## **Cryptogams of the Cedar River Watershed**

Prepared for: The Cedar River Watershed

> Prepared by: Tammy Stout

September 2001



## **Table of Contents**

| I.   | Introduction                                            | 3  |
|------|---------------------------------------------------------|----|
| II.  | Methods                                                 | 3  |
| III. | Results and Discussion                                  | 6  |
| IV.  | Conclusions and Recommendations                         | 13 |
| V.   | References                                              | 15 |
| VI.  | Figures and Photos                                      | 19 |
|      | a. Figure 2 Survey forms                                | 20 |
|      | b. Figure 3 Plot Photos                                 | 21 |
|      | c. Figure 4 Plot Locations in the Cedar River Watershed | 22 |

### Introduction

An understanding of the biological diversity in the Cedar River Watershed could assist in the planning of an ecologically sound management strategy. This study focuses on the species of mosses, liverworts, and lichens (also called cryptogams) found in the Watershed during a two-month sampling regime and discusses the role cryptogams play in the various habitats at Cedar River. Many investigations have been conducted in the Pacific Northwest in attempt to address current management and cryptogam diversity issues; i.e., how to promote diversity in young stands, is diversity and abundance a product of stand age or stand structure (Pipp et al. 2001; Hyvarinen 1992; Lesica et al. 1991; McCune 1993), what is the relationship between diversity and large scale forest stand characteristics such as remnant large trees and canopy gaps (Rambo 1998; Neitlich and McCune 1997), etc. Studies thus far have revealed that abundance and diversity generally do increase with stand age (Nadkarni 1997; Esseen et al. 1992; Kuusinen 1994b; McCune 1993; Neitlich 1993). Conversely, one study showed that the lichen, Lobaria, typically associated with old-growth stands, can establish and grow in clear-cuts and young forests and the slow development of this species was attributed to dispersal limitations (Sillitt et al. 2000). It is these types of research that will generate creative, environmentally sensible solutions to the decisions The Cedar River Watershed is currently facing, but a good knowledge of the species and habitats that exist within the watershed must come first.

Bryophytes and lichens both play a critical role in ecosystem nutrient dynamics (Pike 1978; Callaway and Nadkarni 1991). Mosses serve as receptacles that capture and then leach nutrients back into the ecosystem. Certain species of lichens, called cyanolichens, house blue-green algae and are responsible for the input of usable forms of nitrogen back into the soil. One genus in particular, *Lobaria*, dominates the lichen biomass in the PNW and contributes significant amounts of nitrogen and other nutrients back to the soil (Pike 1978; McCune 1994). It is believed that depletion of these cryptogams can contribute to nutrient deficits. Additionally, cryptogams (mainly lichens) have been shown to provide food and shelter for flying squirrels, deer, caribou, and invertebrates (Edwards et al. 1960; Pettersson 1995; Rominger 1989;).

### Methods

Cryptogams were inventoried at 32 permanent plots throughout the Cedar River Watershed. Potential sites were initially identified using the Watershed's GIS layer maps according to the following cover types: 1) early seral forest, 2) mid-seral forest, 3) late successional/old-growth, 4) rock/talus, 5) wetland, and 6) streamside. Additionally, these cover types were divided further into three

elevation classes: 1) <1500', 2) 1500'-3000', and 3). >3000'. Table 1 depicts all survey locations.

|                                   | il vey site io     | cations for the bryophyte and E                                                                                        |                       |                                                                                          |                                 |
|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|---------------------------------|
| Cover type                        | Elevation<br>class | Locality                                                                                                               | Watershed<br>subbasin | Stand age and<br>elevation                                                               | Plot                            |
| I. Early Seral                    | <1500'             | intersection of roads 11 and 11.1                                                                                      | Lower Cedar River     | 20-29 yrs, ~1000'                                                                        | 11a, 11b                        |
|                                   | >3000'             | intersection of roads 112 and 112.4, near Mt. Washington                                                               | Damburat Ck*          | 20-29 yrs, ~4300'                                                                        | 112/112.4a                      |
|                                   | >3000'             | intersection of roads 155, 155.5, 155.6                                                                                | Upper Cedar River     | 20-29 yrs, ~3600'                                                                        | 155/155.5a,<br>155/155.5b       |
|                                   |                    |                                                                                                                        |                       |                                                                                          |                                 |
| II. Mid-Seral                     | <1500'             | east of the intersection of roads 10, 30, and 54                                                                       | Lower Cedar River     | 30-79 years ~800'                                                                        | 10/30/54a,<br>10/30/54b         |
|                                   | <1500'             | intersection of roads 10 and 16                                                                                        | Rock Ck*              | 30-79 yrs, ~800'                                                                         | 10/16a, 10/16b                  |
|                                   | 1500'-3000'        | intersection of roads 70 and 72, near Snoos Junction                                                                   | Taylor Ck             | 30-79 yrs, ~1600'                                                                        | 70a, 70b                        |
|                                   | 1500'-3000'        | intersection of Rd 22 and 22.1                                                                                         | Steele Ck*            | 60-69 yrs,~1900'                                                                         | 22a, 22b                        |
|                                   |                    |                                                                                                                        |                       |                                                                                          |                                 |
| III. Late-<br>Seral/Old<br>Growth | 1500'-3000'        | Intersection of road 800 and Lost Ck<br>(historic)                                                                     | Chester Morse         | 190+ yrs, ~2800'                                                                         | 800a, 800b                      |
|                                   | >3000'             | old-growth stand .2 mile past gate on<br>road 155; next to talus slope; east side<br>of road                           | Bear Ck*              | 190+ yrs, ~4000'                                                                         | 155a, 155b                      |
| IV Bock                           | >3000'             |                                                                                                                        | Lower Codar Piver     | ~3300                                                                                    | 800 rock a                      |
| IV. ROCK                          | >3000              | Laws Ledge                                                                                                             | Lower Ceuar River     | ~3300                                                                                    | 455 mark a                      |
|                                   | >3000              | 155; east side of road                                                                                                 | Bear Ck <sup>*</sup>  | ~3700*                                                                                   | 155 rock-a                      |
|                                   | >3000'             | talus slope on the west side of Findley<br>Lake                                                                        | Findley Ck*           | ~3700'                                                                                   | 320 rock-a                      |
| V. Wetland                        | <1500'             | road 18, north side, or intersection of roads 18 and 18.1(south end of Walsh                                           | Walsh Lake Ditch      | ~800'                                                                                    | 18 wetland-a,<br>18 wetland-b   |
|                                   |                    | Lake)                                                                                                                  |                       |                                                                                          |                                 |
|                                   | 1500'-3000'        | intersection of roads 800 and Lost Ck<br>(historical); roadside seep                                                   | Chester Morse         | ~2800 Technically<br>not a wetland, but<br>representative of<br>some of those<br>species | 800 seep-a                      |
|                                   | >3000'             | east side of road 155, just prior to intersection of roads 155, 155.5, and 155.6                                       | Upper Cedar River     | ~3500' Seasonally saturated                                                              | 155 wetland-a, 155<br>wetland-b |
|                                   | >3000'             | eastside of Findley Lake                                                                                               | Findley Ck*           | ~3700'                                                                                   | 320 wetland-a, 320 wetland-b    |
| VI. Streamside                    | <1500'             | intersection of road 10 and Webster Ck                                                                                 | Walsh Lake Ditch      | ~800'                                                                                    | 10 Webster Ck-a                 |
|                                   | <1500'             | intersection of road 60 and Taylor Ck                                                                                  | Taylor Ck             | ~1000'                                                                                   | 53/60 stream-a                  |
|                                   | <1500'             | intersection of road 10 and Steele Ck                                                                                  | Steele Ck*            | ~1000'                                                                                   | 10 stream-a                     |
|                                   | 1500'-3000'        | Lost Ck tributary; intersection of Lost Ck<br>(historic) and road 800; follow trail on<br>the north side to the bridge | Walsh Lake Ditch      | ~2800'                                                                                   | 800 stream-a                    |
|                                   | 1500'-3000'        | On road 155 at the 155.1 milepost                                                                                      | Roaring Ck*           | ~3000'                                                                                   | 155 stream-a                    |

