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Abstract Recent years have seen a surge in methods to track and analyze animal behavior.

Nevertheless, tracking individuals in closely interacting, group-living organisms remains a challenge.

Here, we present anTraX, an algorithm and software package for high-throughput video tracking of

color-tagged insects. anTraX combines neural network classification of animals with a novel

approach for representing tracking data as a graph, enabling individual tracking even in cases

where it is difficult to segment animals from one another, or where tags are obscured. The use of

color tags, a well-established and robust method for marking individual insects in groups, relaxes

requirements for image size and quality, and makes the software broadly applicable. anTraX is

readily integrated into existing tools and methods for automated image analysis of behavior to

further augment its output. anTraX can handle large-scale experiments with minimal human

involvement, allowing researchers to simultaneously monitor many social groups over long time

periods.

Introduction
Our understanding of behavior, together with the biological, neural, and computational principles

underlying it, has advanced dramatically over recent decades. Consequently, the behavioral and

neural sciences have moved to study more complex forms of behavior at ever-increasing resolution.

This has created a growing demand for methods to measure and quantify behavior, which has been

met with a wide range of tools to measure, track, and analyze behavior across a variety of species,

conditions, and spatiotemporal scales (Anderson and Perona, 2014; Berman, 2018; Brown and de

Bivort, 2018; Krakauer et al., 2017; Dell et al., 2014; Robie et al., 2017a; Todd et al., 2017;

Egnor and Branson, 2016). One of the exciting frontiers of the field is the study of collective behav-

ior in group-living organisms and particularly the behavior of groups of insects. Insects provide an

attractive and powerful model for collective and social behavior, as they exhibit a wide range in

social complexity, from solitary to eusocial, while allowing for controlled, high-throughput experi-

ments in laboratory settings (Feinerman and Korman, 2017; Lihoreau et al., 2012; Gordon, 2014;

Schneider et al., 2012). However, although complex social behavior has been the focus of extensive

research for over a century, technological advances are only beginning to enable systematic and

simultaneous measurements of behavior in large groups of interacting individuals.

Solutions for automated video tracking of insects in social groups can be roughly divided into two

categories (for reviews see Dell et al., 2014; Robie et al., 2017a): methods for tracking unmarked

individuals (Branson et al., 2009; Pérez-Escudero et al., 2014; Romero-Ferrero et al., 2019;

Sridhar et al., 2019; Feldman et al., 2012; Khan et al., 2005; Fasciano et al., 2014;

Fasciano et al., 2013; Bozek et al., 2020), and methods for tracking marked individuals

(Mersch et al., 2013; Robinson et al., 2012). The former category has the obvious advantages of

reduced interference with natural behavior, unbounded number of tracked individuals, and not
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having the burden of tagging animals and maintaining these tags throughout the experiment. At the

same time, these approaches, when applied to individual tracking, are limited by a more extensive

computational burden, higher error rates, and stricter requirements for image quality. The most

common approach for tracking unmarked individuals is to try and follow the trajectory of an individ-

ual for the duration of the video. The challenge in this approach is to resolve individuals from each

other and link their locations in consecutive frames during close range interactions, when they are

touching or occluding each other. Common solutions to this problem are to employ sophisticated

segmentation methods (Branson et al., 2009; Pérez-Escudero et al., 2014; Sridhar et al., 2019), to

use predictive modeling of the animals’ motion (Branson et al., 2009; Fasciano et al., 2013), or to

use image characteristics to match individuals before and after occlusions (Fasciano et al., 2014).

The success of these solutions is case-specific and will usually be limited to relatively simple prob-

lems, where interactions are brief, occlusion is minimal, or image resolution is sufficient to resolve

the individuals even during an interaction. One important limitation of this approach is that no mat-

ter how low the error rate is, it tends to increase rapidly with the duration of the experiment. The

reason is that once identities are swapped, the error is unrecoverable, and will propagate from that

moment on. A different algorithmic approach for tracking unmarked individuals is to use object rec-

ognition techniques to assign separate pieces of trajectories to the same individual (Pérez-

Escudero et al., 2014; Romero-Ferrero et al., 2019). While this approach is promising and per-

forms well on many tracking problems, it requires high image quality to identify unique features for

each individual animal. It will also generally not perform well on animals with high postural variability

and is hard to validate on large datasets.

On the other hand, tagging individuals with unique IDs has the advantage of having a stable ref-

erence, enabling error recovery. This approach also provides a simpler method for human validation

or correction and enables following the behavior of individuals even if they leave the tracked region,

or across experiments when the same animals are tested in different conditions. The use of general-

purpose libraries such as AprilTags (Mersch et al., 2013; Olson, 2011; Heyman et al., 2017;

Greenwald et al., 2018; Stroeymeyt et al., 2018) and ArUco (Garrido-Jurado et al., 2014), or

application-specific patterned tags (Crall et al., 2015; Boenisch et al., 2018; Wario et al., 2015;

Wild et al., 2018), has become the gold standard for this approach in recent years. However, these

tags are applicable only to species with body sizes sufficiently large to attach them, have adverse

effects on the animals’ behavior, and are often lost during experiments. They also require relatively

high image resolution to correctly read the barcode pattern. Taken together, while currently avail-

able methods cover a wide range of experimental scenarios, the ability to accurately track the

behavior of animals in groups remains one of the major hurdles in the field. As a result, much of the

experimental work still relies on manual annotation, or on partially automated analysis pipelines that

require considerable manual effort to correct computer-generated annotations (see Aguilar et al.,

2018; Gelblum et al., 2015; Leitner and Dornhaus, 2019; Valentini et al., 2020 for recent exam-

ples). In principle, marked animals can also be tracked by general-purpose image-based trackers

such as idTracker.ai, supplementing the pixel information of the animals’ appearances with artificial

features. To the best of our knowledge, however, this approach has not been formally described,

and it can be expected to perform less well than trackers specifically designed for a given marking

technique.

Here, we present anTraX, a new software solution for tracking color-tagged insects and other

small animals. Color tagging is one of the best-established and widely used methods to mark

insects, both in the field and in the laboratory (Leitner and Dornhaus, 2019; Valentini et al., 2020;

Walker and Wineriter, 1981; Gordon, 1989; Hagler and Jackson, 2001; Ulrich et al., 2018;

Holbrook et al., 2011; Holbrook, 2009), with long-term durability and minimal effects on behavior.

anTraX works by combining traditional segmentation-based object tracking with image-based classi-

fication using convolutional neural networks (CNNs). In addition, anTraX uses a graph object for rep-

resenting tracking data (Nillius et al., 2006), enabling the inference of identity of unidentified

objects by propagating temporal and spatial information, thereby optimizing the use of partial tag

information. anTraX is uniquely suited for tracking small social insects that form dense aggregates, in

which individuals are unidentifiable over large parts of the experiment even for the human observer.

It will also be useful in tracking and analyzing behavior in heterogenic groups of ‘solitary’ insects,

where keeping track of the individual identity for long experimental durations is important. Such

experiments are of increasing interest, as the study of behavior in classical model systems like
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Drosophila fruit flies is shifting toward understanding more complex behavioral phenomena such as

social interactions, individuality and inter-species interactions (Schneider et al., 2012;

Seeholzer et al., 2018; Schneider and Levine, 2014; Honegger and de Bivort, 2018;

Ayroles et al., 2015; Akhund-Zade et al., 2019).

While we tested anTraX and found it useful for behavioral analyses in a range of study systems, it

was specifically developed for experiments with the clonal raider ant Ooceraea biroi. The clonal

raider ant is an emerging social insect model system with a range of genomic and functional genetic

resources (Ulrich et al., 2018; Oxley et al., 2014; Trible et al., 2017; McKenzie and Kronauer,

2018; Chandra et al., 2018; Teseo et al., 2014). The unique biological features of the species

enable precise control over the size, demographics and genetic composition of the colony, parame-

ters that are essential for systematic study of collective behavior in ants (Ulrich et al., 2018;

Chandra et al., 2020). Moreover, the species is amenable to genetic manipulations (Trible et al.,

2017), which opens new possibilities not only for understanding the genetic and neural bases of

social and collective behaviors, but also for developing and validating theoretical models by manipu-

lating behavioral rules at the level of the individual and studying the effects on group behavior.

While these ants have great promise for the study of collective behavior, they are hard to track using

available approaches, due to their small size and tendency to form dense aggregates. anTraX thus

constitutes a crucial element in the clonal raider ant toolbox, enabling researchers to characterize

behavior in unprecedented detail both at the individual and collective level.

anTraX was designed with large-scale behavioral experiments in mind, where hundreds of colo-

nies are recorded in parallel for periods of weeks or months, making manual tracking or even error

correction impractical. Its output data can be directly imported into software packages for higher

level analysis of behavior (e.g. Kabra et al., 2013) or higher resolution postural analysis of individuals

in the group (Pereira et al., 2019; Mathis et al., 2018; Berman et al., 2014; Graving et al., 2019).

This enables the utilization of these powerful tools and methods for the study of social insects and

collective behavior. anTraX is modular and flexible, and its many parameters can be set via a graphi-

cal interface. The software is open source, and its main algorithmic components can be easily modi-

fied. Here, we provide a brief description of the different steps and principles that constitute the

anTraX algorithm, while a full description is given in the Appendix and the online documentation.

