>85</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td>0.1</td> <td>8.4</td> <td>45.6</td> <td>54.0</td> <td>26.1</td> <td>6.9</td> <td>8.6</td> <td>4.0</td> <td>0.4</td> <td>45.9</td> <td></td>	8534	85	0.0	0.0	0.0	0.0	0.1	0.1	8.4	45.6	54.0	26.1	6.9	8.6	4.0	0.4	45.9													
92 0.0 0.0 0.0 0.0 2.6 2.8 2.5.6 6.3.8 11.6 6.1 9.9 5.6 0.4 33.5 100 0.0 0.0 0.0 0.0 8.1 9.0 21.7 29.6 51.3 17.0 7.4 10.0 5.5 0.6 40.4 101 0.0 0.0 0.0 0.0 0.7 0.7 11.2 38.0 49.2 21.4 9.6 13.3 5.4 0.4 50.1 108 0.0 0.1 0.1 7.3 19.0 26.3 24.8 16.4 41.2 10.6 6.5 9.1 5.4 0.4 50.1 108 0.0 0.1 0.1 7.3 19.0 26.3 24.8 16.4 41.2 10.6 6.5 9.1 5.4 0.4 50.1 112 0.0 0.0 0.0 3.3 19.3 39.1 58.4 16.8 6.1 4.3 0.3	8507	91	0.0	0.0	0.0	0.0	5.1	5.1	24.6	32.2	56.8	13.3	6.9	10.5	6.7	0.8	38.2	gravel, shell hash, rubber gasket												
	8503	92	0.0	0.0	0.0	0.0	2.6	2.6	28.2	35.6	63.8	11.6	6.1	9.9	5.6	0.4	33.5													
101 0.0 0.0 0.0 0.0 0.7 0.7 11.2 38.0 49.2 21.4 9.6 13.3 5.4 0.4 50.1 108 0.0 0.1 0.1 7.3 19.0 26.3 24.8 16.4 41.2 10.6 6.5 9.1 5.5 0.6 32.4 112 0.0 0.0 0.0 0.0 3.3 39.1 58.4 16.8 6.8 10.1 4.3 38.3 120 0.0 1.3 13.5 21.9 35.4 22.3 19.0 41.3 6.6 4.2 7.5 3.5 0.2 21.9	8531	100	0.0	0.0	0.0	0.9	8.1	9.0	21.7	29.6	51.3	17.0	7.4	10.0	5.5	0.6	40.4	gravel, shell hash												
108 0.0 0.1 7.3 19.0 26.3 24.8 16.4 41.2 10.6 6.5 9.1 5.5 0.6 32.4 112 0.0 0.0 0.0 0.0 3.3 3.3 19.3 39.1 58.4 16.8 6.8 10.1 4.3 0.3 38.3 120 0.0 1.3 1.3 13.5 21.9 35.4 22.3 19.0 41.3 6.6 4.2 7.5 3.5 0.2 21.9	8526	101	0.0	0.0	0.0	0.0	0.7	0.7	11.2	38.0	49.2	21.4	9.6	13.3	5.4	0.4	50.1	gravel, shell hash												
112 0.0 0.0 0.0 0.0 3.3 3.3 19.3 39.1 58.4 16.8 6.8 10.1 4.3 0.3 38.3 120 0.0 1.3 1.3 13.5 21.9 35.4 22.3 19.0 41.3 6.6 4.2 7.5 3.5 0.2 21.9	8509	108	0.0	0.1	0.1	7.3	19.0	26.3	24.8	16.4	41.2	10.6	6.5	9.1	5.5	0.6	32.4	black sand, gravel, shell hash												
120 0.0 1.3 1.3 13.5 21.9 35.4 22.3 19.0 41.3 6.6 4.2 7.5 3.5 0.2 21.9	8539	112	0.0	0.0	0.0	0.0	3.3	3.3	19.3	39.1	58.4	16.8	6.8	10.1	4.3	0.3	38.3	shell hash, organic debrisª												
	8528	120	0.0	1.3	1.3	13.5	21.9	35.4	22.3	19.0	41.3	9.9	4.2	7.5	3.5	0.2	21.9	gravel, cobble, shell hash												

F8

Table	Table F.2 continued	tinued															
	Depth	Coars	Coarse Particles	icles	Med-Coarse Sands	oarse S	Sands		Fine Sands	ds			Fine Particles	ticles			
Station	(u)	Gran	VCS	VCS Total	S	MS	Total	FS	VFS	Total	CSi	MSi	FSi	VFSi	Clay	Total	Total Visual Observations
Outer Shelf	helf																
8524	123	0.0	0.0	0.0	0.0	0.9	0.9	17.1	49.7	66.8	16.0	4.8	7.5	3.6	0.3	32.3	shell hash
8536	135	0.0	4.8	4.8	21.8	7.8	29.6	8.2	25.0	33.2	16.3	4.4	6.5	4.7	0.5	32.3	black sand, shell hash
8520	138	0.0	0.0	0.0	0.0	0.2	0.2	9.2	43.5	52.7	23.0	7.4	11.0	5.2	0.6	47.1	shell hash, organic debris ^ª
8519	142	0.0	0.0	0.0	0.0	0.1	0.1	8.1	42.5	50.6	24.1	7.5	11.3	5.7	0.7	49.3	organic debris ^b
8542	147	0.0	0.5	0.5	10.2	20.5	30.7	20.0	13.3	33.3	9.3	6.6	11.0	7.6	1.0	35.4	gravel, shell hash
8547	156	0.0	0.0	0.0	0.0	0.1	0.1	6.4	38.7	45.1	25.8	9.5	13.7	5.4	0.3	54.8	shell hash, organic debris ^b
8504	171	0.0	0.0	0.0	0.0	1.3	1.3	14.6	35.5	50.1	15.7	8.5	15.8	7.4	0.8	48.2	
8532	178	0.0	0.0	0.0	0.0	0.1	0.1	9.1	47.3	56.4	22.3	6.2	9.6	4.9	0.6	43.5	organic debris ^{a, b}
8510	195	0.0	0.0	0.0	0.0	1.4	1.4	9.3	21.8	31.1	19.1	14.0	21.1	10.7	2.7	67.6	gravel, shell hash
8516	200	0.0	0.0	0.0	0.0	0.8	0.8	7.6	20.4	28.0	20.8	15.9	22.6	10.1	1.9	71.3	algae, organic debris ^b
Upper Slope	lope																
8512	240	0.0	0.0	0.0	0.0	0.2	0.2	5.4	18.5	23.9	18.1	15.3	23.9	13.6	4.9	75.8	shell hash, organic debris ^b
8521	340	0.0	0.0	0.0	0.0	0.1	0.1	3.3	16.4	19.7	21.0	19.4	29.0	10.1	0.7	80.2	organic debris ^a
8527	350	0.0	0.0	0.0	0.0	0.2	0.2	8.2	30.5	38.7	21.0	14.3	20.0	5.7	0.1	61.1	organic debris ^a
8537	350	0.0	0.0	0.0	0.0	0.1	0.1	5.1	23.3	28.4	21.1	15.4	23.2	10.2	1.7	71.6	organic debris ^a
8540	437	0.0	0.0	0.0	0.0	0.1	0.1	2.9	9.7	12.6	14.4	20.6	34.0	15.5	2.8	87.3	organic debris ^a
^a Contair	^a Contained worm tubes; ^b S <i>piochaetoptorus</i> tubes; ^s measured by sieve (not Horiba; silt and clay fractions are indistinguishable)	tubes; ^b	Spioch	haetopt	<i>orus</i> tut	bes; °m	leasure	d by si	sve (no	t Horib	a; silt a	nd clay	ractio	ins are	indistir	guisha	able)

Concentrations of organic indicators detected in sediments from the 2016 San Diego regional benthic stations. See Table C.1 for MDLs; nd=not detected; ns=not sampled.

	Station	Depth (m)	Sulfides (ppm)	TN (% wt)	TOC (% wt)	TVS (%wt)
Inner Shelf	8513	5	1.95	nd	nd	0.50
	8501	17	2.13	0.026	0.16	0.85
	8514	18	1.24	nd	0.08	0.40
	8515	20	1.18	nd	0.08	0.60
	8522	22	0.20	0.050	3.24	1.00
	8505	26	5.62	0.026	0.12	0.90
Mid-Shelf	8508	34	4.77	0.043	0.30	1.20
	8502	35	1.51	0.030	0.20	1.20
	8533	36	2.72	0.040	2.98	1.00
	8538	37	9.19	0.047	0.37	1.50
	8529	45	4.76	0.050	0.35	1.60
	8506	48	0.46	0.027	0.11	0.70
	8525	48	3.27	0.036	0.30	1.90
	8530	52	3.81	0.054	0.51	2.20
	8517	57	5.50	0.050	0.44	ns
	8523	81	3.60	0.070	0.56	2.50
	8518	85	4.51	0.064	0.65	2.50
	8534	85	8.21	0.058	0.52	2.10
	8507	91	2.62	0.048	0.42	1.80
	8503	92	1.55	0.044	0.38	1.50
	8531	100	3.27	0.050	0.80	2.60
	8526	101	5.16	0.060	0.58	2.60
	8509	108	8.86	0.043	0.52	2.20
	8539	112	24.70	0.064	0.63	2.90
	8528	120	10.10	0.058	2.79	3.20
Outer Shelf	8524	123	3.84	0.050	0.41	2.00
	8536	135	7.72	0.052	0.86	1.60
	8520	138	2.82	0.060	0.54	2.20
	8519	142	4.97	0.060	0.55	2.60
	8542	147	3.90	0.110	5.07	4.30
	8547	156	13.00	0.073	0.71	3.20
	8504	171	4.10	0.080	1.15	3.80
	8532	178	3.40	0.054	0.47	2.20
	8510	195	8.01	0.138	1.48	5.40
	8516	200	31.90	0.146	1.82	5.80
Upper Slope	8512	240	20.00	0.190	2.69	7.50
	8521	340	7.05	0.205	2.54	8.10
	8527	350	6.48	0.142	1.64	5.80
	8537	350	31.60	0.157	1.71	6.50
	8540	437	30.40	0.239	2.45	9.20
		Detection Rate		93	98	100

Concentrations of trace metals (ppm) detected in sediments from the 2016 San Diego regional benthic stations. See Table C.1 for MDLs and translation of periodic table symbols; nd = not detected; na = not available.