Table 1 Survey site locations for the Bryophyte and Lichen Study

\* denotes a minor hydrologic subbasin

### Methods (continued)

A field visit followed the initial site identification and specific microplot locations were selected subjectively according to desirable microhabitats that would lend the greatest diversity; i.e. tree bases and boles, wet/submerged rocks, dry rock, newly fallen trees, wetlands, CWD of differing classes, etc. PVC (painted red) was installed at all plots in all three stages of forest type and at wetlands to indicate plot "center". No PVC was installed at either rock or stream plots, but all 32 locations were flagged and documented using a Trimble GPS. At the forest and wetland plots two different types of surveys were implemented: 1) a 20 cm X 50 cm daubenmire frame for terrestrial and tree bole species and, 2) a 2 meter radius plot for epiphytic litterfall species (developed by McCune 1994). The 20 cm X 50 cm frame was situated with the PVC in the left lower corner (figure 1a) and the aspect of the frame was recorded. All terrestrial lichens and bryophytes that were affixed within in this plot, as well as any that were affixed to tree boles, CWD, or rocks (up to 1 meter above the ground) inside the 20 cm X 50 cm frame were recorded. A tape measure was then attached to the PVC and a 2 meter radius round plot (figure 1b) was used to sample all epiphytic cryptogams that fell as litter from the canopy. This entire procedure was repeated as a second microplot at the same site if time permitted (2 hour maximum). Plots were named according to the road number next to the site, followed by either an **a** or **b** depending on the number of microplots at a given site (i.e.: 2 plots on road 155 would be 155a and 155b). At the streamside and rock/talus plots, a "two hour meander method" was employed in order to encounter a representitive population of those habitat types. All species found within this time limit were recorded.



The following site attributes were recorded (survey form is figure 2 in the *Figures and Photos* section): plot number, detailed location, cover type, stand age, elevation, aspect (frame and hillside), stand structure, habitat, topographic moisture, and notes on associated vascular plant species. For each plot, the species section contained species names (or unknown codes), substrate, abundance per area (listed only as sparse, medium, dense), and notes on collections. Collections were put into specially made paper

### Methods (continued)

envelopes, labeled, and then submitted to both the Watershed Headquarters and to the University of Washington Herbarium. Identification of lichen and bryophytes took place in the laboratory and followed standard chemical and microscopic procedure. Identification utilized and nomenclature follows McCune (1997); Christy and Wagner (1996); Goward, McCune, and Meidinger (1994); Schofield (1992); Vitt et al. (1988), Hitchcock and Cronquist (1973); and Lawton (1971). Data analysis was limited to species richness calculations per cover type, elevation class, and topographic moisture category. Data was entered and is housed in both an Access database (replicates the field survey form) and in a series of Excel worksheets. A final document, maps, database information, and voucher collections have all been submitted to The Cedar River Watershed.

### **Results and Discussion**

The two months of survey work and 32 plots yielded 105 identified bryophytes and 38 lichen species (Table 2; this includes the corresponding voucher identification number). At the end of the project there were some species that had yet to be identified.

