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Impact of the tsunami caused by the Great East Japan Earth-
quake on seagrass beds and fish communities in Miyako Bay, 

Japan 

Tsutomu Noda1, Masami Hamaguchi2, Yuichiro Fujinami3, Daisuke Shimizu3, Hideaki Aono4, Yoshitomo Naga-
kura3, Atsushi Fukuta5, Hikaru Nakano5, Yasuhiro Kamimura6 and Jun Shoji5

Abstract

The coastal areas of Miyako Bay on the Pacific coast of northeastern Japan were impacted 
by the devastating tsunami following the Great East Japan Earthquake on 11 March 2011. To 
evaluate the effects of the disturbance caused by the tsunami after the earthquake on seagrass 
Zostera marina beds and their associated fish community structures, seagrass vegetation, 
number of fish species, fish abundance and biomass were compared at two sites with different 
levels of disturbance in the Miyako Bay before (2010) and after the tsunami (2011 and 2012). 
Disappearance of seagrass vegetation at the innermost site of the bay in 2011 indicated a 
catastrophic disturbance on the seagrass vegetation by the tsunami. In contrast, a decrease in 
seagrass abundance at another site in a small inlet nearby was not as prominent as that noted 
at the innermost site. While the sevenspine goby Gymnogobius heptacanthus, a benthic inverte-
brate feeder, was dominant at both sites before the tsunami, the fish community became domi-
nated by benthic carnivores after the tsunami. At the small inlet, abundances of the black edged 
sculpin Gymnocanthus herzensteini and the frog sculpin Myoxocephalus stelleri increased. On 
the other hand, the yellowfin goby Acanthogobius flavimanus and M. stelleri increased at the 
innermost site. The pattern of temporal change in fish community structure differed between 
the sites, possibly reflecting the differences in the level of Tsunami-induced disturbances in 
seagrass beds.
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Introduction

Seagrasses are important foundation species in coastal 
ecosystems (e.g. Dayton 1972), which serve a variety 
of ecological functions such as support for secondary 
production, refuge from predation and spawning substrates 
for fishes (Williams & Heck 2001). Moreover, seagrass beds 
increase the physical complexity of a habitat (Tokeshi & 
Arakaki 2012) and can provide a variety of microhabitats, 
affecting fish abundances and species richness (Horinouchi 
& Sano 1999; Horinouchi 2005; Walter & Haynes 2006; 
Hori et al. 2009). Therefore, seagrass beds support large 
numbers of fish species and individuals, including some 
commercially important ones (e.g. Kikuchi 1974; Adams 
1976; Weinstein & Heck 1979; Beckley 1983; Pollard 1984; 

Sogard et al. 1989; Connolly 1994a, b; Edgar & Shaw 1995; 
Shoji et al. 2007).

The Miyako Bay is located in the middle of the Sanriku 
coast (Fig. 1), Pacific coast of northern Japan. Since the bay 
is composed of a variety of habitats such as seagrass beds, 
rocky and sandy shores, previous reports have shown that 
the Miyako Bay forms important habitats for various fishery 
resources (Yamashita et al. 1994; Okouchi et al. 1999, 2004; 
Chin 2009; Chin et al. 2010; Wada et al. 2010; Hamaguchi 
et al. 2011; Noda et al. 2013; Fukuta et al. 2017). However, 
there is still insufficient information on the ecological 
functions of seagrass beds in the Miyako Bay. Then, we 
started monitoring the seagrass beds of Zostera marina 
Linnaeus, 1753 and its associated fish communities in 2010 
(Fukuta et al. 2017). 

