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Abstract
Feeding strategies of specialist herbivores often originate from the coevolutionary arms

race of plant defenses and counter-adaptations of herbivores. The interaction between

bamboo lemurs and cyanogenic bamboos on Madagascar represents a unique system to

study diffuse coevolutionary processes between mammalian herbivores and plant

defenses. Bamboo lemurs have different degrees of dietary specialization while bamboos

show different levels of chemical defense. In this study, we found variation in cyanogenic

potential (HCNp) and nutritive characteristics among five sympatric bamboo species in the

Ranomafana area, southeastern Madagascar. The HCNp ranged from 209±72 μmol cyani-

de*g-1 dwt inCathariostachys madagascariensis to no cyanide in Bambusa madagascarien-
sis. Among three sympatric bamboo lemur species, the greater bamboo lemur (Prolemur
simus) has the narrowest food range as it almost exclusively feeds on the highly cyanogenic

C.madagascariensis. Our data suggest that high HCNp is the derived state in bamboos.

The ancestral state of lemurs is most likely "generalist" while the ancestral state of bamboo

lemurs was determined as equivocal. Nevertheless, as recent bamboo lemurs comprise

several "facultative specialists" and only one "obligate specialist" adaptive radiation due to

increased flexibility is likely. We propose that escaping a strict food plant specialization

enabled facultative specialist bamboo lemurs to inhabit diverse geographical areas.

Introduction
Antagonistic interactions between herbivores and plants, parasites and their hosts as well as
predators and prey can be driven by escalating co-evolutionary arms races, in which the focus
of selection on the host or prey is to escape the interaction, and the focus of selection on the
enemy is to overcome those escape strategies or defenses [1–3]. In plant-herbivore systems, the
result can be sophisticated arsenals of mechanical and chemical defenses in plants and
counter-defense mechanisms ranging from behavioral to physiological adaptations in herbi-
vores [4–6]. Although the evolution of physiological adaptations of herbivores (physiological
specialists) to overcome specific toxic constituents in their host plants is commonly observed
(i.e. increasing specialization), the opposite direction may also evolve through the development
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of a more generalist foraging strategy (behavioral generalists) [7,8]. By using a generalist forag-
ing strategy, herbivores can reduce the negative impact of particular toxins in specific plant
species by "diluting" these toxins as they utilize a broader range of different food plant species
[9,10]. Another potential advantage of generalization over specialization is the expansion of
the diversity of suitable host plants and potentially larger spatial distribution ranges [11].

Coevolutionary processes between plant defenses and herbivores have been described in
detail for some groups of herbivores, particularly in insects [12–15]. Such processes have been
little studied in other animal groups in comparison [16,17], including mammalian herbivores
(but see [6,18–22]). In contrast to phytophagous insects, which often feed on only one plant
family or genus, dietary specialization is considered the exception rather than the rule in verte-
brate herbivores [9,23–30]. In fact, 98% of mammalian herbivores are generalist feeders [31–
33], whereas across all herbivorous insects, it is estimated that<10% feed on plants in more
than three different plant families [4,34]. Traditionally, ecologists have classified herbivores as
specialists only if they consume one or a small number of different food items in their native
habitat (i.e., a limited realized diet) [23,24]. Recently, many ecologists have defined a specialist
herbivore as one that displays unique physiological (Heliconius sara [35]), behavioral, or mor-
phological adaptations (Zygaena filipendulae [36]) to consume what Robinson and Wilson
[37] refer to as an intrinsically "difficult" diet. A difficult diet is one that is not commonly used
by other herbivores because of chemical or physical characteristics that make it generally
unpalatable or of low nutritional value [27,38,39]. "Obligate specialists" always have a narrow
food range of difficult food items and show morphological adaptations and/or the loss of
redundant behavioral flexibility precluding them from expanding their diet under changed
environmental conditions. "Facultative specialists" have a consistently narrow range of food
sources during at least one spatial or temporal scale, but are able to expand their diet to include
less difficult foods when environmental conditions allow. "Facultative generalists" are able to
consume a wide variety of foods. However, they may occasionally demonstrate a narrow food
range on less difficult plants in a similar manner to specialists. "Obligate generalists" always
have a wide realized niche because of a relatively narrow fundamental niche, precluding them
from eating much of any difficult plant [39].

Bamboo lemurs of the genus Prolemur and Hapalemur are herbivores, which primarily feed
on a range of bamboo species [40,41]. However, species of the genusHapalemur can also feed
on alternative plants as primary food source in areas where bamboo is absent [42]. In the Rano-
mafana area in Southeast Madagascar, three species of bamboo lemurs (greater bamboo lemur,
P. simus; golden bamboo lemur, H. aureus; and gray bamboo lemur H. griseus) occur sympatri-
cally. These lemurs show different degrees of food plant specialization varying from obligate
specialists to facultative specialists. At this site, five bamboo species (Cathariostachys madagas-
cariensis, Cathariostachys capitata, Nastus elongatus, Cephalostachyum sp., and Bambusa
madagascariensis), with different levels of cyanogenic chemical defense, serve as food plants
for the bamboo lemurs. Existing interactions between the lemurs and bamboo species have
repeatedly been observed under natural field conditions [40, 43–46]. In this system, the greater
bamboo lemur represents the most specialized herbivore. This lemur species lives almost
entirely on a single bamboo species, giant bamboo (C.madagascariensis), which accounts for
more than 95% of its diet [40] and therefore can be considered an obligate specialist. The other
two lemur species, the golden and the gray bamboo lemur also rely heavily on C.madagascar-
iensis, which in our study area constitutes 78% and 72% of their diets, respectively [40]. How-
ever, throughout their distribution range these species make regular use of other bamboos as
well as various plant species, even from different families, making them facultative specialists.
In particular, H. griseus and its subspecies (which have recently been elevated to species status
and are referred to asH. occidentalis,H.meridionalis, H. alaotrensis, and H. gilberti; [47])
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occur in various habitats ranging from littoral forests to swamps that contain little or no woody
bamboo. In their habitats, the lemurs feed on a range of different plant species [42] and thus
obviously are able to expand their diet to include less difficult foods when environmental con-
ditions allow. These lemurs do not occur in the Ranomafana area.

Giant bamboo (C.madagascariensis) contains> 200 μmol cyanide per gram dry weight
making it one of the most cyanogenic plants worldwide [48] and therefore clearly represents a
difficult diet [40]. Plant cyanogenesis is defined as the enzymatically accelerated release of
highly toxic hydrogen cyanide from preformed cyanogenic compounds–mostly cyanogenic
glycosides–in response to cell damage [49]. Toxicity of cyanide to vertebrates mainly is due to
the inhibition of the mitochondrial respiration pathway by blocking the cytochrome a/a3
dependent oxidase. Furthermore, cyanide blocks the oxygen binding site in hemoglobin, thus,
reducing oxygen transport capacities in blood [50]. Beyond these major toxic actions of cya-
nide, the activity of many other metal-containing enzymes (e.g. peroxidases, catalases) is inhib-
ited as the cyanide ion binds to their active center [50]. In particular, the inhibition of cellular
respiration caused by cyanide is a general mechanism making this chemical toxic to all eukary-
otes. Consequently, cyanogenesis is considered an effective plant defense against multiple
groups of herbivores [51–54]. As the young shoots of C.madagascariensis, which are a favored
food source of the lemurs when seasonally available, show exceptionally high cyanide concen-
trations [48], the cyanide uptake by P. simus is arguably the most extreme case of regular cya-
nide intake ever described for mammals. Based on plant cyanide content and the amount of
plant material consumed, the lemurs ingest up to 48 times the lethal cyanide dose of an average
mammal per day [48].

