SciELO - Scientific Electronic Library Online

 
vol.86 issue1Overcoming barriers: Novel records of swimming behavior in Leopardus guignaRange extension of Catedral spiny-chest frog, Alsodes gargola Gallardo, 1970: a record in an unknown road of the Chilean Patagonia author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Gayana (Concepción)

Print version ISSN 0717-652XOn-line version ISSN 0717-6538

Gayana (Concepc.) vol.86 no.1 Concepción June 2022

http://dx.doi.org/10.4067/S0717-65382022000100017 

Short Communication

Phylogenetic relationships of three endemic and endangered lizard species of Pristidactylus from central Chile based on the cytochrome b

Relaciones filogenéticas de tres especies de lagartos Pristidactylus endémicos y En Peligro del centro de Chile basadas en el citocromo b

Claudio Correa1 

Marta Mora2  * 

Jesús A. Morales1 

Milen Duarte3  4 

Misque Hoare4 

Juan Carlos Ortiz1 

Carlos Garín5 

1Laboratorio de Sistemática y Conservación de Herpetozoos, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.

2ONG Vida Nativa, Santiago, Chile.

3CODECIAM, Santiago, Chile.

4Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile.

5Universidad Andrés Bello, Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, República 440, Santiago, Chile.

ABSTRACT

Lizards of the genus Pristidactylus distribute in southern South America (Chile and Argentina). In Chile, there are four endemic species (P. alvaroi, P. torquatus, P. valeriae and P. volcanensis) that distribute in the central-south zone of the country. We performed a Bayesian analysis with the mitochondrial gene cytochrome b to assess the phylogenetic position of these four species, which shows that they comprise a high supported clade that is separated from the other species of the genus.

Keywords: Argentina; Chile; leiosaurids; polyphyly

RESUMEN

Los lagartos del género Pristidactylus se distribuyen en el sur de América del Sur (Chile y Argentina). En Chile existen cuatro especies endémicas (P. alvaroi, P. torquatus, P. valeriae y P. volcanensis) que se distribuyen en la zona centro-sur del país. Realizamos un análisis bayesiano con el gen mitocondrial citocromo b para evaluar la posición filogenética de estas cuatro especies, el que muestra que ellas comprenden un clado altamente soportado que se separa de las otras especies del género.

Palabras clave: Argentina; Chile; leiosáuridos; polifilia

Chile has a high level of endemism of reptiles, which currently reaches 60% (Ruiz de Gamboa 2020). Most of the endemic species correspond to lizards of the genus Liolaemus Wiegmann, 1834 (one of the most diverse genus of reptiles of the world; Abdala et al. 2021), but there are also representatives of other genera shared with other South American countries. Among them is the genus Pristidactylus Fitzinger, 1843, whichcurrently comprises 10 species distributed in south-central Chile (Garín et al. 2020) and Argentina (Morando et al. 2015).

Like other genera of the same family (Leiosauridae), lizards of the genus Pristidactylus are characterized by stout bodies and legs, robust heads, and short tails that usually do not autotomize (Cei 1986). Traditionally, the species of this genus have been divided into two groups based on morphological and ecological (habitats) characteristics and geographic distribution: the Chilean group (four species) and the Argentine one (six species) (Etheridge & Williams 1985; Cei et al. 2001, 2004).

There are several phylogenetic studies, using morphological and/or molecular characters, where Pristidactylus and other genera of leiosaurids have been included (reviewed in Morando et al. 2015). These studies have included a variable number of species of the genus and have recovered it as monophyletic (Frost et al. 2001; Abdala et al. 2009, in some of their morphological analysis) or polyphyletic (Abdala et al. 2009, in their supertree combining morphological and molecular data; Pyron et al. 2013; Morando et al. 2015).

The most complete phylogenetic studies of the genus to date, in terms of species and number of genes (mitochondrial and nuclear), are Morando et al. (2015) and Femenias et al. (2020). One of the main results of those studies is that P. torquatus (Philippi, 1861) does not group with the rest of the species of the genus. However, both studies included almost exclusively species of Pristidactylus from Argentina and only included P. torquatus among the Chilean representatives. Among the four species from Chile, P. torquatus is the one with the widest geographic distribution; the other three species, P. alvaroi (Donoso Barros, 1974), P. valeriae (Donoso Barros, 1966) and P. volcanensis Lamborot and Díaz 1987, have much more restricted distributions in central Chile (Núñez & Urra 2016; Garín et al. 2020) (Fig. 1). In addition, the quality of the habitats has decreased or deteriorated, which is why these three species are considered Endangered by Chilean legislation (Garín et al. 2020).

