

Tatra Mt. Math. Publ. **44** (2009), 153–158 DOI: 10.2478/v10127-009-0055-0

A NOTE ON ρ -UPPER CONTINUOUS FUNCTIONS

Stanisław Kowalczyk — Katarzyna Nowakowska

ABSTRACT. In the present paper, we introduce the notion of classes of ρ -upper continuous functions. We show that ρ -upper continuous functions are Lebesgue measurable and, for $\rho < \frac{1}{2}$, may not belong to Baire class 1. We also prove that a function with Denjoy property can be non-measurable.

1. Preliminaries

First, we shall collect some of the notions and definitions which appear frequently in the sequel. We apply standard symbols and notation. By \mathbb{R} we denote the set of real numbers, by \mathbb{N} we denote the set of positive integers. \mathcal{B}_1 denotes the set of all Baire class 1 functions. The symbol $|\cdot|$ stands for the Lebesgue measure on the real line and also for the absolute value of a real number. Throughout the paper we consider only real-valued functions defined on an open interval.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. The numbers

$$\underline{d}^{+}(E, x) = \liminf_{t \to 0^{+}} \frac{|E \cap [x, x+t]|}{t}$$

and

$$\overline{d}^{+}(E, x) = \limsup_{t \to 0^{+}} \frac{|E \cap [x, x+t]|}{t}$$

are called the right lower density of E at x and right upper density of E at x. The left lower and upper densities of E at x are defined analogously. If

$$\underline{d}^{+}(E,x) = \overline{d}^{+}(E,x) \quad \text{ and } \quad \underline{d}^{-}(E,x) = \overline{d}^{-}(E,x),$$

²⁰⁰⁰ Mathematics Subject Classification: 26A15, 54C30.

Keywords: density of a set at a point, continuous functions, measurable functions, path continuity, Denjoy property, Baire class 1.

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

then we call these numbers the right density and left density of E at x, respectively. The numbers

$$\overline{d}(E,x) = \limsup_{\substack{t \to 0^+ \\ k \to 0^+ \\ t+k \neq 0}} \frac{|E \cap [x-t,x+k]|}{k+t}$$

and

$$\underline{d}(E,x) = \liminf_{\substack{t \to 0^+ \\ k \to 0^+ \\ t+k \neq 0}} \frac{|E \cap [x-t, x+k]|}{k+t}$$

are called the upper and lower density of E at x, respectively. If $\overline{d}(E, x) = \underline{d}(E, x)$, we call this number the density of E at x and denote it by d(E, x).

When d(E, x) = 1, we say that x is a density point of E.

DEFINITION 1.1. Let *E* be a measurable subset of \mathbb{R} . Let $x \in \mathbb{R}$ and $0 < \rho < 1$. We say that the point *x* is a point of ρ -type upper density of *E* if $\overline{d}(E, x) > \rho$.

DEFINITION 1.2. A real-valued function f defined on an open interval I is called ρ -upper continuous at x provided that there is a measurable set $E \subset I$ such that x is a point of ρ -type upper density of E, $x \in E$ and f|E is continuous at x. If f is ρ -upper continuous at every point of I, we say that f is ρ -upper continuous.

We will denote the class of all ρ -upper continuous functions defined on an open interval I by \mathcal{UC}_{ρ} . The notion of ρ -upper continuity is an example of so called path continuity, which was widely described in [2].

2. Main results

THEOREM 2.1. Let $0 < \rho < 1$. If $f \in UC_{\rho}$, then f is measurable.