Due to the availability or quality of host plants, herbivorous food specialists often show
restrictions in their distribution range [55,56]. In this line, the present-day distributions of
both the greater bamboo lemur and the golden bamboo lemur are strongly restricted. The
golden bamboo lemur occurs in the rainforests of southeastern Madagascar including the
Ranomafana National Park and further south in the Andringitra National Park as well as in the
corridor between these areas [43,57–58] and possibly northeast to the region of Betsakafan-
drika [59]. The distribution of the greater bamboo lemur, which shows the highest food spe-
cialization, is even more restricted. The distribution range includes the south-central portion of
the country’s eastern rainforests at elevations of 200–1,100 m [60,61]. Like the golden bamboo
lemur, this species occurs in the Andringitra National Park and in our study area, the Ranoma-
fana National Park. Furthermore, the species was found in rainforests in the region of Anda-
sibe/Perinet and in the forest of Maromizaha [41,62–64]. However, in contrast to their current
limited distribution, historical records and subfossils confirm a formerly widespread occur-
rence of P. simus that covered wide areas of Madagascar [65]. Compared to the highly special-
ized greater and golden bamboo lemurs, the less specialized gray bamboo lemur (H. griseus)
faces a lower risk of extinction.Hapalemur griseus shows a wide distribution range throughout
the remaining forests of eastern Madagascar from the Tsaratanana Massif and an area south of
Maroantsetra in the far north to Fort Dauphin in the far south [66].

The evidence that―in addition to human impact―food specialization limits distribution
range and potentially incurs a higher risk of isolation and ultimately extinction leads to the
question of whether food specialization is an ancestral or derived trait in bamboo lemurs. To
better understand the potential role of food quality for the evolution of specialization, we asked
four questions: (1) Are there quantitative differences in cyanogenic potential (HCNp; concen-
tration of cyanogenic precursors) among different bamboo species? (2) Is there covariation of
cyanide and soluble protein in bamboo shoots as a representative nutritive trait (3) How did
HCNp in bamboos evolve? (4) Did bamboo lemurs evolve towards a higher specialization or
towards expansion of food plant use? To address these questions, we compared quantitative
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data on HCNp and soluble protein concentration of C.madagascariensis as well as four other
bamboo species (C. capitata, N. elongatus, Cephalostachyum sp., B.madagascariensis), which
serve as food plants for the three bamboo lemurs in southeastern Madagascar in and around
the Ranomafana National Park. We then mapped the HCNp of these bamboo species on a phy-
logeny to test our hypothesis of an evolutionary increase in cyanide concentration in bamboos.
Finally, we tested whether lemur evolution is driven by increased specialization or relaxation of
host plant specificity.

Materials and Methods

Ethics Statement
The bamboo species collected for this study are not threatened species. Plant samples were col-
lected outside protected areas of Ranomafana National Park (permit N°020/08/MEEFT/SG/DGEF/
DSAP/SSE as obtained by the MINISTERE DE L’ENVIRONMENT, DES EAUX ET FORETS ET DU TOURISME). The
conducted research is in compliance with laws and ethical standards of the countries in which
research was conducted.

Study Site and Plant Material
Field studies on Madagascar were conducted in January-February 2008. Study sites were
located in the southeast of Madagascar with the main study site being in the vicinity of the
Ranomafana National Park, Fianarantsoa (~21°15´ S and 047°25´ W, elevation 1000 m). The
four bamboo species C.madagascariensis, Cephalostachyum sp., N. elongatus, and B.madagas-
cariensis were collected at this site. Samples of C. capitata were collected in nearby Kianjavato
(~21°21´ S and 047°45´, elevation 300 m). See S1 Table for detailed information on sample
location, sampling date, and voucher specimen deposition.

Young shoots of all five bamboo species collected in the field were analyzed for cyanogenic
potential (HCNp = concentration of cyanogenic precursors) and concentration of soluble pro-
teins (see below). In C.madagascariensis and C. capitata, we differentiated between two types
of shoots: i) ground shoots, i.e. shoots growing from subterraneous rhizomes and ii) branch
shoots located up to 15 m above ground in the canopy area of mature leaf-carrying shoots (Fig
1), whereas the other bamboo species showed no branch shoots at time of analysis. Shoots
selected for analysis had freshly developed during the rainy season (December-March). At time
of collection, ground shoots were 30 cm to 50 cm in height, whereas branch shoots were 10 cm
to 30 cm in length. Samples were collected outside protected areas of Ranomafana National
Park but within lemur forage areas according to observed feeding damage on bamboo shoots
and branches or leaf remains beneath bamboo plants.

Bamboo Chemistry
Sampling. In the present study, we focused on young shoots of bamboos as these plant

parts represent a central component of the diet of bamboo lemurs. We quantified the cyano-
genic potential (HCNp) as the most characteristic toxic trait in bamboo. In addition, we quan-
tified soluble protein concentration as an important nutritive trait [67]. To avoid a premature
release of HCN due to damage or degradation processes of plant tissues, shoots were sampled
quickly in the morning. Injury of shoots during collection and transport was avoided and entire
shoots were transported to the field lab. In the field laboratory, we measured quantitative varia-
tion of both traits in ground shoots and branch shoots (if available), and we considered ontoge-
netic variability of traits by sampling defined parts of the shoots, which in our previous study
proved to be a good estimate for the overall cyanide concentration in the shoots [48]. Shoots
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were cut lengthwise and shoot material was collected with a cork borer (9 mm in diameter).
Each sample was then cut lengthwise with a razor blade exactly in the middle. One part was

Fig 1. Cyanogenic potential, protein concentration and cyanide per protein ratio in shoots of sympatric bamboo species in the
Ranomafana area.Ground shoots of five (left column) and branch shoots of two (right column) different bamboo species serving as food plants for
bamboo lemurs in southeastern Madagascar were analyzed for their cyanogenic potential (HCNp; amount of cyanogenic precursors),
concentration of soluble protein, and the nutritionally important ratio of cyanide per protein. Bars are means ± SE. Different small-typed letters
above the bars represent significant differences according to post-hoc analysis (Tukey’s HSD, P < 0.05) after one-way ANOVA. Asterisks
(**P < 0.01) in the right column represent significant differences between traits according to t-tests, whereas “n.s.”means no significant
differences.

doi:10.1371/journal.pone.0158935.g001
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used for nutritional analysis in the field and the other was dried at 75° C in a drying oven until
constancy of weight and weighed to the nearest 0.001 g. Both HCNp and protein are referred
to in dry weight. Branch shoots were treated equally to ground shoots.

