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Numerous plants, including cereals, contain seed proteins able to inhibit amylolytic
enzymes. Some of these inhibitors, the CM-proteins (soluble in chloroform:methanol
mixtures)—also referred to as cereal-type inhibitors (CTIs)—are the topic of this review.
CM-proteins were first reported 75 years ago. They are small sulfur-rich proteins of the
prolamine superfamily embracing bifunctional α-amylase/trypsin inhibitors (ATIs), α-
amylase inhibitors (AIs), limit dextrinase inhibitors (LDIs), and serine protease
inhibitors. Phylogenetically CM-proteins are predicted across poaceae genomes and
many isoforms are identified in seed proteomes. Their allergenicity and hence adverse
effect on humans were recognized early on, as were their roles in plant defense.
Generally, CTIs target exogenous digestive enzymes from insects and mammals.
Notably, by contrast LDI regulates activity of the endogenous starch debranching
enzyme, limit dextrinase, during cereal seed germination. CM-proteins are four-helix
bundle proteins and form enzyme complexes adopting extraordinarily versatile binding
modes involving the N-terminal and different loop regions. A number of these inhibitors
have been characterized in detail and here focus will be on target enzyme specificity,
molecular recognition, forces and mechanisms of binding as well as on three-
dimensional structures of CM-protein–enzyme complexes. Lastly, prospects for CM-
protein exploitation, rational engineering and biotechnological applications will be
discussed.
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1 INTRODUCTION

Proteinaceous α-amylase inhibitors belonging to different protein
families; knottins, defensins, Kunitz-type inhibitors, CM-
proteins, legume lectins, γ-thionins, lipid-transfer proteins,
xylanase-α-amylase inhibitory proteins, and thaumatin-like
inhibitors are mostly found in plants, although some occur in
mollusks and microorganisms. This kind of α-amylase inhibitors
were recognized long ago. They have been collectively covered in
several reviews as well as in recent publications on specific
inhibitors presenting rather different levels of structural and
mechanistic insights (Kneen and Sandstedt, 1946; Garcia-
Olmedo et al., 1987; Blanco et al., 1991; Carbonero and
García-Olmedo, 1999; Svensson et al., 2004; Juge and
Svensson, 2006; de Oliveira Carvalho and Gomes, 2009; Rehm
et al., 2009; dos Santos et al., 2010; Kumar et al., 2010; Wang et al.,
2014; Gadge et al., 2015; Sun et al., 2015; da Silva et al., 2018;
Panwar et al., 2018; Tysoe and Withers, 2018; Tsvetkov and
Yarullina, 2019; Juhász et al., 2020; Rane et al., 2020; Aguieiras
et al., 2021; Geisslitz et al., 2021). The biological role of the plant
hydrolase inhibitors is primarily in defense against insect pests
and pathogenic fungi, whereas they are rarely involved in
regulation of the activity of endogenous plant enzymes.
Hydrolase inhibitors of certain protein families can be
bifunctional and act both on amylolytic enzymes of glycoside
hydrolase family 13 (GH13) (Drula et al., 2022) and serine
proteases, while other members of the same families only
inhibit either amylolytic enzymes of GH13 or serine proteases
(Barber et al., 1986; Carbonero and Garcia-Olmedo, 1999; di
Maro et al., 2011). In several cases, the dual enzyme inhibition has
been experimentally confirmed along with corresponding three-
dimensional structures and models of enzyme–double-headed
plant inhibitor complexes (Mundy et al., 1983; Maskos et al.,
1996; Strobl et al., 1998; Vallée et al., 1998; Micheelsen et al., 2008;
Grosse-Holz and van der Hoorn, 2016). The topic of the present
review is the family of cereal-type inhibitors (CTIs), in particular
inhibitors of amylolytic enzymes, which have been first described
75 years ago (Kneen and Sandstedt, 1946). CTIs are all found in
cereals and other grass species and can amount to 2–4% of the
seed protein content. These inhibitors belong to the prolamine
superfamily of plant proteins and are called CM-proteins after
their solubility in chloroform:methanol mixtures (Carbonero and
García-Olmedo, 1999; Mills et al., 2004; Geisslitz et al., 2021).
Some CM-proteins, referred to a-amylase/trypsin inhibitors—or
ATIs for short—display bifunctionality and have two target
enzymes. This protein family also contains monofunctional
inhibitors against α-amylases from insects and mammals as
well as the starch debranching enzyme limit dextrinase, which
all belong to GH13, and similarly other members only inhibit
serine proteases. Notably, CM-proteins also receive major
attention due to their behavior as antinutrients and allergens
harmful to human health including non-celiac wheat sensitivity
(NCWS) and Bakers’ asthma (Wang et al., 2014; Reig-Otero et al.,
2018) (for a review see Geisslitz et al., 2021). However, our focus
will be on biochemical and structural properties of CM-protein
inhibitors, i.e. their target enzyme specificity and inhibition
kinetics, affinity and mechanism of enzyme binding as well as

