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Abstract. A computational procedure to model instationary creep movements in
alpine snowpacks is presented. The model allows the study of large volumetric and
shear strains (new snowfall), temperature dependent material behaviour (sudden
warming) and progressive creep fracture. These processes are all important factors
in natural avalanche release. A viscoelastic material model for snow is proposed
in which the constitutive properties are characterized on planes of various orienta-
tions within the material. This model is conceptually simple because it does not
employ complicated tensorial arguments. It is, however, capable of modelling the
highly nonlinear and complex material behaviour of snow including the influence
of material microstructure. The model requires only a few parameters which can
be determined from simple uniaxial or triaxial experiments. The new constitutive
model and numerical procedure is verified using two field and laboratory experi-
ments.

1 Introduction

The purpose of this paper is to present a finite element based computational
procedure to calculate instationary viscoelastic creep movements in alpine
snowpacks. The procedure can model: (1) large volumetric and shear strains
(0.50 to 1.00) and strain-rates (up to 10~3s~1) to allow the study of snowpack
movements after a heavy snowfall and the settlement of new snow, (2) tem-
perature dependent material behaviour (including phase change) to allow the
study of sudden variations in meteorological conditions, such as a quick rise
in temperature with strong winds (Fohn), (3) fracture or progressive creep
damage of weak snow layers based on the crystal morphology of those layers
and (4) the creep forces exerted on avalanche retaining structures.

We would like to emphasize that these modelling requirements are posed
by avalanche warning specialists at our institute who are now beginning to
use physical snowpack models on a day-to-day operational basis [1], [2]. The
determination of the maximum creep force exerted on defense structures is
also an important engineering task for the safety of many mountain commu-
nities.

The finite element method has been employed to simulate snowpacks [3],
[4], [5], [6]; however, these calculations have all made the assumption of
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stationary strain-rates and small deformations and strains. They are not
adequate to postulate and quantify theories of avalanche formation, espe-
cially immediately after a new snowfall when the snowpack creep velocities
are clearly instationary. In the snow settlement experiments of de Quervain,
1945, [7], which are modelled in this paper, snow increased in density from
120 [kgm °] to over 300 [kgm °] from self-weight alone in a period of 100
days. The experiments clearly showed that the settlement velocities reached
a constant deformation velocity only after 70 days. Moreover, instationary
creep behaviour dominated the duration of the experiments.

The greatest difficulty in the modelling of these processes is to formulate
a constitutive law for snow that is both simple, i.e. it can be well under-
stood intuitively, while, at the same time, it is elaborate enough to treat
highly nonlinear and complex material behaviour. These goals are clearly at
odds with each other. A further requirement is that the constitutive theory
be expanded to consider the influence of snow micro-structure on material
response. Of particular importance is the modelling of the strength of the
snow-crystal bonds or necks. Of course, the law must also be directly verifi-
able by both field and laboratory experiments.

In the first part of this paper the constitutive model and the large-strain,
rate-dependent plane strain finite element numerics are presented. The con-
stitutive model does not employ over-complicated theories to describe vis-
coelastic snow behaviour [8], [9] or fracture [10]. These theories are both
conceptually difficult and require complex experiments (shear tests) to de-
termine the material parameters. Furthermore, they neglect the influence of
snow microstructure.

In our approach the constitutive properties are characterized using simple
one-dimensional material laws on planes with various orientations within the
material. The overall material response, including shear resistance, is found
by superimposing the response of the individual directions. This facilitates a
better understanding of the material behaviour and, most importantly, the
constitutive law requires fewer parameters which can be determined using
simple temperature dependent uniaxial or triaxial tests. (Traxial creep tests
using a specially designed triaxial apparatus for snow are presently being per-
formed at our institute.) Finally, since the material laws are one-dimensional
it is much easier to introduce microstructural parameters (grain size and
shape, bond strength, neck length) into the constitutive model. Above all,
fracture criteria based on snow microstructure can be easily formulated. The
proposed model is based on so-called ”microplane” models that have been
successfully used to simulate progressive tensile fracturing and/or damage of
aggregate materials such as concrete and rock [11], [12], [13].

