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Simple Summary: Climate change exacerbates the threat of biological invasions by increasing
climatically suitable regions for species to invade outside of their native range. Island ecosystems
may be particularly sensitive to the synergistic effects of climate change and biological invasions. In
Hawai’i there are 21 non-native bees that have the capacity to spread pathogens and compete for
resources with native bees. We performed an ensemble of species distribution models (SDM) for
eight non-native bee species (Hymenoptera: Anthophila) in Hawai’i to predict climatically suitable
niches across current and future climate scenarios. We found a significant difference in habitat
suitability between SDMs that were constructed with specimen records from their native and non-
native (Hawai’i) range. Although SDMs predict expansion of suitable habitat into higher elevations
under 2070 climate scenarios, species-rich areas are predicted to stay below 500 m elevation. Our
models can inform decisions on the management of non-native bees in Hawai’i by assessing risk of
invasion into new areas around the archipelago.

Abstract: Climate change is predicted to increase the risk of biological invasions by increasing the
availability of climatically suitable regions for invasive species. Endemic species on oceanic islands
are particularly sensitive to the impact of invasive species due to increased competition for shared
resources and disease spread. In our study, we used an ensemble of species distribution models
(SDM) to predict habitat suitability for invasive bees under current and future climate scenarios in
Hawai’i. SDMs projected on the invasive range were better predicted by georeferenced records from
the invasive range in comparison to invasive SDMs predicted by records from the native range. SDMs
estimated that climatically suitable regions for the eight invasive bees explored in this study will
expand by ~934.8% (±3.4% SE). Hotspots for the invasive bees are predicted to expand toward higher
elevation regions, although suitable habitat is expected to only progress up to 500 m in elevation in
2070. Given our results, it is unlikely that invasive bees will interact directly with endemic bees found
at >500 m in elevation in the future. Management and conservation plans for endemic bees may
be improved by understanding how climate change may exacerbate negative interactions between
invasive and endemic bee species.

Keywords: invasive; climate change; species distribution models; oceanic island; Hylaeus

1. Introduction

Biological invasions are one of the most severe threats to biodiversity and natural
resources. Climate change is predicted to increase the risk of biological invasions by
increasing climatically suitable regions for invasive species [1]. The intersection of climate
change and invasive species is considered to be one of the main factors likely to impact bee
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diversity, together with land use change, exposure to pesticides, and pathogen spillover [2].
Climate constraints on invasive bee species, specifically temperature and precipitation
patterns, may be reduced at their range limits, potentially allowing invasive species to
expand beyond their current geographic range and into novel environments [3–6]. In
addition to changes in geographic distribution of species, climate change has been shown
to impact plant-pollinator phenology mismatch, bee genetic composition and body size,
and species interactions [7–10].

Hawai’i is one of the most remote archipelagos in the world and has been invaded by
many different invasive plants and animals, including at least 21 species of introduced bees
(Table 1 and Figure 1) [11–15]. The invasive bees present in Hawai’i have been accidentally
introduced, excluding Apis mellifera Linnaeus, 1758, which was brought to Hawai’i in 1857
primarily to deliver pollination services to non-native Prosopis pallida (Fabaceae) to support the
cattle industry, and subsequently honey production in 1850 [16]. In addition to A. mellifera, two
other bee species, Hylaeus leptocephalus (Morawitz, 1871) and Lithurgus scabrosus (Smith, 1859),
are of European origin and are now common and widespread [13]. Eight other species,
Ceratina arizonensis (Cockerell, 1898), Xylocopa sonorina (Smith, 1874), Lasioglossum imbrex
Gibbs, 2010, Lasioglossum impavidum (Sandhouse, 1924), Lasioglossum microlepoides (Ellis, 1914),
Lasioglossum puteulanum (Gibbs, 2009), Megachile gentilis (Cresson, 1872), and Megachile policaris
(Say, 1831), are adventive from the western United States [13,14]. One species, Hylaeus albonitens
(Cockerell, 1905), is from Australia [13]. Finally, nine bee species, Ceratina smaragdula (Fabri-
cius, 1787), Ceratina dentipes (Friese, 1914), Hylaeus strenuus (Cameron, 1897), Megachile chlorura
(Cockerell, 1918), Megachile diligens (Smith, 1879), Megachile fullawayi (Cockerell, 1914),
Megachile lanata (Fabricius, 1775), Megachile timberlakei (Cockerell, 1920), and
Megachile umbripennis (Smith, 1853), are from Southeast Asia and the South Pacific [11,13,17,18].
There is evidence that two species, Megachile umbripennis and Megachile diligens, were intro-
duced by Polynesians in pre-contact times [13]; however, data to support this hypothesis are
lacking. In contrast, the remaining 18 invasive bee species (excluding A. mellifera) have been
accidentally introduced following the arrival of non-kānaka maoli to the archipelago.

