Quasinilpotent Part of w-Hyponormal Operators

Mohammad Hussein Mohammad Rashid
Department of Mathematics \& Statistics, Faculty of Science, Mu'tah University, Mu'tah, Jordan
Email: malik_okasha@yahoo.com

Received 31 May 2014; revised 1 July 2014; accepted 1 September 2014
Copyright © 2014 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

For a w-hyponormal operator T acting on a separable complex Hilbert space H, we prove that: 1) the quasi-nilpotent part $\mathrm{H}_{0}(T-\lambda I)$ is equal to $\left.\operatorname{ker}(T-\lambda I) ; 2\right) T$ has Bishop's property β; 3) if $\sigma_{w}(T)=\{0\}$, then it is a compact normal operator; 4) If T is an algebraically w-hyponormal operator, then it is polaroid and reguloid. Among other things, we prove that if T^{n} and $T^{\boldsymbol{n}^{*}}$ are w-hyponormal, then T is normal.

\section*{Keywords}

Aluthge Transformation, w-Hyponormal Operators, Polaroid Operators, Reguloid Operators, SVEP, Property β, Quasinilpotent Part

Subject Areas: Functional Analysis, Mathematical Analysis

1. Introduction

Let H be a complex Hilbert space and let $\mathrm{B}(\mathrm{H})$ be the algebra of all bounded linear operators acting on H . If $T \in \mathrm{~B}(\mathrm{H})$ we shall write $\operatorname{ker}(T)$ and $\mathfrak{R}(T)$ for the null spaceand range of T, respectively. Also, let $\alpha(T):=\operatorname{dimker}(T), \quad \beta(T):=\operatorname{codim} \mathfrak{R}(T)$, and let $\sigma(T), \sigma_{a}(T), \sigma_{p}(T)$ denote the spectrum, approximate point spectrum andpoint spectrum of T, respectively. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in \mathrm{H}$ and also T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. An operator T is called p-hyponormal if $|T|^{2 p} \geq\left|T^{*}\right|^{2 p}$ for every $0<p \leq 1$. It is easily to see that every p-hyponormal is q-hyponormal for $p \geq q>0$ by Löwner-Heinz theorem " $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$ ". Let T be a p-hyponormal operator whose polar decomposition is $T=U|T|$. Aluthge [1] introduced the operator $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$, which called the Aluthge transformation, and also showed the following result.

Proposition 1.1. Let $T=U|T| \in \mathrm{B}(\mathrm{H})$ be the polar decomposition of a p-hyponormal for $0<p<1$ and U is unitary. Then the following assertions hold:

1) $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is $\left(p+\frac{1}{2}\right)$-hyponormal if $0<p<\frac{1}{2}$.
2) $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is 1-hyponormal if $\frac{1}{2} \leq p<1$.

As a natural generalization of Aluthge transformation Ito [2] introduced the operator $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ for $s>0$ and $t>0$. Recall [3], an operator $T \in \mathrm{~B}(\mathrm{H})$ is said to be w-hyponormal if $|\tilde{T}| \geq|T| \geq\left|\tilde{T}^{*}\right|$. We remark that w-hyponormal operator is defined by using Aluthge transformation $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. whyponormal was defined by Aluthge and Wang [3] and the following theorem is shown in [3].

Theorem 1.2. Let $T \in B(H)$.

1) If T is a p-hyponormal operator for $p>0$, then T is w-hyponormal.
2) If T is w-hyponormal operator, then $\left|T^{2}\right| \geq|T|^{2}$ and $\left|T^{*}\right|^{2} \geq\left|T^{* 2}\right|$ hold.
3) If T is w-hyponormal operator, then T^{-1} is also w-hyponormal.

Let $\lambda \in C$. The quasinilpotent part of $T-\lambda I$ is defined as

$$
\mathrm{H}_{0}(T-\lambda I)=\left\{x \in \mathrm{H}: \lim _{n \rightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

In general, $\operatorname{ker}(T-\lambda I) \subset \mathrm{H}_{0}(T-\lambda I)$ and $\mathrm{H}_{0}(T-\lambda I)$ is not closed. However, it is known that if T is hyponormal, then $\mathrm{H}_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$.

In this paper, we characterize the quasinilpotent part of w-hyponormal. This is a generalization of the hyponormal operator case.

2. Basic Properties of w-Hyponormal Operators

In this section we prove basic properties of w-hyponormal operators. These properties are induced by the following famous inequalities.

Lemma 2.1. (Hansen inequality). If $A, B \in B(H)$ satisfy $A \geq 0$ and $\|B\| \leq 1$, then $\left(B^{*} A B\right)^{\alpha} \geq B^{*} A^{\alpha} B$ for all $\alpha \in(0,1]$.

Theorem 2.2. Let $T \in \mathrm{~B}(\mathrm{H})$ be a w-hyponormal operator and M be its invariant subspace. Then the restriction $\left.T\right|_{M}$ of T to M is also a w-hyponormal operator.

Proof. Decompose T as

$$
T=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \quad \text { on } \quad \mathrm{H}=M \oplus M^{\perp}
$$

Let $Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ be the orthogonal projection onto M. Since $A=\left.T Q\right|_{M}$ we have $A^{*} A=Q T^{*} T Q$. By Hansen's inequality we have

$$
\left(\begin{array}{cc}
\left(A^{*} A\right)^{p} & 0 \\
0 & 0
\end{array}\right)=\left(Q T^{*} T Q\right)^{p} \geq Q\left(T^{*} T\right)^{p} Q
$$

while $A A^{*}=T Q T^{*}=Q T Q T^{*} Q$. So we have

$$
\left(A A^{*}\right)^{p}=\left(T Q T^{*}\right)^{p}=Q\left(T Q T^{*}\right)^{p} Q \leq Q\left(T T^{*}\right)^{p} Q \text { for all } p \in(0,1]
$$

Since T is w-hyponormal then \tilde{T} is semi-hyponormal and hence $\tilde{A}=\left.\tilde{T}\right|_{M}$ is semi-hyponormal by ([4], Lemma 4). Hence

$$
|\tilde{A}| \geq\left|\tilde{A}^{*}\right| .
$$

Now

$$
|\tilde{A}|=|\tilde{T}|_{M} \geq|T|_{M}=|A|
$$

also

$$
\left|\tilde{A}^{*}\right|=\left|\tilde{T}^{*}\right|_{M} \leq|T|_{M}=|A| .
$$

Therefore, A is w-hyponormal.
As a generalization of w-hyponormal operators, Ito [2] introduced a new class of operators as follows:
Definition 2.1. For each $s>0$ and $t>0$, an operator T belongs to class $w A(s, t)$ if an operator T satisfies

$$
\begin{equation*}
\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right) \frac{t}{t+s} \geq\left|T^{*}\right|^{2 t} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|T|^{2 s} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s}{s+t}} \tag{2.2}
\end{equation*}
$$

The following theorem on $\tilde{T}_{s, t}$ is a generalization of Proposition 1.1.
Theorem 2.3. Let $T=U|T|$ be the polar decomposition of a w-hyponormal operator. Then $\tilde{T}_{s, t}$ is $\frac{\min \{s, t\}}{s+t}$-hyponormal for $s \geq \frac{1}{2}$ and $t \geq \frac{1}{2}$.

