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Objective. Diabetes mellitus (DM) is a long-life metabolic disorder, characterized by high blood glucose levels. ,e hyperglycemic
condition generally leads to irreversible nerve injury and vascular damage. Among different types of diabetes, type 2 is more
common and has spread all over the world. Although various therapeutic approaches have been developed to control type 2 DM,
regulating blood glucose levels has still remained a controversial challenge for patients. Also, most prescription drugs cause
different side effects, such as gastrointestinal disorders. ,us, developing novel and efficient antidiabetic agents possessing fewer
adverse effects is in high demand.Method.,e literature was comprehensively surveyed via search engines such as Google Scholar,
PubMed, and Scopus using appropriate keywords. Results. Medicinal plants, both extracts and isolated active components, have
played a significant role in controlling the blood glucose levels. Good-to-excellent results documented in the literature have made
them a precious origin for developing and designing drugs and supplements against DM. Centaurea spp. have been traditionally
used for controlling high blood glucose levels. Also, the antidiabetic properties of different species of Centaurea have been
confirmed in recent studies through in vitro assays as well as in vivo experiments. Conclusion. Potent results encouraged us to
review their efficacy to open a new horizon for development of herbal antidiabetic agents.

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease which
is described by hyperglycemia and high blood sugar levels in
postprandial and fasting state. It is characterized by defects
in insulin secretion, insulin action, or both of them [1]. ,e
total number of diabetic patients in the world has been
anticipated to rise from 171 million in 2000 to 366 million in
2030 [2]. Considering the long-term side effects of DM, it
has become one of the major causes of morbidity in the
world [3]. ,ere are different types of diabetes based on its
pathogenesis, including insulin-dependent (type I),

noninsulin-dependent (type II), and gestational. Type 2 DM
is more common than the other types in which the body’s
insulin receptors become resistant to the normal insulin
effects. ,en, β cells of the pancreas respond to the high
blood glucose levels by producing more insulin to manage
the situation. However, the insulin overproduction makes β
cells wear themselves out [4, 5].

Patients with DM may experience some complications
such as retinopathy, neuropathy, nephropathy, cataracts,
peripheral vascular insufficiencies, and damaged nerves
resulting from chronic hyperglycemia [5–7]. High blood
glucose levels in type 2 DM can be controlled by using
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insulin or oral antidiabetic drugs [8]. Different pathways and
mechanisms are considered for preventing the progression
of the disease. ,ey may include inhibition of intestinal
α-glucosidase and α-amylase, inhibition of aldose reductase,
insulin synthesis and secretion, inhibition of lens aldose
reductase, oxidative stress protection, inhibition of forma-
tion of advanced glycation end products, lowering plasma
glucose levels, altering enzyme activity of hexokinases and
glucose-6-phosphate, inhibition of postprandial hypergly-
cemia, stimulation of GLUT-4, decreasing activity of G6P,
and reducing the level of skeletal hexokinases [5].

One of the most popular approaches to the management of
blood glucose levels is the inhibition of key enzymes [9].
α-Glucosidase and α-amylase are two carbohydrate digestive
enzymes which can cause elevated postprandial hyperglycemia
(PPHG); thus, their inhibition plays a significant role in
controlling PPHG in patients with type 2 DM. Inhibition of
α-glucosidase leads to the reduction of disaccharide hydrolysis,
and inhibition of α-amylase disrupts the breakdown of starch
to simple sugars. Some of these compounds are clinically used,
and the results have shown significant reduction of blood
glucose levels in patients [10, 11]. ,e most important side
effect related to the approved Food and Drug Administration
(FDA) antitype 2 DM drugs, including voglibose, acarbose,
miglitol, sulphonylureas, and thiazolidine, is gastrointestinal
problems such as swelling, abdominal distraction, diarrhea,
andmeteorism, which needmore attention.,us, investigation
of different therapeutic agents with lower side effects is in high
demand. Accordingly, herbal remedies have absorbed lots of
attention [12–14] and different medicinal plants such as
Abelmoschus moschatus, Alangium salvifolium, Azadirachta
indica, Bidens pilosa, Boerhaavia diffusa, Capsicum frutescens,
Cassia alata, Eclipta alba, Embellica officinalis, Ficus carica,
Gentiana olivier, Glycyrrhiza glabra, Gymnema sylvestre,
Hordeum vulgare, Ipomoea aquatic, Juniperus communis,
Mangifera indica, Momordica charantia, Ocimum sanctum,
Punica granatum, and Zingiber officinale have demonstrated
enzyme inhibitory activity possessing desirable effects on di-
abetes and hyperglycemia [15–33]. Furthermore, various
phytochemicals such as alkaloids, sesquiterpene and saponins,
polysaccharides, flavonoids, dietary fibers, ferulic acid, tannins,
limonene, and oleuropeoside have been studied for their in-
hibitory activity toward enzymes involved in the one set and
progression of type 2 DM, which deserve to be considered for
the development and production of herbal anti-DM supple-
ments [5, 24, 34–43].

,e genus Centaurea (family Asteraceae, tribe Cardueae,
subtribe Centaureinae) compromises approximately 600
species worldwide, from Asia, Europe, and tropical Africa to
North America [44]. Centaurea spp. have long been used in
traditional medicine to cure various ailments such as dia-
betes, diarrhea, rheumatism, malaria, hemorrhoids, and
neurological disorders. ,ey have also been used in the
treatment of inflammation, common cold, fever, cough, and
ophthalmic disorders and their liver strengthening, wound
healing, and anti-itching effects have been important
[45–50]. A wide range of secondary metabolites, including
sesquiterpene lactones (SLs) [44, 51–53], flavonoids
[45, 46, 54, 55], lignans, and alkaloids [44, 45, 55], have been

isolated from different Centaurea spp. ,e genus Centaurea
is known for possessing sesquiterpene lactones (SLs) [56, 57]
and phenolic compounds [58]. Herein, focusing on the
hypoglycemic activity of various species of Centaurea in
both folk and modern medicine [59–66], we reviewed dif-
ferent reports on their antidiabetic potency to develop herbal
drugs and supplements for controlling blood sugar.

2. Methods

,e literature was completely searched via search engines
such as Google Scholar, Pub Med, and Scopus using key-
words, including DM, Centaurea, hyperglycemia, medicinal
plants, antidiabetic plants, α-glucosidase, α-amylase, high
blood glucose levels, enzyme inhibition, plant-based diets,
folk medicine, and treatment. All results were extracted and
analyzed in a comprehensive manner.

3. Results

Antidiabetic activity of Centaurea spp. (Figure 1) has been
usually investigated through the in vitro inhibition of
α-glucosidase and α-amylase as well as in vivo studies on rats
and mice (Table 1). However, no clinical trials have been
conducted. α-Glucosidase and α-amylase are clinically re-
sponsible for glucose disorders in patients with type 2 DM.
Reported results have been summarized in Table 1.

3.1. In Vitro Assays

3.1.1. Centaurea bornmuelleri. In vitro α-amylase and
α-glucosidase, as well as antioxidant activities of Centaurea
bornmuelleri, have been reported in the literature. Among
methanolic, aqueous, and ethyl acetate extracts of aerial
parts of C. bornmuelleri, the ethyl acetate extract was found
to be more potent than the others toward α-amylase and
α-glucosidase [67] (Table 1). Other studies confirmed the
antibacterial and antioxidant activity of the methanolic
extract of the plant [80]. Also, it could inhibit the growth of
colon cancer cells under in vitro conditions [81].