Proof. Let $f: I \to \mathbb{R}$. Assume that $f \in \mathcal{UC}_{\varrho}$ and suppose that f is not measurable. Then there exists a number $a \in \mathbb{R}$ for which the set $\{x \in I: f(x) < a\}$ is non-measurable. Denote

$$A = \{ x \in I : f(x) < a \}, \quad B = \{ x \in I : f(x) \ge a \}.$$

It is obvious that $B = I \setminus A$ is also non-measurable. Consider a measurable sets $A_1 \subset A$, $B_1 \subset B$ such that $A \setminus A_1$ and $B \setminus B_1$ do not contain a set of positive measure. Therefore, $A \setminus A_1$ and $B \setminus B_1$ are non-measurable sets. If

$$F = (A \setminus A_1) \cup (B \setminus B_1) = I \setminus (A_1 \cup B_1)$$

then F is a measurable set of positive measure. Let L(F) be a set of all density points of the set F. By the well-known Lebesgue Density Theorem [1], $|F \setminus L(F)| = 0$. Therefore, there exists $x_0 \in (A \setminus A_1) \cap L(F)$.

A NOTE ON ρ -UPPER CONTINUOUS FUNCTIONS

Since f is ρ -upper continuous at x_0 , it follows that there exists a measurable set $E \subset I$ such that $x_0 \in E$, $\overline{d}(E, x_0) > \rho$ and f|E is continuous at x_0 . As $x_0 \in A$, we have $f(x_0) < a$. Therefore, it is possible to find $\delta > 0$ such that

 $E \cap (x_0 - \delta, x_0 + \delta) \subset A.$

Let

$$E' = E \cap (x_0 - \delta, x_0 + \delta)$$

Hence $x_0 \in E'$, f|E' is continuous at $x_0, E' \subset A$ and

$$\overline{d}(E', x_0) = \overline{d}(E, x_0) > \varrho > 0.$$
(2.1)

We have

$$E' = (E' \cap A_1) \cup (E' \cap (A \setminus A_1)).$$

Since E' and $E' \cap A_1$ are measurable, $E' \cap (A \setminus A_1)$ is measurable, too. Hence, $|E' \cap (A \setminus A_1)| = 0$. Moreover,

$$\overline{d}(E' \cap A_1, x_0) = 1 - \underline{d}(I \setminus (E' \cap A_1), x_0) \le 1 - \underline{d}(F, x_0) = 1 - 1 = 0,$$

because $(E' \cap A_1) \cap F = \emptyset$. It follows that

$$\overline{d}(E',x_0) \le \overline{d}(E' \cap A_1,x_0) + \overline{d}(E' \cap (A \setminus A_1),x_0) = 0 + 0 = 0,$$

contradicting (2.1). Thus, the assumption that f may be non-measurable is false. \Box

DEFINITION 2.1. We say that a real-valued function f defined on an open interval I has Denjoy property at $x_0 \in I$ if for each $\varepsilon > 0$ and $\delta > 0$ the set $\{x \in (x_0 - \delta, x_0 + \delta) : |f(x) - f(x_0)| < \varepsilon\}$ contains a measurable subset of positive measure. We say that f has Denjoy property if it has Denjoy property at each point $x \in I$.

Remark 2.1. Let $0 < \rho < 1$. If $f \in \mathcal{UC}_{\rho}$ then f has Denjoy property.

THEOREM 2.2. There exists a non-measurable function with Denjoy property.

Proof. First, we will construct inductively a sequence $\{A_n \colon n \ge 1\}$ of measurable sets such that

- (1) $A_i \cap A_j = \emptyset$ for each $i \neq j$,
- (2) $|A_n| > 0$ for each $n \ge 1$,
- (3) $\forall_{(a,b) \subset \mathbb{R}} \exists_{n \in \mathbb{N}} A_{3n-2} \cup A_{3n-1} \cup A_{3n} \subset (a,b).$

Let $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ be a sequence of all open intervals with rational endpoints. Consider (a_1, b_1) . There exists a closed interval $[\alpha_1, \beta_1] \subset (a_1, b_1)$ and there exist pairwise disjoint closed subintervals I_1^1 , I_2^1 , I_3^1 of $[\alpha_1, \beta_1]$. Let $C_{I_j^1}$ be a perfect nowhere dense set with positive measure such that $C_{I_j^1} \subset I_j^1$ for j = 1, 2, 3. Let

$$A_1 = C_{I_1^1}, \quad A_2 = C_{I_2^1}, \quad A_3 = C_{I_3^1}.$$

155

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

Since the set $C_{I_1^1} \cup C_{I_2^1} \cup C_{I_3^1}$ is nowhere dense, there exists a closed interval $[\alpha_2, \beta_2]$ such that