Table 1. Occurrence data download summary for 21 bees (Hymenoptera: Anthophila) that are invasive to Hawai’i from the
Global Biodiversity Information Facility (GBIF) webpage (http://gbif.org, Accessed: 3 June 2019).

Family Genus Species
No. of

Records on
GBIF

No. GeoRef
Records on

GBIF

Final No.
GeoRef
Records

Year
Documented

in Hawai’i
General Native Range

Apidae Apis mellifera 150,293 134,926 50,640 1857 Europe (Snelling 2003)

Apidae Ceratina arizonensis 836 828 101 1950 Southwestern United States
(Daly 1973)

Apidae Ceratina smaragdula 409 318 107 1998 Southeast Asia (Hirashima,
1969, Snelling 2003)

Apidae Ceratina dentipes 183 145 70 1996 Southeast Asia (Snelling
2003)

Apidae Xylocopa sonorina 155 138 101 1874 North America (Snelling
2003)

Colletidae Hylaeus leptocephalus 589 490 247 1958 Europe (Snelling 2003)

Colletidae Hylaeus albonitens 924 172 59 1995 Australia (Magnacca &
King 2013)

Colletidae Hylaeus strenuus 1 1 2 2007 India (Magnacca 2011)

Halictidae Lasioglossum imbrex 0 0 49 2005 Western North America
(Gibbs 2010)

Halictidae Lasioglossum impavidum 337 326 28 1994 Coastal California (Snelling
2003)

Halictidae Lasioglossum microlepoides 13,258 13,242 180 2010
Western North America
and Northern Mexico

(Magnacca & King 2013)

http://gbif.org
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Table 1. Cont.

Family Genus Species
No. of

Records on
GBIF

No. GeoRef
Records on

GBIF

Final No.
GeoRef
Records

Year
Documented

in Hawai’i
General Native Range

Halictidae Lasioglossum puteulanum 1752 1749 188 2012

Eastern North America
(Gibbs, 2011); USGS (https:
//www.usgs.gov/media/
images/lasioglossum-nr-
puteulanum-male-side,
Accessed: 3 June 2019)

Megachilidae Lithurgus scabrosus 36 18 14 1907 Europe (Snelling 2003)

Megachilidae Megachile chlorura 3 1 2 1988
Philippines (Snelling, 2003);
Southeast Asia (Rasmussen

2012)

Megachilidae Megachile diligens 5 0 15 1879

South Pacific according to
Snelling, 2003), Southeast

Asia according to
Rasmussen 2012

Megachilidae Megachile fullawayi 21 17 12 1921

Guam according to
Cockerell, but likely
brought from Asia.

(Snelling 2003)

Megachilidae Megachile gentilis 731 668 230 1899

Northwestern USA, species
know from southern BC

(Snelling 2003); as M.
palmarum Perkins

Megachilidae Megachile lanata 345 302 86 2012
Southeast Asia (Gonsalez

et al. 2019), India
(Magnacca et al. 2013)

Megachilidae Megachile policaris 1114 891 382 2018 Georgia and Florida, west
to California and Mexico

Megachilidae Megachile timberlakei 10 8 8 1904

First documented in
Hawai’i, probably South
Pacific region. (Snelling

2003)

Megachilidae Megachile umbripennis 177 148 39 1898 Northern India and China
(Timberlake, 1921)
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Non-native bee species have the potential to become invasive pests when they cause
environmental, economic, or human harm [19]. Competition for floral resources and
nesting sites, alteration of pollination networks, and introductions of pathogens are all
possible consequences of alien bee introductions in Hawai’i [14]. The Megachilidae family
has the largest invasive bee presence on the islands, with nine species. All Megachilidae
species found in Hawai’i nest in a wide array of preformed cavities, but are especially
prone to nest in wood or hollow plant stems [13,20]. Most Megachile are leaf-cutters; they
line the nest cavity and construct individual cells from leaves or flower petals they have
cut [13,20,21]. M. timberlakei, M. umbripennis, and L. scabrosus have been suggested to have
negative effects on native populations by competing for nesting sites and floral resources
and altering pollination networks [20–22]. Five species of bees in the Apidae family,
including A. mellifera, C. arizonensis, C. smaragdula, and C. dentipes, have been suggested to
compete for floral resources with Hylaeus bees in Hawai’i due to the similar proximity of
habitat [12,23]. Furthermore, X. sonorina is a pollinator of invasive weeds [15,24,25].

