

Page 1

Resource-Level Versioning in Administrative

Geography RDF Data

Alex Lohfink, Duncan McPhee

University of Glamorgan, faculty of Advanced Technology, Dept. of Computing and Maths,
Pontypridd, CF37 1DL

Tel. +44443 482950
(alohfink, dmcphee)@glam.ac.uk

ABSTRACT
The Resource Description Framework (RDF) is a base technology of the semantic

web, providing a web infrastructure that links distributed resources with semantically

meaningful relationships at the data level. An issue with RDF data is that resources

and their properties are subject, as with all data, to evolution through change, and this

can lead to linked resources and their properties being either removed or outdated. In

this paper we describe a simple model to address such an issue in administrative

geography RDF data using RDF containers. The model version-enables such data at

the resource level without disturbing the inherent simplicity of the RDF graph, and

this translates to the querying of data, which retrieves version-specific properties by

matching simple graph-patterns. Further, both information and non-information

resources can be versioned by utilizing the model, and its inherent simplicity means

that it could be implemented easily by data consumers and publishers. The model is

evaluated using some UK administrative geography RDF datasets.

Keywords: Key words: administrative geography; semantic web; versioning; RDF; linked data

Page 2

1. Introduction
The publication of data in Linked Data

(RDF) form has increased significantly

recently and in the UK this process has been

accelerated through the Government‟s

„Making Public Data Public‟ initiative,

which is encouraging Government Agencies

to publish data in linked form. However, no

real solution currently exists to enable data

to be versioned other than at dataset level,

and being able to version at the resource

level is likely to provide significant

advantages to both publishers and

consumers of Linked Data by facilitating

access to different versions of specific data.

The Ordnance Survey
1
(OS) have published

its UK administrative geography data in

RDF format, and an issue that has arisen

with this data is that the administrative units

represented change frequently (boundaries,

for example, are released twice a year), but

these changes are not adequately represented

in the data as there is no logical organisation

between different versions of units. Because

of this, different users of the administrative

geography datasets could link to different

versions of administrative units represented

in whichever version of the data they are

accessing, meaning that inconsistencies will

be apparent between different RDF datasets.

There is also a requirement for applications

to link to other versions of a resource that

may not necessarily be the latest version. In

this paper we describe a mechanism that

could solve this problem by version-

enabling RDF administrative geography data

at the resource level. This has been in the

form of a practical and simple Linked Data

model that can potentially provide solutions

to the issues described here. The model uses

RDF container and collection elements to

represent versioned resources within a RDF

graph, representing collections of resources

1 This research is sponsored by Ordnance Survey

as single entities. The model does not

interfere with the inherent simplicity of the

graph-based structure imposed by the RDF

data model, and this simplicity is evident

when formulating queries about versioned

resources, where standard SPARQL (W3C

2008) queries can be used to retrieve

versioned data by matching simple graph

patterns. We believe the model offers the

potential to provide a practical and scalable

solution to versioning in Linked Data

datasets whilst retaining sufficient simplicity

to be implemented by data publishers and

consumers. It also has the potential to be

extended to incorporate other issues in

resource-level versioning such as ambiguity

(where two or more resources share the

same name) and variance (different

representations of the same resource).

The rest of this paper is organised as

follows: in the next section we describe the

problem which our model addresses and

previous work, in section 3 we describe our

model, and in section 4 we describe an

implementation and evaluation of versioned

datasets based on our. Finally, in section 5

we present our concluding remarks.

2. Previous work
Versioning for RDF can be viewed from two

perspectives: web ontology versioning

(classes) and instance versioning. Instance

versioning can be further divided into

model-based, statement-based (triple), or

resource-level versioning. Model-based

versioning applies to a group of triples that

form part of a logical unit. Statement-based

versioning applies to individual statements

(triples), while resource level (or datum-

level) versioning applies to the versioning of

individual resources within an RDF graph. It

is within the field of resource-level

versioning that this paper is primarily

concerned.

Page 3

 Previous work in the field of versioning in

Linked Data has been centred mainly on

web ontology versioning (versioning of

classes), and on the managing of change in

RDF graphs, and to a lesser degree on

resource-level versioning. The SemVersion

(Volkel 2005) model focuses on managing

change in ontologies where users can

suggest different classes to include in the

ontology. SemVersion can manage such

changes and reconcile them into a new

version of the ontology. SemVersion

employs model-based versioning. Delta

(Berners-Lee and Connolly 2001) is a

system designed to identify differences

between RDF graphs, and uses functions to

compute these differences. Differences

between graphs are produced in the form of

a delta which represents the changes only.