 $\alpha_2 < \beta_2 \quad \text{and} \quad [\alpha_2,\beta_2] \subset (a_2,b_2) \setminus (C_{I_1^1} \cup C_{I_2^1} \cup C_{I_3^1}).$

Moreover, one can find pairwise disjoint closed subintervals I_1^2 , I_2^2 , I_3^2 of $[\alpha_2, \beta_2]$. Let $C_{I_j^2}$ be a perfect nowhere dense set with positive measure such that $C_{I_j^2} \subset I_j^2$ for j = 1, 2, 3. Denote

$$A_4 = C_{I_1^2}, \quad A_5 = C_{I_2^2}, \quad A_6 = C_{I_3^2}.$$

Assume that sets the sets $A_1, A_2, \ldots, A_{3(n-1)}$ are already chosen and the conditions (1) and (2) are fulfilled. Also, assume that

$$A_{3i-2} \cup A_{3i-1} \cup A_{3i} \subset (a_i, b_i) \quad \text{for every} \quad i \le n-1.$$

Since $A_1 \cup \ldots \cup A_{3(n-1)}$ is a nowhere dense set, there exists $[\alpha_n, \beta_n]$ such that

$$\alpha_n < \beta_n$$
 and $[\alpha_n, \beta_n] \subset (a_n, b_n) \setminus (A_1 \cup \ldots \cup A_{3(n-1)})$

Fix any three closed pairwise disjoint nondegenerate intervals I_1^n , I_2^n , $I_3^n \subset [\alpha_n, \beta_n]$. Let $C_{I_j^n}$ be a Cantor set with positive measure such that $C_{I_j^n} \subset I_j^n$ for j = 1, 2, 3. Let

$$A_{3n-2} = C_{I_1^n}, \quad A_{3n-1} = C_{I_2^n}, \quad A_{3n} = C_{I_3^n}.$$

So, by recursion, we can construct a sequence $\{A_n : n \ge 1\}$ of measurable sets such that $A_i \cap A_j = \emptyset$ for each $i \ne j$, $|A_n| > 0$ for each $n \ge 1$ and

$$A_{3n-2} \cup A_{3n-1} \cup A_{3n} \subset (a_n, b_n)$$
 for every $n \in \mathbb{N}$.

Choose any interval $(a,b) \subset \mathbb{R}$. There exists n_0 such that $(a_{n_0}, b_{n_0}) \subset (a, b)$. Hence,

$$A_{3n_0-2} \cup A_{3n_0-1} \cup A_{3n_0} \subset (a_{n_0}, b_{n_0}) \subset (a, b)$$

Let $B \subset \bigcup_{n=1}^{\infty} A_{3n-2}$ be any non-measurable set. Define $E = B \cup \bigcup_{n=1}^{\infty} A_{3n-1}$ and let $f : \mathbb{R} \to \mathbb{R}$ be a characteristic function of the set E.

Let $x \in R$. We consider two cases.

If $x \notin E$, then f(x) = 0. Then for each $\varepsilon > 0$ we have

$$\{t: |f(t) - f(x)| < \varepsilon\} \supset \bigcup_{n=1}^{\infty} A_{3n}$$

Since

$$\left| (a,b) \cap \bigcup_{n=1}^{\infty} A_{3n} \right| > 0$$

for each $(a, b) \subset \mathbb{R}$, we have that for each $\varepsilon > 0$ and $\delta > 0$ the set $\{t \in (x - \delta, x + \delta) : |f(t) - f(x)| < \varepsilon\}$ contains a measurable set of positive measure.