The model is verified using both field and laboratory experiments. The
100-day creep experiments of de Quervain [7] and the snow settlement ex-
periments of Kojima [14] are simulated with a high degree of accuracy.
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2 Microplane Material Laws for Snow

Snow is a porous material consisting of ice grains and air. The ice grains have
different shape and size depending on the thermodynamical and mechanical
history of the snow. The ice grains are bonded together at so-called necks to
form complex load carrying chains. The response of snow under loading is
primarily a function of (1) the number of chains, which is usually described
by the snow density, (2) the strength of the individual grain bonds, (3) the
grain size and (4) the neck length. The deformation rate plays an important
role on overall material behaviour since the ability of snow to form new
load carrying chains and the strength of the ice bonds is rate dependent.
In summary, the mechanical behaviour of snow is strongly dependent on
the microstructural parameters of the ice matrix and the rate of applied
loading. The constitutive modelling, however, is made even more difficult
by the fact that the microstructure parameters are persistently changing
under an applied temperature gradient and overburden pressure. Fig. 1 shows
an idealized schematic representation of snow consisting of ice grains, grain
bonds and load chains.

I Ice Grains

Direction Vector

Load Chains

+— Grain Bonds

Fig. 1. Snow microstructure with microplane directions

In our model for snow creep and fracture, the constitutive laws are defined
on planes of various orientations within the material. Bazant [11] called these
planes “microplanes” because the inelastic material behaviour of each plane
is based on the mechanics of the material microstructure. He introduced the
prefix "micro” in order to emphasize the fact that for many materials the
mechanical behaviour, especially fracture and damage, is best characterized
on weak planes that are found in the material microstructure, specifically the
interaggregate contact planes which, for the case of snow, are the ice grain
bonds and necks.
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The behaviour of the individual microplanes is described by simple one-
dimensional rheological material laws relating the normal stresses and strains
in a single direction. We postulate that the mechanical behaviour and strength
of the ice grain chains is more realistically and more simply described by the
N-directional one-dimensional laws than complicated tensorial constitutive
laws with many parameters. In a first approximation shear strains in the
microplane directions are unopposed. However, this does not imply that the
material as a whole has no shear stiffness: shear deformations are resisted by
the normal stiffness of each microplane. The total material response is found
by superimposing the contributions from all directions.

The strain on any microplane n is the resolved component of the macro-
scopic strain F;; defined with respect to a Cartesian coordinate system. For
plain strain:

€n = dindjnEij for i,j=1,2 (No sum on n), (1)

where dy, and ds, are the components of the n-th unit direction vector d,,,
see Fig. 2, and are defined according to

_ fdin | _ ) cos(¢— M)
dn = {dzn } B { sin(¢ — —(n%)w) ‘ @

~—

Fig. 2. The direction vectors d, for n = 1 to N. As a first approximation, we
assume that snow is an isotropic material and that the direction vectors are equally
distributed.

We term €, the microstructure strain or the N-directional strain. In matrix
form (1) can be written as

{e} = [DI{E}. 3)

Relation (1) is termed a kinematic constraint since the strain in the n — th
direction is related to the macroscopic state of deformation. According to
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Bazant [11], this approach physically models the behaviour of brittle ag-
gregate materials better than by assumming that the microstresses in the
N-directions correspond to the macroscopic stress. The stresses in a porous
granular material like snow are far from uniform having very high stress
concentrations at the snow crystal bonds: the microscopic stress state varies
significantly from the macroscopic stress field. The kinematic constraint (1),
however, ensures that the relative displacements between the ice crystals are
approxiamated by the macroscopic strain field. This is a much better assump-
tion, especially when formulating constitutive laws with fracture.

A further constraint is introduced into the microplane constitutive for-
mulation. Namely that the N-directional stress components o,, and Carte-
sian components S;; which are work conjugate to the strains, €, and Ejj,
respectively, must fulfill the scalar work equation,

N N
SijEij = Z Oné€n = Z ondindjn Eij. (4)
n=1 n=1

The macroscopic Cartesian stress is thus related to the N-directional stress
according to

N
Sij =Y dindjnon. ()
n=1

The above equation implies that the macroscopic state of stress, S;; is found
by superimposing the N-directional stresses. The stress o, represents the
one-dimensional stress in the n — th direction.

