633
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Molecular data from three chloroplast markers resolve individuals attributable to Radula buccinifera in six lineages belonging to two subgenera, indicating the species is polyphyletic as currently circumscribed. All lineages are morphologically diagnosable, but one pair exhibits such morphological overlap that they can be considered cryptic. Molecular and morphological data justify the re-instatement of a broadly circumscribed ecologically variable R. strangulata, of R. mittenii, and the description of five new species. Two species Radula mittenii Steph. and R. notabilis sp. nov. are endemic to the Wet Tropics Bioregion of north-east Queensland, suggesting high diversity and high endemism might characterise the bryoflora of this relatively isolated wet-tropical region. Radula demissa sp. nov. is endemic to southern temperate Australasia, and like R. strangulata occurs on both sides of the Tasman Sea. Radula imposita sp. nov. is a twig and leaf epiphyte found in association with waterways in New South Wales and Queensland. Another species, R. pugioniformis sp. nov., has been confused with Radula buccinifera but was not included in the molecular phylogeny. Morphological data suggest it may belong to subg. Odontoradula. Radula buccinifera is endemic to Australia including Western Australia and Tasmania, and to date is known from south of the Clarence River on the north coast of New South Wales. Nested within R. buccinifera is a morphologically distinct plant from Norfolk Island described as R. anisotoma sp. nov. Radula australiana is resolved as monophyletic, sister to a species occurring in east coast Australian rainforests, and nesting among the R. buccinifera lineages with strong support. The molecular phylogeny suggests several long-distance dispersal events may have occurred. These include two east-west dispersal events from New Zealand to Tasmania and south-east Australia in R. strangulata, one east-west dispersal event from Tasmania to Western Australia in R. buccinifera, and at least one west-east dispersal from Australia to New Zealand in R. australiana. Another west-east dispersal event from Australia to Norfolk Island may have led to the budding speciation of R. anisotoma. In contrast, Radula demissa is phylogeographically subdivided into strongly supported clades either side of the Tasman Sea, suggesting long distance dispersal is infrequent in this species.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Universal primers for amplification of three non-coding regions of chloroplast DNA.

            Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.

              The Southern Hemisphere has traditionally been considered as having a fundamentally vicariant history. The common trans-Pacific disjunctions are usually explained by the sequential breakup of the supercontinent Gondwana during the last 165 million years, causing successive division of an ancestral biota. However, recent biogeographic studies, based on molecular estimates and more accurate paleogeographic reconstructions, indicate that dispersal may have been more important than traditionally assumed. We examined the relative roles played by vicariance and dispersal in shaping Southern Hemisphere biotas by analyzing a large data set of 54 animal and 19 plant phylogenies, including marsupials, ratites, and southern beeches (1,393 terminals). Parsimony-based tree fitting in conjunction with permutation tests was used to examine to what extent Southern Hemisphere biogeographic patterns fit the breakup sequence of Gondwana and to identify concordant dispersal patterns. Consistent with other studies, the animal data are congruent with the geological sequence of Gondwana breakup: (Africa(New Zealand(southern South America, Australia))). Trans-Antarctic dispersal (Australia southern South America) is also significantly more frequent than any other dispersal event in animals, which may be explained by the long period of geological contact between Australia and South America via Antarctica. In contrast, the dominant pattern in plants, (southern South America(Australia, New Zealand)), is better explained by dispersal, particularly the prevalence of trans-Tasman dispersal between New Zealand and Australia. Our results also confirm the hybrid origin of the South American biota: there has been surprisingly little biotic exchange between the northern tropical and the southern temperate regions of South America, especially for animals.
                Bookmark

                Author and article information

                Journal
                PhytoKeys
                PhytoKeys
                PhytoKeys
                PhytoKeys
                Pensoft Publishers
                1314-2011
                1314-2003
                2013
                30 October 2013
                : 27
                : 1-113
                Affiliations
                [1 ]Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
                [2 ]Department of Biology, Duke University, Box 90388, Durham NC 27708, U.S.A.
                [3 ]Institute of Botany, University of Liège, Liège, Belgium
                [4 ]School of Biological Sciences, The University of Sydney, NSW 2006, Australia
                [5 ]The Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois, USA
                Author notes
                Corresponding author: Matt A.M. Renner ( matt.renner@ 123456rbgsyd.nsw.gov.au )

                Academic editor: Lyubomir Penev

                Article
                10.3897/phytokeys.27.5523
                3821098
                618ff1e9-c760-4954-b8df-8ad497463669
                Matt A.M. Renner, Nicolas Devos, Jairo Patiño, Elizabeth A. Brown, Andrew Orme, Michael Elgey, Trevor C. Wilson, Lindsey J. Gray, Matt J. von Konrat

                This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 May 2013
                : 20 August 2013
                Categories
                Article

                Plant science & Botany
                radulaceae,radula subg. metaradula,radula anisotoma,radula australiana,radula buccinifera,radula demissa,radula imposita,radula mittenii,radula notabilis,radula pugioniformis,radula strangulata,sp. nov.,morphology,dna sequence data,australia,new zealand,flora,liverwort,dispersal,biogeography,cryptic species

                Comments

                Comment on this article

                scite_

                Similar content36

                Cited by10

                Most referenced authors354