Quantification of HCNp
The cyanogenic potential (HCNp) of shoot samples was measured by extraction and subse-
quent enzymatic degradation of cyanogenic precursors from plant material according to Ball-
horn et al. [48]. Directly before analysis, plant material was ground for extraction of
cyanogenic precursors with a mortar and pestle, which were kept on ice. Ice-cold 0.067 mol l-1

disodium hydrogen phosphate (2 ml g-1 fwt) and small amounts of sterilized sea sand (Sigma
Aldrich, Deisenhofen, Germany) were added. The homogenized samples were filtered using 5
ml PE syringes (B. Braun AG, Melsungen, Germany) supplemented with cotton and the filtrate
was used immediately for further HCNp and protein analysis.

For enzymatic degradation of the cyanogenic precursors, exogenous β-glucosidase from
almonds (FlukaChemie AG, Buchs, Switzerland) in phosphate-citrate buffer (McIlvaine
buffer), pH 5.6, was added to the respective sample in an amount that corresponded to 20 nkat.
An enzyme activity of 1 kat (katal) is defined as a substrate conversion rate of 1 mol substrate
per second under standard temperature and pressure [68]. Activity of β-glucosidase was deter-
mined by using p-nitrophenyl-β-D-glucopyranoside (Merck KGaA, Darmstadt, Germany) as
an artificial chromogenic substrate. Thunberg vessels were used as reaction flasks for the deter-
mination of HCNp [69]. These vessels were sealed by a glass stopper with a side bulb (volume
of about 5 ml). Thus, the vessels contained a closed headspace and the released HCN could not
leak from the preparation. The mixture for incubation consisted of 0.05 ml supernatant of the
filtered sample, 0.45 ml 0.067 mol l-1 aqueous sodium dihydrogen phosphate solution, 0.10 ml
β-glucosidase solution, and 0.60 ml 0.2 mol l-1 NaOH in the side bulb of the stopper. This mix-
ture was incubated in a water bath for 25 min at a temperature of 30°C. The enzymatic reaction
was stopped by the addition of the NaOH solution, which was added from the side bulb of the
stopper to the incubation mixture. By adding NaOH, the sodium salt of HCN was formed,
which then was spectrophotometrically quantified using the Spectroquant1 cyanide test
(Merck).

The standard preparation for spectrophotometric measurement of cyanide consisted of one
aliquot (0.025 ml of shoot extract) that was taken from the stoppered incubation mixture. The
sample was neutralized by adding 0.1 mol l-1 HCl (0.025 ml) and made up to a total volume of
5 ml by adding ddH2O. The concentration of the chromogenic product (polymethine; in the
sample one mol of formed polymethine dye (Spectroquant1 cyanide test) corresponds to 1
mol cyanide) was measured spectrophotometrically after 5 min of incubation time at a wave-
length of 585 nm (Genesys 20, Thermo Spectronic, Madison, WI, USA). Quantification of cya-
nide in leaf samples was conducted using a calibration curve prepared from KCN solutions (in
0.067 mol l-1 aqueous sodium dihydrogen phosphate buffer) ranging from 0 to 1 mmol CN-

per liter.

Quantification of Soluble Proteins
Samples were analyzed for concentration of soluble proteins according to Bradford [70]. The
Bradford reagent (Biorad Laboratories, Munich, Germany) was diluted 1:5 with water and
20 μl of each sample were added to 1 ml of diluted Bradford solution. Bovine serum albumin
(BSA; Fluka Chemie AG, Buchs, Switzerland) at different concentrations was used as standard
[71]. After 5 min of incubation, the concentration of protein was spectrophotometrically mea-
sured at 595 nm (Genesys 20, Thermo Spectronic, Madison, WI, USA). We used the same
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individual plant extracts for protein measurements that were used for HCNp analyses. Thus,
both traits could be quantitatively related to the same individual sample. The Bradford assay is
suitable for estimating nutritive value in plants which are particularly rich in nitrogen-contain-
ing defense compounds as this assay is not measuring all nitrogen (as for example Kjeldahl
which does not distinguish between the source of detected nitrogen), but only soluble and eas-
ily digestible proteins [67].

Quantitative effects of potential interference of plant phenolic compounds with plant pro-
tein during analyses were investigated in preliminary experiments in which individual plant
samples were cut lengthwise while one subsample was analyzed with and the other without
addition of polyvinylpolypyrrolidone (PVPP; Sigma-Aldrich, Buchs, Switzerland) before
extraction [72]. PVPP serves as an effective absorbent for phenolic compounds [73]. Protein
concentration under addition of PVPP was never higher than in samples not treated with
PVPP indicating a limited impact of phenolics in bamboo on the digestibility of plant proteins
(data not shown).

Bamboo Phylogeny
DNA extraction and amplification. Total genomic DNA of all bamboo species was

extracted from silica-gel-dried leaf material using the DNeasy1 Plant Kit (Qiagen, Valencia,
CA, USA) following the manufacturer’s protocol. The final elution of DNA was performed
with 200 μl sterile water instead of AE buffer. A fragment of the chloroplast rpl16 intron was
amplified. Primers used for amplification were F71 (5’-GCTATGCTTAGTGTGTGACTCGT
TG-3’) and R1661 (5’-CGTACCCATATTTTTCCACCACGAC-3’; [74]).

Polymerase chain reaction (PCR) was carried out in 25 μl reaction volumes consisting of
2.5 μl 10x PCR buffer (Roche), 2.5 μl dNTPs (at 2mM for each dNTP), 2.5 μl 10x Bovine
Serum Albumin (BSA), 0.2 μl Taq Polymerase (Roche), 1.0 μl of each primer (10 μM), 11.3 μl
ddH2O, and 4 μl of undiluted DNA-isolate. Thermal cycling parameters were: initial denatur-
ation for 5 min at 95°C; 34 cycles of 95°C for 1 min, 55°C for 1 min, 72°C for 2 min; and a final
elongation for 10 min at 72°C. After amplification, samples were kept at 4°C. Amplification
products were viewed on 1% agarose gels (low melt) stained with ethidium bromide, and subse-
quently excised and purified using GELase enzyme (Epicentre, Madison, WI).

Fragments were sequenced using the Big Dye Terminator reaction kit (ABI PRISM, Applied
Biosystems, Forster City, USA). For sequencing, the same set of primers was used as for PCR
amplification in addition to the primers SAK8 (5’-CCATCCCACCCAATGAAG-3’) (http://
www.eeob.iastate.edu/research/bamboo/pdf/PCR_protocols.pdf) and R1516 (5’-CCCTTCAT
TCTTCCTCTATGTTG’-3) [75]. Cycle sequencing was conducted with the following program:
initial denaturation for 1 min at 96°C followed by 32 cycles of 96°C for 15 s, 50°C for 10 s, 60°C
for 4 min. Sequence products were precipitated with 10 μl sterile dH2O, 2 μl of 3 m NaOAc,
and 50 μl of 95% ethanol before they were loaded on an ABI 3730 (Applied Biosystems) auto-
matic sequencer.