This means that a delta derived from a

knowledge base can be applied to a subset of

this knowledge base and update it, with

accurate results. RDF Difference Models

(deVos 2002) also uses groups of triples to

describe changes that have occurred

between two graphs, but goes further in

specifying “forward difference statements”

and “reverse difference statements”, and

adds preconditions that must be present in

both the current graph and the difference

statements before the desired version can be

derived. This can be used as a type of

version management or locking. RDFSync

(Tummarello, Morbidoni et al. 2007)

provides an algorithm to synchronise locally

held RDF graphs with updates to linked

RDF datasets across a network, but although

updates are preserved there is no access to

previous versions. Evolution patterns are

used by (Soren Auer and Herre 2005) to

represent changes in ontologies. Here types

of changes that can occur in a RDF graph

are defined and applied to ontology

evolution by the specification of graph

patterns representing the change. Graph

patterns are graphs where variables appear

in place of URIs. This concept is taken

further in the EvoPat system (Christoph

RieB, Norman Heino et al.) where evolution

patterns are applied as a form of „software

refactoring‟. Evolution patterns can be basic,

accommodating atomic change, or

compound, where atomic changes or other

compound evolution patterns are sequenced

to represent complex changes in ontology. A

basic evolution pattern is composed of a

SPARQL select query and a SPARQL

update query (this uses a modified SPARQL

query processor). These are applied

according to a library of pre-defined

patterns. Another version model described

by (Ludwig, Kuster et al. 2008) uses an

extension to the Topic Maps data model

(ISO 2008) to potentially implement

versions in RDF. Topic Maps represent

topics (or subjects), attributes, and

associations as an entity-relationship model.

This model uses a structure called the

VersionInfo Object, or VIO, to record start

and end dates for a specific version of a

topic map object. The model is stated as

being applicable to RDF triples by grouping

triples into logical units and linking them to

a VIO, although no example or evaluation of

this technique is specified. Changesets (Talis

2011) is a resource-centric approach, and

uses RDF reification to describe changes to

a resource. A Changeset applies to a named

resource, and describes triples that are added

and removed in the updated resource. The

Changeset can also describe the reason for

the change. This is a powerful representation

but is complex, requiring a large number of

triples to represent a single change, and

would be correspondingly difficult to query.

The UK Government data developers

(Tennison 2010; HMGovernment 2011) use

named graphs to record a set of changes to a

group of resources. (Named graphs are

groups of triples that share a common

identifier). Each named graph links to what

it replaces. A set of changes is therefore a

Page 4

set of named graphs, and a dataset is the

result of an RDF merge of the individual

graphs. HTTP content negotiation has been

described by (Sompel, Sanderson et al.

2010) as a method to represent versioned

resources, where the default linkage is

always the current version. Previous

versions are timestamped and accessed by

specifying a time in the HTTP request, using

a timegate, which supports date-time content

negotiation.

Delta, SemVersion, and RDF Difference

models are aimed at managing change to

web ontologies or managing and reconciling

differences between RDF graphs, rather than

addressing the need to be able to reference

different versions of the same statements or

resources within the same RDF dataset.

RDFSync is able to handle updates to RDF

graphs and synchronise locally help graphs

across a network, but provides no capability

to store or retrieve previous versions of data.

The evolution patterns approach is again

aimed specifically at ontology evolution and

attempts to use patterns to interpret structure

and therefore define change. However, this

contradicts the inherent, semi-structured

nature of the RDF data model, and relies on

mathematical definitions of change. The

implementation of evolution patterns in the

EvoPat system provides a practical

implementation of evolution patterns and

claims to be relatively simple, but it relies

on a modified SPARQL query engine and a

pre-defined catalog of patterns, which could

easily be problematical if this was not

applicable to a particular domain. The model

described by (Ludwig, Kuster et al. 2008)

attempts to provide a method for versioning

resources, by linking logical units of triples

to VIOs. In this case, the suggestion is that

the VIO would contain start and end dates

relevant to the statements in the referenced

logical unit, in effect extending the graph to

incorporate versioning objects. However, no

implementation is specified, and it is not

clear how alternatives (that is versions

where the representations are not necessarily

time dependent) would be handled. It also

organises VIOs according to a sequence, the

organisation of which is not specified.