FIGURE 1 Adult individuals of the Pristidactylus species from central Chile and sampling sites. A. Pristidactylus alvaroi. B. Pristidactylus volcanensis. C. Pristidactylus valeriae. D. Location of sampling sites (see details in Table 1). / Individuos adultos de las especies de Pristidactylus de Chile central y sitios de muestreo. A. Pristidactylus alvaroi. B. Pristidactylus volcanensis. C. Pristidactylus valeriae. D. Ubicación de los sitios de muestreo (ver detalles en la Tabla 1). 

The results of Morando et al. (2015) and Femenias et al. (2020) ratify that the genus Pristidactylus is polyphyletic and suggest that the Chilean and Argentine species correspond to lineages that have evolved separately, on opposite sides of the Andes. Previous phylogenetic studies that have included part or all of the Chilean species (using only morphological characters for the three from central Chile) have not recovered the reciprocal monophyly of these two lineages (Frost et al. 2001; Abdala et al. 2009). Therefore, the objective of this study is to assess the phylogenetic position of the four Chilean species of Pristidactylus with sequences of the mitochondrial gene cytochrome b.

We sampled two individuals from one locality of each of the four Chilean species: P. alvaroi, P. torquatus, P. valeriae and P. volcanensis (Fig. 1; Table 1). In the case of these last two species, the individuals come from their respective type localities. Oral mucosa samples were obtained with swabs Copan 516CS01 to extract DNA. The sampled individuals were photographed and released at the same capture site. DNA was extracted with the kit ReliaPrepTM gDNA Tissue Miniprep System (Promega, Madison, WI), following the manufacturer’s instructions. A fragment of the mitochondrial gene cytochrome b (cytb) was obtained. The primers and PCR protocols to obtain that fragment are found in Morando et al. (2015) and references therein. Sequences were edited with Bioedit v7.1.3 (Hall 1999) and then aligned with Muscle (Edgar 2004). The eight sequences of the four species were deposited in GenBank under the numbers ON787825- ON787832.

TABLE 1 Geographical origin of the individuals of the Chilean species of Pristidactylus added in this study. The asterisk indicates type locality. / Origen geográfico de los individuos de las especies chilenas de Pristidactylus agregados en este estudio. El asterisco indica localidad tipo. 

Species Locality Latitude (S) Longitude (W) Codes of individuals
Pristidactylus alvaroi Cerro Chicauma 33°11’40.5” 70°58’26.3” AL1, AL2
Pristidactylus volcanensis El Volcán* 33°48’40.0” 70°10’10.3” VOL1, VOL2
Pristidactylus valeriae Alhué* 34°01’24.1” 70°59’16.6” VAL1, VAL2
Pristidactylus torquatus Alto Huemul 34°51’42.9” 70°40’15.6” TOR1, TOR2

We inferred the phylogenetic relationships of the four Chilean species of Pristidactylus in relation to the Argentine species of the genus and the genera most closely related to Pristidactylus (Diplolaemus Bell, 1843 and Leiosaurus Duméril & Bibron, 1837) (Morando et al. 2015; Femenias et al. 2020). Therefore, we included representatives of all species of genera Diplolaemus and Leiosaurus and of five of the six species of Pristidactylus from Argentina. Also, we included one specimen of P. torquatus from Cordillera de Nahuelbuta (Morando et al. 2015). We performed a Bayesian Inference (BI) analysis with the program MrBayes v3.2.7a (Ronquist et al. 2012). A reversible-jump method to explore the space of all General Time Reversible sub-models, plus gamma and proportion of invariable sites parameters was applied independently to each codon position (three partitions). The analysis consisted of four independent chains run for 20 million generations, sampled every 1000 generations. The first 25% of generations was conservatively discarded as burn-in after observing the stationarity of ln-likelihoods of trees in Tracer v1.7.1 (Rambaut et al. 2018). Convergence and mixing of chains were assessed by examining values of average standard deviation of split frequencies (ASDSF), and expected sampling sizes (ESS) and Potential Scale Reduction Factor (PSRF) for all parameters. Trees were rooted with a representative of the genus Urostrophus Duméril & Bibron, 1837 following the most recent phylogenetic studies of these leiosaurid genera (Morando et al. 2015; Femenias et al. 2020).