3.1.2. Centaurea calcitrapa. Centaurea calcitrapa has been
used in folk medicine for the treatment of ophthalmic and
skin diseases, common fever, jaundice, and digestive dis-
orders [82–84]. In an in vitro study, the antidiabetic activity
of methanolic extract of aerial parts of the plant was in-
vestigated. It could inhibit α-glucosidase with IC50 value
of 4.38± 0.31mg/ml comparing with acarbose (IC50 =
1.41± 0.07mg/ml) [68] (Table 1). It is worthmentioning that
the extract has also shown antibacterial activity against
Bacillus, Pseudomonas, Staphylococcus, Streptococcus, Sal-
monella, Enterobacter, Enterococcus, Acinetobacter, and
Escherichia genera [85–87]. Furthermore, C. calcitrapa has
depicted significant antioxidant activity through β-carotene/
linoleic acid bleaching assay. In vivo antioxidant assay in
mice at the doses of 50 and 100mg/kg/day within 21 days
afforded a protective effect against erythrocytes hemolysis
[88].
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Figure 1: Some Centaurea species deposited in the herbarium of the Faculty Of Pharmacy, Tehran University of Medical Sciences. (a)
Centaurea bruguierana. (b) Centaurea patula. (c) Centaurea depressa.
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Table 1: Antidiabetic activity of Centaurea spp.

Entry Centaurea spp. Action Part Extract Activitya Reference

1 In vitro
studies C. bornmuelleri α-Glucosidase inhibition Aerial

parts Ethyl acetate
33.12± 0.32 (mg

ACAEb/g
extract)

[67]

2 C. bornmuelleri α-Glucosidase inhibition Aerial
parts MeOH 10.17± 0.91 (mg

ACAE/g extract) [67]

3 C. bornmuelleri α-Glucosidase inhibition Aerial
parts Decoction 1.95± 0.07 (mg

ACAE/g extract) [67]

4 C. bornmuelleri α-Glucosidase inhibition Aerial
parts Infusion 2.36± 0.25 (mg

ACAE/g extract) [67]

5 C. bornmuelleri α-Amylase inhibition Aerial
parts Ethyl acetate 19.90± 0.89 (mg

ACAE/g extract) [67]

6 C. bornmuelleri α-Amylase inhibition Aerial
parts MeOH 16.73± 0.34 (mg

ACAE/g extract) [67]

7 C. bornmuelleri α-Amylase inhibition Aerial
parts Decoction 3.98± 0.22 (mg

ACAE/g extract) [67]

8 C. bornmuelleri α-Amylase inhibition Aerial
parts Infusion 3.54± 0.66 (mg

ACAE/g extract) [67]

9 C. calcitrapa α-Glucosidase inhibition Aerial
parts MeOH 4.38± 0.31 (mg/

ml) [68]

10 C. centaurium α-Amylase inhibition Roots MeOH 32.51± 0.34% [69]
11 C. centaurium α-Amylase inhibition Roots Aqueous — [69]
12 C. centaurium α-Amylase inhibition Roots Polyphenol — [69]
13 C. centaurium α-Amylase inhibition Roots n-Hexane 158 (μg/ml) [69]

14 C. depressa α-Glucosidase inhibition Aerial
parts Ethyl acetate 46.11± 0.97% [70]

15 C. depressa α-Glucosidase inhibition Aerial
parts Chloroform 53.45± 1.98% [70]

16 C. depressa α-Amylase inhibition Aerial
parts Ethyl acetate 36.93± 0.97% [70]

17 C. depressa α-Amylase inhibition Aerial
parts Chloroform 43.97± 0.92% [70]

18 C. drabifolia
subsp. detonsa α-Glucosidase inhibition Aerial

parts Ethyl acetate 43.10± 2.41% [70]

19 C. drabifolia
subsp. detonsa α-Glucosidase inhibition Aerial

parts Chloroform 36.03± 0.24% [70]

20 C. drabifolia
subsp. detonsa α-Amylase inhibition Aerial

parts Ethyl acetate 25.58± 0.38% [70]

21 C. drabifolia
subsp. detonsa α-Amylase inhibition Aerial

parts Chloroform 25.28± 0.38% [70]

22 C. fenzlii α-Glucosidase inhibition Aerial
parts MeOH

0.331 (mmol
ACAE/g dry

weight)
[71]

23 C. fenzlii α-Amylase inhibition Aerial
parts MeOH

0.354 (mmol
ACAE/g dry

weight)
[71]

24 C. hypoleuca α-Glucosidase inhibition Flowers EtOH
10.33± 0.04

(mmol ACAE/g
extract)

[72]

25 C. hypoleuca α-Glucosidase inhibition Flowers MeOH
12.77± 0.61

(mmol ACAE/g
extract)

[72]

26 C. hypoleuca α-Glucosidase inhibition Flowers Ethyl acetate
19.61± 0.05

(mmol ACAE/g
extract)

[72]

27 C. hypoleuca α-Glucosidase inhibition Stems EtOH
9.10± 0.06

(mmol ACAE/g
extract)

[72]

28 C. hypoleuca α-Glucosidase inhibition Stems MeOH
8.66± 0.08

(mmol ACAE/g
extract)

[72]
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Table 1: Continued.

Entry Centaurea spp. Action Part Extract Activitya Reference

29 C. hypoleuca α-Glucosidase inhibition Stems Ethyl acetate
12.62± 0.21

(mmol ACAE/g
extract)

[72]

30 C. hypoleuca α-Amylase inhibition Flowers EtOH
82.65± 1.31

(mmol ACAE/g
extract)

[72]

31 C. hypoleuca α-Amylase inhibition Flowers MeOH
102.41± 1.18

(mmol ACAE/g
extract)

[72]

32 C. hypoleuca α-Amylase inhibition Flowers Ethyl acetate
106.72± 1.10

(mmol ACAE/g
extract)

[72]

33 C. hypoleuca α-Amylase inhibition Stems EtOH
63.64± 1.05

(mmol ACAE/g
extract)

[72]

34 C. hypoleuca α-Amylase inhibition Stems MeOH
66.66± 0.67

(mmol ACAE/g
extract)

[72]

35 C. hypoleuca α-Amylase inhibition Stems Ethyl acetate
72.41± 0.61

(mmol ACAE/g
extract)

[72]

36 C. karduchorum α-Glucosidase inhibition Roots
Hydrophilic (80%EtOH,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

5.35± 0.08 (mg/
ml) [73]

37 C. karduchorum α-Glucosidase inhibition Stems
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

1.42± 0.10 (mg/
ml) [73]

38 C. karduchorum α-Glucosidase inhibition Leaves
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

0.63± 0.00 (mg/
ml) [73]

39 C. karduchorum α-Glucosidase inhibition Flowers
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

1.51± 0.22 (mg/
ml) [73]

40 C. karduchorum α-Amylase inhibition Roots
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

Not active [73]

41 C. karduchorum α-Amylase inhibition Stems
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

Not active [73]

42 C. karduchorum α-Amylase inhibition Leaves
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

14.63± 0.67
(mg/ml) [73]

43 C. karduchorum α-Amylase inhibition Flowers
Hydrophilic (80% ethanol,
19% H2O, and 1% of 0.1%
trifluoroacetic acid, v/v/v)

Not active [73]

44 C. kotschyi var.
persica α-Glucosidase inhibition Aerial

parts Ethyl acetate 42.35± 2.22% [70]

45 C. kotschyi var.
persica α-Glucosidase inhibition Aerial

parts Chloroform 49.42± 0.92% [70]

46 C. kotschyi var.
persica α-Amylase inhibition Aerial

parts Ethyl acetate 36.16± 0.13% [70]

47 C. kotschyi var.
persica α-Amylase inhibition Aerial

parts Chloroform 42.72± 0.17% [70]

48 C. papposa α-Glucosidase inhibition Aerial
parts Dichloromethane 227.6± 4.4 (μg/

ml) [8]

49 C. papposa α-Glucosidase inhibition Aerial
parts Ethyl acetate 791.9± 1.8 (μg/

ml) [8]

50 C. papposa α-Glucosidase inhibition Aerial
parts n-Butanol Not active [8]
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Table 1: Continued.