In order to give the proof of Theorem 2.3, we need the following lemma from [2].
Lemma 2.4. Let $A \geq 0$ and $T=U|T|$ be the polar decomposition of T. Then for each $\alpha>0$ and $\beta>0$, the following assertion holds:

$$
\left(U|T|^{\beta} A|T|^{\beta} U^{*}\right)^{\alpha}=U\left(|T|^{\beta} A|T|^{\beta}\right)^{\alpha} U^{*} .
$$

Proof of Theorem 2.3. Suppose that T is w-hyponormal, then T belongs to class $w A(s, t)$ for each $s \geq \frac{1}{2}$ and $t \geq \frac{1}{2}$. Hence

$$
\begin{align*}
\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{\frac{\min \{s, t\}}{s+t}}=\left(|T|^{t} U^{*}|T|^{2 s} U|T|^{t}\right)^{\frac{\min \{s, t\}}{s+t}} & =\left(U^{*} U|T|^{t} U^{*}|T|^{2 s} U|T|^{t} U^{*} U\right)^{\frac{\min \{s, t\}}{s+t}} \\
& =U^{*}\left(U|T|^{t} U^{*}|T|^{2 s} U|T|^{t} U^{*}\right)^{\frac{\min \{s, t\}}{s+t}} U \tag{ByLemma2.4}\\
& =U^{*}\left(\left|T^{*}\right|^{t} U^{*}|T|^{2 s} U\left|T^{*}\right|^{t}\right)^{\frac{\min \{s, t\}}{s+t}} U \\
& \geq U^{*}\left|T^{*}\right|^{2 \min \{s, t\}} U .
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|\tilde{T}_{s, t}\right|^{\frac{\min \{s, t\}}{s+t}} \geq|T|^{2 \min \{s, t\}} \tag{2.3}
\end{equation*}
$$

and the last inequality holds by Equation (2.2) and Löwner-Heinz theorem.
On the other hand

$$
\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{\frac{\min \{s, t\}}{s+t}}=\left(|T|^{s} U|T|^{2 t} U^{*}|T|^{s}\right)^{\frac{\min \{s, t\}}{s+t}}=\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{\min \{s, t\}}{s+t}}
$$

Hence

$$
\begin{equation*}
\left|\tilde{T}_{s, t}^{*}\right|^{\frac{\min \{s, t\}}{s+t}} \leq|T|^{2 \min \{s, t\}} \tag{2.4}
\end{equation*}
$$

and the last inequality holds by Equation (2.1) and Löwner-Heinz theorem.
Therefore Equations (2.3) and (2.4) ensure

$$
\left|\tilde{T}_{s, t}^{*}\right|^{\frac{\min \{s, t\}}{s+t}} \geq|T|^{2 \min \{s, t\}} \geq\left|\tilde{T}_{s, t}^{*}\right|^{\frac{\min \{s, t\}}{s+t}} .
$$

That is, $\tilde{T}_{s, t}$ is $\frac{\min \{s, t\}}{s+t}$-hyponormal.
Theorem 2.5. Let $T=U|T|$ be the polar decomposition of w-hyponormal operator. Then

$$
\left\|\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}-\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right\| \leq \phi\left(\frac{1}{p}\right)\left\|\tilde{T}_{s, t}\right\|^{2(1-p)} \min \left\{\frac{p}{\pi} \int_{\sigma\left(\tilde{T}_{s, t}\right)} r^{2 p-1} \mathrm{~d} r \mathrm{~d} \theta, \frac{1}{\pi^{p}}\left(\int_{\sigma\left(\tilde{T}_{s, t}\right)} r \mathrm{~d} r \mathrm{~d} \theta\right)^{p}\right\}
$$

Moreover, if T is invertible w-hyponormal, then

$$
\left\|\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}-\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right\| \leq\left\|\tilde{T}_{s, t}\right\|^{2} \frac{1}{\pi} \int_{\sigma\left(\tilde{T}_{s, t}\right)} r^{-1} \mathrm{~d} r \mathrm{~d} \theta
$$

If we use $\int_{\sigma\left(\tilde{T}_{s, t}\right)} r^{-1} \mathrm{~d} r \mathrm{~d} \theta \leq\left\|\tilde{T}_{s, t}^{-1}\right\|^{2} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)$, we have also

$$
\left\|\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}-\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right\| \leq\left(\left\|\tilde{T}_{s, t}\right\|\left\|\tilde{T}_{s, t}^{-1}\right\|\right)^{2} \frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)^{p}
$$

where $p=\frac{\min \{s, t\}}{s+t}$ and $\phi(p)= \begin{cases}p, & \text { if } p \in \mathbb{N} ; \\ p+2, & \text { otherwise. }\end{cases}$
Proof. Let $p=\frac{\min \{s, t\}}{s+t}$. Since $\tilde{T}_{s, t}$ is p-hyponormal operator By Lemma 2 and Proposition 1 of [5]

$$
\begin{aligned}
\left\|\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}-\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right\| & \leq \phi(1 / p)\left\|\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{p}\right\|^{\frac{1}{p}-1}\left\|\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{p}-\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{p}\right\| \\
& \leq \phi(1 / p)\left\|\tilde{T}_{s, t}\right\|^{2 p}\left(\frac{1}{p}-1\right) \min \left\{\frac{p}{\pi} \int_{\sigma\left(\widetilde{T}_{s, t}\right)} r^{2 p-1} \mathrm{~d} r \mathrm{~d} \theta, \frac{1}{\pi^{p}}\left(\int_{\sigma\left(\widetilde{T}_{s, t}\right)} r \mathrm{~d} r \mathrm{~d} \theta\right)^{p}\right\} \\
& =\phi(1 / p)\left\|\tilde{T}_{s, t}\right\|^{2(1-p)} \min \left\{\frac{p}{\pi} \int_{\sigma\left(\widetilde{T}_{s, t}\right)} r^{2 p-1} \mathrm{~d} r \mathrm{~d} \theta, \frac{1}{\pi^{p}}\left(\int_{\sigma\left(\tilde{T}_{s, t}\right)} r \mathrm{~d} r \mathrm{~d} \theta\right)^{p}\right\}
\end{aligned}
$$

Next, we assume that $\tilde{T}_{s, t}$ is invertible. Since every p-hyponormal operator is q-hyponormal operator if $0<q \leq p$, by above

$$
\left\|\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}-\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right\| \leq \phi(1 / q)\left\|\tilde{T}_{s, t}\right\|^{2(1-q)} \frac{q}{\pi} \int_{\sigma\left(\tilde{T}_{s, t}\right)} r^{2 q-1} \mathrm{~d} r \mathrm{~d} \theta=\left(\frac{1}{q}+2\right) \frac{q}{\pi} \int_{\sigma\left(\tilde{T}_{s, t}\right)} r^{2 q-1} \mathrm{~d} r \mathrm{~d} \theta
$$

Letting $q \downarrow 0$, we have the result.
Let $\mathfrak{R}(\sigma(T))$ denotes the set of all rational functions on $\sigma(T)$. The operator T is said to be n multicyclic if there are n vectors $x_{1}, \cdots, x_{n} \in H$, called generating vectors, such that $\vee\left\{g(T) x_{i}: i=1, \cdots, n, g \in \mathfrak{R}(\sigma(T))\right\}=H$.

Theorem 2.6. If T is w-hyponormal operator. Then

$$
\left\|\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{p}-\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{p}\right\| \leq\left(\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right)^{p}
$$

where $p=\frac{\min \{s, t\}}{s+t}$.
Proof. Since $\tilde{T}_{s, t}$ is $\frac{\min \{s, t\}}{s+t}$-hyponormal operator, let x be an arbitrary unit vector in H. We define

$$
H_{0}=\vee\left\{g\left(\tilde{T}_{s, t}\right) x: g \in \mathfrak{R}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right\}
$$

Since H_{0} is an invariant subspace for $\tilde{T}_{s, t}$, Lemma 4 of $[4]$ implies that $T^{\prime}=\left.\tilde{T}_{s, t}\right|_{H_{0}}$ is a (1-multicyclic) p hyponormal operator. If $\lambda \in \rho\left(\tilde{T}_{s, t}\right)$, then for any $y \in H_{0},\left(\tilde{T}_{s, t}-\lambda\right)^{-1} y \in H_{0}$. Therefore, $\lambda \in \rho\left(T^{\prime}\right)$. Hence, $\sigma\left(T^{\prime}\right) \subset \sigma\left(\tilde{S}_{s, t}\right)$. By Berger-Shaw's Theorem [4],

$$
\operatorname{tr}\left(\left\{\left(T^{* *} T^{\prime}\right)^{p}-\left(T^{\prime} T^{* *}\right)^{p}\right\}^{\frac{1}{p}}\right) \leq \frac{1}{\pi} \operatorname{Area}\left(\sigma\left(T^{\prime}\right)\right) \leq \frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{\mathrm{S}, t}\right)\right)
$$