We obtained an alignment of 809 nucleotide sites for the cytb. We recovered four main clades, two corresponding to the genera Diplolaemus and Leiosaurus, and other two made up of the Chilean and Argentine species of Pristidactylus (Fig. 2). According to our results, the Chilean clade of Pristidactylus is the sister group of Leiosaurus, but this relationship is supported by a low posterior probability (pp = 0.84), whereas the Argentine species of Pristidactylus comprise the sister group of the genus Diplolaemus, also with a low support (pp = 0.70). The four Chilean species of Pristidactylus comprise a highly supported clade (pp = 0.99), where P. torquatus is the first to diverge, followed by P. alvaroi, which corresponds to the sister taxon of P. valeriae + P. volcanensis (this last relationship with low support, pp = 0.80).

FIGURE 2 Bayesian consensus tree (50% majority-rule) of the fragment of the cytochrome b, showing the relationships of Pristidactylus, Diplolaemus and Leiosaurus. Specimens of the two Pristidactylus lineages are shown with different colors: Chilean (red) and Argentine (blue). The values next to the nodes correspond to posterior probabilities and the scale bar below the tree represents the expected substitutions per site along the branches. / Árbol de consenso bayesiano (regla de la mayoría del 50%) del fragmento del citocromo b, mostrando las relaciones de Pristidactylus, Diplolaemus y Leiosaurus. Los dos linajes de Pristidactylus se muestran con diferentes colores: chileno (rojo) y argentino (azul). Los valores junto a los nodos corresponden a las probabilidades posteriores y la barra de escala debajo del árbol representa las sustituciones esperadas por sitio a lo largo de las ramas. 

In the last two decades, several studies have been conducted to elucidate the phylogenetic relationships and evolution of the leiosaurid genera Pristidactylus, Diplolaemus and Leiosaurus (reviewed in Morando et al. 2015). The most recent and complete phylogenetic studies of these genera (Morando et al. 2015; Femenias et al. 2020) have been consolidating the position that Diplolaemus and Leiosaurus are monophyletic, whereas Pristidactylus is polyphyletic. Here, we obtained similar results, recovering the same four main groups of leiosaurids, but there are some differences from those studies.

We obtained low support values (pp < 0.95) for the clades corresponding to the genera Diplolaemus and Leiosaurus and a relationship between Diplolaemus and the Argentine species of Pristidactylus (also with low support) (Fig. 2). Instead, Morando et al. (2015) (in their species tree) obtained high levels of support for the genera Diplolaemus and Leiosaurus and the clade formed by the Argentine species of Pristidactylus. However, like Morando et al. (2015), we recovered a relationship between P. torquatus and Leiosaurus, although with low support. On the other hand, Femenias et al. (2020) (in their species tree) also obtained high support for Diplolaemus, Leiosaurus and the Argentine species of Pristidactylus, but recovered to P. torquatus as sister of these three clades. These differences can be attributed to the fact that we used only one mitochondrial marker, but it should be noted that despite the fact that Morando et al. (2015) and Femenias et al. (2020) used several genes (two mitochondrial and eight nuclear), in general they did not obtain high support values for the relationships among genera.

Both Morando et al. (2015) and Femenias et al. (2020) recovered to P. torquatus separated from the Argentine species of the genus, although in different positions. Here, we obtained the same result, but including all species of Pristidactylus from Chile, which grouped with high support; moreover, a division is observed between P. torquatus and the three species from central Chile, also with a high support (Fig. 2). The relationship of P. torquatus as sister to the other species from Chile had already been obtained in previous studies, for example, by Frost et al. (2001) (in their analysis of morphological and molecular data combined, where the Argentine species P. fasciatus is closely related to the Chilean species) and Abdala et al. (2009) (in their morphological analysis, where P. alvaroi was not included). Among the three species from central Chile, we recovered P. valeriae and P. volcanensis as sister species (Fig. 2), a result also obtained by Abdala et al. (2009) in their morphological analysis.