Entry Centaurea spp. Action Part Extract Activitya Reference

51 C. patula α-Glucosidase inhibition Aerial
parts Ethyl acetate 54.88± 1.11% [70]

52 C. patula α-Glucosidase inhibition Aerial
parts Chloroform 56.11± 0.24% [70]

53 C. patula α-Amylase inhibition Aerial
parts Ethyl acetate 31.70± 0.04% [70]

54 C. patula α-Amylase inhibition Aerial
parts Chloroform 33.30± 0.04% [70]

55 C. pulchella α-Glucosidase inhibition Aerial
parts Ethyl acetate 35.59± 0.58% [70]

56 C. pulchella α-Glucosidase inhibition Aerial
parts Chloroform 60.31± 2.13% [70]

57 C. pulchella α-Amylase inhibition Aerial
parts Ethyl acetate 21.54± 0.04% [70]

58 C. pulchella α-Amylase inhibition Aerial
parts Chloroform 59.54± 0.59% [70]

59 C. saligna α-Glucosidase inhibition Leaves Ethyl acetate
23.80± 0.06

(mmol ACAE/g
extract)

[74]

60 C. saligna α-Glucosidase inhibition Leaves MeOH
12.57± 1.97

(mmol ACAE/g
extract)

[74]

61 C. saligna α-Glucosidase inhibition Leaves Aqueous
3.32± 0.40

(mmol ACAE/g
extract)

[74]

62 C. saligna α-Amylase inhibition Leaves Ethyl acetate
0.80± 0.01

(mmol ACAE/g
extract)

[74]

63 C. saligna α-Amylase inhibition Leaves MeOH
0.59± 0.01

(mmol ACAE/g
extract)

[74]

64 C. saligna α-Amylase inhibition Leaves Aqueous
0.16± 0.01

(mmol ACAE/g
extract)

[74]

65 C. tchihacheffii α-Glucosidase inhibition Aerial
parts Ethyl acetate 58.23± 0.53% [70]

66 C. tchihacheffii α-Glucosidase inhibition Aerial
parts Chloroform 53.45± 1.40% [70]

67 C. tchihacheffii α-Amylase inhibition Aerial
parts Ethyl acetate 29.89± 1.01% [70]

68 C. tchihacheffii α-Amylase inhibition Aerial
parts Chloroform 40.26± 0.29% [70]

69 C. triumfettii α-Glucosidase inhibition Aerial
parts Ethyl acetate 69.88± 1.16% [70]

70 C. triumfettii α-Glucosidase inhibition Aerial
parts Chloroform 41.12± 0.77% [70]

71 C. triumfettii α-Amylase inhibition Aerial
parts Ethyl acetate 42.84± 0.34% [70]

72 C. triumfettii α-Amylase inhibition Aerial
parts Chloroform 22.40± 0.17% [70]

73 C. triumfettii α-Glucosidase inhibition Stems EtOH
3.74± 0.05

(mmol ACAE/g
extract)

[14]

74 C. triumfettii α-Glucosidase inhibition Stems MeOH
3.77± 0.05

(mmol ACAE/g
extract)

[14]

75 C. triumfettii α-Glucosidase inhibition Stems Ethyl acetate
4.13± 0.04

(mmol ACAE/g
extract)

[14]
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Table 1: Continued.

Entry Centaurea spp. Action Part Extract Activitya Reference

76 C. triumfettii α-Glucosidase inhibition Flowers EtOH
2.27± 0.01

(mmol ACAE/g
extract)

[14]

77 C. triumfettii α-Glucosidase inhibition Flowers MeOH
2.09± 0.03

(mmol ACAE/g
extract)

[14]

78 C. triumfettii α-Glucosidase inhibition Flowers Ethyl acetate
1.42± 0.05

(mmol ACAE/g
extract)

[14]

79 C. triumfettii α-Amylase inhibition Stems EtOH
137.39± 0.76

(mmol ACAE/g
extract)

[14]

80 C. triumfettii α-Amylase inhibition Stems MeOH
127.57± 0.72

(mmol ACAE/g
extract)

[14]

81 C. triumfettii α-Amylase inhibition Stems Ethyl acetate
165.47± 0.72

(mmol ACAE/g
extract)

[14]

82 C. triumfettii α-Amylase inhibition Flowers EtOH
137.42± 0.75

(mmol ACAE/g
extract)

[14]

83 C. triumfettii α-Amylase inhibition Flowers MeOH
114.06± 0.50

(mmol ACAE/g
extract)

[14]

84 C. triumfettii α-Amylase inhibition Flowers Ethyl acetate
116.85± 0.85

(mmol ACAE/g
extract)

[14]

85 C. urvillei subsp.
hayekiana α-Glucosidase inhibition Aerial

parts Ethyl acetate 67.66± 0.05% [70]

86 C. urvillei subsp.
hayekiana α-Glucosidase inhibition Aerial

parts Chloroform 43.65± 0.39% [70]

87 C. urvillei subsp.
hayekiana α-Amylase inhibition Aerial

parts Ethyl acetate 43.20± 0.59% [70]

88 C. urvillei subsp.
hayekiana α-Amylase inhibition Aerial

parts Chloroform 17.53± 0.08% [70]

89 C. alexanderina Reduction of blood glucose
level Leaves MeOH [75]

90 In vivo
studies C. aspera

It exhibited an important
hypoglycemic effect by oral

route and chronic
administration in diabetic rats;

the extract obtained by
exhaustion with hot water

showed an acute hypoglycemic
activity in normal animals

Flowers Aqueous — [76]

91 C. bruguierana

,e ethyl acetate extract
resulted in the best reduction

of blood glucose
,e aqueous extract resulted in
the best reduction of PEPCK
activity and increment in

hepatic GP activity

Aerial
fruiting
parts

Aqueous,
dichloromethane, ethyl
acetate, and methanol

— [77]
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3.1.3. Centaurea centaurium. In vitro α-amylase inhibitory
activity of methanolic, aqueous, polyphenol, and n-
hexane extracts of Centaurea centaurium was assayed by
Conforti et al. [69]. ,e n-hexane extract was the most
potent extract with an IC50value of 158 μg/ml. However,
aqueous and polyphenol extracts were inactive, and the
methanolic extract was found to be weak with an inhi-
bition percent of 32.51 ± 0.34% at the concentration of
1000 μg/ml.

3.1.4. Centaurea depressa, Centaurea drabifolia, Centaurea
kotschyi, Centaurea patula, Centaurea pulchella, Centaurea
tchihacheffii, Centaurea triumfettii, and Centaurea urvillei.
,e chloroform and ethyl acetate extracts of aerial parts of
eight Centaurea spp. including C. depressa, C. drabifolia,
C. kotschyi, C. patula, C. pulchella, C. tchihacheffii,
C. triumfettii, and C. urvillei were investigated for their
α-glucosidase and α-amylase inhibitory activity by Zengin
et al. All Centaurea spp. extracts were able to inhibit both
enzymes at the concentration of 2 mg/mL (Table 1) and
compared with acarbose, inducing inhibitory activity
toward α-amylase and α-glucosidase with inhibition
percent of 50.51% and 44.16% at 1mg/ml. ,e chloroform
extract of C. pulchella and C. depressa and the ethyl acetate
extract of C. urvillei showed the most potent α-amylase
inhibitory effects with inhibition percent of 59.54%,
43.97%, and 43.20%, respectively. ,e antiglucosidase
effect was reported in the following order: ethyl acetate
extract of C. triumfettii (69.88%) > ethyl acetate extract of
C. urvillei (67.66%) > chloroform extract of C. pulchella
(60.31%) [70].

It should be mentioned that antioxidant, antibacterial,
antinociceptive, antipyretic, and anticholinesterase activities
of these species were also proven [14, 70, 89–93].

