
58 Brazilian Journal of Physics, vol. 38, no. 1, March, 2008

A Simplified Fermi Accelerator Model Under Quadratic Frictional Force
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Some dynamical properties for a simplified version of a one-dimensional Fermi Accelerator Model under the
action of a small dissipation is studied. The dissipation is introduced via a damping force which is assumed
to be proportional to the square particle’s velocity. The dynamics of the model is described by using a two-
dimensional, nonlinear area contracting mapping for the variables velocity of the particle and time. Our results
confirm that the structure of the phase space of the conservative version is replaced by a large number of attract-
ing periodic orbits. For a fixed set of control parameters, we obtain many periodic attractors and show that most
of them posses low period. The stable orbits produce a complex structure of basin of attraction whose limit
cover almost all phase space, thus suggesting a fractality.
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I. INTRODUCTION

According to previous studies of Enrico Fermi [1], the cos-
mic rays were primarily accelerated in the interstellar space by
collisions of them against moving magnetic fields structures.
A dynamical system which corresponds in spirit to Fermi’s
original model was later proposed by Stanislaw Ulam [2, 3]
and it consists of a classical particle confined between two in-
finitely heavy and rigid walls and therefore suffering elastic
collisions with them. One of the walls is assumed to be fixed
while the other one is periodically time moving. This model
is sometimes referred as to the Fermi-Ulam Model (FUM) [4–
6] and was studied in many different versions and considering
different approaches as well as external fields and damping
forces [7–10]. Additionally, this subject has been object of in-
tense study in last years [11–14] and many tools used to char-
acterize such system can be extended to encompass to much
more complex billiard problems. One of the approaches com-
monly used is the well known simplified version presented in
[15]. For such a simplified version, it is assumed that both
walls are fixed but that, after the collisions with one of the
walls, the particle suffers an exchange of energy and momen-
tum as if the wall were moving. This approach allows one
substantially to speed up the numerical simulations and more-
over such approach retains the nonlinearity of the problem.

There are many different ways to introduce damping forces
in the system. One of them is considering inelastic collisions
of the particle with one or either walls. Thus, the particle
experiences a fractional loss of energy upon collision. As a
consequence, the system no longer preserves the phase space
measure and its mixed structure is destroyed. Therefore, one
can obtain attractors and in particular, chaotic ones. An im-
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portant property that can be extracted from the dynamics in
the presence of dissipation is the occurrence of a boundary
crisis [16]. After the crisis, the chaotic attractor does not exist
anymore. It is then replaced by a chaotic transient which is
described by a power law [17]. Other different option to in-
troduce damping forces is consider the particle moving in the
presence of a drag force. This kind of dissipation acts along
the full trajectory of the particle, contrary to the inelastic col-
lisions where it acts only in the instant of the impact. Despite
both cases are very common in a real experimental system,
the two damping forces yield profound differences in the dy-
namics of the model.

The main goal of this paper is to characterize the effects
of a dissipative force on a simplified FUM that, in our case,
is introduced in the system via a relative motion of a parti-
cle inside a fluid, like a gas. Recently, Leonel and McClin-
tock [18] had shown that, for a damping force proportional
the velocity of the particle and considering a simplified ver-
sion, the system exhibits a determinant of the Jacobian matrix
equals to the unity. Such a result thus confirms that parts of
the phase space show the property of area preservation. In
our approach however, we assume that the dissipative force is
considered to be proportional to the square particle’s veloc-
ity. Some consequences of this kind of damping force is that
the determinant of the Jacobian matrix is no longer the unity,
thus the system presents area contraction on the phase space.
Additionally, the system has an arbitrarily large number of at-
tracting fixed points and periodic orbits. Such large number
of stable orbits yields a complex structure of closely interwo-
ven basins of attraction, whose boundaries fill almost all the
phase space. In particular, many observed attractors are char-
acterized by low periods. We must emphasize that studies of
nonlinear dynamical systems considering a single mechanical
rotor model [19] had shown that, in the Hamiltonian case of
the purely rotor map, it exhibits a huge number of stable peri-
odic orbits and each of them turn into an attracting sink when
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a small amount of dissipation is applied. Moreover, it is ex-
pected that the complexity of such model should be extended
for higher-dimensional systems, as for example a double ro-
tor [20], where it was found many more than 1000 coexisting
low-period periodic attractors. We stress that the simplified
dissipative FUM is also a suitable model to exhibit a large
number of coexisting attractors. Therefore, one of the aims
of this paper is to study a qualitative characterization of low
periodic attractors and their basins of attraction.