The vector d,, is defined in the undeformed coordinate system z;. The
angle ¢ is an arbitrary angle, usually set to ¢ = 0°.

3 Viscoelastic N-Directional Material Models

In this section we formulate several one-dimensional, scalar material laws re-
lating o, to €, (and not the tensors S;; and Ej;). The N-directional constitu-
tive formulation must meet a simple requirement: small strain linear isotropic
elasticity will be modelled exactly. In this case the stress S;; is related to the
elastic strain E;; according to the well known relation

Sij = 2uE;; + My (6)

where p and A are the Lamé constants and -y is the volumetric strain. The
corresponding N-directional material law is

on = a€® + B7°; (7)
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where a and 3 are material constants with the values

_ 8u 4C
=N TNa ®)

and
22 —p  C v -1

=N "N Naroa—w) ©)

The superscript e has been introduced to denote that the quantities €, and
~ refer to the elastic N-directional and volumetric strains. The symbol C
denotes the modulus of elasticity and v Poisson’s ratio. Note that when v =
0.25 then 8 = 0 and a = £ <. According to Mellor [15], » = 0.25 for medium
to high density snow (300 < p < 500). For smaller densities (p < 300),
v = 0.20.
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Fig. 3. (a) A visco-elastic Maxwell model describes the stress-strain relation in the
n — th direction. (b) Strain response of a Maxwell model under constant load.

Viscous behaviour (creep) is introduced into the N-directional material
model by assuming that the total strain in the n-th direction is composed of
elastic and viscous parts, i.e.,

en = €5, + €. (10)

Also, the total volumetric strain is likewise decomposed into elastic and vis-
cous parts of:

Y=+ (11)
Thus, the N-directional material law (7) is rewritten as

on = alen —€5) + By —°). (12)
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Moreover, a simple Maxwell model is used to describe viscoelastic material
behaviour. Of course, more complicated models are possible. Our motivation
behind using this simple model in a first approximation is to demonstrate that
even long time creep experiments and field tests can be modelled adequately
with this law. The Maxwell model defines the viscous strain rate according
to

& =" (13)

The parameter 7 is termed the snow viscosity (with dimensions Pa s). Usually,
the viscosity is defined as a function of the snow density and temperature
n = f(p,T). Several of the different laws are listed in the Table 1.

Table 1. Different constitutive laws for the compactive viscosity 7.

Author (Year) Viscosity [Pa s]

Kojima (1974) [14] 5= 8.64(106)e0'0211’
Mellor (1975) [15] 7= 5.0(107)e®***
Claus (1978) [16] 5 = 6.57(107)e® 0"

Gubler (1994) [17] = 1.86(1076)g0-020+8100/T
Morris (1994) [18] = 5.38(107 300240+ 552 8042
Loth (1993) [19] —3. 70(107) 8.10(10~2)(273.15— T) g2 10(10~2)p

4 N-dimensional Constant Strain Triangular Elements

In this section the principle of virtual work (see, for example, Crisfield [20]),
W =W, - W, = / (ST (SE}dV — W, (14)
v

is invoked in order to derive the tangent stiffness matrix and internal force
vector of the N-directional plane strain triangular elements. In the equation
above, W is the virtural work, W; is the internal virtual work and W, is
the external virtual work. The internal virtual work is presently expressed
in terms of the energy conjugate virtual Green’s strains, § E/, and the second
Piola-Kirchhoff stress, S, which are both defined in a Cartesian coordinate
system.

In the following the virtual work expression will be rewritten using the
N-directional stress and strain measures presented in the previous section. As
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stated in the introduction, our goal is to develop a continuum finite element
that employs simple one-dimensional visco-elastic constitutive relations. This
implies finding the N-directional virtual strains.

Viscous creep deformations are produced by introducing creep forces on
the right-hand side of the equilibrium equations. These ”pseudo-loads” en-
force the viscous strain rates predicted by the viscous creep law. Thus, an-
other important task of this section is to derive the creep ”pseudo-load”
vector.

In the next section, the computational procedure used to solve the global
finite element equations, which is found by assembling the element stiffness
matrices and force vectors, will be discussed.

