

Molecular phylogeny of the softshell turtle genus *Nilssonia* revisited, with first records of *N. formosa* for China and wild-living *N. nigricans* for Bangladesh

Nicole Liebing¹, Peter Praschag², Rupali Gosh³, Karthikeyan Vasudevan⁴, S.M.A. Rashid⁵, Ding-Qi Rao⁶, Heiko Stuckas¹ & Uwe Fritz^{1,*}

- Museum of Zoology (Museum f
 ür Tierkunde), Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany
- ² Am Katzelbach 98, 8054 Graz, Austria
- ³ Shant Kamal Kunj, 1, Shakti Colony, Rajkot 360001, Gujarat, India
- ⁴ Wildlife Institute of India, P.O. Box 18, Dehradun, Uttarakhand, India
- ⁵ House # 545, Road # 11, Baitul Aman Housing Society, Adabor, Dhaka-1207, Bangladesh
- ⁶ Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, P.R. China
- * Corresponding author: uwe.fritz(at)senckenberg.de

Accepted on June 05, 2012.

Published online at www.vertebrate-zoology.de on July 06, 2012.

> Abstract

Based on 2354 bp of mitochondrial DNA (12S rRNA, ND4, cyt *b*) and 2573 bp of nuclear DNA (C-mos, ODC, R35), we re-examine the phylogenetic relationships of *Nilssonia* species. Individual and combined analyses of mitochondrial and nuclear DNA using Maximum Likelihood and Bayesian approaches confirm the monophyly of the genus. While mitochondrial data alone could not resolve the phylogenetic position of *N. formosa*, nuclear data support a sister group relationship of *N. formosa* and the remaining *Nilssonia* species. Combined analyses of mitochondrial and nuclear DNA suggest the following branching pattern, with *N. formosa* as the sister taxon of the remaining species: *N. formosa* + ((*N. gangetica* + *N. leithii*) + (*N. hurum* + *N. nigricans*)). Among the samples we studied is the first record of *N. formosa* for Yunnan, China, and the first record of wild-living *N. nigricans* for Bangladesh. In *N. gangetica*, each of the studied major river basins harbours a genetically distinct population, suggesting that at least three distinct management units should be distinguished: (1) Brahmaputra River; (2) Indus and Ganges Rivers plus Ganges Delta; and (3) Mahanadi River.

> Key words

Reptilia, Testudines, Trionychidae, Asia, Bangladesh, China, India, Myanmar, Pakistan.

Introduction

Nilssonia GRAY, 1872 is a little known genus of South Asian and Southeast Asian softshell turtles. Until a few years ago Nilssonia was thought to be monotypic, with its only species N. formosa of Myanmar (MEYLAN, 1987; ERNST & BARBOUR, 1989; ERNST et al., 2000). However, based on molecular and morphological evidence ENGSTROM *et al.* (2004) and PRASCHAG *et al.* (2007) concluded that *N. formosa* is so closely allied to the four species of the South Asian genus *Aspideretes* HAY, 1904 that all species should be

placed in the same taxon. Within the framework of a rank-free phylogenetic nomenclature, ENGSTROM et al. (2004) recommended to abandon the usage of generic names and to treat all five species only as members of the clade Aspideretini. By contrast, PRASCHAG et al. (2007) synonymized Aspideretes with Nilssonia, resulting in a polytypic genus Nilssonia with the five species N. formosa (GRAY, 1869), N. gangetica (CUVIER, 1825), N. hurum (GRAY, 1830), N. leithii (GRAY, 1872) and N. nigricans (ANDERSON, 1875). All of these species are morphologically similar, largesized softshell turtles, with maximum shell lengths of 60 to 94 cm. Hatchlings and juveniles are characterized by conspicuous large ocelli on their back (ERNST & BARBOUR, 1989; ERNST et al., 2000). Yet, RHODIN et al. (2010) were reluctant to accept an expanded genus Nilssonia, and only recently VAN DIJK et al. (2011) conceded that this classification is now widely accepted in the herpetological community. Nevertheless, especially palaeontologists continue to treat Aspideretes as a distinct genus (e.g., JOYCE & LYSON, 2010; VITEK, 2012).

The molecular data set of ENGSTROM et al. (2004) consisted of the mitochondrial cyt b and ND4 genes plus the intron 1 of the nuclear R35 gene, and these authors combined their molecular data for phylogenetic analyses with morphological evidence from MEY-LAN (1987). However, ENGSTROM et al. (2004) studied only three species (N. formosa, N. gangetica, N. hu*rum*) represented by one individual each, and the only morphological character separating N. formosa from the former Aspideretes species is the lower number of neural plates in the bony carapace, resulting from the fusion of the first and second neural plate (MEY-LAN, 1987). Using a comprehensive sampling of all *Nilssonia* species and the mitochondrial cyt b gene as a marker, PRASCHAG et al. (2007) conducted a phylogeographic study. Like ENGSTROM et al. (2004), PRA-SCHAG et al. (2007) found the monophyly of the studied Nilssonia species well-supported. However, while the phylogenetic relationships of N. gangetica, N. hurum, N. leithii and N. nigricans were well-resolved, the placement of N. formosa remained problematic (PRASCHAG et al., 2007).

To re-examine the phylogenetic position of *N. formosa*, we supplement the data set of PRASCHAG *et al.* (2007) with sequence data of the mitochondrial 12S rRNA and ND4 genes (the latter plus adjacent DNA coding for tRNAs), the nuclear C-mos and ODC genes, and the intron 1 of the nuclear R35 gene and analyse this expanded data set using Maximum Likelihood and Bayesian methods. We include in our analyses additional samples of *N. gangetica*, *N. hurum* and *N. nigricans* and replace the GenBank sequence of *N. formosa* used by PRASCHAG *et al.* (2007) by fresh material of two individuals of this species. One of these turtles was caught near Shuangbai, Yunnan, China, and constitutes the first record of *N. formosa* for the northern catchment basin of the Mekong. Among our new material of *N. gangetica* are for the first time samples from the Mahanadi River system, India. Furthermore, we include sequences of two *Nilssonia* specimens of questionable taxonomic identity. One of these softshell turtles is an aberrant pale-coloured *Nilssonia* from Manikchhari near Chittagong, Bangladesh. The other is a large shell of a freshly killed large turtle from Sreemangal (Shreemongal), Sylhet District, Bangladesh.