We validate the performance of anTraX using a number of benchmark datasets that represent a vari-

ety of behavioral settings and experimental conditions.

Materials and methods
The anTraX algorithm consists of three main steps. First, similar to other multi-object tracking algo-

rithms (Pérez-Escudero et al., 2014; Romero-Ferrero et al., 2019), it segments the frames into

background and ant-containing blobs and organizes the extracted blobs into trajectory fragments

termed tracklets. The tracklets are linked together to form a directed tracklet graph (Nillius et al.,

2006). The second step of the algorithm is tracklet classification, in which identifiable single-animal

tracklets are labeled with a specific ID by a pre-trained CNN, while other tracklets are marked as

either unidentified single-animal tracklets, or as multi-animal tracklets. Third, we infer the identity of

unclassifiable tracklets in the tracklet graph by using temporal, spatial and topological propagation

rules.

Object tracking and construction of the tracklet graph
Each frame is subtracted from the background, and a fixed threshold is applied to segment the

frame into background regions and animal-containing blobs to be tracked. When two or more ani-

mals are close together, they will often be merged into a single larger blob (Figure 1A–C). Unlike

other tracking solutions, we do not attempt to separate these larger blobs into single animal blobs

at this stage, because those attempts are based on heuristic decisions that do not generalize well

across species and experimental conditions. Instead, we will infer the composition of these larger

blobs from the tracklet graph in a later step. Each blob in the currently processed frame is then

linked to blobs in the previous frame (Figure 1D–E). A link between a blob in frame t and a blob in

frame t-1 implies that some or all of the animals that were part of the first blob, are present in the

second one. A blob can be linked to one blob (the simplest case, where the two blobs have the

same ant composition), to a few blobs (where animals leave or join the blob), or to none (suggesting
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the animals in the blob were not detected in the other frame). We use Optical Flow to decide which

blobs should be linked across frames (Figure 1D). While Optical Flow is computationally expensive,

we found it to be significantly more accurate than alternatives such as simple overlap or linear

assignment (based either on simple spatial distance or on distance in some feature space). To reduce

the computation cost, we run the optical flow in small regions of the image that contain more than

one linking option (see Appendix section 1.4 for details).

A B C D

E F G

single animal tracklet

multi animal tracklet

Figure 1. Blob tracking and construction of the tracklet graph. (A) An example frame from an experiment with 16 ants marked with two color tags each.

(B) The segmented frame after background subtraction. Each blob is marked with a unique color. Some blobs contain single ants, while others contain

multiple ants. (C) A higher resolution segmentation example. While some ants are not distinguishable from their neighbors even for the human eye,

others might be segmented by tuning the segmentation parameters, or by using other, more sophisticated segmentation algorithms. The anTraX

algorithm takes a conservative approach and leaves those cases unsegmented to avoid segmentation errors. (D) Optical flow is used to estimate the

‘flow’ of pixels from one frame to the next, giving an approximation of the movements of the ants. The cyan silhouettes represent the location of an ant

in the first frame, and the red silhouettes represent the location in the second frame. The results of the optical flow procedure are shown with blue

arrows, depicting the displacement of pixels in the image. (E) An example of constructing and linking tracklets. Each layer represents a section of

segmented frame. Two ants are approaching each other (tracklets marked t1 and t2), until they are segmented together. At that point, the two tracklets

end, and a third multi-ant tracklet begins (t3). Once the two ants are again segmented individually, the multi-ant tracklet ends, and two new single-ant

tracklets begin (t4 and t5). (F) The graph representation of the tracklet example in E. (G) A tracklet graph from an experiment with 36 ants, representing

3 min of tracking data. The nodes are located according to the tracklet start time on the vertical axis, beginning at the bottom. The inset depicts a

zoomed-in piece of the graph.
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Blobs are organized into tracklets, defined as a list of linked blobs in consecutive frames that are

composed of the same group of individuals (Figure 1E–F). Following linkage, tracklets are updated

in the following way: (i) A blob in the current frame t that is not linked to any blob in the previous

frame t-1, will ’open’ a new tracklet. (ii) A blob in the previous frame that is not linked to any blob in

the current frame, will ’close’ its tracklet. (iii) If a pair of blobs in the previous and current frames are

exclusively linked, the current blob will be added to the tracklet that contains the previous blob. (iv)

Whenever a blob in the current or previous frames is connected to more than one blob, the tracklets

of the linked blobs in the previous frames will ’close’, and new tracklets will ’open’ with the blobs in

the current frame. In these latter cases, the linking between the blobs across different tracklets will

be registered as an edge in the directed tracklet graph from the earlier tracklet to the latter. The

tracklet graph is constructed by running an iterative loop over all the frames in the experiment. The

result of this part of the algorithm, after processing all frames in the video, is a directed acyclic graph

containing references to all tracklets and blobs in the dataset (Figure 1G).

Tracklet classification
The next step is tracklet classification, in which we label tracklets containing single animals that can

be reliably identified with a specific ID (Appendix section 2.3). The successful propagation of individ-

ual IDs on top of the tracklet graph requires at least one identification of each ID at this step. Propa-

gation will improve with additional independent identifications of individuals throughout the video.

Nevertheless, it is important to note that our approach does not rely on the identification of each

and every tracklet, but rather on inferring the composition of tracklets based on propagation of IDs

on top of the tracklet graph. Hence, we apply a conservative algorithm that classifies only reliable

cases and leaves ambiguous ones as unidentified. Classification is done by training and applying a

convolutional neural network (CNN) on each blob image in the tracklet. The most frequent ID is then

applied to the entire tracklet (Figure 2A). In addition to the ID label, we also assign a classification

confidence score to each classified tracklet, which takes into account the number of identified blobs

in the tracklet, the confidence of each classification, and the prevalence of contradictory classifica-

tions across blobs in the tracklet (see Appendix section 2.4). anTraX comes with a graphical interface

for training, validating, and running the CNN (see Supplementary Material and online

documentation).

ID propagation
The last part of the algorithm is the propagation of ID assignments on the tracklet graph. While for-

mal approaches for solving this problem using Bayesian inference have been proposed

(Nillius et al., 2006), we chose to implement an ad-hoc greedy iterative process that we found

to work best in our particular context. Each node in the graph (corresponding to a tracklet) is anno-

tated with a dynamic list of assigned IDs (IDs that are assigned to the tracklet) and a list of possible

IDs (IDs that might be assigned to the tracklet, i.e., that were not yet excluded). Initially, all nodes

are marked as ‘possible’ for all IDs, and no IDs are assigned to any nodes. All the classified tracklets

from the previous step are now ranked by their confidence score. Starting with the highest confi-

dence tracklet, its ID is propagated on the graph as far as possible. Propagation is done vertically on

the graph on top of edges, both positively (an ID that is assigned to a node must also be assigned

to at least one of its successors and one of its predecessors) and negatively (an ID cannot be in the

possible list of a node, if it is not in at least one successor and one predecessor node), horizontally

(if an ID is assigned to a node, it cannot be assigned to any other time-overlapping node), and using

topological constraints (Figure 2B, Figure 2—video 1). Only non-ambiguous propagation is per-

formed, and propagation is halted whenever an ambiguity or contradiction arises. We iterate the

propagation until no more assignments can be made. Some of the propagation rules are modified in

cases of tracklets that start or end in regions where individuals can enter or leave the tracked area

(see Appendix section 3). Figure 2C–F visualizes an example of tracking an ant throughout a 10 min

segment from an actual experiment and depicts the path of the ant through the tracklet graph along

with its spatial trajectory.
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Figure 2. Tracklet classification and ID propagation on the tracklet graph. (A) Schematic of the tracklet classification procedure. All blobs belonging to

the tracklet are classified by a pre-trained CNN classifier. The classifier assigns a label to each blob, which can be an individual ID (depicted as colored

rectangles in the figure), or an ambiguous label (‘unknown’, depicted in gray). The tracklet is then classified as the most abundant ID in the label set,

along with a confidence score that depends on the combination of blob classifications and their scores (see Supplementary Material for details). (B) A

simple example of propagating IDs on top of the tracklet graph. The graph represents a tracking problem with three IDs (represented as red/blue/

green) and eight tracklets, of which some are single-animal (depicted as circles) and some are multi-animal (depicted as squares). Three of the single-

animal tracklets have classifications, and are depicted as color-filled circles. The graph shows how, within four propagation rounds, assigned IDs are

propagated as far as possible, both negatively (round head arcs) and positively (arrow heads), until the animal composition of all nodes is fully resolved.

See also Figure 2—video 1 for an expanded animated example. (C) An example of a solved tracklet graph from an experiment with 16 ants,

representing 10 min of tracking. Single ant tracklets are depicted as circle nodes and multi ant tracklets are depicted as square nodes. Black circles

represent single ant tracklets that were assigned an ID by the classifier. A subgraph that corresponds to a single focal ant ID (‘GO’: an ant marked with

a green thorax tag and an orange abdomen tag) is highlighted in color. Green nodes represent single ant tracklets assigned by the classifier. Blue

nodes represent tracklets assigned by the propagation algorithm. Red nodes are residual ambiguities. (D) Example snapshots of the focal ant GO at

various points along its trajectory, where it is often unidentifiable. The second image from the bottom shows an image where the ant is identifiable.