	Station	Depth (m)	AI	Sb	As	Ва	Be	Cd	Cr	Cu
Inner Shelf	8513	5	4090	nd	0.98	30.7	nd	nd	7.4	1.0
	8501	17	5640	nd	1.46	26.8	nd	nd	11.8	1.7
	8514	18	4040	nd	0.87	15.2	nd	nd	9.7	0.8
	8515	20	3530	nd	1.38	12.7	nd	nd	7.4	1.1
	8522	22	1940	nd	4.09	19.1	nd	nd	6.0	1.3
	8505	26	6040	nd	0.72	27.0	nd	nd	12.1	2.0
Mid-Shelf	8508	34	6810	1.0	1.41	31.6	nd	nd	14.5	3.2
	8502	35	6610	1.1	1.21	30.4	nd	nd	14.4	3.4
	8533	36	3410	1.0	4.18	37.1	nd	nd	15.5	nd
	8538	37	11,100	1.4	1.98	71.9	nd	nd	26.0	6.9
	8529	45	7850	1.2	2.27	40.4	nd	nd	17.9	4.0
	8506	48	2050	nd	2.57	5.1	nd	nd	6.6	nd
	8525	48	8660	1.1	2.07	45.5	nd	nd	19.8	4.4
	8530	52	9270	1.2	2.50	47.9	nd	nd	20.1	5.1
	8517	57	9620	1.3	1.53	46.3	nd	nd	20.0	6.4
	8523	81	12,600	1.7	1.66	51.0	nd	nd	27.0	8.7
	8518	85	13,200	1.6	2.22	57.3	nd	nd	28.2	9.7
	8534	85	10,600	1.3	1.56	53.3	nd	nd	24.5	5.9
	8507	91	6540	0.9	1.80	28.4	nd	nd	14.3	10.5
	8503	92	5530	1.0	1.36	19.5	nd	nd	13.3	3.2
	8531	100	8290	1.5	1.55	26.5	nd	nd	24.1	3.7
	8526	101	10,100	1.3	1.34	36.9	nd	nd	22.5	6.2
	8509	108	8760	2.1	1.42	43.1	nd	nd	19.2	9.5
	8539	112	11,800	1.5	3.26	61.6	nd	nd	26.3	7.9
	8528	120	7130	1.9	3.84	28.8	nd	nd	28.0	2.3
Outer Shelf	8524	123	7520	1.1	1.21	24.9	nd	nd	17.2	4.2
	8536	135	7000	1.1	2.01	33.4	nd	nd	17.0	3.7
	8520	138	9570	1.3	1.70	34.4	nd	nd	21.0	6.6
	8519	142	10,500	1.3	1.16	37.5	nd	nd	23.2	7.9
	8542	147	8810	4.1	2.66	59.4	nd	nd	29.9	6.0
	8547	156	12,900	1.6	1.54	54.8	nd	0.24	29.9	8.7
	8504	171	11,200	2.2	2.41	55.3	0.31	0.60	27.8	10.1
	8532	178	10,200	1.4	0.97	39.7	nd	0.18	23.9	6.7
	8510	195	18,400	2.4	1.78	88.3	nd	nd	44.4	24.3
	8516	200	19,700	2.2	1.74	88.3	nd	nd	46.1	24.2
Upper Slope	8512	240	19,500	2.7	1.99	91.1	nd	nd	48.4	20.7
	8521	340	20,100	2.4	2.56	96.9	nd	0.18	50.2	21.6
	8527	350	16,100	2.1	1.55	71.0	nd	0.17	42.0	16.2
	8537	350	20,700	2.6	1.78	88.0	nd	0.17	52.1	20.8
	8540	437	27,500	3.1	4.06	129.0	nd	0.24	69.6	31.8
	Detec	ction rate (%)	100	83	100	100	3	17.5	100	95
		ERL ^a :	na	na	8.2	na	na	1.2	81	34
		ERM ^a :	na	na	70.0	na	na	9.6	370	270

^a From Long et al. 1995

	Station	Depth (m)	Fe	Pb	Mn	Hg	Ni	Se	Ag	Sn	Zn
Inner Shelf	8513	5	5900	1.3	59.8	0.006	1.7	nd	nd	nd	15.3
	8501	17	6650	2.1	70.1	nd	2.8	nd	nd	nd	15.5
	8514	18	4590	1.6	63.5	nd	1.7	nd	nd	nd	10.5
	8515	20	5020	2.7	54.7	0.009	1.4	nd	nd	0.6	11.5
	8522	22	4350	2.6	55.5	nd	1.6	nd	nd	nd	10.0
	8505	26	6350	1.9	65.5	0.004	2.7	nd	nd	nd	15.8
Mid-Shelf	8508	34	7820	2.5	76.0	0.013	3.8	nd	nd	0.4	19.4
	8502		7490	2.4	72.2	0.007	3.8	nd	nd	nd	18.3
	8533	36	8560	4.4	85.0	0.004	1.4	nd	nd	0.5	24.4
	8538	37	14,200	3.0	157.0	0.007	5.6	nd	nd	0.5	41.5
	8529	45	10,400	3.4	109.0	0.014	4.2	nd	nd	0.7	28.6
	8506		5220	2.1	17.2	nd	1.0	nd	nd	nd	8.0
	8525		11,500	3.6	118.0	0.016	4.6	nd	nd	0.7	30.6
	8530	52	12,200	3.8	116.0	0.021	5.3	nd	nd	0.8	34.8
	8517		11,900	4.4	113.0	0.031	5.9	nd	nd	0.9	32.4
	8523		15,400	5.2	127.0	nd	8.3	0.48	nd	1.1	39.3
	8518	85	15,700	5.1	134.0	0.038	8.6	nd	nd	1.1	40.3
	8534	85	14,300	4.5	129.0	0.020	6.4	nd	nd	0.9	37.0
	8507	91	9320	4.9	71.8	0.030	4.7	0.41	nd	0.8	31.2
	8503	92	7990	3.2	69.8	0.013	4.8	nd	nd	0.5	18.6
	8531	100	15,500	3.0	85.4	0.017	5.2	nd	nd	0.6	34.0
	8526	101	13,100	3.8	106.0	0.036	7.1	0.55	nd	0.8	32.2
	8509	108	13,200	5.2	91.4	0.063	5.2	nd	nd	0.9	34.7
	8539	112	15,400	4.3	152.0	0.017	6.8	nd	nd	0.7	44.8
<u> </u>	8528	120	22,400	3.6	59.3	0.014	4.5	nd	nd	0.6	38.4
Outer Shelf	8524	123	10,500	2.9	81.0	0.015	5.1	nd	nd	0.5	25.7
	8536		9840	2.8	83.1	0.015	4.6	nd	nd	0.6	26.2
	8520	138	12,200	3.6	97.4	0.026	7.1	0.45	nd	0.6	30.4
	8519	142	12,900	3.7	104.0	0.036	7.8	0.48	nd	0.7	33.0
	8542	147	20,900	534.0	61.6	0.022	7.3	nd	1.7	81.8	36.4
	8547		16,000	8.5	136.0	0.028	8.5	nd	nd	1.4	41.9
	8504		15,200	5.2	104.0	0.037	10.7	0.78	nd	1.6	37.4
	8532		13,000	3.9	104.0	0.023	7.5	0.68	nd	0.7	34.4
	8510		22,100	10.0	165.0	0.139	14.8	nd	nd	1.8	62.1
	8516		21,800	9.9	164.0	0.226	16.4	nd	nd	1.8	61.7
Upper Slope	8512		22,300	7.5	155.0	0.086	19.7 20.5	0.14	nd	1.7	61.9
	8521	340 250	21,700	5.0	165.0	0.053	20.5	0.30	nd	1.1	64.8
	8527		19,700	5.6	137.0	0.053	14.7 15.0	0.87	nd	1.2	54.8
	8537	350	23,000	6.9	178.0	0.060	15.9	nd	nd	1.6	66.1
	8540		28,100	8.8 100	218.0	0.100	20.3	0.64	nd 3	2.0	83.5
	Delect	ion rate (%) ERLª:	100	46.7	100	88 0.15	100 20.9	28	3 1.0	83 na	100
		ERLª: ERMª:	na na	46.7 218.0	na na	0.15 0.71	20.9 51.6	na na	1.0 3.7	na na	150 410

^a From Long et al. 1995

Concentrations of pesticides (ppt), total PCB (ppt), and total PAH (ppb) detected in sediments from the 2016 San Diego regional benthic stations. See Table C.1 for MDLs and Table F.6 for values of individual constituents; nd=not

	Station	Depth (m)	tChlordane	tDDT	НСВ	tPCB	tPAH
Inner Shelf	8513	5	nd	52	nr	382	48
	8501	17	nd	151	nr	nd	nd
	8514	18	nd	47	nr	99	nd
	8515	20	nd	113	nr	763	nd
	8522	22	nd	63	nr	25	nd
	8505	26	nd	271	nr	131	7
Mid-Shelf	8508	34	nd	801	nr	250	4
	8502	35	nd	673	nr	174	9
	8533	36	160	587	nr	509	8
	8538	37	nd	291	nr	970	9
	8529	45	nd	339	nr	564	17
	8506	48	nd	101	nr	86	nd
	8525	48	nd	556	nr	593	68
	8530	52	nd	122	nr	154	11
	8517	57	ns	ns	ns	ns	ns
	8523	81	93	1284	nr	1953	39
	8518	85	nd	827	nr	1092	87
	8534	85	nd	710	nr	460	16
	8507	91	nd	1239	nr	24,314	113
	8503	92	nd	781	nr	676	8
	8531	100	nd	334	nr	208	10
	8526	101	nd	1081	nr	1055	12
	8509	108	nd	498	nr	11,004	320
	8539	112	nd	1164	nr	649	44
	8528	120	229	340	nr	156	11
Outer Shelf	8524	123	58	450	nr	663	9
	8536	135	nd	406	140	313	8
	8520	138	169	1241	nr	1374	12
	8519	142	26	1859	nr	1359	60
	8542	147	nd	316	nr	511	11
	8547	156	nd	1449	nr	704	15
	8504	171	nd	1576	nr	2117	84
	8532	178	nd	676	nr	878	11
	8510	195	64	552	nr	3191	365
	8516	200	241	699	nr	1892	208
Upper Slope	8512	240	nd	769	nr	4639	106
	8521	340	nd	767	nr	734	18
	8527	350	nd	924	nr	582	54
	8537	350	258	2164	nr	1524	97
	8540	437	nd	2113	nr	751	199
	D	etection rate (%)	23	100	na	97	87
		ERL ^a :	na	1580	na	na	4022
		ERM ^a :	na	46,100	na	na	44,792

^a From Long et al. 1995

Summary of the constituents that make up total chlordane, total DDT, total PCB, and total PAH in each sediment sample collected as part of the 2016 regional survey off San Diego.