And the maximal eigenvalues of positive trace class operator $\left\{\left(T^{\prime *} T^{\prime}\right)^{p}-\left(T^{\prime} T^{\prime *}\right)^{p}\right\}^{\frac{1}{p}}$ is equal to or less than $\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{S}_{s, t}\right)\right)$. Thus, the maximal eigenvalue of $\left(T^{\prime *} T^{\prime}\right)^{p}-\left(T^{\prime} T^{\prime *}\right)^{p}$ is equal to or less than $\left\{\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right\}^{p}$. Therefore,

$$
\left\|\left(T^{\prime *} T^{\prime}\right)^{p}-\left(T^{\prime} T^{\prime *}\right)^{p}\right\| \leq\left\{\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right\}^{p}
$$

Let P be the projection onto H_{0}. Then, by Lemma 4 of [4],

$$
\begin{aligned}
\left\{\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right\}^{p} & \geq\left\langle\left\{\left(T^{\prime *} T^{\prime}\right)^{p}-\left(T^{\prime} T^{\prime *}\right)^{p}\right\} x, x\right\rangle \\
& \geq\left\langle\left\{P\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{p} P-P\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{p} P\right\} x, x\right\rangle \\
& =\left\langle\left(\tilde{T}_{s, t}^{*} \tilde{S}_{s, t}\right)\left\{\left(0^{p}-\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{p}\right\} x, x\right\rangle .\right.
\end{aligned}
$$

Since $x \in H$ is arbitrary unit vector,

$$
\left\|\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{p}-\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{p}\right\| \leq\left\{\frac{1}{\pi} \operatorname{Area}\left(\sigma\left(\tilde{T}_{s, t}\right)\right)\right\}^{p}
$$

Corollary 2.7. Let T be w-hyponormal operator. Then

$$
\left\|\tilde{T}|-| \tilde{T}^{*}\right\| \leq \frac{1}{\pi} \operatorname{Area}(\sigma(T))
$$

Moreover, if $\operatorname{Area}(\sigma(T))=0$, then T is normal.
Theorem 2.8. Let T be a w-hyponormal operator. If M is an invariant subspace of T and $\left.T\right|_{M}$ is an injective normal operator, then M reduces T.

Proof. Decompose T into

$$
T=\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right) \quad \text { on } \quad \mathrm{H}=M \oplus M^{\perp}
$$

and let $A=\left.T\right|_{M}$ be injective normal operator. Let Q be the orthogonal projection of H onto M. Since $\operatorname{ker}(A)=\operatorname{ker}\left(A^{*}\right)=\{0\}$, we have $M=\overline{\mathfrak{R}(A)}$.

Then

$$
\left(\begin{array}{cc}
|A|^{2} & 0 \\
0 & 0
\end{array}\right)=Q|T|^{2} Q \leq Q\left|T^{2}\right| Q \leq\left.|Q| T^{2}\right|^{2} Q^{\frac{1}{2}}=\left(\begin{array}{cc}
\left|A^{2}\right| & 0 \\
0 & 0
\end{array}\right)
$$

by Hansen's inequality. Since A is normal we can write

$$
\left|T^{2}\right|=\left(\begin{array}{cc}
|A|^{2} & S \\
S^{*} & D
\end{array}\right)
$$

Then

$$
\left(\begin{array}{cc}
|A|^{4} & 0 \\
0 & 0
\end{array}\right)=Q T^{*} T^{*} T T Q=Q\left|T^{2}\right|^{2} Q=\left(\begin{array}{cc}
|A|^{4}+|C|^{2} & 0 \\
0 & 0
\end{array}\right)
$$

and $S=0$. Hence

$$
\left(\begin{array}{cc}
|A|^{4} & 0 \\
0 & D^{2}
\end{array}\right)=\left|T^{2}\right|^{2}=T^{*} T^{*} T T=\left(\begin{array}{cc}
\left|A^{2}\right|^{2} & A^{* 2}(A B+B C) \\
(A B+B C)^{*} A^{2} & (A B+B C)^{*}(A B+B C)+\left|C^{2}\right|^{2}
\end{array}\right)
$$

Since A is an injective normal operator, $A B+B C=0$ and $D=\left|C^{2}\right|$.

$$
0 \leq\left|T^{2}\right|-|T|^{2}=\left(\begin{array}{cc}
\left|A^{2}\right|-|A|^{2} & -A^{*} B \\
-B^{*} A & -|B|^{2}
\end{array}\right)
$$

thus $B=0$.
Theorem 2.9. If T and T^{*} are w-hyponormal operators, then T is normal. In order to give the proof of Theorem 2.9, we need the following lemma from [6].
Lemma 2.10. Let $A \geq 0$ and $B \geq 0$. If

$$
\begin{equation*}
B^{\frac{1}{2}} A B^{\frac{1}{2}} \geq B^{2} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\frac{1}{2}} B A^{\frac{1}{2}} \geq A^{2} \tag{2.6}
\end{equation*}
$$

then $A=B$.
Proof of Theorem 2.9. Since T is w-hyponormal then we have from ([7], Corollary 1.2) that

$$
\begin{equation*}
|T| \geq\left(\left.|T|^{\frac{1}{2}}\left|T^{*}\right| T\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \quad \text { and } \quad\left|T^{*}\right| \leq\left(\left.\left|T^{*} \frac{1}{2}\right| T| | T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

Similarly, since T^{*} is w-hyponormal, we have

$$
\begin{equation*}
\left|T^{*}\right| \geq\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \text { and } \quad|T| \leq\left(|T|^{\frac{1}{2}}\left|T^{*}\right||T|^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{2.8}
\end{equation*}
$$

From Equations (2.7) and (2.8) and Lemma 2.10 we conclude $|T|=\left|T^{*}\right|$. Therefore, T is normal.
In the following result, 1) and 2) are due to [2], 3) and 4) to [8].
Lemma 2.11. Let $T \in \mathrm{~B}(\mathrm{H})$.

1) For each $s>0$ and $t>0$. If T belongs to class $w A(s, t)$, then T belongs to class $w A(\alpha, \beta)$ for each $\alpha \geq s$ and $\beta \geq t$.
2) T is a class $w A\left(\frac{1}{2}, \frac{1}{2}\right)$ operator if and only if T is a w-hyponormal operator.
3) Let T bea w-hyponormal operator. Then T^{n} is also w-hyponormal for all positive integer n.
4) Let T be a class $w A(s, t)$ operator for $s \in[0,1]$ and $t \in(0,1]$.

Then T^{n} belongs to class $w A\left(\frac{s}{n}, \frac{t}{n}\right)$ for all positive integer n.
Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic inan open neighborhoods of $\sigma(T)$. Following [9]. Wesay that $T \in \mathrm{~B}(\mathrm{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \rightarrow \mathrm{H}$ which satisfies the equation
$(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathrm{~B}(\mathrm{H})$ has SVEP at every point of the resolvent $\rho(T):=\mathrm{C} \backslash \sigma(T)$. Moreover, from the identity Theoremfor analytic function it easily follows that $T \in \mathrm{~B}(\mathrm{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In ([10], Proposition 1.8), Laursen proved that if T is of finite ascent, then T has SVEP.

Definition 2.2. [11] An operator T is said to have Bishop's property (β) at $\lambda \in \mathrm{C}$ if for every open neighborhood G of λ, the function $f_{n} \in \operatorname{Hol}(G)$ with $(T-\lambda) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G implies that $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, where $\operatorname{Hol}(G)$ means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathrm{C}$, simply say that T has property (β).

Lemma 2.12. [12] Let G be open subset of complex plane \mathbb{C} and let $f_{n} \in \operatorname{Hol}(G)$ be functions such that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, then $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.