While the third image from the bottom shows an unidentifiable ant, it belongs to a tracklet which was assigned an ID by the classifier based on other

frames in the tracklet. The first and last images show the focal ant inside aggregations, and were assigned by the propagation algorithm. The purple

arrows connect each image to its corresponding node in C. (E) The 10-min long trajectories corresponding to the graph in C. The trajectory of the focal

ant GO is plotted in orange, while the trajectories of all other ants are plotted in gray. Purple arrows again point from the images in D to their

respective location in the trajectory plot. (F) Plot of the x and y coordinates of the focal ant during the 10 min represented in the graph in C. Gaps in

the plot (marked with green asterisks) correspond to ambiguous segments, where the algorithm could not safely assign the ant to a tracklet. In most

cases, these are short gaps when the ant does not move, and they can be safely interpolated to obtain a continuous trajectory.

Figure 2 continued on next page
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Export positional and postural results for analysis
The tracking results are saved to disk and can be accessed using supplied MATLAB and Python

interface functions. For each individual ID in the experiment, a table is returned, containing its

assigned spatial coordinates in each frame of the experiment, and a flag indicating the type of the

location estimation (e.g. direct single-animal classification, inferred single-animal, multi-animal track-

let). For frames where the location is derived from single animal tracklets (i.e. the animal was seg-

mented individually), the animal orientation is also returned. Locations estimated from multi-animal

tracklets are necessarily less accurate than locations from single-animal tracklets, and users should

be aware of this when analyzing the data. For example, calculating velocities and orientations is only

meaningful for single-animal tracklet data, while spatial fidelity can be estimated based also on

approximate locations. A full description of how to import and process the tracking results is pro-

vided in Appendix section 3.6 and the online documentation.

User interface and parameter tuning
anTraX has many parameters that control the image segmentation step, the classifier architecture

and training procedure, and the propagation algorithm. The optimal value for each depends on the

specific nature and settings of the processed experiment, from the resolution and quality of the cam-

era, to the details of the organisms and number of tags. anTraX comes with a graphical user inter-

face to tune and verify the value of these parameters. anTraX also contains a user interface for

creating an image database and training the CNN for tracklet classification.

Parallelization and usage on computer clusters
anTraX was specifically designed to process large-scale behavioral experiments, which can contain

hundreds of video files and tens of terabytes of data. anTraX includes scripts to process such large

datasets in batch mode where individual video files are tracked in parallel on multicore computers

and high-performance computer clusters. Following per-video processing, anTraX will run a routine

to ‘stitch’ the results of the individual files together (see online documentation).

Availability and dependencies
The core tracking steps of anTraX are implemented using MATLAB version 2019a, while the classifi-

cation parts are implemented using TensorFlow v1.15 in the Python 3.6 environment. Compiled

binaries are available for use with the freely available MATLAB Runtime Library and can be run with

a command line interface. anTraX can be run on Linux/OSX systems, and large datasets benefit con-

siderably from parallelization on computer clusters. anTraX depends on the free FFmpeg library for

handling video files. The result files are readable with any programming language, and we supply a

Python module for easily interfacing with output data. anTraX is distributed under the GPLv3 license,

and its source code and binaries are freely available (Gal et al., 2020a). anTraX is a work in progress

and will be continuously extended with new features and capabilities. Online documentation for

installing and using the software is available at http://antrax.readthedocs.io. Users are welcome to

subscribe, report issues, and suggest improvements using the GitHub interface.

Results

anTraX tracks individual ants with near-human accuracy over a wide
range of conditions
As any tracking algorithm, the performance of anTraX depends on many external factors, such as

the image quality, the framerate, the quality of the color tags (size, color set, number of tags per

individual), and the behavior of the organisms (e.g. their tendency to aggregate, their activity level,

Figure 2 continued

The online version of this article includes the following video for figure 2:

Figure 2—video 1. An animated example of the graph propagation algorithm.

https://elifesciences.org/articles/58145#fig2video1
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etc). anTraX was benchmarked using a number of datasets spanning a variety of experimental condi-

tions (e.g. image quality and resolution, number of tracked individuals, number of tags and colors,

size variability in the colony) and study organisms, including four different ant species, as well as the

fruit fly Drosophila melanogaster (Table 1, Figure 3 and its supplements). All benchmark datasets,

together with the raw videos, full description, configuration files, and trained classifiers are available

for download (Gal et al., 2020b).

The performance of the tracking algorithm can be captured using two separate measures. The

first is the rate of assignment, defined as the ratio of assigned locations in the experiments to the

total possible assignments (i.e. the number of IDs times the number of frames). The second measure

is the assignment error, defined as the ratio of wrong assignments to the total number of assign-

ments made. While the assignment rate can be computed directly and precisely from the tracking

results, the error rate in assigning IDs for a given data set needs to be tested against human annota-

tion of the same dataset. Because the recording duration of these datasets is typically long (many

hours), it is impractical to manually annotate them in full. Instead of using fewer or smaller datasets,

which would have introduced a sampling bias, we employed a validation approach in which datasets

were subsampled in a random and uniform way. In this procedure, a human observer was presented

with a sequence of randomly selected test points, where each test point corresponded to a location

assignment made by the software to a specific ID in a specific frame. The user was then asked to

classify the assignment as either ‘correct’ or ‘incorrect’. If the user was unsure of the correctness of

the assignment, they could skip to the next one. The process was repeated until the user had identi-

fied 500 points as either correct or incorrect. The accuracy of the tracking was measured as the ratio

of correct test points to the sum of correct and incorrect test points, as determined by the human

observer. This procedure samples the range of experimental conditions and behavioral states repre-

sented in each of the datasets in an unbiased manner, and provides a tracking performance estimate

that can be applied and compared across experiments. Overall, anTraX performed at a level close to

the human observer in all benchmark datasets (Table 2).

Graph inference dramatically improves tracking performance
The main novelty of anTraX compared to other tracking solutions is the use of a tracklet graph for ID

inference. This method increases the tracking performance in several ways. First, it allows identifica-

tion of tracklets that are unidentifiable by the classifier, using propagation of IDs from classified

tracklets. Second, it corrects classification errors by overriding low-reliability assignments made by

Table 1. Summary description of the benchmark datasets.

All raw videos and parameters of the respective tracking session are available for download (Gal et al., 2020b).

Dataset Species #Animals #Colors #Tags
Open*
ROI

Duration
(hr) Camera FPS

Image
size (pixels)

Resolution (pixels/
mm)

J16 Ooceraea biroi 16 4 2 No 24 Logitech C910 10 960 � 720 10

A36 Ooceraea biroi 36 6 2 No 24 PointGrey Flea3
12MP

10 3000 � 3000 25

C12 Camponotus fellah 12 7 3 No 6 Logitech C910 10 2592 � 1980 17

C32 Camponotus sp. 28 6 3 No 24 PointGrey Flea3
12MP

10 2496 � 2500 13

G6 � 16 Ooceraea biroi 6 � 16† 3 2 No 1.33 Logitech C910 10 2592 � 1980 17

V25 Ooceraea biroi 25 5 2 Yes 3 Logitech C910 10 2592 � 1980 17

T10 Temnothorax
nylanderi

10 5 4 No 6 Logitech C910 10 2592 � 1980 17

D7 Drosophila
melanogaster

7 7 1 No 3 PointGrey Flea3
12MP

18 1056 � 1050 26

D16 Drosophila
melanogaster

16 4 2 No 5 PointGrey Flea3
12MP

18 1200 � 1200 16

ROI: region of interest; FPS: frames per second. *Whether or not the ants can leave the tracked region. †Dataset G6 � 8 is derived from six replicate colo-

nies with eight ants each.
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A B

C

Figure 3. Example of anTraX tracking output, based on the J16 dataset. In this experiment, the ants are freely behaving in a closed arena that contains

the nest (the densely populated area on the top left) and exploring ants. A short annotated clip from the tracked dataset is given as Figure 3—video 1.

Tracking outputs and annotated videos of all datasets are also given in the supplementary figures and videos of this figure. (A) A labeled frame

(background subtracted), showing the location of each ant in the colony, as well as a ‘tail’ of the last 10 s of trajectory. Ants that are individually

segmented have precise locations. The ants clustered together have approximate locations. Labels indicate the color tag combination of the ant (e.g.

‘BG’ indicates a blue thorax tag and a green abdomen tag; colors are blue (B), green (G), orange (O), and pink (P)). (B) Individual trajectories for each

ant in the colony, based on 1 hr of recording. (C) A cropped image of each ant from the video.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Tracking the V25 dataset with 25 O. biroi ants.

Figure supplement 2. Tracking the A36 dataset with 36 O. biroi ants.

Figure supplement 3. Tracking the T10 dataset with 10 T. nylanderi ants.

Figure supplement 4. Tracking the T10 dataset with 12 C. fellah ants.

Figure supplement 5. Tracking the C32 dataset with 28 Camponotus spec. ants, including an unmarked winged queen.

Figure supplement 6. Tracking the D7 dataset with seven D. melanogaster fruit flies.

Figure supplement 7. Tracking the D16 dataset with 16 D. melanogaster fruit flies.

Figure supplement 8. Tracking the G6 � 16 dataset with six colonies of 16 O. biroi ants each recorded and tracked in parallel.