Station	Class	Constituent	Value	Units	
8501	DDT	p,p-DDD	13	ppt	
8501	DDT	p,p-DDE	138	ppt	
8502	DDT	o,p-DDD	25	ppt	
8502	DDT	o,p-DDT	42	ppt	
8502	DDT	p,-p-DDMU	32	ppt	
8502	DDT	p,p-DDD	63	ppt	
8502	DDT	p,p-DDE	336	ppt	
8502	DDT	p,p-DDT	175	ppt	
8502	PAH	2,6-dimethylnaphthalene	9	ppb	
8502	PCB	PCB 18	9	ppt	
8502	PCB	PCB 44	14	ppt	
8502	PCB	PCB 49	12	ppt	
8502	PCB	PCB 52	12	ppt	
8502	PCB	PCB 66	14	ppt	
8502	PCB	PCB 70	17	ppt	
8502	PCB	PCB 105	10	ppt	
8502	PCB	PCB 110	22	ppt	
8502	PCB	PCB 149	21	ppt	
8502	PCB	PCB 153/168	28	ppt	
8502	PCB	PCB 187	16	ppt	
8503	DDT	o,p-DDD	18	ppt	
8503	DDT	p,-p-DDMU	48	ppt	
8503	DDT	p,p-DDD	45	ppt	
8503	DDT	p,p-DDE	582	ppt	
8503	DDT	p,p-DDT	89	ppt	
8503	PAH	2,6-dimethylnaphthalene	8	ppb	
8503	PCB	PCB 49	13	ppt	
8503	PCB	PCB 52	13	ppt	
8503	PCB	PCB 66	27	ppt	
8503	PCB	PCB 99	35	ppt	
8503	PCB	PCB 101	40	ppt	
8503	PCB	PCB 105	29	ppt	
8503	PCB	PCB 110	41	ppt	
8503	PCB	PCB 118	45	ppt	
8503	PCB	PCB 128	34	ppt	
8503	PCB	PCB 138	79	ppt	
8503	PCB	PCB 149	79	ppt	
8503	PCB	PCB 153/168	107	ppt	
8503	PCB	PCB 170	15	ppt	
8503	PCB	PCB 180	67	ppt	
8503	PCB	PCB 187	54	ppt	
8504	DDT	o,p-DDD	35	ppt	
8504	DDT	o,p-DDE	71	ppt	
8504	DDT	p,-p-DDMU	87	ppt	
8504	DDT	p,p-DDD	128	ppt	
8504	DDT	p,p-DDE	1180	ppt	
8504	DDT	p,p-DDT	75	ppt	
8504	PAH	2,6-dimethylnaphthalene	13	ppb	
8504	PAH	3,4-benzo(B)fluoranthene	13	ppb	
8504	PAH	Benzo[A]pyrene	10	ppb	

Station	Class	Constituent	Value	Units	
8504	PAH	Benzo[e]pyrene	7	ppb	
8504	PAH	Benzo[G,H,I]perylene	13	ppb	
8504	PAH	Fluoranthene	10	ppb	
8504	PAH	Indeno(1,2,3-CD)pyrene	8	ppb	
8504	PAH	Pyrene	9	ppb	
8504	PCB	PCB 49	30	ppt	
8504	PCB	PCB 66	71	ppt	
8504	PCB	PCB 70	61	ppt	
8504	PCB	PCB 99	98	ppt	
8504	PCB	PCB 101	142	ppt	
8504	PCB	PCB 105	95	ppt	
8504	PCB	PCB 110	139	ppt	
8504	PCB	PCB 118	199	ppt	
8504	PCB	PCB 128	62	ppt	
8504	PCB	PCB 138	230	ppt	
8504	PCB	PCB 149	210		
8504	PCB	PCB 153/168	324	ppt	
				ppt	
8504	PCB	PCB 177	57	ppt	
8504	PCB	PCB 180	126	ppt	
8504	PCB	PCB 183	24	ppt	
8504	PCB	PCB 187	121	ppt	
8504	PCB	PCB 206	128	ppt	
8505	DDT	p,-p-DDMU	20	ppt	
8505	DDT	p,p-DDE	154	ppt	
8505	DDT	p,p-DDT	97	ppt	
8505	PAH	2,6-dimethylnaphthalene	7	ppb	
8505	PCB	PCB 44	7	ppt	
8505	PCB	PCB 49	10	ppt	
8505	PCB	PCB 52	5	ppt	
8505	PCB	PCB 66	8	ppt	
8505	PCB	PCB 70	5	ppt	
8505	PCB	PCB 138	18	ppt	
8505	PCB	PCB 149	20	ppt	
8505	PCB	PCB 153/168	39	ppt	
8505	PCB	PCB 187	18		
0505	FCD	FCB 107	10	ppt	
8506	DDT	p,-p-DDMU	13	ppt	
8506	DDT	p,p-DDE	88	ppt	
8506	PCB	PCB 18	7	ppt	
8506	PCB	PCB 66	13	ppt	
8506	PCB	PCB 70	10	ppt	
8506	PCB	PCB 138	19	ppt	
8506	PCB	PCB 149	14	ppt	
8506	PCB	PCB 153/168	23	ppt	
8507	DDT	o,p-DDD	16	ppt	
8507	DDT	р,-р-DDMU	96	ppt	
8507	DDT	p,p-DDD	90 94		
8507	DDT	p,p-DDE	94 920	ppt	
8507	DDT		920 113	ppt	
		p,p-DDT		ppt	
8507	PAH	2,6-dimethylnaphthalene	8	ppb	
8507	PAH	3,4-benzo(B)fluoranthene	18	ppb	
0507					
8507 8507	PAH PAH	Benzo[A]pyrene Benzo[e]pyrene	14 11	ppb ppb	

Station	Class	Constituent	Value	Units	
8507	PAH	Benzo[G,H,I]perylene	13	ppb	
8507	PAH	Benzo[K]fluoranthene	7	ppb	
8507	PAH	Chrysene	8	ppb	
8507	PAH	Fluoranthene	12	ppb	
8507	PAH	Indeno(1,2,3-CD)pyrene	10	ppb	
8507	PAH	Pyrene	12	ppb	
8507	PCB	PCB 18	120	ppt	
8507	PCB	PCB 28	160	ppt	
8507	PCB	PCB 44	530	ppt	
8507	PCB	PCB 49	400	ppt	
8507	PCB	PCB 52	1300	ppt	
8507	PCB	PCB 66	400	ppt	
8507	PCB	PCB 70	870	ppt	
8507	PCB	PCB 74	210	ppt	
8507	PCB	PCB 87	990	ppt	
8507	PCB	PCB 99	980	ppt	
8507	PCB	PCB 101	2500		
8507	PCB	PCB 105	990	ppt	
8507	PCB	PCB 103	2400	ppt	
8507	PCB	PCB 118	2400	ppt	
	PCB	PCB 119		ppt	
8507			120	ppt	
8507	PCB	PCB 123	210	ppt	
8507	PCB	PCB 128	530	ppt	
8507	PCB	PCB 138	2100	ppt	
8507	PCB	PCB 149	1700	ppt	
8507	PCB	PCB 151	320	ppt	
8507	PCB	PCB 153/168	2500	ppt	
8507	PCB	PCB 156	320	ppt	
8507	PCB	PCB 157	75	ppt	
8507	PCB	PCB 158	310	ppt	
8507	PCB	PCB 167	86	ppt	
8507	PCB	PCB 170	350	ppt	
8507	PCB	PCB 177	180	ppt	
8507	PCB	PCB 180	640	ppt	
8507	PCB	PCB 183	190	ppt	
8507	PCB	PCB 187	340	ppt	
8507	PCB	PCB 201	33	ppt	
8507	PCB	PCB 206	160	ppt	
8508	DDT	p,-p-DDMU	63	ppt	
8508	DDT	p,p-DDD	58	ppt	
8508	DDT	p,p-DDE	622	ppt	
8508	DDT	p,p-DDT	57	ppt	
8508	PAH	2,6-dimethylnaphthalene	4	ppb	
8508	PCB	PCB 18	10	ppt	
8508	PCB	PCB 28	15	ppt	
8508	PCB	PCB 49	10	ppt	
8508	PCB	PCB 52	14	ppt	
8508	PCB	PCB 66	14	ppt	
8508	PCB	PCB 70	13	ppt	
8508	PCB	PCB 81	9	ppt	
8508	PCB	PCB 99	23	ppt	
8508	PCB	PCB 101	23	ppt	
8508	PCB	PCB 149	33	ppt	
8508	PCB	PCB 151	13	ppt	

Station	Class	Constituent	Value	Units	
8508	PCB	PCB 153/168	47	ppt	
8508	PCB	PCB 187	26	ppt	
8509	DDT	o,p-DDD	27	ppt	
8509	DDT	o,p-DDE	19	ppt	
8509	DDT	o,p-DDT	21	ppt	
8509	DDT	p,-p-DDMU	30	ppt	
8509	DDT	p,p-DDD	38	ppt	
8509	DDT	p,p-DDE	245	ppt	
8509	DDT	p,p-DDT	118	ppt	
8509	PAH	2,6-dimethylnaphthalene	9	ppb	
8509	PAH	3,4-benzo(B)fluoranthene	46	ppb	
8509	PAH	Anthracene	8	ppb	
8509	PAH	Benzo[A]anthracene	29	ppb	
8509	PAH	Benzo[A]pyrene	35	ppb	
8509	PAH	Benzo[e]pyrene	24	ppb	
8509	PAH	Benzo[G,H,I]perylene	27	ppb	
8509	PAH	Benzo[K]fluoranthene	16	ppb	
8509	PAH	Chrysene	29	ppb	
8509	PAH	Fluoranthene	30	ppb	
8509	PAH	Indeno(1,2,3-CD)pyrene	20	ppb	
8509	PAH	Phenanthrene	9	ppb	
8509	PAH	Pyrene	39	ppb	
8509	PCB	PCB 18	41	ppt	
8509	PCB	PCB 28	60	ppt	
8509	PCB	PCB 37	29	ppt	
8509	PCB	PCB 44	280	ppt	
8509	PCB	PCB 49	130	ppt	
8509	PCB	PCB 52	630	ppt	
8509	PCB	PCB 66	160	ppt	
8509	PCB	PCB 70	410	ppt	
8509	PCB	PCB 74	97	ppt	
8509	PCB	PCB 77	9	ppt	
8509	PCB	PCB 81	2	ppt	
8509	PCB	PCB 87	500	ppt	
8509	PCB	PCB 99	440		
8509	PCB	PCB 101	1000	ppt ppt	
8509	PCB	PCB 105	410	ppt ppt	
8509	PCB	PCB 110	1200	ppt	
8509	PCB	PCB 118	920	ppt	
8509	PCB	PCB 119	63	ppt	
8509	PCB	PCB 123	84		
8509	PCB	PCB 128	220	ppt	
8509	PCB	PCB 128	880	ppt	
8509	PCB	PCB 130 PCB 149	720	ppt	
8509	PCB	PCB 149 PCB 151	160	ppt	
8509	PCB	PCB 153/168		ppt	
			1200	ppt	
8509 8509	PCB PCB	PCB 156 PCB 157	140 34	ppt	
				ppt	
8509	PCB	PCB 158	130	ppt	
8509	PCB	PCB 167	40	ppt	
8509	PCB	PCB 170	150	ppt	
8509	PCB	PCB 177	98	ppt	
8509	PCB	PCB 180	300	ppt	
8509	PCB	PCB 183	89	ppt	

