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Abstract 
For a w -hyponormal operator T acting on a separable complex Hilbert space H , we prove that: 1) 
the quasi-nilpotent part ( )0H T I− λ  is equal to ( )T Iker λ− ; 2) Τ  has Bishop’s property β ; 3) 

if ( ) { }w T 0σ = , then it is a compact normal operator; 4) If Τ  is an algebraically w -hyponormal 

operator, then it is polaroid and reguloid. Among other things, we prove that if nT  and nT
∗

 are 
w -hyponormal, then Τ  is normal. 
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1. Introduction 
Let H  be a complex Hilbert space and let ( )B H  be the algebra of all bounded linear operators acting on H . 
If ( )B HT ∈  we shall write ( )ker T  and ( )Tℜ  for the null spaceand range of T , respectively. Also, let 
( ) ( ): dimkerT Tα = , ( ) ( ): dimT co Tβ = ℜ , and let ( ) ( ) ( ),  ,  a pT T Tσ σ σ  denote the spectrum, approximate 

point spectrum andpoint spectrum of T , respectively. An operator T  is said to be positive (denoted by 0T ≥ ) 
if , 0Tx x ≥  for all Hx∈  and also T  is said to be strictly positive (denoted by 0T > ) if T  is positive  
and invertible. An operator T  is called p -hyponormal if 

22 ppT T ∗≥  for every 1<0 ≤p . It is easily to  

see that every p -hyponormal is q -hyponormal for 0p q≥ >  by Löwner-Heinz theorem “ 0A B≥ ≥  en-
sures A Bα α≥  for any [ ]0,1α ∈ ”. Let T  be a p -hyponormal operator whose polar decomposition is  

T U T= . Aluthge [1] introduced the operator 
1 1
2 2T T U T= , which called the Aluthge transformation, and  

also showed the following result. 
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Proposition 1.1. Let ( )B HT U T= ∈  be the polar decomposition of a p -hyponormal for 0 1p< <  and 
U  is unitary. Then the following assertions hold: 

1) 
1 1
2 2T T U T=  is 1

2
p + 

 
-hyponormal if 10

2
p< < . 

2) 
1 1
2 2T T U T=  is 1-hyponormal if 

1 1
2

p≤ < . 

As a natural generalization of Aluthge transformation Ito [2] introduced the operator ,
s t

s tT T U T=  for 

0s >  and 0t > . Recall [3], an operator ( )B HT ∈  is said to be w -hyponormal if T T T ∗≥ ≥  . We 

remark that w -hyponormal operator is defined by using Aluthge transformation 
1 1
2 2T T U T= . w - 

hyponormal was defined by Aluthge and Wang [3] and the following theorem is shown in [3]. 
Theorem 1.2. Let ( )B HT ∈ . 
1) If T  is a p -hyponormal operator for 0p > , then T  is w -hyponormal. 
2) If T  is w -hyponormal operator, then 22T T≥  and 

2 2T T∗ ∗≥  hold. 

3) If T  is w -hyponormal operator, then 1T −  is also w -hyponormal. 
Let Cλ ∈ . The quasinilpotent part of T Iλ−  is defined as 

( ) ( )
1

0H H : lim 0n n

n
T I x T I xλ λ

→∞

  − = ∈ − = 
  

. 

In general, ( ) ( )0ker HT I T Iλ λ− ⊂ −  and ( )0H T Iλ−  is not closed. However, it is known that if T  is 

hyponormal, then ( ) ( ) ( )0H ker kerT I T I T Iλ λ λ ∗− = − ⊂ − . 
In this paper, we characterize the quasinilpotent part of w -hyponormal. This is a generalization of the 

hyponormal operator case. 

2. Basic Properties of w -Hyponormal Operators 
In this section we prove basic properties of w -hyponormal operators. These properties are induced by the 
following famous inequalities. 

Lemma 2.1. (Hansen inequality). If ( ),  B HA B∈  satisfy 0≥A  and 1B ≤ , then ( )B AB B A B
α α∗ ∗≥  

for all ( ]0,1α ∈ . 
Theorem 2.2. Let ( )B HT ∈  be a w -hyponormal operator and M  be its invariant subspace. Then the 

restriction MT  of T to M  is also a w -hyponormal operator. 
Proof. Decompose T  as 

on H
0
A B

T M M
C

⊥ 
= = ⊕ 
 

. 

Let 
1 0
0 0

Q  
=  
 

 be the orthogonal projection onto M . Since MA TQ=  we have A A QT TQ∗ ∗= . By 

Hansen’s inequality we have 

( ) ( ) ( )0

0 0

p
p pA A QT TQ Q T T Q

∗
∗ ∗

 
  = ≥
 
 

 

while AA TQT QTQT Q∗ ∗ ∗= = . So we have 

( ) ( ) ( ) ( )p p p p
AA TQT Q TQT Q Q TT Q∗ ∗ ∗ ∗= = ≤  for all ( ]0,1p∈ . 

Since T  is w -hyponormal then T  is semi-hyponormal and hence 
M

A T=   is semi-hyponormal by ([4], 
Lemma 4). Hence 
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A A∗≥  . 

Now 

MM
A T T A= ≥ =   

also 

MM
A T T A∗ ∗= ≤ =  . 

Therefore, A  is w -hyponormal. 
As a generalization of w -hyponormal operators, Ito [2] introduced a new class of operators as follows: 
Definition 2.1. For each 0s >  and 0t > , an operator T  belongs to class ( ),wA s t  if an operator T  

satisfies 

( ) 22t t ts tT T T T
t s

∗ ∗ ∗≥
+

                              (2.1) 

and 

( )22
s

ts s s s tT T T T +∗≥ .                               (2.2) 

The following theorem on ,s tT  is a generalization of Proposition 1.1. 
Theorem 2.3. Let T U T=  be the polar decomposition of a w -hyponormal operator. Then ,s tT  is 

{ }min ,s t
s t+

-hyponormal for 1
2

s ≥  and 1
2

t ≥ . 