3.1.5. Centaurea fenzlii. ,e methanolic extract of Cen-
taurea fenzlii has shown α-glucosidase and α-amylase in-
hibitory activity as 0.331mmol ACAE/g dry weight and
0.354mmol ACAE/g dry weight, respectively [71]. ,e plant
has also shown antioxidant, antityrosinase, and anticho-
linesterase activities, as well as cytotoxicity against colon and
MCF-7 breast cancer cell lines [71, 94, 95].

3.1.6. Centaurea hypoleuca. Ethanolic, methanolic, and
ethyl acetate extracts of aerial parts (flower and stem) of
Centaurea hypoleuca have depicted in vitro inhibitory ac-
tivity toward α-glucosidase and α-amylase. It should be
noted that the ethyl acetate extract of the plant flowers
resulted in higher activity than that of the stem as well as
other extracts (Table 1) [72]. Also, all extracts demonstrated
moderate-to-good antioxidant, antimicrobial, and anticho-
linesterase activities [72].

3.1.7. Centaurea karduchorum. ,e dried powder of Cen-
taurea karduchorum has been traditionally used for wound
healing [96]. Also, tea prepared from aerial parts of the plant
was found to be helpful for the treatment of diabetes, which
was investigated and proven in recent studies. Among
ethanolic extracts obtained from roots, stems, leaves, and
flowers of the plant (Table 1), the leaves extract showed the
best inhibitory activity against α-glucosidase
(IC50 = 0.63± 0.00mg/ml); however, it could not efficiently
inhibit the α-amylase (IC50 = 14.63± 0.67mg/ml) [73].

Comparing α-glucosidase inhibitory activity of
C. karduchorum with that of cinnamon which is known for
its antidiabetic activity revealed potent efficacy of
C. karduchorum since the activity of various extracts of
cinnamon was calculated in the range of IC50 = 0.42–4.0mg/
ml [73, 97].

Table 1: Continued.

Entry Centaurea spp. Action Part Extract Activitya Reference

92 C. corubionensis

Consumption of aqueous
extracts of leaves and flowers at
the dose of 5 g/kg led to the
reduction of blood glucose
levels; aqueous extract of
flowers (50mg/ml) could

increase insulin release from
isolated islets of Langerhans

Leaves
and

flowers
Aqueous and EtOH — [78]

93 C. horrida

Reduction in blood glucose
level in chronic and acute

condition
Using the extract significantly
improved peripheral nerve
function of diabetic mice via
hot plate and tail flick tests

Herb and
roots MeOH — [79]

aIC50 values reported as mg/ml, μg/ml, mmol ACAE/g extract, or inhibition percent (%). bACAE = acarbose equivalent.
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Table 2: Chemical compounds isolated from Centaurea spp.

Entry Centaurea spp. Phytochemical constituents References

1 C. alexanderina

Sesquiterpene lactones and flavonoids (kaempferol 3-O-rutinoside, rutin,
apigenin 7-O-galacturonic acid methyl ester, apigenin 7-O-β-D-glucoside,
astragalin, centaurein, vicenin, vitexin, isovitexin, kaempferol, apigenin,

quercetin, jaceosidin, and nepetin)

[75, 104, 115, 116]

2 C. aspera

Sesquiterpene lactones (dehydromelitensin, melitensin, isomelitensin,
eudesmanolides, and dihydrostenophyllolide) and flavonoids (6-methoxyluteolin

(nepetin), 6-methoxyacacetin (pectolinarigenin), 6-methoxyapigenin
(hispidulin), and 6-methoxychrisoeriol (jaceosidin)).

[52, 116–118]

3 C. bornmuelleri

Flavonoids (afzelin, astragalin, isorhamnetin, apigenin, quercetin, luteolin, and
kaempferol), phenolic acids (caffeoylquinic acids and chlorogenic acid), sterol
(stigmast-4-en-3gamma-ol), and lignans (arctiin, arctigenin, matairesinol, and

matairesinoside)

[67, 92, 119]

4 C. bruguierana Sesquiterpene lactones (cnicin and dehydromelitensin-8-acetate) and flavonoids
(kaempferol, rutin, quercetin, cirsimaritin, cirsilinelol, and eupatilin) [77, 104, 112, 113, 120–123]

5 C. calcitrapa

Sterols, sesquiterpene lactones and their closely related group of triterpenoids,
lignans, flavonoids (apigenin, luteolin, scutellarein, chrysoeriol, nepetin,

jaceosidin, eupatorin, kaempferol, kaempferide, jaceidin, and centaureidin),
alkaloids (stizolphine and choline), and phenolic acids (derivatives of

hydroxycinnamic acids: p-coumaric, ferulic, caffeic, and chlorogenic acid;
derivatives of hydroxybenzoic acids: p-hydroxybenzoic, protocatechuic, gallic, and

gentisic acid)

[124–132]

6 C. centaurium
Fatty acids (11, 14-eicosadienoic acid methyl ester, 9-octadecenoic acid methyl

ester, and 9-octadecenoic acid) and terpenes (cypirene, α-zingiberene,
β-farnesene, β-santalene, β-bisabolene, β-himachalene, and azulene)

[69]

7 C. corubionensis Has not been fully characterized

8 C. depressa

Phenolic compounds, condensed tannins, flavonoids (luteolin, kaempferol,
scutellarein 7-β-D-glucuronoside, scutellarein 5-β-D-glucuronoside, quercetin,
isoquercitrin, quereimeritrin, and apigenin), monoterpenoid (piperitone),

sesquiterpenoid (elemol), and sesquiterpene lactones (solstitialin A and acetyl
solstitialin)

[70, 90, 92, 133–137]

9 C. drabifolia

Flavonoids, sesquiterpene lactones (belonging to the guaiane class; centaurea
lactone, cynaropicrin, aguerin B, 8α-isovaleryloxyzaluzanin C, 8α-

acetoxyzaluzanin C, and 4β,15-dihydro-3-dehydrosolstitialin A), and phenolic
compounds (protocatechuic acid, 5-caffeoylquinic acid, 5-feruloylquinic acid,
orientin, vitexin, quercetin, quercetin-3-O-glucoside, patuletin-O-hexoside,

luteolin, luteolin-7-O-rutinoside, luteolin-7-O-glucoside, isovitexin, apigenin, and
hispidulin)

[138–142]

10 C. fenzlii Flavonoids (cirsiliol, isorhamnetin, hispidulin, and cirsimaritin) [95]

11 C. horrida

Flavonoids (horridin, apigenin, rutin, apigenin-3-Ο-glucuronide, kaempferol-3-
O-glucuronide, apigenin-8-C-α-L-arabinoside, apigenin-6-C-α-L-arabinoside,
apigenin-7-Ο-β-D-glucoside, apigenin6,8-di-C-β-D-glucoside, scutelarein-7-O-

β-D-glucoside, kaempferol-3-O-β-D-glucoside, kaempferol-3-O-α-L-
rhamnoside, vitexin, isovitexin, orientin, schaftoside, hispidulin, fisetin, quercetin,
quercetin-3-O-α-L-rhamnoside, and quercetin-3-O-β-D-galactoside), lactones,
phenolic acids, pentacyclic triterpenes, sterol glucoside, and Q acid derivatives

[104, 143–146]

12 C. hypoleuca Sesquiterpene lactones (centaurepensin, acroptillin, cynaropicrin, janerin,
linichlorin, and repin) and phenolic compound (catechin and chlorogenic acid) [72, 126, 147–150]

13 C. karduchorum Phenolic compounds (chlorogenic acid, apigenin, and luteolin glycosides) [73, 150, 151]

14 C. kotschyi
Sesquiterpene lactones (germacrene D, β-caryophyllene, β-cedrene, β-bisabolene,

and bicyclogermacrene), phenolic compounds, and flavonoid
(patuletin-7-O-glucoside)