### Table 2 Bryophytes of The Cedar River Watershed

### Lichens of The Cedar River Watershed

| Shica                       |             |                          |             |
|-----------------------------|-------------|--------------------------|-------------|
| Species Name                | Voucher No. | Species Name             | Voucher No. |
| Andreaea spp.               | 1           | Alectoria sarmentosa     | 1           |
| Antitrichia curtipendula    | 2           | Bryoria capillaries      | 2           |
| Aulocomnium androgynum      | 3           | Bryoria fuscescens       | 3           |
| Aulocomnium palustre        | 4           | Bryoria glabra           | 4           |
| Barbilophozia hatcherii     | 5           | Bryoria pseudofuscescens | 5           |
| Bazzania ambigua            | 6           | Cavernularia lophyrea    | 6           |
| Blepharostoma trichophyllum | 7           | Cetraria chlorophylla    | 7           |
| Brachythecium rivilare      | 8           | Cetraria orbata          | 8           |
| Brachythecium frigidum      | 9           | Cetrelia cetrarioides    | 9           |
| Bryum capillare             | 10          | Cladonia bellidiflora    | 10          |
| Bryum pseudotriquetrum      | 11          | Cladonia carneola        | 11          |
| Buxbaumia piperi            | 12          | Cladonia coniocraea      | 12          |
| Calliergon stramineum       | 13          | Cladonia cornuta         | 13          |
| Calypogeia spp.             | 14          | Cladonia ecmocyna        | 14          |
| Calypogeia muelleriana      | 15          | Cladonia furcata         | 15          |
| Calypogeia sphagnicola      | 16          | Cladonia sulpherina      | 16          |
| Campylium stellatum         | 17          | Cladonia transcendens    | 17          |
| Cephalozia lunifolia        | 18          | Cladonia umbricola       | 18          |
| Ceratodon purpureus         | 19          | Evernia prunastri        | 19          |
| Claopodium bolanderi        | 20          | Hypogymnia apinnata      | 20          |
| Claopodium crispifolium     | 21          | Hypogymnia enteromorpha  | 21          |
| Climacium dendroides        | 22          | Hypogymnia imshaugii     | 22          |
| Conocephalum conicum        | 23          | Hypogymnia inactiva      | 23          |

### Figure 2 (continued)

| Dendroalsia abietina                                            | 24 | Hypogymnia physodes    | 24 |
|-----------------------------------------------------------------|----|------------------------|----|
| Dichodontium pellucidum                                         | 25 | Hypotrachyna sinuosa   | 25 |
| Dicranella palustris                                            | 26 | Menegazzia terbrata    | 26 |
| Dicranoweisia crispula                                          | 27 | Parmelia sulcata       | 27 |
| Dicranum fuscescens                                             | 28 | Parmeliopsis ambigua   | 28 |
| Dicranum pallidisetum                                           | 29 | Parmeliopsis hyperopta | 29 |
| Dicranum scoparium                                              | 30 | Peltigera collina      | 30 |
| Dicranum tauricum                                               | 31 | Peltigera membranacea  | 31 |
| Diplophyllum albicans                                           | 32 | Peltigera venosa       | 32 |
| Diplophyllum taxiphyllum                                        | 33 | Platismatia glauca     | 33 |
| Eurhynchium oreganum (also called<br>Kindbergia oreganum)       | 34 | Platismatia herrei     | 34 |
| Eurhynchium praelongum (also called<br>Kindbergia praelongum)   | 35 | Ramalina farinacea     | 35 |
| Eurhynchium pulchellum var.<br>pulchellum                       | 36 | Usnea filipendula      | 36 |
| Fissidens spp.                                                  | 37 | Usnea Iaponica         | 37 |
| Fissidens taxifolius                                            | 38 | Usnea wirthii          | 38 |
| Fissidens ventricosus                                           | 39 |                        |    |
| Fontinalis antipyretica var.<br>oregonensis                     | 40 |                        |    |
| Grimmia spp.                                                    | 41 |                        |    |
| Gyrothra underwoodiana                                          | 42 |                        |    |
| Heterocladium macounii                                          | 43 |                        |    |
| Homalothecium fulgescens                                        | 44 |                        |    |
| Homalothecium nevadense                                         | 45 |                        |    |
| Hookeria lucens                                                 | 46 |                        |    |
| Hygrohypnum spp.                                                | 47 |                        |    |
| Hylocomium splendens                                            | 48 |                        |    |
| Hypnum spp.                                                     | 49 |                        |    |
| Hypnum circinale                                                | 50 |                        |    |
| lsopterygium elegans (also called<br>Pseudotaxiphyllum elegans) | 51 |                        |    |
| lsothecium stoloniferon (also called I.<br>Myosuroides)         | 52 |                        |    |
| Jungermannia spp.                                               | 53 |                        |    |
| Lepidozia reptans                                               | 54 |                        |    |
| Leucolepis menziesii (also called L.<br>acanthoneuron)          | 55 |                        |    |
| Lophozia porphyrolenca                                          | 56 |                        |    |
| Marchantia polymorpha                                           | 57 |                        |    |
| Marsupella emarginata var.<br>emarginata                        | 58 |                        |    |
| Metaneckera menziesii                                           | 59 |                        |    |
| Mnium lycopodioides                                             | 60 |                        |    |
| Neckera douglasii                                               | 61 |                        |    |
| Oligotrichum aligerum                                           | 62 |                        |    |