Four species from the Halictidae family have been recorded in Hawai’i. In 2013,
two species, L. microlepoides and L. imbrex, were frequently documented throughout the
disturbed coastal and lowland areas around O‘ahu [23]. Given their dominance in disturbed
habitats, both species are suggested to be significant pollinators of invasive weeds [23].
L. impavidum recorded in Hawai’i, has been suggested to compete for floral resources
with native species because of its abundant occurrence in company with Hylaeus [12,13].
In California, its presumed origin, L. impavidum is primarily a lowland species, residing
in elevations below 600 m [13]. However, its Hawai’i range has been documented at
coastal localities to as high as 2700 m [13]. Finally, three invasive Hylaeus bees in the
Colletidae family are present in Hawai’i. H. albonitens and H. strenuus are both suggested to
compete for floral resources with native Hylaeus bees [12]. H. leptocephalus, which is present
in Honolulu, O‘ahu, is thought to persist in low numbers only in urban sites, without
spreading into native habitat [11]. As of the writing of this manuscript, no bees from the
bee families Andrenidae, Stenotridae, or Melittidae have been documented in Hawai’i.

Research on how climate change could affect bees is limited for tropical island ar-
eas [1,26–31]. However, identifying the intersection between climate change and invasive
species range expansion is critical for informing the management of imperiled and/or
endemic biodiversity. For example, in Hawai’i there are more than 60 species of Hylaeus
endemic to one or multiple islands [12,32]. Seven species of Hylaeus have been placed
under the protection of the U.S. Endangered Species Act [33]. However, nearly half of the
Hylaeus species endemic to Hawai’i are threatened due to habitat loss or alteration [12]. In
fact, 10 species of Hylaeus may have gone extinct, as they have not been documented for a
significant amount of time [12,23]. Endemic Hylaeus are especially vulnerable to the impacts
of climate-induced biological invasions because they have fewer opportunities to adapt
by altering their distribution [31,33]. The smaller land area of islands generally translates
into very small populations and ranges for endemic insects such as Hylaeus [31,34–36].
Additionally, because of the limited area, Hylaeus endemic to Hawai’i are more vulnerable
to invasive species through competition, predation, and disease spread [18,36,37]. These
bees may be particularly susceptible to invasion because they rely on only a few plant
species from which they gather pollen [38–40]. Low genetic variation, small colonizing
populations, and reduced species richness may limit insular bee species in their ability to
adapt [41–44]. Island species have evolved with few others and have developed survival
strategies based on mutualism rather than defense mechanisms against predators and
competitors [14,44]. As a result, harmful effects from climate-exacerbated biological inva-
sions can encompass the entire habitat of endemic Hylaeus more readily than a continental
species habitat.

The purpose of this study was to perform a comprehensive assessment of the specific
regional niches of invasive bee species in Hawai’i and assess their potential expansion in
the islands based on current and future climate scenarios. Little is known about potential
habitat expansion of invasive bees due to climate change in Hawai’i [17]. An ability to
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accurately predict the impacts of climate change on species distribution is necessary to
make informed decisions for biodiversity conservation. We chose to use an ensemble of
species distribution models to accomplish our research aims. Our first objective in this
study was to identify the bioclimatic niche for eight invasive bees in Hawai’i based on
locality records from their native range and their invasive Hawai’i range. We predicted
that the invaded Hawai’i niche will predict habitat suitability differently when compared
to a model that projects habitat suitability based on the respective bee’s native niche. Our
hypothesis was based on previous research that suggests invasive species have a high
capacity to adapt to novel environments [45]. Our second objective in this study was
to determine how future climate scenarios may influence the elevational distribution of
invasive bees in Hawai’i. We predicted that invasive bees would expand into higher
elevation habitat in future climate models. Our hypothesis was based on research that
suggests species disperse to higher elevations as the temperature warms [46].

2. Methods
2.1. Species Occurrence Data

A total of 52,511 unique locality records of invasive bees in Hawai’i were accessed from
museum databases (Global Biodiversity Information Facility (GBIF; http://www.gbif.org/,
Accessed: 3 June 2019) (Table S1) and Discover Life (Asher and Pickering 2011) (Table S2).
The locality records, also referred to as occurrence data, were collected at different times
by a diversity of collectors. All occurrence records were aggregated into 1 km2 cells
corresponding to the resolution of environmental variables. Identical presence locations
were removed and only 1 unique presence location was retained. Records were verified by
published works and occurrence records that could not be validated by the literature or
additional resources were excluded from the study. We selected 8 out of the total 21 species
to construct species distribution models in Hawai’i: A. mellifera, C. dentipes, C. smaragdula,
L. impavidum, L. microlepoides, L. puteulanum, M. umbripennis, and X. sonorina (Figure 2).
Sufficiently digitized and georeferenced location information for the remaining 13 species
was not publicly available for analysis via GBIF or other online resources. Data on the bees
invasive to Hawai’i, including the timing of their invasion, are provided in Table 1.
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2.2. Environmental Data