In order to give the proof of Theorem 2.3, we need the following lemma from [2]. 
Lemma 2.4. Let 0A ≥  and T U T=  be the polar decomposition of T . Then for each 0α >  and 

0β > , the following assertion holds: 

( ) ( )U T A T U U T A T U
α αβ β β β∗ ∗= . 

Proof of Theorem 2.3. Suppose that T  is w -hyponormal, then T  belongs to class ( ),wA s t  for each

1
2

s ≥  and 1
2

t ≥ . Hence 

( )
{ }

( )
{ }

( )
{ }

( )
{ }

( )

min , min ,min ,
2 2

, ,

min ,
2                                                                        By  Lemma  2.4

                      

s t s ts t
t s t t s ts t s ts t

s t s t

s t
t s t s t

T T T U T U T U U T U T U T U U

U U T U T U T U U

∗ ∗ ∗ ∗ ∗+ ++

∗ ∗ ∗ +

= =

=

 

( )
{ }

{ }

min ,
2

2min ,*

                                             

                                                                   .

s t
t ts s t

s t

U T U T U T U

U T U

+∗ ∗ ∗ ∗

∗

=

≥

 

Thus 
{ }

{ }
min ,

2min ,
,

s t
s ts t

s tT T+ ≥                                   (2.3) 

and the last inequality holds by Equation (2.2) and Löwner-Heinz theorem. 
On the other hand 

( )
{ }

( )
{ }

( )
{ }min ,min ,min ,

22
, ,

s ts ts t
ts t s s s s ts ts t

s t s tT T T U T U T T T T +∗ ∗ ∗++ = =  . 
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Hence 
{ }

{ }
min ,

2min ,
,

s t
s ts t

s tT T∗ + ≤                                (2.4) 

and the last inequality holds by Equation (2.1) and Löwner-Heinz theorem. 
Therefore Equations (2.3) and (2.4) ensure 

{ }
{ }

{ }min , min ,
2min ,

, ,

s t s t
s ts t s t

s t s tT T T∗ ∗+ +≥ ≥  . 

That is, ,s tT  is 
{ }min ,s t

s t+
-hyponormal. 

Theorem 2.5. Let T U T=  be the polar decomposition of w -hyponormal operator. Then 

( )

( ) ( ), ,

2 1 2 1
, , , , ,

1 1min d d , d d
s t s t

pp p
s t s t s t s t s t pT T

pT T T T T r r r r
p σ σ

φ θ θ
π π

−∗ ∗ −     − ≤          
∫ ∫

 

     . 

Moreover, if T  is invertible w -hyponormal, then 

( ),

2 1
, , , , ,

1 d d
s t

s t s t s t s t s t T
T T T T T r r

σ
θ

π
∗ ∗ −− ≤ ∫



     . 

If we use ( ) ( )( )
,

21 1
, ,d d Area

s t
s t s tT

r r T T
σ

θ σ− −≤∫


  , we have also 

( ) ( )( )21
, , , , , , ,

1 Area
p

s t s t s t s t s t s t s tT T T T T T Tσ
π

∗ ∗ −− ≤        

where 
{ }min ,s t

p
s t

=
+

 and ( )
, if  ;

2, otherwise.
p p

p
p

φ
∈

=  +



 

Proof. Let 
{ }min ,s

p
t

s t
=

+
. Since ,s tT  is p -hyponormal operator By Lemma 2 and Proposition 1 of [5] 

( ) ( ) ( ) ( )

( )
( ) ( ), ,

1 1

, , , , , , , , , ,

12 1 2 1
,

1

1                          1 min d d , d d

                          1

s t s t

p p pp
s t s t s t s t s t s t s t s t s t s t

p

p pp
s t p

T T

T T T T p T T T T T T

pp T r r r r
σ σ

φ

φ θ θ
π π

φ

−
∗ ∗ ∗ ∗ ∗

 
−  − 

− ≤ −

    ≤      

=

∫ ∫
 

         



( ) ( )

( ) ( ), ,

2 1 2 1
,

1min d d , d d .
s t s t

p

p p
s t p

T T

pp T r r r r
σ σ

θ θ
π π

− −
         

∫ ∫
 



 

Next, we assume that ,s tT  is invertible. Since every p -hyponormal operator is q -hyponormal operator if 
0 q p< ≤ , by above 

( ) ( )

( ) ( ), ,

2 1 2 1 2 1
, , , , ,

11 d d 2 d d
s t s t

q q q
s t s t s t s t s t

T T

q qT T T T q T r r r r
qσ σ

φ θ θ
π π

−∗ ∗ − − 
− ≤ = + 

 
∫ ∫
 

     . 

Letting 0q ↓ , we have the result. 
Let ( )( )Tσℜ  denotes the set of all rational functions on ( )Tσ . The operator T  is said to be n - 

multicyclic if there are n  vectors 1, , nx x H∈ , called generating vectors, such that  
( ) ( )( ){ }: 1, , ,ig T x i n g T Hσ∨ = ∈ℜ = . 

Theorem 2.6. If T  is w -hyponormal operator. Then 

( ) ( ) ( )( ), , , , ,
1 Area

p
p p

s t s t s t s t s tT T T T Tσ
π

∗ ∗  − ≤  
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where 
{ }min ,s t

p
s t

=
+

. 

Proof. Since ,s tT  is 
{ }min ,s t

s t+
-hyponormal operator, let x  be an arbitrary unit vector in H . We define 

( ) ( )( ){ }0 , ,:s t s tH g T x g Tσ= ∨ ∈ℜ  . 

Since 0H  is an invariant subspace for ,s tT , Lemma 4 of [4] implies that 
0

,s t H
T T′ =   is a (1-multicyclic) p -  

hyponormal operator. If ( ),s tTλ ρ∈  , then for any 0y H∈ , ( ) 1

, 0s tT y Hλ
−

− ∈ . Therefore, ( )Tλ ρ ′∈ . Hence,  

( ) ( ),s tT Tσ σ′ ⊂  . By Berger-Shaw’s Theorem [4], 

( ) ( ){ } ( )( ) ( )( )
1

,
1 1Area Area

p p p
s ttr T T T T T Tσ σ

π π
∗ ∗

 
 ′ ′ ′ ′ ′− ≤ ≤
 
 

 . 

