A study of the sillenite phase in the system Bi₂O₃-Nb₂O₅

T. O. dos Santos¹, A. C. Hernandes², R.R. Viana³, and <u>J. F. Carvalho</u>^{1,*}

¹Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brasil.

²Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil. ³Departamento de Recursos Minerais, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil.

Bismuth oxide (Bi₂O₃) is strongly polymorphic, being known α -, β -, γ -, and δ -forms. Two of them, α - and δ -forms, are thermodynamically stable. The α -phase is the low temperature stable monoclinic structure, which undergoes a phase transition at 730°C to the high temperature cubic δ -form that melts at 825 °C. The other two phases, β -tetragonal and γ -body-centered cubic, are both metastable phases and only can be formed on specific conditions depending on the sample thermal history [1]. However, the metastable β - and γ -forms, as well as the high temperature stable δ -phase, can be stabilized at room temperature by addition of some metal oxides [2-4]. Room temperature stabilized δ -form is interesting because of its high ionic conductivity [3, 4]. The γ -bcc phase has a structure called sillenite exhibiting attractive optical properties, with special interest for the combination of electro-optical and photoconductive properties resulting in the so-called photorefractive effect, making the sillenite crystals useful for many advanced and promising applications, such as reversible recording medium for real-time holography or image processing [6].

Many oxides with metal cation in a large range of ionic radii and valence states are effective for stabilizing the γ -phase of Bi₂O₃. Depending on the metal ion used the general formulae of the resulting sillenite compounds can be written as Bi₁₂MO₂₀, with M cations such as Ge, Si, Ti, or with the M cation in the form of mixtures such as (Bi, Zn), (Ga, P), (Bi, V), (Bi, Ga), and others, including in many cases a fraction of vacancies. Concerning the γ -phase in the binary system Bi₂O₃-Nb₂O₅ exist few studies and there is some controversy regarding its composition and thermal stability. In this work, a detailed screening of composition in the Bi-rich region of the binary Bi₂O₃-Nb₂O₅ system was done by solid state reaction synthesis. The synthesized powders were characterized by room and high temperature X-ray diffraction and thermal analysis, aiming to clarify the thermal behavior and composition of sillenite phase in this system.

KEYWORDS: Bismuth niobium oxide, Sillenite structure, metastable structure.

This work was supported by CNPq and CAPES.

[1] E. M. Levin and R. S. Roth, J. Research Natl. Bur. Standards 68A (1964) 189-195.

[2] E. M. Levin, R. S. Roth, J. Research Natl. Bur. Standards 68A (1964) 197-206.

[3] F. Mauvy, J.C. Launay, J. Darriet, Journal of Solid State Chemistry 178 (2005) 2015-2023.

[4] X. P. Wang, G. Corbel, S. Kodjikian, Q. F. Fang, P. Lacorre, Journal of Solid State Chemistry **179** (2006) 3338-3346.

[5] S. F. Radaev, V. I. Simonov, Soviet Physics Crystallography 37 (1992) 484-499.

[6] J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization, Willey, New York, 2007.

^{*}Address: P.O.Box 131, Campus Universitário II/UFG, CEP 74.690-900, Goiânia - GO - Brasil. E-mail: carvalho@if.ufg.br