Remark: The relations between T and its transformation \tilde{T} are

$$
\begin{equation*}
\tilde{T}|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} U|T|=|T|^{\frac{1}{2}} T \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
U|T|^{\frac{1}{2}} \tilde{T}=U|T| U|T|^{\frac{1}{2}}=T U|T|^{\frac{1}{2}} \tag{2.10}
\end{equation*}
$$

It is shown in [13] that every p-hyponormal operator has Bishop's property (β).
Theorem 2.13. Let $T \in \mathrm{~B}(\mathrm{H})$ be w-hyponormal. Then T has the property (β). Hence T has SVEP.
Proof. Since \tilde{T} is semi-hyponormal by ([3], Theorem 2.4), it is suffices to show that T has property (β) if and only if \tilde{T} has property (β). Suppose that \tilde{T} has property β. Let G be an open neighborhood of λ and let $f_{n} \in \operatorname{Hol}(G)$ be functions such that $(\mu-T) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By Equation (2.9), $(\tilde{T}-\mu)|T|^{\frac{1}{2}} f_{n}(\mu)=|T|^{\frac{1}{2}}(T-\mu) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.
Hence $T f_{n}(\mu)=U|T| f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and T having property β follows by Lemma 2.12. Suppose that T has property (β). Let G be an open neighborhood of λ and let $f_{n} \in \operatorname{Hol}(G)$ be functions such that $(\mu-\tilde{T}) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By Equation (2.10), since $(\mu-T)\left(|T|^{\frac{1}{2}} f(\mu)\right)=U|T|^{\frac{1}{2}}(\mu-\tilde{T}) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Hence $T f_{n}(\mu)=U|T| f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G for T has property (β), so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and \tilde{T} has property (β) follows by Lemma 2.12.

Theorem 2.14. Let T be w-hyponormal. Then $\mathrm{H}_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I)$ for $\lambda \in \mathrm{C}$.
Proof. Let $F \subset C$ be closed set. Define the global spectral subspace by

$$
\mathrm{X}_{T}(F)=\{x \in \mathrm{H} \mid \exists \text { analytic } f(z):(T-z I) f(z)=x \text { on } \mathrm{C} \backslash F\} .
$$

It is known that $\mathrm{H}_{0}(T-\lambda I)=\mathrm{X}_{T}(\{\lambda\})$ by ([14], Theorem 2.20). As T has Bishop's property (β) by Theorem 2.13, $\mathrm{X}_{T}(F)$ is closed and $\sigma\left(\left.T\right|_{\mathrm{X}_{T}(F)}\right) \subset F$ by ([15], Proposition 1.2.19). Hence $\mathrm{H}_{0}(T-\lambda I)$ is closed and $\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}$ is w-hyponormal by Theorem 2.2. Since $\sigma\left(\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}\right) \subset\{\lambda\},\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}$ is normal by Corollary 2.7. If $\sigma\left(\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}\right)=\varnothing$, then $\mathrm{H}_{0}(T-\lambda I)=\{0\}$ and $\operatorname{ker}(T-\lambda I)=\{0\}$ If $\sigma\left(\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}\right)=\{\lambda\}$, then $\left.T\right|_{\mathrm{H}_{0}(T-\lambda I)}=\lambda I$ and $\mathrm{H}_{0}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)$.

Remark 2.15. If $\lambda \neq 0$, then $\mathrm{H}_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$. Moreover, if $\lambda \in \sigma(T) \backslash\{0\}$ is an isolated point then $\mathrm{H}_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$.

Example 2.16. Let A and B be $n \times n$ matrices and satisfy $A \geq B \geq 0$. Let $H=\underset{j=-\infty}{\oplus} H_{j}$, where $H_{j}=C^{n}$ for every $j \in \mathbb{Z}$. Let U be the bilateral shift on H, that is $(U x)_{n}=x_{n-1}$, where $x=\left(\cdots, x_{-1}, x_{0}, x_{1}, \cdots\right) \in H$. Let $\left\{P_{j}\right\}$ be

$$
P_{j}=\left\{\begin{array}{l}
B \quad \text { if } j \leq 0 \\
A \in \text { if } j \geq 1
\end{array}\right.
$$

We define $(P x)_{j}=P_{j} x_{j}$ for $x=\left(\cdots, x_{-1}, x_{0}, x_{1}, \cdots\right)$ and let $T=U P$. Then T is w-hyponormal and so $H_{0}(T-\lambda)=\operatorname{Ker}(T-\lambda)$.
Proposition 2.17. [3] Let T be w-hyponormal. Then $(T-\lambda I) x=0$ implies $(T-\lambda I)^{*} x=0$.

3. Variants of Weyl's Theorems

An operator $T \in \mathrm{~B}(\mathrm{H})$ is called Fredholm if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by

$$
i(T):=\alpha(T)-\beta(T)
$$

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm "of finite ascent and descent". Recall that the ascent, $a(T)$, of an operator T is the smallest non-negative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, the descent, $d(T)$, of an operator T is the smallest non-negative integer q such that $\mathfrak{R}\left(T^{q}\right)=\mathfrak{R}\left(T^{q+1}\right)$, and if such integer does not exist we put $d(T)=\infty$. The essential spectrum $\sigma_{F}(T)$, the Weyl spectrum $w(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined by

$$
\begin{gathered}
\sigma_{F}(T)=\{\lambda \in \mathrm{C}: T-\lambda \text { is not Fredholm }\} \\
\sigma_{W}(T)=\{\lambda \in \mathrm{C}: T-\lambda \text { is not Weyl }\}
\end{gathered}
$$

and

$$
\sigma_{b}(T)=\{\lambda \in \mathrm{C}: T-\lambda \text { is not Browder }\}
$$

respectively. Evidently

$$
\sigma_{F}(T) \subseteq \sigma_{W}(T) \subseteq \sigma_{b}(T) \subseteq \sigma_{F}(T) \cup \operatorname{acc} \sigma(T)
$$

where we write $a c c K$ for the accumulation points of $K \subseteq C$. Following [16], we say that Weyl's theorem holds for T if $\sigma(T) \backslash \sigma_{W}(T)=E_{0}(T)$, where $E_{0}(T)$ is the set of all eigenvalues λ of finite multiplicity isolated in $\sigma(T)$. And Browder's theorem holds for T if $\sigma(T) \backslash \sigma_{W}(T)=\pi_{0}(T)$, where $\pi_{0}(T)$ is the set of all poles of T of finite rank.

Theorem 3.1. If T is w-hyponormal operator with $\sigma_{W}(T)=\{0\}$, then it is a compact normal operator.
Proof. Since Weyls theorem holds for T by ([17], Theorem 3.4), each element in $\sigma(T) \backslash \sigma_{W}(T)=\sigma(T) \backslash\{0\}$ is an eigenvalue of T with finite multiplicity, and is isolated in $\sigma(T)$. This implies that $\sigma(T) \backslash\{0\}$ is a finite set or a countable infinite set with 0 as its only accumulation point. Put $\sigma(T) \backslash\{0\}=\left\{\lambda_{n}\right\}$, where $\lambda_{n} \neq \lambda_{m}$ whenever $n \neq m$ and $\left\{\left|\lambda_{n}\right|\right\}$ is a non-increasing sequence. Since T is normaloid, we have $\left|\lambda_{1}\right|=\|T\|$. By ([3], Theorem 3.2), $\left(T-\lambda_{1}\right) x=0$ implies $\left(T-\lambda_{1}\right)^{*} x=0$. In fact,

$$
\left\|\|T\|^{2}-T^{*} T\right\|^{\frac{1}{2}} x=\|T\|^{2}\|x\|^{2}-\|T x\|^{2}=\|T\|^{2}\|x\|^{2}-\left\|\lambda_{1} x\right\|^{2}=0
$$

$\lambda_{1} T^{*} x=T^{*} T x=\|T\|^{2} x=\left|\lambda_{1}\right|^{2} x$ and $T^{*} x=\bar{\lambda}_{1} x$. Hence $\operatorname{ker}\left(T-\lambda_{1}\right)$ is a reducing subspace of T. Let P_{1} be the orthogonal projection onto $\operatorname{ker}\left(T-\lambda_{1}\right)$. Then $T=\lambda_{1} \oplus T_{1}$ on $\mathrm{H}=\mathfrak{R}\left(P_{1}\right) \oplus \mathfrak{R}\left(I-P_{1}\right)$. Since T_{1} is w hyponormal operator and $\sigma_{p}(T)=\sigma_{p}\left(T_{1}\right) \cup\left\{\lambda_{1}\right\}$, we have $\lambda_{2} \in \sigma_{p}\left(T_{1}\right)$. By the same argument as above, $\operatorname{ker}\left(T-\lambda_{2}\right)=\operatorname{ker}\left(T_{1}-\lambda_{2}\right)$ is a finite dimensional reducing subspace of T which is included in $\mathfrak{R}\left(I-P_{1}\right)$.