ChangeSets focus on versioning at the

resource level, but achieves this by

recording different graph configurations

representing the resource‟s properties for a

given version, and does not provide direct

access or linkage to previous versions of a

resource. Also the technique of this

approach and that of RDF Difference

Models, that of using collections of triples to

represent changes in particular graphs, is

verbose, leading to more statements being

added to the graph than the triples being

described. The named graphs technique used

by UK Government data developers

versions at the graph level, and even at the

dataset level, and has no capability to handle

resource-level versions. This means that

current RDF graphs about a particular study

area are derived by merges, and direct

linkage to previous/other versions is not

possible. The model described by (Sompel,

Sanderson et al. 2010) versions at the

resource level, and has the advantage that

the default URI is always the latest version.

However, this would be problematical if

linkage was required to a non-default

version. Also, this model only distinguishes

versions using date-time values, and would

therefore not handle versions not

distinguished by time properties. To our

knowledge no model can adequately

represent versions at the resource level, and

provide direct linkage or access to versions

other than the latest version, whilst retaining

the inherent simplicity of the RDF data

model.

3. Versioning administrative

geographic data

Page 5

The data used of the basis of our model were

OS UK Administrative Geography data

containing information resources describing

administrative units (such as boroughs,

regions, and districts) and their associated

properties (such as areas, identification

numbers, and topological relationships to

other administrative units). Consequently,

our model aimed to be applicable to these

data and also fulfill our objectives in

versioning resources. These objectives were

as follows:

 The data should provide easy access for

consumers who are only interested in the

latest or most recent version of a

resource.

 Previous versions of resources can be

easily accessed and queried using

standard SPARQL queries.

 Non-information resources can be

incorporated into the model if required

and similarly accessed and queried

To achieve these objectives we intended to

devise an appropriate model using existing

rdf elements defined by (W3C 2004) and

based on the example dataset. Our sample

data contained two versions of a RDF

dataset, the most recent data containing

resources with newly minted URIs.

There are several mechanisms and features

within RDF and RDF Schema (RDFS (W3C

2004), the specification of the classes and

properties of RDF) that offer the potential to

model resource-level versions in

administrative geography data, and provide

the features of linkage to default or

alternative versions that may or may not be

time dependant. The following were

considered.

Inferencing

RDFS allows inferencing based on defined

properties such as subClassOf and

subPropertyOf . At the simplest level, this

provides a mechanism to create a version

hierarchy based on inheritance, where new

versions of an item are defined using the

subClassOf (or „is_a‟) relationship.

Inferencing allows RDF to infer from the

subClassOf relationship that the resource is

a member of the superclass. For example, In

Ordnance Survey Administrative Geography

data, a Civil Parish is defined as a

subClassOf a Civil Administrative Area. It

can thus be inferred that the Civil Parish of

Chelmsley Wood is also a Civil

Administrative Area. This feature provides

type propagation, and could be used to

define a version hierarchy of RDFS classes.

It is also possible with some RDF

implementation environments to define

inferencing rules. This kind of inferencing

goes beyond the scope of the RDFS

inferencing capabilities, and allows the

definition of specific, text-based rules by

which implicit relationships can be inferred.

This could allow version-specific rules to

enhance a version hierarchy, such as

version_of, derivative_of, alternative_to

based on criteria derived from the

differences between versions of an

administrative unit.

Named graphs

Named graphs allow groups of triples to be

identified as belonging to a specified graph

within a larger RDF graph, and as described

in the previous section, have been employed

by (HMGovernment 2011) to version at the

graph and dataset level. This is achieved by

tagging the triples with an identifier that

specifies the named graph to which it is

associated, in effect making the triples

Page 6

“quads”. This means that a group of triples

could be coupled together as a named

version graph. The RDF query language,

called the SPARQL protocol and RDF query

language (SPARQL (W3C 2008)), has a

FROM NAMED clause which can query

named graphs.