Sequence Alignment
ABI traces were assembled with Geneious 5.4.3 [76] and manually adjusted. All sequences were
unambiguous. The identity of sequences was verified using blast search [77]. Sequences were
aligned using MUSCLE [78] as implemented in Geneious 5.4.3. Alignment parameters were
default. In addition to sequences of 10 specimens (five species) generated in our lab, we down-
loaded a set of 46 sequences (representing 42 species from seven subtribes within the tribe
Bambusoideae plus two outgroup taxa) from GenBank. We chose this single gene because of
the taxonomic coverage in GenBank. No other genes were published with a similarly high
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representation at the time of analyses. Accession numbers and vouchers of all samples are
given in Table 1 and S1 Table.

Phylogenetic Analyses
For phylogenetic analyses, we used a Bayesian approach and aMaximum likelihood (ML) analysis
as described previously [79]. Here, we adopted a conservative perspective and considered only
those clades as well-supported that had a posterior probability of at least 0.95 and bootstrap support
equal to or above 70%. The Bayesian (B/MCMC) analyses were performed usingMrBayes 3.1.2
[80]. Posterior probabilities were approximated by sampling the trees using aMarkov chain Monte
Carlo (MCMC)method. The sequences were tested for the most appropriate model of DNA substi-
tution analyses by the programMrModeltest version 2.3 [81]. Using AIC, GTR+ Γwas determined
as the most appropriate maximum likelihood model of evolution for our dataset. MrBayes esti-
mated the proportion of invariant sites, the gamma distribution shape parameter, base frequencies,
and the substitution rates. No molecular clock was assumed. A run with 10,000,000 generations
starting with a random tree and employing 4 simultaneous chains was executed. Every 100th tree
was saved into a file. The first 2,500,000 generations (i.e., the first 25,000 trees) were deleted as the
“burn-in” of the chain. We plotted the log-likelihood scores of sample points against generation
time using TRACER v1.5 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure that stationarity was
reached after the burn-in by checking whether the log-likelihood values of the sample points
reached a stable equilibrium value [80]. Of the remaining 150,000 trees (75,000 from each of the
parallel runs) a majority rule consensus tree with average branch length was calculated using the
“sumt” option of MrBayes. Posterior probabilities were obtained for each clade.

The maximum likelihood (ML) analysis was performed with GARLI Version 0.951 [82]
using default settings. Bootstrap support was based on 1,000 replications.

Lemur Phylogeny and Ancestral States Reconstruction
Published nucleotide sequences for several mitochondrial genes (12s rRNA, cytochrome c oxi-
dase subunit II (COII), cytochrome b (cyt-b), D-loop, as well as the Pastorini fragment (PAST)
covering NADH3, NADH4L, NDH4 and 5 tRNAs) were obtained from GenBank (see Table 2
for accession numbers). These loci were chosen on the basis of taxonomic coverage; other can-
didate loci were discarded because of poor representation. In instances where a subspecies had
recently been elevated to species level (withinHapalemur) the most recent names were adopted
and the taxonomy, presented by Mittermeier et al. [47], was followed. We included a total of
five (out of six recognized)Hapalemur species (H. alaotrensis,H. aureus, H. griseus,H.meri-
dionalis,H. occidentalis), Prolemur simus, Lemur catta, three Eulemur species, two Varecia spe-
cies from the Lemuridae family as well as three outgroup taxa from the Indriidae family (Indri
indri, Avahi occidentalis, Propithecus coquereli). The choice of outgroup taxa was made in ref-
erence to previous studies of primate phylogeny [83].

Sequences of each mitochondrial protein-coding gene were aligned using amino acid
sequences. For sequences of the D-loop region, ambiguously aligned regions were removed
using Gblocks version 0.91b [84]. Models for DNA substitution were estimated for each gene
in MrModeltest version 2.3 [81]. Using AIC, GTR+I+ Γ was determined as the most appropri-
ate maximum likelihood model of evolution for the 12S, COII, cyt b, and PAST while the HKY
+I+ Γ was determined the best fit maximum likelihood model for the D-loop region. The data
set was partitioned into nine parts (12S, 1st, 2nd, 3rd codon positions of COII, 1st, 2nd, 3rd codon
positions of cyt-b, D-loop, PAST). For each of the nine partitions, MrBayes estimated the pro-
portion of invariant sites, the gamma distribution shape parameter, base frequencies, and the
substitution rates (GTR model) or transition/transversion ratio (HKY model). Each partition
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Table 1. Bamboo species and specimens included in the phylogenetic study, with GenBank accession numbers. All ingroup taxa belong to the tribe
Bambuseae (woody bamboos) and subtribes are given. Sequences generated in this study are indicated in bold.

Species/Specimen Subtribe rpl16 intron GenBank accession no

Arthrostylidium ecuadorense Arthrostylidiinae AY912189

Arundinaria gigantea Arundinariinae U54742

Arundinaria gigantea Arundinariinae AF133465

Atractantha radiata Arthrostylidiinae AY912190

Aulonemia fulgor Guaduinae EF589613

Bambusa longispiculata Bambusinae AF133470

Bambusa longispiculata Bambusinae U54745

Bambusamadagascariensis H2 Bambusinae KX528698

Bambusamadagascariensis H3 Bambusinae KX528696

Bambusa vulgaris Bambusinae AY912192

Buergersiochloa bambusoides outgroup AF133461

Cathariostachys madagascariensisGB Hickelinae AY912202

Cathariostachys madagascariensis A1 Hickelinae KX528694

Cathariostachys madagascariensis B1 Hickelinae KX528695

Cathariostachys capitata C2 Hickelinae KX528690

Cathariostachys capitata C3 Hickelinae KX528691

Cephalostachyum sp. F2 Melocanninae KX528692

Cephalostachyum sp. G2 Melocanninae KX528693

Cephalostachyum pergracile Melocanninae AY912199

Decaryochloa diadelpha Hickelinae AY912203

Eremocaulon asymmetricum Guaduinae EF589615

Eremocaulon aureofimbriatum Guaduinae EF589616

Glaziophyton mirabile Hickelinae AF133471

Glaziophyton mirabile Arthrostylidiinae U54748

Greslania circinata Hickelinae AY912204

Greslania rivularis Hickelinae AY912205

Guadua aculeata Guaduinae EF589617

Guadua amplexifolia Guaduinae EF589618

Guadua longifolia Guaduinae EF589619

Guadua paniculata Guaduinae EF589620

Guadua velutina Guaduinae EF589621

Hickelia madagascariensis Hickelinae AY912206

Nastus borbonicus Hickelinae AY912207

Nastus elatus Hickelinae AF133469

Nastus elatus Hickelinae U54746

Nastus elegantissimus Hickelinae AY912208

Nastus elongatus Hickelinae AY912209

Nastus elongatus E1 Hickelinae KX528697

Nastus elongatus E2 Hickelinae KX528698

Nastus productus Hickelinae AY912210

Olmeca recta Guaduinae EF589622

Olmeca reflexa Guaduinae EF589623

Oryza sativa outgroup DQ289148

Otatea acuminata Guaduinae U54789

Otatea acuminata Guaduinae AF133474

Oxytenanthera abyssinica Bambusinae AY912193

(Continued)
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was allowed to have its own model parameters as proposed by Nylander et al. [85]. Bayesian
analyses, ML analyses using GARLI were performed exactly as described above for bamboo.