In our study, we applied 19 bioclimatic variables (derived from temperature and pre-
cipitation measures), averaged between 1970 and 2000, with a spatial resolution of 30 arcsec
(~1 × 1 km), from the WorldClim 2.1 database (http://www.worldclim.org/, Accessed:
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3 June 2019) [47]. The current bioclimatic variables were computed from monthly values of
minimum, average, and maximum temperature and monthly precipitation. The variables
used in our analysis included the following: annual mean temperature (BIO 1), mean
diurnal range (mean of monthly (max temp–min temp)) (BIO 2), isothermality (BIO2/BIO7)
(×100) (BIO 3), temperature seasonality (standard deviation ×100) (BIO 4), max tempera-
ture of warmest month (BIO 5), min temperature of coldest month (BIO 6), temperature
annual range (BIO 5–BIO 6) (BIO 7), mean temperature of wettest quarter (BIO 8), mean
temperature of driest quarter (BIO 9), mean temperature of warmest quarter (BIO 10), mean
temperature of coldest quarter (BIO 11), annual precipitation (BIO 12), precipitation of
wettest month (BIO 13), precipitation of driest month (BIO 14), precipitation seasonality
(coefficient of variation) (BIO 15), precipitation of wettest quarter (BIO 16), precipitation
of driest quarter (BIO 17), precipitation of warmest quarter (BIO 18), and precipitation of
coldest quarter (BIO 19). To reduce multicollinearity among the environmental variables, a
principal component analysis was conducted to highlight the relationship between the tar-
get species occurrences and the specific environmental combinations within the archipelago.
Variables were chosen based on orthogonal direction and overall environmental variation
following strategies implemented in the BIOMOD2 package [48].

Distributions of the 8 invasive bee species were also modeled for future climatic
conditions. We used projected bioclimatic variables for the period 2070 from representative
greenhouse gas concentration pathway (RCP) scenario, RCP 8.5. RCP 8.5, derived from the
Coupled Model Intercomparison Project Phase 5 (CMIP5), represents a radiative forcing of
+8.5 W/m for the period 2000–2100, predicted to raise the average temperature 4.3 ◦C by
2100 [49]. Many research groups around the world have produced different global climate
models (GCMs), which have been submitted to the CMIP5. GCMs can be used to forecast
climate change because they capture the processes that respond to climate forcing. The
bioclimatic variables used for modeling current distribution were used to predict future
distribution of the invasive bees. We downloaded future bioclimate data of 12 GCMs:
BCC-CSM1-1, CCSM4, GFDL-ESM2G, GISS-E2-R, HadGEM2-AO, HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM, MIROCESM, MIROC5, MRI-CGCM3, and NorESM1-M
from the WorldClim 1.2 database. We created an ensemble of the 12 GCMs by taking
average values and used the ensemble values as predictors. Our multi-model ensemble
average accounts for inherent variability among the different future climate GCMs.

2.3. Species Distribution Modeling

Species distribution models (SDM) have been used to compare species’ regional
ecological niches and forecast the range shifts of species under future climate change sce-
narios [1,50–53]. Species distribution modeling is an approach that predicts the distribution
of a species across geographic space and time using the correlation between the geographic
occurrence or abundance of a species and corresponding environmental conditions to pre-
dict the most suitable habitat [52,54]. Various methods have been used in SDMs, including
regression, machine learning, classification, and maximum entropy [48,55]. Discrepancies
between different techniques can be large and performance can vary significantly across
different algorithms. Considering the variability between algorithms, we chose to use
an ensemble modeling approach. Ensemble modeling of species distributions involves
simulations across more than 1 set of initial conditions, model classes, model parameters,
and boundary conditions by combining individual SDMs built through different modeling
algorithms [55]. By using a wide range of approaches to test the models, ensemble mod-
eling accounts for inter-model variability and uncertainties in predictions [56]. However,
prediction uncertainty may also be dependent on GCM and RCP variation [55].

The analysis was conducted in R environment v 3.6.1 (R Core Team, 2019) using the
BIOMOD2 package (Grenoble, France) [48]. The algorithms used to produce an ensemble
model were as follows: 3 regression methods (GAM: general additive model; GLM: general
linear model; and MARS: multivariate adaptive regression splines), 3 machine learning
methods (ANN: artificial neural network; GBM: generalized boosting model; and RF:
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random forest), 2 classification methods (CTA: classification tree analysis; FDA: flexible
discriminant analysis), and 1 maximum entropy approach (MAXENT) [57]. To identify the
differences between bioclimatic niche of native range and Hawai’i range, 2 independent
approaches were used: 1 approach using native range occurrences to predict favorable
areas in Hawai’i and 1 approach using Hawai’i range occurrences to predict favorable
areas in the Hawai’i. As these models required background data and the actual absence
data were unavailable, we used 10,000 pseudo-absences randomly generated in the native
range environmental space and 7000 pseudo-absences randomly generated in the Hawai’i
environmental space. The models were calibrated by using 80% of the occurrence points
(presence and pseudo-absence) as training data and evaluated by using the remaining
20% as testing data [46]. We repeated the process of pseudo-absence generation 3 times
and repeated evaluation runs 4 times per species, resulting in a total of 108 models per
species (9 models, 4 evaluation runs, and 3 pseudo-absence selection procedures) under
each climate scenario (i.e., current climate (1970–2000) and RCP 8.5 (2070)).