RDF containers and collections

RDF containers and collection elements

provide the capability to represent

collections of resources as single entities,

and link to them forming new triples. This

means that it is possible to model

relationships between multiple versions of

data by defining appropriate RDF container

or collection classes. An RDF container

simply uses a blank node from which to link

resources that belong to that container. Of

particular interest here is the rdf:Alt

container, which is used to describe a list of

alternative values of a resource.

It is our contention that of these three

mechanisms, RDF containers and

collections provide the most appropriate

structures to represent versions. RDFS

inferencing provides a simple mechanism to

deduce versions, but does not provide any

version-specific relationships between

versioned resources. Rule-based inferencing,

on the other hand, is mainly aimed at getting

more meaning from existing relationships

between resources, and would require the

definition of specific conditions upon which

inferences could be made, which would not

be expressed within triples. Named graphs

disturb the inherent simplicity of the triple

by tagging each one with an identifier to

identify it with a particular graph, and would

also require some kind of logical naming

convention to facilitate querying. In

addition, relationships between versions

within the named graph would still need to

be defined, negating the need to name the

version graph. RDF containers and

collections, on the other hand, provide a

simple mechanism that integrates seamlessly

into an RDF graph without disturbing its

simplicity, and version-specific properties

can be defined within this structure.

Containers and collections also provide

flexibility in the mode of the representation.

For example, containers can be defined as

rdf:Alt, rdf:Bag, or rdf:Sequence. Rdf:Alt

denotes that the contained resources are

alternatives, rdf:Bag denotes that there is no

significance to the order in which the

contained resources are represented, and

rdf:Sequence denotes that the contained

resources are set in sequential order. (It

should be noted that there is no implicit

behaviour associated with any of these

containers, and that these conventions exist

to provide consistency in their use.)

Containers and collections may also be

nested. Further, the simplicity offered by the

use of containers and collections should be

reflected in the queries used in retrieving

version-specific properties. Also, this

simplicity could offer the possibility of take-

up by data consumers as its implementation

should be less complex than the methods

discussed earlier.

Information and non-information
resources

The type of resource being versioned,

specifically whether it is an information

resource or a non-information resource, has

an impact on how the resource is updated.

For information resources, a new URI can

be minted for the new version, preserving

the URI of the replaced version, which can

still be linked to. Alternatively the resource

can be updated and keep its existing URI,

the previous version being lost (destructive

update). Non-information resources usually

imply a finer granularity in the extent of the

change ((Tennison 2010) provides the

Page 7

example of school statistics where class

sizes, and staff change frequently) and so

require special provision. (Tennison 2010)

also concludes that timestamping individual

property versions and holding them in a

multi-value element becomes prohibitively

complex. We, therefore, have taken a

broader approach to modeling the versioning

of both information and non-information

resources to negate this complexity, with

some notable compromises. More

specifically, our approach does not explicitly

distinguish between information resources

and non-information resources. Rather, it

distinguished between versions where the

new version has a newly minted URI, and

versions where the new version retains the

existing URI.

Versioning resources where the
new version has a newly minted URI

The datasets used provided newly minted

URIs for the updated resources. According

to our criteria for versioning, the model must

provide easy linkage or access to the latest

version of the resource. In this case we used

an rdf:Alt container to represent versions of

a resource, and used Dublin Core metadata

(DCMI 2010) version properties to establish

version- specific properties. The use of the

rdf:Alt container to represent versioned

information resources within an RDF graph

is shown in Figure 1. The model shown

represents two versions of a resource

described in two separate RDF datasets

produced by the OS. The diagram uses the

following prefixes:

dcterms: http://purl.org/dc/terms/

admingeo:

http://www.ordnancesurvey.co.uk/ontology/

AdministrativeGeography/v2.0/Administrati

veGeography.rdf#

rdfs: http://www.w3.org/2000/01/rdf-

schema#

rdf: http://www.w3.org/1999/02/22-rdf-

syntax-ns#

The versioned resource has the URI

http://data.ordnancesurvey.co.uk/id/700000

0000010769, and the property rdfs:label

with the value of The London Borough of

Bexley. The property dcterms:hasVersion

links the versioned resource to the rdf:Alt

container, specifically a blank node defined

as type rdf:Alt. The property rdf:_1 of this

container specifies the alternate version for

the The London Borough of Bexley resource,

which has the URI

admingeo:osr7000000000010759. By the

convention defined by (W3C 2004), all

container members are identified by the

properties rdf:_1, rdf:_2, and so on, but the

significance of the ordering is defined by the

container type, as specified in the previous

section. Further versions would be

represented using such properties. The

property dcterms:isVersionOf gives the

reverse property, showing which resource

this resource is a version of. The versioned

resource is given the property

dcterms:isPartOf to show which

administrative authority this version was/is a

part of. In this example, it denotes that this

version of The London Borough of Bexley is

part of the Greater London authority which

has the URI

admingeo:osr7000000000041441.