[70, 116, 152, 153]

15 C. papposa
Phenolic acids (quinic acid, malic acid, gallic acid, protocatechuic acid,

chlorogenic acid, caffeic acid, ferulic acid, salicylic acid, vanillic acid, coumarin,
syringic acid, apigenin, and apigetrin), flavonoids, and terpenes

[8, 154, 155]

16 C. patula

Phenolic compounds (protocatechuic acid, caffeic acid, 5-feruloylquinic acid,
orientin, vitexin, patuletin-O-hexoside, luteolin-7-O-glucoside, isovitexin,

quercetin, apigenin, hispidulin, and luteolin), sesquiterpenes (spathulenol), and
diterpene alcohol (phytol)

[141, 156]

17 C. pulchella Phenolics content, condensed tannins, and fatty acid (linoleic acid, α-linoleic acid,
and palmitic acid) [70]
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3.1.8. Centaurea papposa. In vitro α-glucosidase inhibitory
activity of n-butanol, dichloromethane, and ethyl acetate ex-
tracts of Centaurea papposa was studied by Mawahib et al.
Among them, dichloromethane extract displayed a greater
inhibitory activity (IC50 = 227.6± 4.4μg/ml) comparing with
acarbose (275.4± 1.6μg/ml).,e ethyl acetate extract exhibited
weak anti-α-glucosidase activity (IC50 = 791.9±1.8μg/mL),
and the n-butanol extract, however, was inactive [8].

3.1.9. Centaurea saligna. Centaurea saligna has been tra-
ditionally used as a wound healing agent, astringent, and
tonic. Moreover, its choleretic, diuretic, antibacterial, anti-
rheumatic, and antipyretic activities have been reported
[49, 74, 98]. ,e plant also has demonstrated anticholin-
esterase, antityrosinase, antiradical, antimicrobial, and
antiproliferative properties on LNCaP, HCT-116, and MCF-
7 cancer cell lines [74, 99, 100].

Methanolic, aqueous, and ethyl acetate extracts of
C. saligna leaves were studied against α-glucosidase
(3.32–23.80mmol ACAE/g extract) and α-amylase
(0.16–0.80 mmol ACAE/g extract) by Zengin et al. Among
them, the ethyl acetate extract showed the most potent anti-
α-glucosidase activity (23.80 mmol ACAE/g extract). It is
clear that those extracts exhibited weak inhibitory activity
toward α-amylase [74].

3.1.10. Centaurea triumfettii. Leaves of Centaurea trium-
fettii have been traditionally used as foodstuff [92, 101].
Biological activities of methanolic, ethanolic, and ethyl ac-
etate extracts of stems and flowers of Centaurea triumfettii
have been reported by Acet [14]. ,e ethyl acetate extract of
the stems showed potent inhibitory effects on α-amylase
(165.47± 0.72mmol ACAE/g extract) and α-glucosidase
(4.13± 0.04mmol ACAE/g extract). ,e plant has also
shown the antioxidant capacity and antibacterial activity
[14, 91, 102].

3.2. In Vivo Assay

3.2.1. Centaurea alexanderina. Centaurea alexanderina has
shown different biological activities such as anti-inflam-
matory, analgesic, hepatoprotective, and antibacterial

(against Pseudomonas aeruginosa) effects and cytotoxicity
on A-495 lung cancer cells [75, 103].

Antidiabetic properties of the 80% methanolic extract of
leaves of C. alexanderina at the doses of 300 and 600mg/kg
have been studied under in vivo conditions in normogly-
cemic as well as streptozotocin- (STZ-) induced diabetic rats.
,ose results were compared with glibenclamide (50mg/kg)
as the standard drug. Administration of the extract at the
dose of 600mg/kg led to a remarkable reduction of the
elevated blood glucose by 9.4% and 10.5% after 1 and 2 h,
respectively. However, using the dose of 300mg/kg de-
creased the related item to 2.8% after 2.5 h. Using 300 and
600mg/kg of extracts daily within two months in the STZ-
induced diabetic model led to the reduction of plasma
glucose levels by 2.7% and 4.9%, respectively. However, the
reduction of test days to 30 days affected the efficacy of
extract, and the corresponding levels reduced to 1.1% and
3.8%, respectively [75].

3.2.2. Centaurea aspera. Aqueous extracts of Centaurea
aspera flowers were investigated for their hypoglycemic
activity in normal and alloxan-diabetic rats. It exhibited an
important hypoglycemic effect by oral route and chronic
administration in diabetic rats comparing with glibencla-
mide. It should be mentioned that the extract obtained by
exhaustion with hot water showed an acute hypoglycemic
activity in normal animals [76].

3.2.3. Centaurea bruguierana. Hypoglycemic activity of
different extracts of Centaurea bruguierana and the mech-
anism of action was investigated in STZ-alloxan-diabetic
rats by Khanavi et al. ,e aqueous and dichloromethane
extracts at the dose of 400mg/kg and the ethyl acetate and
methanol extracts at the dose of 200mg/kg, obtained from
aerial fruiting parts of the plant, were investigated. ,e ethyl
acetate extract afforded the best activity to reduce the blood
glucose levels up to 50.0%, while methanol, dichloro-
methane, and aqueous extracts reduced that up to 45.7%,
41.7%, and 29.5%, respectively. Glibenclamide showed a
34.5% reduction. ,e best result from reduction of phos-
phoenolpyruvate carboxykinase (PEPCK) activity (84.0%)
and increasing hepatic glycogen phosphorylase (GP) activity

Table 2: Continued.

Entry Centaurea spp. Phytochemical constituents References

18 C. saligna Flavonoids (rutin, hesperidin, quercetin, luteolin, kaempferol, and apigenin) and
phenolic compounds (rosmarinic acid and p-coumaric acid) [74]

19 C. tchihacheffii Phenolic compounds [70]

20 C. triumfettii Phenolic compounds (chlorogenic acid, ferulic acid, p-coumaric acid, and caffeic
acid) [14, 150]

21 C. urvillei

Flavonoids (naringenin-7-O-β-D glucuronopyranoside, 6-hydroxykaempferol-7-
O-β-D glucuronopyranoside, hispidulin-7-O-β-D-glucuronopyranoside,
apigenin-7-O-β-D-methylglucuronopyranoside, hispidulin-7-O-β-D-

methylglucuronopyranoside, hispidulin-7-O-β-D-glucopyranoside, apigenin-7-
O-β-D-glucopyranoside, kaempferol, apigenin, luteolin, eriodictyol-7-O-β-D-

glucuronopyranoside, arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-
3-O-β-D-glucopyranoside)

[70, 92, 157]
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(134.5%) points of view was related to the aqueous extract
comparing with those of glibenclamide (62.5% and 133.0%),
respectively. C. bruguierana depicted no effect on blood

insulin, but it was able to reduce blood glucose by stimu-
lation of hepatic glycogenolysis and inhibition of gluco-
neogenesis [77, 104].
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Figure 2: ,e chemical structure of constituents isolated from Centaurea spp., responsible for antidiabetic activity. (a) Kaempferol. (b)
Kaempferol 3-O-rutinoside. (c) Astragalin (kaempferol-3-glucoside). (d) Rutin. (e) Hesperidin. (f ) Quercetin. (g) Luteolin. (h) Cynaroside
(luteolin-7-O-glucoside). (i) Catechin. (j) Apigenin. (k) Vitexin. (l) Isovitexin. (m) Hispidulin. (n) Jaceosidin. (o) Caffeic acid. (p)
Cholorogenic acid. (q) β-Caryophyllene.
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3.2.4. Centaurea corubionensis. Chuclá et al. studied the effect
of aqueous and ethanolic extracts of leaves and flowers of
Centaurea corubionensis on normoglycemic rats, circulating
insulin levels in anesthetized rats, glucose-induced hypergly-
cemic rats, and alloxan-diabetic rats at different doses of 2.5, 5,
and 10 g/kg [78]. Consumption of aqueous extracts of leaves
and flowers at the dose of 5 g/kg led to the reduction of blood
glucose levels by 19 and 16%, respectively. Also, 6 h after
administration of aqueous extract of leaves (5 g/kg), the serum
glucose and insulin levels were reported to be 97.2 (mg%) and
10.2 (μU/ml) comparing with tolbutamide (75mg/kg) with
those values of 84.4 (mg%) and 9.2 (μU/ml), respectively.
Moreover, aqueous extract of flowers (50mg/ml) could in-
crease insulin release from isolated islets of Langerhans to
36μU/ml. However, no effect was observed on alloxan-diabetic
animals, and it may be associated with severe damage of the
pancreas by the alloxan. Hypoglycemic properties of
C. corubionensis can be achieved by the undamaged pancreas
via raising serum circulating insulin.

