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Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various
types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical
cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-
forming a subunit of VGSC encoded by SCN5A. Various studies have demonstrated that
Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer
cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular
mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal
transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis
and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review
the latest available data on the pro-metastatic effect of Nav1.5 and its underlying
mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in
breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for
breast cancer treatment.
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INTRODUCTION

Breast cancer accounts for the largest proportion of women’s mortality worldwide (Greaney et al.,
2015). In the United States, approximately 12% of women will develop invasive breast cancer during
their lifetime. The diagnosis of at least 276,480 new cases of invasive breast cancer and 42,170 breast
cancer associated deaths are estimated in 2020 (Breastcancer.org). It is a complicated disease with
inter- and intra-tumoral heterogeneity, and there are several different classifications of breast cancer
according to advanced technical methods, including histological stratification and gene expression
clustering (Sorlie et al., 2001; Margan et al., 2016; Yeo and Guan, 2017). The different molecular
types of breast cancer correspond to different molecular mechanisms and require specific
therapeutic strategies (Prat et al., 2015; Arciero et al., 2019). Therefore, appropriate management
and therapies are necessary to achieve the best response to improve the prognosis and survival of
patients. Notably, breast cancer cells have the potential to metastasize to distant organs such as the
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brain, lung, liver, and bone (Hoshino et al., 2015; Hurvitz et al.,
2018; Park et al., 2018; Zhu et al., 2019). Cancer metastasis is a
complex, multi-step process that is closely associated with cells’
local invasion, blood and lymphatic diffusion, and extravasation
and colonization at distant sites. Metastatic cancer cells degrade
the extracellular matrix, detach from their original location, and
enter the circulation system through which they reach and
colonize distant organs (Mego et al., 2010; Massague et al.,
2017). Metastasis is the direct cause of death from cancer,
accounting for nearly 90% of deaths related to breast cancer
(Xie et al., 2017). Thus, there is an urgent need to identify the
underlying molecular mechanisms of breast cancer and develop
effective therapeutic strategies.

Voltage-gated sodium channels (VGSCs) are primarily
expressed in excitable cells such as neurons. Na+ influx
regulated by VGSCs produces action potential and propagates
excitability. VGSCs also exist in non-excitable cells, including
microglia, astrocytes, immune cells, fibroblasts, and cancer cells,
where they regulate and influence an array of biological functions
such as phagocytosis, motility, Na+/K+-ATPase activity, and
metastatic activity (Black and Waxman, 2013). VGSCs are
composed of pore-forming a subunits and auxiliary b subunits
(Hull and Isom, 2018). The family Nav1 comprises nine genes
(SCN1A-5A, SCN8A-11A) that encode a subunits, Nav1.1 to
Nav1.9. Each a subunit comprises four homologous domains,
and each domain consists of six transmembrane segments
(Catterall, 2000). Five b subunits, including b1 and its splice
variants b1B and b2–b4, are encoded by four genes (SCN1B-
SCN4B) (Brackenbury and Isom, 2011). These b subunits have
been found to modulate the bioelectrical characteristics of a
subunits and function as cellular adhesion molecules. Both a and
b subunits play a critical role in the development of the central
nervous system (CNS), and altering the expression of specific
subunits may cause developmental aberrations and CNS lesions.
Furthermore, expression of a and b subunits is upregulated in
various cancers such as breast cancer, prostate cancer, lung
cancer, and cervical cancer, observed both in in vitro and in
vivo systems. They are found to enhance metastasis progression,
including invasion, migration, endocytosis, and gene expression,
via the Na+ currents carried by a subunits and the adhesion
interaction regulated by b subunits (Yang et al., 2012). The
correlation between VGSCs-inhibiting drug uses and outcomes
of cancer patients has been highlighted recently (Fairhurst et al.,
2015; Reddy et al., 2015; Kao et al., 2018), even though the
conclusions are still inconsistent. Hence, randomized controlled
trials are required to exclude confounding factors and obtain a
convincing conclusion in the future.