Put P_{2} be the orthogonal projection onto $\operatorname{ker}\left(T-\lambda_{2}\right)$. Then $T=\lambda_{1} P_{1} \oplus \lambda_{2} P_{2} \oplus T_{2}$ on
$\mathrm{H}=\mathfrak{R}\left(P_{1}\right) \oplus \mathfrak{R}\left(P_{2}\right) \oplus \mathfrak{R}\left(I-P_{1}-P_{2}\right)$. By repeating above argument, each $\operatorname{ker}\left(T-\lambda_{n}\right)$ is a reducing subspace of T and

$$
\left\|T-\oplus_{k=1}^{n} \lambda_{k} P_{k}\right\|=\left\|T_{n}\right\|=\left|\lambda_{k+1}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Here P_{k} is the orthogonal projection onto $\operatorname{ker}\left(T-\lambda_{k}\right)$ and $T=\left(\oplus_{k=1}^{n} \lambda_{k} P_{k}\right) \oplus T_{n}$ on $\mathrm{H}=\left(\oplus_{k=1}^{n} \mathfrak{R}\left(P_{k}\right)\right) \oplus \mathfrak{R}\left(I-\sum_{k=1}^{n} P_{k}\right)$. Hence $T=\oplus_{k=1}^{\infty} \lambda_{k} P_{k}$ is compact and normal because each P_{k} is a finite rank orthogonal projection which satisfies $P_{k} P_{l}=0$ whenever $k \neq l$ by ([3], Corollary 3.4) and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Definition 3.1. An operator $T \in \mathrm{~B}(\mathrm{H})$ is called algebraically w-hyponormal operator if there exists a nonconstant complex polynomial p such that $p(T)$ is w-hyponormal operator.

In general, the following implications hold: class w-hyponormal \Rightarrow algebraically w-hyponormal.
The following facts follow from the above definition and some well known facts about class w-hyponormal.

1) If $T \in \mathrm{~B}(\mathrm{H})$ is algebraically w-hyponormal then so is $T-\lambda I$ for each $\lambda \in \mathrm{C}$.
2) If $T \in \mathrm{~B}(\mathrm{H})$ is algebraically w-hyponormal and M is a closed T-invariant subspace of H then $\left.T\right|_{M}$ is algebraically w-hyponormal.

Lemma 3.2. Let $T \in \mathrm{~B}(\mathrm{H})$ belong to class w-hyponormal. Let $\lambda \in \mathrm{C}$. Assume that $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$.

Proof. We consider two cases:
Case (I). $(\lambda=0)$: Since T is an w-hyponormal, T is normaloid. Therefore $T=0$.
Case (II). $(\lambda \neq 0)$: Here T is invertible, and since T is an w-hyponormal, we see that T^{-1} is also belongs class w-hyponormal. Therefore T^{-1} is normaloid. On the other hand, $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}\right\}$, so $\|T\|\left|\left|T^{-1} \|=|\lambda|\right| \frac{1}{\lambda}\right|=1$. It follows that T is convexoid, so $W(T)=\{\lambda\}$. Therefore $T=\lambda$.

Proposition 3.3. Let T be a quasinilpotent algebraically w-hyponormal operator. Then T is nilpotent.
Proof. Assume that $p(T)$ is w-hyponormal operator for some nonconstant polynomial p. Since $\sigma(p(T))=p(\sigma(T))$ the operator $p(T)-p(0)$ is quasinilpotent. Thus Lemma 3.2 would implythat

$$
c T^{m}\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{n} I\right) \equiv p(T)-p(0)=0
$$

where $m \geq 1$. Since $T-\lambda_{j} I$ is invertible for every $\lambda_{j} \neq 0$, we must have $T^{m}=0$.
An operator $T \in \mathrm{~B}(\mathrm{H})$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator $T \in \mathrm{~B}(\mathrm{H})$ is called normaloid if $r(T)=\|T\|$, where $r(T)$ is the spectral radius of $T . X \in \mathrm{~B}(\mathrm{H})$ is called a quasiaffinity if it has trivial kernel and dense range. $S \in \mathrm{~B}(\mathrm{H})$ is said to be a quasiaffine transform of $T \in \mathrm{~B}(\mathrm{H})$ (notation: $S \prec T$) if there is a quasiaffinity $X \in \mathrm{~B}(\mathrm{H})$ such that $X S=T X$. If both $S \prec T$ and $T \prec S$ then we say that S and T are quasisimilar.

An operator $T \in \mathrm{~B}(\mathrm{H})$ is said to be polaroid if $\operatorname{iso} \sigma(T) \subseteq \pi(T)$ where $\operatorname{iso} \sigma(T)$ be the set of isolated points of the spectrum $\sigma(T)$ of T and $\pi(T)$ is the set of all poles of T. In general, if T is polaroid then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^{2}(\mathrm{~N})$ be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)
$$

Then T is a compact quasinilpotent operator with $\operatorname{dimker}(T)=1$, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid.

In [3] they showed that every w-hyponormal operator is isoloid. We can prove more:
Theorem 3.4. Let T be an algebraically w-hyponormal operator. Then T is polaroid.
Proof. Suppose T is an algebraically w-hyponormal operator. Then $p(T)$ is w-hyponormal for some nonconstant polynomial p. Let $\lambda \in \operatorname{iso}(\sigma(T))$. Using the spectral projection $P:=\frac{1}{2 i \pi} \int_{\partial D}(\mu-T)^{-1} \mathrm{~d} \mu$ where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the
direct sum

$$
T=\left(\begin{array}{rr}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right), \quad \text { and } \quad \sigma\left(T_{1}\right)=\{\lambda\} \quad \text { and } \quad \sigma\left(T_{2}\right)=\sigma(T) \backslash\{\lambda\}
$$

Since T_{1} is algebraically w-hyponormal and $\sigma\left(T_{1}\right)=\{\lambda\}$. But $\sigma\left(T_{1}-\lambda I\right)=\{0\}$ it follows from Proposition 3.3 that $T_{1}-\lambda I$ is nilpotent. Therefore $T_{1}-\lambda$ has finite ascent and descent. On the other hand, since $T_{2}-\lambda I$ is invertible, clearly it has finite ascent and descent. Therefore $T-\lambda I$ has finite ascent anddescent. Therefore λ is a pole of the resolvent of T. Thus if $\lambda \in \operatorname{iso}(\sigma(T))$ implies $\lambda \in \pi(T)$, and so iso $(\sigma(T)) \subset \pi(T)$. Hence T is polaroid.

Corollary 3.5. Let T be an algebraically w-hyponormal operator. Then T is isoloid.
For $T \in \mathrm{~B}(\mathrm{H}), \quad \lambda \in \sigma(T)$ is said to be a regular point if there exists $S \in \mathrm{~B}(\mathrm{H})$ such that $T-\lambda I=(T-\lambda I) S(T-\lambda I) . T$ is is called reguloid if every isolated point of $\sigma(T)$ is a regular point. It is well known ([18], Theorems 4.6.4 and 8.4.4) that $T-\lambda I=(T-\lambda I) S(T-\lambda I)$ for some $S \in \mathrm{~B}(\mathrm{H}) \Leftrightarrow T-\lambda I$ has a closed range.