8

63

Orthotricum Iyellii

#### Figure 2 (continued)

| Orthotricum striatum                                                                                                                                                             | 64                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Pellia spp.                                                                                                                                                                      | 65                                              |
| Philonotis fontana                                                                                                                                                               | 66                                              |
| Plagiochila asplenioides                                                                                                                                                         | 67                                              |
| Plagiochila porelloides                                                                                                                                                          | 68                                              |
| Plagiomnium insigne                                                                                                                                                              | 69                                              |
| Plagiomnium rostratum                                                                                                                                                            | 70                                              |
| Plagiomnium venustum                                                                                                                                                             | 71                                              |
| Plagiothecium laetum                                                                                                                                                             | 72                                              |
| Plagiothecium undulatum                                                                                                                                                          | 73                                              |
| Pleurozium schreberi                                                                                                                                                             | 74                                              |
| Pogonatum alpinum var. alpinum                                                                                                                                                   | 75                                              |
| Pogonatum contortum                                                                                                                                                              | 76                                              |
| Pogonatum urnigerum                                                                                                                                                              | 77                                              |
| Pohlia cruda                                                                                                                                                                     | 78                                              |
| Pohlia nutans                                                                                                                                                                    | 79                                              |
| Polytrichum juniperinum                                                                                                                                                          | 80                                              |
| Polytrichum piliferum                                                                                                                                                            | 81                                              |
| Racomitrium aciculare                                                                                                                                                            | 82                                              |
| Racomitrium canescens                                                                                                                                                            | 83                                              |
| Racomitrium canescens var. ericoides                                                                                                                                             | 84                                              |
| Racomitrium heterostichum                                                                                                                                                        | 85                                              |
| Racomitrium lanuginosum                                                                                                                                                          | 86                                              |
| Racomitrium sudeticum var. alpinum                                                                                                                                               | 87                                              |
| Rhizomnium glabrescens                                                                                                                                                           | 88                                              |
| Rhizomnium magnifolium                                                                                                                                                           | 89                                              |
| Rhizomnium pseudopunctatum                                                                                                                                                       | 90                                              |
| Rhytidiadelphus loreus                                                                                                                                                           | 91                                              |
| Rhytidiadelphus squarrosus                                                                                                                                                       | 92                                              |
| Rhytidiadelphus triquetrus                                                                                                                                                       | 93                                              |
| Rhytidiopsis robusta                                                                                                                                                             | 94                                              |
|                                                                                                                                                                                  |                                                 |
| Scapania americana                                                                                                                                                               | 95                                              |
| Scapania americana<br>Scapania bolanderi                                                                                                                                         | 95<br>96                                        |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata                                                                                                                    | 95<br>96<br>97                                  |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata<br>Schistidium rivulare                                                                                            | 95<br>96<br>97<br>98                            |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata<br>Schistidium rivulare<br>Scleropodium obtusifolium                                                               | 95<br>96<br>97<br>98<br>99                      |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata<br>Schistidium rivulare<br>Scleropodium obtusifolium<br>Scouleria aquatica                                         | 95<br>96<br>97<br>98<br>99<br>100               |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata<br>Schistidium rivulare<br>Scleropodium obtusifolium<br>Scouleria aquatica<br>Sphagnum spp.                        | 95<br>96<br>97<br>98<br>99<br>100<br>101        |
| Scapania americana<br>Scapania bolanderi<br>Scapania undulata<br>Schistidium rivulare<br>Scleropodium obtusifolium<br>Scouleria aquatica<br>Sphagnum spp.<br>Sphagnum squarrosum | 95<br>96<br>97<br>98<br>99<br>100<br>101<br>102 |

Tetraphis pellucida Ulota crispa var. alaskana (Also U. obtusiuscula) Ulota megalospora

104

105

| Stout Number | Submitted by T. Stout               | Undated by M. Hutten                 | Update<br>Action <sup>1</sup> | Comment                                                                                                            |
|--------------|-------------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1            | Andraeae sp.                        | Andraeae rupestre                    | D                             |                                                                                                                    |
| 5            | Barbolophozia hatcheri              | Barbolophozia floerkei               | D                             |                                                                                                                    |
| 112          | Calvpogeia fissa                    | Chilocyphus polyanthos               | D                             |                                                                                                                    |
| 15           | Calypogeia muelleriana              | Lophocolea heterophylla              | D                             |                                                                                                                    |
| 16           | Calypogeia sphagnicola              | Calypogeia suecica                   | D                             |                                                                                                                    |
| 19           | Ceratodon?                          | Kiaeria starkei                      | D                             |                                                                                                                    |
| 20           | Claopodium bolanderi                | Claopodium crispifolium              | D                             |                                                                                                                    |
| 29           | Dicranum pallidesetum               | Dicranum scoparium                   | D                             |                                                                                                                    |
| 30           | Dicranum scoparium                  | Dicranum howellii                    | D                             | sensu Norris & Shevock, using<br>Lawton 1971 this would key to D.<br>scoparium. Lawton's concept is out<br>of date |
| 33           | Diplophyllum taxifolium             | Diplophyllum obtusifolium            | D                             |                                                                                                                    |
| 36           | Eurynchium pulchellum               | Eurynchium praelongum                | D                             |                                                                                                                    |
| 41           | Grimmia cf. alpestris               | Grimmia sp. (but NOT alpestris)      | D                             | in a Grimmia group where fertile<br>characters are needed with present<br>kevs                                     |
| 42           | Gyrothyra underwoodiana             | Nardia scalaris                      | D                             |                                                                                                                    |
| 47           | Hygrohypnum sp.                     | Hygrohypnum ochraceum                | D                             |                                                                                                                    |
| 110          | Hypnum cupressiforme                | Hypnum dieckii                       | D                             |                                                                                                                    |
| 56           | Lophozia porphyroleuca              | Lophozia longiflora                  | N                             |                                                                                                                    |
| 60           | Mnium lycopodioides                 | Mnium ambiguum                       | N                             |                                                                                                                    |
| 63           | Orthotrichum Iyellii                | Orthotrichum papillosum              | ND                            | taxon has been split ORPA is most common                                                                           |
| 65           | Pellia sp.                          | Pellia neesiana                      | D                             |                                                                                                                    |
| 67           | Plagiochila asplenioides            | Plagiochila porelloides              | D                             |                                                                                                                    |
| 83           | Racomitrium canescens               | Racomitrium elongatum                | ND                            |                                                                                                                    |
| 85           | Racomitrium heterophyllum           | Racomitrium occidentale              | D                             |                                                                                                                    |
| 87           | Racomitrium sudeticum var. alpestre | Racomitrium sudeticum var. sudeticum | ND                            | (sensu Frisvoll 1988)                                                                                              |
| 95           | Scapania americana                  | Scapania undulata                    | D                             |                                                                                                                    |
| 99           | Scleropodium obtusifolium           | Platyhypnidium riparioides           | D                             | RARE!                                                                                                              |
| 101          | Sphagnum sp.                        | Sphagnum mendocinum                  | D                             |                                                                                                                    |

Addendum to Stout (2001) - redetermination by Martin Hutten of bryophyte specimens collected by Tammy Stout in 2001.