Nav1.5, a pore-forming a subunit of VGSC encoded by
SCN5A, is expressed in lymphoma, neuroblastoma, breast and
prostate cancer cells. Aberrant expression and activity of Nav1.5
are associated with cardiac excitability diseases such as
arrhythmic dilated cardiomyopathy, Brugada syndrome, and
long QT syndrome (Antzelevitch et al., 2005; Amin et al.,
2013; Giudicessi and Ackerman, 2013; Beckermann et al.,
2014). Nav1.5 is also overexpressed in metastatic breast cancer
in vitro and in vivo and mainly exists in its DI: S3 5′ neonatal
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splice form (nNav1.5) in breast cancer cells, potentiating cell
metastasis (Mohammed et al., 2016; Yamaci et al., 2017). Breast
cancer cells treated with specific Nav1.5 inhibitors or siRNAs
show decreased motility and metastatic capacity (Driffort et al.,
2014).Therefore, Nav1.5 may be regarded as a promising target
for the diagnosis and therapy of breast cancer.

With the high motility and metastatic capacity of breast
cancer, it is imperative to determine the mechanisms of
pro-metastatic effects of Nav1.5 and develop effective Nav1.5
inhibitors for breast cancer treatment. This review clarifies the
role and mechanisms of Nav1.5 in metastatic breast cancer
progression and summarizes some drugs with remarkable
effects on reducing metastasis of breast cancer by acting on
Nav1.5. All these evidence supports the idea that Nav1.5 as
an anti-metastatic target for the treatment of metastatic
breast cancer.

Nav1.5 Expression and Its Functional Role
in Breast Cancer Metastasis
Nav1.5 in its neonatal DI:S3 5′ splice form is predominantly
expressed in metastatic cancer cells (Fraser et al., 2005; Yamaci
et al., 2017). This form has been found to participate in neonatal
development, while it is absent in postnatal development. The
overexpression of Nav1.5 in cancer cells suggests that embryonic
genes are re-expressed during ontogenesis and participate in
many cellular behaviors related to metastasis (Monk and
Holding, 2001).

The expression levels of Nav1.5 and nNav1.5 in the
highly metastatic MDA-MB-231 breast cancer cell line were
significantly higher than those in weakly metastatic MCF-7 cells
(Kamarulzaman et al., 2017; Zhang et al., 2018). Nav1.5 is
specifically present on the membrane of MDA-MB-231 cells, but
not in normal cell lines and weakly metastatic MCF-7 cells. In
breast cancers, Nav1.5 a subunit mRNA and protein expression
correlates with metastatic potential, and the neonatal SCN5A
splice variant is expressed ~1,800-fold higher in metastatic
MDA-MB-231 cells than in weakly metastatic MCF-7 cells.
When voltage-gated membrane currents are examined in
different cell lines, inward currents only occur in the highly
metastatic breast cancer cell line MDA-MB-231 (Fraser et al.,
2005). In vivo, it is widely acknowledged that Nav1.5 is present in
breast cancer biopsies and is related to lymph node metastasis
(Fraser et al., 2005). SCN5A expression is significantly elevated in
breast cancer tissues and is an independent predictor of poor
prognosis compared to its expression in normal breast tissue.
SCN5A is overexpressed in tumor samples from patients who
experience recurrence and death within 5 years; thus, SCN5A
overexpression is associated with increased odds of developing
metastasis (Yang et al., 2012). Nelson and his colleagues
investigated the functional activity of Nav1.5 and its specific
contribution to breast cancer tumor progression. SCN5A is
upregulated at the mRNA and protein levels in metastatic breast
tumors compared to that in normal, non-cancerous tissue (Nelson
et al., 2015a; Nelson et al., 2015b; Yamaci et al., 2017)

Furthermore, some factors affect Nav1.5 expression in breast
cancer cells. The b1 subunit mRNA and protein are strongly
July 2020 | Volume 11 | Article 1111
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expressed in MCF-7 cells and are barely detectable in MDA-MB-
231 cells. Inhibition of the b1 subunit reduces adhesion and
enhances metastatic cell behavior by upregulating nNav1.5
expression (Chioni et al., 2009). It has been reported that the
expression level of repressor element silencing transcription
factor (REST) is significantly lower in MDA-MB-231 cells than
in MCF-7 cells (Kamarulzaman et al., 2017). The inhibition of
REST results in re-expression of various neonatal genes
(Kuwahara, 2013), and REST recruits histone deacetylases
(HDACs) for transcriptional repression activity (Roopra et al.,
2000). It has been postulated that downregulation of REST and
HDAC2 expression levels enhances the expression of Nav1.5 and
nNav1.5, promoting aggressiveness of tumors (Kamarulzaman
et al., 2017). The sigma-1 receptor is known as a protein located
on the plasma membrane, endoplasmic reticulum, and
perinuclear areas (Hayashi and Su, 2003; Hayashi and Su,
2005), and is up-regulated in breast cancer cells and tissues
(Aydar et al., 2016). In breast cancer cells, the sigma-1 receptor
combines with nNav1.5 protein to form a complex with a four-
fold symmetry (Balasuriya et al., 2012), which translocate
nNav1.5 protein to the plasma membrane, thereby increases
the metastatic activity (Aydar et al., 2016). Salt-inducible kinase 1
(SIK1) has been identified as an important factor in regulating
sodium homeostasis and as a tumor repressor that participates in
the progression of cancer cells (Sjostrom et al., 2007; Selvik et al.,
2014). Lower expression of SIK1 was observed in different breast
tumor grades than in normal tissues (Gradek et al., 2019).
Silencing SIK1 upregulates SCN5A expression and increases H+