And the maximal eigenvalues of positive trace class operator ( ) ( ){ }
1

p p pT T T T∗ ∗′ ′ ′ ′−  is equal to or less than 

( )( ),
1 Area s tTσ
π

 . Thus, the maximal eigenvalue of ( ) ( )p p
T T T T∗ ∗′ ′ ′ ′−  is equal to or less than  

( )( ),
1 Area

p

s tTσ
π
 
 
 

 . Therefore, 

( ) ( ) ( )( ),
1 Area

p
p p

s tT T T T Tσ
π

∗ ∗  ′ ′ ′ ′− ≤  
 

 . 

Let P  be the projection onto 0H . Then, by Lemma 4 of [4], 

( )( ) ( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

,

, , , ,

, , , ,

1 Area ,

                                ,

                                () , .

p
p p

s t

p p

s t s t s t s t

pp
s t s t s t s t

T T T T T x x

P T T P P T T P x x

T T T T x x

σ
π

∗ ∗

∗ ∗

∗ ∗

  ′ ′ ′ ′≥ − 
 

≥ −

= −



   

   

 

Since x H∈  is arbitrary unit vector, 

( ) ( ) ( )( ), , , , ,
1 Area

p
p p

s t s t s t s t s tT T T T Tσ
π

∗ ∗  − ≤  
 

     . 

Corollary 2.7. Let T  be w -hyponormal operator. Then 

( )( )1 AreaT T Tσ
π

∗− ≤  . 

Moreover, if ( )( )Area 0Tσ = , then T  is normal. 

Theorem 2.8. Let T  be a w -hyponormal operator. If M  is an invariant subspace of T  and MT  is an 
injective normal operator, then M  reduces T . 

Proof. Decompose T  into 

on H
0
A B

T M M
C

⊥ 
= = ⊕ 
 

 

and let MA T=  be injective normal operator. Let Q  be the orthogonal projection of H  onto M . Since  
( ) ( ) { }ker ker 0A A∗= = , we have ( )M A= ℜ . 

Then 
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1 22
22 22 2 00

0 0 0 0

AA Q T Q Q T Q Q T Q
  

= ≤ ≤ =         
 

by Hansen’s inequality. Since A  is normal we can write 
2

2 A ST
S D∗

 
=   
 

. 

Then 
4 4 2

220 0
0 0 0 0
A A CQT T TTQ Q T Q∗ ∗   += = =      

   
 

and 0S = . Hence 

( )

( ) ( ) ( )

22 24
22

2 22 2

0
0

A A AB BCA T T T TT
D AB BC A AB BC AB BC C

∗

∗ ∗

∗ ∗

 +   = = =        + + + + 

. 

Since A  is an injective normal operator, 0AB BC+ =  and 2D C= . 
22

22
2

0
A A A B

T T
B A B

∗

∗

 − −
 ≤ − =
 − − 

 

thus 0B = . 
Theorem 2.9. If T  and T ∗  are w -hyponormal operators, then T  is normal. 
In order to give the proof of Theorem 2.9, we need the following lemma from [6]. 
Lemma 2.10. Let 0A ≥  and 0B ≥ . If 

1 1
22 2B AB B≥                                     (2.5) 

and 
1 1

22 2A BA A≥                                      (2.6) 
then A B= . 

Proof of Theorem 2.9. Since T  is w -hyponormal then we have from ([7], Corollary 1.2) that 
11

1 11 1 22
2 22 2 andT T T T T T T T∗ ∗ ∗ ∗  ≥ ≤   

   
.                    (2.7) 

Similarly, since T ∗  is w -hyponormal, we have 
1 1

1 1 1 12 2
2 2 2 2andT T T T T T T T∗ ∗ ∗ ∗   ≥ ≤   

  
.                    (2.8) 

From Equations (2.7) and (2.8) and Lemma 2.10 we conclude T T ∗= . Therefore, T  is normal. 
In the following result, 1) and 2) are due to [2], 3) and 4) to [8]. 
Lemma 2.11. Let ( )B HT ∈ . 
1) For each 0s >  and 0t > . If T  belongs to class ( ),wA s t , then T  belongs to class ( ),wA α β  for 

each sα ≥  and tβ ≥ . 

2) T  is a class 1 1,
2 2

wA 
 
 

 operator if and only if T  is a w -hyponormal operator. 

3) Let T  be a w -hyponormal operator. Then nT  is also w -hyponormal for all positive integer n . 
4) Let T  be a class ( ),wA s t  operator for [ ]0,1s∈  and ( ]0,1t∈ . 
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Then nT  belongs to class ,s twA
n n

 
 
 

 for all positive integer n . 

Let ( )( )Hol Tσ  be the space of all functions that analytic inan open neighborhoods of ( )Tσ . Following 
[9]. Wesay that ( )B HT ∈  has the single-valued extension property (SVEP) at point λ ∈  if for every open 
neighborhood Uλ  of λ , the only analytic function : Hf Uλ →  which satisfies the equation  
( ) ( ) 0T fµ µ− =  is the constant function 0f ≡ . It is well-known that ( )B HT ∈  has SVEP at every point of 
the resolvent ( ) ( ): C \T Tρ σ= . Moreover, from the identity Theoremfor analytic function it easily follows that 

( )B HT ∈  has SVEP at every point of the boundary ( )Tσ∂  of the spectrum. In particular, T  has SVEP at 
every isolated point of ( )Tσ . In ([10], Proposition 1.8), Laursen proved that if T  is of finite ascent, then T  
has SVEP. 

Definition 2.2. [11] An operator T  is said to have Bishop’s property ( )β  at Cλ ∈  if for every open 
neighborhood G  of λ , the function ( )Holnf G∈  with ( ) ( ) 0nT fλ µ− →  uniformly on every compact 
subset of G  implies that ( ) 0nf µ →  uniformly on every compact subset of G , where ( )Hol G  means the 
space of all analytic functions on G . When T  has Bishop’s property ( )β  at each Cλ ∈ , simply say that 
T  has property ( )β . 