Fig. 1  Location of the sampling sites (Hanoki and Akamae: solid circles) in the Miyako Bay, the Pacific coast 
of northern Japan. The epicenter of the earthquake that caused the 2011 tsunami is indicated by a cross in the 
upper panel. The direction of the views of sampling sites (a-d) in Fig. 2 are indicated by arrows in the lower panel. 
Redrawn from Okouchi et al. (1999).
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The coastal ecosystem of the Miyako Bay was impacted 
by the devastating tsunami following the Great East Japan 
Earthquake on 11 March 2011 (magnitude 9; the largest 
observed in Japan, N36° 06’ / E141° 16’). A tsunami of 10.4 
m height and subsidence damage due to the earthquake 
of 0.33 m occurred at Tsugaruishi (N39° 35’ / E141° 57’), 
which is located near the inner area of the Miyako Bay. 
Since a catastrophic event rarely occurs at a large spatial 
scale under natural conditions, information regarding the 
extent to which such events affect natural ecosystems is 
limited (Nakaoka et al. 2006; Whanpetch et al. 2006, 2010; 
Hori et al. 2009; Tamaki & Muraoka 2011; Takami et al. 
2013). Monitoring the succession processes and comparing 
habitat conditions between pre- and post-tsunami periods 
are essential in order to understand the mechanisms of 
high biological productivity of the coastal ecosystems and to 
attain sustainable use of fishery resources. 

In the present study, the environmental conditions of 
seagrass beds and fish community structures at two sites 

with different levels of disturbance were compared using 
our monitoring data before (2010) and after (2011 and 
2012) the tsunami. In addition, the effects of the tsunami on 
habitat conditions and fish community structures and their 
succession patterns were compared between the two sites 
with different magnitudes of tsunami impact.

Materials and Methods

Miyako Bay was near the epicenter of the mega-
earthquake that occurred on 11 March 2011 (Fig. 1). It is a 
semi-enclosed bay and an estuary basin for both the Hei 
River and the Tsugaruishi River. Physical and biological 
surveys were conducted in seagrass beds at two sites, 
Hanoki and Akamae (Fig. 1, 2). Hanoki is in a small inlet and 
Akamae, 1 km south of Hanoki, is in the innermost part of 
the bay. 

Fig. 2  Sampling sites at Hanoki (a: view towards west from the southeast shore , b: towards northwest from the east 
shore) and Akamae (c: towards northwest from the southeast shore, d: towards southwest from the northeast shore). 
The directions of views are shown by arrows in Fig. 1.       [ continued to next page ]

(a) (b)

(c) (d)
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Fig. 2 continued.   Underwater views at Akamae in (e) 2011 and (f) 2012. All photos by the authors.

Surveys of the seagrass vegetation and fish community 
were conducted on 5 June in 2010, 16 June in 2011, and 
8 June 2012, at the time of maximum growth of seagrass 
in northern Japan (Miyazaki 2005; Ueda et al. 2006). 
Underwater observations by snorkelling or scuba diving 
were conducted to examine the seagrass vegetation before 
fish sampling at each site. Seagrass shoot density was 
measured with quadrats (0.5 m x 0.5 m) at 4 locations 

randomly selected within each site (Kamimura & Shoji 
2009; Mohri et al. 2013; Fukuta et al. 2017). Leaf length of 
randomly-collected Z. marina (5–30 leafs) was measured 
using a ruler. 

Fish were collected using a round seine net (Kamimura 
& Shoji 2009; Mohri et al. 2013; Fukuta et al. 2017) within 
seagrass beds of <1.5 m depth (= height of the seine 
net). Three sides of a square (10 m in side length) were 

(e)

(f)
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surrounded using the net, with the other side facing the 
shore (around border of the seagrass bed). Each collection 
covered an area of 100 m2 (10 m x 10 m) in a seagrass bed. 
Fish sampling was carried out 4 times on each sampling day 
at the two sites. Samplings were conducted during a tidal 
level of 50–130 cm from standard sea level in the day. Fish 
samples were preserved in 10% seawater formalin. 

Water temperature and salinity were measured every 
month using a conductivity-temperature-depth (CTD) profiler 
(Compact-CTD act-HR or Rinko-profiler; JFE Advantech, 
Tokyo, Japan) closed to the bottom of a seagrass bed. The 
data between July 2010 and May 2011 were not available 
due to the loss of the CTD by the tsunami.

