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1 Introduction

Many macroeconomists paid scant attention to financial frictions models before the recent

crisis. The workhorse DSGE models at several central banks was the model developed by

Smets and Wouters (2007) (henceforth, SW), which has no endogenous credit frictions and

uses no financial market data other than the fed funds rate as an observable. Yet DSGE mod-

els with frictions were available before the crisis – notable examples are Bernanke, Gertler,

and Gilchrist (1999), Kiyotaki and Moore (1997), and Christiano, Motto, and Rostagno

(2003). Del Negro and Schorfheide (2013) show that a variant of the SW model incorporat-

ing financial frictions as in Bernanke, Gertler, and Gilchrist (1999) and Christiano, Motto,

and Rostagno (2003) would have forecasted reasonably well the behavior of output growth

and inflation in aftermath of the Lehman crisis.

The left panels of Figure 1 show forecasts of the output growth and inflation obtained

in the aftermath of the Lehman crisis using a model without financial frictions.1 The figure

shows that this model would have been clueless about what was to come. The right panels

show forecasts obtained using the variant with financial frictions, which can take advantage

of contemporaneous information coming from financial market spreads. The lesson appears

to be that while the available batch of DSGE models would have certainly not forecasted

the occurrence of the Lehman crisis, those DSGE models with financial frictions might have

provided policymakers with a reasonable outlook for the economy in the aftermath of the

crisis. To our knowledge, however, they were not used. With hindsight, one question is:

Why not? Did applied macroeconomists in the pre-Lehman period have any reason not to

use these models for forecasting? For the future, when there are many models on the table,

how should forecasters combine them? If another Lehman is to occur, would we be able to

rely on the right model, or on the right combination of models?

We develop a novel methodology to try to address both questions. Our approach builds

on the work on forecast combinations by Geweke and Amisano (2011). These authors use

the time series of predictive densities (which measure the likelihood of ex post outcomes from

the perspective of a model’s ex ante forecast distribution) to construct “optimal pools”, that

is, convex combinations of forecasts where the weights are chosen to maximize past forecast

performance. If one thinks of models as stocks, and of predictive densities as stock returns,

1The models and the data on which they are estimated are described in detail in Section 3.
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Figure 1: DSGE forecasts of the Great Recession
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Notes: The figure is taken from Del Negro and Schorfheide (2013). The panels show for each model/vintage
the available real GDP growth (upper panel) and inflation (GDP deflator, lower panel) data (black line),
the DSGE model’s multi-step (fixed origin) mean forecasts (red line) and bands of its forecast distribution
(shaded blue areas; these are the 50, 60, 70, 80, and 90 percent bands, in decreasing shade), the Blue
Chip forecasts (blue diamonds), and finally the actual realizations according to the May 2011 vintage (black
dashed line) . All the data are in percent, Q-o-Q.shows the filtered mean of λt (solid black line) and the
50% , 68% and 90% bands in shades of blue.

the Geweke and Amisano approach can be seen as choosing the weights so to optimize the

portfolio’s historical performance. Geweke and Amisano show that because of the benefits

from diversification, these pools fare much better in a pseudo-out-of-sample forecasting ex-

ercise than “putting all your eggs in one basket” – that is, using only one model to forecast

– as well as forecasts combinations based on Bayesian Model Averaging (BMA).
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We take the Geweke and Amisano approach and make it time-varying. That is, we

postulate a law of motion for the weights respecting the constraint that they remain between

zero and one (no model can be short-sold) and use the period by period predictive density of

the resulting pool as an observation equation. We obtain a non-linear state space model and

conduct inference about the weights using a particle filter. We apply our approach to a two

model setting, although it can be extended to the case with multiple models (easily from a

conceptual point of view, more challengingly from a computational point of view). From the

estimated distributions of the weights we learn whether one model was forecasting better

than the other in specific sub periods, how persistent forecast differences are, and whether

the weights change rapidly when the economic environment evolves.

Our application focuses on forecasts of four quarters ahead average output growth and

inflation obtained from two variants of the SW model, one without (which we call SWπ to

distinguish it from the original SW) and one with financial frictions (which we call SWFF).

We find that the relative forecasting performance of the two DSGE models varies considerably

over time. During ‘tranquil’ periods, namely periods without significant financial distress

such as the mid and late 1990s, the model without financial frictions forecasts better than

the alternative. In these period the logarithm of the predictive density, also known as the

log score, is uniformly higher for SWπ and, as a consequence, the distribution of the weights

in our dynamic pool is shifted toward this model. However, this distribution is still fairly

wide, and puts a non-negligible weight on the SWFF model.

During periods of financial turmoil, the early 2000s and the more recent crisis, the ranking

is not surprisingly the opposite. The difference is that the loss in log score from using the

SWπ model is periods of turmoil is much larger than the reverse loss. We find that when the

economic environment changes the filtered distribution of the weight in the dynamic pools

shifts quite rapidly from one model to the other. The shift seems to be timely as well: by

the time the Lehman crisis struck, the filtered distribution had shifted up relative to the

pre-crisis period (2006) and was putting considerable mass on SWFF. We conclude that

macroeconomists had some reason for not relying exclusively on the model with financial

frictions before the crisis. They (and we) had no reason for not relying on it at all, however,

given that this implies forfeiting very large benefits from diversification. For the future,

the dynamic pool still places most of the weight on the SWFF model, implicitly indicating

that the US economy is still undergoing a period of financial stress. Our (pseudo) real time
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forecasting results with the dynamic pools suggest that this method may deserve further

study.

Our paper is related to several strands of the literature. There is a large body of work on

forecast combination dating back to a seminal paper by Bates and Granger (1969). Much

of that literature focuses on the combination of point forecasts, whereas we are combin-

ing predictive densities using linear pools – building on recent research by Geweke and

Amisano (2011). More general methods of combining predictive distributions that include

beta-transformations of cumulative densities of linear prediction pools are discussed in Gneit-

ing and Ranjan (2013).

Our paper emphasizes the use of time-varying combination weights. Time-varying weights

have been used in the forecast combination literature, e.g., Terui and van Dijk (2002) and

Guidolin and Timmermann (2009). With respect to the combination of predictive densities,

Waggoner and Zha (2012) extend the Geweke and Amisano approach to a setting in which

the combination weights follow a Markov switching process. There are two important differ-

ences between our dynamic linear pools and the work by Waggoner and Zha. First, instead

of using a Markov-switching process for the combination weights we are using a smoother

autoregressive process. Second, we do not attempt to estimate the model parameters and the

combination weights simultaneously. Our empirical application focuses on the combination

of DSGE models. In practical settings, e.g., forecasting at policy institutions, we think that

it is unrealistic (and to some extent undesirable) that the models are being re-estimated

when being pooled.2

Billio, Casarin, Ravazzolo, and van Dijk (2012) propose create a predictive density by

combining (point) predictors derived from different models using time-varying weights. The

evolution of weights may depend on past forecasting performance. Our approach relies on a

combination of model-implied predictive density and the period-by-period updating of the

combination weights is based on Bayes Theorem. We use a fairly standard particle filter to

extract the time-varying combination weights. Recent survey of particle-filtering methods

for nonlinear state-space models are provided by Giordani, Pitt, and Kohn (2011) and Creal

(2012).

The remainder of this paper is organized as follows. Section 2 presents the methodology.