Lemma 2.12. [12] Let G  be open subset of complex plane   and let ( )Holnf G∈  be functions such that 
( ) 0nfµ µ →  uniformly on every compact subset of G , then ( ) 0nf µ →  uniformly on every compact subset 

of G . 
Remark: The relations between T  and its transformation T  are 

1 1 1
2 2 2T T T U T T T= =                               (2.9) 

and 
1 1 1
2 2 2U T T U T U T TU T= = .                           (2.10) 

It is shown in [13] that every p -hyponormal operator has Bishop’s property ( )β . 
Theorem 2.13. Let ( )B HT ∈  be w -hyponormal. Then T  has the property ( )β . Hence T  has SVEP.  
Proof. Since T  is semi-hyponormal by ([3], Theorem 2.4), it is suffices to show that T  has property ( )β  

if and only if T  has property ( )β . Suppose that T  has property β . Let G  be an open neighborhood of 
λ  and let ( )Holnf G∈  be functions such that ( ) ( ) 0nT fµ µ− →  uniformly on every compact subset of G .  

By Equation (2.9), ( ) ( ) ( ) ( )
1 1
2 2 0n nT T f T T fµ µ µ µ− = − →  uniformly on every compact subset of G .  

Hence ( ) ( ) 0n nTf U T fµ µ= →  uniformly on every compact subset of G , and T  having property β  fol- 
lows by Lemma 2.12. Suppose that T  has property ( )β . Let G  be an open neighborhood of λ  and let 

( )Holnf G∈  be functions such that ( ) ( ) 0nT fµ µ− →  uniformly on every compact subset of G . By  

Equation (2.10), since ( ) ( ) ( ) ( )
1 1
2 2 0nT T f U T T fµ µ µ µ − = − → 

 
  uniformly on every compact subset of  

G . Hence ( ) ( ) 0n nTf U T fµ µ= →  uniformly on every compact subset of G  for T  has property ( )β , so 
that ( ) 0nfµ µ →  uniformly on every compact subset of G , and T  has property ( )β  follows by Lemma 
2.12. 

Theorem 2.14. Let T  be w -hyponormal. Then ( ) ( )0H kerT I T Iλ λ− = −  for Cλ ∈ . 
Proof. Let CF ⊂  be closed set. Define the global spectral subspace by 

( ) ( ) ( ) ( ){ }X H   analytic  :  on C \T F x f z T zI f z x F= ∈ ∃ − = . 

It is known that ( ) { }( )0H XTT Iλ λ− =  by ([14], Theorem 2.20). As T  has Bishop’s property ( )β  by 

Theorem 2.13, ( )XT F  is closed and ( )( )XT FT Fσ ⊂  by ([15], Proposition 1.2.19). Hence ( )0H T Iλ−  is 

closed and ( )0H T IT
λ−

 is w -hyponormal by Theorem 2.2. Since ( )( ) { }
0H T IT

λ
σ λ

−
⊂ , ( )0H T IT

λ−
 is normal by 

Corollary 2.7. If ( )( )0H T IT
λ

σ
−

= ∅ , then ( ) { }0H 0T Iλ− =  and ( ) { }ker 0T Iλ− =  If ( )( ) { }
0H T IT

λ
σ λ

−
= , 

then ( )0H T IT I
λ

λ
−

=  and ( ) ( )0H kerT I T Iλ λ− ⊂ − . 
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Remark 2.15. If 0λ ≠ , then ( ) ( ) ( )0H ker kerT I T I T Iλ λ λ ∗− = − ⊂ − . Moreover, if ( ) { }\ 0Tλ σ∈  is an  
isolated point then ( ) ( ) ( )0H ker kerT I T I T Iλ λ λ ∗− = − ⊂ − . 

Example 2.16. Let A  and B  be n n×  matrices and satisfy 0A B≥ ≥ . Let jj
H H

∞

=−∞
= ⊕ , where  

n
jH C=  for every j∈ . Let U  be the bilateral shift on H , that is ( ) 1nnUx x −= , where  
( )1 0 1, , , ,x x x x H−= ∈  . Let { }jP  be  

    if  0
if  1.j

B j
P

A j
≤

=  ∈ ≥
 

We define ( ) j jjPx P x=  for ( )1 0 1, , , ,x x x x−=    and let T UP= . Then T  is w -hyponormal and so  
( ) ( )0 KerH T Tλ λ− = − . 

Proposition 2.17. [3] Let T  be w -hyponormal. Then ( ) 0T I xλ− =  implies ( ) 0T I xλ ∗− = . 

3. Variants of Weyl’s Theorems 
An operator ( )B HT ∈  is called Fredholm if it has closed range, finite dimensional null space, and its range 
has finite codimension. The index of a Fredholm operator is given by 

( ) ( ) ( ):i T T Tα β= −  

T  is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of finite ascent and descent”. 
Recall that the ascent, ( )a T , of an operator T  is the smallest non-negative integer p  such that  

( ) ( )1ker kerp pT T += . If such integer does not exist we put ( )a T = ∞ . Analogously, the descent, ( )d T , of an  
operator T  is the smallest non-negative integer q  such that ( ) ( )1q qT T +ℜ = ℜ , and if such integer does not  

exist we put ( )d T = ∞ . The essential spectrum ( )F Tσ , the Weyl spectrum ( )w T  and the Browder spectrum 
( )b Tσ  of T  are defined by 

( ) { }C :  is not FredholmF T Tσ λ λ= ∈ −  

( ) { }C :  is not WeylW T Tσ λ λ= ∈ −  

and 
( ) { }C :  is not Browderb T Tσ λ λ= ∈ −  

respectively. Evidently 
( ) ( ) ( ) ( ) ( )F W b FT T T T acc Tσ σ σ σ σ⊆ ⊆ ⊆ ∪  

where we write accK  for the accumulation points of CK ⊆ . Following [16], we say that Weyl’s theorem  
holds for T  if ( ) ( ) ( )0\ WT T E Tσ σ = , where ( )0E T  is the set of all eigenvalues λ  of finite multiplicity  
isolated in ( )Tσ . And Browder’s theorem holds for T  if ( ) ( ) ( )0\ WT T Tσ σ π= , where ( )0 Tπ  is the set 
of all poles of T  of finite rank. 