The area under the curve (AUC) of receiver operating characteristics and true skills
statistics (TSS) were used to measure model validation and predictive performance. The
AUC value represents the predictive power of a model [58]. According to the AUC
value, the model was graded as “poor” (if AUC = 0.6–0.7), “fair” (AUC = 0.7–0.8), “good”
(AUC = 0.8–0.9), or “excellent” (AUC = 0.9–1.0) [58]. TSS measure ranges from −1 to +1
where +1 indicates a perfect agreement, and a TSS value below 0.4 indicates poor model
discrimination [58]. From the 108 models per species, we built ensemble models using a
weighted-mean approach in which weights are awarded for each model proportionally to
their evaluation metrics scores. Only the models with greater than fair predictive accuracy
(TSS > 0.5) to greater than good predictive accuracy (TSS > 0.8) were used to build an
ensemble from the projection outputs [4,48].

2.4. Bioclimatic Niche Analysis

Binary maps (suitable and unsuitable) were produced using the optimal threshold that
maximizes the TSS score as a cut-off value using the Biomod_RangeSize function, which then
converted the projected occurrence probabilities during the cross-validation procedure.
These binary maps were used to measure the loss, stability, and gain of predicted suitable
areas following the predicted climate scenario demonstrated with an RCP 8.5 in 2070.
From these binary maps, we measured the range size of the studied invasive species as
represented by the number of climatically suitable pixels across Hawai’i for the designated
time period (Table 2).

Table 2. Predicted distribution of habitat suitability across the 8 major islands of Hawai’i under
contemporary and future (2070, RCP 8.5) global climate models. Estimates presented in this table
approximate 1 pixel to 1 km2 (30 arc sec).

Species Current Range
(km2)

Range Loss
(km2) (2070,

RCP 8.5)

Range Gain
(km2)

(2070, RCP 8.5)

% Loss
(2070, RCP 8.5)

% Gain (km2)
(2070, RCP 8.5)

A. mellifera 2562 (12%) * 168 5538 (40.3%) 6.6% 216.2%
C. dentipes 889 (4.4%) 21 3987 (24.3%) 2.4% 448.5%

C. smaragdula 748 (3.7%) 0 3600 (21.7%) 0 481.3%
L. impavidum 1217 (6.0%) 171 202 (7.0%) 14.1% 16.6%

L. microlepoides 364 (1.8%) 0 4827 (25.9%) 0 2425.7%
L. puteulanum 213 (1.0%) 0 4202 (22.0%) 0 1972.8%

M. umbripennis 377 (1.8%) 0 3308 (18.3%) 0 1769.0%
X. sonorina 2958 (14.7%) 13 4390 (36.6%) 0.4% 148.4%

* Percentages in parenthesis estimate percent of suitable area for 8 invasive bees relative to total estimated
area of Hawai’i in the contemporary time (1970–2000) and projected into 2070 (20,061 pixels total at 30 arc sec).
Percentages without parenthesis estimate percent relative to current range size.

We calculated niche similarity between the native and the invasive Hawai’i range
using the bioclimatic variables selected from the principal component analysis [48]. Native
models were calibrated using the native range and projected onto the invasive Hawai’i
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environment. Alternatively, invasive Hawai’i models were calibrated using the occurrence
records from the invasive Hawai’i range and projected onto the Hawai’i environment. We
extracted the model values and tested for differences in habitat suitability between the
native and invasive Hawai’i range with a Wilcoxon test across all 8 species.

2.5. Species Richness Analysis

To determine how projected climate change will impact invasive species richness, we
conducted a species richness analysis to identify the regions potentially suitable for the
maximum number of invasive bees under current and future climate. We combined binary
maps of climatically suitable niches for all 8 species to generate species richness (cells with
a higher value indicating high species diversity) and extent maps (cells occupied by at least
a single species). We calculated changes in areas of both richness and extent of potentially
suitable regions under current and future climate. Using a digital elevation model accessed
from the University of Hawai’i at Manoa School of Ocean and Earth Science Technology
(http://www.soest.hawaii.edu/coasts/data/hawaii/dem.html, Accessed: 3 June 2019)
combined with the species richness maps, we determined how future climate scenarios
may influence the elevational distribution of invasive bees in Hawai’i. Finally, we tested
for the effect of species richness (i.e., 1–8 species) and climate timeframe (i.e., contemporary
vs. future) on the elevation distribution of species richness with a non-parametric analogue
to the two-way ANOVA, the Scheirer-Ray-Hare test.