Station	Class	Constituent	Value	Units	
8509	PCB	PCB 187	250	ppt	
8509	PCB	PCB 201	18	ppt	
8509	PCB	PCB 206	110	ppt	
8510	Chlordane	Gamma(trans)Chlordane	64	ppt	
8510	DDT	o,p-DDE	38	ppt	
8510	DDT	p,-p-DDMU	44	ppt	
8510	DDT	p,p-DDD	110	ppt	
8510	DDT	p,p-DDE	359	ppt	
8510	PAH	2,6-dimethylnaphthalene	15	ppb	
8510	PAH	3,4-benzo(B)fluoranthene	61	ppb	
8510	PAH	Anthracene	10	ppb	
8510	PAH	Benzo[A]anthracene	30	ppb	
8510	PAH	Benzo[A]pyrene	42	ppb	
8510	PAH	Benzo[e]pyrene	35	ppb	
8510	PAH	Benzo[G,H,I]perylene	37	ppb	
8510	PAH	Benzo[K]fluoranthene	21	ppb	
8510	PAH	Chrysene	30	ppb	
8510	PAH	Fluoranthene	24	ppb	
8510	PAH	Indeno(1,2,3-CD)pyrene	29	ppb	
8510	PAH	Perylene	11	ppb	
8510	PAH	Pyrene	20	ppb	
8510	PCB	PCB 18	21	ppt	
8510	PCB	PCB 28	33	ppt	
8510	PCB	PCB 37	15	ppt	
8510	PCB	PCB 44	59	ppt	
8510	PCB	PCB 49	81	ppt	
8510	PCB	PCB 52	111	ppt	
8510	PCB	PCB 66	78	ppt	
8510	PCB	PCB 70	86	ppt	
8510	PCB	PCB 74	35	ppt	
8510	PCB	PCB 87	99	ppt	
8510	PCB	PCB 99	169	ppt	
8510	PCB	PCB 101	213	ppt	
8510	PCB	PCB 105	110	ppt	
8510	PCB	PCB 110	300	ppt	
8510	PCB	PCB 118	300	ppt	
8510	PCB	PCB 128	78	ppt	
8510	PCB	PCB 138	290	ppt	
8510	PCB	PCB 149	320	ppt	
8510	PCB	PCB 153/168	407	ppt	
8510	PCB	PCB 156	26	ppt	
8510	PCB	PCB 158	25	ppt	
8510	PCB	PCB 180	119	ppt	
8510	PCB	PCB 183	54	ppt	
8510	PCB	PCB 187	116	ppt	
8510	PCB	PCB 206	46	ppt	
8512	DDT	o,p-DDE	55	ppt	
8512	DDT	p,-p-DDMU	52	ppt	
8512	DDT	p,p-DDD	78	ppt	
8512	DDT	p,p-DDE	584	ppt	
8512	PAH	2,6-dimethylnaphthalene	16	ppb	
8512	PAH	3,4-benzo(B)fluoranthene	9	ppb	
8512	PAH	Benzo[A]pyrene	13	ppb	

Station	Class	Constituent	Value	Units	
8512	PAH	Benzo[e]pyrene	14	ppb	
8512	PAH	Benzo[G,H,I]perylene	16	ppb	
8512	PAH	Fluoranthene	11	ppb	
8512	PAH	Indeno(1,2,3-CD)pyrene	12	ppb	
8512	PAH	Perylene	6	ppb	
8512	PAH	Pyrene	11	ppb	
8512	PCB	PCB 28	21	ppt	
8512	PCB	PCB 44	15	ppt	
8512	PCB	PCB 49	33	ppt	
8512	PCB	PCB 52	34	ppt	
8512	PCB	PCB 66	37	ppt	
8512	PCB	PCB 70	40	ppt	
8512	PCB	PCB 74	16	ppt	
8512	PCB	PCB 99	44	ppt	
8512	PCB	PCB 101	84	ppt	
8512	PCB	PCB 105	34	ppt	
8512	PCB	PCB 110	90	ppt	
8512	PCB	PCB 118	108	ppt	
8512	PCB	PCB 138	123	ppt	
8512	PCB	PCB 149	244	ppt	
8512	PCB	PCB 153/168	437	ppt	
8512	PCB	PCB 169	195	ppt	
8512	PCB	PCB 170	141	ppt	
8512	PCB	PCB 177	143	ppt	
8512	PCB	PCB 180	1000	ppt	
8512	PCB	PCB 183	241	ppt	
8512	PCB	PCB 187	670	ppt	
8512	PCB	PCB 194	520	ppt	
8512	PCB	PCB 206	370	ppt	
				66.	
8513	DDT	p,-p-DDMU	17	ppt	
8513	DDT	p,p-DDE	35	ppt	
8513	PAH	3,4-benzo(B)fluoranthene	12	ppb	
8513	PAH	Benzo[A]pyrene	10	ppb	
8513	PAH	Benzo[e]pyrene	7	ppb	
8513	PAH	Chrysene	11	ppb	
8513	PAH	Pyrene	8	ppb	
8513	PCB	PCB 18	18	ppt	
8513	PCB	PCB 28	27	ppt	
8513	PCB	PCB 37	11	ppt	
8513	PCB	PCB 44	19	ppt	
8513	PCB	PCB 49	14	ppt	
8513	PCB	PCB 52	20	ppt	
8513	PCB	PCB 66	15	ppt	
8513	PCB	PCB 70	13	ppt	
8513	PCB	PCB 74	11	ppt	
8513	PCB	PCB 81	8	ppt	
8513	PCB	PCB 101	21	ppt	
8513	PCB	PCB 110	18	ppt	
8513	PCB	PCB 118	15	ppt	
8513	PCB	PCB 128	14	ppt	
8513	PCB	PCB 138	21	ppt	
8513	PCB	PCB 149	27	ppt	
8513	PCB	PCB 151	14	ppt	
8513	PCB	PCB 153/168	41	ppt	

Table F.6 continue					
Station	Class	Constituent	Value	Units	
8513	PCB	PCB 158	13	ppt	
8513	PCB	PCB 187	20	ppt	
8513	PCB	PCB 206	23	ppt	
8514	DDT	p,p-DDE	47	ppt	
8514	PCB	PCB 18	6	ppt	
8514	PCB	PCB 28	9	ppt	
8514	PCB	PCB 37	8 7	ppt	
8514	PCB	PCB 44		ppt	
8514	PCB	PCB 52	9	ppt	
8514	PCB	PCB 66	9	ppt	
8514	PCB	PCB 70	8	ppt	
8514	PCB	PCB 74	8	ppt	
8514	PCB	PCB 149	16	ppt	
8514	PCB	PCB 153/168	20	ppt	
8515	DDT	p,-p-DDMU	17	ppt	
8515	DDT	p,p-DDD	36	ppt	
8515	DDT	p,p-DDE	60	ppt	
8515	PCB	PCB 18	10	ppt	
8515	PCB	PCB 28	13	ppt	
8515	PCB	PCB 37	16	ppt	
8515	PCB	PCB 44	16	ppt	
8515 8515	PCB PCB	PCB 52 PCB 66	19 17	ppt	
8515	PCB	PCB 00 PCB 70	21	ppt ppt	
8515	PCB	PCB 74	19	ppt	
8515	PCB	PCB 77	26	ppt	
8515	PCB	PCB 81	17	ppt	
8515	PCB	PCB 99	18	ppt	
8515	PCB	PCB 101	28	ppt	
8515	PCB	PCB 105	30	ppt	
8515	PCB	PCB 110	30	ppt	
8515	PCB	PCB 118	34	ppt	
8515	PCB	PCB 119	27	ppt	
8515	PCB	PCB 126	24	ppt	
8515	PCB	PCB 128	26	ppt	
8515	PCB	PCB 138	32	ppt	
8515	PCB	PCB 149	28	ppt	
8515	PCB	PCB 151	28	ppt	
8515	PCB PCB	PCB 153/168	66	ppt	
8515 8515	PCB	PCB 156 PCB 157	29 23	ppt	
8515	PCB	PCB 157 PCB 158	15	ppt ppt	
8515	PCB	PCB 167	29	ppt	
8515	PCB	PCB 169	17	ppt	
8515	PCB	PCB 170	26	ppt	
8515	PCB	PCB 183	20	ppt	
8515	PCB	PCB 187	40	ppt	
8515	PCB	PCB 206	22	ppt	
8516	Chlordane	Alpha(cis)Chlordane	93	nnt	
8516	Chlordane	Gamma(trans)Chlordane	93 80	ppt ppt	
8516	Chlordane	TransNonachlor	69	ppt	
8516	DDT	o,p-DDD	25		
0100	וטט	0,p-טטט	25	ppt	

Station	Class	Constituent	Value	Units	
8516	DDT	o,p-DDE	30	ppt	
8516	DDT	p,-p-DDMU	46	ppt	
8516	DDT	p,p-DDD	88	ppt	
8516	DDT	p,p-DDE	429	ppt	
8516	DDT	p,p-DDT	82	ppt	
8516	PAH	2,6-dimethylnaphthalene	15	ppb	
8516	PAH	Benzo[A]anthracene	24	ppb	
8516	PAH	Benzo[A]pyrene	33	ppb	
8516	PAH	Benzo[e]pyrene	27	ppb	
8516	PAH	Benzo[G,H,I]perylene	22	ppb	
8516	PAH	Chrysene	21	ppb	
8516	PAH	Fluoranthene	20	ppb	
8516	PAH	Indeno(1,2,3-CD)pyrene	18	ppb	
8516	PAH	Perylene	8	ppb	
8516	PAH	Pyrene	20	ppb	
8516	PCB	PCB 18	15	ppt	
8516	PCB	PCB 28	34		
8516	PCB	PCB 28 PCB 44	34	ppt	
8516	PCB	PCB 44 PCB 49	42	ppt	
				ppt	
8516	PCB	PCB 52	50	ppt	
8516	PCB	PCB 66	53	ppt	
8516	PCB	PCB 70	43	ppt	
8516	PCB	PCB 74	21	ppt	
8516	PCB	PCB 87	40	ppt	
8516	PCB	PCB 99	71	ppt	
8516	PCB	PCB 101	110	ppt	
8516	PCB	PCB 105	65	ppt	
8516	PCB	PCB 110	117	ppt	
8516	PCB	PCB 118	140	ppt	
8516	PCB	PCB 128	46	ppt	
8516	PCB	PCB 138	168	ppt	
8516	PCB	PCB 149	169	ppt	
8516	PCB	PCB 151	44	ppt	
8516	PCB	PCB 153/168	231	ppt	
8516	PCB	PCB 156	27	ppt	
8516	PCB	PCB 158	18	ppt	
8516	PCB	PCB 170	53	ppt	
8516	PCB	PCB 177	42	ppt	
8516	PCB	PCB 180	107	ppt	
8516	PCB	PCB 183	21	ppt	
8516	PCB	PCB 187	93	ppt	
8516	PCB	PCB 206	41	ppt	
8518	DDT	o,p-DDE	32	ppt	
8518	DDT	o,p-DDT	38	ppt	
8518	DDT	p,-p-DDMU	50	ppt	
8518	DDT	p,p-DDD	66	ppt	
8518	DDT	p,p-DDE	515	ppt	
8518	DDT	p,p-DDT	126	ppt	
8518	PAH	2,6-dimethylnaphthalene	15	ppb	
8518	PAH	3,4-benzo(B)fluoranthene	17	ppb	
8518	PAH	Benzo[A]pyrene	13	ppb	
8518	PAH	Benzo[e]pyrene	9	ppb	
8518	PAH	Benzo[G,H,I]perylene	11	ppb	
8518	PAH	Indeno(1,2,3-CD)pyrene	9	ppb	