outflow, thus, improving invasiveness (Gradek et al., 2019). TGF-
b1 is a well-known inducer of epithelial-to-mesenchymal
transition (EMT) and a multifunctional regulatory factor
affecting cancer development (Jakowlew, 2006; Moustakas and
Heldin, 2016). Weakly metastatic MCF-7 cells treated with TGF-
b1 demonstrated increased expression of SCN5A and induction
of invasion (Gradek et al., 2019). Epidermal growth factor (EGF)
signals have been confirmed to be overexpressed and are
involved in the development of breast cancer (Adams et al.,
2009; Yao et al., 2012). Treatment with EGF promoted the
migratory capacity of MDA-MB-231 cells by increasing the
functional expression of the Nav1.5 channel (Gonzalez-
Gonzalez et al., 2019). These results confirm that Nav1.5
channels play an important role in human breast cancer by
affecting metastatic activity.

Furthermore, the importance of Nav1.5 expression in human
breast cancer cells for the colonization of organs was assessed.
ShCTL or shNav1.5 breast cancer cells injected into mice. ShCTL
cells expressing Nav1.5 strongly colonized and invaded the chest
area. All mice showed lung colonization and some showed rachis
and rib colonization (Driffort et al., 2014). In addition, a high
level of nNav1.5 expression is associated with the estrogen
receptor (ERa) status of breast cancer. In all cases, lack of ERa
was positive for nNav1.5 expression. In all cases of negative
nNav1.5 expression, ERa is present (Yamaci et al., 2017). It is
widely acknowledged that breast cancer cases lacking ERa
protein are closely related to a more advanced stage and have a
worse prognosis (Yi et al., 2014; Zhou and Slingerland, 2014).
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This is consistent with previous results showing that a high level
of nNav1.5 expression is associated with aggressive breast cancer
development. Consequently, nNav1.5 expression enhances
growth and metastatic dissemination of breast cancer and is a
potential prognostic marker for breast cancer.

Mechanisms of Action
Metastasis of breast cancer is a complex process, and there are a
considerable number of studies focusing on this topic. Nav1.5 is
involved in the metastatic cascade in breast cancer by acting on
different targets.

Na+ currents carried by Nav1.5 have been found to promote
the invasiveness of the breast cancer cell line MDA-MB-231 by
regulating the H+ influx carried through Na+/H+ exchanger
isoform-1 (NHE-1). NHE-1, which is an important regulator
of H+ efflux, is co-expressed with Nav1.5 in lipid rafts within the
caveolae of MDA-MB-231 cells. NHE-1 and Nav1.5 are coupled
in the metastatic process of MDA-MB-231 cells (Brisson et al.,
2011). Na+ inward currents can be found in highly metastatic
MDA-MB-231 cells but are absent in weakly metastatic or
normal cells. Similarly, highly metastatic MDA-MB-231 cells
express a high level of NHE-1 mRNA, while weakly metastatic
MCF-7 cells express a low level of NHE-1 mRNA, and normal
cells express no NHE-1 (Chen et al., 2019). In MDA-MB-231
cells, Nav1.5 allosterically modulates the activity of NHE-1,
rendering NHE-1 more active at physiological intracellular pH.
This results in increased H+ efflux to the extracellular space,
leading to acidification of the peri-membrane and intracellular
alkalization (Brisson et al., 2013; Amith and Fliegel, 2017). The
environment of the perimembrane favors the proteolytic activity
of cysteine cathepsins (Cat) and matrix metalloproteinases
(MMPs), which are major drivers of extracellular matrix
(ECM) degradation and increase the invasiveness of breast
cancer cells (Figure 1). Cat C, Cat B, Cat K, and Cat L are
involved in Cat-dependent invasiveness in MDA-MB-231 cells.
Apart from Cat K, the activity of this proteolytic protein can be
potentiated by Nav1.5 (Gillet et al., 2009; Robey and Nesbit,
2013). NHE-1–modulated invasiveness can also be found in
hepatoma cells (Yang et al., 2011).