Figure 3—video 1. An annotated tracking video clip from dataset J16.

https://elifesciences.org/articles/58145#fig3video1

Figure 3—video 2. An annotated tracking video clip from dataset V25.

https://elifesciences.org/articles/58145#fig3video2

Figure 3—video 3. An annotated tracking video clip from dataset A36.

https://elifesciences.org/articles/58145#fig3video3

Figure 3—video 4. An annotated tracking video clip from dataset T10.

https://elifesciences.org/articles/58145#fig3video4

Figure 3—video 5. An annotated tracking video clip from dataset C12.

https://elifesciences.org/articles/58145#fig3video5

Figure 3—video 6. An annotated tracking video clip from dataset C32.

https://elifesciences.org/articles/58145#fig3video6

Figure 3 continued on next page
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the classifier with IDs propagated from high-reliability tracklets. Third, it assigns IDs to multi-individ-

ual blobs and tracklets. This provides an approximate location for analysis, even when an animal can-

not be individually segmented. Table 2 and Figure 4A–B show the increase in assignment coverage

and decrease in assignment errors following graph propagation in all benchmark datasets.

To further demonstrate the utility of graph propagation, we used data from a full, large-scale

experiment. We tracked the behavior of 10 clonal raider ant colonies, each consisting of 16 ants, for

14 days. The colonies were filmed at relatively low resolution using simple webcams (Logitech C910,

960 � 720 pixels image size, 10 frames per second), similar to that of benchmark dataset J16. This

dataset represents a relatively challenging classification scenario, because the tags are small, and

the colors are dull. Figure 4C–D show a comparison of assignment rate and accuracy across the 10

replicates before and after graph propagation, with both measures improving greatly. Moreover,

the assignments made by the propagation algorithm are as reliable as the assignments made

directly by the classifier (Figure 4—figure supplement 1). The propagation algorithm is also robust

to classification errors, and successfully blocks their propagation on the tracklet graph (Figure 4—

figure supplement 2).

Figure 3 continued

Figure 3—video 7. An annotated tracking video clip from dataset D7.

https://elifesciences.org/articles/58145#fig3video7

Figure 3—video 8. An annotated tracking video clip from dataset D16.

https://elifesciences.org/articles/58145#fig3video8

Figure 3—video 9. An annotated tracking video clip from dataset G6 � 16.

https://elifesciences.org/articles/58145#fig3video9

Table 2. Summary of tracking performance measures for the benchmark datasets using anTraX.

Assignment rate is defined as the proportion of all data points (the number of individuals times the number of frames) in which a blob

assignment was made. In cases of closed boundary regions of interest (ROIs; in which the tracked animals cannot leave the tracked

region) this measure is in the range of 0–1. In cases of open boundary ROIs (marked with asterisks; e.g., dataset V25), the upper

boundary is lower, reflecting the proportion of time the ants are present in the ROI. The assignment error is an estimation of the pro-

portion of wrong assignments (i.e. an ant ID was assigned to a blob the respective ant is not present in). As explained in the text, the

estimation is done by sequentially presenting the user with a sequence of randomly sampled assignments from the dataset and mea-

suring the proportion of assignments deemed ‘incorrect’ by the observer, relative to the sum of all ‘correct’ and ‘incorrect’ assign-

ments. To calculate the error rates reported in the table, the presentation sequence continued until exactly 500 assignments were

marked as ‘correct’ or ‘incorrect’, ignoring cases with the third response ‘can’t say’. A 95% confidence interval of the error according to

the Clopper-Pearson method for binomial proportions is also reported in the table. To quantify the contribution of using graph propa-

gation in the tracking algorithm, the analysis was repeated ignoring assignments made during the graph propagation step, and the

results are reported here for comparison. A graphical summary of the performance measures is shown in Figure 4A–B.

Without graph propagation With graph propagation

Dataset Assignment rate Assignment error Assignment error 95% CI Assignment rate Assignment error Assignment error 95% CI

J16 0.28 0.012 0.0044–0.026 0.93 0 0–0.0074

A36 0.24 0.014 0.0056–0.0286 0.81 0.006 0.0012–0.0174

C12 0.82 0 0–0.0074 0.99 0 0–0.0074

C32 0.26 0.042 0.0262–0.0635 0.79 0.022 0.011–0.039

G6 � 16 0.57 0.122 0.0946–0.154 0.89 0.078 0.056–0.105

V25 0.07* 0.058 0.0392–0.0822 0.48* 0.012 0.0044–0.026

T10 0.56 0.06 0.041–0.0845 0.96 0.018 0.0083–0.339

D7 0.88 0 0–0.0074 0.98 0 0–0.0074

D16 0.89 0.004 0.0005–0.0144 0.997 0 0–0.0074
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The blob classifier generalizes well across experimental replicates
Collecting examples and training the blob classifier is the most time-consuming step in the tracking

pipeline, and a good classification is essential for high-quality tracking (Figure 4—figure supple-

ment 3). Ideally, a universal blob classifier would be trained to identify the same tag combination

across experiments, without the need to retrain a classifier for each experiment. In reality, however,

this is impractical. CNN classifiers do not generalize well outside the image distribution they were

trained on, so even apparently small changes in experimental conditions (e.g. the type or level of

lighting used, or the color tuning of the camera) can markedly decrease classification performance.

Nevertheless, when experiments are conducted using similar conditions (e.g. study organism, mark-

ing technique, experimental setup, etc), it is possible to construct a classifier that will generalize

Figure 4. Tracking performance. (A) Contribution of graph inference to reduction of assignment error. The graph compares the assignment error in the

benchmark datasets, defined as the rate of assigning wrong IDs to blobs across all IDs and frames in the experiment, and estimated as explained in the

main text, before the graph propagation step of the algorithm (blue circles, ‘noprop’ category) and after the graph propagation step (orange circles,

‘final’ category). (B) Contribution of graph inference to increased assignment rate (the ratio of assignments made by anTraX to the total number of

assignments possible in the experiment) in the benchmark datasets. The graph compares the assignment rate, as defined in the main text, before and

after the graph propagation step (same depiction as in A). The performance measures for all benchmark datasets are reported in Table 2 and

Figure 4—source data 1. (C–D) Same as in A and B, calculated for a large-scale dataset described in the text (10 colonies of 16 ants, recorded over 14

days). The performance measures for all replicas are reported in Figure 4—source data 2. (E) Generalizability of the blob classifier. Each point in

categories 1–4 represents the generalization error of one classifier (trained with examples from number of replicas corresponding to its category) on

data from one replica that was not used for its training. The replicas were recorded under similar conditions, but using different ants, different cameras,

and different experimental setups. For classifiers trained on more than one replica, the combinations of replicas were randomly chosen, while

maintaining the constraint that each replica is tested against the same number of classifiers in each condition. In the category ‘All’, the points depict

the validation error of the full classifier, trained on data from the 10 replicas. All classifiers were trained with the same network architecture, started

training from a scratch model, and were trained until saturation. The dashed line represents the mean validation error for the full classifier. The list of

errors for all trained classifiers are given in Figure 4—source data 3.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. A table of performance measures, as defined in the main text, for the benchmark datasets.

Source data 2. A table of performance measures, as defined in the main text, for the 10-replica experiment described in the main text.

Source data 3. A table of generalization errors for all classifiers, as described in the caption of Figure 4E.

Figure supplement 1. Error comparison between assignments made by direct classification and assignments made by the propagation algorithm.

Figure supplement 2. Propagation of errors.

Figure supplement 2—source data 1. The count data for the histogram plotted in Figure 4—figure supplement 2A.

Figure supplement 2—source data 2. The count data for the histogram plotted in Figure 4—figure supplement 2B.

Figure supplement 3. Classification and assignment errors.
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across these experiments with minimal or no retraining. This enables construction of efficient track-

ing pipelines for high-throughput and replicate experiments, without the need for additional manual

annotations.

We assessed the generalizability of blob classifiers with the 10 replicates of the experiment

described in the previous section. We trained a classifier on examples from one replicate, and then

used it to classify blobs sampled from the other replicates. We similarly evaluated the performance

of classifiers trained with examples from two, three, and four replicates, and compared the results to

the performance of a classifier trained on examples from all replicates. The comparison shows that,

despite variability in animal shape and behavior, tagging process, cameras, and experimental setups

across replicates, the classifier performs remarkably well (Figure 4E). Moreover, when a classifier is

trained with an example set obtained from as few as two replicates, it performs similarly well as a

classifier trained with examples from all replicates. Obviously, the generalizability of this result will

depend on how well conditions are standardized between replicates or experiments. Nevertheless,

it demonstrates that robust behavioral tracking pipelines can be constructed with minimal retraining.

anTraX can be combined with JAABA for efficient behavioral
annotation of large datasets
While direct analysis of the tracking output is a possibility, phenotyping high-throughput experi-

ments and extracting useful information from large-scale trajectory data beyond very simple meas-

ures are challenging and impractical. In recent years, the field of computational ethology has shifted

to the use of machine learning, both supervised and unsupervised, for analyzing behavioral data

(Todd et al., 2017; Egnor and Branson, 2016; Datta et al., 2019). One of the most useful and

mature tools is JAABA, a package for behavioral annotation of large datasets using supervised learn-

ing (Kabra et al., 2013; Robie et al., 2017b). In short, JAABA projects trajectory data onto a high

dimensional space of per-frame features. The user then provides the software with a set of examples

for a certain behavior, and the software trains a classifier to find all occurrences of that behavior in a

new dataset. anTraX includes functions to generate the per-frame data in a JAABA-compatible way.