Theorem 3.6. Let T be an algebraically w-hyponormal operator. Then T is reguloid.
Proof. Suppose T is an algebraically w-hyponormal operator. Then $p(T)$ is w-hyponormalfor some nonconstant polynomial p. Let $\lambda \in \operatorname{iso}(\sigma(T))$. Using the spectral projection $P:=\frac{1}{2 i \pi} \int_{\partial D}(\mu-T)^{-1} \mathrm{~d} \mu$ where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right), \quad \text { and } \quad \sigma\left(T_{1}\right)=\{\lambda\} \quad \text { and } \quad \sigma\left(T_{2}\right)=\sigma(T) \backslash\{\lambda\}
$$

Since T_{1} is algebraically w-hyponormal and $\sigma\left(T_{1}\right)=\{\lambda\}$. it follows from Lemma 3.2 that $T_{1}=\lambda I$. Therefore by ([17], Corollary 2.6),

$$
\begin{equation*}
\mathrm{H}=E(\mathrm{H}) \oplus E(\mathrm{H})^{\perp}=\operatorname{ker}(T-\lambda I) \oplus \operatorname{ker}(T-\lambda I)^{\perp} \tag{3.1}
\end{equation*}
$$

Relative to decomposition 3.1, $T=\lambda I \oplus T_{2}$. Therefore $T-\lambda I=0 \oplus T-\lambda I$ and hence

$$
\operatorname{ran}(T-\lambda I)=(T-\lambda I)(\mathrm{H})=0 \oplus\left(T_{2}-\lambda I\right)\left(\operatorname{ker}(T-\lambda I)^{\perp}\right)
$$

since $T_{2}-\lambda I$ is invertible, $T-\lambda I$ has closed range.
For a bounded operator T and nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $\mathrm{R}\left(T^{n}\right)$ viewed as a map from $\mathrm{R}\left(T^{n}\right)$ into $\mathrm{R}\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some n the range $\mathrm{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi- B-Fredholm operator. In this case the index of T is defined as the index of the semi-Fredholm operator $T_{[n]}$, see [19]. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator. A semi- $B-$ Fredholm operator is an upper or a lower semi-Fredholm operator. An operator $T \in \mathrm{~B}(X)$ is said to be a B Weyl operator if it is a B-Fredholm operator of index zero. the semi- B-Fredholm spectrum $\sigma_{S B F}(T)$ and the B-Weyl spectrum $\sigma_{B W}$ of T are defined by

$$
\begin{aligned}
& \sigma_{S B F}(T):=\{\lambda \in \mathrm{C}: T-\lambda I \text { is not a semi- } B \text {-Fredholm operator }\}, \\
& \sigma_{B W}:=\{\lambda \in \mathrm{C}: T-\lambda I \text { is not a } B \text {-Weyl operator }\} .
\end{aligned}
$$

Recall that an operator $T \in \mathrm{~B}(X)$ is a Drazin invertible if and only if it has a finite ascent and descent, which is alsoequivalent to the fact that $T=T_{0} \oplus T_{1}$, where T_{0} is nilpotent operator and T_{1} is invertible operator, see ([20], Proposition A). The Drazin spectrum is given by

$$
\sigma_{D}(T):=\{\lambda \in \mathrm{C}: T-\lambda I \text { is not Drazin invertible }\}
$$

We observe that $\sigma_{D}(T)=\sigma(T) \backslash \pi(T)$, where $\pi(T)$ is the set of allpoles.
Define

$$
E(T):=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda)\}
$$

we also say that the generalized Weyl's theorem holds for T (in symbol, $T \in g \mathrm{~W}$) if

$$
\sigma(T) \backslash \sigma_{B W}(T)=E(T)
$$

and that the generalized Browder's theorem holds for T (in symbol, $T \in g \mathrm{~B}$) if

$$
\sigma(T) \backslash \sigma_{B W}(T)=\pi(T)
$$

It is Known [21] [22] that

$$
g \mathrm{~W} \subseteq g \mathrm{~B} \cup \mathrm{~W} \quad \text { and that } \quad g \mathrm{~B} \cup \mathrm{~W} \subseteq \mathrm{~B}
$$

Moreover, given $T \in g \mathrm{~B}$, then it is clear $T \in g \mathrm{~W}$ if and only if $E(T)=\pi(T)$, see [21] [22].
Let $S F_{+}(\mathrm{X})$ be the class of all upper semi-Fredholm operators, $S F_{+}^{-}(\mathrm{X})$ be the class of all $T \in S F_{+}(\mathrm{X})$ with $\operatorname{ind}(T) \leq 0$, and for any $T \in \mathrm{~B}(X)$ let

$$
\sigma_{S F_{+}^{-}}(T):=\left\{\lambda \in \mathrm{C}: T-\lambda I \notin S F_{+}^{-}(\mathrm{X})\right\} .
$$

Let E_{0}^{a} be the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma_{a}(T)$. According to [23], we say that T satisfies a-Weyl's theorem (and we write $T \in a \mathrm{~W}$) if

$$
\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E_{0}^{a}(T)
$$

and that a-Browder's theorem holds for T (in symbol, $T \in a \mathrm{~B}$) if

$$
\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=\pi_{0}^{a}(T)
$$

where $\pi_{0}^{a}(T)$ is the set of all left poles of finite rank.
Let $S B F_{+}(\mathrm{X})$ be the class of all upper semi-B-Fredholm operators, and $S B F_{+}^{-}(\mathrm{X})$ the class of all $T \in S B F_{+}(\mathrm{X})$ such that $\operatorname{ind}(T) \leq 0$, and

$$
\sigma_{S B F_{+}^{-}}(T):=\left\{\lambda \in \mathrm{C}: T-\lambda \notin S B F_{+}^{-}(\mathrm{X})\right\} .
$$

Recall that an operator $T \in \mathrm{~B}(T)$ satisfies the generalized a-Weyl's theorem (in symbol, $T \in g a \mathrm{~W}$) if

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E^{a}(T)
$$

where $E^{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$.
Define a set $L D(\mathrm{X})$ by

$$
L D(\mathrm{X}):=\left\{T \in \mathrm{~B}(X): a(T)<\infty \text { and } \mathrm{R}\left(T^{a(T)+1}\right) \text { is closed }\right\} .
$$

An operator $T \in \mathrm{~B}(\mathrm{H})$ iscalled left Drazin invertible if $a(T)<\infty$ and $\mathrm{R}\left(T^{a(T)+1}\right)$ is closed (see [22], Definition 2.4). The left Drazin spectrum is given by

$$
\sigma_{L D}(T):=\{\lambda \in \mathrm{C}: T-\lambda I \text { is not left Drazin invertible }\}
$$

Recall ([22], Definition 2.5) that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I$ is left Drazin invertible operator and $\lambda \in \sigma_{a}(T)$ is a left pole of finite rank if λ is a left pole of T and $\alpha(T-\lambda)<\infty$. We will denote $\pi^{a}(T)$ the set of all left pole of T. We have $\sigma_{L D}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)$. Note that if $\lambda \in \pi^{a}(T)$, then it is easily seen that $T-\lambda$ is an operator of topological uniform descent. Therefore, it follows from ([21], Theorem 2.5) that λ is isolated in $\sigma_{a}(T)$. Following [22] if $T \in \mathrm{~B}(\mathrm{H})$ and $\lambda \in \mathrm{C}$ is anisolated in $\sigma_{a}(T)$, then $\lambda \in \pi^{a}(T)$ if and only if $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ and $\lambda \in \pi_{0}^{a}(T)$ if and only if $\lambda \notin \sigma_{S F_{+}^{-}}(T)$. We will say that generalized a-Browder's theorem holds for T (in symbol $T \in g a B$) if

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)
$$

It is known [21]-[23] that

$$
g \mathrm{~W} \cup g \mathrm{~B} \cup a \mathrm{~W} \cup g a \mathrm{~B} \subseteq g a \mathrm{~W} \text { and that } a \mathrm{~B} \cup \mathrm{~W} \subseteq a \mathrm{~W} \text { and that } \mathrm{B} \subseteq a \mathrm{~B}
$$

Definition 3.2. ([23]) An operator $T \in \mathrm{~B}(\mathrm{H})$ is said to satisfy property (w) if

$$
\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{0}(T)
$$

In [24], it is shown that the property (w) implies Weyls theorem. For $T \in B(H)$, let
$\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$ and $\Delta_{a}^{g}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. If T^{*} has the SVEP, then it is known from [15] that $\sigma(T)=\sigma_{a}(T)$ and from [25] we have $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$. Thus $E(T)=E^{a}(T)$ and $\Delta^{g}(T)=\Delta_{a}^{g}(T)$.