Station	Class	Constituent	Value	Units	
8518	PAH	Pyrene	14	ppb	
8518	PCB	PCB 18	10	ppt	
8518	PCB	PCB 28	27	ppt	
8518	PCB	PCB 44	23	ppt	
8518	PCB	PCB 49	23	ppt	
8518	PCB	PCB 52	36	ppt	
8518	PCB	PCB 66	35	ppt	
8518	PCB	PCB 70	34	ppt	
8518	PCB	PCB 74	16	ppt	
8518	PCB	PCB 87	23	ppt	
8518	PCB	PCB 99	41	ppt	
8518	PCB	PCB 101	71	ppt	
8518	PCB	PCB 105	30	ppt	
8518	PCB	PCB 110	81	ppt	
8518	PCB	PCB 118	89	ppt	
8518	PCB	PCB 128	40	ppt	
8518	PCB	PCB 138	83	ppt	
8518	PCB	PCB 149	84	ppt	
8518	PCB	PCB 153/168	130	ppt	
8518	PCB	PCB 170	40	ppt	
8518	PCB	PCB 180	75	ppt	
8518	PCB	PCB 183	26	ppt	
8518	PCB	PCB 187	46	ppt	
8518	PCB	PCB 206	29	ppt	
8519	Chlordane	Gamma(trans)Chlordane	26	ppt	
8519	DDT	o,p-DDD	33	ppt	
8519	DDT	o,p-DDE	57	ppt	
8519	DDT	o,p-DDT	102	ppt	
8519	DDT	p,-p-DDMU	72	ppt	
8519	DDT	p,p-DDD	101	ppt	
8519	DDT	p,p-DDE	1020	ppt	
8519	DDT	p,p-DDT	474	ppt	
8519	PAH	2,6-dimethylnaphthalene	12	ppb	
8519	PAH	3,4-benzo(B)fluoranthene	12	ppb	
8519	PAH	Benzo[A]anthracene	11	ppb	
8519	PAH	Benzo[e]pyrene	8	ppb	
8519	PAH	Benzo[G,H,I]perylene	5	ppb	
8519	PAH	Chrysene	5	ppb	
8519	PAH	Pyrene	8	ppb	
8519	PCB	PCB 28	24	ppt	
8519	PCB	PCB 37	12	ppt	
8519	PCB	PCB 44	21	ppt	
8519	PCB	PCB 49	31	ppt	
8519	PCB	PCB 52	34	ppt	
8519	PCB	PCB 66	43	ppt	
8519	PCB	PCB 70	40	ppt	
8519	PCB	PCB 74	22	ppt	
8519	PCB	PCB 87	43	ppt	
8519	PCB	PCB 99	57	ppt	
8519	PCB	PCB 101	87	ppt	
8519	PCB	PCB 105	52	ppt	
8519	PCB	PCB 110	82	ppt	
8519	PCB	PCB 118	108	ppt	
8519	PCB	PCB 138	118	ppt	

Station	Class	Constituent	Value	Units	
8519	PCB	PCB 149	147	ppt	
8519	PCB	PCB 153/168	204	ppt	
8519	PCB	PCB 180	97	ppt	
8519	PCB	PCB 187	83	ppt	
8519	PCB	PCB 206	57	ppt	
8520	Chlordane	Alpha(cis)Chlordane	48	ppt	
8520	Chlordane	Gamma(trans)Chlordane	38	ppt	
8520	Chlordane	Methoxychlor	51	ppt	
8520	Chlordane	TransNonachlor	32	ppt	
8520	DDT	o,p-DDD	37	ppt	
8520	DDT	o,p-DDE	56	ppt	
8520	DDT	p,-p-DDMU	65	ppt	
8520	DDT	p,p-DDD	78	ppt	
8520	DDT	p,p-DDE	845	ppt	
8520	DDT	p,p-DDT	160	ppt	
8520	PAH	2,6-dimethylnaphthalene	12	ppb	
8520	PCB	PCB 18	17	ppt	
8520	PCB	PCB 28	33	ppt	
8520	PCB	PCB 44	22	ppt	
8520	PCB	PCB 49	21	ppt	
8520	PCB	PCB 52	31	ppt	
8520	PCB	PCB 66	30	ppt	
8520	PCB	PCB 70	31	ppt	
8520	PCB	PCB 74	24	ppt	
8520	PCB	PCB 77	27	ppt	
8520	PCB	PCB 87	28	ppt	
8520	PCB	PCB 99	52	ppt	
8520	PCB	PCB 101	61	ppt	
8520	PCB	PCB 105	50	ppt	
8520	PCB	PCB 110	71	ppt	
8520	PCB	PCB 118	101	ppt	
8520	PCB	PCB 128	40	ppt	
8520	PCB	PCB 138	131	ppt	
8520	PCB	PCB 149	110	ppt	
8520	PCB	PCB 151	35	ppt	
8520	PCB	PCB 153/168	180	ppt	
8520	PCB	PCB 170	40	ppt	
8520	PCB	PCB 177	52	ppt	
8520	PCB	PCB 180	59	ppt	
8520	PCB	PCB 183	21	ppt	
8520	PCB	PCB 187	64	ppt	
8520	PCB	PCB 206	44	ppt	
8521	DDT	o,p-DDE	43	ppt	
8521	DDT	p,-p-DDMU	48	ppt	
8521	DDT	p,p-DDD	72	ppt	
8521	DDT	p,p-DDE	542	ppt	
8521	DDT	p,p-DDT	61	ppt	
8521	PAH	2,6-dimethylnaphthalene	9	ppb	
8521	PAH	Fluoranthene	9	ppb	
8521	PCB	PCB 18	44	ppt	
8521	PCB	PCB 28	51	ppt	
8521	PCB	PCB 37	20	ppt	
8521	PCB	PCB 44	37	ppt	

Station	Class	Constituent	Value	Units	
8521	PCB	PCB 49	31	ppt	
8521	PCB	PCB 52	47	ppt	
8521	PCB	PCB 66	45	ppt	
8521	PCB	PCB 70	46	ppt	
8521	PCB	PCB 74	23	ppt	
8521	PCB	PCB 77	43	ppt	
8521	PCB	PCB 99	32	ppt	
8521	PCB	PCB 101	48	ppt	
8521	PCB	PCB 105	63	ppt	
8521	PCB	PCB 110	54	ppt	
8521	PCB	PCB 114	58	ppt	
8521	PCB	PCB 123	64	ppt	
8521	PCB	PCB 153/168	28	ppt	
8522	DDT	p,-p-DDMU	20	ppt	
8522	DDT	p,p-DDE	43	ppt	
8522	PCB	PCB 49	7	ppt	
8522	PCB	PCB 52	4	ppt	
8522	PCB	PCB 66	6	ppt	
8522	PCB	PCB 70	8	ppt	
8523	Chlordane	Alpha(cis)Chlordane	53	ppt	
8523	Chlordane	Gamma(trans)Chlordane	39	ppt	
8523	DDT	o,p-DDE	54	ppt	
8523	DDT	p,-p-DDMU	94	ppt	
8523	DDT	p,p-DDD	79	ppt	
8523	DDT	p,p-DDE	942	ppt	
8523	DDT	p,p-DDT	115	ppt	
8523	PAH	2,6-dimethylnaphthalene	13	ppb	
8523	PAH	3,4-benzo(B)fluoranthene	9	ppb	
8523	PAH	Benzo[G,H,I]perylene	7	ppb	
8523	PAH	Pyrene	9	ppb	
8523	PCB	PCB 44	36	ppt	
8523	PCB	PCB 49	33	ppt	
8523	PCB	PCB 52	36	ppt	
8523	PCB	PCB 66	62	ppt	
8523	PCB	PCB 70	55	ppt	
8523	PCB	PCB 74	31	ppt	
8523	PCB	PCB 99	82	ppt	
8523 8523	PCB PCB	PCB 101	101 48	ppt	
8523	PCB	PCB 105 PCB 110	40 116	ppt	
8523	PCB	PCB 118	153	ppt	
8523	PCB	PCB 128	52	ppt	
8523	PCB	PCB 138	188	ppt ppt	
8523	PCB	PCB 149	184	ppt	
8523	PCB	PCB 153/168	284	ppt	
8523	PCB	PCB 158	204	ppt	
8523	PCB	PCB 170	99	ppt	
8523	PCB	PCB 177	44	ppt	
8523	PCB	PCB 180	170	ppt	
8523	PCB	PCB 183	49	ppt	
8523	PCB	PCB 187	112	ppt	
8524	Chlordane	Alpha(cis)Chlordane	35	ppt	
	Chiordane			PPr	

8524 Chlordane Gamma(trans)Chlordane 22 ppt 8524 DDT p,-p-DDMU 30 ppt 8524 DDT p,p-DDE 36 ppt 8524 DDT p,p-DDE 343 ppt 8524 DDT p,p-DDT 42 ppt 8524 PAH 2,6-dimethylnaphthalene 9 ppb 8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 8101 26 ppt 8524 PCB PCB 101 26 </th <th></th>	
8524 DDT p,-p-DDMU 30 ppt 8524 DDT p,p-DDD 36 ppt 8524 DDT p,p-DDE 343 ppt 8524 DDT p,p-DDT 42 ppt 8524 DDT p,p-DDT 42 ppt 8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 102 25 ppt	
8524 DDT p,p-DDD 36 ppt 8524 DDT p,p-DDE 343 ppt 8524 DDT p,p-DDT 42 ppt 8524 PAH 2,6-dimethylnaphthalene 9 ppb 8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 8101 26 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 102 28 ppt <td></td>	
8524 DDT p,p-DDE 343 ppt 8524 DDT p,p-DDT 42 ppt 8524 PAH 2,6-dimethylnaphthalene 9 ppb 8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 80 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 102 28 ppt 8524 PCB PCB 102 25 ppt	
8524 DDT p,p-DDT 42 ppt 8524 PAH 2,6-dimethylnaphthalene 9 ppb 8524 PCB PCB 18 19 ppt 8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 128 30 ppt 8524	
8524 PCB PCB 18 19 ppt 8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 128 30 ppt <	
8524 PCB PCB 44 22 ppt 8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 101 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 153/168 78 ppt	
8524 PCB PCB 49 28 ppt 8524 PCB PCB 52 24 ppt 8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 153/168 78 ppt	
8524 PCB PCB 52 24 ppt 8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt	
8524 PCB PCB 66 27 ppt 8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt <td></td>	
8524 PCB PCB 70 19 ppt 8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 118 30 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 183 23 ppt 8524	
8524 PCB PCB 74 16 ppt 8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 153 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 183 23 ppt 8524 <td></td>	
8524 PCB PCB 81 17 ppt 8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 183 23 ppt 8524 <td></td>	
8524 PCB PCB 99 30 ppt 8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt 8524 PCB PCB 187 30 ppt <td></td>	
8524 PCB PCB 101 26 ppt 8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 158 30 ppt 8524 PCB PCB 158 30 ppt 8524 PCB PCB 158 30 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524 PCB PCB 105 28 ppt 8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524 PCB PCB 110 25 ppt 8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 23 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524 PCB PCB 118 43 ppt 8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524 PCB PCB 128 30 ppt 8524 PCB PCB 138 56 ppt 8524 PCB PCB 149 60 ppt 8524 PCB PCB 153/168 78 ppt 8524 PCB PCB 156 16 ppt 8524 PCB PCB 158 16 ppt 8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524PCBPCB 13856ppt8524PCBPCB 14960ppt8524PCBPCB 153/16878ppt8524PCBPCB 15616ppt8524PCBPCB 15816ppt8524PCBPCB 18323ppt8524PCBPCB 18730ppt	
8524PCBPCB 14960ppt8524PCBPCB 153/16878ppt8524PCBPCB 15616ppt8524PCBPCB 15816ppt8524PCBPCB 18323ppt8524PCBPCB 18730ppt	
8524PCBPCB 153/16878ppt8524PCBPCB 15616ppt8524PCBPCB 15816ppt8524PCBPCB 18323ppt8524PCBPCB 18730ppt	
8524PCBPCB 15616ppt8524PCBPCB 15816ppt8524PCBPCB 18323ppt8524PCBPCB 18730ppt	
8524PCBPCB 15816ppt8524PCBPCB 18323ppt8524PCBPCB 18730ppt	
8524 PCB PCB 183 23 ppt 8524 PCB PCB 187 30 ppt	
8524 PCB PCB 187 30 ppt	
8525 DDT o,p-DDD 15 ppt	
8525 DDT o,p-DDT 53 ppt	
8525 DDT p,-p-DDMU 29 ppt	
8525 DDT p,p-DDD 32 ppt	
8525 DDT p,p-DDE 156 ppt	
8525 DDT p,p-DDT 271 ppt	
8525 PAH 2,6-dimethylnaphthalene 10 ppb	
8525 PAH Benzo[G,H,I]perylene 7 ppb	
8525 PAH Chrysene 9 ppb	
8525 PAH Fluoranthene 14 ppb	
8525 PAH Phenanthrene 13 ppb	
8525 PAH Pyrene 15 ppb	
8525 PCB PCB 18 16 ppt	
8525 PCB PCB 28 25 ppt	
8525 PCB PCB 44 18 ppt	
8525 PCB PCB 49 26 ppt 8525 PCB PCB 52 18 ppt	
8525 PCB PCB 101 35 ppt 8525 PCB PCB 110 29 ppt	
8525 PCB PCB 118 29 ppt	
8525 PCB PCB 138 55 ppt	
8525 PCB PCB 149 37 ppt	
8525 PCB PCB 153/168 64 ppt	