In addition to the original list of JAABA features, a set of anTraX-specific features is also generated

(see online documentation for details). Beyond useful information about the appearance and kine-

matics of the tracked animals, these extra features provide information about whether an animal was

segmented individually or was part of a multi-animal blob. This enables JAABA to learn behaviors

that can only be assigned to individually segmented animals, such as those that depend on the

velocity of the animal. The user can then label examples and train a classifier in the JAABA interface.

This classifier can then be used to analyze entire experiments using the anTraX interface.

To demonstrate the power of this approach, we present two examples of using JAABA together

with anTraX. In the first example, we train a classifier to detect O. biroi ants carrying a larva while

walking. O. biroi ants carry their larva under their body, in a way not always obvious even to a human

observer (Figure 5A, Figure 5—video 1). By using subtle changes in the ants’ appearance and kine-

matics, JAABA is able to classify this behavior with >93% accuracy (tested on a set of annotated

examples not used for training). An example of trajectories from a 30 min period annotated with

JAABA is shown in Figure 5B.

In the second example, we used JAABA to classify the behavior of ants during periods when they

are not moving. We trained a classifier to detect four distinct behaviors (Figure 5—video 2): rest, in

which the ant is completely immobile; local search, in which the ant does not move but uses its

antennae to explore the immediate environment; self-grooming, in which the ant stops to groom

itself; and object-interaction, in which the ant interacts with a non-ant object such as a piece of food,

a larva or a trash item. JAABA was able to identify these behaviors with >92% accuracy. Figure 5C

shows the spatial distribution of the classified behaviors during all periods where an ant stops walk-

ing for more than 2 s in a 60-min experiment, across all ants in the colony.

anTraX can be combined with DeepLabCut to augment positional data
with pose tracking
Much attention has recently been given to tracking the relative position of animal body parts, taking

advantage of the fast progress in machine learning and computer vision (Pereira et al., 2019;

Mathis et al., 2018; Graving et al., 2019). This allows for the measurement and analysis of aspects
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of an animal’s behavior beyond what is extractable from its trajectory. Although these tools can in

principle be directly applied to videos with multiple individuals (Iqbal et al., 2017;

Insafutdinov et al., 2016), they are still not mature enough for large-scale use. A more reasonable

approach it to combine individual animal pose tracking with a track-and-crop step (see discussion

within Graving et al., 2019). To track body parts of individual animals within a group or a colony,

we took advantage of the fact that anTraX segments and crops the images of individual animals as

part of its workflow, and included an option to run pre-trained DeepLabCut models (Mathis et al.,

2018) on these images, without the need to export the data in a DeepLabCut-readable format

Figure 5. Interfacing anTraX with third party behavioral analysis packages for augmenting tracking data. (A) Ants carrying a larva while they move

(green/green and yellow/blue) can be difficult to distinguish from ants not carrying larvae (blue/green and yellow/purple), even for a human observer.

Figure 5—video 1 shows examples for ants walking with and without a larva. (B) However, using labeled examples to train a classifier, JAABA can

reliably distinguish ants walking while carrying a larva from ants walking without one from anTraX tracking output. Shown here is a 30 min segment from

the A36 dataset, where trajectories classified by JAABA as ants carrying a larva are plotted in red on the background of all other tracks (in gray). (C)

Classifying stops using JAABA. The plot shows a 60 min segment from the A36 experiment, where all stops longer than 2 s are marked with a colored

dot. The stops are classified into four categories: rest (red), local search (green), self-grooming (blue), and object-interaction (e.g. with a food item;

pink). Figure 5—video 2 shows examples of stops from all types. (D) Applying a simple DeepLabCut model to track the ants’ antennae and main body

axes, shown on segmented ant images from dataset A36. Figure 5—video 3 shows an animated tracking of all ants in the colony. (E–F) Using the

results from DeepLabCut to track the behavior of an ant along its trajectory. A one-hour trajectory of one ant from dataset A36 is shown on the

background of the tracks of all other ants in the colony in that period (in gray). In E, the focal trajectory is colored according to the total rate of antennal

movement (measured in angular velocity units rad/s). In F, the focal trajectory is colored according to how much the antennae move in-phase or anti-

phase (measured in angular velocity units rad/s). Together, these panels show the behavioral variability in antennal movement patterns.

The online version of this article includes the following video(s) for figure 5:

Figure 5—video 1. Examples of short video clips from dataset A36 in which some ants walk carrying a larva, while others walk without a larva.

https://elifesciences.org/articles/58145#fig5video1

Figure 5—video 2. Examples of short video clips from dataset A36 showing the four types of stop behavior.

https://elifesciences.org/articles/58145#fig5video2

Figure 5—video 3. Pose-tracking of all ants in dataset A36 using anTraX in combination with DeepLabCut.

https://elifesciences.org/articles/58145#fig5video3
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(which would have resulted in a heavy computational overhead). This way, the position of the tracked

body parts relative to the animal’s centroid are returned together with the spatial location of the

centroid. For training such a model, anTraX enables exporting cropped single animal videos that are

loadable into the DeepLabCut user interface. Currently, this is only supported for single-animal

tracklets, where animals are segmented individually.

Of course, the ability to perform accurate and useful pose estimation depends on the resolution

at which animals appear in the video. To demonstrate the potential of this approach, we trained a

simple DeepLabCut model to track the main body axis and antennae positions of ants from bench-

mark dataset A36. Figure 5D and Figure 5—video 3 show examples from the segmented and

cropped images of the individual ants in the videos.

Ants use different antennation patterns to explore their environment (Draft et al., 2018), and the

ability to track these patterns in parallel to their movement in space can contribute to our under-

standing of their sensory processing during free behavior. We used the pose tracking results to visu-

alize the different modes of antennae movement used by the ants to explore their environment.

Figure panels Figure 5E and F show the total movement rate and the relative phase of the two

antennae along the trajectory of one ant in a 1-hr segment of the experiment, respectively, demon-

strating the variability and richness inherent to these patterns.

Discussion
anTraX is a new algorithm and software package that provides a solution for a range of behavioral

tracking problems not well addressed by available methods. First, by using a deep neural network

for image classification, it enables the tracking of insects that are individually marked with color tags.

While color tags have been used successfully for behavioral analysis for decades in a wide range of

social insects, and in many species they are the only practical type of marker, their use has been

severely limited by the lack of automation. Second, unlike other existing approaches, it handles

cases where insects tightly aggregate and are not segmentable, as well as cases where the tags are

obscured. This is achieved by representing the tracking data as a directed graph, and using graph

walks and logical operations to propagate information from identified to unidentified nodes. Third,

anTraX handles very long experiments with many replicate colonies and minimal human oversight,

and natively supports parallelization on computational clusters for particularly large datasets. Finally,

anTraX can easily be integrated into the expanding ecosystem of open-source software packages for

behavioral analysis, making a broad range of cutting-edge ethological tools available to the social

insect community. anTraX is an open-source software and conveniently modular, with each step of

the algorithm (segmentation, linking, classification, and propagation) implemented as a separate

module that can be easily augmented or replaced to fit experimental designs that are not well han-

dled by the current version of the algorithm. For example, the traditional background subtracted

segmentation can be replaced with a deep learning-based semantic segmentation, that is training

and using a classifier to distinguish pixels of the image as belonging to either background or fore-

ground (Rajchl et al., 2017; Moen et al., 2019; Badrinarayanan et al., 2017). This can potentially

allow analysis of field experiments with natural backgrounds, or experiments with non-static back-

grounds, such as videos taken with a moving camera. Another possible extension is an informed

‘second pass segmentation’ step, where multi-animal blobs are further segmented into single-animal

blobs, taking into account the composition of the blob (number and IDs of animals). Knowing the

composition of the blob provides a method to algorithmically validate the segmentation, allowing a

‘riskier’ segmentation approach. Another approach to locate animals in aggregations more precisely

is to use neural network-based detection of the tags themselves. This method has successfully been

used for bees tagged with fiducial markers inside a hive (Wild et al., 2018). Having a record of the

composition of tracklets and blobs also paves the way for performing image-based behavioral analy-

sis of interactions (Dankert et al., 2009; Klibaite et al., 2017; Klibaite and Shaevitz, 2019), or con-

structing specialized image classifiers for interaction types (e.g. allogrooming, trophallaxis,

aggression, etc). Lastly, a newer generation of pose-estimation tools, including SLEAP

(Pereira et al., 2020) and the recent release of DeepLabCut with multi-animal support, enable the

tracking of body parts for multiple interacting animals in an image. These tools can be combined

with anTraX in the future to extend pose tracking to multi-animal tracklets, and to augment posi-

tional information for individual animals within aggregations.
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In summary, anTraX fills an important gap in the range of available tools for tracking social

insects, and considerably expands the range of trackable species and experimental conditions. It

also interfaces with established ethological analysis software, thereby making these tools broadly

accessible for the study of social insects. anTraX therefore has the potential to greatly accelerate our

understanding of the mechanisms and principles underlying complex social and collective behavior.
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Appendix 1

Detailed description of the anTraX algorithm
The anTraX algorithm consists of three main steps (Appendix 1—figure 1). In the first step, we

detect the tracked animals in each frame of the video and organize the extracted blobs into trajec-

tory pieces we term tracklets. As we will detail below, these tracklets are in turn linked together to

form an acyclic directed graph we name the tracklet graph. The second step of the algorithm is

tracklet classification, in which identifiable tracklets are classified based on the color tag information

present in their blobs. In the third step of the algorithm, we use the topology of the tracklet graph

to propagate identity information from the classified tracklets to the entire set of tracklets.