Materials and methods

Sampling and gene selection

Fifty-three Nilssonia samples were studied, representing the five currently recognized species Nilssonia formosa, N. gangetica, N. hurum, N. leithii and N. nigricans (see Appendix). Three mitochondrial genes were sequenced that have previously been shown to be useful for assessing the phylogenetic relationships of terminal chelonian taxa (e.g., LE et al., 2006; FRITZ et al., 2010, 2012a; VARGAS-RAMÍREZ et al., 2010; WIENS et al., 2010; PRASCHAG et al., 2011), viz. the partial 12S ribosomal RNA (12S rRNA) gene, the partial NADH dehydrogenase subunit 4 (ND4) gene, and the cytochrome b (cvt b) gene. The DNA sequence containing the partial ND4 gene embraced also the flanking DNA coding for tRNA-His, tRNA-Ser and tRNA-Leu. The DNA sequence containing the cyt b gene included also approximately 20 bp of the adjacent DNA coding for tRNA-Thr. Twenty-nine of the cyt b sequences originated from a previous study using the same samples (PRASCHAG et al., 2007). In addition, up to three nuclear loci were generated, viz. the partial genes coding for the oocyte maturation factor Mos (C-mos) and for ornithine decarboxylase (ODC), and the intron 1 of the RNA fingerprint protein 35 (R35) gene. These loci are increasingly applied for phylogenetic investigations of turtles and tortoises (e.g., GEORGES et al., 1998; FUJITA et al., 2004; VARGAS-RAMÍREZ et al., 2010; WIENS et al., 2010; FRITZ et al., 2011a, 2012a; KINDLER et al., 2012). While all mitochondrial data could be generated for most samples, the nuclear loci could be sequenced only for a subset owing to bad DNA quality or small sample size (see Appendix). Remaining samples and DNA are stored at -80° C in the tissue collection of the Museum of Zoology, Dresden.

Primer Direction Gene		Gene	Primer sequence (5' to 3')	Reference
L1091	Forward	12Sr RNA	AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT	Kocher <i>et al</i> . (1989)
H1478	Reverse	12Sr RNA	TGACTGCAGAGGGTGACGGGCGGTGTGT	Kocher <i>et al</i> . (1989)
ND4 672	Forward	ND4 + tRNAs	TGACTACCAAAAGCTCATGTAGAAGC	Engstrom et al. (2004)
H-Leu	Reverse	ND4 + tRNAs	ATTACTTTACTTGGATTTGCACCA	Stuart & Parham (2004)
CytbG	Forward	cyt b	AACCATCGTTGTWATCAACTAC	Spinks et al. (2004)
mt-a-neu3	Forward	cyt b	CTCCCAGCCCCATCCAACATCTCHGCHTGATGAAACTTCG	Praschag <i>et al</i> . (2007)
mt-c-For2	Forward	cyt b	TGAGGVCARATATCATTYTGAG	Fritz <i>et al</i> . (2006)
mt-E-Rev2	Reverse	cyt b	GCRAATARRAAGTATCATTCTGG	Fritz <i>et al</i> . (2006)
mt-f-na3	Reverse	cyt b	AGGGTGGAGTCTTCAGTTTTTGGTTTACAAGACCAATG	Praschag <i>et al</i> . (2007)
Cmos1	Forward	C-mos	GCCTGGTGCTCCATCGACTGGGATCA	Le et al. (2006)
Cmos3	Reverse	C-mos	GTAGATGTCTGCTTTGGGGGGTGA	Le et al. (2006)
Nilssonia_Cmos_Seq_F*	Forward	C-mos	CCTGGGCACCATAATCAT	This study
Nilssonia_Cmos_Seq_R*	Reverse	C-mos	TATGCTTAGGGGTTCTCT	This study
Chicken primer 1	Forward	ODC	GACTCCAAAGCAGTTTGTCGTCTCAGTGT	Friesen <i>et al</i> . (1999)
Nilssonia_ODC_Seq_F*	Forward	ODC	GAAGCTATGGTCAGTTACGT	This study
Chicken primer 2	Reverse	ODC	TCTTCAGAGCCAGGGAAGCCACCAAT	Friesen <i>et al</i> . (1999)
R35Ex1	Forward	R35	ACGATTCTCGCTGATTCTTGC	Fujita <i>et al</i> . (2004)
R35Ex2	Reverse	R35	GCAGAAAACTGAATGTCTCAAAGG	Fujita <i>et al</i> . (2004)

Table 1. Primers used for PCR and sequencing.

* Newly designed sequencing primer

Laboratory procedures

Total genomic DNA was extracted using either the DTAB method (GUSTINCICH *et al.*, 1991) or the innu-PREP DNA Mini Kit (Analytik Jena, Germany).

The partial 12S rRNA gene was amplified using the primers L1091 and H1478; for the DNA fragment comprising the partial ND4 gene plus flanking DNA coding for tRNAs, the primers ND4 672 and H-Leu were used. The cyt *b* gene was routinely amplified using the primer combination CytbG + mt-f-na3; for challenging samples, the primers mt-a-neu3 + mt-fna3, mt-a-neu3 + mt-E-Rev2, and mt-c-For2 + mt-fna3 were used. For amplifying the nuclear genes, the following primers were used: Cmos1 + Cmos3 for the C-mos gene, the chicken primers of FRIESEN *et al.* (1999) for ODC, and the primers R35Ex1 + R35Ex2 for the intron 1 of the R35 gene (Table 1).

PCR was carried out in a total volume of 25 μ l containing 0.2 μ l *Taq* polymerase (5 u/ μ l; Bioron, Ludwigshafen, Germany), 1x buffer as recommended by the supplier, 0.4 μ M of each primer, and 0.2 mM of each dNTP (Fermentas, St. Leon-Rot, Germany). Alternatively, for challenging samples a total volume of 20 μ l containing 0.2 μ l GoTaq® Flexi DNA Polymerase (5 u/ μ l; Promega, Madison, WI, USA) was used according to the recommendations by the supplier. For cycling protocols, see Table 2. PCR products were purified using the ExoSAP-IT enzymatic cleanup (USB Europe GmbH, Staufen, Germany) and sequenced on an ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Cycle sequencing reactions were purified by ethanol/sodium acetate precipitation or by using Sephadex (GE Healthcare, München, Germany). For sequencing the cyt *b* gene, the internal primers mt-c-For2 and mt-E-Rev2 were used; for all other genes, the same primers as for PCR. However, for sequencing C-mos and ODC of a few challenging samples, newly designed sequencing primers were applied (Table 1). For Gen-Bank accession numbers of newly generated sequences, see Appendix.