Unlike the usual finite element formulation where the strains are found
from the element-deformation gradient in the Cartesian directions, in this
formulation the strains are calculated from the element side deformations.
This is computationally efficient; however, it does introduce notational diffi-
culties since a third strain measure arises. In the following a small e is used
to denote the finite element side strains. Since the strains in the N-directions
€ are finally used in the constitutive formulation, it does not matter whether
the Cartesian strains E or element-side strains e are resolved into the N-
directions.

As in the previous section, the superscripts e and v will be used to dis-
tinguish between the elastic and viscous strains in the N-directions, €® and
€, respectively. Also, the subscripts s and n are used to denote an element
side and the n-th direction. The superscript ¢ will be used to define the ele-
ment configuration at time ¢ and the superscript 0 will be used to denote the
undeformed element configuration, ¢ = 0.

Consider Fig. 4 which depicts a finite element triangle with area A.

For the deformed state at time ¢ > 0 the Green-Lagrange strain of element
side s is:

L2-°L2 _ Adk+ Ayl - L
2(°L3) 2(°L3)

for  s=1,2,3. (15)

€g =

where °L? and 'L? are the lengths of side s at the beginning of the analysis
and time t, respectively. Note that for a pure rigid-body rotation the side
strains are e; = 0 for s = 1,2, 3. The values Az and Ay, are found according
to

Azs ='z; —'z; and Ay, ='y; —'y; for i=3,1,2 and j=2,3,1. (16)

The Green-Lagrange side strains are found with respect to the undeformed
side lengths °L2. The element side strains es are related to the Cartesian
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Fig. 4. Constant strain triangle.

Green-Lagrange strains E;; by

e1 Ly L L3 Eyy
Azl Ays 2Az5Ays
fer={ e b= |22 22 2aman |V g, L jpyey )
es3 AyQ3 A1;23 2Az3Ays Ei»
Ly I L3

From (3) the relationship between the side strains and N-directional strains
can then be established

{e} = [DI{E} = [DI[F] " {e} = [Tns] {e} - (18)

The N x 3 matrix [T},;] resolves the side strains into the N-directions. Note
that the elements of this matrix are only functions of the element shape at
time ¢t = 0, the undeformed configuration. It must be determined only once
at the beginning of each calculation.

If a set of virtual nodal displacements,

{0a}" = {6U1,6V1,0Us, Vs, 8Us, V3 } (19)
is applied to the finite element, the virtual side strains are
Axg Ay,
des = G304z, + %6&/3 = 2,(6U; — 8U;) + y,(3V; — 6V3).  (20)

where z; and y, are defined by setting

Az,

Ay,
Tg = OL% =

and Ys = 072
s

(21)
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Thus, the virtual strains can be expressed in matrix form as

oU;y
1)
(561 0 0 —T1 —Y1 1 —Y1 5;]/.1 B
{de}=qdex p=|z2-y2 0 0 —z2 y> 5‘/; = ['B] {éa}. (22)
des z3 y3 x3 —-y3 0 O §Us
oV3

The superscript t is placed on the [B] matrix to emphasize that it is a function
of the deformed element configuration. The virtual N-directional strains are
subsequently related to the virtual finite element displacements according to

{6€} = [Ths] {0e} = [Ts] ['B] {0a} = ['B] {da}. (23)

Rewriting the internal virtual work by using the N-directional stress and
strain measures and then substituting the above epression relating the virtual
element displacments to the virtual strains allows the definition of the finite
element internal nodal forces {’p;} at time ¢:

W = /A (S} (0B} dA = /A (0}7 {5} dA
= {6a}" /A ['B]" {to)} dA = {6a}” {'p;} . (24)

Moreover,

T

{'pi} =['B]" {'o}'A. (25)

The tangent-element-stiffness matrix [Kr] is found by differentiating the
internal forces (see Crisfield [20]), i.e

d{'p} = (d['B]" {'o} + ['B]" d{'0}) A= [Kr]d{a}.  (26)

In the numerical calculations we neglect the geometric stiffness contribution,
that is,

d['B]" {to} ~0. (27)
The increment in stress is found from the N-directional stress strain relation-
ship (7),

d{o} =d(ae® + By°) = (366 +a+% )de -I-ﬂzdlden. (28)

de¢

Assuming that the last term of the above equation is small,

52‘” ded ~ 0, (29)
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the diagonal elements C,, of an NxN material matrix [Cr] can be defined by

