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Abstract

The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of
biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces
cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species,
the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a
core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of
chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the
diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where
some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely
these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-
species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian
wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments
that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition
to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions
and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many
phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some
strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S.
cerevisiae.
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Introduction

Dekkera (Brettanomyces) bruxellensis has been described in the

population ecology of various fermented beverages, such as wine,

beer and cider [1–3], and is of increasing relevance to the biofuel

industry [4]. Recent genomic sequencing of this species is

beginning to reveal the mechanisms by which it is able to survive

the harsh environment of alcoholic fermentation, primarily

through gene-family expansions in membrane transporters and

oxidoreductase enzyme classes that are predicted to facilitate

nutrient scavenging and maintain redox homeostasis respectively

[5]. However, our understanding of how other industrially

important traits have evolved in D. bruxellensis lags well behind

what is known for S. cerevisiae [6].

In general, D. bruxellensis utilises a make-accumulate-consume

strategy similar to that found in S. cerevisiae [7], however traits,

including carbon and nitrogen source utilisation [8], vary

considerably between D. bruxellensis strains. For example, it was

recently shown that nitrate utilisation enables D. bruxellensis to out-

compete S. cerevisiae in continuous industrial fermentations [9], and

key genes involved in nitrate assimilation were found in a cluster in

the partial genome sequence of D. bruxellensis strain CBS2499 [10].

Nonetheless, nitrate utilisation is not a defining feature of this

species. Nearly one third of D. bruxellensis isolates from a range of

sources do not grow on nitrate as a sole nitrogen source [8];

presumably nitrate assimilation is less important for D. bruxellensis

in some fermentation ecosystems. In another recent study,

variation in sulphite tolerance in D. bruxellensis was linked to

amplified fragment length polymorphism (AFLP) and 26S rDNA

genetic markers [11], inferring a genetic basis for previously

reported regional variation and groupings of this yeast across

Australian wineries [1].

To date, de-novo assemblies exist for genomes of two D.

bruxellensis wine isolates, AWRI1499 [5] and CBS2499 [12], from
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Australia and France, respectively. Unlike AWRI1499, CBS2499

has the same 26S rDNA sequence as the D. bruxellensis type strain

CBS 74 (unpublished data), a lambic-beer isolate. This data, in

combination with AFLP genotyping [1], infers the two sequenced

strains are likely to be highly divergent. AWRI1499, a represen-

tative isolate of a sulphite-tolerant genotype group [11], is an

allotriploid comprising a moderately heterozygous diploid, and

divergent haploid complements [5]. Thus far it remains unclear to

what degree intra-specific differences observed using methods such

as AFLP may simply reflect presence or absence of all or part of

the divergent haploid genome found in AWRI1499. CBS2499 was

assembled as a pseudo-haploid [12], preventing such comparison

with other de-novo assemblies.

To improve our understanding of genome diversity amongst D.

bruxellensis wine isolates and gain insights into the evolution of

industrially relevant traits in this important microorganism, we

have performed mapping-assemblies of CBS2499 and two newly

sequenced Australian D. bruxellensis wine strains against the

reference genome sequence of AWRI1499. Comparative geno-

mics of the four strains reveals that presence of a divergent haploid

genome is not a feature restricted to AWRI1499, but has arisen

through at least two independent ‘hybridisation’ events. In

addition to large-scale ploidy variation, gene conversion and

allelic expansion appear to be key molecular mechanisms driving

strain divergence. Some phenotypes, such as nitrate/nitrite

utilisation, on the other hand, are determined by genomic

insertions and deletions (InDels).

Results

Analysis of Dekkera genomes
In order to compare the genomic complements of D. bruxellensis

strains, a re-sequencing strategy was used to align genome data

from short-read sequencing (26100 bp) for three strains against

the published draft genome assembly of D. bruxellensis strain

AWRI1499 [5]. Two of the assemblies were for strains sequenced

specifically for this work; AWRI1608 and AWRI1613. For the

third, CBS2499, comparable data (26100 bp format genome

data) used as part of the D. bruxellensis CBS2499 draft genome

assembly [12] was obtained from the NCBI short read archive.