3.2.5. Centaurea horrida. Raafat et al. investigated the an-
tidiabetic effect of the methanolic extract of Centaurea
horrida herb and roots in alloxan-induced diabetic mice
comparing with glibenclamide. All results were generally
obtained more significantly than those of glibenclamide.,e
plant has been traditionally used to lower blood glucose
levels [79]. It was found that administration of the extract at
dose of 100mg/kg led to the reduction of blood glucose
levels from 219.33 to 106.56mg/dL. Investigation of the
subacute effect of the extract exhibited the reduction of
blood glucose levels from 121.84mg/dL on 1th day to
105.42mg/dL on the 8th day at the same dose. ,e subacute
effect of the extract on body weight in alloxan-induced
diabetic mice also revealed that using the extract at different
doses of 5, 25, 50, and 100mg/kg did not lead to a significant
overweight in mice which was comparable to the positive
control. In vivo assessment of the antioxidant activity of the
extract demonstrated that treated mice with doses of 25, 50,
and 100mg/kg had no remarkable increase in serum catalase
activity. However, it was clear that long-term treatment of
diabetes with all doses, particularly with a high dose of
extract, induced a reversed effect on catalase activity, which
may be associated with reduced oxidative stress. It is worth
mentioning that using the extract significantly improved
peripheral nerves function of diabetic mice via hot plate and
tail flick tests. ,is is an important result as uncontrolled
high blood glucose levels can damage peripheral nerves
causing diabetic neuropathy [79, 105, 106]. It has been
suggested that hypoglycemic effect of the plant is achieved by
the inhibition of the endogenous glucose production or
inhibition of intestinal glucose absorption and controlling
dietary glucose uptake in the small intestinal tract. It is

believed that the mechanism is independent of insulin se-
cretion [79].

,e elastase and tyrosinase inhibitory effects of
C. horrida have also been reported [107].

4. Discussion

Herbal medicine has occupied a particular position in
healing purposes, and their use has grown significantly over
recent years. In this respect, there are a wide range of reports
on the antidiabetic activity of medicinal plants [108], which
can be fully considered for the development of efficient
drugs and supplements.

4.1. Toxicity. It should not be forgotten that all natural
remedies are not essentially safe, and all herbal medicine
users should be aware of the risks that they carry [93, 109].
To reach this goal, the toxicity of plants should be inves-
tigated for better knowing the range of safety. According to
the literature, there are no enough data on the toxicity of
reported Centaurea spp. in this paper, and most plant
toxicity tests should be conducted.

Orally administration of 80% methanolic extract of
C. alexanderina by different groups of mice (n= 10) in the
dose range of 50–3000mg/kg resulted in no fatality and the
LD50 value was assumed to be greater than 3000mg/kg [75].

LD50 value for the methanolic extract of C. urvillei was
calculated as 115.5×10−2 using the brine shrimp lethality
bioassay [110]; likewise, the LC50 values for methanolic and
diethyl ether extracts of C. triumfettii were obtained as 266.5
and 166.6 μg/ml, respectively [111].

Cytotoxicity of petroleum ether, chloroform, ethyl ac-
etate, n-butanol, and remaining methanolic fractions of the
methanolic extract of C. bruguierana depicted that petro-
leum ether and remaining methanolic fractions were non-
toxic toward NIH-3T3 cells (Swiss embryo fibroblast) [112].
However, in a study reported by Nasr et al. [113], chloro-
form, ethyl acetate, n-butanol, and methanol fractions of the
plant showed toxicity on HUVEC cells (a noncancerous cell
line).

As reported by Erol-Dayi et al. [114], evaluation of
cytotoxicity of methanolic and aqueous extracts of
C. calcitrapa, C. ptosimopappa, and C. spicata indicated the
lack of toxicity of aqueous extract of C. ptosimopappa and
C. spicata on Hela (human cervix adenocarcinoma) and
Vero (normal African green monkey kidney) cells
(IC50> 1000 μg/ml). ,ose methanolic extracts were found
to be more toxic (IC50> 200 μg/ml) on the same cells. ,e
aqueous extract ofC. calcitrapa showedmoderate toxicity on
both cells (IC50> 400 μg/ml), whereas the methanolic extract
demonstrated an inhibitory effect with IC50< 100 μg/ml on
Hela and Vero cells (92.5 and 91.7 μg/mL, respectively). It
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indicated that the methanolic extract of calcitrapa needs
more attention from the toxicity point of view.

According to the results reported by Conforti et al. [69],
based on the brine-shrimp toxicity test on the roots of
C. centaurium, the LC50value was calculated as 44.05 mg/ml
for the methanolic extract, while LC50values for the poly-
phenolic, lipophilic, and water fractions were found to be
157.44, 25.98, and 152.81mg/ml, respectively.

4.2. Constituents Isolated from Centaurea spp. and Aeir
Antidiabetic Activity Mechanism of Action (MOA). ,e
antidiabetic activity of Centaurea spp. is definitely indebted
to the presence of phytochemicals. Isolated constituents
from discussed plants are listed in Table 2. In this respect,
sesquiterpenes, flavonoids, and phenolic compounds have
been generally reported in the literature (Figure 2).

4.2.1. Sesquiterpene Lactones. Sesquiterpenoids have shown
potent antidiabetic activity via various mechanisms such as
inhibition of enzymes involved in hyperglycemia, protecting
β-pancreatic cells, preventing oxidative and inflammatory
damages associated with the disease, and improving insulin
secretion. ,ey can improve insulin sensitivity by regulating
glucose transport and key proteins of the insulin signaling
pathway. ,ey have also exhibited lipid-lowering actions
[158].

Sesquiterpene lactones have exhibited hypoglycemic
effects in STZ-induced diabetic mice by improving the
function of pancreatic islets, increasing glycolysis, and de-
creasing gluconeogenesis as well as antioxidant and hypo-
lipidemic activities, which have been assessed by using in
vitro assays. ,e mechanism of antidiabetic activity may
involve an antioxidant effect, improving insulin sensitivity,
and stimulation of pancreatic β-cells to secret insulin [159].
Sesquiterpene lactones have also shown in vitro inhibitory
effects on α-glucosidase and α-amylase [160]. ,ey can be
used for the treatment of diabetes through the regulation of
nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) and mitogen-activated protein kinase
(MAPK) signaling pathway [158, 161]. ,ey have also re-
duced the production of chemokines, such as MCP-1, TGF-
β1, and FN, activate NF-κB, and inhibited sugar-induced
degradation of IκBα, confirming the efficacy of sesquiter-
pene lactones as drug candidates for the treatment of dia-
betic nephropathy [158, 162].