Section 3 describes the models and the data on which they are estimated. Section 4 presents

2In fact, many central banks do not even re-estimate their DSGE models every quarter.
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the results and Section 5 concludes.

2 Linear Pools and Time Variation

We review the idea of optimal linear prediction pools as presented in Geweke and Amisano

(2011) in Section 2.1 and provide a comparison to Bayesian Model Averaging in Section 2.2.

In Section 2.3 we extend the static prediction pools to dynamic prediction pools by intro-

ducing time-varying combination weights for predictive densities. Multi-step forecasting is

discussed in Section 2.4.

2.1 The Static Case

Starting point for our analysis are two models (M1, M2) with potentially different time-

t−1 information sets (IMm
t−1 ) and one-step ahead predictive densities p(yt|IMm

t−1 ,Mm), where

yt, t = 1, .., T are the variables of interest. Let y1:t denote the sequence {y1, .., yt} and note

that for each of the two models the information set IMm
t−1 may in general be larger than

y1:t−1. For instance, the (model-specific) information sets may include additional variables

zm1:t−1 such that IMm
t−1 = {y1:t−1, z

m
1:t−1} and

p(yt|IMm
t−1 ,Mm) = p(yt|y1:t−1, z1:t−1,Mm).

In our applications, yt includes output growth and inflation, zt includes consumption, in-

vestment, hours per capita, real wage growth, the federal funds rate, long-run inflation

expectations, and, for one of the models, also spreads.

We now combine modelsM1 andM2 by creating a convex combination of the one-step-

ahead predictive densities. Such a combination is called a linear prediction pool:

p(yt|It−1, λ) = λp(yt|IM1
t−1 ,M1) + (1− λ)p(yt|IM2

t−1 ,M2), λ ∈ [0, 1]. (1)

The expression

p1(y1:T |λ) =
T∏
t=1

p(yt|It−1, λ) (2)

can be interpreted as the likelihood of the pool because it represents the joint density of y1:T

conditional on the combination weight λ. The “1” subscript indicates that it is a combination
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of one-step-ahead predictive densities. If the combination weight λ is time-invariant then

the prediction pool is static. Following Geweke and Amisano (2011, 2012), we define the

optimal (static) pool computed given information at time T as:3

λSPT = argmaxλ∈[0,1] p1(y1:T |λ). (3)

2.2 Linear Pools versus Bayesian Model Averaging

It is important to note that the (static) pooling of models is very different from Bayesian

model averaging (BMA). To fix ideas, consider the case in which IMm
t−1 = y1:t−1 for m = 1, 2.

In this case, the product of the one-step ahead predictive densities equals the marginal

likelihood (see Geweke (2005) and Geweke (2007)):

p1(y1:T |Mm) =
T∏
t=1

p(yt|y1:t−1,Mm), (4)

where

p(yt|y1:t−1,Mm) =

∫
p(yt|y1:t−1, θ,Mm)p(θ|y1:t−1,Mm)dθ,

and p(θ|y1:t−1,Mm) is the posterior for modelMm’s parameter vector θ based on the infor-

mation y1:t−1. BMA involves assigning prior probabilities toM1 andM2, e.g., let λ0 be the

prior probability associated with M1, and weighting the models by their respective poste-

rior probabilities. The posterior probability of M1 is a function of the marginal likelihoods

p1(y1:T |Mm):

λBMA
T =

λ0p1(y1:T |M1)

λ0p1(y1:T |M1) + (1− λ0)p1(y1:T |M2)
(5)

A comparison of (5) and (3) highlights that the weights of the optimal static pool and

BMA are different. As discussed in Geweke and Amisano (2011) unless the two models

forecast equally well in the sense that the difference in log predictive scores∣∣ ln p1(y1:T |,M1)− ln p1(y1:T |,M2)
∣∣ = Op(1)

is stochastically bounded, the BMA model weight λBMA
T will either converge to zero or

one almost surely, that is, asymptotically there is no model averaging. Under the pooling

3See Amisano and Geweke (2013) for an interesting application to pools consisting of different macroe-

coometric models, such as VARs, DSGEs, and factor models.
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approach, we are creating a convex combination of predictive densities, which may forecast

better than any of its components. Thus, unless the data are actually generated from either

M1 and M2, λ
SP
T typically does not converge to either zero or one asymptotically.

In the subsequent empirical application we compare the forecast performance of model

pools to the performance of model averages. Because the DSGE models used in the applica-

tion are estimated based on different information sets which contain model-specific variables

zmt , we replace the marginal likelihoods (4) by the product of one-step-ahead predictive

scores:

p1(y1:T |Mm) =
T∏
t=1

p(yt|IMm
t−1 ,Mm) (6)

when computing the BMA weights in (5). In the remainder of this section we extend the

pooling approach to the dynamic case of time-varying weights and we consider multi-step-

ahead forecasts.

2.3 The Dynamic Case

In view of structural changes in the macro economy over the past six decades it is conceivable

that that the optimal pooling weights also evolve over time. Thus, we proceed by replacing

λ with the sequence λ1:T = {λ1, . . . , λT}. Using the same definition of the p(yt|It−1, λ) as

in (1), we write the likelihood associated with the dynamic pool as

p1(y1:T |λ1:T ) =
T∏
t−1

p(yt|It−1, λt). (7)

Note that a straight maximization with respect to λ1:T would yield the uninteresting corner

solutions

λ̂t =

{
1 if p(yt|IM1

t−1 ,M1) > p(yt|IM2
t−1 ,M2)

0 if p(yt|IM1
t−1 ,M1) < p(yt|IM2

t−1 ,M2)
, t = 1, . . . , T.

In general, we would expect the optimal combination weights to shift slowly over time and

exhibit a substantial amount of persistence. We follow the literature on Bayesian non-

parametric function estimation (see, e.g., the survey by Griffin, Quintana, and Steel (2011))

and impose a stochastic-process prior on λ1:T that implies a “smooth” evolution over time.

We let xt be a Gaussian autoregressive process with autocorrelation ρ and time-invariant

marginal distributions xt ∼ N(0, 1). Moreover, we use a probability-integral transformation
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to map xt onto the unit interval and ensure that the marginal prior distribution of λt is

uniform. This leads to

xt = ρxt−1 +
√

1− ρ2εt, εt ∼ iid N(0, 1), x0 ∼ N(0, 1),

λt = Φ(xt)
(8)

where Φ(.) is the cumulative Gaussian distribution. For ρ = 1 this specification nests the

one in Geweke and Amisano (2011), given that it imposes the restriction λt = λ, all t. For

ρ = 0 the λt are independent from one another.

In the empirical application we will condition on a value of ρ and conduct posterior infer-

ence with respect to λ1:T . Our dynamic model pool can be viewed as a nonlinear state-space

model: expression (8) describes the state transition equation and the convex combination

of predictive densities in (1) with λ replaced by λt is the measurement equation. We use a

particle filter to approximate the sequence of densities p(λt|y1:t) with the understanding that

IMm
t−1 affects the inference with respect to λt only indirectly, through the model-based pre-

dictive densities p(yt|IMm
t−1 ,Mm). The particle filter and the evaluation of p(yt|IMm

t−1 ,Mm)

is described in detail in the appendix.