The two newly sequenced strains were chosen because they have

divergent AFLP genotypes and, with AWRI1499 represent 98% of

D. bruxellensis isolates associated with Australian wineries [1]. In all,

the divergence between all four strains, as determined from AFLP

analysis, is considerable and therefore should provide insights into

the genomic landscape of wine isolates of this important yeast.

Given the unusual nature of the D. bruxellensis AWRI1499

genome (triploid hybrid comprised of a closely related diploid set

of alleles and a third distantly related genomic complement), it was

of interest to determine whether this genomic organisation is a

defining characteristic of this species. Sequence alignments were

therefore interrogated globally to determine genomic ploidy and

the levels of both inter- and intra-allelic genetic diversity (Fig. 1,

Datasets S1 and S2).

Ploidy levels across the genomes were estimated by taking

advantage of allele proportions. In a triploid genome, it is expected

that the maximum average frequency of a particular allele at a

heterozygous site will be approximately 0.66 (due to a base

difference in a single allele), while this number will be closer to 0.5

for heterozygous sites in a diploid. The observed average major

allele frequency was therefore calculated across the entire genome

of each isolate using a sliding window approach (Fig. 1A). As a

triploid control, RNA-seq data for AWRI1499 was mapped to the

AWRI1499 genome and this showed a maximum average allele

proportion consistent with its triploid state (0.6860.04, data not

shown). AWRI1608 also displayed an average allele proportion

(0.6960.03), consistent with this isolate being triploid. However,

both CBS2499 (0.5860.05) and AWRI1613 (0.5760.03) dis-

played maximum allele frequencies consistent with these isolates

being diploid.

For all strains, while the average maximum allele frequency

approximated to either 0.66 or 0.5 there were many localised

regions that differed from these values, including significant

portions of the genomes that displayed loss of heterozygosity

(LOH; 17.9% of AWRI1613, 16.3% of CBS2499 and 3% of

AWRI1608) (Fig. 1A, Fig. 2). As these differences in local allele

proportions may be due to copy number variation (CNV), such as

heterozygous deletions or genomic duplications, CNV was also

determined globally for each of the genomes (Fig. 1B). While copy

number was relatively stable, there were many instances of

localised copy number variation in each strain, and of opposing

copy number changes in the same genomic region between strains

(Fig. 2A). Copy number amplification was especially prominent in

CBS2499 with several genomic regions displaying effective copy

numbers of 4 n or greater (Fig. 1B, Fig. 2B). Regions of increased

copy number in CBS2499 appear to coincide with the ends of

genomic scaffolds in both the AWRI1499 and CBS2499 [12]

assemblies (Fig. S1), a feature not described in the CBS2499 de-novo

assembly. This may be indicative of sub-telomeric amplification of

sequences, which is common to other yeasts including S. cerevisiae

and Cryptococcus neoformans [13,14]. Examination of the functional

annotation for the genes in these expanded regions revealed a

statistically significant enrichment for those encoding proteins

involved in carbohydrate metabolic processes (p = 6.5610-7) and

may therefore indicate adaptation to utilisation of specific carbon

sources by this strain.

It was also apparent that there was co-localisation of copy

number variation and alterations in allele frequencies (including

the majority of LOH events). This is consistent with gene

conversion, rather than heterozygous deletion, being responsible

for the majority (95%) of genomic regions displaying LOH across

the strains. For example, Fig. 2C describes a 100 kb genomic locus

Author Summary

The yeast D. bruxellensis is of great importance in biofuel
and fermented beverage industries, largely as a contam-
inant and/or spoilage organism. Its lifestyle is not unlike
that of the wine/brewing/baking yeast S. cerevisiae, with
independent evolutionary pathways having led to this
convergence; these species are phylogenetically very
distant. Unlike S. cerevisiae, D. bruxellensis is highly
intractable in the laboratory; it is difficult to mate and to
transform, making even the most basic genetic analysis
very difficult. Thus we still have a great deal to learn about
this economically important yeast. The latest gene
sequencing technologies are, however, providing a means
of addressing these limitations. The current manuscript
describes a comparative genomics approach to providing
insights into inter-strain variations that shape the genomic
landscape of D. bruxellensis. Like other industrial yeasts, it
has a diploid core genome, but there are also triploid
isolates which possess the core diploid complement with
an additional, more distantly related, full set of chromo-
somes. Evidence presented in this paper suggests that this
form of triploidy has arisen more than once in the
evolutionary history of D. bruxellensis, and it confers a
selective advantage for strains of this yeast isolated from
wineries.
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in which loss of heterozygosity has occurred in AWRI1613 and

