

R2 Wariya Vongchaiudomchoke & R2 Pichchaporn Praserdvigai Supervisor: Aj. Aphichat Suphathamwit

Definition and classification

- Core temperature less than 36.0°C (96.8°F).
- Severity of hypothermia (core temperature)

Effect of hypothermia

Table 3: Adverse	effects of hypothermia	
Temperature (°C)	Effect	
30-35	Physiological attempts to increase temperature, generation of heat: Shivering, peripheral vasoconstriction	
≤36->35	Tachycardia	
≤35	Bradycardia, low platelet count, impaired platelet function, impaired coagulation cascade, altered clearance of various medications	Bleeding
≤33	ECG changes: Increased PR-interval, widening of QRS-complex, increased QT interval	EKG
≤32	Mild arrhythmias	
≤30-31	Depressed consciousness, lethargy, coma	Coma
≤30	"Hibernation:" Shivering ceases, marked decrease in rate of metabolism	
≤28-30	Increased risk of tachyarrhythmias, beginning with atrial fibrillation	

ECG = Electrocardiography

Anesthesiology 2008; 108:71-7

Copyright © 2007, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

The Effects of Mild Perioperative Hypothermia on Blood Loss and Transfusion Requirement

Suman Rajagopalan, M.D.,* Edward Mascha, Ph.D.,† Jie Na, M.S.,‡ Daniel I. Sessler, M.D.§

 $(36.6^{\circ}C)$ $(35.6^{\circ}C)$

Normothermia vs Mild hypothermia

Cardiac and non-cardiac surgery

Effect of hypothermia: blood loss

Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology: The Journal of the American Society of Anesthesiologists. 2008;108(1):71-7.

Effect of hypothermia: transfusion

Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology: The Journal of the American Society of Anesthesiologists. 2008;108(1):71-7.

Effects of hypothermia

- Delayed drug clearance
- ↑ wound infection
- Thermal discomfort and shivering
- Myocardial damage

Hypothermia under anesthesia

Physiology **Hypothalamus** Input sent via Control Output sent via afferent pathway Centre efferent pathway Receptor Effector **Behavioral regulation Thermal receptor** hypothalamus **Autonomic regulation** other parts of brains spinal cord deep thorax, Temperature abdomen Homeostasis skin surface Imbalance

Autonomic Thermoregulation

Autonomic Thermoregulation

Hypothermia under anesthesia

Hypothermia prevention

Maintenance of body temperature in a normothermic range is recommended for most procedures other than during periods in which mild hypothermia is intended to provide organ protection (Class I, Level B)

American Society of Anesthesiologists, 2015

Hypothermia prevention

Temp.
Monitoring

Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

ASA Standard II Body temperature

Every patient receiving anesthesia should have temperature monitoring

when clinically significant changes in BT are intended, anticipated, suspected

American Society of Anesthesiologists

Temperature monitoring

Eur J Anaesthesiol. 2007 Aug;24(8):668-75. Epub 2007 Apr 11.

Survey on intraoperative temperature management in Europe.

Torossian A1; TEMMP (Thermoregulation in Europe Monitoring and Managing Patient Temperature) Study Group.

- 801 surgical procedures, 17 European countries
- Temperature monitoring is done in 19.4%

Temperature monitoring

- None of the existing guideline specify the best tools
- Electronic thermometers are accurate & inexpensive
- The site and device selection depend on physicians, type of surgery, and accessibility of monitoring site
- The least invasive modalities with a reliable assessment are preferred

Temperature monitoring

Core body temperature should be measured

- GA longer than 30 min
- RA when changes in body temperature are intended, anticipated, suspected

NICE pathway on inadvertent perioperative hypothermia

Sites for temperature monitoring

Core

- Pulmonary artery
- Distal esophagus
- Tympanic membrane
- Nasopharynx

Intermediate

- Oral
- Rectum
- Bladder

Skin

may reflect core temperature

Hypothermia prevention

Temp.
Monitoring

Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

Preoperative warming

† peripheral heat content

Higher core temperature

Preoperative warming

Author	Year	Method	N	Setting	Intervention	Result
Fossum	2001	RCT	100	OPD GA for 1-3 hr	FAW 38±3°c > 45 min Cotton blanket	↑ pre-op core T Better maintain peri-op T Similar shivering
Wong	2007	RCT	103	Major abd Sx	On/off warming mattresses 2 hr	Higher intra-op core T Same core T after 2 hr Less blood loss in prewarm P<0.001
Andrze -jowski	2008	RCT	68	Spine Sx	FAW 38°c x 1 hr Linen gown	Smaller ↓ core T intra-op More pt maintain core T > 36c P<0.00001
Horn	2012	RCT	200	GA 30-90 min	FAW 44°c x 10, 20, 30 min Insulation	Higher intra-op core T Same core T in all FAW groups More pt maintain core T > 36c Lower shivering in all FAW gr