Nav1.5 expression enhances src kinase activity and controls
cortactin phosphorylation, resulting in the release of actin-
severing cofilin and the formation of actin barbed ends of
invadopodias, which are actin-rich organelles that enable cells
to stretch into the ECM and perform their proteolytic effect
(Oser et al., 2009; Brisson et al., 2013). It is known that Nav1.5
expression in breast cancer cells is closely associated with the
protein level of CD44, which correlates with poor outcomes of
breast cancer (McFarlane et al., 2015; Nelson et al., 2015b). In
turn, CD44 adheres to its ligand and leads to the activation of src
and phosphorylation of cortactin (Bourguignon et al., 2001; Hill
et al., 2006), thus, supporting that Nav1.5 may potentiate the
invasion of breast cancer cells by the CD44-src-cortactin
signaling axis. Apart from the CD44-src-cortactin signaling
axis, CD44 targets NHE-1 to regulate the metastatic capacities
of MDA-MB-231 cells through the mitogen-activated protein
kinase pathway. Overexpression of CD44 upregulates the
July 2020 | Volume 11 | Article 1111
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expression and activity of NHE-1, resulting in the increased
expression of MMPs (MMP2, MMP9, and MMP14) by
increasing phosphorylated ERK1/2 (Figure 1). Moreover,
CD44 accelerates tumor growth and metastasis to the lung in
MDA-MB-231 cells (Chang et al., 2014).

Increasing evidence shows that plasma membrane potential
(Vm) is related to cell cycle progression and the level of
differentiation, development, regeneration, and migration of
cancer cells (Sundelacruz et al., 2009; Yang and Brackenbury,
2013). Emerging evidence confirms that proliferating tumor cells
depolarizes Vm, while terminally differentiated non-cancer cells
are characterized by hyperpolarized Vm (Binggeli and Cameron,
1980; Marino et al., 1994; Fraser et al., 2005). Yang et al. reported
that a steady-state inward Na+ current carried by Nav1.5
contributes to depolarizing the resting Vm in MDA-MB-231
cells (Yang et al., 2020). Previous studies suggest that Vm
depolarization promotes the redistribution of anionic
phospholipids PIP2 and phosphatidylserine within the plasma
membrane, resulting in GTPase K-Ras activation (Chen et al.,
2011; Zhou et al., 2015; Remorino et al., 2017). Rac1 is one of the
Rho GTPases that contribute to lamellipodia formation and
migration (Nobes and Hall, 1995; Steffen et al., 2013).
Similarly, Nav1.5 dependent Vm depolarization regulates Rac1
activation and localization in lamellipodia by its interaction with
phosphatidylserine, regulating cell morphology and migration in
breast cancer cells (Yang et al., 2020). Rac1 is a potential
upstream regulator of the Arp2/3 complex, which is required
for lamellipodia extension (Suraneni et al., 2012). Furthermore,
Rac1 is closely associated with phosphorylation of cortactin and
cofilin, promoting the acquisition of a promigratory phenotype
(Head et al., 2003; Sumida and Yamada, 2015) (Figure 1).
Frontiers in Pharmacology | www.frontiersin.org 4
Na+ currents carried by Nav1.5 stimulate phosphorylation of
protein kinase A (PKA), which increases the Nav1.5 mRNA level
but does not affect the total protein level. This changes the
distribution of Nav1.5 in MDA-MB-231 cells, with the level of
Nav1.5 increased on the plasma membrane and reduced in
cytoplasm. The externalization of Nav1.5 potentiates the invasion
and migration of breast cancer cells. The increase of Nav1.5 on the
membrane in turn increases the Na+ currents, thus, forming a
positive feedback (Figure 2) (Chioni et al., 2010). There is also
positive feedback between Nav1.5 and GTPase RhoA, which is
overexpressed in many cancers, including breast cancer. Silencing
of RhoA decreases the expression of Nav1.5 mRNA, as well as
Nav1.5-mediated Na+ currents. In turn, silencing of Nav1.5
decreased the protein level of RhoA (Dulong et al., 2014), which
maybe a result of the reduction in calciumconcentration (Rao et al.,
2001). In addition, suppressing bothRhoAandNav1.5 significantly
reduced the invasion of MDA-MB-231 cells (Dulong et al., 2014).