If $x \in E$, then f(x) = 1. Then for each $\varepsilon > 0$ we have

$$\{t: |f(t) - f(x)| < \varepsilon\} \supset \bigcup_{n=1}^{\infty} A_{3n-1}.$$

Since

$$\left| (a,b) \cap \bigcup_{n=1}^{\infty} A_{3n-1} \right| > 0$$

for each $(a, b) \subset \mathbb{R}$, we have that for each $\varepsilon > 0$ and $\delta > 0$ the set $\{t \in (x - \delta, x + \delta) : |f(t) - f(x)| < \varepsilon\}$ contains a measurable set of positive measure.

Hence, f has Denjoy property at x. Since x was arbitrary, we conclude that f has Denjoy property.

Certainly, the set E is non-measurable and f is non-measurable.

THEOREM 2.3. $\mathcal{UC}_{\varrho} \not\subset \mathcal{B}_1$ for every $\varrho < \frac{1}{2}$.

Proof. We will construct a function f such that $f \in \mathcal{UC}_{\varrho}$ for every $\varrho < \frac{1}{2}$ and f is not in Baire class 1.

Let $C \subset [0, 1]$ be a perfect nowhere dense set with positive measure such that for arbitrary interval (a, b), if $C \cap (a, b) \neq \emptyset$, then $|C \cap (a, b)| > 0$. Let

$$A = \left\{ x \in C \colon \underline{d}(C, x) > \frac{1}{2} \right\}.$$

From Lebesgue Density Theorem, $|C \setminus A| = 0$. In particular, A is dense in C. On the other hand, ends of ambiguous intervals do not belong to A. Hence, the set $C \setminus A$ is dense in C, too. Let $f : \mathbb{R} \to \mathbb{R}$ be a characteristic function of the set A, $f = \chi_A$. Since A and $C \setminus A$ are dense in C, we deduce that f is discontinuous at each point $x \in C$. Hence, f is not Baire 1 function.

We will show that $f \in \mathcal{UC}_{\varrho}$ for every $\varrho < \frac{1}{2}$.

If $x \in A$, then f|A is constant, so it is continuous at x and

$$\overline{d}(A,x) = \overline{d}(C,x) \ge \underline{d}(C,x) \ge \frac{1}{2} > \varrho$$

because $|C \setminus A| = 0$.

If $x \in \mathbb{R} \setminus C$, then $f|(\mathbb{R} \setminus C)$ is continuous at x and $\mathbb{R} \setminus C$ is an open subset of \mathbb{R} . Hence,

$$d(\mathbb{R} \setminus C, x) = 1 > \varrho$$

If $x \in C \setminus A$, then $f|(\mathbb{R} \setminus A)$ is continuous at x. Since $x \notin A$, we have that $\underline{d}(C, x) \leq \frac{1}{2}$. It follows that

$$\overline{d}(\mathbb{R} \setminus A, x) = 1 - \underline{d}(A, x) = 1 - \underline{d}(C, x) \ge 1 - \frac{1}{2} = \frac{1}{2} > \varrho.$$

Hence, $f \in \mathcal{UC}_{\varrho}$ for every $\varrho < \frac{1}{2}$.

157

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

REFERENCES

- BRUCKNER, A. M.: Differentiation of Real Functions, Lecture Notes in Math., Vol. 659, Springer-Verlag, New York, 1978.
- [2] BRUCKNER, A. M.—O'MALLEY, R. J.—THOMSON, B. S.: Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97–125.

Received December 19, 2008

Stanisław Kowalczyk Institute of Mathematics Academia Pomeraniensis ul. Arciszewskiego 22b PL-76-200 Słupsk POLAND E-mail: stkowalcz@onet.eu

Katarzyna Nowakowska Institute of Mathematics Academia Pomeraniensis ul. Arciszewskiego 22b PL-76-200 Słupsk POLAND E-mail: nowakowska_k@go2.pl