Alignment, partitioning and data analyses

DNA sequences were aligned in BIOEDIT 7.0.5.2 (HALL, 1999) with outgroup sequences downloaded from GenBank (*Amyda cartilaginea*, *Dogania subplana*, *Palea steindachneri*, and *Pelodiscus maackii*). These species represent the successive sister taxa of *Nilssonia* (ENGSTROM *et al.*, 2004). Since not all outgroup sequences were available from GenBank, the missing data were generated as described above using samples from the tissue collection of the Museum of Zoology, Senckenberg Dresden (see Appendix). Furthermore, protein-coding sequences were translated in amino acids and uncorrected *p* distances were calcu-

Gene Primers		Thermocycling conditions								
		ID	C	D	A	E	FE			
12S rRNA	L1091, H1478	94°C, 3 min	30	94°C, 30 s	50°C, 30 s	72°C, 30 s	72°C, 10 min			
ND4 + tRNAs	ND4 672, H-Leu	94°C, 5 min	35	94°C, 45 s	53°C, 30 s	72°C, 60 s	72°C, 10 min			
cyt b	CytbG, mt-f-na3	95°C, 5 min	35	95°C, 45 s	56°C, 30 s	72°C, 60 s	72°C, 8 min			
cyt b	mt-a-neu3, mt-f-na3	95°C, 5 min	35	95°C, 30 s	56°C, 30 s	72°C, 60 s	72°C, 8 min			
cyt b	mt-a-neu3, mt-E-Rev2	95°C, 5 min	35	95°C, 30 s	56°C, 30 s	72°C, 60 s	72°C, 8 min			
cyt b	mt-c-For2, mt-f-na3	95°C, 5 min	35	95°C, 30 s	62°C, 30 s	72°C, 60 s	72°C, 8 min			
C-mos	Cmos1, Cmos3	94°C, 5 min	30	94°C, 30 s	58°C, 30 s	72°C, 60 s	72°C, 8 min			
ODC	chicken primers of FRIESEN <i>et al.</i> (1999)	94°C, 5 min	35	94°C, 30 s	62°C, 45 s	72°C, 60 s	72°C, 10 min			
R35	R35Ex1, R35Ex2	94°C, 5 min	35	94°C, 30 s	62°C, 45 s	72°C, 60 s	72°C, 8 min			

Table 2. PCR	protocols	for	mitochondrial	and	nuclear	genes.

Abbreviations: ID = initial denaturing, C = number of cycles, D = denaturing, A = annealing, E = extension, FE = final extension.

lated for cyt *b* sequences using MEGA 4.0.2 (TAMURA *et al.*, 2007).

Aligned sequences of the mitochondrial 12S rRNA gene were of 394 bp length (including gaps), the DNA fragment embracing the partial ND4 gene and adjacent DNA coding for tRNAs was 893 bp long (including gaps), and cyt *b* sequences had 1067 bp. The nuclear C-mos sequences were 590 bp long, and the R35 sequences, 1045 bp (including gaps). The ODC sequences comprised a hardly readable simple-sequence-repeat (SSR) region of 80 bp length, which could not be sequenced for all samples. This region was excluded from further analyses, resulting in a fragment length of 938 bp used for phylogenetic calculations.

Three data sets were used for inferring phylogenetic relationships: (i) the concatenated mitochondrial sequence data of 53 *Nilssonia* samples, corresponding to an alignment of 2354 bp, including gaps; (ii) the concatenated nuclear sequence data of 40 *Nilssonia* samples, corresponding to an alignment of 2573 bp, including gaps; and (iii) a supermatrix, in which the respective mitochondrial sequence data were merged with the nuclear data of those 40 samples, corresponding to an alignment of 4927 bp, again including gaps.

For each of these data sets, phylogenetic trees were calculated using the Maximum Likelihood approach as implemented in RAxML 7.0.3 (STAMATAKIS, 2006) and Bayesian Inference of phylogeny as implemented in MrBAYES 3.1.2 (RONQUIST & HUELSENBECK, 2003).

For RAxML analyses, the data sets were partitioned by gene and the GTR+G model was applied across all partitions. Five independent ML calculations were run using different starting conditions and the fast bootstrap algorithm to examine the robustness of the branching patterns by comparing the best-scored trees. Subsequently, 1000 non-parametric thorough bootstrap replicates were computed and plotted against the tree with the highest likelihood value. Analyses with MrBAYES were run using unpartitioned mitochondrial and nuclear data sets; the supermatrix was partitioned in mtDNA and nDNA. The best evolutionary model was established using the Akaike Information Criterion of MrMODELTEST 2.3 (POSADA & CRAN-DALL, 1998), resulting in the GTR+I+G model for the mtDNA data set and the HKY+G model for the nDNA data set. The chains of MrBAYES run for 107 generations, with every 100th generation sampled. For computing the final 50% majority rule consensus tree, a burn-in of $4 \ge 10^4$ was used.

Results

The phylogenetic trees obtained from the two methods were largely congruent for each data set (Figs 1A–C).

Fig. 1 \rightarrow **.** Phylogeny of *Nilssonia* species and allied softshell turtles as inferred by Maximum Likelihood analysis, based on (**A**) an alignment of 2354 bp of mitochondrial DNA, (**B**) an alignment of 2573 bp of nuclear DNA, and (**C**) a supermatrix consisting of the concatenated mitochondrial and nuclear DNA partitions (4927 bp in total). Sample codes at branches are MTD T numbers and refer to the Appendix. Numbers along branches are thorough bootstrap values > 50, except for short terminal branches where support is not shown. Wide branches are supported by posterior probabilities ≥ 0.99 (A, C) or ≥ 0.95 (B) in Bayesian analyses. Note that no nuclear data could be produced for the samples from the Indus River system. Placement of the shell from Sreemangal (Bangladesh, sample 6065) and the morphologically aberrant turtle from Manikchhari (Bangladesh, sample 8179) highlighted by arrows.