Although in the example OS data used in

this work the alternative version of The

London Borough of Bexley is part of the

same Greater London authority, the model

allows for a version to be part of a different

administrative unit.

Page 8

Figure 1RDF graph showing the use of the

rdf:Alt container to represent two versions

of the resource called 'The London Borough

of Bexley'

It can be seen that date values have been

linked to each administrative unit resource

using the property dcterms:date. There is

currently little consistency or agreement on

the definition of date values that are

included in OS administrative data. The

values provided here represent the dates on

which the datasets were first assembled.

Boundary lines for administrative units are

typically released twice a year, although it

can be seen that there is seventeen months

between our two datasets. This is in part due

to the absence of a suitable mechanism to

represent versions.

Versioning resources where the
new version retains the existing URI

Although not present in our example data,

new versions which retain the URI of the

resource can be represented by the use of

nested rdf:Collection elements. Figure 2

shows such an example. The same prefixes

are used as in the previous example. The

figure shows of an rdf:Alt container being

used as the dcterms:hasVersion property of

the resource

(admingeo:7000000000010759), with a

nested rdf:Collection element as its first (in

this case only) property representing a multi-

value collection of properties and their

values.

Figure 2 RDF graph showing the use of the

rdf:Alt container with nested rdf:Collection

element to represent versioned properties of

a resource

For clarity, only a representative subset of

the properties of the resource is shown in the

diagram.

The property dcterms:hasVersion links to

the rdf:Alt container, which contains all the

resource‟s previous versions of its

properties. The versioned properties in this

example are represented by the rdf:_1

element. It can be seen that the non-

information properties dcterms:date and

admingeo:has Area are different versions

from the parent version. The parent

properties admingeo:hasAreaCode and

admingeo:hasUnitID are not present in the

version as these were newly added in the

parent. This highlights a restriction in the

model: there is no recording of any data to

Page 9

determine properties that have been added or

removed, nor is there data concerning how

or why the change occurred. The

representation does offer, however, simple

querying. An alternative model would be to

represent only those properties that exhibit

change in the versioned properties, but this

would make querying at best far more

complex (and possible impossible), although

the forthcoming SPARQL 1.1 (W3C 2011)

may mitigate this.

4. Implementation

To evaluate the version model we

implemented triplestores containing

versioned resources based on the models

described in the previous section. Two such

triplestores were implemented, one for

resources where the new version has a

newly minted URI, and one for resources

where the new version retains the URI of the

parent version. A record linkage algorithm

was developed to generate the version-

specific RDF links. The datasets to be

produced were formed by merging versions

from the two example datasets: the most

recent dataset (referred to henceforth as the

base dataset) comprised of UK

administrative geography data from

September 2009, and the second dataset

(henceforth referred to as the update dataset)

comprised of UK administrative geography

data from April 2008. As stated previously,

the date values refer to the dates on which

the datasets were first compiled, and will be

represented in the versioned resources by a

dcterms:Created property.

The algorithm followed these stages:

1. Iterate over the base dataset URIs and

identify resources of type

LondonBorough

2. Iterate over the update dataset URIs and

identify resources of type

LondonBorough

3. Create the appropriate mulit-value rdf

element (either rdf:Alt or rdf:Collection)

for each base dataset resource URI that

has a matching ID in the update dataset

URI.

4. Update the base dataset with the newly

created container.

The datasets were implemented in an

AllegroGraph (Franz 2009) triple store,

chosen for its strong Java and Python APIs

and the strength of its documentation. It also

has a triplestore browser that allows the

examination and verification of

implemented triplestores, which will be used

to show versioned resources in the versioned

datasets.

Figure 3 shows the resultant structure of a

versioned information resource in the

implemented dataset.