<sup>1</sup> D = determined; N = nomenclature update only; DN = both

Addendum to Stout 2001 - verification by Katie Glew of voucher specimens collected and identified by Tammy Stout in 2001 from Cedar River Watershed.

Alectoria sarmentosa Alectoria sp. Bryoria capillaris Bryoria fuscescens Bryoria glabra – no voucher Bryoria implexa\* Bryoria pseudofuscescens [Cavernularia lophyrea] Cavernularia is in the watershed, but this specimen is a Hypogymnia Cavernularia hultenii\* Cetraria chlorophylla Cetraria orbata Cetrelia cetrarioides\* Cladina rangiferina Cladonia sp.1 Cladonia sp.2 Cladonia bellidiflora Cladonia brown tip Cladonia carneola – no voucher Cladonia chlorophaea Cladonia coniocraea – incorrect ID Cladonia cornuta\* – no voucher Cladonia ecmocyna – incorrect ID Cladonia forked Cladonia furcata\* – no voucher Cladonia ochrochlora\* Cladonia red tip Cladonia rangiferina\* Cladonia scabriuscula – incorrect ID Cladonia squamosa Cladonia sulphurina\* Cladonia transcendens Cladonia umbricola – no voucher Cladonia sp. Evernia prunastri Hypogymnia sp. 1 Hypogymnia sp. 2 Hypogymnia apinnata – incorrect ID Hypogymnia enteromorpha Hypogymnia imshaugii – incorrect ID

Hypogymnia occidentalis\* Hypogymnia physodes Hypogymnia rugosa - incorrect ID Hypogymnia tubulosa Hypotrachyna sinuosa – incorrect ID Lichen (unidentified) Lichen 2 (unidentified) Lichen 3 (unidentified) Menegazzia terebrata Parmelia hygrophila Parmelia saxatilis - incorrect ID Parmelia sp. Parmelia sulcata Parmeliopsis ambigua Parmelia hygrophylla - no voucher Parmeliopsis hyperopta - too small to ID Peltigera collina\* - no voucher Peltigera horzontalis\*? – small sample Peltigera membranacea – no voucher Peltigera neopolydactyla\* Peltigera venosa\* - no voucher Peltigera sp. Platismatia glauca Platismatia herrei Ramalina farinacea Sphaerophorus globosus Stereocaulon tomentosum\* Stereocaulon sp. Usnea cornuta\* Usnea filipendula Usnea lapponica Usnea sp. Usnea subfloridana - incorrect ID Usnea flavocardia

\*also in collections, but not listed on packet or Tammy's list

Hypogymnia inactiva

### **Results and Discussion** (continued)

Detailed analysis of the data was beyond the scope of this project, mainly due to the time constraint and the varied nature of the habitats surveyed. Basic evaluation of the findings in the watershed revealled that, species richness decreased across cover type in the following order: late successional/old-growth, streamside, mid-seral, talus, wetland, and early-seral (Table 3). A plot by plot analysis of number of species is also illustrated (Table 4).

### Table 3 Average Richness per Cover Type

| Cover Type                    | Avg Of Richness |
|-------------------------------|-----------------|
| Late Successional /Old-growth | 28.8            |
| Streamside                    | 22.2            |
| Mid-Seral                     | 16.8            |
| Talus Slope                   | 16.3            |
| Early Seral                   | 6.0             |
| Wetland                       | 5.0             |

#### Table 4 Richness per plot

| Plot Name           | Cover Type                    | Richness |
|---------------------|-------------------------------|----------|
| 800-a               | Late Successional/Old-growth  | 45       |
| 70a                 | Mid-Seral                     | 29       |
| 10 stream-a         | Streamside                    | 27       |
| 800 stream-a        | Streamside                    | 26       |
| 800-b               | Late Successional /Old-growth | 24       |
| 155-a               | Late Successional /Old-growth | 23       |
| 155-b               | Late Successional /Old-growth | 23       |
| 70b                 | Mid-Seral                     | 22       |
| 53/60 stream-a      | Streamside                    | 21       |
| 155 stream-a        | Streamside                    | 20       |
| 22-b                | Mid-Seral                     | 20       |
| 800 rock-a          | Rock/Talus                    | 20       |
| 10/16-a             | Mid-Seral                     | 18       |
| 10 WebsterCk-a      | Streamside                    | 17       |
| 10/16-b             | Mid-Seral                     | 15       |
| 320 rock-a          | Rock/Talus                    | 15       |
| 155rock-a           | Rock/Talus                    | 14       |
| 22-а                | Mid-Seral                     | 13       |
| 800 seep-a          | Wetland                       | 11       |
| CRW<br>Headquarters | Varied                        | 11       |
| 10/30/54a           | Mid-Seral                     | 10       |
| 112/112-4-a         | Early Seral                   | 10       |

#### Table 4 (continued) **Richness per plot**

| Plot Name     | Cover Type  | Richness |
|---------------|-------------|----------|
| 10/30/54b     | Mid-Seral   | 7        |
| 11-a          | Early Seral | 6        |
| 320 wetland-a | Wetland     | 6        |
| 320 wetland-b | Wetland     | 6        |
| 11-b          | Early Seral | 5        |
| 155/155.5-b   | Early Seral | 5        |
| 155 wetland-a | Wetland     | 4        |
| 155/155.5-a   | Early Seral | 4        |
| 155 wetland-b | Wetland     | 3        |
| 18 wetland-a  | Wetland     | 3        |
| 18 wetland-b  | Wetland     | 2        |

Elevationally, richness was the greatest in elevation class 2, followed by class1 and lastly, by class 3 (Table 5). The topographic moisture with the highest richness was the wet category and decreased in the following order: moist mesic, mesic, extremely dry (rock/talus), very dry, standing water, and dry/well drained (Table 6).