on three-dimensional structures of complexes with enzymes of
family GH13. Some of these cases can provide a basis for using
rational protein engineering to develop improved inhibitors for
various potential applications.

2 GENERAL CHARACTERISTICS,
OCCURRENCE AND PHYLOGENY OF
CM-PROTEINS
The CM-proteins are small proteins of 12–16 kDa containing
four to five well-conserved disulfide bonds and can be either
monomeric or composed of two or four subunits (Carbonero and
García-Olmedo, 1999). They are found in seeds of a wide range of
cereal crops; wheat, barley, oats, rye, finger millet, barnyard
millet, corn, rice, and sorghum (Garcia-Olmedo et al., 1987;
Feng et al., 1991; Chen et al., 1992; Maskos et al., 1996;
Carbonero and García-Olmedo, 1999; Altenbach et al., 2011;
Wang et al., 2014; Gadge et al., 2015; Gazza et al., 2016; Panwar
et al., 2018; Sagu et al., 2020). Many isoforms have been identified
for example in barley and wheat (Østergaard et al., 2004; Guo
et al., 2016; Bose et al., 2020; di Francesco et al., 2020; Geisslitz
et al., 2020). In wheat the more prominent ones are 0.28
(monomeric), 0.19 and 0.53 (both homodimeric) (named
based on electrophoretic mobility), CM1, CM2, CM3, CM16
and CM17 (all heterotetrameric) (for names and numbering
see Rodriguez-Loperena et al., 1975; Carbonero and Garcia-
Olmedo, 1999; Geisslitz et al., 2021). A time lag between ATI
accumulation during wheat grain filling and detection of the
biological activity suggested that assembly into dimers and
tetramers determined the inhibitory potential (Call et al.,
2021). Nineteen ATI isoforms from the wheat cultivar Butte
86 (Altenbach et al., 2011) and 33 proteoforms of ATIs across
different bread wheat cultivars are reported (Bose et al., 2020;
Geisslitz et al., 2021). These comprehensive analyses of wheat
reflect the interest in CM-proteins due to the impact they may
have on human health, albeit some address their role in plant
defense as α-amylase or protease inhibitors, while the studies on
barley also concerned protein mapping of cultivars for malting
and beer brewing (Østergaard et al., 2004; Iimure et al., 2015; Guo
et al., 2016; Perlikowski et al., 2016; Bose et al., 2019). Different
proteoforms of CM-proteins in wheat and food products in light
of possible implications in NCWS were determined by using
advanced mass spectrometry (Bose et al., 2020; Geisslitz et al.,
2020). Related to consumers’ interest in ancient cultivars, it has
been noted that the CM-protein contents in old and modern
Italian durum wheat genotypes, showed most isoforms to be
shared, although a couple were only identified in an ancient
cultivar (di Francesco et al., 2020). As mentioned above, the
isoforms occur in different states of oligomerisation, the
monomeric show high inhibitory activity on insect α-amylases,
the homodimeric inhibitors react well with both insect and
mammalian α-amylases, while the heterotetrameric inhibitors
are highly active towards insect a-amylases (Table 1)
(Carbonero and García-Olmedo, 1999; Franco et al., 2002). In
addition to the CTIs inhibiting α-amylases, a small group of CTIs
only act on serine proteases.WCI (wheat chymotrypsin inhibitor)
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is a strong inhibitor of bovine pancreatic chymotrypsin as well as
of chymotryptic-like activities isolated from cotton bollworm and
yellow mealworm (Tenebrio molitor), while no inhibition was
detected against bovine pancreatic trypsin, or α-amylases from
yellow mealworm (TMA) and human saliva (HSA) (di Maro
et al., 2011). Barley CMc (equivalent to WCI) and CMe inhibited
trypsin, but not TMA. Only CMa inhibited TMA among the
CMa–e proteins from barley (Barber et al., 1986). Because a large

number of different CM-proteins and posttranslationally
modified forms thereof are present in seeds, it is difficult to
purify any of the proteins to a highly homogenous state from
natural sources for characterization of structure and function.
Therefore, selected CM-proteins have been produced
recombinantly in microbial hosts, Escherichia coli (CM2, CM3,
CM16, 0.28, corn Hageman factor inhibitor, bifunctional α-
amylase/trypsin inhibitor, and rye BIII) and Pichia pastoris