In the laboratory, fish were identified according to Nakabo 
(2002) and measured to the nearest 0.1g in wet weight 
(g). Mean number of fish species, fish abundance (number 

of fish individuals) and biomass (wet weight of fish) were 
described on the basis of area (100 m2) covered by each fish 
sampling. The collected fishes during the samplings were 
divided into three groups according to habitat and feeding 
habit of each species (Kimura et al. 1982; Dotsu 1984; 
Noichi et al. 1993; Sawamura 1999; Kanou et al. 2004, 
2005; Yagi et al. 2006; Hori et al. 2009; Sakurai et al. 2009), 
as follows: (1) pelagic species (P), (2) benthic invertebrate 
feeders (BI), and (3) benthic carnivores (BC) (Table 1, Fig. 3)

The data were grouped by site and year. Referring the 
result of non-normality test by the Shapiro-Wilk W-test, cases 
with p < 0.05 were subjected to Kruskal-Wallis test followed 
by the Tukey’s test (for same numbers of samples) or the 
Scheffe’s test (different numbers of samples) and those with 
p > 0.05 to one-way ANOVA followed by the Tukey’s test 
with the SPSS (ver. 17, IBM, Armonk, New York, USA).

 

Fig. 3  Fishes representing pelagic species, (a) Oncorhynchus 
keta, (b) Hypomesus japonicus; benthic invertebrate feeders (c) 
Gymnogobius heptacanthus  , (d) Pholis crassispina    [ continued 
to next page ]  and benthic carnivores).

(a)

(c)

(d)

(b)



Noda T et al.                                                                                                                                 Tsunami impact on seagrass beds

© 2017 SCESAP                                                                      - 17 -                           Coastal Ecosystems, 2017, Vol 4, 12-25

Fig. 3 continued.  Fishes representing benthic carnivore species (e) Acanthogobius flavimanus, (f) Myoxocephalus stelleri.

Results
 

Environmental conditions and seagrass beds

Water temperature measured on the survey day was 
16.0, 16.7, and 14.7°C at Hanoki and 15.3, 19.7, and 17.2°C 
at Akamae in 2010, 2011, and 2012, respectively (Fig. 4). 
Salinity during June at Akamae was relatively lower than that 
at Hanoki.

Seagrass shoot density (mean ± SE, number of shoots 
m-2) at Hanoki was 32.0 ± 4.3 m-2, 9.5 ± 8.8 m-2 and 31.5 ± 
22.2 m-2 in 2010, 2011 and 2012, respectively (Fig. 2, 5). The 
effect of year was not significant (Kruskal-Wallis test followed 
by Tukey’s test, p > 0.05). At Akamae, mean seagrass 

shoot density was 34.0 ± 4.2 m-2, 0 m-2 and 6.0 ± 2.3 m-2 in 
2010, 2011 and 2012, respectively. There was a significant 
difference in the shoot density in Akamae between 2010 and 
2011 (Kruskal-Wallis test followed by Tukey’s test, p < 0.05). 

Leaf length of seagrass (mean ± SE, cm) at Hanoki 
was 51.5 ± 3.6 cm, 41.6 ± 1.4 cm and 33.8 ± 1.7 cm in 
2010, 2011 and 2012, respectively. The length in 2012 was 
significantly shorter than in 2010 and 2011 (Kruskal-Wallis 
test followed by Scheffe’s test, p < 0.05; Fig. 5). At Akamae, 
mean seagrass leaf length was 59.7 ± 4.8 cm and 38.0 ± 3.2 
cm in 2010 and 2012, respectively. No data was available 
in 2011 due to the loss of the seagrass bed. There was a 
significant difference in leaf length at Akamae between 2010 
and 2012 (Kruskal-Wallis test followed by Scheffe’s test, p < 
0.05). 

(e)

(f)
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Fig. 4  Monthly changes in temperature and salinity at Hanoki 
and Akamae from 2010 to 2012. No data were available 
between July 2010 and May 2011 due to logger loss by the 
tsunami.

Fig. 5  Changes in mean seagrass shoot density, leaf length, 
number of fish species, mean fish abundance and biomass at 
Hanoki (left panels) and Akamae (right panels) from 2010 to 
2012. Vertical bars show standard errors. ND indicates no data 
since no seagrass was observed at Akamae in 2011. Different 
letters show significant differences among years (Kruskal-Wallis 
test followed by Tukey’s test or one-way ANOVA followed by 
Tukey’s test. p < 0.05).