In this appendix, we detail each part of the algorithm and fully describe its various computational

steps and parameters. A practical tutorial for running the software and using its graphical interface

can be found in the online documentation.

Appendix 1—figure 1. Flow diagram of the anTraX algorithm.

1. Creating the tracklet graph
1.1 Creating a background image

anTraX uses background subtraction for segmentation. Although using a static background is some-

what limiting in designing and performing experiments (requiring a static environment and a static

camera), and it is possible to segment images for tracking without this step if there is a decent con-

trast between the objects and the background, background subtraction has the advantage of giving

a stable object segmentation that simplifies later steps.

For creating a background image, anTraX uses random sampling of frames from the entire dura-

tion of the experiment, or from a segment defined by the user (Appendix 1—figure 2A,B). The

number of frames nB is configurable, and the background IBG is computed by applying either a per-

pixel median or max operator:

IBG i; j;cð Þ ¼med I tb i; j;cð Þf g
nB
b¼1

(1A)

IBG i; j;cð Þ ¼max I tb i; j;cð Þf g
nB
b¼1

(1B)
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Appendix 1—figure 2. Background creation. (A) An example raw frame. (B) A background frame

generated using a median function. Regions outside the ROI mask are dimmed. (C) Full segmented

frame.

Where tb is a randomly drawn timepoint in the experiment, I tb is the corresponding frame, i and j

are the image coordinates, and c is the color channel index.

Generally, the median operation is useful in cases where animals are active enough to have each

pixel in the image free of animals for at least half the frames. Otherwise, the max operation gives

better results. The anTraX GUI enables the user to test and optimize the parameters in the back-

ground image creation step.

1.2 Creating an ROI mask

Typically, tracking should be performed only in part of the image, either because the animals to be

tracked are confined to a region smaller than the image, or because the user cares about behavior

in a small region of interest (ROI). The ROI mask IROI (Appendix 1—figure 2B) is a binary image with

the same dimensions as the video frames, which is 1 in regions to be tracked and 0 in regions to be

ignored.

The anTraX GUI includes a utility to create the mask by drawing shapes to be included or

excluded on a frame.

1.3 Image segmentation

The first step in analyzing each frame is segmenting it into blobs (Appendix 1—figure 2C, Appen-

dix 1—figure 3): contiguous regions of the frame that significantly differ from the background and

correspond to individual animals or tightly clustered groups of animals. Segmentation is done by first

subtracting the image from the background (using the fact that the animals are dark and tracked on

a light background), then converting the difference to a grayscale image (Appendix 1—figure 3A-

B), and comparing to a user defined threshold �s and the ROI mask to produce a binary image:

I1t i; j;cð Þ ¼ IBG i; j;cð Þ� It i; j;cð Þ (2)

I2t i; jð Þ ¼
1

3 c

X

I1t i; j;cð Þ (3)

Ibwt i; jð Þ ¼
1; I2t i; jð Þ � IROI i; jð Þ > �s

0; else

�

(4)

Appendix 1—figure 3. Image segmentation. (A) Raw image. (B) Background subtracted grayscale
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image. (C) Unfiltered binary image. (D) Final segmented image after morphological operations and

blob filtering. Each separate blob is shown in a different color.

The resulting binary image (Appendix 1—figure 3C) will then undergo optional morphological

operations (image closing, image opening, hole-filling, convex hull filling) that, depending on the

specific conditions of the experiment, are useful for noise reduction.

Blobs (connected components; using the eight-connectivity criterion) are then extracted from the

final binary image. For each detected blob, we register the coordinates of its centroid, its area, its

maximal intensity (in the I2t grayscale image) and the parameters of the best fitted ellipse (orienta-

tion, eccentricity, and major axis length). Blobs are then optionally filtered by minimal area and mini-

mal intensity criteria (Appendix 1—figure 3D).

The anTraX GUI allows the user to test and configure all the segmentation parameters.

1.4 Linking blobs across frames

After blobs are extracted from a frame, the next step in the algorithm is to link them to the blobs in

the previous frame (Appendix 1—figure 4A-E): a link between a blob in frame t and a blob in frame

t � 1 implies that some or all of the individual animals that belong to the first blob, are present in the

second one. A blob can be linked to one blob (the simplest case, where the two blobs have the

same composition), to a few blobs (where animals leave or join the blob), or to none (suggesting the

animals in the blob were not detected in the other frame). Relying on the fact that videos were

recorded at a frame rate high enough that blobs corresponding to the same individuals will overlap

in consecutive frames even when the tracked animals are moving at their maximum possible speed

(for O. biroi ants, for example, 10 frames per second is sufficient), the most accurate method to link

blobs is Optical Flow, which takes into account the actual pixel content of the image. It is, however,

a computationally expensive algorithm, and running it on full frames is not practical for long, high-

resolution videos. On the other hand, simpler and commonly used methods, such as the popular

Munkres linear assignment algorithm (the Hungarian algorithm, Munkres, 1957) are prone to errors

in dense problems such as those we aim to solve, and often require considerable amount of manual

correction after automated tracking.
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Appendix 1—figure 4. Detailed linking example. (A–B) Raw images of the first and second frame,

respectively. (C) Color blend of the frames, showing the displacement of the ants between frames.

(D–E) Segmentation of the first and second frame, respectively. (F) Segmentation blend. Also shown

is the clustering of the blobs into linking problems (gray background). The two upper problems are

trivial, and no assignment algorithm is required. The problem at the bottom will be solved using

optical flow. (G) Optical flow for the bottom problem in F. Arrows represent the estimated

translation of the pixels. (H) Final linking between the blobs based on optical flow.

In sophisticated tracking solutions, the distance-based cost function that underlies the linear

assignment is corrected with predictive modeling of the animals’ behavior, or with other distinguish-

ing features of the animals such as shape, orientation, and appearance. These, however, are often

problem-specific and do not generalize well across tracking problems. We chose to implement a

dynamic approach, in which the linking method is chosen based on the difficulty of assignment. The

linking step begins with dividing the linking problem into a few independent subproblems, by using

a maximal linking distance (dlink), which by default is set to twice the maximal velocity vmax times the

inter frame time interval. Practically, this is done by creating a binary image, defined as the pixel-

wise logical OR of the two segmented binary frames, and dilating it using a disk with a radius that

equals to dlink (Appendix 1—figure 4f). The resulting image is then divided into connected compo-

nents, and all the blobs that overlap with each component are treated as an independent
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subproblem. For each subproblem we choose the appropriate linking method: (i) a problem with

one or more blobs in one of the frames and no blobs in the other results in no links, (ii) a problem

with exactly one blob in each of the frames will link the blobs with no further processing, (iii) other-

wise, a small region containing only the blobs in the subproblem will be cropped from each of the

frames, and an optical flow assignment will be performed (Appendix 1—figure 4G).

For solving a subproblem using optical flow, we do the following: We first crop a region from the

two frames, corresponding to the bounding box of the subproblem’s connected component. This

region includes all of the blobs that belong to this subproblem, but no others. We then compute the

optical flow field between the two cropped frames using the Horn-Schunck method (Horn and

Schunck, 1981). Next, we define the Flow Number, nof a; bð Þ, for each pair of blobs across the two

frames as the number of flow field vectors pointing from blob a in frame t � 1 to blob b in frame t.

The flow number is an estimate of the number of pixels in the blob a that have moved to blob b in

the consecutive frame. For each pair, if the flow number is greater than a threshold number �of , the

blobs are linked (Figure 4H). The threshold number defaults to a third of the minimal size of a single

animal in pixels and can be configured using the anTraX graphical interface.

Once again, all the parameters of the linking step can be configured and tested in the anTraX

GUI.

1.5 Updating the tracklet graph

As defined above, a blob can correspond to an arbitrary number of tracked individuals. Instead of

trying to break these blobs down into individual animals, our tracking approach relies on registering

the transition of individuals between blobs that possibly contain multiple animals. For this purpose,

we define the tracklet as a list of linked blobs in consecutive frames that have the same composition

of individuals. In other words, no animal has left or entered the group between the first and last

frame of the tracklet (Figure 1 in the main text).

After linking the blobs in frame t to those in frame t � 1, the tracklets are updated in the following

way:

1. A blob in the current frame t that is not linked to any blob in the previous frame t � 1

will ’open’ a new tracklet.
2. A blob in the previous frame that is not linked to any blob in the current frame will ‘close’ its

tracklet.
3. If two blobs in the previous and current frames are exclusively linked, the current blob will be

added to the tracklet of the previous blob.
4. Whenever blobs in the current or previous frame are connected to more than one blob, the

tracklets of the linked blobs in the previous frames will ’close’, and new tracklets will ’open’ for
the blobs in the current frame. In these cases, the linking between the blobs across different
tracklets will be registered as a link between the tracklets. In cases where a tracklet has its last
blob linked to the first blob of a different tracklet, the former is defined as the parent tracklet,
and the latter as its child tracklet.