Cn:(daefb+a+dﬁ’ye). (30)

deg, de?,

The N-directional incremental stress-strain relationship is then
d{toc} = ['Cr] de® = ['Cr] ['B] d{a}. (31)
This equation can be substituted into (26) to find
a{'p} = [['B)" [Or] ['B]'A] d{a}. (52)
The element stiffness matrix is then by definition
(K1) = ['B]" ['x] ['B] ‘A (3)

The approximations (27) and (29) are not significant for the accuracy of
the numerical calculations since the stiffness matrix is used only to approxi-
mate the internal stress state. As will be shown in the next section, the equi-
librium between the internal and external forces is always strictly enforced.
However, the approximations could influence the number of computational
iterations required to find equilibrium. In the numerical calculations a Pois-
son’s ratio for snow of v = 0.25 is assumed, thus, 3 = 0 and (29) is exactly
zero.

The increment in load produced by a creep deformation is

d{'pe} = ['B]" [Cr]d{e"} A, (34)

These forces are applied to the finite element mesh in order to produce creep
deformations corresponding to the time dependent viscous strain rates. In
the calculation procedure we use an explicit scheme to find d {e”}:

d{e’} = {&*} At, (35)

where At is the time step increment of the time integration scheme.
Finally, a self-weight load, {*p. }, always acts on the system. This element
force vector is calculated according to

T A A A
{tpe} = {Oa_%aoa_%aoa_%}a (36)

where g is the gravitational acceleration and p the density of the finite el-
ement. This vector is constant since the mass of each element remains un-
changed during the calculation.
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5 Solution of the Equilibrium Equations

The equations of equilibrium which must be satisfied at any instant of time
t are the balance between internal and external nodal forces,

(p)+('n)= [ [B]" (o}ass fpy =0 @)

These equations can also be posited in incremental form
d{tp:} +d{'p.} = / 'B]"d{lo}dA+d{p.} =0, (38
A

in which d {*p.} is the change in external load during the time interval At.
For our case, d {’p.} is usually zero, except in the beginning of the analysis
or during a new snowfall.

The displacement increment d {a} which is calculated for the time step
At is found according to

d{a} = ['Kr] " d{R}, (39)

where d {R} is called the incremental pseudo-load vector containing the in-
fluence of the instationary creep effects of

d{R}:d{tpc}+d{tpe}:/A[tB]T[tCT] {tev)} AtdA +d {'p.}. (40)

These calculations require the formation of the [tB]T matrix for every
element at every time step. This is not computationally demanding since the
calclation of [*B] needs only a few floating point operations, (22). It is then
multiplied with the Nx3 matrix [T),;], see (23). This transformation matrix
is formed only once at the beginning of a computation.

Because the calculation (40) is based on the linearized form of the equi-
librium equations, (39), they will not satsify the equilibrium condition (38)
exactly. Thus, several iterations may be required to satisfy (40) within some
specified convergence criterion. The out-of-balance forces at the end of the
time step are always added to the applied force increment d {*p,} at the next
time step.

In summary, the computational procedure is as follows:

1. At time ¢, the displacements {*a} , N-directional stress {¢!c'} and external
forces {¢p.} are known. To begin at t = 0, we set {®a} = 0. The initial
stress state {OU} is determined from a small strain elastic analysis. The
external load is self-weight.

2. The creep-strain rate in N-strain-directions is determined for every ele-
ment,

{tév} = f (tanatTa tp) ) (41)
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according to a vicous law listed in Table 1. The creep strain increment in
the nth-direction is thus

d{e"} = {'¢"} At. (42)

3. Find the NxN diagonal elasticity matrix [Cr] from (30).

4. Construct the incremenatal creep force vector d{p.} according to (34)
and add it to the incremental external load vector d{p.} to obtain the
pseudo-load vector d {R}.