Theorem 3.1. If T  is w -hyponormal operator with ( ) { }0W Tσ = , then it is a compact normal operator. 
Proof. Since Weyls theorem holds for T  by ([17], Theorem 3.4), each element in ( ) ( ) ( ) { }\ \ 0WT T Tσ σ σ=   

is an eigenvalue of T  with finite multiplicity, and is isolated in ( )Tσ . This implies that ( ) { }\ 0Tσ  is a  
finite set or a countable infinite set with 0  as its only accumulation point. Put ( ) { } { }\ 0 nTσ λ= , where 

n mλ λ≠  whenever n m≠  and { }nλ  is a non-increasing sequence. Since T  is normaloid, we have 
1 Tλ = . By ([3], Theorem 3.2), ( )1 0T xλ− =  implies ( )1 0T xλ ∗− = . In fact, 

1
2 2 2 2 2 2 22

1 0T T T x T x Tx T x xλ∗− = − = − =  

2 2
1 1T x T Tx T x xλ λ∗ ∗= = =  and 1T x xλ∗ = . Hence ( )1ker T λ−  is a reducing subspace of T . Let 1P  be  

the orthogonal projection onto ( )1ker T λ− . Then 1 1T Tλ= ⊕  on ( ) ( )1 1H P I P= ℜ ⊕ℜ − . Since 1T  is w -  
hyponormal operator and ( ) ( ) { }1 1p pT Tσ σ λ= ∪ , we have ( )2 1p Tλ σ∈ . By the same argument as above, 

( ) ( )2 1 2ker kerT Tλ λ− = −  is a finite dimensional reducing subspace of T  which is included in ( )1I Pℜ − . 
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Put 2P  be the orthogonal projection onto ( )2ker T λ− . Then 1 1 2 2 2T P P Tλ λ= ⊕ ⊕  on  
( ) ( ) ( )1 2 1 2H P P I P P= ℜ ⊕ℜ ⊕ℜ − − . By repeating above argument, each ( )ker nT λ−  is a reducing subspace 

of T  and 

1 1| | 0n
k k k n kT P Tλ λ= +− = = →⊕  as n →∞ . 

Here kP  is the orthogonal projection onto ( )ker kT λ−  and ( )1
n
k k k nT P Tλ== ⊕⊕  on 

( )( ) ( )1 1H nn
k k kkP I P= =

= ℜ ⊕ℜ −⊕ ∑ . Hence 1k k kT Pλ∞
== ⊕  is compact and normal because each kP  is a finite 

rank orthogonal projection which satisfies 0k lP P =  whenever k l≠  by ([3], Corollary 3.4) and 0nλ →  as 
n →∞ . 

Definition 3.1. An operator ( )B HT ∈  is called algebraically w -hyponormal operator if there exists a 
nonconstant complex polynomial p  such that ( )p T  is w -hyponormal operator. 

In general, the following implications hold: class w -hyponormal ⇒  algebraically w -hyponormal. 
The following facts follow from the above definition and some well known facts about class w -hyponormal. 
1) If ( )B HT ∈  is algebraically w -hyponormal then so is T Iλ−  for each Cλ ∈ . 
2) If ( )B HT ∈  is algebraically w -hyponormal and M  is a closed T-invariant subspace of H  then MT  

is algebraically w -hyponormal. 
Lemma 3.2. Let ( )B HT ∈  belong to class w -hyponormal. Let Cλ ∈ . Assume that ( ) { }Tσ λ= . Then 

T Iλ= . 
Proof. We consider two cases: 
Case (I). ( )0λ = : Since T  is an w -hyponormal, T  is normaloid. Therefore 0T = . 
Case (II). ( )0λ ≠ : Here T  is invertible, and since T  is an w -hyponormal, we see that 1T −  is also 

belongs class w -hyponormal. Therefore 1T −  is normaloid. On the other hand, ( )1 1Tσ
λ

−  =  
 

, so

1 1 1T T λ
λ

− = = . It follows that T  is convexoid, so ( ) { }W T λ= . Therefore T λ= . 

Proposition 3.3. Let T  be a quasinilpotent algebraically w -hyponormal operator. Then T  is nilpotent. 
Proof. Assume that ( )p T  is w -hyponormal operator for some nonconstant polynomial p . Since 

( )( ) ( )( )p T p Tσ σ=  the operator ( ) ( )0p T p−  is quasinilpotent. Thus Lemma 3.2 would implythat 

( ) ( ) ( ) ( )1 0 0m
ncT T I T I p T pλ λ− − ≡ − =  

where 1m ≥ . Since jT Iλ−  is invertible for every 0jλ ≠ , we must have 0mT = . 
An operator ( )B HT ∈  is called isoloid if every isolated point of ( )Tσ  is an eigenvalue of T . An 

operator ( )B HT ∈  is called normaloid if ( )r T T= , where ( )r T  is the spectral radius of T . ( )B HX ∈  
is called a quasiaffinity if it has trivial kernel and dense range. ( )B HS ∈  is said to be a quasiaffine transform 
of ( )B HT ∈  (notation: S T ) if there is a quasiaffinity ( )B HX ∈  such that XS TX= . If both S T  
and T S  then we say that S  and T  are quasisimilar. 

An operator ( )B HT ∈  is said to be polaroid if ( ) ( )iso T Tσ π⊆  where ( )iso Tσ  be the set of isolated 
points of the spectrum ( )Tσ  of T  and ( )Tπ  is the set of all poles of T . In general, if T  is polaroid then 
it is isoloid. However, the converse is not true. Consider the following example. Let ( )2 NT ∈   be defined by 

( ) 32
1 2, , , ,

2 3
xxT x x  =  

 
  . 

