STRUCTURE, POLYTYPISM AND DISORDER OF DENISOVITE, K₁₄CA₄₂NA₆SI₆₀O₁₆₂F₁₆(OH)₄*2H₂O, OBTAINED BY A COMBINATION OF (S)TEM IMAGING, ELECTRON DIFFRACTION TOMOGRAPHY AND X-RAY POWDER DIFFRACTION

Mugnaioli E.*^{1,2}, Rozhdestvenskaya I.³, Czank M.⁴, Depmeier W.⁴, Schowalter M.⁵, Rosenauer A.⁵, & Schmidt M.U.⁶

1 Department of Physical Sciences, Earth and Environment, University of Siena, Italy 2 Center for Nanotechnology Innovation, Italian Institute of Technology, Italy 3 Department of Crystallography, Saint Petersburg State University, Russia 4 Institute of Geosciences, Christian-Albrechts-University Kiel, Germany 5 Institute of Solid State Physics, University Bremen, Germany 6 Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Germany

Corresponding author email: enrico.mugnaioli@unisi.it

order-disorder sequence, transmission electron microscopy, electron diffraction tomography

Denisovite, ideally K₁₄Ca₄₂Na₆Si₆₀O₁₆₂F₁₆(OH)₄*2H₂O, is a rare mineral uniquely found in the Khibini and in the Murun massifs, Russia. A comprehensive structural characterization of denisovite was obtained by a combination of aberration-corrected high-angular annular dark-field scanning-transmission electron microscopy (AC-HAADF-STEM), high-resolution transmission electron microscopy (HR-TEM), electron diffraction tomography (EDT) and X-ray powder diffraction (XRPD).

Denisovite crystallizes in asbestos-like fibers of typical diameter of 200-500 nm. Structure investigation is complicated by the fact that all investigated fibers show pronounced diffuseness of diffraction spots along \mathbf{a}^* for *hkl* reflection lines with l=2n+1.

The structure model of denisovite (a = 31.0964 (8), b = 19.5701 (5), c = 7.21526 (12) Å, $\beta = 96.6669$ (6) °, space group *P*2/*a*) was first deduced on the basis of AC-HAADF-STEM images and later on obtained *ab-initio* by direct methods on the basis of EDT reflection intensities and refined by XRPD Rietveld method. The structure can be visualized as being composed by two types of dreier silicate chains: a xonotlite-like dreier double chain $[Si_6O_{17}]^{10}$ and a tubular loop-branched dreier triple chain $[Si_{12}O_{30}]^{12}$, both extending parallel to **c**. The silicate chains are connected by ribbons of edge-sharing (Ca,Na)-octahedra.

Similarly to the related mineral charoite (Rozhdestvenskaya et al., 2010; Rozhdestvenskaya et al., 2011), the denisovite structure can be described as an order-disorder (OD) sequence consisting of layers with translation vectors **b** and **c**, and a third basic vector **a**/2 along the missing periodicity. Layers have symmetry P(m)2m and are stacked according to screw axes $2_{1/2}$ or $2_{-1/2} \parallel \mathbf{c}$. Even if two sequences with a maximum degree of order (MDO) are possible (" $2_{-1/2}$, $2_{-1/2}$..." and " $2_{-1/2}$, $2_{-1/2}$..."), only the first one was experimentally observed by HR-TEM imaging. In analogy with charoite, this MDO sequence corresponds to the polytype "denisovite-96". Unlike charoite, an ordered "zig-zag" MDO sequence corresponding to the hypothetical polytype "denisovite-90" was never observed.

The denisovite structure is pervasively disordered along **a** and it was never possible to collect an EDT data set without significant diffuse scattering along **a**^{*}, even for areas as small as 50 nm in diameter (about 15 cell repetitions along **a**). The pervasive disorder is confirmed by HR-TEM imaging along [010], which typically shows multiple stacking faults and reversals of the stacking angle β in a range of few unit cell repetitions.

At the structural level, the dreier silicate chains constitute a rigid module that can be connected to different sides of the octahedral bands. Neighboring modules can be shifted by $+\frac{1}{1001}$ or $-\frac{1}{1001}$. Due to the geometrical relation

 $| a \cos(\beta) | = c/2$

the β reversal can be described both by a (100) nano-lamellae twinning, or by keeping the cell setting constant and changing the space group description to P2/n.

Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A., Weirich, T. (2010): The structure of charoite, (K,Sr,Ba,Mn)₁₅₋₁₆(Ca,Na)₃₂[(Si₇₀(O,OH)₁₈₀)](OH,F)_{4.0} * *n*H₂O, solved by conventional and automated electron diffraction. Mineral. Mag., 74, 159-177.

Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Merlino, S. (2011): Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral. Mag., 75, 2833-2846.