For the lemur phylogeny, we also conducted a maximum parsimony analysis (MP) with
PAUP� [86] using the random stepwise addition option of the heuristic search for 500 repli-
cates with tree bisection-reconnection (TBR) branch swapping, collapse of zero length
branches, and equal weighting of all characters. A strict consensus was performed to summa-
rize the results. To measure the robustness of branching patterns of the parsimony trees, boot-
strap analyses (bs) [87,88] were executed by using the closest stepwise addition of the heuristic
search for 500 replicates. Phylogenetic trees were drawn using TREEVIEW [89].

The lemurs’ degree of specialization was reconstructed based on the Bayesian inference
of the lemur phylogeny. Three character states representing different degrees of specialization
[0 = (obligate/facultative) generalists, 1 = facultative specialist, and 2 = obligate specialist]
[27,38–39] were considered potential ancestral states. Ancestral states were reconstructed with
maximum likelihood as the optimality criterion [90] on 1000 trees sampled with B/MCMC

Table 1. (Continued)

Species/Specimen Subtribe rpl16 intron GenBank accession no

Perrierbambus madagascariensis Hickelinae AY912211

Phyllostachys pubescens Shibataeinae AF133467

Phyllostachys pubescens Shibataeinae U54744

Pseudosasa japonica Arundinariinae AF133466

Puelia olyriformis outgroup AF133487

Schizostachyum brachycladum Melocanninae AY912200

Schizostachyum luzonicum Melocanninae AF133468

Schizostachyum luzonicum Melocanninae U54747

Sirochloa parvifolia Hickelinae AY912212

Temburongia simplex incertae sedis AY912214

Valiha diffusa Hickelinae AY912213

doi:10.1371/journal.pone.0158935.t001

Table 2. Lemur species and gene fragments included in the phylogenetic study, with family and GenBank accession numbers. Gene fragments:
PAST, Pastorini fragment covering NADH3, NADH4L, NDH4 and 5 tRNAs; 12s rRNA; cyt-b, cytochrome; COII, cytochrome c oxidase subunit II; D-loop.

Gene fragment

Species Family PAST 12S D-loop cyt b COII

Avahi occidentalis Indriidae AY582560 AF474241 AY584497 EF103291 AY584483

Eulemur fulvus Lemuridae NC_012766 NC_012766 NC_012766 NC_012766 NC_012766

Eulemur macaco Lemuridae NC_012771 NC_012771 NC_012771 NC_012771 NC_012771

Eulemur mongoz Lemuridae NC_010300 NC_010300 NC_010300 NC_010300 NC_010300

Hapalemur alaotrensis Lemuridae AF224576 AJ430037 AJ428969

Hapalemur aureus Lemuridae AY582549 AF474239 AY584489 AY441446 AY515557

Hapalemur gilberti Lemuridae

Hapalemur griseus Lemuridae AY582551 AY582716 AY584490 HGU53574 AY569204

Hapalemur meridionalis Lemuridae AJ429205 AY441447

Hapalemur occidentalis Lemuridae AY582553 AY582719 AY584492 AJ428982 AY569205

Indri indri Indriidae DQ856049 AY043340 DQ855966 AY441455

Lemur catta Lemuridae NC_004025 NC_004025 NC_004025 NC_004025 NC_004025

Prolemur simus Lemuridae AY582548 AF474238 AY584488 AJ428977 AY569210

Propithecus coquereli Indriidae NC_011053 NC_011053 NC_011053 NC_011053 NC_011053

Varecia rubra Lemuridae AF224590 AF175791 AF173505 AY441450 VAEMTCOII

Varecia variegata Lemuridae NC_012773 NC_012773 NC_012773 NC_012773 NC_012773

doi:10.1371/journal.pone.0158935.t002
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using the Trace Character Over Trees option in Mesquite 0.995 [91]. Using a likelihood ratio
test, the asymmetric two-parameter model was selected for this analysis. Only ancestral states
reconstructed with raw likelihood scores greater than 2.0 (i.e., the default setting T = 2.0 in
Mesquite), corresponding to a conservative approximation of proportional likelihood values
>0.95 in our analysis, were considered to be significant following Edwards [92].

Statistical Analyses
Differences of ground shoot HCNp, protein concentration, and cyanide per protein among the
five bamboo species included in this study were statistically analyzed using post-hoc analyses
(Tukey’s HSD; P< 0.05) after one-way ANOVA. We tested for significant differences of the
above-mentioned traits between branch shoots of C.madagascariensis and C. capitata using t-
tests. Only these two species had developed branch shoots at the time of our fieldwork. All sta-
tistical analyses were carried out using the Statistical Package for Social Sciences (SPSS) 16.0
(SPSS for Windows, SPSS, Chicago, IL, USA).

Results

Cyanogenic Potential of Bamboos
Ground shoots of the different bamboo species showed significant differences in cyanogenic
potential (HCNp) (F4,20 = 18.72; P< 0.001; Fig 1). Cathariostachys madagascariensis was the
highest cyanogenic plant with concentrations of cyanide ranging from 68.7 to 223.8 μmol
HCN�g-1 dwt in ground shoots. Shoots of C. capitata showed lower cyanide concentrations
ranging from 64.7 to 150.6 μmol HCN�g-1 dwt in ground shoots, whereas ground shoots of N.
elongatus and Cephalostachyum sp. contained lower amounts of cyanide ranging from 75.0 to
102.2 and 12.3 to 21.4 μmol HCN�g-1 dwt in ground shoots, respectively (Fig 1). HCNp among
ground shoots of C.madagascariensis, C. capitata and N. elongatus showed no significant dif-
ferences, whereas HCNp in Cephalostachyum sp. and B.madagascariensis was significantly
lower (B.madagascariensis contained no detectable amounts of cyanide at all).

Cyanogenic potential in branch shoots of C.madagascariensis and C. capitata ranged
between 110.2 to 328.5 and 19.4 to 98.6 μmol HCN�g-1 dwt, respectively. Branch shoots of C.
madagascariensis had significantly higher cyanide concentrations compared to branch shoots
of C. capitata (F = 12.33, T = 8.01, df = 30, P< 0.01).