TABLE 1 | Biochemically well-characterized cereal type inhibitors. The Protein Data Bank (PDB) entries are given for structure-determined proteins. Abbreviations of
enzymes mentioned in the table: HPA, human pancreatic α-amylase; HSA, human salivary α-amylase; LD, barley limit dextrinase; PPA, porcine pancreatic α-amylase;
TMA, yellow mealworm α-amylase.

Source Protein Name Identified target(s) Confirmed Lack of Inhibition PDB
Entry

References

Barley
(Hordeum
vulgare)

Limit dextrinase
inhibitor (LDI)

LD (KD = 0.042 nM) Very limited
inhibition of Klebsiella pneumoniae
pullulanase and Pseudomonas
amyloderamosa isoamylase

Bacillus acidopullulyticus pullulanase,
malted barley α-amylase, TMA, PPA,
trypsin

4CVW (MacGregor et al., 1994, 2000;
Stahl et al., 2007; Jensen et al.,
2011; Møller et al., 2015, 2021)

Emmer (Triticum
dicoccon)

Heterotetrameric (CM2,
CM3x2, CM16)
α-amylase inhibitor (ETI)

PPA (Ki = 1.82 nM), HSA (Ki =
3.25 nM), TMA

B. subtilis and barley α-amylases Capocchi et al. (2013)

E-WMAI (0.28) TMA, HSA, and α-amylases from
red flour beetle, rice weevil and
Mediterranean flour moth

Capocchi et al. (2021)

Maize (Zea
mays)

Corn Hageman factor/α-
amylase inhibitor (CHFI)

TMA α-amylase from red flour
beetle Hageman factor (Factor
XIIa) (Ki = 1.0 nM), Factor XIa (Ki =
5.4 µM), bovine pancreatic trypsin
(Ki = 2.1 nM), mammalian
trypsins, trypsin from yellow
mealworm

α-amylases from rice weevil 1BEA (Mahoney et al., 1984; Chong and
Reeck, 1987; Chen et al., 1992;
Behnke et al., 1998; Korneeva
et al., 2014)

Ragi/Indian
finger millet
(Eleusine
coracana)

Ragi bifunctional
α-amylase/trypsin
inhibitor (RBI/RATI/RABI)

TMA, PPA (Ki = 11 nM, substrate
dependent) Bovine trypsin (Ki =
1.2 nM)

1B1U
1BIP
1TMQ

(Strobl et al., 1995, 1998; Maskos
et al., 1996; Gourinath et al., 2000;
Alam et al., 2001)

Rye (Secale
cereale)

BIII PPA (low), HSA (low), and
α-amylases from bean weevils and
cotton boll weevil

Bovine pancreatic trypsin or boll
weevil trypsin

(Iulek et al., 2000; Oliveira-Neto
et al., 2003; Dias et al., 2005)

Wheat (Triticum
aestivum)

0.19 (dimeric; WDAI-
0.19; WRP24)

TMA (Ki = 0.85 nM), HSA (Ki =
0.29 nM), HPA, PPA (Ki =
57.3 nM), chicken pancreas
α-amylase (Ki = 3.7 nM), B. subtilis
α-amylase, and α-amylases from
Western corn rootworm, Colorado
potato beetle, sawtoothed grain
beetle, red flour beetle, shield bug,
and several weevil species

α-amylase cotton boll weevil,
chymotrypsin or trypsin

1HSS (O’Donnell and McGeeney, 1976;
Buonocore et al., 1980, 1984;
Sanchez-Monge et al., 1989;
Gutierrez et al., 1990; Takase,
1994; Goff and Kull, 1995;
Choudhury et al., 1996; Oda et al.,
1997; Franco et al., 2000, 2005;
Titarenko and Chrispeels, 2000;
Oliveira-Neto et al., 2003; Oneda
et al., 2004; Zoccatelli et al., 2007)