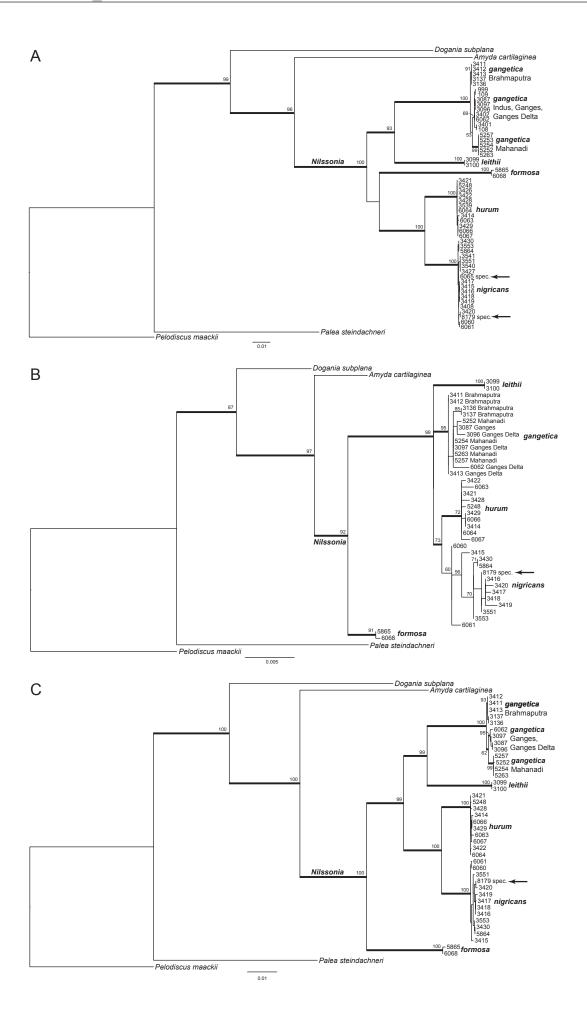


Fig. 2. (A) *Nilssonia formosa*, juvenile (pet trade, Yangon, Myanmar), photo: P. Praschag; (B) *N. gangetica* (Brahmaputra clade), subadult (Biswanath Ghat, Assam, India), photo: P. Praschag; (C) *N. gangetica* (Brahmaputra clade), adult (Nagsankar Temple, east of Tezpur, Assam, India), photo: P. Praschag; (D) *N. gangetica* (Mahanadi clade), adult (Mahanadi River, Narsinghpur, Odisha, India), photo: P. Praschag; (E) *N. hurum*, juvenile (Subarnarekha River, Sibirpur, Odisha, India), photo: P. Praschag; (F) *N. leithii*, subadult (Supa River, Karnataka, India), photo: K. Vasudevan; (G) *N. nigricans*, juvenile (Jia Bhoroli River, Assam, India), photo: P. Praschag; (H) *N. nigricans*, subadult (Biswanath Ghat, Assam, India), photo: P. Praschag; (I) *N. nigricans*, adult (Tripura Sundari Temple, Udaipur, Tripura, India), photo: P. Praschag; (J, K) *N. nigricans*, unusually pale-coloured subadult (Manikchhari near Chittagong, Bangladesh), photos: S.M.A. Rashid.

Nilssonia constituted always a well-supported monophyletic clade and *Amyda*, *Dogania* and *Palea* were its successive sister taxa. Based on mitochondrial sequences alone and mitochondrial sequences combined with nuclear data, every species within *Nilssonia* corresponded to a well-supported clade. Within *N. gangetica*, three weakly to well-supported clades were revealed. One of these clades comprised sequences of softshell turtles from the Brahmaputra River. Another clade corresponded to sequences from the Indus and Ganges Rivers and the Ganges Delta, and the third clade contained sequences from the Mahanadi River. These clades were not found using nuclear data alone.

Mitochondrial and combined analyses suggested a well-supported sister group relationship of N. gangetica + N. leithii and of N. hurum + N. nigricans, re-

spectively. Using nuclear data, the relationships within *Nilssonia* were poorly resolved, except that *N. formo-sa* constituted with high support the sister taxon of all other species. Also combined analyses of mitochondrial and nuclear sequences supported this placement of *N. formosa*. By contrast, the phylogenetic position of *N. formosa* was poorly resolved by mitochondrial data alone.

Due to small sample size or bad DNA quality, not all genes could be sequenced for all samples (see Appendix). Nevertheless, the phylogenetic analyses allowed an unambiguous taxonomic assignment of all samples. This is of particular interest for the two Bangladeshi samples of questionable taxonomic identity. Sequences of these two samples were consistently embedded among *N. nigricans*.

Using mitochondrial cyt *b* sequences, uncorrected *p* distances between *Nilssonia* species ranged on average from 4.74% to 9.97%; divergences among the three clades within *N. gangetica* ranged from 0.66% to 0.75% (Table 3).

Discussion

Our results based on three mitochondrial genes and three nuclear loci confirm with high support the monophyly of *Nilssonia* sensu lato (cf. MEYLAN, 1987; ENG-

Table 3. Mean uncorrected p distances (percentages) and their standard errors within and between Nilssonia species and the three
haplotype clades of N. gangetica, based on a 1067-bp-long alignment of the mitochondrial cytochrome b gene. Distances among
groups are given below the diagonal; on the diagonal within-group divergences in boldface. Clade A of N. gangetica corresponds to
turtles from the Brahmaputra River; clade B, to the Indus and Ganges Rivers and the Ganges Delta; and clade C, to the Mahanadi
River.

	formosa	gangetica (all)	gangetica A	gangetica B	gangetica C	hurum	leithii	nigricans
formosa	0.19±0.13							
gangetica (all)	9.46 ± 0.90	0.48 ± 0.14						
gangetica A	9.56 ± 0.91	—	0					
gangetica B	9.37 ± 0.88	—	0.70 ± 0.26	0.07 ± 0.05				
gangetica C	9.36 ± 0.88	—	0.75 ± 0.26	0.66 ± 0.24	0			
hurum	9.97±0.91	8.70 ± 0.82	8.63 ± 0.86	8.76 ± 0.85	8.67 ± 0.84	0.05 ± 0.05		
leithii	8.72 ± 0.91	7.44 ± 0.78	7.46 ± 0.84	7.40 ± 0.84	7.50 ± 0.83	8.37 ± 0.85	0	
nigricans	9.43 ± 0.92	8.27 ± 0.84	8.14 ± 0.85	8.29 ± 0.86	8.36 ± 0.86	4.74±0.61	7.94 ± 0.82	0.14 ± 0.07

STROM et al., 2004; PRASCHAG et al., 2007) and the previously suggested sister group relationship of N. gangetica + N. leithii and N. hurum + N. nigricans, respectively (PRASCHAG et al., 2007). Earlier studies using morphological (MEYLAN, 1987; VITEK, 2012) and molecular data (PRASCHAG et al., 2007) or combined analyses of morphological and molecular data (ENG-STROM et al., 2004) could not resolve the phylogenetic placement of N. formosa, even though the monophyly of the five species was unequivocal. Our analyses of nuclear data and the combined analyses of nuclear and mitochondrial data revealed now a well-supported sister group relationship of N. formosa and the remaining Nilssonia species, so that it could be argued that this supports the original classification by MEYLAN (1987) placing N. formosa into a distinct monotypic genus. However, in contrast to other chelonian species where pronounced morphological or phylogenetic gaps justify the usage of monotypic genera (FRITZ et al., 2011b), all five Nilssonia species are morphologically highly similar (PRASCHAG et al., 2007) and the degree of genetic distinctness of N. formosa resembles the divergences among the remaining four species (Fig. 1C; Table 3).