Station Class Constituent Value Units 8525 PCB PCB 169 11 ppt 8525 PCB PCB 170 33 ppt 8525 PCB PCB 180 60 ppt 8525 PCB PCB 187 32 ppt 8526 DDT o.p-DDE 60 ppt 8526 DDT p.p-DDE 824 ppt 8526 DDT p.p-DDT 131 ppt 8526 DDT p.P-DDT 131 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 101 70 ppt<
8525 PCB PCB 170 33 ppt 8525 PCB PCB 180 60 ppt 8525 PCB PCB 187 32 ppt 8525 PCB PCB 206 23 ppt 8526 DDT p,-p-DDE 60 ppt 8526 DDT p,-p-DDT 824 ppt 8526 DDT p,-DDT 131 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 101 70 ppt
8525 PCB PCB 180 60 ppt 8525 PCB PCB 187 32 ppt 8526 PCB PCB 206 23 ppt 8526 DDT $p, p-DDE$ 60 ppt 8526 DDT $p, p-DDE$ 824 ppt 8526 DDT $p, p-DDE$ 824 ppt 8526 DDT $p, p-DDT$ 131 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 105 37 ppt
8525 PCB PCB 187 32 ppt 8525 PCB PCB 206 23 ppt 8526 DDT o,p-DDE 60 ppt 8526 DDT p,p-DDWU 66 ppt 8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDT 131 ppt 8526 PCB PCB 444 17 ppt 8526 PCB PCB 49 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 118 100 ppt
8525 PCB PCB 206 23 ppt 8526 DDT o,p-DDE 60 ppt 8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDT 131 ppt 8526 PAH 2,6-dimethylnaphthalene 12 ppb 8526 PCB PCB 44 17 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 102 37 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 138 100
8526 DDT o,p-DDE 60 ppt 8526 DDT p,p-DDWU 66 ppt 8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDT 131 ppt 8526 PAH 2.6-dimethylnaphthalene 12 ppb 8526 PCB PCB 44 17 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 102 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 133 100 ppt 8526 PCB PCB 133 159 <td< td=""></td<>
8526 DDT p,-p-DDMU 66 ppt 8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDT 131 ppt 8526 PAH 2,6-dimethylnaphthalene 12 ppb 8526 PCB PCB 44 17 ppt 8526 PCB PCB 44 17 ppt 8526 PCB PCB 42 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 138 102 p
8526 DDT p,p-DDE 824 ppt 8526 DDT p,p-DDT 131 ppt 8526 PCB PCB44 17 ppt 8526 PCB PCB49 24 ppt 8526 PCB PCB52 27 ppt 8526 PCB PCB666 42 ppt 8526 PCB PCB70 34 ppt 8526 PCB PCB70 37 ppt 8526 PCB PCB101 70 ppt 8526 PCB PCB101 70 ppt 8526 PCB PCB118 100 ppt 8526 PCB PCB138 102 ppt 8526 PCB PCB138 102 ppt
8526 DDT p,p-DDT 131 ppt 8526 PAH 2,6-dimethylnaphthalene 12 ppb 8526 PCB PCB 44 17 ppt 8526 PCB PCB 49 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 138 100 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 p
8526 PAH 2,6-dimethylnaphthalene 12 ppb 8526 PCB PCB 44 17 ppt 8526 PCB PCB 49 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 pp
8526 PCB PCB 44 17 ppt 8526 PCB PCB 49 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt <
8526 PCB PCB 49 24 ppt 8526 PCB PCB 52 27 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt
8526 PCB PCB 52 27 ppt 8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt
8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 99 58 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt
8526 PCB PCB 66 42 ppt 8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 99 58 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt
8526 PCB PCB 70 34 ppt 8526 PCB PCB 74 17 ppt 8526 PCB PCB 99 58 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt
8526 PCB PCB 74 17 ppt 8526 PCB PCB 99 58 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,p-DDMU 50 ppt
8526 PCB PCB 99 58 ppt 8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 183 25 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT p,-DDMU 50 ppt 8527 DDT p,DDDD 84 ppt
8526 PCB PCB 101 70 ppt 8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 153/168 31 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,p-DDN 84 ppt 8527 DDT p,p-DDT 643 ppt 8527 DDT p,DDT 67 ppt </td
8526 PCB PCB 105 37 ppt 8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT p,p-DDMU 50 ppt 8527 DDT p,p-DDE 643 ppt </td
8526 PCB PCB 110 66 ppt 8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT p,p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt
8526 PCB PCB 118 100 ppt 8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDMU 50 ppt 8527 DDT p,p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt </td
8526 PCB PCB 138 102 ppt 8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb </td
8526 PCB PCB 149 76 ppt 8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDMU 50 ppt 8527 DDT p,p-DDDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8526 PCB PCB 153/168 159 ppt 8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8526 PCB PCB 158 31 ppt 8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDD 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8526 PCB PCB 180 109 ppt 8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,o-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8526 PCB PCB 183 25 ppt 8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDDD 84 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8526 PCB PCB 187 61 ppt 8527 DDT o,p-DDD 32 ppt 8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDDD 84 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 DDT p,2-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8527DDTo,p-DDD32ppt8527DDTo,p-DDE49ppt8527DDTp,-p-DDMU50ppt8527DDTp,p-DDD84ppt8527DDTp,p-DDE643ppt8527DDTp,p-DDT67ppt8527PAH2,6-dimethylnaphthalene35ppb8527PAH3,4-benzo(B)fluoranthene10ppb
8527 DDT o,p-DDE 49 ppt 8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8527 DDT p,-p-DDMU 50 ppt 8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8527 DDT p,p-DDD 84 ppt 8527 DDT p,p-DDE 643 ppt 8527 DDT p,p-DDT 67 ppt 8527 PAH 2,6-dimethylnaphthalene 35 ppb 8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8527DDTp,p-DDE643ppt8527DDTp,p-DDT67ppt8527PAH2,6-dimethylnaphthalene35ppb8527PAH3,4-benzo(B)fluoranthene10ppb
8527DDTp,p-DDT67ppt8527PAH2,6-dimethylnaphthalene35ppb8527PAH3,4-benzo(B)fluoranthene10ppb
8527DDTp,p-DDT67ppt8527PAH2,6-dimethylnaphthalene35ppb8527PAH3,4-benzo(B)fluoranthene10ppb
8527PAH2,6-dimethylnaphthalene35ppb8527PAH3,4-benzo(B)fluoranthene10ppb
8527 PAH 3,4-benzo(B)fluoranthene 10 ppb
8527 PCB PCB 18 14 ppt
8527 PCB PCB 28 22 ppt
8527 PCB PCB 37 17 ppt
8527 PCB PCB 44 22 ppt
8527 PCB PCB 49 25 ppt
8527 PCB PCB 52 24 ppt
8527 PCB PCB 66 32 ppt
8527 PCB PCB 70 20 ppt
8527 PCB PCB 74 18 ppt
8527 PCB PCB 77 15 ppt
8527 PCB PCB 99 33 ppt
8527 PCB PCB 101 37 ppt
8527 PCB PCB 105 30 ppt
8527 PCB PCB 110 53 ppt
8527 PCB PCB 118 31 ppt
8527 PCB PCB 138 36 ppt

Station	Class	Constituent	Value	Units	
8527	PCB	PCB 149	48	ppt	
8527	PCB	PCB 153/168	67	ppt	
8527	PCB	PCB 206	38	ppt	
8528	Chlordane	Alpha(cis)Chlordane	110	ppt	
8528	Chlordane	Gamma(trans)Chlordane	78	ppt	
8528	Chlordane	TransNonachlor	42	ppt	
8528	DDT	o,p-DDT	41	ppt	
8528	DDT	p,-p-DDMU	11	ppt	
8528	DDT	p,p-DDE	129	ppt	
8528	DDT	p,p-DDT	159	ppt	
8528	PAH	2,6-dimethylnaphthalene	11	ppb	
8528	PCB	PCB 18	12	ppt	
8528	PCB	PCB 28	12	ppt	
8528	PCB	PCB 44	13	ppt	
8528	PCB	PCB 52	13	ppt	
8528	PCB	PCB 66	10	ppt	
8528	PCB	PCB 70	11	ppt	
8528	PCB	PCB 74	9	ppt	
8528	PCB	PCB 99	19	ppt	
8528	PCB	PCB 138	17	ppt	
8528	PCB	PCB 151	13	ppt	
8528	PCB	PCB 153/168	28	ppt	
8529	DDT	p,-p-DDMU	32	ppt	
8529	DDT	p,p-DDD	40	ppt	
8529	DDT	p,p-DDE	268	ppt	
8529	PAH	2,6-dimethylnaphthalene	11	ppb	
8529	PAH	Pyrene	6	ppb	
8529	PCB	PCB 49	17	ppt	
8529	PCB	PCB 66	25	ppt	
8529	PCB	PCB 70	15	ppt	
8529	PCB	PCB 99	29	ppt	
8529	PCB	PCB 101	24	ppt	
8529	PCB	PCB 110	27	ppt	
8529	PCB	PCB 118	34	ppt	
8529	PCB	PCB 138	48	ppt	
8529	PCB	PCB 149	62	ppt	
8529	PCB	PCB 153/168	105	ppt	
8529	PCB	PCB 180	63	ppt	
8529	PCB	PCB 187	48	ppt	
8529	PCB	PCB 194	68	ppt	
8530	DDT	p,-p-DDMU	6	ppt	
8530	DDT	p,p-DDE	86	ppt	
8530	DDT	p,p-DDT	30	ppt	
8530	PAH	2,6-dimethylnaphthalene	11	ppb	
8530	PCB	PCB 18	8	ppt	
8530	PCB	PCB 28	8	ppt	
8530	PCB	PCB 37	4	ppt	
8530	PCB	PCB 44	11	ppt	
8530	PCB	PCB 52	14	ppt	
8530	PCB	PCB 66	10	ppt	
8530	PCB	PCB 70	11	ppt	
8530	PCB	PCB 110	28	ppt	