In summary, despite using only one mitochondrial gene, we confirmed previous studies that recovered Pristidactylus as a polyphyletic genus (Morando et al. 2015; Femenias et al. 2020). Our analysis also shows that the four endemic species of Chile make up a well-supported lineage that has evolved separately from their counterparts on the other side of the Andes. This is consistent with the morphological and ecological differences that have traditionally been used to distinguish the two groups of species within the genus. However, a larger number of samples from different populations and the inclusion of nuclear markers are required to better understand the evolutionary history and establish the taxonomic status of the Pristidactylus lineage that is restricted to the west of the Andes in Chilean territory.

ACKNOWLEDGEMENTS

The authors thank the project “Acciones de conservación para el gruñidor de Álvaro (Pristidactylus alvaroi)” from Fundación Casa de La Paz and NGO Vida Nativa that funded this study. This study was authorized by the Servicio Agrícola y Ganadero, Resolución Exenta # 2985.

REFERENCES

Abdala, C.S., Laspiur, A., Langstroth, R.P. 2021. Las especies del género Liolaemus (Liolaemidae). Lista de taxones y comentarios sobre los cambios taxonómicos más recientes. Cuadernos de Herpetología 35(Supl. 1): 193-223. [ Links ]

Abdala, V., Manzano, A.S., Nieto, L., Diogo, R. 2009. Comparative myology of Leiosauridae (Squamata) and its bearing on their phylogenetic relationships. Belgian Journal of Zoology 139(2): 109-123. [ Links ]

Cei, J.M. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Museo Regionale di Science Naturali Torino, Monografia IV. 527 pp. [ Links ]

Cei, J.M., Scolaro, J.A., Videla, F. 2001. The present status of Argentinean polychrotid species of the genus Pristidactylus and description of its southernmost taxon as a new species. Journal of Herpetology 35(4): 597-605. [ Links ]

Cei, J.M., Scolaro, J.A., Videla, F. 2004. An updated biosystematic approach to the leiosaurid genus Pristidactylus. Bollettino del Museo Regionale di Scienze Naturali di Torino 21(1): 159-192. [ Links ]

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792-1797. [ Links ]

Etheridge, R., Williams, E.E. 1985. Notes on Pristidactylus (Squamata: Iguanidae). Breviora 483: 1-18. [ Links ]

Femenias, M.M., Avila, L.J., Sites Jr, J.W., Morando, M. 2020. The enigmatic Leiosaurae clade: Phylogeography, species delimitation, phylogeny and historical biogeography of its southernmost species. Molecular Phylogenetics and Evolution 144: 106725. [ Links ]

Frost, D.R., Etheridge, R., Janies, D., Titus, T.A. 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates 3343: 1-39. [ Links ]

Garín, C., Lobos, G., Hussein, Y. 2020. Gruñidores de Chile. SEREMI del Medio Ambiente de la Región Metropolitana de Santiago y Ecodiversidad Consultores, Santiago. 61 pp. [ Links ]

Hall, T. 1999. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Version 5.0.9. Nucleic Acids Symposium Series 41: 95-98. [ Links ]

Morando, M., Olave, M., Avila, L.J., Baker, E., Sites Jr., J.W. 2015. Molecular Phylogeny of the Lizard Clade Leiosaurae Endemic to Southern South America. Herpetologica 71(4): 322-331. [ Links ]

Núñez, H., Urra, F. 2016. Lagartos Pristidactylus en el bosque esclerófilo, ¿una invasión reciente o siempre fue así? Boletín del Museo Nacional de Historia Natural 65: 169-174. [ Links ]

Pyron, A.R., Burbrink, F.T., Wiens, J.J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13: 93. [ Links ]

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67(5): 901-904. [ Links ]

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61(3): 539-542. [ Links ]

Ruiz De Gamboa, M. 2020. Estados de conservación y lista actualizada de los reptiles nativos de Chile. Boletín Chileno de Herpetología 7: 1-11. [ Links ]

Received: December 31, 2021; Accepted: April 13, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License