3. Results
3.1. Species Occurrence Data

As publicly available and georeferenced data was lacking for the majority of the
invasive bees to Hawai’i, we were able to pursue our research objectives with 8 of
21 invasive bee species: A. mellifera, C. dentipes, C. smaragdula, L. impavidum, L. microlepoides,
L. puteulanum, M. umbripennis, and X. sonorina. These species represent bees that have
georeferenced data in both their native and invasive Hawai’i geographies. We summarize
the data in Table 1 and provide the citation for the data in Tables S1 and S2.

3.2. Species Distribution Modeling

Based on AUC and TSS metrics, the invasive Hawai’i niche, calibrated from the
Hawai’i range occurrences, predicted higher habitat suitability than records sampled from
their respective native geographies (Figure 3). Due to the native occurrence model poorly
predicting actual species occurrences in Hawai’i, we decided to use the invasive Hawai’i
SDMs to project habitat suitability in the future. The model performance was evaluated by
the scores of two (AUC and TSS) performance metrics (Table 3). The average AUC values
of the eight studied species ranged from 0.937 (A. mellifera) to 0.998 (L. puteulanum and
M. umbripennis), indicating that the models have excellent predictive accuracy. Likewise,
the average TSS value ranged from 0.731 (A. mellifera) to 0.991 (L. puteulanum), indicating
good predictive accuracy. Moreover, we only used the models with highest predictive
accuracy to build an ensemble from the projection outputs (Table 4).

http://www.soest.hawaii.edu/coasts/data/hawaii/dem.html
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Table 3. True skills statistic (TSS) and area under the curve (AUC) test statistics for 8 SDMs predicted
the distribution of 8 invasive bees to Hawai’i.

Species Invasive Model
TSS

Invasive Model
AUC

Native Model
TSS

Native Model
AUC

A. mellifera 0.731 0.937 0.921 0.995
C. dentipes 0.958 0.993 0.815 0.956

C. smaragdula 0.917 0.987 0.759 0.939
L. impavidum 0.94 0.975 0.807 0.936

L. microlepoides 0.983 0.997 0.602 0.869
L. puteulanum 0.991 0.998 0.796 0.954

M. umbripennis 0.983 0.998 0.907 0.976
X. sonorina 0.753 0.943 0.63 0.89

Table 4. True skills statistic (TSS) thresholds to produce ensemble models for 8 invasive bees to
Hawai’i in their native range and invasive Hawai’i range.

Species Native Model Invasive Model

A. mellifera 0.8 0.5
C. dentipes 0.5 0.8

C. smaragdula 0.8 0.8
L. impavidum 0.5 0.5

L. microlepoides 0.5 0.8
L. puteulanum 0.5 0.8

M. umbripennis 0.5 0.5
X. sonorina 0.5 0.8

3.3. Bioclimatic Niche Analysis

Following our PCA approach to selecting variables to construct SDMs, we identified a
combination of four from a pool of seven bioclimatic variables to construct the final SDMs
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for each of the eight species: BIO 1, BIO 2, BIO 7, BIO 9, BIO 12, BIO 15, and BIO 19. Based
on pairwise analyses of SDMs, our results indicated little overlap between the native niche
and the invasive Hawai’i niche across seven species (A. mellifera: W = 8452.5, p = 2.65 × 10−5,
C. dentipes: W = 166, p = 7.80 × 10−9, L. impavidum: W = 0, p = 0.00793, L. microlepoides:
W = 28, p = 5.34 × 10−7, L. puteulanum: W = 0, p = 3.18 × 10−7, M. umbripennis: W = 0,
p = 1.29 × 10−8, X. sonorina: W = 849, p = 0.0193) (Figure 3). Our analyses found that the
only niche overlap between the native and Hawai’i ranges occurred across the C. smaragdula
distribution (W = 974.5, p = 0.09402).