5. Construct the tangent stiffness matrix [ Kr] according to (33).

6. Calculate the increment in displacements d {a} according to (39).
7. Calculate the increment in total strain and stress in N-directions for each
element
d{e} = ['B] d{a}. (43)
d{o} = [Cr] (d{e} - {€"} At). (44)
8. Update the stress
{*40} = {'o} +d{on}. (45)
9. Update the displacements
{HAta} = {’a} +d{a}. (46)

Finally, note that the determination of the increment in creep strains d {€?} is
based on an Euler time integration; that is, it is determined by the conditions
existing at time ¢. This procedure is not unconditionally stable. Therefore,
both the stability and the numerical results depend on the time step size At.

6 One-Hundred Day Laboratory Settlement
Experiments of M. de Quervain, 1945

In order to determine long-term, temperature dependent snow settlement
curves, De Quervain (1945) [7] filled eight wooden boxes (20cm x 20cm x
100cm) with 90 cm of sieved snow (grain size of 0.3mm) and measured the
snow displacement and density distribution daily, see Fig. 5a and Fig. 5b.
The experiment lasted 100 days, the first 40 days being investigated in this
example. The experimental results are extremely well documented and are
ideal first examples to test the computational procedure described in the first
part of this paper.

De Quervain used the experiments to develop empirical settlement curves
for inhomogeneous (multi-layer) snowpacks. At the time this was an improve-
ment over the existing theory of Haefeli (1942) [21], which considered only
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Fig. 5. a) Open wooden box showing the settlement measuring instrument on top
of it; b) Wooden boxes after the 100 days settlement period, temperature boundary
being -2C, -10C, -18.5C and -32.5C (from left to right).

homogeneous snow (single layer snowpacks) and was based on a purely em-
pirical formula.

Although De Quervain realized that snow metamorphism and sublimation
produced a settlement and mass loss, he was primarily interested in the time
dependent mechanical deformation caused by self-weight and wind loads. He
believed that the deformation of new snow was primarily caused by overbur-
den stress, and not ice crystal changes, which occur at a much slower rate. For
this reason De Quervain performed the experiments in the laboratory with
homogeneous snow under constant temperature. The initial snow density was
approximately 115 [kgmfg]; the snow settled up to 50 cm and compacted to
densities over 300 [kgm ], depending on the test temperature. Four different
temperatures were used: -2 C, -10 C, -18.5 C and -32.5 C. Ski-wax was used
to mimimize the side wall friction of the wooden boxes.

Calculations were carried out, using different viscosity laws (see Table
1), and comparing them to the measured values. A ’best-fit’ viscosity law
(Christen viscosity law) was developed,

n =2.0(10"%)p"° [Pa s] (47)

yielding very good results in this special experiment (see Table 3), but fail-
ing when used with other problems. Table 3 compares the measured and
simulated settlement and density results.
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Table 2. Initial simulation data.

Simulation Begin/End [days] 0 - 40

Initial Mesh Height [cm] 90
Initial Density [kgm™®] 115
Initial Temperature [C] -10

Table 3. Simulation results.

Simulation time 5 Days 40 Days
Viscosity Settlement Density Settlement Density
fern] fkgm™]  [em] flgm ™|
Ah Top/Base Ah Top/Base
Measurements  20.0 150/188  39.8 186/288
Kojima 54.8 125/496 - -
Mellor 25.7 116/210  55.4 131/509
Claus 11.6 115/144 50.9 121/551
Gubler 34.6 115/292 59.3 119/596
Morris 19.6 115/174 51.3 117/441
Christen 19.7 115/164 40.5 120/275

7 Kojima’s Field Experiments on the Densification of
Natural Snow Layers, 1974

Simple field experiments were performed by Kojima (1974) [14] in order to
determine the densification strain-rates of natural snow layers under load.
Kojima wanted to demonstrate with his experiments that snow load, and
not the metamorphism of snow crystals and grains, is the driving mechanism
behind layer densification.

Kojima measured the settlement of several layers of a natural snowpack.
The layer densities in Kojima’s studies varied between 100 and 300 [kgm™°].
He added and subtracted snow at different locations in order to vary the
overburden stress. Subsequently, the layers densified at different rates. By
analyzing the initial and final layer densities, it was then possible to determine
an average settlement strain-rate as a function of the stress. This information
was used to formulate a viscosity law for low density snow,

n = 8.64(106)el0217 [Pa s]. (48)
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In this section, the load subtraction tests of Kojima are simulated using this
viscosity law. The notation used by Kojima to designate the tests and layer
positions, as well as the initial densities will be taken directly from the original
paper.