CBS2499 without altering the normal diploid genomic comple-

ment of these strains, while in AWRI1608, the otherwise triploid

state is predicted to have been amplified to a tetraploid

complement. Interestingly, this amplification in AWRI1608 is

complicated by the fact that the allelic ratios change from 2:2 to

3:1 within the amplified region. This change in allelic ratios is

indicative of either gene conversion of one allele following

amplification of the region, or two amplification events that each

amplified adjacent parts of the region carrying different homologs.

Allelic relationship across Dekkera isolates
It has been shown previously that the allotriploid genome of

AWRI1499 consists of two highly related sets of chromosomes in

addition to a third, more distantly related, set [5]. As the genomic

analyses of AWRI1608, AWRI1613 and CBS2499 predicted only

one of these strains to also be a triploid, it was of interest to

determine the relationship between each of the haplotypes across

all of the strains in order to ascertain whether either of the diploid

strains contained the ‘‘divergent’’ haplotype of AWRI1499. Seven

loci that displayed three clearly defined haplotypes in AWRI1499

[5] were selected with individual haplotypes derived for each locus

in each strain by taking advantage of co-occurring SNPs within

individual reads. This resulted in a total of ten possible haploid

sequences (3+3+2+2) for each locus for which maximum-

likelihood phylogenies [15,16] were constructed (Fig. 3, Dataset

S3). Consistent with whole genome alignments (Fig. S2),

AWRI1613 and CBS2499 alleles were identical for five of seven

loci, and exhibited only minor differences for the remaining two

(AWRI1499_1134 and AWRI1499_1822). Furthermore, in the

majority of cases, the phylogeny was resolved into a relationship

whereby two of the alleles from AWRI1499 and AWRI1608 and

both alleles from AWRI1613 and CBS2499 formed a highly

related clade, while the third alleles from AWRI1499 and

Figure 1. Resequencing analysis of D. bruxellensis isolates. (A) Single nucleotide polymorphism analysis. For each strain, heterozygous
nucleotides were identified and the proportion of aligned reads containing each of the variant bases recorded. The average major allele frequency
was then calculated for sliding windows across the genome (5 kb window, 1 kb step) and plotted central to each window. Any regions that lacked
heterozygous bases were classified as regions of loss-of-heterozygosity (LOH) and are indicated by grey bars above each plot. The solid black line
represents a major allele frequency of 0.66 that would be expected for heterozygous a triploid genome. (B) Copy number variation analysis. For each
strain, the average sequencing read depth was recorded for sliding windows across the genome (5 kb window, 1 kb step) and are presented relative
to a predicted triploid state for AWRI1608 and a diploid state for AWRI613 and CBS2499. Solid black lines indicate proposed ploidy levels across the
genome based on segmental smoothing (see materials and methods).
doi:10.1371/journal.pgen.1004161.g001
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AWRI1608 were both divergent from this conserved clade and

also distinct from one another. For the remaining two loci, it

appears likely that gene conversion has resulted in either one or

both of these divergent alleles being replaced by an allele that is

consistent with the conserved clade.

Maximum likelihood phylogenies for individual haplotypes

derived at five additional genomic loci (Fig. S3, Dataset S3),

previously sequenced for a collection of international D. bruxellensis

strains [17], revealed similar topologies. Together with a 26S

rDNA phylogeny (Fig. S4), these data provide evidence that

predominant Australian D. bruxellensis strain AWRI1499 [1] is

similar to South African wine-related D. bruxellensis strains

CBS4481 (Y900) and CBS5206 (Y908). Of note, the DbHAD

phylogeny (Fig. S3E) suggested that the horizontal transfer of an

adenyl deaminase from an unknown Proteobacterial species [10]

occurred prior to divergence of the AWRI1499 and AWRI1608

‘third haplotype’ donors. A protein-based phylogeny (Fig. S5)

suggests that DbHAD1 may have descended vertically from the

common progenitor of D. bruxellensis and Ogataea parapolymorpha.