All Nilssonia species are characterized by conspicuous ocelli on their carapace, which disappear with increasing age (Fig. 2), and all species are largesized, reaching maximum shell lengths of 60 to 94 cm (ERNST & BARBOUR, 1989; ERNST et al., 2000). MEY-LAN's (1987) assignment of N. formosa to a monotypic genus was based on just one osteological character. In the bony carapace of N. formosa, a single neural plate is present between the first pair of pleurals, resulting from the fusion of neurals one and two, whereas the remaining four Nilssonia species have the two anteriormost neurals unfused. However, as PRASCHAG et al. (2007) pointed out, the character state in N. formosa should be regarded as an autapomorphy that does not contradict the inclusion of all five species in one and the same genus, and we argue that their well-supported monophyly together with their morphological similarity supports the inclusion of all five species in the same genus.

Previously, *N. formosa* was only known with certainty from Myanmar, with a questionable record for Thailand (FRITZ & HAVAŠ, 2007; VAN DIJK *et al.*, 2011). Our sample from Shuangbai (Yunnan), China, suggests that the species crossed the watershed between the Salween and Mekong Rivers and occurs also in Yunnan, China. Photos of a further specimen of *N. formosa* (filed in the Museum of Zoology, Senckenberg Dresden) caught in the Lancang River (Xishuangbanna, Yunnan), which is downstream called Mekong, support this.

Our data provide clear evidence that wild N. nigricans occur in Bangladesh. One of the studied Bangladeshi samples originated from the shell of a slaughtered turtle from Sreemangal (Sylhet District), and the other is from a morphologically aberrant pale turtle caught on a hook near Chittagong (Manikchhari; Figs 2J, K). Sequences generated from these samples clustered in all analyses with high support among N. nigricans (Fig. 1). This critically endangered species (VAN DIJK et al., 2011) was long thought to be extinct in the wild and assumed to survive only in an artificial pond of the Hazrat Sultan Bayazid Bostami Shrine in Nasirabad near Chittagong, Bangladesh (ANDERSON, 1875; ERNST & BARBOUR, 1989; ERNST et al., 2000). Only ten years ago PRASCHAG & GEMEL (2002) suggested that wild N. nigricans occur in Assam (India), and this was confirmed genetically by PRASCHAG et al. (2007). However, until now wild N. nigricans were not known from Bangladesh, so that our genetically identified samples are the first record for this country. Furthermore, the pale softshell turtle from Manikchhari suggests that coloration of N. nigricans is more variable than thought before (cf. Fig. 2).

With respect to *N. gangetica*, we discovered a clear association of distinct mitochondrial haplotypes with

distinct river basins. While the differentiation between the Indus-Ganges system and the Brahmaputra was already known (PRASCHAG et al., 2007), we included in our present study for the first time samples from the Mahanadi River. Also these softshell turtles correspond to a distinct haplotype clade (Fig. 1). This suggests that each major river basin harbours a genetically distinct population of N. gangetica, which should be treated as a distinct management unit. In analogy to the widely used barcoding approach (HEBERT et al., 2003), uncorrected p distances of the mitochondrial cyt b gene have repeatedly been used as a yardstick for assessing the taxonomic status of turtles and tortoises (e.g., SPINKS et al., 2004; VARGAS-RAMÍREZ et al., 2010; PRASCHAG et al., 2011; STUCKAS & FRITZ, 2011; FRITZ et al., 2012a, b; KINDLER et al., 2012). The average divergences among the five Nilssonia species (Table 3: 4.74-9.97%) are six to fifteen times larger than the differentiation among the three haplotype clades of N. gangetica (0.66-0.75%), and the latter values fall into the range as observed within other trionychid species (STUCKAS & FRITZ, 2011). This suggests that the genetic differentiation among different river basins represents indeed intraspecific variation within *N. gangetica* and that no cryptic species are involved. Nevertheless, considering that N. gangetica is an endangered species (VAN DIJK et al., 2011), the genetic distinctiveness of the populations in different river basins has to be taken into account when future conservation strategies are designed. In this context, it is of interest that ANNANDALE (1912) described a distinct subspecies from the Mahanadi system, Trionyx gangeticus mahanaddicus. It was later synonymized with N. gangetica (SMITH, 1931). If a taxonomic distinction for the management unit in the Mahanadi River should be desired, the name Nilssonia gangetica mahanaddica nov. comb. (ANNANDALE, 1912) were available for this population, whereas the name Nilssonia gangetica gangetica nov. comb. (CUVIER, 1825) would have to be used for the population in the Indus and Ganges systems.

Acknowledgements

Thanks for introducing Nicole Liebing to laboratory work go to Anja Rauh, Anke Müller and Christian Kehlmaier. Mario Vargas-Ramírez and Thomas Datzmann assisted with phylogenetic calculations. Suresh Das (Feni, Bangladesh) and Richard Gemel (Natural History Museum Vienna) provided samples or helped to collect samples. Furthermore, we thank the Mazar Committee and Farid Ahsan (University of Chittagong) for their hospitality in Chittagong.