0.28 (monomeric;
WMAI-1)

TMA (Ki = 0.13 nM), HSA, and
α-amylases from Colorado potato
beetle, sawtoothed grain beetle,
red flour beetle, shield bug

Chymotrypsin or trypsin (Buonocore et al., 1980;
Sanchez-Monge et al., 1989;
Gutierrez et al., 1990; Choudhury
et al., 1996; Payan, 2004)

0.53 HPA, HSA, PPA (low), TMA,
Bacillus subtilis α-amylase, and
α-amylases from Colorado potato
beetle, sawtoothed grain beetle,
red flour beetle, shield bug, bean
weevil, wheat weevil

α-amylases from B.
stearothermophilus, B.
amyloliquefaciens, B. licheniformis,
Aspergillus oryzae, and cotton boll
weevil, chymotrypsin or trypsin

(Maeda et al., 1982;
Sanchez-Monge et al., 1989;
Gutierrez et al., 1990; Takase,
1994; Choudhury et al., 1996;
Franco et al., 2000, 2005;
Oliveira-Neto et al., 2003)

CM3 Porcine α-amylase (KD = 340 nM;
Ki = 600 nM), α-glucosidase from
Saccharomyces cerevisiae,
porcine trypsin (KD = 36 nM; Ki =
10.4 nM)

Bovine pancreatic trypsin or HSA (Cuccioloni et al., 2016; Thiel et al.,
2020)
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(LDI, CM3, CM16, and 0.28) (García-Maroto et al., 1991; Strobl
et al., 1995; Behnke et al., 1998; Kusaba-Nakayama et al., 2001;
Dias et al., 2005; Jensen et al., 2011; Tundo et al., 2018) or in
lentivirus transfected human embryonic kidney cells (CM3, the
most prominent isoform in wheat) (Thiel et al., 2020). While
recombinant CTIs were not applied in clinical testing (Geisslitz
et al., 2021), evaluation of allergenicity has been performed in
cellular assays (Tundo et al., 2018) and the effect on gut
microbiota in Drosophila melanogaster (Thiel et al., 2020).
Studies in rats and using caco-2 cells showed enhanced
absorption rate for the abundant isoform CM3 as compared to
CM16 and 0.28 from wheat (Kusaba-Nakayama et al., 2001).
Phylogenetic analyses reveal that the monomeric and dimeric

wheat CTIs are closely related (Figure 1), while the bifunctional
CTIs are more related to the LDI-like CTIs than the other CTI
groups (Behnke et al., 1998; Møller et al., 2015; Geisslitz et al.,
2021). The sequence conservation of the CTIs is very low
(Figure 1), but comparison of the four CTIs for which 3D
structures have been determined shows that the structural
conservation is very high (Figure 2A).

2.1 Well-Characterised CTIs
2.1.1 Biochemical Properties
Several CTIs originating from different cereals have been
biochemically characterized to some degree during the past
decades. While their target enzyme specificity and selectivity

FIGURE 1 | Phylogenetic analysis of characterized CTIs and homologues from other plants. The well-characterized proteins included in Table 1 are shown in bold.
Names and origin of the proteins are indicated. The sequences were retrieved from UniProt database (1 February 2022). Software used: Promals3D (Pei et al., 2008) for
structure-guided multiple alignment and MEGA 11 (Kumar et al., 2018) for Maximum likelihood for phylogeny analysis. Bootstrap values for 1,000 replicates are shown.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8685684