Although the linking and tracklet construction processes are very conservative, errors can still

occur when the assumptions of the algorithm are violated. For example, in benchmark dataset J16,

in which the behavior of a 16 ant colony is recorded in an uncovered arena surrounded by Fluon-

coated walls, ants sometimes climb on the arena’s walls and fall down on top of another ant, hence

violating the maximal linking distance assumption. In such a case, the tracklet corresponding to the

climbing ant will end without parenting a child tracklet, while the tracklet of the second ant will con-

tain one ant in its first part and two ants in its second part. In the analyzed dataset, such linking

errors occur very rarely (less than 0.05% of the tracklets), and in most cases will not lead to classifica-

tion errors, due to the robustness of the ID propagation step to such errors (section 3).

Upon closing of a tracklet, the blob orientation has a ±p ambiguity as a result of the definition of

the orientation as that of the best fit ellipse, which is not consistent along the tracklet (for each blob,

the orientation is set independently of the other blobs in the tracklet by MATLAB’s blob analysis

algorithm). We use a method adapted from Branson et al., 2009 to disambiguate the orientation. In

short, this method uses the fact that whenever the tracked animal is moving fast, we can reliably

assign the correct orientation in the moving direction and propagate this assignment to the entire

tracklet by using dynamic programing. In tracklets where the animal is not moving fast enough, the
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result can be incorrect, but it is at least consistent along the tracklet. Most of these cases will be cor-

rected later after the tag identification step. Multi-animal tracklets generally do not have a meaning-

ful orientation.

The end result of this part of the algorithm, after processing all frames in the video, is an acyclic

directed graph containing references to all tracklets and blobs in the experiment.

2. Classifying tracklets
2.1 Color correction

The actual RGB values of the color tags are highly sensitive to changes in illumination and variability

in camera sensors, both between experiments, and within an experiment as a function of time and

location. These sources of variability can adversely affect the performance of the tracklet classifier.

To overcome this problem, at least partially, we include the option of applying a color correction

step on images before classification (Appendix 1—figure 5). To do so, we use a white reference

frame W, which is an image of a white or gray surface taken using the same conditions as the videos.

The color corrected frame is then:

IW i; j;cð Þ ¼
I i; j;cð Þ

W i; j;cð Þ
(5)

Appendix 1—figure 5. Color correction. (A) The original frame. (B) The color corrected frame.

Insets show a zoomed in view of a focal ant. The color correction removes the green bias in the

original frame and enhances the color segmentation.

Pixel values that exceed the pixel value range are truncated.

In cases where the tracking background approximates a homogenous white surface, as is the

case with all the benchmark datasets, the white reference can be automatically generated by anTraX

by filtering the background image with a 2D Weiner filter. In other cases, a white reference image

can be taken in the experimental setup before or after the experiment.

2.2 Training a blob classifier

Classifying a tracklet begins with classifying the individual blobs it contains. To do so, we train a con-

volutional neural network (CNN) image classifier using TensorFlow (Abadi et al., 2016). To create a

classifier, the user has to supply a list of possible labels. Typically, this will be the list of IDs (unique

tag combinations) in the experiment, plus optional labels for non-animal objects that can be

detected in the videos (e.g. larvae, food items, etc). One of the limitations of using CNNs for classifi-

cation is the high rate of false positives, that is, blobs that are assigned an ID even though they are

not identifiable. To overcome this, we add a special label for unrecognizable blobs, which are

treated as a separate class (labeled as ‘Unknown’ or ‘UK’).

To train the classifier, we collect a set of example images for each classifier label (Appendix 1—

figure 6). This can be done easily using an anTraX GUI app (see Online Documentation for details).
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Appendix 1—figure 6. An example subset from a training set. Shown are examples from six ant IDs

with a total of four tag colors. The UK label represents ant images that are not classifiable to the

human eye. The NO label represents segmented objects that are not ants (food items, larvae, etc).

To allow the classifier to generalize well, it is important that the variability of the training set

captures the variability in the experiment, and includes images of ants in various poses, lighting

conditions, and across experimental replicates.

In short, the GUI presents the user with all the blob images from a random tracklet. The user can

then select the appropriate ID and choose to either export all images into the training set, or to

select only a subset of images (useful if not all blobs in the tracklet are recognizable). In many cases,

especially in social insects, where behavioral skew can be considerable, some animals are rarely

observed outside an aggregation. It is therefore challenging to collect examples for them using a

random sampling approach. One solution to this problem, which is the recommended one for high

throughput experiments, is to pool data from several experiments into one classifier as discussed in

the main text. Another solution, in case this is not possible, is to scan the video for instances in which

the focal animal leaves the group, and ‘ask’ the GUI for tracklets from this segment of the video.

Alternatively, one can run a first pass of training and classification using the available examples, and

then ask the GUI to display only unclassified tracklets, increasing the probability of spotting the miss-

ing animal. The resulting example set augmented using various transformations (flipping, rotations,

shearing, and brightness and color shifts; Appendix 1—figure 7). Some of these transformations are

only applicable in certain cases (e.g. horizontal flipping will only be valid for cases where tags have a

horizontal symmetry), and some are range-configurable through the anTraX interface. It is important

to tune these range parameters appropriately, because there is no point in training the classifier on

images that cannot actually occur in the real data. This will only slow down training and reduce per-

formance. For example, rotations are applied by default in the range of ±15˚, as we found that this

value captures the variability in head orientation relative to blob orientation in most of our datasets

well. For animals with low eccentricity, higher values for this parameter will produce better

generalization.
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Appendix 1—figure 7. Dataset augmentation using TensorFlow’s intrinsic mechanism for image

transformation on a single example image to generate a larger training dataset.

As usual with supervised classifiers, there is a tradeoff between the complexity of the classifier

(the size and architecture of the network), and its performance, training time, and the optimal size of

the training dataset. anTraX contains a few CNN architectures that we have found to work well with

our data. However, it can also use an arbitrary, user-defined architecture (see Online Documentation

for details).

2.3 Filtering tracklets for classification

Once the blob classifier is trained, it can be applied to the tracklets of the experiment. Because

direct classification is only meaningful for tracklets that represent individual animals, we first filter

the tracklet list to identify possible single-animal tracklets. To do so, we use the typical size range of

individual animals (interactively adjustable in the anTraX GUI). A tracklet whose average blob area

falls within that range is considered a possible single-animal tracklet, and is passed on to the classi-

fier. Although this filtering method is not perfect, it rarely leads to false negatives (single-animal

tracklets with average blob size outside of the specified range). If the rate of false positives is high

(which is usually the case in problems with high size variability between individuals), it is useful to

include a separate class for multi-animal blobs.

For performance reasons, this filtering is done during the blob tracking step, and the images con-

stituting possible single-animal tracklets are saved separately to disk, thus avoiding the need to

extract them again from the videos. It is therefore important to set the single animal size range

before running the tracking.

2.4 Classifying single-animal tracklets

To classify a possible single-animal tracklet, we perform the following steps:

1. The blob classifier is applied to each blob in the tracklet. The output of the classifier for each
tracklet is a matrix of likelihoods, Lkl, that is, the probability of blob k belonging to class l given
its image. We define the most probable label for a blob as:

l�k ¼ argmaxl Lklð Þ (6)
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2. If the most likely label for all of the blobs in the tracklet is a non-animal label, the tracklet is
classified as non-animal, and the most abundant label in the tracklet is chosen as the tracklet
label.

3. If any of the blobs in the tracklet are classified as multi-animal, the tracklet will be classified as
multi-animal. This step will occur only if a multi-animal class has been included in the classifier.

4. If there is no ID label in the sequence of most likely labels, the tracklet is marked as
unidentified.

5. Otherwise (i.e. the tracklet is single-animal and there are at least some blobs classified as a
specific ID label), we define a score for each possible ID as the sum of the likelihoods for that
ID over all blobs:

sl ¼
k

X

Lkl (7)

The tracklet is labeled with the ID that has the maximal score:

L¼ argmaxl slð Þ (8)

Where the argmax operation is performed over the labels that represent specific IDs (i.e.
excluding the unknown, multi-animal, and no-animal classes). In addition, we define and regis-
ter the classification confidence score as:

S¼
n � sL
P

sl
(9)

where n is the number of blobs in the tracklet classified as specific animal IDs, sL is the score of
the assigned label, and the sum is over all label indices that belong to a specific ID (i.e. exclud-
ing non-specific labels such as ’Unknown’ or ’NoAnimal’). This heuristic score definition takes
into account the likelihoods the classifier has assigned to each label, but also the number of
identifiable blobs in the tracklet. Using this definition, the confidence score will increase as evi-
dence for the assignment accumulates (so longer tracklets with more identifiable blobs will
have a higher score).

2.5 Verification and retraining

Although this is not the final tracklet ID assignment, it is useful to be able to estimate the perfor-

mance of tracklet classification. Especially, it is important to assess the performance of a classifier

trained on examples from one experiment on tracklets from another. If there is a significant drop in

performance, examples from the new experiment can be added to the training set, and an incremen-

tal training can be run. Both validation and adding new examples can be done using the anTraX

GUI.

3. Propagating IDs on the tracklet graph
At this stage, we have the tracklet graph, in which a subset of single-animal tracklets have been

labeled with a specific ID and a confidence score for that label. The rest of the tracklets in the net-

work are either unidentified single-animal tracklets, or multi-animal tracklets. We assume that some

of these classifications can be incorrect. The next step in the algorithm is to make the actual ID

assignments for the tracklets, and to propagate these assigned IDs over the tracklet graph, trying to

identify the composition of all tracklets, including multi-animal tracklets. In the process, a large por-

tion of the incorrect classifications will be identified and overridden by the algorithm.