While the initial analysis of the AWRI1499 genome failed to

identify a potential ‘donor’ species for the divergent alleles [5], we

sought to determine if there was sequence data now available that

would shed new light on this. Protein-based maximum-likelihood

phylogenies were therefore produced for each of the haplotype

groups from D. bruxellensis for three of the open reading frames

(ORFs) presented in Fig. 3, in addition to homologs identified in

the Genbank non-redundant protein database (Fig. S6). This

analysis clearly shows all of the D. bruxellensis alleles to be far more

closely related to each other than to any other available protein

sequences. A small number of gene sequences available for D.

anomala, the closest known relative of D. bruxellensis according to

26S rDNA based phylogenies [18], were then used as nucleotide

queries against the AWRI1499 blast database. Two accessions,

annotated as ATP2 and PGK1, were strong positive matches to

AWRI1499 open reading frames, with 92% and 93% nucleotide

identity. Nucleotide-based maximum-likelihood phylogenies for

these ORFs, with haplotypes extracted from AWRI1499, 1608

and 1613, were performed (Fig. 4). The D. anomala sequences were

not closely related to any of the D. bruxellensis haplotypes. As such,

the potential source of the divergent alleles in the triploid strains

remains to be determined.

Variation in nitrate assimilation potential
While there was significant variation in SNP diversity across

strains, strain-specific genomic deletions were found to be far less

common, with an average of only 0.15% of the genome lost, across

the three strains relative to AWRI1499. The majority (97%) of

these deletions were found in AWRI1613.

Of the genomic loci that did display strain-specific deletions,

one region that was lost specifically in AWRI1613 was of

particular interest as it involved the D. bruxellensis nitrate

assimilation cluster (Fig. 5). While nitrate utilisation is common

throughout Ascomycota, genes associated with the nitrate assimila-

tion cluster are generally confined to Pezizomycotina; Dekkera,

Ogataea, Wickerhamomyces and Blastobotrys are the only genera within

the Saccharomycotina where this cluster has been identified. In these

species the nitrate cluster appears to have been retained from the

last common ancestor with the Pezizomycotina (Fig. S7). However,

despite this ancient evolutionary conservation, it is apparent that

both the nitrate and nitrite reductase genes have been lost in

AWRI1613, along with an adjacent b-galactosidase gene.

Furthermore, while this cluster is present in AWRI1608 it is

Figure 2. Inter-strain genetic variation at discrete genomic loci. Data is presented for three distinct genomic loci (A–C). Estimates of copy
number and heterozygous allele frequencies were calculated and are presented as in Fig. 1.
doi:10.1371/journal.pgen.1004161.g002
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predicted to have undergone LOH via gene conversion, resulting

in three identical alleles. In contrast, the nitrate cluster of

CBS2499 is predicted to have undergone a duplication event

resulting in four copies of this genomic region being present in a

1:1 ratio of two alleles (Fig 2A, Fig 5A).

Consistent with presence or absence of ORFs encoding these

key assimilatory enzymes, AWRI1499 and CBS2499 displayed

robust growth on nitrate as a sole nitrogen source whereas

AWRI1613 was unable to grow on this medium (Fig. 5B).

Interestingly, despite the presence of the nitrate assimilation locus,

AWRI1608 was also unable to utilise nitrate. In order to

determine if this loss of nitrate utilisation was due to frameshift

or nonsense mutations in the homozygous coding sequences of the

AWRI1608 cluster, the ORFs of the nitrate and nitrite reductases

were compared to haplotyped sequences from CBS2499 (Dataset

S4). In each case, there were no obvious truncated coding regions

or non-synonymous mutations present in the AWRI1608 ORFs,

compared to either of the CBS2499 haplotypes that would be

expected to cause the drastic changes to enzyme function that

could account for the loss of nitrate utilisation in AWRI1608.

To further investigate the cause of the non-nitrate utilisation

phenotype of AWRI1608, a high-affinity nitrate transporter gene

that lies adjacent to the two reductases and the genomic region

surrounding the two putative nitrate assimilation transcription

factors of D. bruxellensis [10] was also investigated in these strains.