Figure 3 Screenshot of a versioned

resources with distinct URIs as viewed in

the triplestore browser

 Page
10

Figure 4 Screenshot of a versioned resource

where the URI is retained as viewed in the

triplestore browser

Although our example datasets comprised of

resources that had new URIs for the

different versions, as a proof of concept we

implemented the two datasets as versioned

resources that retained the same URI in both

versions, according to our model outlined in

section 3. In this case we attached the

properties and their values of the version to

the nested rdf:Collection element

representing the rdf:_1 property of the

hasVersion property of the parent version.

Figure 4 shows a versioned resource as

viewed in the triplestore browser. Some of

the properties have been omitted for clarity.

It can be seen that the hasArea and Created

properties are different than in the parent

version, but the type (LondonBorough) and

hasCensusCode vales are duplicated,

illustrating the limitation of the model.

Potential to scale

The sample datasets used for the

implementation were small by semantic web

standards. To provide a guide as to how our

model would scale we timed the

implementation of the two triplestores and

measures their sizes before and after the

merges.

Table 1 shows the results we obtained. The

merge times of over an hour show that the

implementation would get considerably time

consuming in datasets containing millions of

triples, although this could be mitigated by

more regular and/or phased updates. Also,

the update where the new versions retain the

existing URI doubles the size of the store,

which might be a problem with large

datasets.

Table 1 Merge times for combining the two

datasets into one dataset containing

versioned resources

Update type Base size

(triples)

Resources

to update

Merged

size

(triples)

Merge

time

(secs)

URIs

distinct in

both

versions

150k 11,761 207k 4017.94

URI

retained by

both

versions

150k 11,761 325k 4043.35

Querying data in the versioned

datasets

Querying the dataset demonstrates some of

the proposed benefits of the model. Firstly,

because the model uses standard RDF

containers, the implemented data could be

queried using standard SPARQL queries.

Secondly, version-related properties can be

retrieved along with other properties,

meaning that version-specific predicates

need not necessarily be defined in the query.

Thirdly, because the inherent simplicity of

the data structure imposed by the RDF triple

has not been disturbed, version-specific

attributes can be retrieved by matching

simple graph patterns.

 Page
11

Querying the dataset in which versions

have distinct URIs

For example, the query below retrieves all

the properties and their values for the

resource with the URI

http://data.ordnancesurvey.co.uk/id/700000

0000041441 :

SELECT ?x ?y

WHERE

{<http://data.ordnancesurvey.co.uk/id/70

00000000041441> ?x ?y};

In this example the variable ?x retrieves all

properties including the hasVersion,

isVersionOf, and isPartOf properties if

present. These can in turn be queried using a

similarly simple query. For example, the

following query retrieves the version of a

resource and its parent version (prefixes are

as previously defined):

SELECT ?x ?y

WHERE {?x dcterms:isVersionOf ?y};

Here the variable ?x retrieves the version,

and the variable ?y retrieves the parent

version. The exception is when querying the

hasVersion property, which must access the

version of the resource via the container,

which is a blank node. This query is shown

in the following example:

SELECT ?y ?z

WHERE {?y dcterms:hasVersion ?x.?x

rdf:_1 ?z};

This query retrieves the URIs of a versioned

resource, and its first version, represented by

the variables ?y and ?z respectively. The

variable ?x represents the blank node of the

container, and the graph pattern matches two

triples, delineated by a period (?y

dcterms:hasVersion ?x and ?x rdf:_1 ?z).

Replacing the rdf:_1 value with a variable

would retrieve all versions of the resource.

Querying the dataset in which new

versions retain the URI

Querying this data is slightly more

complicated due to the nested rdf:Collection

element. The following query retrieves the

first version (denoted by the rdf:_1 property)

for a resource:

Prefix adgeo:
<http://www.ordnancesurvey.co.uk/ontolo
gy/AdministrativeGeography/v2.0/Admini
strativeGeography.rdf#>
SELECT ?p ?n WHERE
{ adgeo:7000000000010759
<http://purl.org/dc/terms/hasVersion>
?node_variable_1 .
 ?node_variable_1 rdf:_1
?node_variable_2 .
 ?node_variable_2 ?p ?n . }