3.4. Species Richness Analysis

Based on the invasive Hawai’i SDMs, areas of potentially suitable niches for the
studied species mostly occupy low elevation areas (Figure 4). Out of the eight species, five
had potentially suitable areas that covered less than 5% of land area under current climate
in Hawai’i (Table 2). Specifically, C. dentipes, L. imbrex, L. microlepoides, L. puteulanum,
and M. umbripennis are predicted to have a restricted distribution under current climate
conditions, whereas A. mellifera, C. smaragdula, and X. sonorina have a wider distribution
under the current climatic conditions (Table 2 and Figure 5). However, under the current
climate conditions, X. sonorina is predicted to have the largest suitable habitat, covering
15% of the land area in Hawai’i. The predicted suitable bioclimatic niche for L. puteulanum
under current climate conditions covered only 1% of the land area in Hawai’i. Furthermore,
under current climate conditions, the SDMs predicted most of the suitable habitat under
500 m with most areas occupied by a single species (Figures 4 and 6).
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Our analysis identified that “hotspot areas” of high invasive species richness are
distributed primarily in low elevation sites (<500 m) under current and future climate
conditions. Specifically, Scheirer-Ray-Hare tests found a significant difference in elevational
distribution of species richness across current and future climate scenarios (Climate (current
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vs. 2070): H = 803.8, df = 1, p = 0; Species Richness (SR): H = 3828.2, df = 7, p = 0; Climate:
SR: H = 57.5, df = 6, p = 1.45 × 10−10) (Figure 4), with highest median species richness of
invasive species to be present in habitats at low elevation sites (<500 m). While our analyses
demonstrated both gains and losses of suitable habitat when comparing contemporary
and future climate models (Table 2), we predict that there will be a major geographic
expansion of habitat suitability for invasive bees in Hawai’i under future climate scenarios
(Figures 5 and 6). Our SDMs predict that climatically suitable regions would increase on
average by ~934.8% (±3.4% SE) for all species except L. impavidum (Table 2). For example,
a maximum increase of 2425.7% habitat suitability for L. microlepoides is estimated. This
habitat suitability increase is predicted to cover 25.9% of the terrestrial habitat across the
archipelago (Table 2). However, the species estimated to experience the greatest range gain,
in terms of geographic coverage, is A. mellifera. This economically significant species to
Hawai’i is estimated to experience high habitat suitability across 40.3% of the terrestrial
habitat across the archipelago (Table 2).

4. Discussion

The models developed in our study predict that the changing climate will create
additional climatically suitable areas for invasive bees in Hawai’i over the next 50 years.
This research provides baseline information to aid in effective management of invasive bees
by showing the areas which have suitable niches for the invasive bees. Our study of eight
of the 21 invasive bee species in Hawai’i found that SDMs based on georeferenced records
from their invasive range were better at predicting habitat suitability in the invasive range
than records found in their native range. Furthermore, while the eight invasive bees are
predicted to expand in their geographic range over the next 50 years, the expansion will
likely be limited to low elevation habitats <500 m, with little evidence for an expansion up
to high elevation habitats (>500 m). Of all the species studied, L. microlepoides is predicted
to encounter the greatest habitat suitability expansion, again primarily at low elevation
habitats across the archipelago, whereas A. mellifera will likely be present in ~40% of the
terrestrial land area of the major Hawaiian islands.

The results and approach of our study may be helpful for the prevention and early
detection of invasive insects, namely bees, in determining suitable niches outside of their
native range. The development of SDMs is a useful approach in determining how bees and
other insects will expand outside of their native niche [1,45,59]. However, it is also clear
that there are limitations to SDMs in predicting the invasive spread of bees, as evidenced
by data collected during ground surveys of invasive A. manicatum in northeastern North
America [60]. Specifically, Graham et al. [60] found no evidence for A. manicatum in
the vast majority of areas predicted by Strange et al. [45] SDMs of A. manicatum—despite
standardized surveys of their study area in northeast North America. However, the absence
of an invasive species in a suitable area outside their native range does not necessarily
suggest poor model performance, but may be an artifact of the species not yet dispersing
into the new habitats, especially if they are recent invaders [61,62]. Furthermore, other
limiting factors such as nesting biology, diet breadth, and phenology may also impact
detection and colonization rates of invasive species, especially on oceanic islands.

The SDMs generated in this study predict that additional suitable areas for invasive
bees are expected to emerge in the higher elevation zones of Hawai’i. However, our models
predict that the expansion of invasive bees across elevation in Hawai’i is limited. The
creation of climatically suitable regions for invasive bees in the high-elevation regions,
which are already vulnerable to climate change, may have negative consequences for
endemic biodiversity in the future. Therefore, biological invasions will add pressure
and increase risks to the most vulnerable ecosystems in Hawai’i. Along with climate
change, anthropogenic development is considered a major driver that promotes biological
invasions in island ecosystems. For example, roads play an important role in the spread
of alien species by facilitating dispersal corridors into the adjacent ecosystem [63]. This
may promote the dispersal of invasive bees from the coast when climate change opens up
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suitable regions by reducing climatic barriers for them to invade high elevation regions [3].
Therefore, monitoring and management of invasive bees in Hawai’i should account for the
vulnerability posed by climate change combined with anthropogenic activities. However,
the suitable regions identified may not be occupied by invasive bees due to natural dispersal
barriers created by lava flows, which are predominant physical features in Hawai’i.