Møller and Svensson The CTIs of Amylolytic Enzymes

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


have been tested, actual inhibition constant (Ki) or binding
constant (KD) values have only been reported for very few
(Table 1). This is in most cases because the proteins were
purified from their original source; hence, either the purity or
the yield or both have been low. Recombinant protein production
has enabled mutational analysis of structure/function
relationships of a few CM-protein inhibitors (García-Maroto
et al., 1991; Alam et al., 2001; Møller et al., 2015, 2021) and
three-dimensional structures have been determined for four
members including some in complex with target enzymes,
namely wheat 0.19 dimeric inhibitor (Oda et al., 1997), ragi
bifunctional a-amylase/trypsin inhibitor (RBI) (Strobl et al.,
1995, 1998; Gourinath et al., 2000), corn Hageman factor/α-
amylase inhibitor (CHFI) (Behnke et al., 1998), and barley limit
dextrinase inhibitor (LDI) (Møller et al., 2015) (Table 1). Most
characterized CTIs that inhibit hydrolases, except LDI, target α-
1,4-glucan endo-acting a-amylases from GH13. By contrast, LDI
from barley exclusively inhibits a debranching enzyme, limit
dextrinase also belonging to GH13, that hydrolyses α-1,6-
branch points in starch and glycogen and, in particular, α-
limit dextrins obtained from these two branched α-glucans
(Table 1). In addition, LDI is a special case for another
reason, namely that it inhibits and hence regulates an
endogenous enzyme, rather than exogenous enzymes typically
from insect pests. Most CM-protein α-amylase inhibitors show
specificity with regard to the target α-amylase, mainly explained
by small differences in the architecture around the active site in
the α-amylases (Rane et al., 2020). Usually, the CTIs act to a
different degree against mammalian and insect digestive
a-amylases (Table 1). Their inhibition of α-amylases has been
shown to be influenced by the presence and type of substrate

(Alam et al., 2001), and in general CTIs are not capable of
completely inhibiting their target a-amylases (O’Donnell and
McGeeney, 1976; Takase, 1994; Maskos et al., 1996; Titarenko
and Chrispeels, 2000; Alam et al., 2001). Notably, RBI has been
shown to bind to starch, whichmakes it unable to inhibit its target
enzyme TMA (Alam et al., 2001). Among the characterized CTIs,
LDI is the most potent. It binds its target enzyme, barley limit
dextrinase, with aKD of 42 pMmainly owing to an extremely slow
off rate (Møller et al., 2015). The complex formation between LDI
and barley limit dextrinase is driven by a free energy change (ΔG°

= –57 kJ/mol) originating from equally favorable entropy and
enthalpy changes (Møller et al., 2015). Wheat 0.19 AI inhibited
porcine pancreatic a-amylase (PPA) activity by an inhibition
constant (Ki) of 57.3 nM, and the interaction was found to be
endothermic and driven by a large increase in entropy (Oneda
et al., 2004). Generally, CTIs are very stable proteins as inherent
to their disulfide bonds connecting the four a-helix bundle
(Figure 2A). The activation energy for the thermal
inactivation of 0.19 AI was determined to be 87.0 kJ/mol, and
T50, here the temperature causing 50% inactivation by 30 min
incubation at pH 6.9, was 88.1°C (Oneda et al., 2004). RBI is stable
in 8 M urea and 6 M guanidine-HCl. Notably, in 150 mM NaCl,
thermal denaturation does not occur up to 90°C. However, RBI is
irreversibly denatured in 5 mM NaCl if heated above 73°C. The
acidic denaturation of RBI is reversible in both high and low salt
conditions (Alagiri and Singh, 1993). LDI from barley is stable in
the pH 2–12 range, and, at pH 6.5, its half-life is 53 and 33 min at
90 and 93 °C, respectively (Jensen et al., 2011). Furthermore, the
melting temperature (Tm) is 97.4 °C at pH 6.5 and the unfolding is
irreversible. Notably, the inhibitor had a stabilizing effect on its
target enzyme, barley limit dextrinase. The free enzyme has a Tm

FIGURE 2 | Structure determined CTIs. (A) Structural superposition of the four structure determined CTIs; LDI (orange; PDB entry 4CWV), RBI (purple; PDB entry
1TMQ), CHFI (cyan; PDB entry 1BEA), and 0.19 (yellow; PDB entry 1HSS). Disulfide bonds are shown as sticks. (B) Comparison of the inhibitor orientation of the two
available CTI–enzyme complexes. LDI (orange; PDB entry 4CWV) and RBI (purple; PDB entry 1TMQ) are superposed revealing that opposite sides of the inhibitors are
involved in the inhibition. The active sites of the enzymes are encircled. Structures were retrieved from the Protein Data Bank (PDB; www.rcsb.org).
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of 65.9°C, while the Tm of the complex is 77.4 °C (Møller et al.,
2015). It is not known how LDI is released from limit dextrinase
in vivo, but in vitro studies have shown that LDI can be
inactivated by barley thioredoxin-catalysed disulfide reduction
resulting in conformational destabilization and loss of function.
Furthermore, the destabilized structure is more susceptible to
protease degradation (Jensen et al., 2012).