The gene encoding the nitrate transporter was shown to be

homozygous in both strains that could not grow on nitrate

(AWRI1608 and AWRI1613) but was heterozygous in AWRI1499

and CBS2499 (data not shown). However, even in the two

homozygous strains the ORF is predicted to encode a full-length,

functional, nitrate transporter. Similarly, the genomic region

encompassing both putative regulatory proteins was predicted to

be present in all four strains; as for the nitrate and nitrite reductase

genes in AWRI1608, both ORFs displayed LOH in AWRI1608,

AWRI1613 and CBS2499 (data not shown). In contrast, this

region was shown to be heterozygous in AWRI1499.

Discussion

The advent of next generation sequencing has enabled a

significant increase in knowledge regarding the genomic makeup

of important, but often genetically intractable, industrial yeasts.

This manuscript describes the first analysis of inter-strain variation

in the genomic landscape of D. bruxellensis. The most prominent

finding of these genome comparisons was the common occurrence

of triploid hybrids in the strains examined. AWRI1613 and

CBS2499 were determined to be diploid in this study, with each

strain possessing a pair of closely related chromosomes with

moderate levels of heterozygosity. However, AWRI1499 and

AWRI1608, the most common strains found in Australian

wineries, were shown to be triploid. While triploid, both

AWRI1499 and AWRI1608 contain pairs of chromosomes that

are closely related to those found in the diploid strains suggesting

that a diploid complement comprises the basis of the D. bruxellensis

genome. The third, complete, set of more distantly related

chromosomes present in AWRI1499 and AWRI1608 are there-

fore likely to have been introduced via hybridisation with a

distantly related strain of D. bruxellensis or possibly another closely

related but as yet undescribed species (Fig. 6). Furthermore, the

divergent third sets of chromosomes present in each triploid are,

in-turn, distantly related to each other, indicating that the two

triploid strains likely arose from independent hybridisation events.

The results of this genomic study therefore suggest that the D.

bruxellensis genomic landscape is similar to counterparts in the

Saccharomyces sensu stricto clade, where inter-specific hybrids between

S. cerevisiae, S. kudriavzevii, S. uvarum and S. eubayanus can be found in

natural environments and in industrial fermentations [19–22].

Furthermore, Saccharomyces spp. interspecific hybrids are often

allotriploid, with a ‘diploid’ complement coming from S. cerevisiae

and a ‘haploid’ input from a non-cerevisiae parent. These

Saccharomyces sensu stricto hybrids have been isolated from cold

winemaking and brewing environments, where it is suggested the

hybrid has a selective advantage over its parents. In these

situations, the S. cerevisiae genomic component provides the means

to efficiently ferment sugar to ethanol while genomic contributions

from cold tolerant Saccharomyces spp. allow the hybrid strains to

ferment at temperatures that are normally too low for S. cerevisiae

[6,19,23]. In fact, strains of S. pastorianus, the yeast species

responsible for the vast majority of lager beer fermentations, are

hybrids generated from matings between S. cerevisiae and Saccha-

romyces eubayanus. At least one line of these hybrids has allotriploid

origins, as was observed for the two D. bruxellensis hybrids analysed

in this work [19,20,24].

At this time it is not possible to determine whether the ‘additional

haploid’ inputs in the karyotypes of the two triploid D. bruxellensis

strains described in this paper originate from one or more non-D.

bruxellensis species or distantly related D. bruxellensis strains. However,

as for lager brewing, it appears that the formation of these triploid

hybrid strains may have resulted in a population replacement event,

with the hybrid strains representing 92% of isolates from across the

Australian wine industry. Based upon a limited multi-locus analysis,

some previously analysed international strains [17] bear resem-

blance to AWRI1499 and AWRI1608, therefore it is possible that

the current population structure in Australian wineries reflects

historical gene flows and bottlenecks. It remains to be determined

whether the additional sets of chromosomes in AWRI1499 and

AWRI1608 confer a selective advantage in the winery environment,

although increased levels of resistance to sulphite, the primary

means of D. bruxellensis control in a winery setting, may be at least

partially responsible [11].