The implementation demonstrates that the

model is practical and offers the potential to

scale. The simplicity of the structure means

that a simple pattern-based algorithm can be

used to merge versions, and the simplicity

evident in the queries should impact

minimally on performance. It could be

argued that the use of blank nodes in the

rdf:Alt and rdf:Collection containers

introduces a degree of vagueness or

indirection into the graph as blank nodes

have no URI and therefore cannot be

directly linked to. It is also claimed by

(Bizer, Cyganiak et al. 2008) that the use of

blank nodes hinders the merging of data

from different sources. (Bizer, Cyganiak et

al. 2008) also discourages the use of

containers (presumably because they utilize

blank nodes), and suggests using multiple

triples with the same predicate instead. In

 Page
12

the case of versions where each version has

its own URI, this would mean omitting the

blank node from the model and having

multiple hasVersion links between the

default version (in our case the most recent)

and its versions. In the case where versions

retain the URI of the parent, the

rdf:Collection element‟s blank node would

need to be retained. We argue that our

model retains the semantics of the container

that defines the versions as alternatives to

the linked resource, and reduces complexity

in that the default version will have only one

hasVersion property. Also, the use of multi-

value elements enables the implementation

of nested collections, providing the

mechanism to version collectively the

properties of a resource.

We maintain that the versioning

mechanisms described offer the facility to

version resources for small to medium

datasets, and retain the inherent simplicity

imposed by the RDF data model, by making

certain compromises. These are:

 Data redundancy, as in the

versioning of resources which retain

the existing URI of the previous

version.

 An absence of information relating

to the nature of changes to a

resource.

 The use of blank nodes which may

impede the data‟s suitability to be

merged with other datasets.

5. Conclusions
In this paper we have given a brief

background to RDF, and discussed some of

the possible methods which may be adopted

for the purposes of versioning RDF at the

resource level in administrative geography

data. We have described a versioning model

based on RDF containers and collection

elements that addresses a specific issue that

has arisen in the RDF representation of

administrative geographic data, that is, the

requirement of a linkage to a default version

of an administrative unit, and logical and

easy access to previous or alternative

versions of that unit. The proposed model

utilises standard RDF container and

collection elements in its structure, and

exploits industry standard Dublin Core

metadata for its version-specific properties,

negating the need to mint new properties

specific to versioning. The model represents

versions without interfering with the

simplicity of the graph structure imposed by

the RDF triple, and this simplicity is evident

in the queries, which are able to utilise

standard SPARQL syntax and retrieve

version-specific properties by matching

simple graph patterns. The evaluation

establishes that the model is practical and

relatively simple to implement, but that

scaling might be problematical in larger

datasets. For this reason, we would only

recommend our method for versioning small

to medium size datasets with update

frequencies of at least six months. The

model is also potentially applicable to two

issues related to versioning, that of variants

and ambiguity. Variants differ from versions

in that rather than being an updated

representation of a resource they are a

different representation of a current resource

that may or may not necessarily be

distinguished by time. For example a

resource may have both administrative and

financial representations. Ambiguity applies

to resources that are physically distinct but

are commonly identified by the same name.

For example, there are two places in

Hampshire called Hook. Someone searching

for Hook on the internet would retrieve

URIs for both places with no distinction

between the two. Both these scenarios will

be investigated in future work.

References

 Page
13

Berners-Lee, T. and D. Connolly. (2001).

"Delta: an ontology for the

distribution of differences between

RDF graphs." Retrieved 3/11/2009,

from

http://www.w3.org/DesignIssues/Dif

f.

Bizer, C., R. Cyganiak, et al. (2008). "How

to Publish Linked Data on the Web."

from http://www4.wiwiss.fu-

berlin.de/bizer/pub/LinkedDataTutor

ial/.

Christoph RieB, Norman Heino, et al.

"EvoPat - Pattern-Based Evolution

and Refactoring of RDF Knowledge

Bases." Retrieved 7th July, 2011,

from

http://svn.aksw.org/papers/2010/ISW

C_Evolution/public.pdf.

DCMI. (2010). "The Dublin Core Metadata

Initiative." Retrieved 26th April,

2010, from http://dublincore.org/.

deVos, A. (2002). "RDF Difference

Models." from

http://www.langdale.com.au/CIMX

ML/DifferenceModelsR05.pdf.

Franz. (2009). "AllegroGraph RDFStore."

Retrieved 3/11/2009, from

http://www.franz.com/agraph/allegro

graph/.

HMGovernment. (2011). "data.gov.uk."

Retrieved April 18, 2011, from

http://data.gov.uk/.