Fish abundance

A total of 1,929/605 fish belonging to 22/23 taxa of 15 
and 15 families were collected from Hanoki and Akamae, 
respectively, during the surveys from 2010 to 2012 (Table 
1). Numerically the six most dominant species at Hanoki 
were Gymnogobius heptacanthus (‘sevenspine goby’, 53.0 
%), Gymnocanthus herzensteini (‘black edged sculpin’, 
14.3 %), Opisthocentrus tenuis (‘white nose prickleback’, 
10.2 %), Pseudoblennius cottoides (‘sunrise sculpin’: 6.7 
%), Myoxocephalus stelleri (‘frog sculpin’, 5.0 %), and 
Opisthocentrus ocellatus (‘prickleback’, 4.6 %) (Table 1). At 
Akamae, the numerically six most dominant species were M. 
stelleri (30.4 %), Pholis crassispina (‘mottled gunnel’, 10.6 
%), G. heptacanthus (10.4 %), Acanthogobius flavimanus 
(‘yellowfin goby’, 8.8 %), Syngnathus schlegeli (‘seaweed 
pipefish’, 8.6 %) and P. cottoides (6.3%). 

The pattern of temporal change in the fish community 
structure differed between the two sampling sites (Fig. 5). 
There was no significant effect of year on number of fish 
species at Hanoki (one-way ANOVA followed by Tukey’s 
test, p > 0.05), while the effect of year on the number of fish 

species was significant at Akamae between 2010 and 2012 
(Kruskal-Wallis test, followed by Tukey’s test, p < 0.05). 
At Hanoki, differences in the fish abundance and biomass 
between 2010 and 2011 were significant (one-way ANOVA 
followed by Tukey’s test, p < 0.05), while these values 
were not significantly different at Akamae (Kruskal-Wallis 
test, followed by Tukey’s test, p > 0.05). At both sites, fish 
abundance and biomass were not significantly different 
between 2010 and 2012 (one-way ANOVA followed by 
Tukey’s test or Kruskal-Wallis test followed by Tukey’s test, 
p < 0.05).
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Fish community

The patterns of temporal change in the composition 
of dominant fish groups were similar at the two sampling 
sites (Fig. 6). At both sites, group BI was most dominant in 
terms of fish abundance and biomass in 2010 and group 
BC in 2012. Moreover, BI and BC had a greater number of 
fish species than group P. The number of group P species 
at Akamae was slightly higher than that at Hanoki, while 
amounting to less than 15% among total during the three 
years surveyed.  

In contrast, temporal changes in the composition of 
dominant fish species differed between the two sampling 
sites (Table 1, Fig. 7). At Hanoki, group BI was dominated 
by G. heptacanthus, O. tenuis and O. ocellatus and BC by 
P. cottoides in 2010. There was a significant drop in the 
number of fish individuals of BI species at Hanoki in 2011 
(Kruskal-Wallis test followed by Tukey’s test, p < 0.05). 
Moreover, the number of fish individuals of BC species (G. 

herzensteini and M. stelleri) was significantly higher in 2012 
(Kruskal-Wallis test followed by Tukey’s test, p < 0.05: Fig. 7, 
lower two left panels). 

At Akamae, BI was represented by G. heptacanthus 
and P. crassispina, and BC by M. stelleri in 2010 (Table 
1, Fig. 7). However, S. schlegeli (BI), P. cottoides (BC) 
and A. flavimanus (BC) increased their numbers in 2011 
(Kruskal-Wallis test followed by Tukey’s test, p < 0.05). 
Moreover, individuals of G. heptacanthus (BI) and M. stelleri 
(BC) were significantly more abundant in 2012 (Kruskal-
Wallis test followed by Tukey’s test, p < 0.05). At both sites, 
Oncorhynchus keta (chum salmon) was most dominant in 
group P which was less abundant than BI and BC. In group 
P, there was no significant difference in the number of fish 
individuals between 2010 and 2012 (Kruskal-Wallis test 
followed by Tukey’s test, p > 0.05).