β-Caryophyllene, as a sesquiterpene lactone derivative,
has shown antihyperglycemic activity in STZ-induced dia-
betic rats. Oral administration of β-caryophyllene signifi-
cantly decreased glucose and increased insulin levels.
Moreover, reversing the glycoprotein levels in plasma and
tissues of diabetic rats to near normal and decreasing
proinflammatory cytokines detected using histological and
immunohistochemical studies demonstrated the antioxidant
capacity of this compound [163, 164]. It should be noted that
chronic use of β-caryophyllene has also depicted good re-
sults in the prevention or reduction of diabetes-related
neuropathy and depressive-like behavior in mice (assessed
by marbles test) [165].

4.2.2. Flavonoids. Flavonoids are one of the major com-
ponents of Centaurea spp. Four flavonoids including scu-
tellarein, nepetin, apigenin, and hispidulin were evaluated
for their α-glucosidase inhibitory effects comparing with
acarbose and the order of the activity was obtained as
scutellarein> nepetin> apigenin> hispidulin> acarbose.
Also, the synergistic effects from the combination of each
flavonoid with acarbose at different concentrations were
observed. It was perceived that the best synergistic effect was
related to the combined apigenin-acarbose which acted as a
noncompetitive inhibitor [166].

,e antihyperglycemic effect of apigenin may be related
to the inhibition of α-glucosidase, preventing oxidative
stress conditions, decreasing insulin resistance, decreasing
hepatic gluconeogenic enzymes activity, and increasing
serum insulin levels [167–169]. Apigenin can enhance the
metabolism of glucose via suppression of the activities of
gluconeogenic enzymes and aldose reductase. It also pre-
vents diabetic complications such as cataracts, retinopathy,
and neuropathy due to the intracellular sorbitol accumu-
lation. Glucose is converted to sorbitol in the polyol path-
way, catalyzed by aldose reductase [170].

Vitexin and isovitexin are two apigenin isomers, and
their α-amylase inhibitory effects and antioxidant potentials
have been investigated via in vitro assays. Vitexin and
isovitexin exhibited significant anti-α-amylase activity with
IC50values of 4.6 and 13.8 μM, respectively. Also, antioxidant
activity was assayed through DPPH free radical scavenging
assay, which showed IC50 values of 92.5 and 115.4 μM, re-
spectively [171]. Vitexin also depicted inhibitory effect on
α-glucosidase (IC50 = 52.805 μM) which was comparable
with that of acarbose (IC50 = 375 μM) [172]. In addition,
computer-aided studies of vitexin-amylase, isovitexin-am-
ylase, and vitexin-glucosidase complexes in the active site of
related enzymes confirmed the construction of desired in-
teractions with amino acid residues [171, 172]. Another in
vitro study using cell culture revealed that vitexin protected
pancreatic β-cells from high-glucose-induced damage,
inhibited islet β-cell apoptosis, and improved insulin release
and sensitivity. ,e underlying mechanism may increase the
expression of transcription factor Nrf2, resulting in in-
creased intracellular antioxidant molecules, and suppress the
inflammatory signaling pathway. Besides, vitexin enhances
insulin production by activating insulin signaling via the
activation of phosphorylation of IR, IRS-1, and IRS-2 [173].

Hispidulin is another important flavonoid compound
inducing antidiabetic activity. Oral administration of his-
pidulin to STZ-induced hyperglycemia mice effectively
mitigated postprandial and fasting hyperglycemia and glu-
cose tolerance, which was associated with a dual mechanism,
promoting β-cell function and suppressing hepatic glucose
production [174].

Kaempferol has also depicted remarkable α-glucosi-
dase and α-amylase inhibitory activity [175, 176]. Oral
administration of kaempferol significantly improved
blood glucose control in obese mice, which was associated
with suppressing hepatic gluconeogenesis and improving
insulin sensitivity and secretion [177, 178]. It was found
that kaempferol-3-O-rutinoside was also a potent
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inhibitor of α-glucosidase, being over 8 times more active
than the reference drug, acarbose, under in vitro condi-
tions [179].

Astragalin has shown hypoglycemic activity on Wistar
rats (10mg/kg) and improved insulin secretion in the glu-
cose tolerance test. Investigation of isolated pancreatic cells
treated with astragalin (100 μM) led to Ca2+ influx stimu-
lation via a mechanism involving ATP-dependent potas-
sium channels, L-type voltage-dependent calcium channels,
the sarco/endoplasmic reticulum calcium transport ATPase
(SERCA), and PKC and PKA (protein kinase) [180].

Rutin is also an important flavonoid possessing anti-
hyperglycemic effects via various mechanisms, including
decrease of carbohydrates absorption from the small in-
testine, inhibition of tissue gluconeogenesis, increase of
tissue glucose uptake, stimulation of insulin secretion from
β-cells, and protecting Langerhans islet against degenera-
tion. Rutin also decreases the formation of sorbitol, reactive
oxygen species, advanced glycation end-product precursors,
and inflammatory cytokines [181].

Luteolin and luteolin 7-O-glucoside have shown good
α-glucosidase inhibitory activity. However, luteolin was
found to be more potent than acarbose by the inhibition of
36% at the concentration of 0.5mg/ml. Although luteolin
could inhibit α-amylase effectively (IC50 in the range of 50 to
500 μg/ml), it was less potent than acarbose [182].

Jaceosidin is another flavonoid compound, and its
antihyperglycemic capacity has been assessed through
various in vivo studies. ,e results showed that jaceosidin
supplementation significantly lowered fasting blood glucose
levels and reduced insulin resistance. As it was also found
that jaceosidin supplementation increased antioxidant ca-
pacity by enhancement of catalase and GSH-px activities, a
relevant relationship between antioxidant and anti-
hyperglycemic effects of jaceosidin can be concluded.
Jaceosidin could improve endoplasmic reticulum stress and
attenuate insulin resistance via SERCA2b (sarco/endoplas-
mic reticulum Ca2+-ATPase 2b) upregulation in mice
skeletal muscles [183, 184].

Hesperidin has shown antidiabetic activity. It has
inhibited obesity, hyperglycemia, and hyperlipidemia, and
decreased insulin resistance. ,ese effects might be closely
related to the activation of AMPK, which regulate the insulin
signaling pathway and lipid metabolism [185]. Hesperidin
ameliorates pancreatic β-cell dysfunction and apoptosis in a
streptozotocin-induced diabetic rat model [186].

,e antidiabetic activity of quercetin is also important. It
has reduced fasting and postprandial hyperglycemia in an
animal model of DM [187]. An in vivo study revealed the
hypoglycemic effects of quercetin, but no changes were
observed in the activity of lipogenic enzymes and lipoprotein
lipase. It can be concluded that the antidiabetic activity of
quercetin is comparable with that of antiobesity activity
[188]. ,ere are different reports on the α-glucosidase in-
hibitory effect of quercetin, which describe its multilateral
antidiabetic activity [187, 189, 190].

Oral administration of catechin to STZ-induced diabetic
rats resulted in a potential agonist characteristic that is
capable of activating the insulin receptors and producing a

glucose tolerance pattern. ,e hypoglycemic effect of cat-
echin is associated with its insulin mimetic activity [191]. It
has been indicated that catechin significantly decreased the
different lipid parameters, hepatic, and renal function en-
zyme levels along with HbA1c levels in diabetic rats while
remarkably increased the high-density lipoprotein (HDL)
levels with values comparable with the glibenclamide. Also,
α-glucosidase and α-amylase inhibitory activity of catechin
have been reported with inhibition percent of 80% and 79%,
respectively [192].

4.2.3. Phenolic Compounds. Phenolic compounds have
shown versatile and attractive antidiabetic activity. Caffeic
acid, a known phenolic acid compound, could protect mice
pancreatic islets from oxidative stress induced by multi-
walled carbon nanotubes (MWCNTs) [193]. Investigation of
the effect of caffeic acid and cinnamic acid on glucose uptake
in TNF-R-induced insulin-resistant hepatocytes showed that
they may eliminate insulin resistance by improving insulin
signaling and enhancing glucose uptake in insulin-resistant
cells, which described their antihyperglycemic potential
[194]. In another report, glucose uptake into the isolated
adipocytes was raised by caffeic acid. ,e increase of glucose
utilization by caffeic acid seems to be responsible for low-
ering plasma glucose [195].