The paper is organized as follows. In section II we describe
the model and the procedures used in the construction of the
mapping. Section III is devoted to discuss the behavior of
the phase space and a classification of the periodic orbits ob-
served, the number of attractors found in the system for a spe-
cific range of initial conditions and their basin of attraction.
Finally, in section IV we present our conclusions.

II. THE MODEL AND THE MAPPING

The Fermi Accelerator Model consists of a classical parti-
cle of mass m confined in and bouncing between two parallel,
horizontal and rigid walls. One wall is fixed and the other one
moves periodically in time. We assume that the particle suf-
fers elastic collisions with either walls. The particle is in the
presence of a drag force that we assume to be proportional to
the square particle’s velocity, i.e. F =−ηv2, where η is a drag
coefficient. In our approach we will consider only a simplified
version of the model (see Ref. [15]). We therefore assume that
both walls are fixed, one of them at x = l and the other one at
x = 0. However, when the particle suffers a collision with one
of them (say with that at x = 0), it suffers an exchange of en-
ergy and momentum as if the wall were moving according to
the equation xw(t) = ε′ cos(ωt). The control parameter ε de-
notes the amplitude of oscillation and ω is the frequency of
oscillation. This simplification retains the nonlinearity of the
problem and avoids the inconveniency of finding numerical
solutions of transcendental equations.

The dynamics of the problem might be described by a
two-dimensional nonlinear mapping of the type T (vn, tn) =
(vn+1, tn+1). Before obtain the equations of the mapping, let
us firstly discuss on the initial conditions. We consider that the
particle is at the position x = 0 in the time t = tn with the veloc-
ity v = vn. Applying the second Newton’s law, ∑F = ma, we
obtain that −ηv2 = [mdv/dt]. After solving this equation and
considering an elastic reflection of the particle with the fixed
wall at x = l and after defining the following dimensionless
variables Vn = vn/(ωl), δ = ηl, ε = ε′/l, φn = ωtn the equa-
tions that describe the dynamics of the problem are written
as

T :

{
Vn+1 =|V ∗

n −2εsin(φn+1) |
φn+1 = φn +2

[
eδ−1
Vnδ

]
mod(2π) (1)

where the term V ∗
n = Vn/(2eδ− 1). The modulus function in

the equation of velocity was introduced to preserve the parti-
cle traveling into the region between the walls. The modulus
function has no effect on the motion of the particle if it moves

in the positive direction after the collision. It is important em-
phasize that this approximation is valid only for small values
of ε.

After a straightforward algebra, it is easy to show that the
determinant of the Jacobian matrix for this version of the
problem is given by

det(J) = sign[V ∗
n −2εsin(φn+1)]× 1

(2eδ−1)
, (2)

where the function sign(u) = 1 if u > 0 and sign(u) = −1 if
u < 0.

An analysis of the determinant of the Jacobian matrix (J)
allow us to conclude that the system shrinks area of the phase
space for values of δ 6= 0.

III. NUMERICAL RESULTS

A. The Phase Space

Let us discuss in this section our numerical results. The
introduction of a damping force yields drastic changes in the
phase space while it is compared to the non dissipative ver-
sion of the model. It is well known that for the conservative
case, the phase space shows a chaotic sea surrounding KAM
islands and a set of invariant spanning curves limiting the en-
ergy gain of a bouncing particle (see for example [11]). Such
a structure is totally destroyed in the presence of quadratic
frictional force. To illustrate such a destruction, it is shown in
Fig. 1 the corresponding phase espace for a simplified version
of a dissipative version of the FUM under quadratic frictional
force. Figure 1(a) shows the attracting periodic orbits while

FIG. 1: (Colour online) (a) Phase space for a dissipative version of
a Simplified Fermi Accelerator Model. We have used ε = 10−2 and
δ = 10−4. (b) Classification of the periodic orbits observed in (a).