Soluble Protein in Bamboos
Concentration of soluble proteins showed significant variation among the bamboo species
tested (according to one-way ANOVA; F4,20 = 12.20; P< 0.001). Protein concentration was
significantly higher in ground shoots of Cephalostachyum sp. compared to ground shoots of
the other bamboo species, which showed no significant differences among each other (Fig 1).
In Cephalostachyum sp., protein concentrations ranged from 50.5 to 72.3 mg�g-1 dwt. Bambusa
madagascariensis showed protein concentrations ranging between 30.3 and 50.9 mg�g-1 dwt.
Protein concentrations in ground shoots of C.madagascariensis (23.3 to 46.4 mg�g-1 dwt), C.
capitata (24.8 to 43.3 mg�g-1 dwt), and N. elongatus (32.6 to 38.5 mg�g-1 dwt) were similar to
each other and were the lowest among the bamboo species analyzed. The amount of proteins
in branch shoots of C.madagascariensis was higher when compared to the ground shoots and
ranged from 33.4 to 76.0 mg�g-1 dwt, whereas protein concentration in branch shoots of C.
capitata was lower when compared to ground shoots and showed values between 14.8 and 40.2
mg�g-1 dwt. Differences in protein concentration in branch shoots of C.madagascariensis and
C. capitata were not significant (F = 0.56, T = 6.38, df = 30, P = 0.46).
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Cyanide per Protein
The nutritionally important ratio of HCN per protein in ground shoots showed significant var-
iation [according to one-way ANOVA (F4,20 = 39.86; P< 0.001; Fig 1] and largely resembled
patterns of cyanogenic potential (HCNp) among species. In ground shoots, the HCN per pro-
tein ratio showed highest values in C.madagascariensis ranging between 2.7 and 4.9 μmol
HCN�mg-1 protein. Values in C. capitata were not significantly lower than in C.madagascar-
iensis and ranged between 1.8 and 4.2 μmol HCN�mg-1 protein in ground shoots. Cyanide per
protein ratios in ground shoots of N. elongatus ranged between 2.2 and 2.8 μmol HCN�mg-1

protein and were significantly lower than values for C.madagascariensis but did not differ sig-
nificantly from C. capitata. Cephalostachyum sp. showed significantly lower HCN:protein
ratios than N. elongatus ranging between 0.2 and 0.3 μmol HCN per mg-1 protein, whereas B.
madagascariensis contained no cyanide (see above).

The cyanide per protein ratio in branch shoots of C.madagascariensis and C. capitata ran-
ged between 2.5 to 7.3 and 0.3 to 5.0 μmol HCN�mg-1 protein, respectively. Differences in the
HCN per protein ratio between branch shoots of C.madagascariensis and C. capitata were not
significant (F = 0.09, T = 4.18, df = 30, P = 0.77).

Host Plant Phylogeny
To generate a molecular phylogeny of bamboo, a total of 56 (10 new) sequences were used. A
matrix with 1172 unambiguously aligned nucleotide position characters was produced for anal-
ysis. The alignment is available in TreeBASE (http://purl.org/phylo/treebase/phylows/study/
TB2:S18996). The mean log likelihood of the Bayesian tree sampling was –3878.408 using the
GTR + Γmodel in MrBayes v3.1.1 [76] with 10,000,000 generations. The maximum likelihood
search in GARLI v0.94 [78] resulted in a maximum likelihood tree with a final score of lnL =
-3297.1615. Detailed information on base composition and estimated parameter values is given
in S2 Table. The base composition of the chloroplast rpl16 intron in the study species was
highly AT biased (0.685), as is typical of chloroplast introns, and similar values were reported
by Clark et al. [93].

Since the topologies of the ML and B/MCMC analyses did not show any strongly supported
conflicts, only the 50% majority-rule consensus tree of Bayesian tree sampling is shown. Those
nodes that received strong support (i.e., posterior probability (pp)� 0.95 in B/MCMC analysis
as well as ML bootstrap� 70%) in both the ML and Bayesian were considered significant (Fig
2). Based on our dataset, several genera (i.e., Bambusa, Cephalostachyum, Nastus) and subtribes
(Bambusinae, Hickelinae, Melocanninae) are not supported as being monophyletic. Neverthe-
less, Malagasy Hickelinae and Cephalostachyum sp. (Melocanninae) were strongly supported
as being monophyletic and appear to be derived within the woody bamboos (tribe Bambuseae).
This clade contained all species that we tested positive for cyanide (i.e., C.madagascariensis, C.
capitata, Cephalostachyum sp., N. elongatus). Within the clade of the Malagasy Hickelinae +
Cephalostachyum sp., the taxa are not resolved and we cannot make any predictions of the evo-
lutionary course within this group. However, the sympatric species B.madagascariensis (sub-
tribe Bambusinae) tested negative for cyanide and appears at a basal position within the woody
bamboos (Fig 2).

Lemur Phylogeny and Ancestral States Reconstruction
To infer the molecular phylogeny of bamboo lemurs, we used 69 sequences of 15 lemur taxa
(Table 2). The final alignment consisted of 5523 bp for the following five gene regions: A frag-
ment of the 12S rDNA region (840 bp), the cytochrome c oxidase subunit II (COII) (684 bp),
the cytochrome b (cyt b) (1140 bp), a portion of the D-loop fragment (465 bp), and the
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Pastorini fragment (PAST) (2394 bp). The combined alignment is available in TreeBASE
(http://purl.org/phylo/treebase/phylows/study/TB2:S18996). Models for DNA substitution
were estimated for each gene. The mean log likelihood of the Bayesian tree sampling was –
25413.58. Detailed information on base composition and estimated parameter values for each
partition is given in S3 Table. Maximum likelihood and maximum parsimony analyses of the

Fig 2. Molecular phylogeny of bamboo species based on rpl16 intron sequence data. This is a 50%majority rule consensus tree
based on 150,000 trees from a B/MCMC tree sampling procedure. Posterior probabilities and ML bootstrap support values are indicated
above branches (pp/ML BS). Cyanogenic potential (HCNp = concentration of cyanogenic precursors) of the woody bamboo species
occurring in the Ranomafana area is drawn on the tree. Subtribes are indicated on the right of the figure: Art, Arthrostylidiinae; Aru,
Arundinariinae; B, Bambusinae; M, Melocanninae; S, Shibataeinae; o, outgroup.

doi:10.1371/journal.pone.0158935.g002
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combined data set yielded a tree that did not contradict the Bayesian tree topology and only
the 50% majority-rule consensus tree of Bayesian tree sampling is shown (Fig 3). The maxi-
mum likelihood search in GARLI v0.94 [82] using the GTR+I+ Γmodel, which was deter-
mined the best fit model for the combined dataset using Modeltest, resulted in one maximum
likelihood tree with a lnL = -25633.2494. The bootstrap values recovered with the maximum
likelihood criterion (ML bs) are included in Fig 3. Of all 5523 characters, 3406 were constant,
556 were parsimony-uninformative and 1561 parsimony-informative. The maximum parsi-
mony (MP) analysis resulted in one most parsimonious tree with a length of 4533 steps, a CI of
0.5908 and a RI of 0.4029. The bootstrap values recovered with the maximum parsimony crite-
rion (MP bs) are included in Fig 3.