## Table 5 Average Richness by Elevation Class

| Elevation Class | Avg Of Richness |
|-----------------|-----------------|
| 2               | 23.3            |
| 1               | 11.9            |
| 3               | 11.1            |

### Table 6

### Average Richness by Topographic Moisture

| Topographic Moisture | Avg Of Richness |
|----------------------|-----------------|
| Wet                  | 20.0            |
| Moist Mesic          | 19.9            |
| Mesic                | 18.1            |
| Extremely Dry        | 17.5            |
| Very Dry             | 14.0            |
| Standing Water       | 10.0            |
| Dry/Well Drained     | 6.3             |

These basic results concur with other studies undertaken in the Pacific Northwest but should be fortified with additional investigations that focus on a narrower

### **Results and Discussion** (continued)

range of habitat types—i.e., comparisons of the three seral stages, comparisons of only wetlands in the three elevation classes, or comparisons of streamsides in different aged stands.

*Hypnum circinale* was encountered in the greatest number of total survey plots, followed by *Eurhynchium oreganum* and *Isothecium stoloniferon*. This too concurs with previous studies undertaken on bryophytes in the Pacific Northwest. Tables 7a-7f list the ten most common species found (bryophyte and lichen combined) per cover type. Table 8 depicts the ten most frequently occuring species across all plots.

| Early Seral             |                    |
|-------------------------|--------------------|
| Species Name            | Number of<br>Plots |
| Cladonia sp.            | 4                  |
| Dicranum fuscescens     | 2                  |
| Dicranum tauricum       | 2                  |
| Eurhynchium oreganum    | 2                  |
| Hypnum circinale        | 2                  |
| Hypogymnia imshaugii    | 2                  |
| Polytrichum juniperinum | 2                  |
| Scapania bolanderi      | 2                  |
| Isopterygium elegans    | 1                  |
| Plagiothecium undulatum | 1                  |

 Table 7a

 Ten of the Most Frequently Occurring Species by Cover Type

 Farly Seral

Table 7b

Ten of the Most Frequently Occurring Species by Cover Type

| ivila Serai             |           |
|-------------------------|-----------|
| Species Name            | Number of |
|                         |           |
| Isothecium stoloniferon | 8         |
| Eurhynchium oreganum    | 7         |
| Hypnum circinale        | 7         |
| Hypogymnia physodes     | 6         |
| Platismatia glauca      | 6         |
| Cetraria orbata         | 5         |
| Plagiothecium undulatum | 5         |
| Hypogymnia inactiva     | 4         |
| Rhytidiadelphus loreus  | 4         |
| Scapania bolanderi      | 4         |

# Table 7c Ten of the Most Frequently Occurring Species by Cover Type

| Old growth/late<br>successional |                    |
|---------------------------------|--------------------|
| Species Name                    | Number of<br>Plots |
| Cladonia sp.                    | 5                  |
| Platismatia glauca              | 5                  |
| Alectoria sarmentosa            | 4                  |
| Dicranum scoparium              | 4                  |
| Hypnum circinale                | 4                  |
| Ptilidium californicum          | 4                  |
| Rhytidiopsis robusta            | 4                  |
| Scapania bolanderi              | 4                  |
| Hypogymnia inactiva             | 3                  |
| Rhytidiadelphus loreus          | 3                  |

Table 7d

Ten of the Most Frequently Occurring Species by Cover Type

| Streamside                 |                    |
|----------------------------|--------------------|
| Species Name               | Number of<br>Plots |
| Dichodontium pellucidum    | 5                  |
| Bryophyte (unidentified)   | 4                  |
| Bryophyte 2 (unidentified) | 4                  |
| Calypogeia muelleriana     | 4                  |
| Eurhynchium praelongum     | 4                  |
| Leucolepis menziesii       | 4                  |
| Schleropodium obtusifolium | 4                  |
| Bryophyte 3 (unidentified) | 3                  |
| Racomitrium aciculare      | 3                  |
| Rhizomnium qlabrescens     | 3                  |

Table 7e

## Ten of the Most Frequently Occurring Species by Cover Type

| raius Siope                |                    |
|----------------------------|--------------------|
| Species Name               | Number of<br>Plots |
| Bryophyte (unidentified)   | 3                  |
| Cladonia sp.               | 3                  |
| Racomitrium heterostichum  | 3                  |
| Barbilophozia hatcheri     | 2                  |
| Bryophyte 2 (unidentified) | 2                  |
| Bryophyte 3 (unidentified) | 2                  |
| Bryophyte 4 (unidentified) | 2                  |
| Pleurozium schreberi       | 2                  |
| Racomitrium canescens      | 2                  |
| Philonotis fontana         | 1                  |

## Table 7f Ten of the Most Frequently Occurring Species by Cover Type

| Wetland                    |                    |
|----------------------------|--------------------|
| Species Name               | Number of<br>Plots |
| Philonotis fontana         | 6                  |
| Eurhynchium praelongum     | 3                  |
| Aulocomnium palustre       | 2                  |
| Hygrohypnum sp.            | 2                  |
| Rhytidiadelphus squarrosus | 2                  |
| Bryophyte (unidentified)   | 1                  |
| Eurhynchium oreganum       | 1                  |
| Plagiomnium insigne        | 1                  |
| Polytrichum juniperinum    | 1                  |
| Rhytidiadelphus loreus     | 1                  |

Table 8

## Ten Most Frequent Species Across All Plots

| Grand Total              |                 |
|--------------------------|-----------------|
| Species Name             | Number of Plots |
| Hypnum circinale         | 15              |
| Cladonia sp.             | 13              |
| Eurhynchium oreganum     | 13              |
| Isothecium stoloniferon  | 12              |
| Platismatia glauca       | 12              |
| Scapania bolanderi       | 11              |
| Bryophyte (unidentified) | 10              |
| Rhytidiadelphus loreus   | 10              |
| Plagiothecium undulatum  | 9               |
| Calypogeia muelleriana   | 8               |

## **Conclusions and Recommendations**

Clearly, the most obvious step would be to enhance this knowledge base with more research. The total number of species encountered in this study most likely represents only a fraction of the population of the species that exist at The Cedar River Watershed. It is believed that there are 900 mosses, 1200 lichens, and 250 liverworts in Northwest America (Vitt et al. 1988). Investigating the following habitat types more closely could fill the largest gaps in the species list:

- Rock outcrops
- Streamside
- CWD in the forests
- Forest canopies
- Wetlands

The wetland cover type in particular should receive extra care in specific site selection. In this study, the wetlands with low total species had a thick vascular plant understory density, but those with less understory cover and year-round water had a higher species richness. Additionally, a more focused survey and

analytical comparisons of the different forest stages in the watershed would reveal valuable data that could assist the land managers of this diverse ecosystem. Habitat specific surveys would lend insight into the status of the Survey and Manage species that exist in the watershed; the scope of this study didn't allow the time for that specialized of survey techniques. Incorporation of cryptogam study plots within larger scale, long term ecological study plots would integrate knowledge of these types of life forms with other disciplines (i.e., mammal, amphibian, ornithological) as well as provide a platform to monitor forest change and health.