2.1.2 3D Structure of Complexes of CTIs and
Amylolytic Enzymes
The four structure-determined members; LDI, RBI, wheat 0.19,
and CHFI are among the best characterized CTIs (Table 1).
Especially, the complex structures between LDI (Møller et al.,
2015) and RBI (Strobl et al., 1998) and their respective target
enzymes give unique insights into the structural basis for the
function of CTIs from the different crop cereals. Besides these
two published complex structures, the structure of the complex
between TMA and the wheat 0.28 α-amylase inhibitor has been
determined (Payan, 2004), but the coordinates of this structure
have not been published. Prior to the determination of the
structure of the complex between RBI and TMA, it was known
that RBI contained two separate binding sites; one for α-amylase
and one for protease (Maskos et al., 1996), and, moreover, that the
N-terminal segment of the wheat 0.28 α-amylase inhibitor was
crucial for its inhibitory activity (García-Maroto et al., 1991). In the
RBI–TMA complex indeed, the N-terminal segment of RBI was a
key element in the α-amylase binding site (Figure 2B), while a loop
between two of the α-helices served as the protease-binding site
(Strobl et al., 1998). Comparisons between the structures of free
RBI (Protein Data Bank www.rcsb.org, PDB, entries 1B1U and
1BIP), solved both by NMR and X-ray crystallography, and RBI in
complex with TMA (PDB entry 1TMQ) revealed that the
N-terminal segment undergoes a conformational change upon
complexation, adopting a 310-helix structure, whereas it is
highly flexible in the free inhibitor (Strobl et al., 1998). Notably,
the unpublished complex structure between the wheat 0.28 CM-
protein and TMA was reported to show the same binding features
(Payan, 2004). Lastly, the protease inhibition site of RBI is a
canonical substrate-like conformational region (Gly32–Thr37)
situated at the opposite side of the protein. Hence, RBI can
bind an a-amylase and a protease simultaneously. The complex
structure analysis between LDI and limit dextrinase (PDB entry
4CVW) displayed an unexpected binding mode in which, unlike
the other characterized CTI-α-amylase complexes, the N-terminal
region of LDI is not interacting with the target enzyme (Figure 2B)
(Møller et al., 2015). This was also confirmed by LDI N-terminal
truncations showing no influence on the inhibition of limit
dextrinase (Møller et al., 2015). Moreover, site-directed
mutagenesis established that a hydrophobic cluster situated on
the second LDI α-helix flanked by ionic interactions at the protein-
protein interface was important for the picomolar affinity of the
enzyme complex (Møller et al., 2015). Furthermore, computer-
guided thorough mutational analysis of the complex revealed that
LDI–limit dextrinase intermolecular contacts as well as
intramolecular interactions in LDI play a role for the ultra-high
affinity (Møller et al., 2021). Remarkably, the inhibitor–enzyme
complexation does not rely on an interface-centered hotspot

constituted by a few residues, as in the case of the other CTI α-
amylase inhibitors. Rather LDI residues across the protein interface
contributed importantly to binding, hence making the complex
more robust to mutational drift in evolution (Møller et al., 2021).

2.2 Engineering of CTIs
Among the CTIs targeting hydrolases, only LDI and RBI have
been subjected to protein engineering attempts. The complex
structure between LDI and limit dextrinase provided as
mentioned above a starting point for rational and computer-
guided engineering of LDI showing the potential of LDI as a
backbone for engineering (Møller et al., 2015, 2021). Limit
dextrinase plays a key role in malting and mashing together
with other endogenous amylolytic enzymes in germinated barley
seeds. Thus, LDI could be considered as unwanted because it
inhibits limit dextrinase and hence decreases the degradation of
starch to fermentable sugars, but as mentioned above LDI also
protects limit dextrinase from thermal inactivation during
mashing. Besides the engineering of LDI, it has been shown
that a structure-guided point mutation in barley limit dextrinase,
importantly reduced the affinity for LDI without affecting the
activity of the enzyme (Møller et al., 2015). Alam et al.
investigated N-terminal fragments and various peptides (7–11
residues) homologous to the N-terminal sequence of RBI for their
potential to inhibit PPA. The peptides all inhibited PPA catalyzed
hydrolysis of the substrate p-nitrophenyl-α-D-maltoside more
weakly as compared to RBI. Notably, however, unlike RBI, these
peptides did not interact with larger substrates like starch and
actually exerted a clear competitive inhibition of the hydrolysis of
starch by PPA, which confirmed the potential for design of simple
a-amylase inhibitors (Alam et al., 2001).