In the majority-rule consensus tree of the combined data set shown in Fig 3, the family
Lemuridae with the genera, Eulemur,Hapalemur, Lemur, Prolemur and Varecia is highly sup-
ported as being monophyletic. The sister relationship of Eulemur to Lemur, Prolemur andHap-
alemur is strongly supported. The clade consisting of Lemur, Prolemur, and Hapalemur also
has strong support. However, the monophyly of the bamboo lemur genera Prolemur andHapa-
lemur is only significantly supported in the Bayesian analysis (pp = 0.98) and MP (BS = 80)
analysis, but and not in the ML analysis (BS = 68). The monophyly of Hapalemur is strongly
supported in all three analyses.

Among the 15 lemur species included in this study, nine were non-specialized (genera
Avahi, Eulemur, Indri, Lemur, Propithecus, and Varecia), five showed an intermediate degree
of food specialization (genus Hapalemur), and one was highly specialized (genus Prolemur).
Ancestral character mapping of degree of specialization on the phylogeny (Fig 4) leads to the
conclusion that the ancestors to lemurs were non-specialized, that specialization to bamboo
food plants has arisen within the bamboo lemurs (genera Hapalemur and Prolemur) and was
followed by evolution of more generalist life styles (H. aloatrensis,H. occidentalis,H. griseus
andH.meridionalis). With the current data set, the state of the ancestor to the bamboo lemurs,
however, remains unresolved. All three putative states cannot be rejected: i) the ancestor might
have been non-specialized with high specialization arising once in Prolemur and low specializa-
tion once inHapalemur. ii) The ancestor might have been a facultative specialist with obligate
specialization arising in Prolemur. iii) The ancestor might have been an obligate specialist with
facultative specialization arising in Hapalemur. Most importantly, however, we note that the
facultative specialization occurs once inHapalemur and thatHapalemur forms one monophy-
letic and species-rich group.

Discussion

Bamboo Cyanogenesis and Bamboo Lemur Coevolution
Plant-herbivore interactions can lead to escalating evolutionary arms-races in which plants
express increasingly higher or more complex defenses in order to escape their antagonists,
while herbivores develop more efficient counter-adaptations [15,94]. Our nutritional analyses
of five Malagasy bamboo species sympatrically occurring in the island's southeast demonstrate
that concentration of cyanogenic glycosides in shoots of giant bamboo (C.madagascariensis)
reaches extreme levels compared to other cyanogenic plants [69] and is highest among the
bamboo species investigated. Among the three co-occurring bamboo lemur species in the
Ranomafana area, P. simus relies most heavily on cyanogenic food as it almost exclusively feeds
on C.madagascariensis, the most cyanogenic bamboo [40,44]. However, exact data on the
amount of cyanide that lemurs are actually exposed to are difficult to obtain as individual giant
bamboo plants show quantitative variation in cyanide content [48] and feeding choice of
lemurs might potentially be correlated to intraspecific variability of cyanogenesis in this plant
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Fig 3. Phylogeny of bamboo lemurs as inferred from a five gene-partition analysis. The final alignment consisted of 5523
bp and included fragments of the 12s rRNA, cytochrome c oxidase subunit II (COII), cytochrome b (cyt-b), D-loop, as well as the
Pastorini fragment (PAST) covering NADH3, NADH4L, NDH4 and 5 tRNAs. This is a 50%majority rule consensus tree based
on 150,000 trees from a B/MCMC tree sampling procedure. Posterior probabilities and ML bootstrap support values are
indicated above branches (pp/ML BS) while MP BS support values are given below branches.

doi:10.1371/journal.pone.0158935.g003
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Fig 4. Lemur's degree of specialization towards bamboo plants traces on the phylogeny of lemurs, as inferred from a five gene
fragments analysis. Possible states were "generalist" (either obligate of facultative), "facultative specialist" meaning that bamboo is the
major food plant but other plants are also regularly consumed in nature and "obligate specialist" meaning that bamboo is the sole food
plant accounting for more than 95% of the lemur's diet.

doi:10.1371/journal.pone.0158935.g004
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[95]. Nevertheless, as giant bamboo overall represents an exceptionally cyanogenic plant, high
levels of cyanide exposure can be assumed.

Although specialist herbivores are typically considered able to cope with toxins of their food
plants, this does not necessarily mean that they are unaffected by quantitative variation of
these compounds [48]. Detoxification processes often incur costs due to the expression of
enzymes involved in degradation of toxins [10,96–98]. Thus, extremely high concentrations of
toxins are likely to affect performance and reproduction—and ultimately fitness—even in spe-
cialist herbivores [19,99–101].

We found significant differences in cyanogenic potential among the bamboo species investi-
gated ranging from extraordinary high levels in C.madagascariensis to no cyanide in B.mada-
gascariensis. As we exclusively quantified cyanide in the bamboo species co-occurring in the
Ranomafana area, we cannot draw general conclusions about the evolution of cyanogenesis in
bamboos. Our results are largely consistent with previous phylogenies [93,102], but with the
addition of several new taxa and specimens. Based on this dataset, the support of most
branches is weak. Some genera (i.e., Bambusa, Cephalostachyum, Nastus) and subtribes (Bam-
businae, Hickelinae, Melocanninae) are not supported as being monophyletic, which is consis-
tent with earlier findings using the same sequence fragment [75]. It is, however, noteworthy
that all Malagasy Hickelinae clustered together in the molecular phylogeny including the high
cyanogenic species C.madagascariensis, C. capitata, N. elongatus, and the low cyanogenic
Cephalostachyum sp. This indicates that cyanide concentration can vary substantially among
closely related taxa [103,104]. At the same time, we found large variation within a single species
(Fig 1). Our comparative quantitative data on cyanide concentrations in different sympatric
bamboos collected from natural populations are the first of this kind. Once more taxa are ana-
lyzed for their cyanogenic potential and additional genes are sequenced across the entire bam-
boo phylogeny, we will be able to draw further conclusions on the evolution of cyanogenesis in
woody bamboos.

In addition to toxic compounds, overall quality of food plants for herbivores is critically
affected by the amount and composition of nutritive compounds [105,106]. In particular, the
amount of protein essentially determines food quality [67,107,108]. Ganzhorn [67] reported an
average protein concentration of 6.4% per dry weight in forest tree leaves in the Ranomafana
area. Protein concentration in shoots of bamboo is considerably lower and ranges from 3.5–
5.5% of dry weight [48] indicating that the bamboo diet of the lemurs might be nitrogen lim-
ited. The ratio of HCN per protein is of particular relevance for the nutritional quality of a
given food plant as the major mechanism of cyanide detoxification in mammals—the conver-
sion of cyanide to thiocyanate by activity of rhodanase—requires the presence of the S-contain-
ing amino acids methionine and cysteine [109,110]. Bamboo lemurs have been shown to
excrete cyanide (likely in form of thiocyanate) in urine [111], however quantitative data are not
available. Glander et al. [44] argued that based on nutritional data on Asian bamboo species,
the concentrations of methionine and cysteine in C.madagascariensis are relatively low. How-
ever, the low concentration of S-containing amino acids, as observed in Asian bamboos which
serve as browse for giant pandas [112], has not been analyzed for C.madagascariensis or other
Malagasy bamboos.