Geographic shifts in species range involve multiple ecological processes such as dis-
persal, physiology, species interactions, population interactions, and evolution operating at
multiple scales [64]. SDMs do not explicitly consider these inherent biological properties,
which interact with ecological processes and ultimately cascade to species persistence [52].
Furthermore, there are other potential issues such as environmental variables used in the
analysis, modeling algorithm, GCMs, collinearity, model complexity, model evaluation
method, and threshold values to produce binary maps that can influence model outcomes.
In addition, future land use (e.g., road building) change scenarios can also alter future
species distributions [1,17]. Improvements of models based on natural history and ecologi-
cal information and increased availability of specimen data are crucial issues for enhancing
the predictive accuracy of the models [60].

Climate change has the potential to create more suitable regions for adventive bee
species in Hawai’i. Climate change alters the distribution, composition, and phenology
of native species while facilitating the dispersal of invasive species by removing current
climatic barriers [3,7]. In our study, it is clear that habitat suitability for invasive bees
will expand considerably in comparison to their current bioclimatic niche. However, this
expansion of species richness is predicted to occur primarily below 500 m. Our results
suggest that in Hawai’i, cooler temperatures associated with higher elevation sites may
limit the invasion of invasive bees [4]. However, climate may not be the only limiting factor
for invasive bees to spread to high elevation habitats. Thus, a better understanding of
species traits, dispersal pathways, and the mechanism of the natural filters that prevent
colonization of invasive species are necessary. The results of our research show a diverse
set of hypothetical responses by invasive bees to climate change; therefore, species-specific
prioritization exercises may be helpful to better manage and monitor specific invasive
bee species.

Given the endangered status of endemic Hylaeus bees in Hawai’i, it is important to
monitor and predict suitable habitats of invasive bees. By highlighting the similarities and
differences between the native and invasive Hawai’i bioclimatic niche, results can inform
stakeholders on the invasive potential of invasive bees [17,45]. Furthermore, the SDMs
in our study provide evidence of current and future risks associated with invasive bee
species in Hawai’i. For example, endemic Hylaeus bees, including species protected under
the U.S. Endangered Species Act, that are distributed at low elevation habitats will likely
continue to interact with invasive bees over the next 50 years. However, endemic Hylaeus
bees at high elevation habitats will likely experience limited interactions with invasive
bees. Given these predicted ecological differences, endemic Hylaeus bees will experience
different disease and resource pressures.

While the current study used an ensemble model approach to estimate future climate
models and species distribution models, the accuracy of models nevertheless relies on the
accuracy of the data being used. The accuracy of GCMs is essential to predictability in
SDMs, and the lack of bioclimatic agreement between different databases is an important
factor [65]. Furthermore, including other bioclimatic variables in the initial model building
process may produce more accurate models [66]. For example, a study that combined
ENVIREM variables with Bioclim variables improved model performance in 13 out of
20 species [66]. For the current study of non-native bees in Hawai’i, model performance
may be improved in future modeling exercises by including topographical variables such
as slope, aspect, heat load index, and terrain ruggedness.

Many other approaches to SDMs exist that may improve or alter predictability. For
example, a single source modeling approach often produces biased spatial predictions [65].
However, one study found that fine-tuned individual models may sometimes perform
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better than ensemble models [67]. Furthermore, Zhu et al. 2021 demonstrated that using
a weighted mean approach to produce ensemble models may produce models overly
influenced by the extreme values of individual predictions [67]. Sample size is also a
large factor of influence on the accuracy of SDMs [68,69]. Algorithms can be fine-tuned to
produce models with the highest predictability [70]. However, using an ensemble modeling
approach to SDMs may overlook these fine-tuning capabilities. Many different scoring
metrics exist for determining accuracy and predictability of SDMs such as the Brier score,
Boyce index, or the Jaccard and Sorensen indices [4,71–74]. In this study, we chose to use
AUC and TSS. While this method is widely used in ecology, some research suggests that
TSS can be a misleading measure of model performance because of its dependence on
prevalence [73].

In our study, we presented a geographic and bioclimatic assessment of eight invasive
bees in Hawai’i. However, more research and surveys are needed to document the distri-
bution and spread of the additional 13 bee species not included in our study. Our research
has important implications for the management and monitoring of biological invasions of
bees in Hawai’i. Our analysis also highlights the value of using SDMs to estimate species
richness under future climate scenarios. As the climate changes, new habitats will emerge
that may be suitable for adventive bee species. Climate change facilitates dispersal, intro-
duction, and naturalization of adventive species as well as reduces the resilience of local
ecosystems [75]. Thus, identifying emerging pests that may pose a threat to ecosystems
in Hawai’i and the agricultural economy through SDMs is a useful tool in management
and conservation.
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.3390/insects12050443/s1, Table S1: Bee specimen records evaluated from the Global Biodiversity
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specific data downloads. Table S2, Bee specimen records evaluated from the American Museum
of Natural History to determine their capacity for informing SDMs across their (a) native and (b)
non-native (invasive) Hawai’i distribution. Not all records could be used as they did not provide
publicly available georeferenced data on the website.
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