2.4 Multi-Step Forecasting

In our application we are also interested in multi-step-ahead forecasts. Since the optimal

combination weights may vary across horizons, we simply replace the one-step-ahead densi-

ties in (1) by h-step-ahead densities:

p(yt|It−h, λ) = λp(yt|IM1
t−h ,M1) + (1− λ)p(yt|IM2

t−h ,M2).

Moreover, we replace p1(y1:T |λ) and p1(y1:T |Mm) that appear in (2) and (5) by

ph(y1:T |λ) =
T∏
t=1

p(yt|It−h, λ), ph(y1:T |Mm) =
T∏
t−1

p(yt|IMm
t−h ,Mm).

Finally, for the dynamic pool we define

p1(y1:T |λ1:T ) =
T∏
t−1

p(yt|It−1, λt).

In the empirical analysis yt is composed of growth rates of output and the price level. The

object of interest is typically not the growth rate h periods from now but the average growth
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rate over the next h periods. Thus, for multi-step forecasting, we change the argument of

the predictive density from yt to ȳt,h =
1

h

h−1∑
s=0

yt−s.

3 The DSGE Models

The model considered is the one used in Smets and Wouters (2007), which is based on earlier

work by Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003). It is

a medium-scale DSGE model, which augments the standard neoclassical stochastic growth

model with nominal price and wage rigidities as well as habit formation in consumption and

investment adjustment costs. As discussed before, the model is augmented with financial

frictions, as in Bernanke, Gertler, and Gilchrist (1999), Christiano, Motto, and Rostagno

(2003), and Christiano, Motto, and Rostagno (forthcoming). All ingredients of the model

were however publicly available prior to 2008. As such, the model does not include some of

the features that may have been found to be relevant following the crisis.

3.1 The Smets-Wouters Model

We begin by briefly describing the log-linearized equilibrium conditions of the Smets and

Wouters (2007) model. We follow Del Negro and Schorfheide (2013) and detrend the non-

stationary model variables by a stochastic rather than a deterministic trend.4 Let z̃t be the

linearly detrended log productivity process which follows the autoregressive law of motion

z̃t = ρz z̃t−1 + σzεz,t. (9)

We detrend all non stationary variables by Zt = eγt+
1

1−α z̃t , where γ is the steady state growth

rate of the economy. The growth rate of Zt in deviations from γ, denoted by zt, follows the

process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t. (10)

All variables in the following equations are expressed in log deviations from their non-

stochastic steady state. Steady state values are denoted by ∗-subscripts and steady state

4This approach makes it possible to express almost all equilibrium conditions in a way that encompasses

both the trend-stationary total factor productivity process in Smets and Wouters (2007), as well as the case

where technology follows a unit root process.
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formulas are provided in the technical appendix of Del Negro and Schorfheide (2013).5 The

consumption Euler equation is given by:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (11)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is inflation.

The exogenous process bt drives a wedge between the intertemporal ratio of the marginal

utility of consumption and the riskless real return Rt−IEt[πt+1], and follows an AR(1) process

with parameters ρb and σb. The parameters σc and h capture the degree of relative risk

aversion and the degree of habit persistence in the utility function, respectively. The following

condition expresses the relationship between the value of capital in terms of consumption qkt

and the level of investment it measured in terms of consumption goods:

qkt = S ′′e2γ(1 + β̄)
(
it −

1

1 + β̄
(it−1 − zt)−

β̄

1 + β̄
IEt [it+1 + zt+1]− µt

)
, (12)

which is affected by both investment adjustment cost (S ′′ is the second derivative of the

adjustment cost function) and by µt, an exogenous process called the “marginal efficiency

of investment” that affects the rate of transformation between consumption and installed

capital (see Greenwood, Hercovitz, and Krusell (1998)). The exogenous process µt follows

an AR(1) process with parameters ρµ and σµ. The parameter β̄ = βe(1−σc)γ depends on the

intertemporal discount rate in the utility function of the households β, the degree of relative

risk aversion σc, and the steady-state growth rate γ.

The capital stock, k̄t, evolves as

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + β̄)µt, (13)

where i∗/k̄∗ is the steady state ratio of investment to capital. The arbitrage condition

between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− qkt = Rt + bt − IEt[πt+1], (14)

5Available at http://economics.sas.upenn.edu/~schorf/research.htm.
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where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation rate.

Given that capital is subject to variable capacity utilization ut, the relationship between k̄t

and the amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (15)

The optimality condition determining the rate of utilization is given by

1− ψ
ψ

rkt = ut, (16)

where ψ captures the utilization costs in terms of foregone consumption. Real marginal costs

for firms are given by

mct = wt + αLt − αkt, (17)

where wt is the real wage and α is the income share of capital (after paying markups and

fixed costs) in the production function. From the optimality conditions of goods producers

it follows that all firms have the same capital-labor ratio:

kt = wt − rkt + Lt. (18)

The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (19)

if the log productivity is trend stationary. The last term (Φp − 1)
1

1− α
z̃t drops out if

technology has a stochastic trend, because in this case one has to assume that the fixed costs

are proportional to the trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, (20)

where again the term − 1

1− α
z̃t disappears if technology follows a unit root process. Gov-

ernment spending gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.

Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβ̄)(1− ζp)

(1 + ιpβ̄)ζp((Φp − 1)εp + 1)
mct +

ιp
1 + ιpβ̄

πt−1 +
β̄

1 + ιpβ̄
IEt[πt+1] + λf,t, (21)
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and

wt =
(1− ζwβ̄)(1− ζw)

(1 + β̄)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβ̄

1 + β̄
πt +

1

1 + β̄
(wt−1 − zt − ιwπt−1)

+
β̄

1 + β̄
IEt [wt+1 + zt+1 + πt+1] + λw,t, (22)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature

parameter in the Kimball aggregator for prices, and ζw, ιw, and εw are the corresponding

parameters for wages. wht measures the household’s marginal rate of substitution between

consumption and labor, and is given by:

wht =
1

1− he−γ
(
ct − he−γct−1 + he−γzt

)
+ νlLt, (23)

where νl characterizes the curvature of the disutility of labor (and would equal the inverse

of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and λw,t follow

exogenous ARMA(1,1) processes

λf,t = ρλfλf,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, and

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Finally, the monetary authority follows a generalized feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yft )

)
+ ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt , (24)

where the flexible price/wage output yft is obtained from solving the version of the model

without nominal rigidities (that is, Equations (11) through (20) and (23)), and the residual

rmt follows an AR(1) process with parameters ρrm and σrm .

3.2 Adding Observed Long Run Inflation Expectations (Model

SWπ)

In order to capture the rise and fall of inflation and interest rates in the estimation sample,

we replace the constant target inflation rate by a time-varying target inflation. While time-

varying target rates have been frequently used for the specification of monetary policy rules
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in DSGE model (e.g., Erceg and Levin (2003) and Smets and Wouters (2003), among others),

we follow the approach of Aruoba and Schorfheide (2008) and Del Negro and Eusepi (2011)

and include data on long-run inflation expectations as an observable into the estimation of the

DSGE model. At each point in time, the long-run inflation expectations essentially determine

the level of the target inflation rate. To the extent that long-run inflation expectations at

the forecast origin contain information about the central bank’s objective function, e.g. the

desire to stabilize inflation at 2%, this information is automatically included in the forecast.

Clark (2011) constructs a Bayesian VAR in which variables are expressed in deviations from

long-run trends. For inflation and interest rates these long-run trends are given by long-

horizon Blue Chip forecasts and the VAR includes equations that capture the evolution of

these forecasts. Our treatment of inflation in the DSGE model bears similarities to Clark

(2011)’s VAR.