FAW: Forced air warmer

REPORTS OF ORIGINAL INVESTIGATIONS

Effect of preoperative warming on intraoperative hypothermia: a randomized-controlled trial

Aaron Lau, MD, BSc : Nasim Lowlaavar, MD, MPH : Erin M. Cooke, BSc : Nicholas West, MSc : Alexandra German, BA, BSc : Dan J. Morse, MSc : Matthias Görges, PhD : Richard N. Merchant, MD, FRCPC :

- Adult, ASA I-III, non-cardiac surgery under GA 1-6 hr n = 200
- FAW ≥ 41°c and ≥ 30 min vs warmed blanket on request
- Intraoperative hypothermic magnitude (AUC for T < 36°c)

Lau A, Lowlaavar N, Cooke EM, West N, German A, Morse DJ, et al. Effect of preoperative warming on intraoperative hypothermia: a randomized-controlled trial. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 2018:1-12.

- Pre-warming time > 30 min
 NO further effect on magnitude of hypothermia (P = 0.39)
- Every minute of delay between the end of the pre-warming period and initiation of intraoperative warming increased the magnitude of hypothermia (P<0.001)

Preoperative warming

- Active prewarming 30 min likely prevents considerable redistribution*
- Prevent the sudden decrease in core temperature during the first hour
- Effect on post-op shivering is controversy
- Minimize gap between pre-warming period and intraoperative warming

Hypothermia prevention

Temp.
Monitoring

Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

Theatre suite temperature

- At least 21°C
- May reduce after active warming is established

NICE pathway on inadvertent perioperative hypothermia

Hypothermia prevention

Temp.
Monitoring

Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

Warm fluid before use: Warming cabinet

https://www.alimed.com/pedigo-fluid-warming-cabinets.html

Warm fluid before use: Blood warmer

Plasmatherm

Actively warm fluids while being administered: Dry heat technology

3M™ Ranger™ Blood/Fluid Warming Unit

Actively warm fluids while being administered: Hotline fluid warmer

S-line 37.3°€ S-line Barkey

Warming intravenous fluid

- Intravenous fluids (500 ml or more) and blood products should be warmed to 37°C
- No clinically difference among fluid warmers
- Considered in trauma patients

Keeping patient warm is more important than warming blood (WHO guideline)

Hypothermia prevention

Temp. Monitoring Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

Cutaneous warming

Passive cutaneous warming

De Jose Maria B. (2017) Local and Regional Anesthesia in Pediatrics. In: Finucane B., Tsui B. (eds)

Complications of Regional Anesthesia. Springer, Cham

Forced air warmer

Circulating water mattress

Cutaneous warming

- Passive insulation alone is insufficient
- Under-the-body warming is less effective
 - little heat loss from back
 - Poor perfusion + heat >> heat necrosis/burn
- Forced air warmer is superior to circulating water mattresses in maintaining normothermia

Hypothermia prevention

Temp. Monitoring

Preoperative warming

Theatre suite temp.

Fluid warming

Cutaneous warming

Postoperative warming

Postoperative warming therapy

- Forced air blankets and radiant heater are most commonly used
- Low efficacy and takes long time
- Intraoperative warming is ideal

ASA, 2015 2 or more of the following ASA class II to V Preoperative BT < 36.0°C (and preoperative warming is not possible)

- Combined GA and RA
- Major or intermediate surgery
- At risk of cardiovascular complications

NICE, 2017

Preparation: patient's temperature should be ≥ 36°C before transferred to OR

Monitor temp: when anesthesia > 30 min or Higher risk of inadvertent hypothermia

Record:

Every 30 min intraoperative Every 15 min at RR

Goal: maintain BT ≥ 36.5°C

Method:

- FAW set at maximum and then adjusted
- If FAW is unsuitable
 - >> resistive heating mattress/blanket
- IV fluid & blood products: warm to 37°C
- Irrigate fluid: warm to 38-40°C

Take home messages

Effect of hypothermia

Alter drug metabolism, bleeding, wound infection, thermal discomfort, morbid myocardial outcome

Mechanism of heat loss

Radiation > convection > evaporation > conduction

Temperature monitoring

Standard II ASA monitoring // NICE recommendation

Active prewarming

30 min before intra-op active cutaneous warming

>> reduce hypothermia

Take home messages

- Set OR temperature ≥ 21°C
- IV fluids and blood products warmed to 37°c
- Forced air warmer is effective even in patient undergoing large operation
- Postoperative warming therapy low efficacy and takes long time

STOP HYPOTHERMIA

PREVENTION OF HEAT LOSS KEEP PATIENTS WARM INTRAOPERATIVELY