Recent research has shown thatNav1.5 promotes invasiveness by
taking part in EMT, a process involved in tissue formation
during embryogenesis and repair processes, and promoting
cancer cell dissemination from the primary tumor (Banyard
and Bielenberg, 2015). MDA-MB-231 cells present typical
spindle-shaped mesenchymal morphology and multiple
filopodia. Upon knocking down the expression of SCN5A,
these cells show decreased the number of filopodia that are
shorter in length. The expression level of SNAI1, an EMT-
inducing transcription factor, significantly decreased in MDA-
MB-231 cells treated with a specific small-hairpin RNA
(shNav1.5 cells). In contrast, MCF-7 cells overexpressing
Nav1.5 display an increased invasive capacity, as well as an
increased expression level of SNAI1, which provides evidence for
FIGURE 1 | Nav1.5 promotes the activity of NHE-1, resulting in the acidification of the peri-membrane, which favors the proteolytic activity of Cat and MMPs
(yellow line). Nav1.5 also promotes invasiveness by the CD44-src-cortactin signaling pathway. After phosphorylation, cortactin releases actin-severing cofilin,
promoting the formation of actin barbed ends of invadopodia (red line). Overexpression of CD44 upregulates the expression and activity of NHE-1, resulting in the
expression level of MMPs (MMP2, MMP9, and MMP14) by increasing phosphorylated ERK1/2 (black line). Nav1.5 dependent Vm depolarization regulates Rac1
activation by its interaction with phosphatidylserine (blue solid line). Rac1 regulates the Arp2/3 complex and is closely associated with phosphorylation of cortactin
and cofilin, promoting the promigratory phenotype (blue dotted line). High expression of NaV1.5 induces expression of SNAI1, triggering the EMT and pro-
metastatic effect of breast cancer cells (purple line). (Dotted line indicates that the mechanism exists but has not been confirmed in breast cancer).
July 2020 | Volume 11 | Article 1111
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the role of SNAI1 in Nav1.5 activity-mediated invasive process of
breast cancer. Indeed, loss of expression of SIK1 upregulates
Nav1.5 activity and expression (Gradek et al., 2019). Hence, it is
that low expression levels of SIK1 in breast cancer cells induce
the activity and expression of Nav1.5, followed by high
expression of SNAI1, triggering the EMT and metastasis
observed in breast cancer cells.

Inhibitors of Nav1.5
Nowadays, a variety of approaches, including specific antibodies,
natural toxins, and pharmacological agents, are applied to reduce
Frontiers in Pharmacology | www.frontiersin.org 5
the metastasis of breast cancer cells by inhibiting Nav1.5
(Table 1).

Application of an anti-peptide polyclonal antibody,
NESOpAb, blocks VGSC currents of EBNA-293 cells
transfected with nNav1.5 and has no significant effect on adult
Nav1.5 transfectants; thus, NESOpAb specifically targets
nNav1.5, but not adult Nav1.5 (Chioni et al., 2005). NESOpAb
inhibits the migration and invasion of MDA-MB-231 cells by
suppressing the functional nNav1.5 activity but does not show
similar results in human metastatic prostate cancer PC-3M cells,
in which Nav1.7 is dominant (Diss et al., 2001; Brackenbury
et al., 2007), which is consistent with the notion that NESOpAb
specifically recognizes nNav1.5. E3Ab is a peptide-specific
polyclonal antibody that recognizes the third extracellular
region of Nav1.5, leading to specific inhibition of Nav1.5
activity (Xu et al., 2005). MDA-MB-231 cells treated with
E3Ab show significantly decreased migration and invasive
abilities. Indeed, a marked anti-proliferative effect was observed
in E3Ab-treated MDA-MB-231 cells (Gao et al., 2019).