More specifically, for the SW model the interest-rate feedback rule of the central bank (24)

is modified as follows:6

Rt = ρRRt−1 + (1− ρR)
(
ψ1(πt − π∗t ) + ψ2(yt − yft )

)
(25)

+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt .

The time-varying inflation target evolves according to:

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (26)

where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. We follow Erceg and Levin (2003) and model

π∗t as following a stationary process, although our prior for ρπ∗ will force this process to be

highly persistent (see Panel II of Table A-1). The assumption that the changes in the target

inflation rate are exogenous is, to some extent, a short-cut. For instance, the learning models

of Sargent (1999) or Primiceri (2006) would suggest that the rise in the target inflation rate

in the 1970’s and the subsequent drop is due to policy makers learning about the output-

inflation trade-off and trying to set inflation optimally. We are abstracting from such a

mechanism in our specification. We refer to this model as SWπ.

6We follow the specification in Del Negro and Eusepi (2011), while Aruoba and Schorfheide (2008) assume

that the inflation target also affects the intercept in the feedback rule.
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3.3 Adding Financial Frictions (Model SWFF)

We now add financial frictions to the SW model building on the work of Bernanke, Gertler,

and Gilchrist (1999), Christiano, Motto, and Rostagno (2003), De Graeve (2008), and Chris-

tiano, Motto, and Rostagno (forthcoming). In this extension, banks collect deposits from

households and lend to entrepreneurs who use these funds as well as their own wealth to

acquire physical capital, which is rented to intermediate goods producers. Entrepreneurs

are subject to idiosyncratic disturbances that affect their ability to manage capital. Their

revenue may thus be too low to pay back the bank loans. Banks protect themselves against

default risk by pooling all loans and charging a spread over the deposit rate. This spread may

vary as a function of the entrepreneurs’ leverage and their riskiness. Adding these frictions

to the SW model amounts to replacing equation (14) with the following conditions:

Et

[
R̃k
t+1 −Rt

]
= bt + ζsp,b

(
qkt + k̄t − nt

)
+ σ̃ω,t (27)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1, (28)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial

equity, and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability

across entrepreneurs (see Christiano, Motto, and Rostagno (forthcoming)) and follows an

AR(1) process with parameters ρσω and σσω . The second condition defines the return on

capital, while the first one determines the spread between the expected return on capital

and the riskless rate.7 The following condition describes the evolution of entrepreneurial net

worth:

nt = ζn,R̃k
(
R̃k
t − πt

)
− ζn,R (Rt−1 − πt) + ζn,qK

(
qkt−1 + k̄t−1

)
+ ζn,nnt−1

− ζn,σω
ζsp,σω

σ̃ω,t−1.
(29)

We refer to this model as SWFF.

7Note that if ζsp,b = 0 and the financial friction shocks σ̃ω,t are zero, (27) and (28) coincide with (14).
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3.4 State-Space Representation, Estimation, and Definition of the

Information Set

We use the method in Sims (2002) to solve the log-linear approximation of the DSGE model.

We collect all the DSGE model parameters in the vector θ, stack the structural shocks in

the vector εt, and derive a state-space representation for our vector of observables yt. The

state-space representation is comprised of the transition equation:

st = T (θ)st−1 +R(θ)εt, (30)

which summarizes the evolution of the states st, and the measurement equation:

yt = Z(θ)st +D(θ), (31)

which maps the states onto the vector of observables yt, where D(θ) represents the vector

of steady state values for these observables. The measurement equations for real output,

consumption, investment, and real wage growth, hours, inflation, and interest rates are

given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (32)

where all variables are measured in percent, where π∗ and R∗ measure the steady state level

of net inflation and short term nominal interest rates, respectively and where l̄ captures the

mean of hours (this variable is measured as an index).

To incorporate information about low-frequency movements of inflation the set of mea-

surement equations (32) is augmented by

πO,40
t = π∗ + 100IEt

[
1

40

40∑
k=1

πt+k

]
(33)

= π∗ +
100

40
Z(θ)(π,.)(I − T (θ))−1

(
I − [T (θ)]40

)
T (θ)st,
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where πO,40
t represents observed long run inflation expectations obtained from surveys (in

percent per quarter), and the right-hand-side of (33) corresponds to expectations obtained

from the DSGE model (in deviation from the mean π∗). The second line shows how to

compute these expectations using the transition equation (30) and the measurement equation

for inflation. Z(θ)(π,.) is the row of Z(θ) in (31) that corresponds to inflation. The SWπ

model is estimated using the observables in expressions (32) and (33).

Model SWFF uses in addition spreads as observables. The corresponding measurement

equation is

Spread = SP∗ + 100IEt

[
R̃k
t+1 −Rt

]
, (34)

where the parameter SP∗ measures the steady state spread. Both models are estimated

using quarterly data. The construction of the data set is summarized in Appendix A.

We use Bayesian techniques in the subsequent empirical analysis, which require the spec-

ification of a prior distribution for the model parameters. For most of the parameters we use

the same marginal prior distributions as Smets and Wouters (2007). There are two important

exceptions. First, the original prior for the quarterly steady state inflation rate π∗ used by

Smets and Wouters (2007) is tightly centered around 0.62% (which is about 2.5% annualized)

with a standard deviation of 0.1%. We favor a looser prior, one that has less influence on

the model’s forecasting performance, that is centered at 0.75% and has a standard deviation

of 0.4%. Second, for the financial frictions mechanism we specify priors for the parameters

SP∗, ζsp,b, ρσω , and σσω . We fix the parameters corresponding to the steady state default

probability and the survival rate of entrepreneurs, respectively. In turn, these parameters

imply values for the parameters of (29). A summary of the priors is provided in Table A-1

in Appendix C. Section B.2 in the appendix provides some details on the computation of

the predictive density for k observations ahead p(yt:t+k|IMm
t−1 ,Mm) for DSGE models.

In our empirical analysis we use real time data, so the defining the information set IMm
t

requires some care. We use four forecasts per year, corresponding to the information set

available to the econometrician on January 1st, April 1st, July 1st, and October 1st of each

year. This information set includes the so-called “first final” release of the NIPA data for the

quarter ending four months before the forecast date, namely Q3 and Q4 Apr of the previous

year for forecasts made in January and April, respectively, and Q1 and Q2 of the current

year for forecasts made in July and October, respectively. When plotting results over time

we use the convention that t equals the quarter corresponding to the latest NIPA data, so for



This Version: November 22, 2013 17

instance t would be 2008Q3 for forecasts made on January 1st 2009. Note that in addition

to the NIPA data the econometrician can in principle also observe interest rates and spreads

for the quarter that just ended (2008Q4 for January 1st 2009). We denote with IMm
t and

IMm

t+ the information sets that exclude and include, respectively, this additional data points.

4 Results

We apply the dynamic pools methodology discussed in section 2 to the forecasts of average

output growth and inflation one year ahead (hence yt in the predictive densities formulas

is a 2 × 1 vector containing these two variables) obtained with the two versions of the SW

model described earlier, the version with (SWFF) and without (SWπ) financial frictions and

spreads as observables. We ask the following questions: Is there significant time variation

in the relative forecasting performance of the two models, as captured by the estimated

distribution of λt? Is it the case that one of the two models always performs better than

the other, so that the distribution of λt is on either side of .5 for all (or most) t? Does λt

change rapidly enough when estimated in real time to offer useful guidance to policy makers

or forecasters? Do the dynamic pools perform better in real time than forecasting with static

pools, or BMA weights, and by how much?