As for presumptive selective pressures underpinning hybrid

prevalence, the driver for loss of nitrate assimilation ability in

specific strains of D. bruxellensis remains unclear. Ammonium is

fully utilised by S. cerevisiae and other wine yeast species during

alcoholic fermentation [25]. However D. bruxellensis appears to be

the only wine yeast species that can assimilate nitrate, which is

reported to be at levels of between 0.9 and 53.7 mg/l in

Californian wine [26]. One might predict therefore that, in

ecological settings where nitrate is available and other nitrogen

sources are limited, nitrate assimilation would provide D.

bruxellensis with a selective advantage. Yet up to a third of D.

bruxellensis wine isolates fail to grow on nitrate [8]. Interestingly, it

was recently shown that during anaerobic fermentation nitrate

assimilation in D. bruxellensis favours the production of acetic acid

over ethanol while partially abolishing the Custers effect [27]. This

impact of nitrate assimilation may be detrimental in some

environmental settings, thereby providing a selective pressure for

its loss.

Figure 3. Haplotype analysis of D. bruxellensis isolates. Distinct haplotypes were assembled for conserved open reading frames and subjected
to maximum-likelihood phylogenetic analysis [15,16]. Nodes are color-coded according to strain AWRI1499 (green), AWRI1608 (blue), AWRI1613 (red),
CBS2499 (yellow). Nodes for CBS2499 are only shown where haplotypes were different to those of AWRI1613.
doi:10.1371/journal.pgen.1004161.g003
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Figure 4. Comparison of D. anomala and D. bruxellensis gene sequences. Haplotypes from regions of D. bruxellensis AWRI1499, AWRI1608 and
AWRI1613 mapping assemblies corresponding to (A) D. anomala CBS8139 gene PGK1 (genbank accession KF042711.1) and (B) D. anomala CBS8139
gene ATP2 (genbank accession KF042617.1) were aligned and subjected to maximum-likelihood phylogenetic analysis [15,16], with bootstrap support
from 1000 randomisations indicated in blue.
doi:10.1371/journal.pgen.1004161.g004

Figure 5. Loss of nitrate and nitrite assimilation in D. bruxellensis strains. (A) Sequencing coverage across AWRI1608, AWRI1613 and
CBS2499. Bases that are in disagreement to the AWRI1499 reference strain are colored according to their sequence and proportion at that position
(AWRI1499, green; AWRI1608, blue; AWRI1613, red). The positions of open reading frames in this region (according to the AWRI1499 genome
annotation) are also shown. (B) Phenotypic analysis of D. bruxellensis strains growing on either on ammonium and nitrate. Strains scored as showing
either positive (+) or negative (-) growth are indicated.
doi:10.1371/journal.pgen.1004161.g005
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This phenomenon of loss of nutrient utilisation is not unknown

in nature. For example, there is a concerted loss of the galactose

(GAL) catabolism cluster in Japanese isolates of Saccharomyces

kudriavzevii when compared to European relatives. In this example,

the Japanese strains show degeneration of the genes involved in

the utilization of galactose to pseudogene equivalents, while this

cluster is completely active in European strains [28]. Evidence was

also presented for a selective pressure driving loss of function for all

members of the GAL pathway thereby producing a GAL2

phenotype, as the presence of partial function in the pathways

were suggested to have fitness costs.

At face value, this does not appear to be the case for loss of nitrate

assimilation in AWRI1613, which still retains the coding region for

the nitrate transporter. However, it is currently not known whether

the presence of this transporter may be due to pleiotropy; it may, for

example, be required for secondary transport functions. It is also

possible that it may be non-functional, although given that the

nucleotide sequence of the nitrate transporter ORF in AWRI1613

represents the opposite haplotype group to the homozygous

transporter sequence from AWRI1608 (Fig. S8), it would be

expected that at least one of these strains would have a functional

transporter as evidenced by the nitrate assimilation phenotype of

CBS2499, which has one copy of each haplotype.

Further study of nitrate assimilation in D. bruxellensis will reveal

the molecular mechanisms driving the phenotype towards, or

away from, utilisation of this nitrogen source, augmenting

knowledge gained through detailed studies of the preferred yeast

model system for nitrate assimilation, Ogataea parapolymorpha [29].

Materials and Methods

Yeast strain, nucleic acid preparation, and sequencing
D. bruxellensis strains AWRI1608 and AWRI1613 were

obtained from The Australian Wine Research Institute Microor-

ganisms Culture Collection. For nitrate assimilation tests, strains

were grown on solid YPD for 2 days at 30uC, then plated onto

either YNB+ nitrate, YNB+ ammonium as a positive control, or

YNB with no nitrogen source as a negative control. Plates were

then incubated for 7 days at 30uC.