In the load subtraction experiments a 5 x 1.5 m wide and 1 m deep trench
was dug in a level snowpack near Sapporo. On one side of the trench four
points were selected where 70 x 70 cm hollows were made by removing snow
in the upper part of the snowpack. Each hollow had a different depth. Thus,
the snow beneath each hallow was subjected to a different overburden stress.
The subtracted loads at the hollows (denoted S-1 to S-4) was 0.16 kPa, 0.33
kPa, 0.67 kPa and 1.07kPa. The points, S-a, S-b, etc., refer to the positions
were densification measurements were made.

Kojima provides numerical values of initial and final snow density, time
interval (six days for the load subtraction tests), average strain rate, load
and settlement at the locations S-b, S-¢ and S-d. Temperatures were not
measured. A comparison between the measured and calculated final layer
densities and the total settlement is presented in Table 4.

Table 4. Measured and simulated layer densities and settlements.

Snow Hallow Initial Snow Measured Sim. Measured  Sim.

Layer Density Final Final Settlement Settlement
Density Density

kgm ] [kgm %] [kgm °] [cm)] fem]

S-b N 138 218 350 13.3 18.0

S-1 138 197 250 10.7 14.0

S-2 138 169 195 9.8 11.5

S-¢ N 184 250 310 7.5 10.1

S-1 184 236 265 6.2 7.7

S-2 184 222 250 6.1 74

S-d N 237 286 310 5.8 7.0

S-1 237 280 305 5.1 5.2

S-2 237 282 282 5.0 5.1

S-3 237 257 257 3.1 3.0

The simulation results for snow layer S-d, located near the bottem of the
snowpack, show a very good agreement with the measurements (both densi-
ties and settlements). This layer has the highest initial density. The deviation
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of the simulation results from the measurements worsens with decreasing ini-
tial density. The poorest agreement is at position S-b which is located only
20 cm below the snowpack surface.

In Table 5 a comparison is made between the measured and calculated
average strain rates.

Table 5. Measured and simulated average strain rates.

Snow Layer Hallow Measured Simulated
Average Average
Strain Rate Strain Rate
1077(s7h) 1077(s™1)

S-b N 8.87 7.19
S-1 6.88 6.65
S-2 3.91 4.16
S-c N 5.93 6.04
S-1 4.81 5.39
S-2 3.65 4.36
S-d N 3.65 3.68
S-1 3.20 3.21
S-2 2.80 2.75
S-3 1.22 1.14

8 Conclusions

In this paper we have presented a computational procedure to model insta-
tionary creep movements in alpine snowpacks. The model allows the treat-
ment of large deformations, strains and strain rates. These processes have
never been modelled - or experimentally verified - in any existing 2-D finite
element model.

At the present time we are employing a simple Maxwell model to describe
the viscous behaviour of snow. This model can only describe snow creep
under constant loading. Altough we have shown that the model can simulate
the experimental tests of DeQuervain and Kojima, more complicated models
must clearly be formulated. For example, the model does not describe snow
relaxation under decreasing loading. Therefore, it could never be used to
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study the formulation of wet snow avalanches during periods of snow melt.
Presently, the model also does not take into account snow microstructure.

Because the procedure is based on the concept of micro-planes, it can be
used to model snow fracture and avalanche formation. However, fracture laws
are presently failing.

The model employs Green strains and Piola-Kirchhoff stress measures to
describe material behaviour. Other stress and strain measures are possible.
For example, logarithmic or natural strain measures could be employed in
the n-directions. The choice of strain and stress measures will certainly have
an influence on the calulated material parameters.

In our validation studies we have found that different viscosity laws are
only valid for a particular density and strain rate range. Considerable care
must therefore be applied when using the viscosity formulations presented in
this article.

We have performed many computational tests with varying number of
directions, N. We have found that at around N = 10, there is no significant
change in simulation results. However, this conclusion might change as more
complicated material laws are implemented. For example, when highly non-
linear material laws with differing response in tension and compression or
material fracture are introduced, the number of material directions N might
increase in order to model avalanche formation.
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