Specialization as an Evolutionary Dead End
It has been postulated that extreme specialization is an evolutionary dead-end leading to
extinction [3,94,113–115]. In phylogenies, specialization should be of recent origin [116] as
earlier origins of this trait should have ended in extinction [117]. It is also expected that gener-
alists should be ancestral to specialists and not vice versa (generalists-to-specialist-hypothesis;
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[3,116,118]). Several studies support this hypothesis (reviewed in [119]). On the other hand, exam-
ples of ancestral specialization have been found in cowbirds [120] and in anthidiine bees [121].

In the current study, we found that the extremely specialized Prolemur is ancestral to the
less specialized Hapalemur. It is also remarkable that once food plant specialization decreases
inHapalemur, rise is given to several species in different habitats across the entire island.Hap-
alemur griseus and its subspecies (which have recently been elevated to the species status H.
occidentalis, H.meridionalis,H. alaotrensis, andH. gilberti; [47]) occur in various habitats
ranging from littoral forests to swamps that contain little or no woody bamboos. Here the
lemurs feed on a range of different plant species [42]. It seems that once the ties of being totally
restricted to a single and extremely toxic host plant are removed, room is given for speciation
and the exploitation of various habitats.

Thus, while our data strongly suggest that the ancestral state of lemurs most likely is a gen-
eralist, it is not clear whether from this generalist state a facultative or obligate specialist
evolved first (as the common ancestor is equivocal) (Fig 4). Nevertheless, the fact that the non-
to medium-specialized group is comprised of several lemur species (in contrast to Prolemur
with only one extreme specialist) suggests an adaptive radiation, probably due to a more suc-
cessful generalist life style.

Advantages of Generalist Foraging Strategies
There are mainly two factors that favor generalist diets [11]: i) dietary mixing and ii) an
increased availability of host plants. In the case of bamboo lemurs, we do not have the means
to test performance of these primates in feeding experiments and we can only make assump-
tions. However, both factors seem plausible. Dietary mixing might be advantageous given the
extreme levels of cyanide as found for C.madagascariensis and given the fact that high cyanide
levels reduce herbivore performance, both for generalist and specialist herbivores
[100,101,122]. Studies testing the performance of herbivores on single and mixed diets using
insects found contradicting results. While for grasshoppers (Orthoptera), mixed diets usually
lead to increased performance, no such effects were found for butterflies (Lepidoptera) and
Hemiptera [11]. Positive effects of dietary mixing have also been found in several vertebrate
taxa including mammals, birds, reptiles, and fish [5,10,123–132].

As outlined previously, we suggest that there are various reasons why specialization might be
critical for herbivorous mammals. Indeed, extreme food plant specialization is rare in mamma-
lian herbivores. Probably the most well-known examples of specialized herbivorous mammals
are the giant (Ursidae: Ailuropoda melanoleuca) and red pandas (Ailuridae: Ailurus fulgens)—
e.g., [133,134]—which feed on bamboos, as well as koalas (Phascolarctidae: Phascolarctos ciner-
eus), which feed on a limited range of eucalypt food plants [135,136]. The bamboo lemurs from
Madagascar represent another case of extreme specialization in herbivorous mammals. Interest-
ingly, both pandas and lemurs are feeding on bamboos, and all three, pandas, lemurs, and koalas
are feeding on cyanogenic food plants. However, there is little information available on the quan-
titative intake of cyanide in these species. With focus on bamboo lemurs, besides reduced intake
of highly toxic cyanide when choosing alternative hosts, advantages of host plant availability for
less specialized bamboo lemurs seem very likely. As mentioned previously, the colonization of
habitats largely or completely lacking woody bamboo species as observed for example forH.mer-
idionalis andH. alaotrensis is only possible as these species feed on alternative hosts [42].

Consequences of Coevolutionary Processes
In mammalian herbivores, coevolutionary processes between food plant chemical defenses and
herbivores leading to generalist or specialist foraging strategies have been little studied so far
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[9,137,138]. This is in sharp contrast to the detailed knowledge on the coevolution of plant
defenses and other herbivore groups such as herbivorous insects. In mammalian and insect
herbivores, variation in rates of coevolution should be expected. Insects, for example, often
show large numbers of offspring and short reproduction cycles and thus inherently exhibit
faster evolution. This situation however should be different in mammals mostly showing
slower rates of reproduction and producing less offspring than insects. Due to lower rates of
evolution, highly specialized mammals should experience higher risks of reaching evolutionary
dead ends and extinction, whereas in specialist herbivorous insects host shifts are common and
have been frequently reported—e.g., [139–141].

From the mammals’ perspective, extreme specialization includes several high risks. Special-
ist mammalian herbivores relying on a single food cannot rapidly evolve new traits (as com-
pared to insect herbivores with their short generation cycles), which makes host shifts difficult.
Furthermore, herbivorous mammals specializing on highly toxic plants such as the bamboo
lemurs may be trapped in an evolutionary dead end as food plants develop levels of toxic com-
pounds that reach physiologically tolerable thresholds in the herbivore. This can either be due
to evolving higher concentrations of these compounds but also can occur due to the phenotypic
plasticity of plants in response to environmental factors. In our previous studies, we demon-
strated phenotypically increased levels of cyanide in lima bean (Phaseolus lunatus) in response
to drought stress and increasing soil salinity [49]. In feeding experiments with specialist insect
herbivores (Mexican bean beetle; Epilachna varivestis), enhanced cyanogenic features signifi-
cantly decreased the amount of plant material consumed and the reproduction of herbivores
over multiple generations indicating quantitative costs of cyanogenesis even for specialist her-
bivores [101,102]. The fact that insects, which on population levels should respond much faster
to changes in food plant quality than herbivorous mammals, show distinct impairment sug-
gests that even more substantial effects of increased cyanogenesis should be observed on slowly
reproducing mammalian herbivores.

Conclusions
The coevolutionary adaptation of herbivores and increasing chemical defense of plants can
potentially lead to an ultimate threshold of toxin that does not allow for further physiological
adaptation of herbivores. As long as no host switches occur, specialists would be trapped in an
insolvable situation as they rely on a single food source. In contrast, the evolution of a more gen-
eralist foraging strategy allows for escape from the escalating evolutionary arms race of enhanced
defense and increased counter-adaptation as well as the colonization of new and less limited hab-
itats. The plant-herbivore system consisting of different bamboo species with different degrees of
toxicity and lemurs with different degrees of specialization to this toxicity represents a unique
opportunity to understand the sources and outcomes of coevolutionary processes in mammals.
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