Then T  is a compact quasinilpotent operator with ( )dimker 1T = , and so T  is isoloid. However, since T  
does not have finite ascent, T  is not polaroid. 

In [3] they showed that every w -hyponormal operator is isoloid. We can prove more: 
Theorem 3.4. Let T  be an algebraically w -hyponormal operator. Then T  is polaroid. 
Proof. Suppose T  is an algebraically w -hyponormal operator. Then ( )p T  is w -hyponormal for some  

nonconstant polynomial p . Let ( )( )iso Tλ σ∈ . Using the spectral projection ( ) 11: d
2 D

P T
i

µ µ
π

−

∂
= −∫   

where D  is a closed disk of center λ  which contains no other points of ( )Tσ , we can represent T  as the 
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direct sum 

( ) { } ( ) ( ) { }1
1 2

2

0
, and and \

0
T

T T T T
T

σ λ σ σ λ
 

= = = 
 

. 

Since 1T  is algebraically w -hyponormal and ( ) { }1Tσ λ= . But ( ) { }1 0T Iσ λ− =  it follows from 
Proposition 3.3 that 1T Iλ−  is nilpotent. Therefore 1T λ−  has finite ascent and descent. On the other hand, 
since 2T Iλ−  is invertible, clearly it has finite ascent and descent. Therefore T Iλ−  has finite ascent 
anddescent. Therefore λ  is a pole of the resolvent of T . Thus if ( )( )iso Tλ σ∈  implies ( )Tλ π∈ , and so 

( )( ) ( )iso T Tσ π⊂ . Hence T  is polaroid. 
Corollary 3.5. Let T  be an algebraically w -hyponormal operator. Then T  is isoloid. 
For ( )B HT ∈ , ( )Tλ σ∈  is said to be a regular point if there exists ( )B HS ∈  such that 

( ) ( )T I T I S T Iλ λ λ− = − − . T  is is called reguloid if every isolated point of ( )Tσ  is a regular point. It is 
well known ([18], Theorems 4.6.4 and 8.4.4) that ( ) ( )T I T I S T Iλ λ λ− = − −  for some ( )B HS T Iλ∈ ⇔ −  
has a closed range. 

Theorem 3.6. Let T  be an algebraically w -hyponormal operator. Then T  is reguloid. 
Proof. Suppose T  is an algebraically w -hyponormal operator. Then ( )p T  is w -hyponormalfor some  

nonconstant polynomial p . Let ( )( )iso Tλ σ∈ . Using the spectral projection ( ) 11: d
2 D

P T
i

µ µ
π

−

∂
= −∫   

where D  is a closed disk of center λ  which contains no other points of ( )Tσ , we can represent T  as the 
direct sum 

( ) { } ( ) ( ) { }1
1 2

2

0
, and and \

0
T

T T T T
T

σ λ σ σ λ
 

= = = 
 

 

Since 1T  is algebraically w -hyponormal and ( ) { }1Tσ λ= . it follows from Lemma 3.2 that 1T Iλ= . 
Therefore by ([17], Corollary 2.6), 

( ) ( ) ( ) ( )H H H ker kerE E T I T Iλ λ⊥ ⊥= ⊕ = − ⊕ −                    (3.1) 

Relative to decomposition 3.1, 2T I Tλ= ⊕ . Therefore 0T I T Iλ λ− = ⊕ −  and hence  

( ) ( )( ) ( ) ( )( )2ran H 0 kerT I T I T I T Iλ λ λ λ ⊥− = − = ⊕ − −   

since 2T Iλ−  is invertible, T Iλ−  has closed range. 
For a bounded operator T  and nonnegative integer n , define [ ]nT  to be the restriction of T  to ( )R nT   

viewed as a map from ( )R nT  into ( )R nT  (in particular [ ]0T T= ). If for some n  the range ( )R nT  is 
closed and [ ]nT  is an upper (resp. a lower) semi-Fredholm operator, then T  is called an upper (resp. a lower) 
semi- B -Fredholm operator. In this case the index of T  is defined as the index of the semi-Fredholm operator 
[ ]nT , see [19]. Moreover, if [ ]nT  is a Fredholm operator, then T  is called a B -Fredholm operator. A semi-B- 

Fredholm operator is an upper or a lower semi-Fredholm operator. An operator ( )BT X∈  is said to be a B - 
Weyl operator if it is a B -Fredholm operator of index zero. the semi- B -Fredholm spectrum ( )SBF Tσ  and the 
B -Weyl spectrum BWσ  of T  are defined by 

( ) { }
{ }

: C :  is not a semi- -Fredholm operator ,

: C :  is not a -Weyl operator .
SBF

BW

T T I B

T I B

σ λ λ

σ λ λ

= ∈ −

= ∈ −
 

Recall that an operator ( )BT X∈  is a Drazin invertible if and only if it has a finite ascent and descent, 
which is alsoequivalent to the fact that 0 1T T T= ⊕ , where 0T  is nilpotent operator and 1T  is invertible 
operator, see ([20], Proposition A). The Drazin spectrum is given by 

( ) { }: C :  is not Drazin invertibleD T T Iσ λ λ= ∈ −  

We observe that ( ) ( ) ( )\D T T Tσ σ π= , where ( )Tπ  is the set of allpoles. 
Define 

( ) ( ) ( ){ }: : 0E T iso T Tλ σ α λ= ∈ < −  

we also say that the generalized Weyl’s theorem holds for T  (in symbol, WT g∈ ) if 
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( ) ( ) ( )\ BWT T E Tσ σ =  

and that the generalized Browder’s theorem holds for T  (in symbol, BT g∈ ) if 

( ) ( ) ( )\ BWT T Tσ σ π= . 

It is Known [21] [22] that 
W B W and that B W Bg g g⊆ ∪ ∪ ⊆ . 

Moreover, given BT g∈ , then it is clear WT g∈  if and only if ( ) ( )E T Tπ= , see [21] [22]. 
Let ( )XSF+  be the class of all upper semi-Fredholm operators, ( )XSF −

+  be the class of all ( )XT SF+∈  
with ( )ind 0T ≤ , and for any ( )BT X∈  let 

( ) ( ){ }: C : X
SF

T T I SFσ λ λ−
+

−
+= ∈ − ∉ . 