Station	Class	Constituent	Value	Units	
8530	PCB	PCB 138	19	ppt	
8530	PCB	PCB 149	21	ppt	
8530	PCB	PCB 187	19	ppt	
8531	DDT	p,-p-DDMU	26	ppt	
8531	DDT	p,p-DDD	23	ppt	
8531	DDT	p,p-DDE	218	ppt	
8531	DDT	p,p-DDT	67	ppt	
8531	PAH	2,6-dimethylnaphthalene	10	ppb	
8531	PCB	PCB 28	20	ppt	
8531	PCB	PCB 44	13	ppt	
8531	PCB	PCB 52	15	ppt	
8531	PCB	PCB 66	13	ppt	
8531	PCB	PCB 70	14	ppt	
8531	PCB	PCB 74	7	ppt	
8531	PCB	PCB 118	22	ppt	
8531	PCB	PCB 138	29	ppt	
8531	PCB	PCB 149	22	ppt	
8531	PCB	PCB 153/168	35	ppt	
8531	PCB	PCB 187	18	ppt	
8532	DDT	o,p-DDD	18	ppt	
8532	DDT	o,p-DDE	30	ppt	
8532	DDT	p,-p-DDMU	42	ppt	
8532	DDT	p,p-DDD	40	ppt	
8532	DDT	p,p-DDE	483	ppt	
8532	DDT	p,p-DDT	63	ppt	
8532	PAH	2,6-dimethylnaphthalene	11	ppb	
8532	PCB	PCB 18	10	ppt	
8532	PCB	PCB 28	23	ppt	
8532	PCB	PCB 44	16	ppt	
8532	PCB	PCB 49	13	ppt	
8532	PCB	PCB 52	20	ppt	
8532	PCB	PCB 66	26	ppt	
8532	PCB	PCB 70	22	ppt	
8532	PCB	PCB 74	12	ppt	
8532	PCB	PCB 87	25	ppt	
8532	PCB	PCB 99	37	ppt	
8532	PCB	PCB 101	53	ppt	
8532	PCB	PCB 105	30	ppt	
8532	PCB	PCB 110	57	ppt	
8532	PCB	PCB 118	83	ppt	
8532	PCB	PCB 128 PCB 138	37	ppt	
8532	PCB PCB		97	ppt	
8532	PCB	PCB 149	70	ppt	
8532 8532	PCB	PCB 153/168 PCB 158	122 22	ppt	
8532	PCB	PCB 150 PCB 180	42	ppt	
8532	PCB	PCB 187	30	ppt ppt	
8532	PCB	PCB 206	33	ppt	
8533	Chlordane	Alpha(cis)Chlordane	76	ppt	
8533	Chlordane	Gamma(trans)Chlordane	47	ppt	
8533	Chlordane	TransNonachlor	37	ppt	
8533	DDT	o,p-DDD	49	ppt	

Station	Class	Constituent	Value	Units	
8533	DDT	o,p-DDE	52	ppt	
8533	DDT	p,-p-DDMU	42	ppt	
8533	DDT	p,p-DDD	60	ppt	
8533	DDT	p,p-DDE	352	ppt	
8533	DDT	p,p-DDT	31	ppt	
8533	PAH	2,6-dimethylnaphthalene	8	ppb	
8533	PCB	PCB 18	18	ppt	
8533	PCB	PCB 28	17	ppt	
8533	PCB	PCB 44	22	ppt	
8533	PCB	PCB 49	22	ppt	
8533	PCB	PCB 52	26	ppt	
8533	PCB	PCB 66	22	ppt	
8533	PCB	PCB 70	22	ppt	
8533	PCB	PCB 74	15	ppt	
8533	PCB	PCB 77	19	ppt	
8533	PCB	PCB 81	14	ppt	
8533	PCB	PCB 99	31	ppt	
8533	PCB	PCB 101	26	ppt	
8533	PCB	PCB 105	20	ppt	
8533	PCB	PCB 110	24	ppt	
8533	PCB	PCB 118	24	ppt	
8533	PCB	PCB 138	41	ppt	
8533	PCB	PCB 149	39	ppt	
8533	PCB	PCB 153/168	60	ppt	
8533	PCB	PCB 158	18	ppt	
8533	PCB	PCB 187	31	ppt	
0504			50	ant	
8534	DDT	o,p-DDE	52	ppt	
8534	DDT	p,-p-DDMU	54	ppt	
8534	DDT	p,p-DDE	562	ppt	
8534	DDT	p,p-DDT	42 16	ppt	
8534	PAH	2,6-dimethylnaphthalene		ppb	
8534	PCB	PCB 28	16 7	ppt	
8534	PCB	PCB 37		ppt	
8534	PCB	PCB 44	11	ppt	
8534	PCB	PCB 49	16	ppt	
8534	PCB	PCB 52	11	ppt	
8534	PCB	PCB 66	24	ppt	
8534	PCB	PCB 70 PCB 74	17	ppt	
8534	PCB		9	ppt	
8534	PCB	PCB 99	28	ppt	
8534	PCB	PCB 101	28	ppt	
8534	PCB	PCB 110	38	ppt	
8534	PCB	PCB 118	49	ppt	
8534	PCB	PCB 138	54	ppt	
8534	PCB	PCB 149	44	ppt	
8534	PCB	PCB 153/168	79	ppt	
8534	PCB	PCB 187	30	ppt	
8536	DDT	o,p-DDE	36	ppt	
8536	DDT	p,-p-DDMU	27	ppt	
8536	DDT	p,p-DDD	26	ppt	
8536	DDT	p,p-DDE	318	ppt	
8536	PAH	2,6-dimethylnaphthalene	8	ppb	

Station	Class	Constituent	Value	Units	
8536	PCB	PCB 49	12	ppt	
8536	PCB	PCB 52	10	ppt	
8536	PCB	PCB 66	15	ppt	
8536	PCB	PCB 70	14	ppt	
8536	PCB	PCB 101	15	ppt	
8536	PCB	PCB 110	26	ppt	
8536	PCB	PCB 118	38	ppt	
8536	PCB	PCB 138	38	ppt	
8536	PCB	PCB 149	40	ppt	
8536	PCB	PCB 153/168	60	ppt	
8536	PCB	PCB 187	35	ppt	
8537	Chlordane	Alpha(cis)Chlordane	76	ppt	
8537	Chlordane	Gamma(trans)Chlordane	66	ppt	
8537	Chlordane	Heptachlor	45	ppt	
8537	Chlordane	TransNonachlor	72	ppt	
8537	DDT	o,p-DDD	84	ppt	
8537	DDT	o,p-DDE	138	ppt	
8537	DDT	p,-p-DDMU	113	ppt	
8537	DDT	p,p-DDD	146	ppt	
8537	DDT	p,p-DDE	1520	ppt	
8537	DDT	p,p-DDT	163	ppt	
8537	PAH	2,6-dimethylnaphthalene	23	ppb	
8537	PAH	3,4-benzo(B)fluoranthene	15	ppb	
8537	PAH	Benzo[A]pyrene	9	ppb	
8537	PAH	Benzo[e]pyrene	10	ppb	
8537	PAH	Benzo[G,H,I]perylene	13	ppb	
8537	PAH	Fluoranthene	11	ppb	
8537	PAH	Pyrene	16	ppb	
8537	PCB	PCB 44	44	ppt	
8537	PCB	PCB 49	57	ppt	
8537	PCB	PCB 52	56	ppt	
8537	PCB	PCB 66	55	ppt	
8537	PCB	PCB 70	56		
8537	PCB	PCB 74	32	ppt	
8537	PCB	PCB 81	18	ppt	
8537	PCB	PCB 87	52	ppt	
8537	PCB	PCB 99	52 59	ppt	
8537	PCB	PCB 99 PCB 101	83	ppt	
8537	PCB	PCB 101 PCB 105		ppt	
			53	ppt	
8537	PCB	PCB 110	97	ppt	
8537	PCB	PCB 118	121	ppt	
8537	PCB	PCB 119	25	ppt	
8537	PCB	PCB 128	70	ppt	
8537	PCB	PCB 138	123	ppt	
8537	PCB	PCB 149	122	ppt	
8537	PCB	PCB 153/168	167	ppt	
8537	PCB	PCB 156	31	ppt	
8537	PCB	PCB 158	25	ppt	
8537	PCB	PCB 180	78	ppt	
8537	PCB	PCB 187	52	ppt	
8537	PCB	PCB 206	48	ppt	
8538	DDT	p,-p-DDMU	35	ppt	
8538	DDT	p,p-DDD	25	ppt	

Station	Class	Constituent	Value	Units	
8538	DDT	p,p-DDE	231	ppt	
8538	PAH	2,6-dimethylnaphthalene	9	ppb	
8538	PCB	PCB 44	31	ppt	
8538	PCB	PCB 49	18	ppt	
8538	PCB	PCB 52	61	ppt	
8538	PCB	PCB 66	18	ppt	
8538	PCB	PCB 70	44	ppt	
8538	PCB	PCB 87	52	ppt	
8538	PCB	PCB 99	54	ppt	
8538	PCB	PCB 101	116	ppt	
8538	PCB	PCB 105	44	ppt	
8538	PCB	PCB 110	126	ppt	
8538	PCB	PCB 118	111	ppt	
8538	PCB	PCB 128	28	ppt	
8538	PCB	PCB 138	89	ppt	
8538	PCB	PCB 149	73	ppt	
8538	PCB	PCB 153/168	106	ppt	
8539	DDT	o,p-DDD	24	ppt	
8539	DDT	o,p-DDE	61	ppt	
8539	DDT	p,-p-DDMU	100	ppt	
8539	DDT	p,p-DDD	111	ppt	
8539	DDT	p,p-DDE	869	ppt	
8539	PAH	2,6-dimethylnaphthalene	19	ppb	
8539	PAH	3,4-benzo(B)fluoranthene	9	ppb	
8539	PAH	Fluoranthene	8	ppb	
8539	PAH	Pyrene	8	ppb	
8539	PCB	PCB 49	24	ppt	
8539	PCB	PCB 52	25	ppt	
8539	PCB	PCB 66	33	ppt	
8539	PCB	PCB 70	24	ppt	
8539	PCB	PCB 74	17	ppt	
8539	PCB	PCB 87	26	ppt	
8539	PCB	PCB 99	50	ppt	
8539	PCB	PCB 101	62	ppt	
8539	PCB	PCB 105	36	ppt	
8539	PCB	PCB 110	63	ppt	
8539	PCB	PCB 118	58	ppt	
8539	PCB	PCB 138	60	ppt	
8539	PCB	PCB 149	54	ppt	
8539	PCB	PCB 153/168	84	ppt	
8539	PCB	PCB 187	34	ppt	
0540			50	221	
8540	DDT	o,p-DDD	56 125	ppt	
8540	DDT	o,p-DDE	125	ppt	
8540	DDT	p,-p-DDMU	119	ppt	
8540	DDT	p,p-DDD	163	ppt	
8540	DDT	p,p-DDE	1410	ppt	
8540	DDT	p,p-DDT	240	ppt	
8540	PAH	2,6-dimethylnaphthalene	26	ppb	
8540	PAH	3,4-benzo(B)fluoranthene	21	ppb	
8540	PAH	Benzo[A]pyrene	15	ppb	
8540	PAH	Benzo[e]pyrene	16	ppb	
		DenzelC H Deendene	10	nnh	
8540 8540	PAH PAH	Benzo[G,H,I]perylene Chrysene	18 14	ppb ppb	