This unique watershed is extremely diverse with its large elevational gradient and multitude of habitat types. This study has provided only a primary, albeit valuable, set of data and information that can now be used as a basic building unit for the research to come.

### **References (and associated literature)**

Callaway, R.M. and N.M. Nadkarni. 1991. Seasonal patterns of nutrient deposition in a *Quercus douglasii* woodland in central California. Plant and Soil 137:209-222.

Christy, John A. and David Wagner. 1996. Guide for the identification of rare, threatened, or sensitive bryophytes in the range of the northern spotted owl; western Washington, western Oregon, and northwestern California. Cooperative project of the Eugene District, United States Department of Interior Bureau of Land Management, Siuslaw National Forest, United States Forest Service, The Nature Conservancy, and Northwest Botanical Institute.

Denison W.C. 1979. *Lobaria oregana,* a nitrogen fixing lichen in old-growth Douglas fir forests. *In* Symbiotic nitrogen fixation in the management of temperate forests. *Edited by* J.C. Gordon, C.T. Wheeler and D.A. Perry. Forestry Research Laboratory, Oregon State University, Corvallis, OR.

Edwards, R.Y., J Soos, and R.W. Ritcey. 1960. Quantitative observations on epidendric lichens used as food by caribou. Ecology 41:425-431.

Esseen, P.A., K.E. Renhorn, and R.B. Pettersson. 1996. Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecological Applications 6:228-238.

Goward, T., B. McCune, and D. Meidinger. 1994. The Lichens of British Columbia. Part 1 Foliose and Squamulose Species and Part 2 Fruticose Species. Ministry of Forests Research Program. Victoria, British Columbia, Canada.

Hejl, S.J., and R.E. Wood. 1991. Bird assemblages in old-growth and rotation aged Douglas-fir/ponderosa pine stands in the Northern Rocky Mountains: A preliminary assessment. Pages 93-100 *In* Baumgartner, D.M., and J.E. Lotan (editors) Symposium Proceedings of Interior Douglas-fir: The Species and its management, February 27-March 1, 1990, Spokane, WA.

Hyvarinen, M., P. Halonen, and M. Kauppi 1992. Influence of stand age and structure on the epiphytic lichen vegetation in the middle boreal forests of Finland. Lichenologist 24(2):165-180.

Hitchcock, C.L. and Cronquist, A. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle, WA.

Kuusinen, M. 1994*b*. Epiphytic lichen flora and diversity on *Populus tremula* in old-growth and managed forests of southern and middle boreal Finland. Annales Botanici Fennici 31:245-260.

Lawton, E. 1971. Moss Flora of the Pacific Northwest. Hattori Botanical Laboratory, Nichinan, Miyazaki, Japan.

Lesica, P., B. McCune, S. V. Cooper, and W. S. Hong. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany 69: 8, 1745-1755.

Maser, Z., Maser, C., and Trappe J.M. 1985. Food habits of the northern flying squirrel (*Glaucomys sabrinus*) in Oregon. Canadian Journal of Zoology 63:1084-1088.

McCune, Brune, Jonathan P. Dey, JeriLynn E. Peck, David Cassell, Karin Heiman, Susan Will-Wolf, and Peter Neitlich. 1997. Repeatability of community data: species richness versus gradient scores in large scale lichen studies. The Bryologist. 100(1):40-46.

McCune, Bruce and Linda Geiser. 1997. Macrolichens of the Pacific Northwest. Oregon State University Press.

McCune, B. 1994. Using epiphyte litter to estimate epiphyte biomass. Bryologist. Omaha, Neb. : American Bryological and Lichenological Society. Winter 1994 97:396-401.

McCune, B. 1993. Gradients in epiphyte biomass in three *Pseudotsuga-Tsuga* forests of different ages in western Oregon and Washington. Bryologist. Omaha, Neb. : American Bryological and Lichenological Society. Fall 1993 96:405-411.

McCune, Bruce and P. Lesica. 1992. The trade-off between species capture and quantitative accuracy in ecological inventory of lichens and bryophytes in forests in Montana. The Bryologist 95:296-304.

Nadkarni, Nalini M., and Laura Larsen. 1997. An investigation of epiphytic lichens in a chronosequence of managed stands at the Port Blakely tree farm, Washington State. A Research project of the International Canopy Network, The Evergreen State College, Olympia, Washington.

Neitlich, P. N., and B. McCune. 1997. Hotspots of epiphytic lichen diversity in two young managed forests. Conservation-Biology 11: 1, 172-182.

Neitlich, P.N. 1993. Lichen abundance and diversity along a chronosequence from young managed stands to ancient forest, western Oregon. M.S. thesis. University of Vermont, Burlington.

Peck, JeriLynn E., Steven A. Acker, and W. Arthur McKee 1995. Autecology of mosses in coniferous forests in the central western cascades of Oregon. Northwest Science, 69:3, 184-190.

Pettersson, R.B., J.P. Ball, K.E. Renhorn, P.A. Esseen, and K Sjoberg. 1995. Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biological Conservation 74:57-63.

Pike, L.H. 1978. The importance of epiphytic lichens in mineral cycling. Bryologist 81:247-257.