First, we present results on the evolution of the filtered estimates of λt obtained from

the state-space model consisting of expressions (8) and (7). We use the convention that

M1 = SWFF while M2 = SWπ, therefore λt is the weight on the model with financial

frictions. For the time being our results are obtained fixing the value of ρ = .9 in the law of

motion (8). The appendix shows results for ρ = .75, which are quite similar.

The left panel of Figure 2 shows that the filtered distribution of λt changes substantially

over the sample, indicating that there is time-variation in the two models’ relative forecasting

performance. Consistently with the results in chapter 7 of Del Negro and Schorfheide (2013),

the filtered distribution of λt shifts toward values above .5 during periods of financial turmoil

– the aftermath of the “dot com” bust and the recent financial crisis, while it tends to be

below .5 in more “tranquil” periods – the late 90s and the mid-2000s. Both the 50 and 68

percent bands are fairly tightly estimated, especially during periods of financial turmoil.

The results also indicate that the changes in the distribution of λt can be quite sudden.

For instance, the filtered mean of λt increases from .4 to almost .8 in the span of about
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Figure 2: Filtered Posterior of λt (pool weight on SWFF)

Whole Sample Great Recession

Notes: The figure shows the filtered mean of λt (solid black line) and the 50% , 68% and 90% bands in
shades of blue.

one year, from early 2008 to early 2009. Recall that we are using h = 4 quarters ahead

data in evaluating the predictive densities. Since the financial turmoil begun in 2007Q3,

the econometrician would have to wait at least four quarters (until 2008Q3) to acquire

information about the relative performance of the SWFF and SWπ model during this period.

Yet the filtered distribution of λt starts shifting upward already in early 2008.8

While much of the mass of the distribution of λt is fairly concentrated, the 90 percent

bands are quite wide however, and cover .5 for almost all periods. A standard results in

the model combination literature is that equally weighted predictions are hard to beat. The

finding that the equal weight value of .5 is almost always included in one of the tails of the

distribution suggests that to some extent this results holds in this application as well: the

posterior distribution does not completely rule out weights in the neighborhood of .5. As

8These results suggest that even if one is interested in 4-quarters ahead forecasts, it may make sense

to modify the measurement equation (7) to include h = 1 predictive densities, as these would give a more

timely signal about which model forecasts better.
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we will see later, the gains in terms of forecasting accuracy of using the time varying pools

relative to the equally weighted pools are not dramatic.

Figure 3: Dynamic (black), BMA (green) and Static Pool (purple) Weights in Real Time

Notes: The figure shows the time series of the BMA weight λBMA
t (green) computed as in equation (5), the

static optimal pool weights λSPt (purple) computed as in equation (3), and the dynamic pool weights λt|t
(black), computed as the posterior mean of the filtered distribution obtained using information available at
time t. The weight is the weight on the SWFF model in forecast pools.

In order to gain insights on the properties of our approach, we next compare the evolution

of the dynamic pool weights with two alternatives, BMA and static optimal weights. Figure 3

shows the time series of the BMA weight λBMA
t (green) computed as in (5), the static

optimal pool weights λSPt (purple) computed as in equation (3), and the dynamic pool

weights λt|t (black), computed as the posterior mean of the filtered distribution obtained

using information available at time t. The dynamics of the BMA weights present a not too

surprising bang-bang pattern. As soon as enough information is available the BMA weight

converge to one extreme. However, it switches rapidly toward the opposite extreme as new

information favoring the other model becomes available. The static pool weights also tend to

favor extremes early in the sample, but later converge toward the middle of the distribution.

Dynamic weights rarely if ever assume extreme values (almost all of the realizations of λt|t

are between .2 and .8). Most importantly, λt|t appears to be a leading indicator relative to

both BMA and static weights.

We now ask whether there are any real time gains in forecasting using the time varying
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weights relative to: i) each of the models in isolation, ii) a model combination obtained using

the (real-time) static weights, iii) the BMA weights, and iv) equal weights. Define the real

time predictive density obtained with the dynamic pool as

pDP (yt|λt−h|t−h) = λt−h|t−hp(yt|ISWFF

t−h , SWFF) + (1− λt−h|t−h)p(yt|ISWπ

t−h , SWπ) (35)

where λt−h|t−h is the posterior mean of the filtered distribution obtained using information

available at time t− h.9

Figure 4: Log Scores Comparison: SWFF (red) vs SWπ (blue) vs Dynamic Pools (black)

Notes: The figure shows log pDP (yt|λt−h|t−h) (black), log p(yt|ISWFF
t−h , SWFF) (red), and log p(yt|ISWπ

t−h , SWπ)
(blue) over time.

Figure 4 shows the natural logarithms of pDP (yt|λt−h|t−h) (black), p(yt|ISWFF

t−h , SWFF) (red),

and p(yt|ISWπ

t−h , SWπ) (blue) as a function of t − h. The lower is the log score, the worse

is the model performance as measured by the distance between ex posts outcomes and ex

ante forecasts. The pattern of the relative performance of SWFF versus SWπ tracks closely

the evolution of the distribution of λt in figure 2, which is not surprising given that this

is precisely the information entering the measurement equation (7). SWFF performs worse

than SWπ in normal times, and viceversa during periods of financial distress such as the

9We are aware it is likely not optimal to use only the posterior mean as opposed to the entire posterior

distribution (see Amisano and Geweke (2013)). We will pursue this route in future drafts. We are also aware

that in place of λt−h|t−h we could be using λt|t−h by taking advantage of the law of motion for λt (8).
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Figure 5: Log Score Comparison: Dynamic Pool vs BMA (green), Optimal Static Pool

(purple) and Equally Weighted Pool (black)

Notes: The figure shows the difference in the log scores of 1) dynamic pools versus BMA
(log pDP (yt|λt−h|t−h) − log pBMA(yt|λBMA

t−h ), green shaded areas), 2) dynamic pools versus static pools
(log pDP (yt|λt−h|t−h) − log pSP (yt|λSPt−h), purple shaded areas), and 3) dynamic pools versus equal weight
pools (log pDP (yt|λt−h|t−h)− log pEW (yt), black lines).

early 2000s or the recent financial crisis. The drop in log score of the model without financial

frictions during the Great Recession is remarkable, although also not surprising in light of

the results in Del Negro and Schorfheide (2013). The log score obtained from the dynamic

pools is never too far below that of the best model at any point in time. While each of the

model has periods of not so great forecasting performance (especially SWπ of course, but

also SWFF in the late 1990s) by virtue of diversification the dynamic pool is not severely

affected by such episodes.

Table 1: Cumulative Log Scores

Component Models Model Pooling

Model Log score Method Log score

SWπ -306.34 BMA -275.57

SWFF -259.58 SP -264.67

EW -260.42

DP -258.53

The integral of each line is reported in Table 1. The table shows that dynamic pools fare
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quite a lot better than using SWπ only, which is not surprising, but fare only slightly better

than using SWFF all the times. We believe that the latter result stems from the fact that

our relatively short sample is dominated by the Great Recession episode. The SWπ model

fares so poorly in this episode that any pool that puts positive weight on this model will

suffer non-minor losses in log score relative to SWFF (the gap between black and red line

in the Great Recession). In the case of dynamic pools, these losses almost fully compensate

for the gains relative to SWFF throughout the 1990s.