References

- ANDERSON, J. (1875): Description of some new Asiatic mammals and Chelonia. – Annals and Magazine of Natural History (4), 16: 282–285.
- ANNANDALE, N. (1912): The aquatic Chelonia of the Mahanaddi and its tributaries. – Records of the Indian Museum, 7: 261–266.
- CUVIER, G.L.C.F.D. (1825): Recherches sur les Ossemens Fossiles, où l'on rétablit les caractères de plusieurs animaux dont les révolutions du globe ont détruit les espèces, 5 (2). Edition 2. – Dufour et d'Ocagne, Paris, 547 pp.
- ENGSTROM, T.N., SHAFFER, H.B. & MCCORD, W.P. (2004): Multiple data sets, high homoplasy, and phylogeny of softshell turtles (Testudines: Trionychidae). – Systematic Biology, 53: 693–710.
- ERNST, C.H. & BARBOUR, R.W. (1989): Turtles of the World. Smithsonian Institution Press, Washington, D.C., xii + 313 pp., 16 pls.
- ERNST, C.H., ALTENBURG, R.G.M. & BARBOUR, R.W. (2000): Turtles of the World. World Biodiversity Database, Version 1.2. – Biodiversity Center of ETI, Amsterdam, CD-ROM.
- FRIESEN, V.L., CONGDON, B.C., KIDD, M.G. & BIRT, T.P. (1999): Polymerase chain reaction (PCR) primers for the amplification of five nuclear introns in vertebrates. – Molecular Ecology, 8: 2147–2149.
- FRITZ, U. & HAVAŠ, P. (2007): Checklist of chelonians of the world. – Vertebrate Zoology, 57: 149–368.
- FRITZ, U., AUER, M., BERTOLERO, A., CHEYLAN, M., FATTIZZO, T., HUNDSDÖRFER, A.K., MARTIN SAMPAYO, M., PRETUS, J.L., ŠIROKÝ, P. & WINK, M. (2006): A rangewide phylogeography of Hermann's tortoise, *Testudo hermanni* (Reptilia: Testudines: Testudinidae): implications for taxonomy. – Zoologica Scripta, 35: 531–543.
- FRITZ, U., GONG, S., AUER, M., KUCHLING, G., SCHNEEWEISS, N. & HUNDSDÖRFER, A.K. (2010): The world's economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: *Pelodiscus*). – Organisms, Diversity & Evolution, 10: 227–242.
- FRITZ, U., BRANCH, W.R., HOFMEYR, M.D., MARAN, J., PROKOP, H., SCHLEICHER, A., ŠIROKÝ, P., STUCKAS, H., VARGAS-RAMÍREZ, M., VENCES, M. & HUNDSDÖRFER, A.K. (2011a): Molecular phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: *Pelusios* and *Pelomedusa*). – Zoologica Scripta, 40: 115–125.
- FRITZ, U., SCHMIDT, C. & ERNST, C.H. (2011b): Competing generic concepts for Blanding's, Pacific and European pond turtles (*Emydoidea*, *Actinemys* and *Emys*) – Which is best? – Zootaxa, **2791**: 41–53.
- FRITZ, U., STUCKAS, H., VARGAS-RAMÍREZ, M., HUNDSDÖRFER, A.K., MARAN, J. & PÄCKERT, M. (2012a): Molecular phylogeny of Central and South American slider turtles: implications for biogeography and systematics (Testudines: Emydidae: *Trachemys*). – Journal of Zoological Systematics and Evolutionary Research, **50**: 125–136.

- FRITZ, U., ALCALDE, L., VARGAS-RAMÍREZ, M., GOODE, E.V., FA-BIUS-TUROBLIN, D.U. & PRASCHAG, P. (2012b): Northern genetic richness and southern purity, but just one species in the *Chelonoidis chilensis* complex. – Zoologica Scripta, 41: 220–232.
- FUJITA, M.K., ENGSTROM, T.N., STARKEY, D.E. & SHAFFER, H.B. (2004): Turtle phylogeny: insights from a novel nuclear intron. – Molecular Phylogenetics and Evolution, 31: 1031– 1040.
- GEORGES, A., BIRREL, J., SAINT, K.M., MCCORD, W.P. & DONNEL-LAN, S.C. (1998): A phylogeny for side-necked turtles (Chelonia: Pleurodira) based on mitochondrial and nuclear gene sequence variation. – Biological Journal of the Linnean Society, 67: 213–246.
- GRAY, J.E. (1830): A Synopsis of the Species of the Class Reptilia. In: GRIFFITH, E. & PIDGEON, E., The Class Reptilia arranged by the Baron Cuvier, with specific descriptions. In: GRIFFITH, E. (Ed.), The Animal Kingdom Arranged in Conformity with its Organization, by the Baron Cuvier, with additional descriptions of all the species hitherto named, and of many not before noticed, Vol. 9, Reptilia, Supplement. – Whittaker, Treacher, and Co., London, 110 pp.
- GRAY, J.E. (1869): Notes on the families and genera of tortoises (Testudinata), and on the characters afforded by the study of their skulls. – Proceedings of the Zoological Society of London, 1869: 165–225.
- GRAY, J.E. (1872): Notes on the mud-tortoises of India (*Trionyx*, Geoffroy). – Annals and Magazine of Natural History (4), 10: 326–340.
- GUSTINCICH, S., MANFIOLETTI, G., DEL SAL, G., SCHNEIDER, C. & CARNINCI, C. (1991): A fast method for high-quality genomic DNA extraction from whole human blood. – BioTechniques, 11: 298–302.
- HALL, T.A. (1999): BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. – Nucleic Acids Symposium Series, 41: 95–98.
- HAY, O.P. (1904): On the existing genera of the Trionychidae.
 Proceedings of the American Philosophical Society, 42: 268–274.
- HEBERT, P.D.N., RATNASINGHAM, S. & DE WAARD, J.R. (2003): Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. – Proceedings of the Royal Society of London B, 270: S96–S99.
- JOYCE, W.G. & LYSON, T.R. (2010): A neglected lineage of North American turtles fills a major gap in the fossil record. – Palaeontology, 53: 241–248.
- KINDLER, C., BRANCH, W.R., HOFMEYR, M.D., MARAN, J., ŠIROKÝ, P., VENCES, M., HARVEY, J., HAUSWALDT, J.S., SCHLEICHER, A., STUCKAS, H. & FRITZ, U. (2012): Molecular phylogeny of African hinge-back tortoises (*Kinixys*): implications for phylogeography and taxonomy (Testudines: Testudinidae). – Journal of Zoological Systematics and Evolutionary Research, doi: 10.1111/j.1439–0469.2012.00660.x
- KOCHER, T.D., THOMAS, W.K., MEYER, A., EDWARDS, S.V., PÄÄBO, S., VILLABLANCA, F.X. & WILSON, A.C. (1989): Dynamics of mitochondrial DNA evolution in mammals: amplifica-

tion and sequencing with conserved primers. – PNAS, 86: 6196–6200.