Pike, L. H., R. A. Rydell, and W. C. Denison. 1977. A 400-year-old Douglas fir tree and its epiphytes: biomass, surface area, and their distributions. Canadian Journal of Forestry Research 7: 4, 680-699.

Pipp, Andrea K., Colin Henderson, and Ragan M. Callaway 2001. Effects of Forest Age and Forest Structure on Epiphytic Lichen Biomass and Diversity in a Douglas-Fir Forest. Northwest Science 75:1, 12-24.

Rambo, T. R., and P. S. Muir. 1998. Bryophyte species associations with coarse woody debris and stand ages in Oregon. Bryologist. 1998, 101: 3, 366-376; 71 ref.

Richardson, D.H.S., and C.M. Young. 1977. Lichens and vertebrates. Pages 121-144 in M.R.D. Seaward, editor. Lichen ecology. Academic Press, London.

Rieley, J.O., P.W. Richards, and A.D.L. Bebbington, 1979. The ecological role of bryophytes in a North Wales woodland. Journal of Ecology 67:497-527.

Rominger, E.M., and Oldemeyer, J.L. 1989. Early winter habitat of woodland caribou, Selkirk Mountains, British Columbia. Journal of Wildlife Management. 53:238-243.

Schofield, W.B. 1969. Some common mosses of British Columbia. British Columbia Provincial Museum Handbook No. 28 Victoria, B.C. 262 p.

Sillett, S. C., B. McCune, J. E. Peck, T. R. Rambo, and A. Ruchty. 2000. Dispersal limitations of epiphytic lichens result in species dependent on oldgrowth forests. Ecology Applications. Washington, D.C.: Ecological Society of America. June 2000 10:789-799.

Stevenson, S.K. 1978. 1978. Distribution and abundance of arboreal lichens and their use as forage by blacktailed deer. M.S. thesis. University of British Columbia, Vancouver.

Stewart, G.H. 1986. Forest development in canopy openings in old-growth *Pseudotsuga* forests of the western Cascade Range, Oregon. Canadian Journal of Forest Research 16:558-568.

Turner, J., and J.N. Long. 1975. Accumulation of organic matter in a series of Douglas-fir stands. Canadian Journal of Forest Research 5:681-690.

Vitt, D.H., J.E. Marsh, and R.V. Bovey. 1988. Mosses, Lichens, and Ferns of Northwest North America. Lone Pine Publishing, Edmonton, Alberta. 296p.

## **Tables and Figures**

Figure 2 Survey Form

| name:                                 |                  |                   |                                                                                             |               | date and time          | :                |             |                                                                                             |
|---------------------------------------|------------------|-------------------|---------------------------------------------------------------------------------------------|---------------|------------------------|------------------|-------------|---------------------------------------------------------------------------------------------|
| plot number:                          |                  | GPS file name     | e:                                                                                          |               | location:              |                  |             |                                                                                             |
| cover type:                           |                  |                   |                                                                                             |               | stand age:             |                  |             |                                                                                             |
| elevation:                            |                  |                   | aspect:                                                                                     |               |                        |                  | slope       | :                                                                                           |
| stand structure (tre                  | ee regeneration, | canopy structur   | e, snags ar                                                                                 | nd downed w   | ood):                  |                  |             |                                                                                             |
| <u> </u>                              |                  |                   |                                                                                             |               | <u>_</u>               |                  |             |                                                                                             |
| _                                     |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
| nabitat (canopy co                    | ver overstory de | nsity, canopy co  | over unders                                                                                 | story density | , landform (talus, all | uvial valley, sc | ree, etc) m | oisture, light, w                                                                           |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
| <u> </u>                              |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  | _                 | _                                                                                           | _             |                        | _                | _           |                                                                                             |
|                                       |                  | _                 | _                                                                                           | _             |                        |                  | _           | _                                                                                           |
| topographic mo                        | isture: extrer   | nely dry (rocky ı | idgetop)                                                                                    | very dry      | dry-well drained       | dry mesic        | mesic       | moist mesic                                                                                 |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       | wet              | standing water    | ÷                                                                                           |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               | abundance              |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               | per                    | specimen         |             |                                                                                             |
| species _                             | <u>_</u>         | substrate         |                                                                                             | _             | area                   | collected        | notes       |                                                                                             |
| <u> </u>                              |                  |                   |                                                                                             | _             |                        |                  | _           |                                                                                             |
| <u> </u>                              |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             |               |                        | <br>             |             |                                                                                             |
| <br>                                  |                  |                   |                                                                                             |               |                        |                  |             |                                                                                             |
|                                       |                  |                   |                                                                                             | -<br>-<br>-   |                        |                  |             | -<br>-<br>-<br>-                                                                            |
|                                       |                  |                   |                                                                                             |               |                        |                  |             | -<br>-<br>-<br>-<br>-<br>-                                                                  |
|                                       |                  |                   |                                                                                             |               |                        |                  |             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-                                                                  |               |                        |                  |             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| · · · · · · · · · · · · · · · · · · · |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        |               |                        |                  |             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     |               |                        |                  |             |                                                                                             |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                        |                  |             |                                                                                             |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                        |                  |             |                                                                                             |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                        |                  |             |                                                                                             |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                        |                  |             |                                                                                             |
|                                       |                  |                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                        |                  |             |                                                                                             |

Figure 3 Plot photos



Plot 11-a Early Seral



Plot 10/30/54b Mid-Seral

Figure 3 (continued)



Plot 800a Late Successional/Old-growth



Plot 800a Late Successional/Old-growth Tree base

<image>

Plot 800 seep-a wetland



Plot 320 wetland-a Findley Lake wetland

Figure 3 (continued)



Plot 10 stream-a Streamside (Steele Ck)



Plot 53/60 stream-a Streamside (Taylor Ck)

## Figure 3 (continued)



Plot 155 rock-a rock/talus

Figure 4 Map of Survey Locations in the Cedar River Watershed At this scale the individual plots are difficult to see.