Let 0
aE  be the set of all eigenvalues of T  of finite multiplicity which are isolated in ( )a Tσ . According to 

[23], we say that T  satisfies a -Weyl’s theorem (and we write WT a∈ ) if  

( ) ( ) ( )0\ a
aSF

T T E Tσ σ−
+

=  

and that a -Browder’s theorem holds for T  (in symbol, BT a∈ ) if 

( ) ( ) ( )0\ a
a SF

T T Tσ σ π−
+

=  

where ( )0
a Tπ  is the set of all left poles of finite rank.  

Let ( )XSBF+  be the class of all upper semi-B-Fredholm operators, and ( )XSBF −
+  the class of all 

( )XT SBF+∈  such that ( )ind 0T ≤ , and 

( ) ( ){ }: C : X
SBF

T T SBFσ λ λ−
+

−
+= ∈ − ∉ . 

Recall that an operator ( )BT T∈  satisfies the generalized a-Weyl’s theorem (in symbol, WT ga∈ ) if  

( ) ( ) ( )\ a
aSBF

T T E Tσ σ−
+

=  

where ( )aE T  is the set of all eigenvalues of T  which are isolated in ( )a Tσ . 
Define a set ( )XLD  by 

( ) ( ) ( )( ){ }1X : B( ) : <  and R  is closeda TLD T X a T T += ∈ ∞ . 

An operator ( )B HT ∈  iscalled left Drazin invertible if ( )a T < ∞  and ( )( )1R a TT +  is closed (see [22], 
Definition 2.4). The left Drazin spectrum is given by 

( ) { }: C :  is not left Drazin invertibleLD T T Iσ λ λ= ∈ − . 

Recall ([22], Definition 2.5) that ( )a Tλ σ∈  is a left pole of T  if T Iλ−  is left Drazin invertible operator 
and ( )a Tλ σ∈  is a left pole of finite rank if λ  is a left pole of T  and ( )Tα λ− < ∞ . We will denote 

( )a Tπ  the set of all left pole of T . We have ( ) ( ) ( )\ a
LD aT T Tσ σ π= . Note that if ( )a Tλ π∈ , then it is 

easily seen that T λ−  is an operator of topological uniform descent. Therefore, it follows from ([21], Theorem 
2.5) that λ  is isolated in ( )a Tσ . Following [22] if ( )B HT ∈  and Cλ ∈  is anisolated in ( )a Tσ , then  

( )a Tλ π∈  if and only if ( )SBF
Tλ σ −

+
∉  and ( )0

a Tλ π∈  if and only if ( )SF
Tλ σ −

+
∉ . We will say that 

generalized a -Browder’s theorem holds for T  (in symbol BT ga∈ ) if 

( ) ( ) ( )\ a
aSBF

T T Tσ σ π−
+

= . 

It is known [21]-[23] that 
W B W B W and that B W W and that B Bg g a ga ga a a a∪ ∪ ∪ ⊆ ∪ ⊆ ⊆ . 

Definition 3.2. ([23]) An operator ( )B HT ∈  is said to satisfy property ( )w  if 

( ) ( ) ( ) ( )0\a a SF
T T T E Tσ σ −

+
∆ = = . 

In [24], it is shown that the property ( )w  implies Weyls theorem. For ( )B HT ∈ , let  
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( ) ( ) ( )\g
BWT T Tσ σ∆ =  and ( ) ( ) ( )\g

a SBF
T T Tσ σ −

+
∆ = . If T ∗  has the SVEP, then it is known from [15] that 

( ) ( )aT Tσ σ=  and from [25] we have ( ) ( )BW SBF
T Tσ σ −

+
= . Thus ( ) ( )aE T E T=  and ( ) ( )g g

aT T∆ = ∆ . 

Definition 3.3. ([26]) An operator ( )BT X∈  is said to satisfy property ( )gw  if 

( ) ( )g
a T E T∆ = . 

Theorem 3.7. Let ( )B HT ∈ . If T  is a w -hyponormal. Then the following assertions are equivalent: 
1) generalized Weyl’s theorem holds for T ; 
2) generalized Browder’s theorem holds for T ; 
3) Weyl’s theorem holds for T ; 
4) Browder’s theorem holds for T . 
Proof. Since w -hyponormal operators are polaroid. Hence the result follows now from ([27], Corollary 2.1). 
Theorem 3.8. Let ( )B HT ∈ . If T ∗  is a w -hyponormal. Then the following assertions are equivalent: 
1) generalized a -Weyl’s theorem holds for T ; 
2) generalized a -Browder’s theorem holds for T ; 
3) a -Weyl’s theorem holds for T ; 
4) a -Browder’s theorem holds for T . 
Proof. If T ∗  is a w -hyponormal, then T  is a -polaroid and so ( ) ( )a aE T Tπ= . Hence the result 

followsnow from ([27], Corollary 2.3). 
Theorem 3.9. Let ( )B HT ∈ . If T ∗  is a w -hyponormal. Then the following assertions are equivalent: 
1) generalized a -Weyl’s theorem holds for T ; 
2) generalized Weyl’s theorem holds for T ; 
3) T  satisfies property ( )gw ; 
4) generalized a -Browder’s theorem holds for T ; 
5) a -Weyl’s theorem holds for T ; 
6) a -Browder’s theorem holds for T ; 
7) T  satisfies property ( )w . 
Proof. (i) ⇔  (ii) ⇔  (iii). This equivalence follows from ([26], Theorem 2.7), since T ∗  has SVEP. (i) 

⇔  (iv) ⇔  (v) ⇔  (vi). This equivalence follows from Theorem 3.8. (iii) ⇔  (vii). Since T ∗  has SVEP 
and T  is polaroid, then ( ) ( )aE T Tπ= . Therefore, the equivalence follows now from Theorem 2.5 of [26]. 