Phenytoin is an antiarrhythmic and antiepileptic agent that
shows a high affinity toward Nav1.5 on the membrane of
metastatic breast cancer cells in its inactivated state and
reduces Na+ currents. The depolarization of MDA-MB-231
causes the opening of VGSCs, which then rapidly enter an
incomplete inactivated state after a few milliseconds. This
process produces transient and persistent Na+ currents, which
play a key role in the metastasis of breast cancer cells (Yang et al.,
2012). Phenytoin significantly reduces the mobility, migration,
and invasion of metastatic breast cancer in vitro and in vivo
(Nelson et al., 2015a; Mohammed et al., 2016). Blocking the Na+

current by phenytoin results in the downregulation of EGF
expression and EGF-induced ERK1/2 phosphorylation,
reducing the activity of MMP7, cathepsin E, and kallikrein-10,
among which phenytoin showed the greatest inhibitory effect on
cathepsin E (Mohammed et al., 2016). It has been proven that
higher cathepsin E levels in the serum are positively correlated
with poorer clinical prognosis in breast cancer patients
(Kawakubo et al., 2014), thus, phenytoin might serve as an
FIGURE 2 | Na+ currents carried by Nav1.5 stimulate phosphorylation of
PKA, which increases the Nav1.5 mRNA level but does not affect the total
protein level. This changes the distribution of Nav1.5 in MDA-MB-231 cells,
such that Nav1.5 protein level increases on the membrane but that in the
cytoplasm decreases. The externalization of Nav1.5 then potentiates the
invasion and migration of breast cancer cells. The increase of Nav1.5 on
the membrane in turn increases the Na+ currents, thus, forming a
positive feedback.
TABLE 1 | Inhibitors of Nav1.5.

Inhibitor Type Effects on cancer cells Mechanism References

NESOpb/
E3Ab

Antibodies Reduce migration and
invasion

Specifically inhibit NaV1.5 Brackenbury et al. (2007)
Gao et al. (2019)

Phenytoin Antiarrhythmic and
antiepileptic agent

Reduce mobility migration
and invasion

Inhibit Na+ currents
down-regulate EGF expression and ERK1/2 phosphorylation
reduce activity of MP-7, cathepsin E and kallikrein-10

Yang et al. (2012)
Mohammed et al. (2016)
Nelson et al. (2015a)

DAPT Notch signal inhibitor Reduce proliferation
lateral motility

Increase the level of Notch4mRNA and decreased the ratio of MMP9
to TIMP1

Aktas et al. (2015)

DHA w-3 LC-PUFA Reduce migration and
invasion

Inhibit the expression of PPARb and downregulate SCN5A
expression and activity of NHE-1

Isbilen et al. (2006)
Wannous et al. (2015)

Ranolazine Antiarrhythmic drug Reduce invasion Decreases Na+ influx and ECM degradative activity Driffort et al. (2014)
Taxol Anticancer drug Decrease invasion Left shift of NaV1.5 activation and affect microtubule polymerization Tran et al. (2009)
FS50 Animal salivary protein Reduce migration and

invasion
Decrease the expression of NaV1.5 mRNA level and distribution of
NaV1.5 protein in the cell membrane

Zhang et al. (2018)

Compounds Synthetic substances Reduce the invasion Block Nav1.5 channel Dutta et al. (2018)
Propranolol b‐AR blocker Reduce migration and

invasion
Affect the properties and expression of Nav1.5 Lee et al. (2019)
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effective drug for improving therapeutic efficiency and survival of
patients (Mohammed et al., 2016). Although phenytoin does not
affect proliferation in vitro (Yang et al., 2012), it reduces the
proliferation of metastatic breast cancer and slows tumor growth
in vivo (Nelson et al., 2015a). The Notch signal inhibitor N-[N-
(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester
(DAPT) has an anti-proliferative effect on MDA-MB-231 cells
that can be decreased by phenytoin. Both DAPT and phenytoin
reduce the lateral motility of breast cancer cells. It is reasonable
to speculate that they have different effects on the proliferation
of breast cancer cells. DAPT reduces the nNav1.5 mRNA
expression level, which is not observed in the phenytoin
treatment group. DAPT significantly reduces the ratio of
MMP9 to tissue inhibitor of metalloproteinases-1 (TIMP1),
which could be partly reversed by the combination of DAPT
and phenytoin, indicating that the application of DAPT together
with phenytoin is not a better choice than the single treatment of
DAPT and phenytoin (Aktas et al., 2015). Furthermore,
phenytoin inhibits the metastasis of breast cancer cells to other
organs such as the lungs, liver, and spleen by reducing the density
of MMP9-expressing cells (Nelson et al., 2015a). This suggests
that the contribution of Nav1.5 to tumor growth in vivo is closely
associated with adjacent tissues or the ECM.