3.1 Initializing the graph

We start the propagation algorithm by creating a dynamic list of possible IDs (initially representing

all individuals in the experiment) and a dynamic list of assigned IDs (initially an empty list) for each

node in the graph. These lists are continuously updated during the propagation process. For all

nodes (tracklets) that have been assigned a ‘non-animal’ label in the classification step, we initialize

the possible ID list also as an empty one, effectively removing these nodes from the graph.
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3.2 Propagation and assignment rules

Propagating and assigning IDs are done according to a set of rules executed in a specific order.

For each node to which we want to assign an ID, we do the following:

1. If the ID we want to assign is not on the list of possible IDs for that node, abort.
2. If the node represents a single-animal tracklet (i.e. is in the area range of a single animal as

defined by the user AND was not classified as a multi-animal tracklet by the classifier), assign
the ID and eliminate all other possible IDs. If it is not a single-animal node, assign the ID with-
out eliminating other IDs.

3. Horizontal propagation (negative): for all other nodes that overlap in time with the currently
assigned node, eliminate the ID we just assigned.

4. Vertical propagation (positive): for each parent node of the current node, look if the currently
assigned ID is on the list of possible IDs. If there is only one such parent, and it has not already
been assigned the ID, assign the ID to that parent. Do the same for child nodes.

5. Topological propagation (positive): a pair of nodes on the graph that constitute a 2-vertex cut
set (i.e. cutting the graph at both these nodes creates a disconnected subgraph) and the cor-
responding disconnected subgraph does not contain any other 0-indegree or 0-outdegree
nodes (i.e. there are no animals leaving or exiting the subgraph), are defined as twin nodes.
Such a pair will have exactly the same composition of IDs (this is not true in cases where one of
the tracklets in the subgraph touches a border of the ROI at a point where animals can exit
and enter; these cases are flagged during tracking, and no assignment is made; the special
case of open boundary ROIs is discussed below). For each assignment, we also assign the first
descendent twin node and the first ancestor twin node (if they exist).

For each node from which we want to eliminate a possible ID, we do the following (see Appen-

dix 1—figure 8, Figure 2B, Figure 2—video 1 for illustrated examples):

Appendix 1—figure 8. Propagation rules. The figure depicts the first three steps in solving an

example graph. The graph has 15 tracklets and 4 IDs. Circular nodes mark single-animal tracklets,

while square nodes mark multi-animal tracklets. The colored circles inside the nodes mark the
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current assignments of the node. Empty circles indicate possible assignments, and full circles

indicate actual assignments. The full solution of the example is given in Figure 2—video 1. (A)

Negative horizontal propagation. (B) Positive vertical propagation. (C) Positive topological

propagation.

1. If the ID is already marked as ‘assigned’ for that node (i.e. the ID was already propagated from
that node), abort.

2. Vertical propagation (negative): for each parent node of the current node, if there is no other
child node for which the ID that we are currently eliminating is possible, eliminate the ID for
that parent. For each child of the current node, if there is no other parent for which the ID is
possible, eliminate the ID for that child.

3. Topological propagation (negative): eliminate the ID for the first ancestor twin node and the
first descendent twin node (if they exist).

3.3 Propagating from classified single-animal tracklets

Before we start the propagation, we rank all the single-animal tracklets that were labeled with a spe-

cific ID by the classifier (the ‘source’ tracklets) according to their confidence scores. We start by

assigning the tracklet with the highest score with its classified ID, and then recursively propagate

according to the rules above. When no more propagations can be made, we move on to the next

tracklet on the list. All nodes with assignments inherit their confidence from the confidence of the

source node.

Once the last source tracklet has been reached, we conduct another round of propagation, this

time starting from all nodes with assigned IDs (not only the CNN-classified nodes), again sorting

them according to their confidence, so that higher confidence propagations will have precedence.

This process is repeated until no more propagations can be made.

3.4 Handling open boundary ROIs

The assumption that underlies the propagation rules as described above is that a tracklet indeed

represents a given set of tagged animals in each of its frames, and that the tracklet graph correctly

captures the flow of individual animals between tracklets. This assumption is violated if the ROI of

the experiment is open (i.e. animals are free to exit and leave the tracked region), because a tracklet

that touches the open boundary can have a changing set of tracked animals. To handle these cases,

blobs that overlap with an open boundary are treated differently. In the blob linking step, whenever

a blob that touches the open boundary is linked to a blob that does not touch the open boundary in

the previous frame, the tracklet closes (even if it is a 1:1 link as defined in section 1.4), and a new

tracklet opens and will be linked to the previous with a graph edge. The same happens when a blob

that does not touch the boundary is linked to a blob that does. This way, the blobs touching the

boundary (i.e. blobs that can ‘lose’ or ‘gain’ animals) are confined to the same tracklet. These special

tracklets do not participate in the propagation process (i.e. they do not act as sources for IDs and

do not accept vertical or topological propagations). Open boundaries are marked by the user as

part of the ROI mask creation (see online documentation). See also benchmark dataset V25 (Fig-

ure 3—figure supplement 1, Figure 3—video 2) for an example of a tracked experiment with an

open boundary.

3.5 Propagation of incorrect classifications

The tracklet classification is never error-free, and some incorrect assignments will be made. As the

confidence score of incorrectly classified tracklets will usually be low, the rate of incorrect assign-

ments by the propagation algorithm will usually be lower than the error rate of the classifier. The

reason is that, in many cases, these tracklets will already have been assigned by propagation from a

more reliable assignment by the time the algorithm reaches them. Nevertheless, some propagation

from these incorrectly classified tracklets is to be expected. This propagation will continue until it

contradicts an already assigned tracklet. These erroneous propagations are typically short (Fig-

ure 4—figure supplement 2), and can often be filtered out algorithmically (see next section).
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3.6 Connected component filtering

Ideally, at this point, when all possible ID propagation options are exhausted, we have inferred the

maximum information about the composition of each tracklet. If we look at the subgraph corre-

sponding to a specific ID (defined by all the nodes that are possible for that ID, along with their con-

necting edges), we expect to see a single connected component (Appendix 1—figure 9A). This

connected component will consist of nodes assigned with that ID, which do not have nodes parallel

to them in the subgraph, as well as nodes without ID assignments, which can in principle have ambi-

guities (parallel nodes that are members of the same subgraph). However, as discussed in the previ-

ous section, because the tracklet classification process usually produces some errors, the ID

subgraph can have several disconnected components (Appendix 1—figure 9B). To filter out con-

nected components that correspond to classification errors, we assign a confidence score to each

connected component, defined as the sum of the confidence scores of all the ID assignments in that

component. We then go over the list of components sorted by their confidence, and accept them in

order. Whenever a component contradicts one of the already accepted components (e.g. it overlaps

in time, or does not contain a possible route on the graph to a previously accepted component), we

discard it. To eliminate a component, we undo all assignments made of the focal ID to the nodes of

that component, and all the eliminations that resulted from these assignments. This is done sepa-

rately for each ID subgraph.

BA C

Appendix 1—figure 9. Connected component filtering. An example from a 10-min tracklet graph.

Green nodes are those assigned by the classifier, blue nodes are assigned by the propagation

algorithm, and purple nodes are ambiguous (‘possible’ but not ‘assigned’). (A) A focal ant subgraph

in which graph assignment propagation was consistent and did not result in contradictions. (B) A

subgraph for a different focal ant in the same graph, for which the classifier made an incorrect

assignment. As a consequence, the subgraph is fractured into a few connected components. (C) The

subgraph of the same focal ant as in B, following the connected component filtering step and a

second round of assignment propagations. The erroneous component was filtered, and the

algorithm was able to complete the ID path through the graph.

Following the connected component filtering, we again run the ID propagation loop to close the

gaps between the accepted components (Appendix 1—figure 9C). This procedure is repeated until

no more component filtering can be made.

3.7 Finalizing assignments and exporting data

At this point, when all inference options are exhausted, each ID is represented in several types of

nodes/tracklets. In order of decreasing assignment quality, these are:
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1. Single-animal tracklets that were assigned by the classifier and confirmed by the graph propa-
gation algorithm (i.e. that were not identified as erroneous and overridden).

2. Single-animal tracklets for which IDs were inferred by the propagation algorithm.
3. Multi-animal tracklets for which IDs were inferred by the propagation algorithm.
4. Tracklets for which no ID was assigned, but which are the only possible tracklet for a particular

ID.
5. Points of ambiguity, where no assignment was made with confidence, and several temporally

overlapping nodes could possibly contain the focal ID.

When exporting trajectory data for the experiment, the assignment type for each point in the tra-

jectory is also reported.

3.8 Multi-colony experiments

anTraX enables tracking multiple colonies/groups within the same video. This feature is useful when

designing and performing high-throughput experiments, where one camera records several colo-

nies. For multi-colony experiments, the software assigns a colony ID to each tracklet during the initial

tracking step, based on the spatial location of the tracklet. During the graph propagation step, the

software partitions the tracklets into a number of graphs, one for each colony. Propagation is then

performed on each colony-graph separately, and the final trajectories are saved separately for each

colony. Dataset G6 � 16 (Figure 3—figure supplement 8, Figure 3—video 9) gives an example of

tracking an experiment where 6 colonies of 16 ants each are recorded with a single camera.
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