Genomic DNA was prepared using a standard zymolyase and

phenol-chloroform extraction from cultures grown under standard

conditions. DNA sequencing was performed using 26100 bp

paired-end chemistry on the Illumina HiSeq2000 (Ramaciotti

Centre, Sydney Australia).

AWRI1499 genome sequences were obtained from Genbank

(Accession number AHIQ0100000). CBS2499 short-read sequences

were obtained from the NCBI short-read archive (Accession number

SRR065689). Sequence data for AWRI1608 and AWRI1613 have

been deposited in the NCBI short-read archive under the Bioproject

accession PRJNA213658. 26S rDNA sequences for AWRI1499,

1608 and 1613 have been deposited with GenBank (accessions

KF781196, KF781197 and KF781198, respectively).

Mapping assemblies and analysis
Short read sequences were mapped to the AWRI1499 genome

using Novoalign v2.08.01 (www.novocraft.com). The .sam files

produced by Novoalign (default parameters; -F ILM1.8 –

ILQ_SKIP -i PE 100-1000 -o SAM) were converted to sorted

.bam files using samtools view v0.1.18 [30]. SNPs, and regions of

LOH and gain-of-heterozygosity (GOH) were identified from the

alignments using the pileup2snp functionality of Varscan v2.3

(default parameters; -min-coverage 10) [31] combined with

custom python scripts and presented relative to a concatenated

AWRI1499 genome sequence. The position of individual

AWRI1499 Genbank contigs and ORF annotations within the

concatenated genome sequence are provided in Datasets S5 and

S6 respectively. Sequence alignments were visualized using the

Integrated Genome Browser v2.0 [32]. Any region displaying a

maximum allele frequency of .95% was classed as being

homozygous for that allele.

Sequencing coverage was extracted from alignments in .bam

format using mpileup from the samtools v0.1.18 package [30] with

actual coverage values converted to changed ploidy levels in

sliding windows using custom python scripts. Segmental smooth-

ing of copy number alterations calculated final copy number based

on rounding the average value across 21 adjacent genomic

windows. To provide additional robustness against single outliers

producing small false-positive intervals of altered ploidy levels, a

difference of 60.75 was required between the average ploidy of

the current 21 window genomic segment and the predicted ploidy

level of the previous genomic segment in order to trigger a change

in the final predicted ploidy level. If this threshold was not met, the

Figure 6. Schematic representation of D. bruxellensis strain genomes. Each of the D. bruxellensis strains is predicted to contain a conserved
diploid set of chromosomes. In addition, AWRI1499 and AWRI1608 are predicted to both contain a third full set of chromosomes that have been
inherited from more distantly related strains or a closely related species that is unique to each strain (Dekkera x and Dekkera y).
doi:10.1371/journal.pgen.1004161.g006
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average value obtained for the 21 segment window was rounded to

the ploidy level of the previous genomic segment.

Phylogenies were constructed using PhyML v3.0 (GTR model;

default parameters) and visualized using Seaview v4.0 [15,16].

Supporting Information

Figure S1 Copy number variation in CBS2499. (A) Copy

number variant estimation. Average coverage was calculated from

a .bam file using samtools mpileup (v. 0.1.18) and custom scripts

using a window of 5 kb and a step of 1 kb. (B) Relative read

coverage calculated using the count function of igv tools and

displayed using IGV (v. 2.3.20). Maximum coverage was set at six

for direct comparison to panel A. For both datasets, short read-

sequence data from CBS2499 (NCBI SRA accession SRR065689)

was mapped against the CBS2499 genome (http://genome.jgi.

doe.gov/Dekbr2) using Novoalign (v3.01.00).

(PDF)

Figure S2 Whole genome phylogenies of D. bruxellensis. Whole-

genome alignments were produced for each strain by converting

nucleotides within the AWRI1499 reference based upon the

results of the read-mapping and SNP analysis. Any regions

displaying nucleotide insertions or deletions or low read coverage

(,10 reads) in at least one strain were then removed prior to

further analysis. The maximum-likelihood phylogeny was then

calculated for these alignments using PhyML.