It is noteworthy that some dietary habits have been shown to
protect against cancer. It has been reported that omega-3 long-
chain polyunsaturated fatty acids (w-3 LC-PUFAs) play a role in
the prevention of cancer. The effects of docosahexaenoic acid
(DHA), one of the most important w-3 LC-PUFAs, have been
studied in the field of breast cancer. Short- and long-term
applications of DHA inhibit nNav1.5 activity in the metastatic
human MDA-MB-231 breast cancer cell line by decreasing the
peak VGSC current density. In the long-term application, DHA
inhibits both mRNA and protein expression levels of nNav1.5
and reduces cell migration (Isbilen et al., 2006). Peroxisome
proliferator-activated receptor b (PPARb) regulates the
expression of numerous genes, including SCN5A, by binding
with PPAR response elements on the promoters of these genes,
thus, regulating cell survival, inflammation, and metabolism
(Peters et al., 2012). DHA, a natural ligand of PPAR, has
shown the potential to suppress tumor growth in different
kinds of models with no side effects (Forman et al., 1997; Yao
et al., 2014). DHA has been shown to reduce PPARb expression,
which is overexpressed in breast cancer cells, and inhibits
the invasiveness and growth of breast cancer cells (Wannous
et al., 2013; Yao et al., 2014; Wannous et al., 2015). The
downregulation of PPARb reduces SCN5A expression at both
the mRNA and protein levels, as well as nNav1.5 density at the
plasma membrane, which finally leads to the reduction of Na+

currents. In addition, the downregulation of PPARb reduces
NHE-1–dependent H+ efflux by inhibiting the activity of Nav1.5
channels without altering NHE-1 expression. PPARb is
indispensable for DHA to reduce Nav1.5 expression and
NHE-1 activity, giving rise to the invasiveness of breast cancer
cells (Wannous et al., 2015).

Ranolazine has been approved by the US Food and Drug
Administration for chronic angina (Antzelevitch et al., 2004).
Frontiers in Pharmacology | www.frontiersin.org 6
One of the most characterized pharmacological effects of
ranolazine is its ability to selectively inhibit late Na+ currents.
The inhibition of Na+ currents triggers a steeper Na+ gradient
and activation of the Na+/Ca exchanger, which reduces the
intracellular overloaded calcium and improves ventricular
relaxation in cardiac ischemia conditions (Fraser et al., 2006).
Ranolazine has also been shown to have anti-invasiveness
potential in breast cancer. In vitro, ranolazine reduces the
function of Nav1.5 and decreases Na+ influx in MDA-MB-231
cells, which results in decreased ECM degradative activity and
pro-invasive morphology of cells. In vivo, ranolazine slows down
tumor growth and inhibits the colonization of breast cancer cells
to other organs without obvious toxic effects by reducing the
Nav1.5 carried currents in tumor tissues (Driffort et al., 2014).
The expressions of b‐adrenergic receptor (b‐AR) and Nav1.5
overlap substantially in MDA-MB-231 cells. Propranolol which
is a blocker of b‐AR, coupled to with PKA activation, modulates
Nav1.5 and takes part in reducing migration and invasion of
MDA-MB-231 cells. Short-term treatment with propranolol
tends to reduce peak Na+ currents carried by Nav1.5, while
long-term treatment results in sustained changes of properties
and expression of Nav1.5. Indeed, the role of factors contained in
the serum cannot be ignored. Both propranolol and ranolazine
reduced the motility and invasiveness of MDA-MB-231 cells, but
the effect of their combination was not better than that of
individual treatments (Lee et al., 2019).

Taxol and its derivatives, such as docetaxel, are widely used in
the treatment of breast cancer (Dang and Hudis, 2006). The
widely accepted explanation for their effects is that they stabilize
the microtubules during mitosis, which leads to the inhibition of
cell division (Camacho et al., 2000). Taxol also has a potential
anti-invasive effect on breast cancer cells at low concentrations
but has no effect on cell proliferation. The reduction of the
current carried by Nav1.5 was not observed in cells pretreated
with taxol, which demonstrates a significant leftward shift of the
activation properties of Nav1.5. It is known that the activity of
sodium channels is closely associated with perturbation of
microtubules (Motlagh et al., 2002). Tran reported that a
short-term and low-dose taxol treatment is sufficient to affect
microtubule polymerization (Tran et al., 2009). It seems that
the effects of taxol on cell invasiveness are complicated,
and other proteins involved in the Nav1.5-regulated signaling
pathway may be regulated by taxol, but the precise mechanisms
remain unknown.