Definition 3.3. ([26]) An operator $T \in \mathrm{~B}(X)$ is said to satisfy property $(g w)$ if

$$
\Delta_{a}^{g}(T)=E(T)
$$

Theorem 3.7. Let $T \in \mathrm{~B}(\mathrm{H})$. If T is a w-hyponormal. Then the following assertions are equivalent:

1) generalized Weyl's theorem holds for T;
2) generalized Browder's theorem holds for T;
3) Weyl's theorem holds for T;
4) Browder's theorem holds for T.

Proof. Since w-hyponormal operators are polaroid. Hence the result follows now from ([27], Corollary 2.1).
Theorem 3.8. Let $T \in \mathrm{~B}(\mathrm{H})$. If T^{*} is a w-hyponormal. Then the following assertions are equivalent:

1) generalized a-Weyl's theorem holds for T;
2) generalized a-Browder's theorem holds for T;
3) a-Weyl's theorem holds for T;
4) a-Browder's theorem holds for T.

Proof. If T^{*} is a w-hyponormal, then T is a-polaroid and so $E^{a}(T)=\pi^{a}(T)$. Hence the result followsnow from ([27], Corollary 2.3).

Theorem 3.9. Let $T \in \mathrm{~B}(\mathrm{H})$. If T^{*} is a w-hyponormal. Then the following assertions are equivalent:

1) generalized a-Weyl's theorem holds for T;
2) generalized Weyl's theorem holds for T;
3) T satisfies property $(g w)$;
4) generalized a-Browder's theorem holds for T;
5) a-Weyl's theorem holds for T;
6) a-Browder's theorem holds for T;
7) T satisfies property (w).

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii). This equivalence follows from ([26], Theorem 2.7), since T^{*} has SVEP. (i) \Leftrightarrow (iv) \Leftrightarrow (v) \Leftrightarrow (vi). This equivalence follows from Theorem 3.8. (iii) \Leftrightarrow (vii). Since T^{*} has SVEP and T is polaroid, then $E(T)=\pi^{a}(T)$. Therefore, the equivalence follows now from Theorem 2.5 of [26].

Recall that a bounded operator T is said to be algebraic if there exists a non-trivial polynomial h such that $h(T)=0$. From the spectral mapping theorem it easily follows that the spectrum of analgebraic operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K are algebraic; more generally, if K^{n} is a finite rank operator for some $n \in \mathrm{~N}$ then K is algebraic. Clearly, if T is algebraic then its dual T^{*} is algebraic.

Theorem 3.10. Suppose that $T \in \mathrm{~B}(\mathrm{H})$, and $K \in \mathrm{~B}(X)$ is an algebraic operator commutingwith T.

1) If T is algebraically w-hyponormal then property $(g w)$ holds for $T^{*}+K^{*}$.
2) If T^{*} is algebraically w-hyponormal then property $(g w)$ holds for $T+K$.

Proof. (i) If T is an algebraically w-hyponormal then T has SVEP and hence $T+K$ has SVEP by Theorem 2.14 of [28]. Moreover, T is polaroid so also $T+K$ is polaroid by Theorem 2.14 of [28]. By Theorem 2.10 of [26], then property ($g w$) holds for $T^{*}+K^{*}$.
(ii) If T^{*} is an algebraically w-hyponormal then T^{*} has SVEP and hence $T^{*}+K^{*}$ has SVEP by Theorem 2.14 of [28]. Moreover, T^{*} is polaroid so also $T^{*}+K^{*}$ is polaroid by Theorem 2.14 of [28]. By Theorem 2.10 of [26], then property $(g w)$ holds for $T+K$.

4. Riesz Idempotent of w-Hyponormalc

Let $T \in \mathrm{~B}(\mathrm{H})$ and $\lambda \in \sigma(T)$ be an isolated of $\sigma(T)$. then there exists a closed disc D_{λ} centered λ which satisfies $\mathrm{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$. The operator

$$
P=\frac{1}{2 \pi \mathrm{i}} \int_{\partial \mathrm{D}_{\lambda}}(T-\lambda I)^{-1} \mathrm{~d} \lambda
$$

is called the Riesz idempotent with respect to λ which has properties that

$$
P^{2}=P, P T=T P, \operatorname{ker}(T-\lambda I) \subset P \mathrm{H} \quad \text { and } \quad \sigma\left(\left.T\right|_{P \mathrm{H}}\right)=\{\lambda\} .
$$

In [29], Stampfli proved that if T is hyponormal and $\lambda \in \sigma(T)$ is isolated, then the Riesz idempotent P with respect to λ is self-adjoint and satisfies

$$
P \mathrm{H}=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*} .
$$

In this paper we extend these result to the case of w-hyponormal operator.
Theorem 4.1. Let $T \in \mathrm{~B}(\mathrm{H})$ be a w-hyponormal operator and λ be a non-zero isolated point of $\sigma(T)$.
Let D_{λ} denote the closed disc which centered λ such that $\mathrm{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$. Then the Riesz idempotent λ satisfies that

$$
P \mathrm{H}=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*} .
$$

In particular P is self-adjoint.
Proof. Since w-hyponormal operators are isoloid by Corollary 3.5.
Then λ is an isolated point of $\sigma(T)$. Then the range of Riesz idempotent

$$
P=\frac{1}{2 \pi i} \int_{\partial \mathrm{D}_{\lambda}}(T-\lambda I)^{-1} \mathrm{~d} \lambda
$$

is aninvariant closed subspace of T and $\sigma\left(\left.T\right|_{P H}\right)=\{\lambda\}$. Here D_{λ} isa closed disc with its center λ such that $\mathrm{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$.
If $\lambda=0$, then $\sigma\left(\left.T\right|_{P H}\right)=\{0\}$ Since $\left.T\right|_{P H}$ is w-hyponormal by Theorem 2.2, $\left.T\right|_{P H}=0$ by Lemma 3.2. Therefore, 0 is an eigenvalue of T.

If $\lambda \neq 0$, then $\left.T\right|_{\mathrm{PH}}$ is an invertible w-hyponormal operator and hence $\left(\left.T\right|_{P H}\right)^{-1}$ is also w-hyponormal. We see that $\left\|T_{P H}\right\|=|\lambda|$ and $\left\|\left(T_{P H}\right)^{-1}\right\|=\frac{1}{|\lambda|}$, Let $x \in P H$ be arbitrary vector. Then

$$
\left.\|x\| \leq\left\|\left(T_{P H}\right)^{-1}\right\|\left\|T_{P H} x\right\|=\frac{1}{|\lambda|}\left\|T_{P H} x\right\| \leq \frac{1}{|\lambda|} \right\rvert\, \lambda\|x\|=\|x\| .
$$

This implies that $\left.\frac{1}{\lambda} T\right|_{P H}$ is unitary with its spectrum $\sigma\left(\left.\frac{1}{\lambda} T\right|_{P H}\right)=\{1\}$. Hence $T_{P H}=\lambda I$ and λ is an eigenvalue of T. Therefore, $P \mathrm{H}=\operatorname{ker}(T-\lambda I)$ Since $\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$ by Proposition 2.16, it suffices to show that $\operatorname{ker}(T-\lambda I)^{*} \subset \operatorname{ker}(T-\lambda I)$. Since $\operatorname{ker}(T-\lambda I)$ is a reducing subspace of T by Proposition 2.16 and the restriction of a w-hyponormal to its reducing subspace is also w-hyponormal operator, we see that T is of the form $T=T^{\prime} \oplus \lambda I$ on $\mathrm{H}=\operatorname{ker}(T-\lambda I) \oplus \operatorname{ker}(T-\lambda I)^{\perp}$, where T^{\prime} is a w-hyponormal operator with $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\}$. Since $\lambda \in \sigma(T)=\sigma\left(T^{\prime}\right) \cup\{\lambda\}$ is isolated, the only two cases occur. One is $\lambda \notin \sigma\left(T^{\prime}\right)$ and the other is that λ is an isolated point of $\sigma\left(T^{\prime}\right)$. The latter case, however, does not occur otherwise we have $\lambda \in \sigma_{p}\left(T^{\prime}\right)$ and this contradicts the fact that $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\} . \operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$ is immediate from the injectivity of $T^{\prime}-\lambda I$ as an operator on $\operatorname{ker}(T-\lambda I)^{\perp}$.