Define the real time log scores obtained using BMA, static pool weights, and equal weights

as
pBMA(yt|λBMA

t−h ) = λBMA
t−h p(yt|ISWFF

t−h , SWFF) + (1− λBMA
t−h )p(yt|ISWπ

t−h , SWπ),

pSP (yt|λSPt−h) = λSPt−hp(yt|ISWFF

t−h , SWFF) + (1− λSPt−h)p(yt|ISWπ

t−h , SWπ), and

pEW (yt) = .5p(yt|ISWFF

t−h , SWFF) + .5p(yt|ISWπ

t−h , SWπ),

(36)

respectively. Figure 5 shows the difference in the log scores of 1) dynamic pools versus BMA

(log pDP (yt|λt−h|t−h) − log pBMA(yt|λBMA
t−h ), green shaded areas), 2) dynamic pools versus

static pools (log pDP (yt|λt−h|t−h) − log pSP (yt|λSPt−h), purple shaded areas), and 3) dynamic

pools versus equal weight pools (log pDP (yt|λt−h|t−h) − log pEW (yt), black lines). Positive

values show that dynamic pools perform better than the alternative.

The loss in performance resulting from using BMA weights can be very large. As empha-

sized in Amisano and Geweke (2013), this model combination approach suffers from using

weights that are often close to the extremes of the [0, 1] interval, thereby forfeiting the ben-

efits from diversification. Table 1 shows that the cumulative log score from using BMA in

real time is significantly worse than that of any other model combination.

Static pools fare better, but are also slower to adjust to the changing economic environ-

ment. For instance, in the latest period the weight given to the financial friction model rises

at a moderate pace relative to the weight in dynamic pools (see figure 3). There are periods

where the static pools outperform the dynamic ones, but these are relatively short lived and

the losses are small. As a consequence, the cumulated log score difference between the two

models amounts to 6 points, which is non negligible.

Finally, the equal weighted pool performance is comparable to that of dynamic pools.

Since this pool is by construction well diversified, it never suffers the large losses associated

with the BMA pool or, at least in the early part of the sample, with the static pool.10 As a

10Amisano and Geweke (2013) find that equal weighted pools perform better than static pools in real time.



This Version: November 22, 2013 23

consequence, the improvement in performance of dynamic pools relative to equal weights is

only modest.

5 Conclusions

This paper provides a methodology for estimating time-varying weights in optimal prediction

pools. In our application we combine predictive densities from two DSGE models, with and

without financial frictions. However, the same method could be used to combine other

classes of time series models. Extensions to pools of more than two models are conceptually

straightforward but may pose computational challenges.

From the substantive point of view we find that the model without financial frictions

forecasts better in times without significant financial distress, but that the relative forecasting

performance changes dramatically in more turbulent times. This findings begs the question of

whether this is a result of using linearized models: A non-linear model with financial friction

may look (and forecast) very much like one without friction in tranquil times, but have very

different dynamics when the financial constraints become binding (e.g., see Brunnermeier

and Sannikov (forthcoming), Dewachter and Wouters (2012), or the estimated DSGE model

of Bocola (2013)). One could therefore interpret the findings in this paper as evidence in

favor of an encompassing non-linear model. Whether such non-linear model would forecast

better than the pool of models considered here is a question for future research.

References

Amisano, G., and J. Geweke (2013): “Prediction with Macroeconomic Models,” ECB

Working Paper 1537.

Aruoba, S. B., and F. Schorfheide (2008): “Insights from an Estimated Search-Based

Monetary Model with Nominal Rigidities,” Working Paper.

Bates, J., and C. W. Granger (1969): “The Combination of Forecasts,” Operations

Research, 20(4), 451–468.



This Version: November 22, 2013 24

Bernanke, B., M. Gertler, and S. Gilchrist (1999): “The Financial Accelerator in

a Quantitative Business Cycle Framework,” in Handbook of Macroeconomics, ed. by J. B.

Taylor, and M. Woodford, vol. 1C. North Holland, Amsterdam.

Billio, M., R. Casarin, F. Ravazzolo, and H. K. van Dijk (2012): “Time-varying

Combinations of Predictive Densities using Nonlinear Filtering,” Tinbergen Institute Dis-

cussion Paper, 118/III(4).

Bocola, L. (2013): “The Pass-Through of Sovereign Risk,” Manuscript, University of

Pennsylvania.

Brunnermeier, M. K., and Y. Sannikov (forthcoming): “A Macroeconomic Model with

a Financial Sector,” American Economeic Review.

Christiano, L., R. Motto, and M. Rostagno (2003): “The Great Depression and the

Friedman-Schwartz Hypothesis,” Journal of Money, Credit and Banking, 35, 1119–1197.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005): “Nominal Rigidities and

the Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113,

1–45.

Christiano, L. J., R. Motto, and M. Rostagno (forthcoming): “Risk Shocks,” Amer-

ican Economic Review.

Clark, T. (2011): “Real-Time Density Forecasts From Bayesian Vector Autoregress with

Stochastic Volatility,” Journal of Business & Economic Statistics, 29(3), 327–341.

Creal, D. (2012): “A Survey of Sequential Monte Carlo Methods for Economics and

Finance,” Econometric Reviews, 31(3), 245–296.

De Graeve, F. (2008): “The External Finance Premium and the Macroeconomy: US

Post-WWII Evidence,” Journal of Economic Dynamics and Control, 32(11), 3415 – 3440.

Del Negro, M., and S. Eusepi (2011): “Fitting Observed Ination Expectations,” Journal

of Economic Dynamics and Control, 35, 2105–2131.

Del Negro, M., and F. Schorfheide (2013): “DSGE Model-Based Forecasting,” in

Handbook of Economic Forecasting, Volume 2, ed. by G. Elliott, and A. Timmermann.

Elsevier.



This Version: November 22, 2013 25

Dewachter, H., and R. Wouters (2012): “Endogenous risk in a DSGE model with

capital-constrained Financial intermediaries,” National Bank of Belgium Working Paper,

235.

Edge, R., and R. Gürkaynak (2010): “How Useful Are Estimated DSGE Model Fore-

casts for Central Bankers,” Brookings Papers of Economic Activity, p. forthcoming.

Erceg, C. J., and A. T. Levin (2003): “Imperfect Credibility and Inflation Persistence,”

Journal of Monetary Economics, 50, 915–944.

Geweke, J. (2005): Contemporary Bayesian Econometrics and Statistics. Wiley.

(2007): “Bayesian Model Comparison and Validation,” American Economic Review

Papers and Proceedings, 97, 60–64.

Geweke, J., and G. Amisano (2011): “Optimal prediction pools,” Journal of Economet-

rics, 164, 130141.

(2012): “Prediction with Misspecified Models,” American Economic Review: Pa-

pers & Proceedings, 103(3), 482–486.

Giordani, P., M. K. Pitt, and R. Kohn (2011): “Bayesian Inference for Time Series

State Space Models,” in Handbook of Bayesian Econometrics, ed. by J. Geweke, G. Koop,

and H. K. van Dijk. Oxford University Press.