Fig. 6  Composition of fish assemblages in terms of 
the number of fish species (S, upper), number of fish 
individuals (N, middle) and biomass (W, lower) at Hanoki 
(left panels) and Akamae (right panels) in 2010–2012. 
P, pelagic species; BI, benthic invertebrate feeders; BC, 
benthic carnivores.
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Fig. 7  Changes in the number of fish 
individuals of the seven dominant species 
at Hanoki (left panels) and Akamae (right 
panels) in 2010–2012. Vertical bars show 
standard errors. Different letters show 
significant differences among years (Kruskal-
Wallis test followed by Tukey’s test or one-
way ANOVA followed by Tukey’s test. p < 
0.05).
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Discussion 

Hori et al. (2009) reported that the relationship between 
fish species diversity and the three-dimensional structure 
of seagrass bed in the Indian Ocean was affected by 
various magnitudes by the impact of the 26 December 2004 
tsunami caused by the Sumatran earthquake. We analysed 
the effects of the tsunami on seagrass beds and fish 
communities in the Miyako Bay by conducting quantitative 
sampling from 2010 to 2012. The present study suggests 
that the effect of the tsunami was different between the two 
sites, with a more prominent effect of disturbance in the 
inner part of the bay (Akamae). 

At Hanoki, the patterns of fluctuation of the mean fish 
abundance and biomass were similar to the fluctuations 
in seagrass shoot density. Some of BI species (e.g. G. 
heptacanthus, O. tenuis and O. ocellatus) that might depend 
on the seagrass habitat and were dominant in terms of 
abundance and biomass before the tsunami (2010) were 
replaced by group BC after the tsunami (especially in 
2012, dominated by G. herzensteini and M. stelleri). In 
general, habitat complexity has been reported to influence 
fish community structures in seagrass beds (e.g. Heck & 
Crowder 1991; Orth 1992; Jenkins et al. 1998; Horinouchi & 

Sano 1999; Hovel & Fonseca 2005; Horinouchi 2005, 2007; 
Hori et al. 2009; Horinouchi et al. 2009; Warry et al. 2009). 
We suggest that temporal changes in the structure of the 
seagrass beds caused by the tsunami resulted in changes in 
the fish community at Hanoki.

At Akamae, on the other hand, the number of fish 
species, fish abundance and biomass increased from 2010 
to 2011, even though the seagrass bed mostly disappeared 
after the tsunami. The increase in these values could be 
explained by the changes in fish community structure from 
seagrass-associated to other species corresponding to 
the drastic changes in their habitat. While G. heptacanthus 
numbers showed a somewhat similar pattern of change as 
seagrass shoot density, changes in the abundances of other 
fish species did not correspond with changes in seagrass 
shoot density. Fish species which inhabit seagrass beds 
(e.g. G. heptacanthus: BI and M. stelleri: BC) were dominant 
in 2010 and replaced by other species, especially A. 
flavimanus thereafter. Increase in abundance of BC species 
(M. stelleri) was commonly observed at both Akamae and 
Hanoki in 2012, although the fish community of the two sites 
were different before (2010) and after the tsunami (2011 and 
2012). In fact, the most dominant species of group BC was 
G. herzensteini at Hanoki and A. flavimanus at Akamae in 
2012.

Furthermore, the disturbance, including subsidence, 
caused by the tsunami and the earthquake could have 
changed the shape of river mouth and consequential 
direction of the Tsugaruishi River discharge. That might 
have caused large fluctuations in salinity at Akamae. In 
fact, salinity at Akamae in 2012 was higher than in 2010. 
Additionally, BI and BC species increased at Akamae in 
2012 when seagrass recovered and fish biomass was 
greater than in 2010. Salinity has been suggested to be 
an environmental factor with a potential to affect seagrass-
associated fish populations (Jones & West 2005; Yamada 
et al. 2007). Moreover, fish utilize even gaps or edges of 
seagrass patches (e.g. Fagan et al. 1999; Flynn & Ritz 
1999; Ries et al. 2004; Connolly & Hindell 2006; Smith et 
al. 2008; Macreadie et al. 2010). The tsunami impact might 
have changed the environmental conditions including the 
characteristics of seagrass bed for the fish community.
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