- LE, M., RAXWORTHY, C.J., MCCORD, W.P. & MERTZ, L. (2006): A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. – Molecular Phylogenetics and Evolution, 40: 517–531.
- MEYLAN, P.A. (1987): The phylogenetic relationships of softshelled turtles (family Trionychidae). – Bulletin of the American Museum of Natural History, **186**: 1–101.
- POSADA, D. & CRANDALL, K.A. (1998): MODELTEST: Testing the model of DNA substitution. – Bioinfomatics, 14: 817– 818.
- PRASCHAG, P. & GEMEL, R. (2002): Identity of the black softshell turtle *Aspideretes nigricans* (Anderson, 1875), with remarks on related species. – Faunistische Abhandlungen, Museum für Tierkunde Dresden, 23: 87–116.
- PRASCHAG, P., HUNDSDÖRFER, A.K., REZA, A.H.M.A. & FRITZ, U. (2007): Genetic evidence for wild-living *Aspideretes nigricans* and a molecular phylogeny of South Asian softshell turtles (Reptilia: Trionychidae: *Aspideretes*, *Nilssonia*). – Zoologica Scripta, **36**: 301–310.
- PRASCHAG, P., STUCKAS, H., PÄCKERT, M., MARAN, J. & FRITZ, U. (2011): Mitochondrial DNA sequences suggest a revised taxonomy of Asian flapshell turtles (*Lissemys* Smith, 1931) and the validity of previously unrecognized taxa (Testudines: Trionychidae). – Vertebrate Zoology, **61**: 147–160.
- RHODIN, A.G.J., VAN DIJK, P.P., IVERSON, J.B. & SHAFFER, H.B. (2010): Turtles of the world, 2010 update: annotated checklist of taxonomy, synonymy, distribution, and conservation status. – Chelonian Reseach Monographs, 5: 000.85– 000.164.
- RONQUIST, F. & HUELSENBECK, J.P. (2003): MrBAYES 3: Bayesian phylogenetic inference under mixed models. – Bioinformatics, 19: 1572–1574.
- SMITH, M.A. (1931): The Fauna of British India, including Ceylon and Burma, Reptilia and Amphibia, Vol. I, Loricata, Testudines. – Taylor and Francis, London, xxviii + 185 pp., 2 pls.
- SPINKS, P.Q., SHAFFER, H.B., IVERSON, J.B. & MCCORD, W.P. (2004): Phylogenetic hypotheses for the turtle family Geoemydidae. – Molecular Phylogenetics and Evolution, 32: 164–182.
- STAMATAKIS, A. (2006): RAXML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. – Bioinformatics, 22: 2688–2690.
- STUART, B.L. & PARHAM, J.F. (2004): Molecular phylogeny of the critically endangered Indochinese box turtle (*Cuora galbinifrons*). – Molecular Phylogenetics and Evolution, **31**: 164–177.
- STUCKAS, H. & FRITZ, U. (2011): Identity of *Pelodiscus sinensis* revealed by DNA sequences of an approximately 180-yearold type specimen and a taxonomic reappraisal of *Pelodiscus* species (Testudines: Trionychidae). – Journal of Zoological Systematics and Evolutionary Research, 49: 335–339.
- TAMURA, K., DUDLEY, J., NEI, M. & KUMAR, S. (2007): MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) soft-

ware version 4.0. – Molecular Biology and Evolution, 24: 1596–1599.

VAN DIJK, P.P., IVERSON, J.B., SHAFFER, H.B., BOUR, R. & RHO-DIN, A.G.J. (2011): Turtles of the world, 2011 update: annotated checklist of taxonomy, synonymy, distribution, and conservation status. – Chelonian Research Monographs, 5: 000.165–000.242.

VARGAS-RAMÍREZ, M., VENCES, M., BRANCH, W.R., DANIELS, S.R., GLAW, F., HOFMEYR, M.D., KUCHLING, G., MARAN, J., PAPEN-FUSS, T.J., ŠIROKÝ, P., VIEITES, D.R. & FRITZ, U. (2010): Deep genealogical lineages in the widely distributed African helmeted terrapin: evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: *Pelomedusa subrufa*). – Molecular Phylogenetics and Evolution, **56**: 428–440.

- VITEK, N.S. (2012): Giant fossil soft-shelled turtles of North America. Palaeontologia Electronica, **15**: 1.13A.
- WIENS, J.J., KUCZYNSKI, C.A. & STEPHENS, P.R. (2010): Discordant mitochondrial and nuclear gene phylogenies in emydid turtles: implications for speciation and conservation. – Biological Journal of the Linnean Society, **99**: 445–461.

Appendix

Nilssonia samples and outgroups used in the present study. MTD refers to samples from the tissue collection of the Museum of Zoology, Senckenberg Dresden. The DNA fragments labelled as ND4 and cyt *b* contain also adjacent DNA coding for tRNAs. ODC1 corresponds to the DNA fragment preceding the SSR region, ODC2 to the DNA fragment after the SSR region (see Materials and Methods).

MTD	Taxon	Provenance	Genbank accession numbers						
			125	ND4	cyt b	C-mos	ODC1	ODC2	R35
6068	Nilssonia formosa	China: Yunnan: Shuangbai	HE801637	HE801688	HE801740	HE801763	HE801806	HE801844	HE801869
5865	Nilssonia formosa	Myanmar: Yangon (local pet trade)	HE801638	HE801689	HE801741	HE801764	HE801807	HE801845	HE801870
3411	Nilssonia gangetica	Bangladesh: Mymensingh: Old Brahmaputra	HE801639	HE801690	AM495208	HE801765	HE801808	_	HE801871
3412	Nilssonia gangetica	Bangladesh: Mymensingh: Old Brahmaputra	HE801640	HE801691	AM495209	HE801766	HE801809	_	HE801872
3413	Nilssonia gangetica	Bangladesh: Mymensingh: Old Brahmaputra	HE801641	HE801692	AM495210	HE801767	—	_	HE801873
6062	Nilssonia gangetica	Bangladesh: Patuakhali District	HE801642	HE801693	HE801742	HE801768	HE801810	HE801846	HE801874
3136	Nilssonia gangetica	India: Assam: Biswanath Ghat	HE801643	HE801694	AM495211	HE801769	HE801811	HE801847	HE801875
3137	Nilssonia gangetica	India: Assam: Biswanath Ghat	HE801644	HE801695	HE801743	HE801770	HE801812	HE801848	HE801876
5257	Nilssonia gangetica	India: Odisha: Devi River (20 km inland)	HE801645	HE801696	HE801744	HE801771	HE801813	HE801849	HE801877
5252	Nilssonia gangetica	India: Odisha: Narsinghpur: Mahanadi River	HE801646	HE801697	HE801745	HE801772	HE801814	HE801850	HE801878
5253	Nilssonia gangetica	India: Odisha: Narsinghpur: Mahanadi River	HE801647	HE801698	HE801746	—	—	—	—
5254	Nilssonia gangetica	India: Odisha: Narsinghpur: Mahanadi River	HE801648	HE801699	HE801747	HE801773	HE801815	HE801851	HE801879
5263	Nilssonia gangetica	India: Odisha: Narsinghpur: Mahanadi River	HE801649	HE801700	HE801748	HE801774	HE801816	HE801852	HE801880
3087	Nilssonia gangetica	India: Uttar Pradesh: Chambal River	HE801650	HE801701	AM495212	HE801775	—	—	HE801881
3096	Nilssonia gangetica	India: West Bengal: Howrah (Haora) Market	HE801651	HE801702	AM495213	HE801776	HE801817	HE801853	HE801882
3097	Nilssonia gangetica	India: West Bengal: Howrah (Haora) Market	HE801652	HE801703	AM495214	HE801777	HE801818	HE801854	HE801883
108	Nilssonia gangetica	Pakistan	HE801653	HE801704	HE801749	—	—	—	—
109	Nilssonia gangetica	Pakistan	HE801654	HE801705	HE801750	_	—	—	—
999	Nilssonia gangetica	Pakistan	HE801655	HE801706	HE801751	—	—	—	—
3401	Nilssonia gangetica	Pakistan	HE801656	HE801707	AM495215	—	—	—	—
3402	Nilssonia gangetica	Pakistan	—	HE801708	AM495216	—	—	—	—
3421	Nilssonia hurum	Bangladesh: Khulna	HE801657	HE801709	AM495218	HE801778	HE801819	HE801855	HE801884
3422	Nilssonia hurum	Bangladesh: Khulna	HE801658	HE801710	AM495219	HE801779	HE801820	HE801856	HE801885
3414	Nilssonia hurum	Bangladesh: Mymensingh: Old Brahmaputra	HE801659	HE801711	AM495220	HE801780	HE801821	HE801857	HE801886
6063	Nilssonia hurum	Bangladesh: Patuakhali District	HE801660	HE801712	HE801752	HE801781	HE801822	HE801858	HE801887
6064	Nilssonia hurum	Bangladesh: Patuakhali District	HE801661	HE801713	HE801753	HE801782	HE801823	HE801859	HE801888
3426	Nilssonia hurum	Bangladesh: 20 km E Dhaka: Sonargaon Market	HE801662	HE801714	AM495223	_	_	_	—