ISO. (2008). "Information Technology -

Topic Maps - Part 2: Data Model "

Retrieved 3/11/2009, from

http://www.isotopicmaps.org/sam/.

Ludwig, C., M. W. Kuster, et al. (2008).

Versioning in Distributed Semantic

Registries. iiWAS2008: 493-499.

Sompel, H. V. d., R. Sanderson, et al.

(2010). An HTTP-Based Versioning

Mechanism for Linked Data.

LDOW2010.

Soren Auer and H. Herre. (2005). "A

Versioning and Evolution

Framework for RDF Knowledge

Bases." Retrieved 7th July, 2011,

from http://uni-

leipzig.academia.edu/S%C3%B6ren

Auer/Papers/242787/A_Versioning_

and_Evolution_Framework_for_Rdf

_Knowledge_Bases.

Talis. (2011). "Changesets." Retrieved

April 25th, 2011, from

http://n2.talis.com/wiki/Changesets.

Tennison, J. (2010, 27-02-2010).

"Versioning (UK Government)

Linked Data." Retrieved 07-07-

2011, from

http://www.jenitennison.com/blog/no

de/141.

Tummarello, G., C. Morbidoni, et al. (2007).

RDFSync: efficient remote

synchronization of RDF models. 6th

International and 2nd Asian

Semantic Web Conference

Volkel, M. (2005). "SemVersion –

Versioning RDF and Ontologies."

Retrieved 3/11/2009, from

http://semversion.ontoware.org/kweb

d233a.pdf.

W3C. (2004). "RDF Vocabulary Description

Language 1.0: RDF Schema."

Retrieved 3/11/2009, from

http://www.w3.org/TR/rdf-schema/.

W3C. (2004). "RDF/XML Syntax

Specification (Revised)." Retrieved

3/11/2009, from

http://www.w3.org/TR/rdf-syntax-

grammar/.

W3C. (2008). "SPARQL Query Language

for RDF." Retrieved 3/11/2009,

from http://www.w3.org/TR/rdf-

sparql-query/.

W3C. (2011). "SPARQL 1.1 Query

http://www.w3.org/DesignIssues/Diff
http://www.w3.org/DesignIssues/Diff
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://svn.aksw.org/papers/2010/ISWC_Evolution/public.pdf
http://svn.aksw.org/papers/2010/ISWC_Evolution/public.pdf
http://dublincore.org/
http://www.langdale.com.au/CIMXML/DifferenceModelsR05.pdf
http://www.langdale.com.au/CIMXML/DifferenceModelsR05.pdf
http://www.franz.com/agraph/allegrograph/
http://www.franz.com/agraph/allegrograph/
http://data.gov.uk/
http://www.isotopicmaps.org/sam/
http://uni-leipzig.academia.edu/S%C3%B6renAuer/Papers/242787/A_Versioning_and_Evolution_Framework_for_Rdf_Knowledge_Bases
http://uni-leipzig.academia.edu/S%C3%B6renAuer/Papers/242787/A_Versioning_and_Evolution_Framework_for_Rdf_Knowledge_Bases
http://uni-leipzig.academia.edu/S%C3%B6renAuer/Papers/242787/A_Versioning_and_Evolution_Framework_for_Rdf_Knowledge_Bases
http://uni-leipzig.academia.edu/S%C3%B6renAuer/Papers/242787/A_Versioning_and_Evolution_Framework_for_Rdf_Knowledge_Bases
http://uni-leipzig.academia.edu/S%C3%B6renAuer/Papers/242787/A_Versioning_and_Evolution_Framework_for_Rdf_Knowledge_Bases
http://n2.talis.com/wiki/Changesets
http://www.jenitennison.com/blog/node/141
http://www.jenitennison.com/blog/node/141
http://semversion.ontoware.org/kwebd233a.pdf
http://semversion.ontoware.org/kwebd233a.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

 Page
14

Language." Retrieved August 9th,

2011, from

http://www.w3.org/TR/sparql11-

query/.

 About the authors

Alex Lohfink is a lecturer at the University

of Glamorgan, and gained a PhD there in

December 2008. His current research

interests are the semantic web and spatio-

temporal databases.

Duncan McPhee is a senior lecturer at the

University of Glamorgan. His research

interests are in computer-based learning,

databases, data mining, and the semantic

web.

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