Recently, animal peptides have drawn considerable interest.
FS50, the salivary protein from Xenopsylla cheopis, shows an
inhibitory effect against the Nav1.5 channel (Xu et al., 2016).
FS50 significantly reduced the peak VGSC currents and
decreased the expression of Nav1.5 mRNA in MDA-MB-231
cells but had no effect on the total Nav1.5 protein levels. Notably,
FS50 reduces the Nav1.5 protein expression in the plasma
membrane, which means that FS50 only changes the
distribution of the protein between the plasma membrane and
the cytoplasm. The effect is identical to the effects of a PKA
inhibitor; thus, FS50 may inhibit the PKA pathway, resulting in
the reduced expression of Nav1.5. In the future, it is worth
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detecting PKA-related proteins after the treatment of FS50
(Brackenbury and Djamgoz, 2006; Chioni et al., 2010). FS50
inhibits the migration and invasion of MDA-MB-231 cells but
has no effect on the proliferation of MCF-7 and MDA-MB-231
cells. The reduction of MMP9 activity and the ratio of MMP9
mRNA to TIMP1 mRNA were observed in MDA-MB-231 cells
treated with FS50 (Zhang et al., 2018).

In addition to the known VGSC-blocking drugs, scientists
have developed a highly predictive and comprehensive three-
dimensional quantitative structure–activity relationship model
for designing the compounds to bind with VGSC ligands (Zha
et al., 2014). Five low micromolar, small molecule compounds
acting as Nav1.5 blockers in MDA-MB-231 cells were designed,
synthesized, and evaluated. Two of the compounds were
identified to reduce peak Na+ currents and reduce the invasion
of MDA-MB-231 cells without affecting cell viability (Dutta et al.,
2018). Compared with known drugs, these compounds are more
effective and have simpler chemical structures. Moreover,
synthetic substances are designed to target Nav1.5, providing a
new and potent direction to develop drugs for the treatment of
breast cancer metastasis.

The membrane current generated by VGSCs has two distinct
modes: transient (INaT) and persistent (INaP). INaP can last 100 ms
to 1 s, while INaT lasts a millisecond (Djamgoz and Onkal, 2013).
Hypoxia, which is commonly observed in cancer and promotes
metastasis and invasion, significantly contributes to increasing
INaP (Hammarstrom and Gage, 2002; Muz et al., 2015; Rankin
and Giaccia, 2016; Guzel et al., 2019). Compared with INaT, INaP
is resistant to inactivation even at depolarized potentials and will
lead to significant changes in the global level of Na+ that affect
Nav1.5-dependent mechanisms and play an important role in
cancer progression (Saint, 2006). Indeed, the inhibition of INaP
has been shown to produce a major anti-metastatic effect and has
been proposed as a new target (Guzel et al., 2019). As mentioned
above, MDA-MB-231 cells exhibit depolarized Vm. In addition,
slower kinetics of activation, inactivation, and recovery from
inactivation are observed in nNav1.5 than in the ‘adult’ form
(Onkal et al., 2008). Thus, it is reasonable to assume that INaP is
mainly responsible for Na+ elevation in breast cancer cells. At
present, it is easy to identify INaT and INaP by whole-cell patch-
clamp recordings, and a number of pharmacological agents have
been shown to selectively block INaP (Urbani and Belluzzi, 2000;
Maier, 2009). In the future, additional INaP blockers inhibiting
Nav1.5-mediated persistent current should be considered as a
new target to reduce metastasis of breast cancer. In addition,
most agents listed above produce a major anti-metastatic effect
Frontiers in Pharmacology | www.frontiersin.org 7
by decreasing the current carried by Nav1.5 or changing the
properties of Nav1.5. Specifically, decreasing the expression of
nNav1.5 is another ideal target for specific anti-breast
cancer treatment.
PERSPECTIVES

The increasing evidence is indicative of the role of aberrant
Nav1.5 activation in the metastatic progression of breast cancer
cells. Nav1.5 functions to trigger a variety of downstream
mechanisms in breast cancer cells to regulate metastatic and
invasive capacity. Considering the large and growing body of
evidence, different approaches recognizing Nav1.5 are applied to
inhibit metastasis of breast cancer in vitro and favor Nav1.5 as an
anti-metastatic target. Although we reviewed several studies here,
there are many unanswered questions that require further
investigation: (i) Is it possible to make nNav1.5 a biomarker of
early diagnosis of breast cancer; (ii) Can we develop additional
agents specifically blocking INaP or nNav1.5 to improve efficacy
and reduce side effects; and (iii) How can we accumulate the
process of translational medicine and promote the application of
these agents in the clinic to improve the outcomes for breast
cancer patients.
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