R35

_

HE801889 HE801890 HE801891 HE801892 HE801893 HE801894 HE801895 HE801896

HE801897

HE801898

_

HE801899

HE801900

_

_

_

_

HE801901

HE801902 HE801903 HE801904 HE801905

HE801906

HE801907

_

HE801908

HE801909

HE801910

HE801911

—

_

HE801868

_

HE801803

_

HE801804

HE801805

HE801841

HE801842

HE801843

_

AY259600

AF366350

FJ541030

FM999019

_

AF366350

FJ541030

FM999003

AY259550

AF366350

FJ541030

FM999011

MTD	Taxon	Provenance	Genbank accession numbers						
			125	ND4	cyt b	C-mos	ODC1	ODC2	
3539	Nilssonia hurum	Bangladesh: 20 km E Dhaka: Sonargaon Market	-	HE801715	AM495222	—	—	—	
6066	Nilssonia hurum	Bangladesh: Sylhet District: Sreemangal	HE801663	HE801716	HE801754	HE801783	HE801824	HE801860	
6067	Nilssonia hurum	Bangladesh: Sylhet District: Sreemangal	HE801664	HE801717	HE801755	HE801784	—	—	
5248	Nilssonia hurum	India: Odisha: Sibirpur: Subarnarekha River	HE801665	HE801718	HE801756	HE801785	HE801825	HE801861	
3428	Nilssonia hurum	India: Assam: Biswanath Ghat	HE801666	HE801719	AM495224	HE801786	HE801826	HE801862	
3429	Nilssonia hurum	India: Assam: Biswanath Ghat	HE801667	HE801720	AM495221	HE801787	HE801827	HE801863	
3099	Nilssonia leithii	India: Maharashtra: Pawna River	HE801668	HE801721	AM495225	HE801788	HE801828	HE801864	
3100	Nilssonia leithii	India: Maharashtra: Pawna River	HE801669	HE801722	AM495226	HE801789	HE801829	HE801865	
3415	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801670	HE801723	AM495227	HE801790	HE801830	HE801830	
3416	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801671	HE801724	AM495228	HE801791	HE801831	HE801831	
3417	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801672	HE801725	AM495229	HE801792	HE801832	—	
3418	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801673	HE801726	AM495230	HE801793	HE801833	HE801833	
3419	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801674	HE801727	AM495231	HE801794	HE801834	HE801834	
3420	Nilssonia nigricans	Bangladesh: Chittagong: Nasirabad: Shrine Pond	HE801675	HE801728	AM495232	HE801795	HE801835	HE801835	
3408	Nilssonia nigricans	India: Assam: Guwahati: Kamakhya Temple Pond	HE801676	HE801729	_	—	—	—	
3427	Nilssonia nigricans	India: Assam: Guwahati: Kamakhya Temple Pond	HE801677	HE801730	AM495234	_	—	-	
3540	Nilssonia nigricans	India: Assam: Guwahati: Kamakhya Temple Pond	HE801678	HE801731	AM495235	—	—	—	
3541	Nilssonia nigricans	India: Assam: Guwahati: Kamakhya Temple Pond	HE801679	HE801732	AM495236	—	—	—	
3551	Nilssonia nigricans	India: Assam: Guwahati: Kamakhya Temple Pond	HE801680	HE801733	AM495237	HE801796	HE801836	HE801866	
3430	Nilssonia nigricans	India: Assam: Jia Bhoroli River	HE801681	HE801734	AM495233	HE801797	HE801837	—	
3553	Nilssonia nigricans	India: Assam: Jia Bhoroli River	HE801682	HE801735	HE801757	HE801798	HE801838	—	
5864	Nilssonia nigricans	India: Assam: Jia Bhoroli River	HE801683	HE801736	HE801758	HE801799	HE801839	HE801867	
6060	Nilssonia nigricans	India: West Bengal: Jalpaiguri District: Alipurduar: Swaneswar Temple	HE801684	HE801737	HE801759	HE801800	HE801840	—	
6061	Nilssonia nigricans	India: West Bengal: Jalpaiguri District: Alipurduar: Swaneswar Temple	HE801685	HE801738	HE801760	HE801801	—	—	
8179	Nilssonia spec.	Bangladesh: Manikchhari near Chittagong	HE801686	HE801739	HE801761	HE801802	_	_	
6065	Nilssonia spec.	Bangladesh: Sylhet District: Sreemangal	HE801687	_	HE801762	_	_	_	

Appendix continued.

Amyda cartilaginea

Dogania subplana

Palea steindachneri

Pelodiscus maackii

4235,

4236

Russia: Primorsky Territory: Lake Khanka