Recall that a bounded operator T  is said to be algebraic if there exists a non-trivial polynomial h  such that 
( ) 0h T = . From the spectral mapping theorem it easily follows that the spectrum of analgebraic operator is a 

finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K  are 
algebraic; more generally, if nK  is a finite rank operator for some Nn∈  then K  is algebraic. Clearly, if T  
is algebraic then its dual T ∗  is algebraic. 

Theorem 3.10. Suppose that ( )B HT ∈ , and ( )BK X∈  is an algebraic operator commutingwith T . 
1) If T  is algebraically w -hyponormal then property ( )gw  holds for T K∗ ∗+ . 
2) If T ∗  is algebraically w -hyponormal then property ( )gw  holds for T K+ . 
Proof. (i) If T  is an algebraically w -hyponormal then T  has SVEP and hence T K+  has SVEP by 

Theorem 2.14 of [28]. Moreover, T  is polaroid so also T K+  is polaroid by Theorem 2.14 of [28]. By 
Theorem 2.10 of [26], then property ( )gw  holds for T K∗ ∗+ . 

(ii) If T ∗  is an algebraically w -hyponormal then T ∗  has SVEP and hence T K∗ ∗+  has SVEP by 
Theorem 2.14 of [28]. Moreover, T ∗  is polaroid so also T K∗ ∗+  is polaroid by Theorem 2.14 of [28]. By 
Theorem 2.10 of [26], then property ( )gw  holds for T K+ . 

4. Riesz Idempotent of w -Hyponormalc 
Let ( )B HT ∈  and ( )Tλ σ∈  be an isolated of ( )Tσ . then there exists a closed disc Dλ  centered λ  which 
satisfies ( ) { }D Tλ σ λ∩ = . The operator 

( ) 1

D

1 d
2

P T I
i λ

λ λ
π

−

∂
= −∫  

is called the Riesz idempotent with respect to λ  which has properties that  
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( ) ( ) { }2
H,  ,  ker H and PP P PT TP T I P Tλ σ λ= = − ⊂ = . 

In [29], Stampfli proved that if T  is hyponormal and ( )Tλ σ∈  is isolated, then the Riesz idempotent P  
with respect to λ  is self-adjoint and satisfies 

( ) ( )H ker kerP T I T Iλ λ ∗= − = − . 

In this paper we extend these result to the case of w -hyponormal operator. 
Theorem 4.1. Let ( )B HT ∈  be a w -hyponormal operator and λ  be a non-zero isolated point of ( )Tσ . 
Let Dλ  denote the closed disc which centered λ  such that ( ) { }D Tλ σ λ∩ = . Then the Riesz idempotent 

λ  satisfies that 
( ) ( )H ker kerP T I T Iλ λ ∗= − = − . 

In particular P  is self-adjoint. 
Proof. Since w -hyponormal operators are isoloid by Corollary 3.5. 
Then λ  is an isolated point of ( )Tσ . Then the range of Riesz idempotent  

( ) 1

D

1 d
2

P T I
i λ

λ λ
π

−

∂
= −∫  

is aninvariant closed subspace of T  and ( ) { }HPTσ λ= . Here Dλ  isa closed disc with its center λ  such  
that ( ) { }D Tλ σ λ∩ = . 

If 0λ = , then ( ) { }H 0PTσ =  Since HPT  is w -hyponormal by Theorem 2.2, H 0PT =  by Lemma 3.2. 
Therefore, 0 is an eigenvalue of T . 

If 0λ ≠ , then HPT  is an invertible w -hyponormal operator and hence ( ) 1

HPT
−

 is also w -hyponormal. 

We see that HPT λ=  and ( ) 1

H

1=PT
λ

−
, Let Hx P∈  be arbitrary vector. Then 

( ) 1
H HH

1 1
P PPx T T x T x x xλ

λ λ
−

≤ = ≤ = . 

This implies that 
H

1
PT

λ
 is unitary with its spectrum { }H

1 1PTσ
λ

  = 
 

. Hence HPT Iλ=  and λ  is an  

eigenvalue of T. Therefore, ( )H kerP T Iλ= −  Since ( ) ( )ker kerT I T Iλ λ ∗− ⊂ −  by Proposition 2.16, it suf-  
fices to show that ( ) ( )ker kerT I T Iλ λ∗− ⊂ − . Since ( )ker T Iλ−  is a reducing subspace of T by Proposition  
2.16 and the restriction of a w-hyponormal to its reducing subspace is also w-hyponormal operator, we see that  
T  is of the form T T Iλ′= ⊕  on ( ) ( )H ker kerT I T Iλ λ ⊥= − ⊕ − , where T ′  is a w -hyponormal operator  
with ( ) { }ker 0T Iλ′ − = . Since ( ) ( ) { }T Tλ σ σ λ′∈ = ∪  is isolated, the only two cases occur. One is ( )Tλ σ ′∉   
and the other is that λ  is an isolated point of ( )Tσ ′ . The latter case, however, does not occur otherwise we  
have ( )p Tλ σ ′∈  and this contradicts the fact that ( ) { }ker 0T Iλ′ − = . ( ) ( )ker kerT I T Iλ λ ∗− = −  is imme-  
diate from the injectivity of T Iλ′ −  as an operator on ( )ker T Iλ ⊥− . 

Next, we show that P  is self-adjoint. Since ( ) ( )H ker kerP T I T Iλ λ ∗= − = −  we have  

( )( ) ( )
1 1T zI P z Pλ
−∗ −− = − . 

Hence 

( )( ) ( )
1 1

D D D

1 1 1 1d d d
2 2 2

P P T zI P z z P z z P PP
i i i zλ λ λ

λ
π π π λ

−∗ −∗ ∗

∂ ∂ ∂

 = − − = − − = = − ∫ ∫ ∫ . 

Therefore, the proof is achieved.  

5. Conclusion 
In the study of w-hyponormal operator, the Aluthge transform is a very useful tool. It is an operator transform 
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from the class of w-hyponormal operator to the class of semi-hyponormal operator. By using Aluthge transform, 
we treat spectrum properties of w-hyponormal operator like some of hyponormal operator. 
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