Next, we show that P is self-adjoint. Since $P H=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$ we have

$$
\left((T-z I)^{*}\right)^{-1} P=\overline{(z-\lambda)^{-1}} P .
$$

Hence

$$
P^{*} P=-\frac{1}{2 i \pi} \int_{\partial \mathrm{DD}_{\lambda}}\left((T-z I)^{*}\right)^{-1} P \mathrm{~d} \bar{z}=-\frac{1}{2 i \pi} \int_{\partial \mathrm{D}_{\lambda}} \overline{(z-\lambda)^{-1}} P \mathrm{~d} \bar{z}=\overline{\left(\frac{1}{2 i \pi} \int_{\partial \mathrm{D}_{\lambda}} \frac{1}{z-\lambda} \mathrm{d} \bar{z}\right)} P=P P^{*} .
$$

Therefore, the proof is achieved.

5. Conclusion

In the study of w-hyponormal operator, the Aluthge transform is a very useful tool. It is an operator transform
from the class of w-hyponormal operator to the class of semi-hyponormal operator. By using Aluthge transform, we treat spectrum properties of w-hyponormal operator like some of hyponormal operator.

References

[1] Aluthge, A. (1990) On p-Hyponormal Operators for $0<p \leq 1$. Integral Equation Operator Theory, 13, 307-315. http://dx.doi.org/10.1007/BF01199886
[2] Ito, M. (1999) Some Classes of Operators Associated with Generalized Aluthge Transformation. SUT Journal of Mathematics, 35, 149-165.
[3] Aluthge, A. and Wang, D. (2000) w-Hyponormal Operators. Integral Equation Operator Theory, 36, 1-10. http://dx.doi.org/10.1007/BF01236285
[4] Uchiyama, A. (1999) Berger-Shaw’s Theorem for p-Hyponormal Operators. Integral Equations and Operator Theory, 33, 221-230. http://dx.doi.org/10.1007/BF01233965
[5] Uchiyama, A. (1999) Inequalities of Putnam and Berger-Shaw for p-Quasihyponormal Operators. Integral Equations and Operator Theory, 34, 91-106. http://dx.doi.org/10.1007/BF01332494
[6] Ito, M. and Yamazaki, T. (2002) Relations between Two Equalities $\left(B^{r / 2} A^{p} B^{r / 2}\right)^{\frac{r}{r+p}} \geq B^{r}$ and $A^{p} \geq\left(A^{p / 2} B^{r} A^{p / 2}\right)^{\frac{p}{r+p}}$ and Their Applications. Integral Equation Operator Theory, 44, 442-450. http://dx.doi.org/10.1007/BF01193670
[7] Aluthge, A. and Wang, D. (2000) w-Hyponormal Operators II. Integral Equation Operator Theory, 37, 324-331. http://dx.doi.org/10.1007/BF01194481
[8] Yanagida, M. (2002) Powers of Class $w A(s, t)$ Operators Associated with Generalized Aluthge Transformation. Journal of Inequalities and Applications, 7, 143-168.
[9] Finch, J.K. (1975) The Single Valued Extension Property on a Banach Space. Pacific Journal of Mathematics, 58, 61-69. http://dx.doi.org/10.2140/pim.1975.58.61
[10] Laursen, K.B. (1992) Operators with Finite Ascent. Pacific Journal of Mathematics, 152, 323-336. http://dx.doi.org/10.2140/pim.1992.152.323
[11] Bishop, E. (1959) A Duality Theorem for an Arbitrary Operator. Pacific Journal of Mathematics, 9, 379-397. http://dx.doi.org/10.2140/pjm.1959.9.379
[12] Kimura, F. (1995) Analysis of Non-Normal Operators via Aluthge Transformation. Integral Equations and Operator Theory, 50, 375-384. http://dx.doi.org/10.1007/s00020-003-1231-2
[13] Duggal, B.P. (2001) p-Hyponormal Operators Satisfy Bishop’s Condition (β). Integral Equations and Operator Theory, 40, 436-440. http://dx.doi.org/10.1007/BF01198138
[14] Aiena, P. (2004) Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer.
[15] Laursen, K.B. and Neumann, M.M. (2000) An Introduction to Local Spectral Theory. Clarendon, Oxford.
[16] Coburn, L.A. (1966) Weyl's Theorem for Nonnormal Operators. Michigan Mathematical Journal, 13, 285-288. http://dx.doi.org/10.1307/mmj/1031732778
[17] Han, Y.M., Lee, J.I. and Wang, D. (2005) Riesz Idempotent and Weyl’s Theorem for w-Hyponormal Operators. Integral Equations and Operator Theory, 53, 51-60. http://dx.doi.org/10.1007/s00020-003-1313-1
[18] Harte, R.E. (1988) Invertibility and Singularity for Bounded Linear Operators. Dekker, New York.
[19] Berkani, M. and Sarih, M. (2001) An Atkinson-Type Theorem for B-Fredholm Operators. Studia Mathematica, 148, 251-257. http://dx.doi.org/10.4064/sm148-3-4
[20] Koliha, J.J. (1996) Isolated Spectral Points. Proceedings of the American Mathematical Society, 124, 3417-3424. http://dx.doi.org/10.1090/S0002-9939-96-03449-1
[21] Berkani, M. and Koliha, J. (2003) Weyl Type Theorems for Bounded Linear Operators. Acta Scientiarum Mathematicarum (Szeged), 69, 359-376.
[22] Berkani, M. (2007) On the Equivalence of Weyl Theorem and Generalized Weyl Theorem. Acta Mathematica Sinica, 23, 103-110. http://dx.doi.org/10.1007/s10114-005-0720-4
[23] Rakočevic, V. (1989) Operators Obeying α-Weyl’s Theorem. Revue Roumaine de Mathématiques Pures et Appliquées, 34, 915-919.
[24] Aiena, P. and Peña, P. (2006) Variations on Weyl’s Theorem. Journal of Mathematical Analysis and Applications, 324, 566-579. http://dx.doi.org/10.1016/j.jmaa.2005.11.027
[25] Aiena, P. and Miller, T.L. (2007) On Generalized α-Browder’s Theorem. Studia Mathematica, 180, 285-300.
http://dx.doi.org/10.4064/sm180-3-7
[26] Amouch, M. and Berkani, M. (2008) On the Property (gw). Mediterranean Journal of Mathematics, 5, 371-378. http://dx.doi.org/10.1007/s00009-008-0156-z
[27] Amouch, M. and Zguitti, H. (2006) On the Equivalence of Browder's and Generalized Browder’s Theorem. Glasgow Mathematical Journal, 48, 179-185. http://dx.doi.org/10.1017/S0017089505002971
[28] Aiena, P., Guillen, J. and Peña, P. (2008) Property (w) for Perturbations of Polaroid Operators. Linear Algebra and Its Applications, 428, 1791-1802. http://dx.doi.org/10.1016/j.laa.2007.10.022
[29] Stampfli, J.G. (1962) Hyponormal Operators. Pacific Journal of Mathematics, 12, 1453-1458. http://dx.doi.org/10.2140/pjm.1962.12.1453