3 APPLICATIONSAND IMPACTSOFCTIS IN
BIOTECHNOLOGY AND BIOMEDICINE

The individual target enzyme specificities of CTIs towards
digestive a-amylases from insects and mammals have
motivated profiling of inhibitor contents for potential cultivar
selection or enrichment by using gene editing of plants to
reinforce their defense against primarily insect pests (Tsvetkov
and Yarullina, 2019). A recent review addresses the inhibition of
different insect a-amylases by plant proteinaceous inhibitors
including CM-proteins from wheat, rye, corn and barley (da
Lage, 2018). A more practical approach consists in application of
artificial diets containing either recombinantly produced
inhibitors or efficient plant fractions to reduce viability of
herbivorous insects (Dias et al., 2005; da Silva et al., 2013;
Sagu et al., 2021). For crops, the backside of this strategy can
be negative consequences of higher levels of CTIs on human
health and in feed for livestock. The awareness on NCWS is
important (Geisslitz et al., 2021) and durum wheat recently has
been gene edited to reduce CM3 and CM16 (Camerlengo et al.,
2020). Notably, CM3 treatment reduced the lifespan of
Drosophila melanogaster fruit flies and led to bacterial
overgrow in their gut, which can also be seen in humans and
leading to symptoms reminiscent to NCWS (Thiel et al., 2020).
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On a related note, it has been reported that sourdough
fermentation can degrade wheat ATIs and reduce pro-
inflammatory activity (Huang et al., 2020). Quantitation using
targeted multi-reaction-monitoring LC-MS/MS of ATIs in the
sourdough, during proofing, and after baking, respectively,
demonstrated that ATI contents were much reduced by baking
(Won et al., 2021). Interestingly, recently CM-proteins are
suggested to slow starch digestion rate of cooked pasta (Zou
et al., 2019) in line with previous reports of wheat amylase
inhibitors reducing postprandial plasma glucose concentrations
(Kodama et al., 2005; Ninomiya et al., 2018) and CM-protein
inhibitors 0.19, 0.28 and 0.53 being shown to effectively inhibit
human pancreatic α-amylase (HPA) secreted into the duodenum
(Choudhury et al., 1996). In brewing, the barley CM-proteins
have been associated with beer-haze formation (Ye et al., 2011)
and foam stability to be significantly improved by BDAI-1
(Iimure et al., 2015). Thioredoxin reduction of disulphide
bonds in CTIs may influence their activity (Wong et al., 2004;
Jensen et al., 2012). Barley thioredoxin h preferably reduced
different disulfides in the two CM-protein inhibitors
monomeric and dimeric amylase inhibitors (BMAI and
BDAI), which probably has no implications for the malting
and mashing, as these are directed towards exogenous α-
amylases (Maeda et al., 2004, 2005; Jensen et al., 2012). By
contrast, the inactivating reduction of disulfides in LDI
(Jensen et al., 2012) may play a role during mashing, as α-1,6-
glucosidic bond hydrolysis by limit dextrinase will be able to
occur to a greater extent.

4 FUTURE PERSPECTIVES

In a few cases, the structure as well as biochemical and biophysical
parameters or enzyme complexation have been determined

providing a basis for rational engineering of CTIs to be
directed towards specific enzymes. One area of interest would
be to be able to engineer CTIs to control and arrest catalysis by
new enzyme targets with selected activities in cocktails of
liquefying, saccharifying and debranching enzymes of family
GH13, used for productions of syrups and
maltooligosaccharides from starch.

Another area of emerging application is breeding and gene
editing for crops to lower CTI contents to avoid allergies and
still maintain resistance against pathogens. In this context, it
deserves mentioning that many open questions remain to the
causative role of CTIs in NCWS pathophysiology triggered by
our diets (Geisslitz et al., 2021). Towards improved
understanding one may use antibodies raised against
reombinantly produced individual CTIs (Tundo et al., 2018).
The example of sourdough baking reducing ATIs (Won et al.,
2021) draws attention to examination of various cooking and
other food-processing practices as a way to further develop the
management of ATI contents.
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