Gneiting, T., and R. Ranjan (2013): “Combining Predictive Distributions,” Electronic

Journal of Statistics, 7, 1747–1782.

Greenwood, J., Z. Hercovitz, and P. Krusell (1998): “Long-Run Implications of

Investment-Specific Technological Change,” American Economic Review, 87(3), 342–36.

Griffin, J., F. Quintana, and M. Steel (2011): “Flexible and Nonparametric Model-

ing,” in Handbook of Bayesian Econometrics, ed. by J. Geweke, G. Koop, and H. K. van

Dijk. Oxford University Press.

Guidolin, M., and A. Timmermann (2009): “Forecasts of US short-term interest rates:

A flexible forecast combination approach,” Journal of Econemetrics, 150, 297–311.



This Version: November 22, 2013 26

Kiyotaki, N., and J. Moore (1997): “Credit Cycles,” Journal of Political Economy,

105(2), 211–248.

Primiceri, G. (2006): “Why Inflation Rose and Fell: Policymakers Beliefs and US Postwar

Stabilization Policy,” Quarterly Journal of Economics, 121, 867–901.

Sargent, T. J. (1999): The Conquest of American Inflation. Princeton University Press,

Princeton.

Sims, C. A. (2002): “Solving Linear Rational Expectations Models,” Computational Eco-

nomics, 20((1-2)), 1–20.

Smets, F., and R. Wouters (2003): “An Estimated Dynamic Stochastic General Equi-

librium Model of the Euro Area,” Journal of the European Economic Association, 1(5),

1123 – 1175.

(2007): “Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,”

American Economic Review, 97(3), 586 – 606.

Terui, N., and H. K. van Dijk (2002): “Combined forecasts from linear and nonlinear

time series models,” International Journal of Forecasting, 18(4), 421438.

Waggoner, D., and T. Zha (2012): “Confronting model misspecification in macroeco-

nomics,” Journal of Econometrics, 171(2), 167184.



Appendix A-1

Appendix for
Time-varying Prediction Pools

Marco Del Negro, Raiden B. Hasegawa, and Frank Schorfheide

A Data

Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal consumption

expenditures (PCEC), and nominal fixed private investment (FPI) are constructed at a

quarterly frequency by the Bureau of Economic Analysis (BEA), and are included in the

National Income and Product Accounts (NIPA). Average weekly hours of production and

nonsupervisory employees for total private industries (AWHNONAG), civilian employment

(CE16OV), and civilian noninstitutional population (LNSINDEX) are produced by the Bu-

reau of Labor Statistics (BLS) at the monthly frequency. The first of these series is obtained

from the Establishment Survey, and the remaining from the Household Survey. Both sur-

veys are released in the BLS Employment Situation Summary (ESS). Since our models are

estimated on quarterly data, we take averages of the monthly data. Compensation per hour

for the nonfarm business sector (COMPNFB) is obtained from the Labor Productvity and

Costs (LPC) release, and produced by the BLS at the quarterly frequency. All data are

transformed following Smets and Wouters (2007). Let ∆ denote the temporal difference

operator. Then:

Output growth = 100 ∗∆LN((GDPC)/LNSINDEX)

Consumption growth = 100 ∗∆LN((PCEC/GDPDEF )/LNSINDEX)

Investment growth = 100 ∗∆LN((FPI/GDPDEF )/LNSINDEX)

Real Wage growth = 100 ∗∆LN(COMPNFB/GDPDEF )

Hours = 100 ∗ LN((AWHNONAG ∗ CE16OV/100)/LNSINDEX)

Inflation = 100 ∗∆LN(GDPDEF ).

The federal funds rate is obtained from the Federal Reserve Board’s H.15 release at

the business day frequency. We take quarterly averages of the annualized daily data and

divide by four. In the estimation of the DSGE model with financial frictions we measure

Spread as the annualized Moody’s Seasoned Baa Corporate Bond Yield spread over the 10-

Year Treasury Note Yield at Constant Maturity. Both series are available from the Federal
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Reserve Board’s H.15 release. Like the federal funds rate, the spread data is also averaged

over each quarter and measured at the quarterly frequency. This leads to:

FFR = (1/4) ∗ FEDERAL FUNDS RATE

Spread = (1/4) ∗ (BaaCorporate − 10yearTreasury)

The long-run inflation forecasts used in the measurement equation (33) are obtained from

the Blue Chip Economic Indicators survey and the Survey of Professional Forecasters (SPF)

available from the FRB Philadelphia’s Real-Time Data Research Center. Long-run inflation

expectations (average CPI inflation over the next 10 years) are available from 1991:Q4 on-

wards. Prior to 1991:Q4, we use the 10-year expectations data from the Blue Chip survey

to construct a long time series that begins in 1979:Q4. Since the Blue Chip survey reports

long-run inflation expectations only twice a year, we treat these expectations in the remain-

ing quarters as missing observations and adjust the measurement equation of the Kalman

filter accordingly. Long-run inflation expectations πO,40
t are therefore measured as

πO,40
t = (10-YEAR AVERAGE CPI INFLATION FORECAST− 0.50)/4.

where .50 is the average difference between CPI and GDP annualized inflation from the

beginning of the sample to 1992. We divide by 4 since the data are expressed in quarterly

terms.

Many macroeconomic time series get revised multiple times by the statistical agencies

that publish the series. In many cases the revisions reflect additional information that

has been collected by the agencies, in other instances revisions are caused by changes in

definitions. For instance, the BEA publishes three releases of quarterly GDP in the first

three month following the quarter. Thus, in order to be able to compare DSGE model

forecasts to real-time forecasts made by private-sector professional forecasters or the Federal

Reserve Board, it is important to construct vintages of real time historical data. We follow

the work by Edge and Gürkaynak (2010) and construct data vintages that are aligned with

the publication dates of the Blue Chip survey. You can find a more detailed description of

how we construct this real-time dataset in (CITE FORECAST HANDBOOK CHAPTER).
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B Computational Details

B.1 Particle Filter

Initialization: xi0 ∼ iidN(0, 1), wi0 = 1 (note: the weights sum up to N , not 1). For

t = 1, .., T

1. Propagate particles forward

x̂it = ρxit−1 +
√

1− ρ2εit, ε
i
t ∼ N(0, 1)

2. compute λ̂it = Φ(x̂it)

3. compute unnormalized weights w̃it = p(yt|λ̂t)wit−1

4. Normalize weights ŵit =
w̃it

1
N

∑N
i=1 w̃

i
t

5. (a) If ESS =
N2∑N
i=1 ŵ

i
t

is small (< N/2), then resample particles by drawing from

multinomial distribution with support on {x̂it}Ni=1 and probabilities {w̃
i
t

N
}Ni=1, lead-

ing to {xit, wit}Ni=1, where wit = 1, all i.

(b) Otherwise (if ESS =
N2∑N
i=1 ŵ

i
t

> N/2) set xit = x̂it, w
i
t = ŵit.

We are interested in the evaluation of our state-space model log likelihood for different

choices of ρ, the persistence of the particle propogation, in order to find the MLE estimate of

ρ. Since evaluating the likelihood is computationally intensive, we refrain from conducting

full bayesian inference on the parameter. To calculate our log likelihood, first note that

p(λt|y1:t, ρ) ≈
N∑
i=1

(
w

(i)
t

N

)
δ
λ
(i)
t

(λt)

and that, given λ̂t ∼ p(λt|λt−1, ρ), we can write

p(yt|y1:t−1, ρ) ≈
N∑
i=1

(
w

(i)
t−1

N

)
p(yt|λ̂it) .
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Hence, we can approximate the full log likelihood of the model as

logL(ρ; y1:T ) ≈
T∑
j=1

log p(yt|y1:t−1, ρ) .