Iable F.6 continue	ed				
Station	Class	Constituent	Value	Units	
8540	PAH	Fluoranthene	23	ppb	
8540	PAH	Indeno(1,2,3-CD)pyrene	15	ppb	
8540	PAH	Perylene	21	ppb	
8540	PAH	Pyrene	29	ppb	
8540	PCB	PCB 44	25	ppt	
8540	PCB	PCB 49	47	ppt	
8540	PCB	PCB 52	49	ppt	
8540	PCB	PCB 66	47	ppt	
8540	PCB	PCB 70	53	ppt	
8540	PCB	PCB 99	54	ppt	
8540	PCB	PCB 101	66	ppt	
8540	PCB	PCB 105	34	ppt	
8540	PCB	PCB 110	77	ppt	
8540	PCB	PCB 138	74	ppt	
8540	PCB	PCB 149	69	ppt	
8540	PCB	PCB 153/168	99		
			99 58	ppt	
8540	PCB	PCB 187	00	ppt	
8542	DDT	p,-p-DDMU	21	ppt	
8542	DDT	p,p-DDD	24	ppt	
8542	DDT	p,p-DDE	271	ppt	
8542	PAH	2,6-dimethylnaphthalene	11	ppb	
8542	PCB	PCB 18	12	ppt	
8542	PCB	PCB 28	16	ppt	
8542	PCB	PCB 44	20	ppt	
8542	PCB	PCB 49	20	ppt	
8542	PCB	PCB 52	24	ppt	
8542	PCB	PCB 66	19	ppt	
8542	PCB	PCB 70	19		
8542	PCB	PCB 74	14	ppt	
8542	PCB	PCB 99	28	ppt	
8542	PCB	PCB 101		ppt	
	PCB	PCB 101 PCB 105	36 22	ppt	
8542 8542				ppt	
	PCB	PCB 110	41	ppt	
8542	PCB	PCB 118	50	ppt	
8542	PCB	PCB 138	47	ppt	
8542	PCB	PCB 149	40	ppt	
8542	PCB	PCB 153/168	77	ppt	
8542	PCB	PCB 187	28	ppt	
8547	DDT	o,p-DDD	18	ppt	
8547	DDT	o,p-DDE	77	ppt	
8547	DDT	p,-p-DDMU	94	ppt	
8547	DDT	p,p-DDD	74	ppt	
8547	DDT	p,p-DDE	1130	ppt	
8547	DDT	p,p-DDT	57	ppt	
8547	PAH	2,6-dimethylnaphthalene	15	ppt	
8547	PCB	PCB 18	20	ppb	
8547	PCB	PCB 28	33		
8547	PCB	PCB 20 PCB 37	33 14	ppt	
8547	PCB	PCB 37 PCB 44		ppt	
			19	ppt	
8547	PCB	PCB 49	28	ppt	
8547	PCB	PCB 52	21	ppt	
8547	PCB	PCB 66	38	ppt	
8547	PCB	PCB 70	27	ppt	

Station	Class	Constituent	Value	Units
8547	PCB	PCB 74	15	ppt
8547	PCB	PCB 99	45	ppt
8547	PCB	PCB 101	38	ppt
8547	PCB	PCB 105	27	ppt
8547	PCB	PCB 110	44	ppt
8547	PCB	PCB 118	59	ppt
8547	PCB	PCB 138	64	ppt
8547	PCB	PCB 149	71	ppt
8547	PCB	PCB 153/168	95	ppt
8547	PCB	PCB 187	46	ppt

Macrofaunal community parameters calculated for the 2016 San Diego regional benthic stations. SR=species richness; Abun=abundance; H'=Shannon diversity index; J'=Pielou's evenness; Dom=Swartz dominance; BRI=benthic response index; n=1 grab per station.

	Station	Depth (m)	SR	Abun	Η'	J'	Dom	BRI ^a
Inner Shelf	8513	5	14	73	1.9	0.73	4	_
	8501	17	55	170	3.0	0.75	17	23
	8514	18	40	125	2.9	0.79	13	24
	8515	20	42	159	2.8	0.76	13	23
	8522	22	22	207	1.9	0.61	3	-3
	8505	26	76	336	2.7	0.63	18	23
Mid-Shelf	8508	34	133	830	3.3	0.67	24	23
	8502	35	85	460	3.0	0.68	17	22
	8533	36	23	67	2.5	0.79	8	4
	8538	37	53	155	3.6	0.90	22	24
	8529	45	90	442	3.8	0.84	30	20
	8506	48	39	94	3.3	0.91	17	24
	8525	48	94	363	3.8	0.84	35	17
	8530	52	110	512	3.9	0.83	31	13
	8517	57	93	428	3.5	0.77	23	14
	8523	81	47	191	3.0	0.79	13	8
	8518	85	48	155	3.3	0.86	19	11
	8534	85	58	209	3.4	0.84	19	14
	8507	91	83	243	4.0	0.91	34	3
	8503	92	62	188	3.6	0.88	24	4
	8531	100	62	153	3.7	0.90	26	7
	8526	101	63	186	3.7	0.89	25	11
	8509	108	89	209	4.2	0.93	42	11
	8539	112	62	392	3.3	0.79	16	23
	8528	120	62	167	3.5	0.85	22	21
Outer Shelf	8524	123	73	278	3.6	0.83	21	14
	8536	135	53	222	3.2	0.81	14	16
	8520	138	64	285	3.3	0.80	15	17
	8519	142	57	211	3.3	0.83	17	16
	8542	147	79	161	4.0	0.92	39	8
	8547	156	58	261	3.4	0.83	18	19
	8504	171	66	223	3.6	0.86	22	16
	8532	178	37	172	3.2	0.87	14	18
	8510	195	60	154	3.6	0.88	24	15
	8516	200	29	63	3.1	0.91	14	22
Upper Slope	8512	240	40	87	3.2	0.86	19	
	8521	340	26	40	3.1	0.96	17	_
	8527	350	25	43	3.1	0.95	15	_
	8537	350	33	67	3.1	0.90	17	—
	8540	437	18	55	2.3	0.81	7	_

^aBRI statistic not calculated for stations located at depths ≤5 m or >200 m

Most abundant macroinvertebrate species per depth stratum collected at the 2016 San Diego regional benthic stations. Data include 10 most abundant species by total abundance per stratum. PA=percent abundance; FO=frequency occurrence; M/O=mean abundance per occurrence; M/G=mean abundance per grab.

Strata	Species	Taxonomic Classification	PA	FO	M/O	M/G
Inner	Spiophanes norrisi	Polychaeta: Spionidae	28	67	74	49
Shelf	Micranellum crebricinctum	Mollusca: Gastropoda	6	17	64	11
	Halistylus pupoideus	Mollusca: Gastropoda	6	17	59	10
	<i>Mediomastus</i> sp	Polychaeta: Capitellidae	4	67	11	7
	Pista wui Polychaeta: Terebellidae		4	50	14	7
	Gastropodaª	Mollusca: Gastropoda	3	17	36	6
	Rhepoxynius menziesi	Arthropoda: Amphipoda	3	67	8	5
	Ampharete labrops	Polychaeta: Ampharetidae	2	67	6	4
	Dendraster excentricus	Echinodermata: Echinoidea	2	17	20	3
	Trochoideaª	Mollusca: Gastropoda	2	17	20	3
Mid-shelf	Spiophanes duplex	Polychaeta: Spionidae	10	95	29	28
	Spiophanes norrisi	Polychaeta: Spionidae	9	42	64	27
	Amphiodia urtica	Echinodermata: Ophiuroidea	5	58	23	14
	Eclysippe trilobata	Polychaeta: Ampharetidae	3	74	13	9
	Euclymeninae sp B	Polychaeta: Maldanidae	3	74	12	9
	Axinopsida serricata	Mollusca: Bivalvia	3	53	15	8
	Prionospio (Prionospio) dubia	Polychaeta: Spionidae	2	84	8	7
	<i>Mediomastus</i> sp	Polychaeta: Capitellidae	2	84	6	5
	Sternaspis affinis	Polychaeta: Sternaspidae	2	63	7	4
	Euclymeninae	Polychaeta: Maldanidae	1	68	6	4
Outer	Axinopsida serricata	Mollusca: Bivalvia	11	100	22	22
Shelf	Spiophanes kimballi	Polychaeta: Spionidae	7	80	19	15
	<i>Nuculana</i> sp A	Mollusca: Bivalvia	7	80	18	14
	Tellina carpenteri	Mollusca: Bivalvia	6	100	12	12
	<i>Mediomastus</i> sp	Polychaeta: Capitellidae	4	80	11	8
	Petaloclymene pacifica	Polychaeta: Maldanidae	4	80	9	7
	Eclysippe trilobata	Polychaeta: Ampharetidae	3	70	7	5
	Adontorhina cyclia	Mollusca: Bivalvia	2	60	7	4
	Amphiodia urtica	Echinodermata: Ophiuroidea	2	60	7	4
	Chaetozone hartmanae	Polychaeta: Cirratulidae	2	50	8	4

^aUnidentified distinct species

Strata	Species	Taxonomic Classification	PA	FO	M/O	M/G
Upper	Maldane sarsi	Polychaeta: Maldanidae	10	100	6	6
Slope	Phyllochaetopterus limicolus	Polychaeta: Chaetopteridae	8	60	8	5
	Lirobittium calenum	Mollusca: Gastropoda	5	20	16	3
	Aphelochaeta monilaris	Polychaeta: Cirratulidae	5	80	4	3
	Lirobittium paganicum	Mollusca: Gastropoda	3	20	10	2
	<i>Mediomastus</i> sp	Polychaeta: Capitellidae	3	40	5	2
	Ancistrosyllis groenlandica	Polychaeta: Pilargidae	2	60	2	1
	Cadulus californicus	Mollusca: Scaphopoda	2	100	1	1
	Limifossor fratula	Mollusca: Caudofoveata	2	60	2	1
	Compressidens stearnsii	Mollusca: Scaphopoda	2	40	3	1
	Fauveliopsis glabra	Polychaeta: Fauveliopsidae	2	20	5	1
	Nuculana conceptionis	Mollusca: Bivalvia	2	80	1	1
	Phoronis sp	Phoronidae	2	20	5	1
	Spiophanes kimballi	Polychaeta: Spionidae	2	60	2	1