(TIF)

Figure S3 Haplotype analysis for additional D. bruxellensis

isolates. Distinct haplotypes were assembled for genomic

regions of AWRI1499, AWRI1608, AWRI1613 and CBS2499

that matched loci studied by Hellborg and Piškur [17] (data

downloaded from NCBI for additional strains on 21 October

2013). Haplotype sequences (Dataset S3) for (A) DbYER090,

(B) DbYDR513, (C) DbYLR048Y, (D) DbYDL040 and (E) DbHAD1

were subjected to maximum-likelihood phylogenetic analysis

[15,16]. Nodes are color-coded according to strain AWRI1499

(green), AWRI1608 (blue), AWRI1613 (red), CBS2499 (yellow).

(PDF)

Figure S4 Phylogenic relationship of D. bruxellensis isolates. 26S

rDNA (D1/D2 domain) sequences for AWRI1499, AWRI1608

and AWRI1613 [1] and 30 other D. bruxellensis isolates [17] were

aligned and a neighbor-joining tree constructed after removal of

all gapped bases [15], with D. anomala as the outgroup. Bootstrap

support from 1000 randomisations indicated in blue. Isolates

exhibiting more than one ribotype denoted by different letters.

(PDF)

Figure S5 Phylogenic analysis of horizontally transferred adenyl

deaminase. Maximum-likelihood phylogenies were produced for

haplotype-resolved predicted protein sequences of DbHAD1 for multiple

D. bruxellensis isolates [17], in addition to the best matches present in the

Genbank non-redundant protein database (at 21 October 2013) and the

canonical D. bruxellensis adenine deaminase (DbADE1) [10]. Escherichia coli

adenosine deaminase was used as the outgroup, and bootstrap

support from 1000 randomisations is indicated in blue.

(PDF)

Figure S6 Broader phylogenic analysis of D. bruxellensis proteins.

Maximum-likelihood phylogenies were produced for haplotype-

resolved predicted protein sequences of three D. bruxellensis ORFs

in addition to the best matches present in the Genbank non-

redundant protein database.

(PDF)

Figure S7 Phylogenic analysis of the nitrate assimilation cluster

in D. bruxellensis. Maximum-likelihood phylogenies were prepared

separately for both nitrite (A) and nitrate (B) reductases. All

homologous protein sequences from the nr Genbank dataset for

members of the Saccharomycotina subphylum are included, in

addition to representative sequences from both Pezizomycotina

and Basidiomycota. Sequences from Mucor circinelloides were included

as an outgroup.

(PDF)

Figure S8 Phylogenic analysis of the predicted nitrate trans-

porter of D. bruxellensis. A maximum-likelihood phylogeny was

constructed from the nucleotide sequence of haplotype-resolved

ORFs from AWRI1499, AWRI1608, AWRI1613 and CBS2499.

Node colors represent the ability of the parent strain to utilize

nitrate as a nitrogen source (green - growth; red - no growth).

(PDF)

Dataset S1 Calculated read coverage and estimated ploidy

levels across D. bruxellensis strains. Observed coverage was

calculated from a .bam file using samtools mpileup (v. 0.1.18) and

custom scripts using a window of 5 kb and a step of 1 kb, with

‘‘average coverage’’ calculated as the average coverage across all

windows. ‘‘Genomic position’’ references the centre of each

window.

(XLSX)

Dataset S2 Heterozygosity and allelic proportions across D.

bruxellensis strains. For each strain, heterozygous nucleotides were

identified and the proportion of aligned reads containing each of

the variant bases recorded. The average major allele frequency

was then calculated (heterozygous_proportion) for sliding windows

across the genome (5 kb window, 1 kb step) and recorded central

to each window (genomic_position).

(XLSX)

Dataset S3 Haplotype-resolved nucleotide sequences for a

selection of D. bruxellensis ORFs. Sequences are presented in fasta

format.

(TXT)

Dataset S4 Protein-based alignments of the nitrate reductase

cluster. Clustal alignments were produced for the predicted nitrate

reductase (YNR1), nitrite reductase (YNI1) and nitrate transporter

(YNT1) proteins from AWRI1608 and CBS2499.

(DOCX)

Dataset S5 Revised annotation of the AWRI1499 genome.

Data is presented in general feature format (.gff).

(TXT)

Dataset S6 Annotation of AWRI1499 concatenated genome

sequence. The start coordinates of each of the AWRI1499 contigs

(listed by Genbank accession) within the concatenated sequence.

(XLSX)
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