Chlorogenic acid could also reduce fasting blood glucose
levels [196–198]. It has shown an inhibitory effect on
α-amylase as potent as acarbose; however, its α-glucosidase
inhibitory activity was far weaker than that of acarbose
[199, 200].

,e effect of phenolic compounds, particularly in the
management of type 2 diabetes, has attracted lots of at-
tention [201]. ,ey are characterized by the presence of
hydroxyl group(s) on the aryl moiety and endorsed by their
antioxidant activity due to high potency of hydroxyl groups
as hydrogen donors [202]. As it has been accepted that the
formation of reactive oxygen species (ROS) is associated
with hyperglycemia [203], using antioxidants is preferred to
treat and reduce the complications of DM. Also, it has been
proven that consuming a diet low in fat and rich in anti-
oxidants may reduce the risk of obesity and insulin resis-
tance [204–207].

Phenolic compounds comprise a wide range of phenolic
acids and flavonoids. Flavonoids in turn contain anthocy-
anin pigments, flavonols, flavones, flavanols, and iso-
flavones. Polymerization of flavanols leads to the formation
of tannins in which the esterification of phenolic groups
affords cyclic chromenones such as ellagic acid. However,
condensed tannins known as proanthocyanidins, for ex-
ample, catechin, epicatechin, and gallocatechin, are obtained
from the condensation of flavanols [208].

Centaurea spp. have been frequently reported to possess
anthocyanins [207, 209–211] and their biological activities such
as antioxidant, antiallergic, anti-inflammatory, antiviral, anti-
proliferative, antimutagenic, antimicrobial, and anticarcino-
genic activities. Also, different properties such as improvement
of microcirculation, protection from cardiovascular damage
and allergy, prevention of peripheral capillary fragility,
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prevention of diabetes, and vision improvement are fully
considered in the literature [207, 212–222]. Also, the role of
anthocyanins is well described for their effect on the prevention
of diabetic cataracts [207, 218, 223].,e presence of apigenin in
Centaurea spp. [224] has been confirmed, and its activity against
thyroid neoplasms as well as anxiolytic, anti-inflammatory, and
antinociceptive properties has been reported [225–227]. ,e
presence of flavonoids in C. bornmuelleri is significant and
might be responsible for the desired activity [67]. ,e phyto-
chemical analysis of C. calcitrapa proved the presence of sterols,
sesquiterpene lactones, and their closely related group of tri-
terpenoids, bisabolenes, lignans, and flavonoids as the main
secondary metabolites [124–130]. C. hypoleuca contains higher
amounts of catechin and chlorogenic acid than the other
phenolic compounds, which are known to be responsible for
various biological activities such as antioxidant, neuro-
protective, antidiabetic, hepatoprotective, and antiarthritic
properties [72, 147–149]. High levels of apigenin (2472 μg/g
extract), known as a common dietary flavonoid, has
absorbed attention in C. saligna. In silico study has con-
firmed the construction of H-bonding and pi-pi stacking
interactions between apigenin and the α-glucosidase active
site [74]. Chlorogenic acid has been identified as the main
phenolic compound in C. triumfettii [14]. C. karduchorum
is known to possess abundant amounts of phenolic com-
pounds, mainly luteolin glycosides (glucoside and glucu-
ronide) and chlorogenic acid [73]. Some studies confirmed
the activity of luteolin and/or its glycosides against diabetes
and neurodegenerative diseases through the reduction of
glucose uptake, oxidative stress, and inflammation [151].
Chlorogenic acid has chemopreventive and hypoglycemic
effects [150], and it is the main component of medicinal
plants characterized by their antioxidant, anti-inflamma-
tory, and enzyme inhibitory activities [150, 189, 228].
C. bruguierana possessed sesquiterpene lactones and fla-
vonoids (kaempferol, rutin, and quercetin) [77, 104, 120].
Also, the plant has been documented for its antiplasmodial
and antipeptic ulcer effects [77, 229, 230]. ,e antidiabetic
property of C. karduchorum as a herbal tea is directly
dependent on the high levels of bioactive phenolic deriv-
atives profiting from synergistic interactions of those
compounds [73]. ,e presence of terpenes has been con-
firmed through qualitative analysis in C. papposa, which
may explain the favorite activity toward α-glucosidase
[154]. High total phenolic and flavonoid contents of
C. pulchella and C. urvillei, respectively, may explain their
antidiabetic activity [70]. Phytochemical examination of
aerial parts of C. horrida indicated the presence of pen-
tacyclic triterpenes, sterol glucoside, quinic acid deriva-
tives, phenolic acid derivatives, and flavonoids as well as
horridin [143, 144].

As mentioned above, discussed species of Centaurea are
known to possess a high content of phenolic compounds,
which explains their antitype 2 DM activity.

Inhibition of α-glucosidase and α-amylase has been
found to be a versatile tool for the treatment of type 2 di-
abetes [231, 232]. Apart from synthetic compounds
[233–237], a wide spectrum of medicinal plants have been
introduced to possess those enzymes inhibitory activity

[238], and flavonoids have been well described in this field
[239]. Amphiphilic property of phenolic moiety provides
favorite interactions with enzymes via the construction of H-
bonding and hydrophobic interactions with the polar groups
of enzymes and hydrophobic amino acid residues,
respectively.

An important point comes back to side effects related to
α-amylase inhibitors. ,ey include abdominal distention,
flatulence, meteorism, and possibly diarrhea which are
consequence of high activity of the enzyme. It seems that
extreme inhibition of pancreatic α-amylase results in the
abnormal bacterial fermentation of undigested carbohy-
drates in the colon [240–242]. In this respect, dual inhibitors
such as C. saligna and C. karduchorum possessing weak
inhibition of α-amylase and high inhibition of α-glucosidase
are desirable for the treatment of type 2 DM.

Finally, the efficacy of Centaurea spp. under in vivo
conditions has followed various mechanisms such as low-
ering blood glucose levels, stimulation of hepatic glyco-
genolysis, inhibition of gluconeogenesis, and insulin
secretion and circulation.

5. Conclusion

In conclusion, the antidiabetic activity of some Centaurea spp.,
which has been studied for controlling hyperglycemia, was
reviewed.,e results obtained from in vitro and in vivo studies
confirmed the efficacy of Centaurea spp. for the treatment of
type 2 DM. In vitro assays generally focused on the α-gluco-
sidase and α-amylase inhibitory activity, and the effectiveness
of C. bornmuelleri, C. calcitrapa, C. centaurium, C. drabifolia,
C. depressa, C. fenzlii, C. hypoleuca, C. karduchorum,
C. kotschyi, C. papposa, C. patula, C. pulchella, C. saligna,
C. tchihacheffii, C. triumfettii, and C. urvillei has been inves-
tigated. Among them, dichloromethane extract of C. papposa
was found to be themost potent inhibitor of α-glucosidase, and
the n-hexane extract of roots of C. centaurium showed the
highest activity toward α-amylase (Table 1). In vivo studies of
C. alexanderina, C. aspera, C. bruguierana, C. corubionensis,
and C. horrida revealed that C. horrida and C. bruguierana
were found to be more potent than glibenclamide and C.
corubionensis was comparable with tolbutamide. ,ese results
demonstrated that Centaurea spp. deserve to be widely studied
through clinical trials to prove their antidiabetic effects. Also,
data related to the acute and chronic toxicity are in high de-
mand to develop safe Centaurea spp.-based supplements and
drugs against type 2 DM.
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