their classification is shown in Fig. 1(b). It is easy to see
that the phase space for this version of the model presents a
large number of attracting fixed points (sinks), whose orbits
are plotted in different colours. We must say that the number
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of attractors depends on the values of the control parameters
used as well as on the grid of initial conditions taken into ac-
count. The results shown in Fig. 1 were obtained using the
following set of control parameters: ε = 10−2 and δ = 10−4.
We have considered a grid of 7×10 initial conditions for the
intervals φ0 ∈ (0,2π] and V0 ∈ [ε,0.5] respectively. Moreover,
each initial condition was evolved up to 106 iterations as an
attempt to avoid the transient effects. For this set of fixed con-
trol parameters, the highest periodic orbit obtained has period
140 (shown in green) and the lower periodic orbits found ex-
hibits period 1 (those shown in red, cyan and magenta in Fig.
1(b)).

B. The Number of Attractors

Generally, dissipative nonlinear dynamical systems often
exhibit a rich and varied behavior including a large number
of attractors. As an attempt to estimate the number of co-
existing periodic orbits in the present model, we have made
two different simulations considering different grids of initial
conditions. Firstly we have considered 104 different initial
conditions, i.e. a grid of 100× 100 uniformely distributed in
the interval φ ∈ (0,2π] and V ∈ [ε,0.5]. Secondly, we have
evolved a simulation for 25× 104 initial conditions on a grid
of 500× 500 for the same interval of V ×φ. We have used a
particular set of control parameters ε = 10−2 and δ = 10−4. It
must be emphasized that each initial condition for both simu-
lations was evolved for a long run of 107 iterations, thus avoid-
ing transient effects. It is shown in Fig. 2 a histogram of fre-
quency plotted in logarithmic scale. It is easy to see that low

FIG. 2: (Colour online) Number of periodic orbits and their period
for a Simplified Fermi Accelerator Model (dissipative version) using
ε = 10−2 and δ = 10−4. The red columns shows the results for 104

initial conditions while the blue columns were obtained for 25×104

initial conditions.

periodic attractors (those with period < 10) dominate over the
high periodic ones, thus stable orbits of high period are rarely
found. It is worth mentioning that the number of attractors ob-
tained depends on the grid of the initial conditions used. For

104 initial conditions, the highest periodic orbit found was 693
whereas for 25× 104 initial conditions we detect an orbit of
period 810. As larger the grid of initial conditions used, larger
the number of attractors will be found in the system.

C. The Basin of Attraction

We now present the basin of attraction for the attracting pe-
riodic orbits. It is shown in Fig. 3 the basins of attraction for
the fixed points shown in Fig. 1. We can see that the largest

FIG. 3: (Colour online) Basins of attraction for the periodic attrac-
tors indicated in the Fig. 1. We have iterated 106 initial condi-
tions considering a grid of 1000× 1000 for the ranges φ ∈ (0,2π]
and V ∈ [ε,0.5]. The control parameters used were ε = 10−2 and
δ = 10−4.

basin of attraction (shown in red) corresponds to the main or-
bit of the phase space. It is indeed of the period 1 family (P1).
In general, all the basins of P1 orbits (those shown in cyan and
magenta in Fig. 3) are relatively large as compared to those
of other period. We must say that the basins of attraction for
high periodic orbits require a larger grid of resolution on the
plane of initial conditions. The control parameters used in the
construction of the basins were ε = 10−2 and δ = 10−4. We
have used a range of V ∈ [ε,0.5] and φ ∈ (0,2π]. Both ranges
were divided in 1000 parts each, leading to a total of 106 dif-
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ferent initial conditions. Moreover, each initial condition was
iterated up to 106 times.

In systems with many coexisting attractors as found here,
the structure of their basins is very complex. We expect that
such complexity in the closely related basins of attraction cor-
responds to typical properties of systems with a large number
of coexisting attractors.

IV. CONCLUSIONS

We have studied a one-dimensional Fermi Accelerator
Model in the presence of a frictional force proportional to the
square particle’s velocity. Our results confirm that the system
experiences contraction of the phase space area and shows a

large number of coexisting periodic attractors. We obtain the
number of periodic attractors for specific ranges of initial con-
ditions and fixed control parameters. We note that the systems
with many attractors produce a structure of basin of attraction
very complex. Our results suggest that, instead of turning to a
basin boundary smooth, the addition of small amount of dis-
sipation leads to an apparently fractal basin boundary.
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