In figures A-1, A-2 and A-3 we graphically examine the Monte Carlo variance of our

estimate of p(λt|y1:t, ρ), the filtered densities of the model combination weights. Even when

resampling in every time period, the Monte Carlo variance of our filtered densities is at an

acceptable level.

Figure A-1: Diagnostic: Accuracy of Êt[λt] - 100 Groups, 1000 Particles/Group
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Figure A-2: Diagnostic: Accuracy of λt 95th-percentile - 100 Groups, 1000 Particles/Group

Figure A-3: Diagnostic: Accuracy of λt 5th-percentile - 100 Groups, 1000 Particles/Group
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B.2 Computing the predictive density

This sections provides some details on the computation of the predictive density for k ob-

servations ahead p(yt:t+k|IMm
t−1 ,Mm) for DSGE models.

For DSGE models we have a state-space representation which is comprised of the tran-

sition equation:

st = T (θ)st−1 +R(θ)εt, εt ∼ N(0,Q) (A-1)

which summarizes the evolution of the states st, and the measurement equation:

yt = Z(θ)st +D(θ), (A-2)

which maps the states onto the vector of observables yt, where D(θ) represents the vector of

steady state values for these observables.

1. Generate draws from the posterior p(θ|IMm
t−1 ,Mm). For each draw θi evaluate

T (θi),R(θi),Z(θi),D(θi).

2. Run Kalman filter to obtain st−1|t−1 and Pt−1|t−1.

3. Compute ŝt|t−1 = s
t|IM1
t−1

and P̂t|t−1 = P
t|IM1
t−1

as

(a) Unconditional: ŝt|t−1 = T st−1|t−1, P̂t|t−1 = T Pt−1|t−1T ′ +RQR′.

(b) Semiconditional (time t spreads, and FFR): run updating step based on these two

observables.

4. Build recursively for j = 1, .., k the objects ŝt+j|t−1 = T st+j−1|t−1, P̂t+j|t−1 = T Pt+j−1|t−1T ′+
RQR′ and construct the matrices

ŝt:t+k|t−1 =


ŝt|t−1

...

ŝt+k|t−1


and

P̂t:t+k|t−1 =


P̂t|t−1 P̂t|t−1T ′ . . . P̂t|t−1T k

′

T P̂t|t−1 P̂t+1|t−1 . . . P̂t+1|t−1T k−1 ′

...
...

. . .
...

T kP̂t|t−1 T k−1P̂t+1|t−1 . . . P̂t+k|t−1

 .
Thereby obtaining the distribution of st:t+k|IM1

t−1 : st:t+k|IM1
t−1 ∼ N(ŝt:t+k|t−1, P̂t:t+k|t−1).
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5. The distribution of yt:t+k = D̃ + Z̃st:t+k is

yt:t+k|IM1
t−1 ∼ N(D̃ + Z̃ ŝt:t+k|t−1, Z̃P̂t:t+k|t−1Z̃ ′)

where Z̃ = Ik+1 ⊗Z and D̃ = 1k+1 ⊗D (note I1 = 11 = 1)

6. Compute

p(yt:t+k|IMm
t−1 ,Mm) = φ(yot:t+k; D̃ + Z̃ ŝt:t+k|t−1, Z̃P̂t:t+k|t−1Z̃ ′) (A-3)

where yot:t+k are the actual observations and φ is the multivariate normal probability

density.

7. If using linear functions of yt:t+k (e.g., four quarter averages, etc.), then write these

functions as ft:t+k = Fyt:t+k and the predictive density becomes

p(Fyt:t+k|IMm
t−1 ,Mm) = φ(Fyot:t+k;F D̃ + F Z̃ ŝt:t+k|t−1, F Z̃P̂t:t+k|t−1Z̃ ′F ′) (A-4)

C Additional Tables and Figures

Table A-1 summarizes the prior distribution. Figures A-4 to A-9 are the same as those

presented in the main results section but with ρ = 0.75.
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Table A-1: Priors

Density Mean St. Dev. Density Mean St. Dev.

Panel I: Smets-Wouters Model (SW)

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10
ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20
ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.75 0.40
Φ Normal 1.25 0.12 γ Normal 0.40 0.10
h Beta 0.70 0.10 S ′′ Normal 4.00 1.50
νl Normal 2.00 0.75 σc Normal 1.50 0.37
ιp Beta 0.50 0.15 ιw Beta 0.50 0.15
r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

(Note β = (1/(1 + r∗/100))
ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00
ρb Beta 0.50 0.20 σb InvG 0.10 2.00
ρλf Beta 0.50 0.20 σλf InvG 0.10 2.00
ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00
ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00
ρg Beta 0.50 0.20 σg InvG 0.10 2.00
ηλf Beta 0.50 0.20 ηλw Beta 0.50 0.20
ηgz Beta 0.50 0.20

Panel II: Model with Long Run Inflation Expectations (SWπ)

ρπ∗ Beta 0.50 0.20 σπ∗ InvG 0.03 6.00

Panel III: Financial Frictions (SWFF)

SP∗ Gamma 2.00 0.10 ζsp,b Beta 0.05 0.005
ρσw Beta 0.75 0.15 σσw InvG 0.05 4.00

Notes: Smets and Wouters (2007) original prior is a Gamma(.62, .10). The following parameters are fixed
in Smets and Wouters (2007): δ = 0.025, g∗ = 0.18, λw = 1.50, εw = 10, and εp = 10. In addition, for the
model with financial frictions we fix the entrepreneurs’ steady state default probability F̄∗ = 0.03 and their
survival rate γ∗ = 0.99. The columns “Mean” and “St. Dev.” list the means and the standard deviations for
Beta, Gamma, and Normal distributions, and the values s and ν for the Inverse Gamma (InvG) distribution,
where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
. The effective prior is truncated at the boundary of the determinacy

region. The prior for l̄ is N (−45, 52).
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Figure A-4: [ρ = 0.75] Log Scores: SW+πFF (red), SW+π (blue) and Pooled (black)

Table A-2: [ρ = 0.75] Cumulative Log Scores

Component Models Model Pooling

Model Log score Method Log score

SWπ -306.34 BMA -275.57

SWFF -259.58 SP -264.67

EW -260.42

DP -256.75
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Figure A-5: [ρ = 0.75] Log Score Comparison: Pooled over SW+πFF (red), Pooled over

SW+π (blue)

Figure A-6: [ρ = 0.75] Filtered Posterior of λt (pool weight on SW+πFF), with 50%, 68%

and 90% bands
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Figure A-7: [ρ = 0.75] Filtered Posterior of λt (pool weight on SW+πFF), with 50%, 68%

and 90% bands: Great Recession Period

Figure A-8: [ρ = 0.75] Dynamic Pool Weight (black), BMA (green) and Optimal Static Pool

(purple) [All weights on SW+πFF]
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Figure A-9: [ρ = 0.75] Log Score Comparison: Dynamic Pool over BMA (green) and Dynamic

Pool over Optimal Static Pool (purple) and Dynamic Pool over Equally Weighted Pool (black)
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