
Lecture 5: Subprograms

Marriette Katarahweire and John Kizito

CSC 3112: Principles of Programming Languages 1/29



Outline

Chapter 9, Concepts of Programming Languages by Sebesta

Defining a subprogram

Role of subprograms

Subprogram Parameters

Subprogram Design Issues

Parameter-passing models and methods

Polymorphism and Overloading

CSC 3112: Principles of Programming Languages 2/29



Subprogams

Why use subprograms?
- Give a name to a task.
- We no longer care how the task is done.

The Subprogam call is an expression

Subprogams take arguments (in the formal parameters)

Values are placed into variables (actual
parameters/arguments)

A value is (usually) returned

CSC 3112: Principles of Programming Languages 3/29



Subprogams

Subprogram: is a method, function or procedure. It may have
a name, parameters. Procedures have no return values

Subprogram characteristics

Each subprogram has a single entry point
The calling program unit is suspended during the execution of
the called subprogram, there is only one subprogram in
execution at any given time
Control always returns to the caller when the subprogram
execution terminates

CSC 3112: Principles of Programming Languages 4/29



Subprograms

aid reuse, process abstraction

save memory space, coding time

increase readability of a program

describe computation in a group of statements

CSC 3112: Principles of Programming Languages 5/29



Subprogram Parameters

A subprogram can gain access to the data that it is to process
through:
- direct access to nonlocal variables (declared elsewhere but
visible in the subprogram)
- parameter passing.

Data passed through parameters are accessed through names
that are local to the subprogram

The parameters in the subprogram header are called formal
parameters

Subprogram call statements must include the name of the
subprogram and a list of parameters to be bound to the
formal parameters of the subprogram.
- These parameters are called actual parameters.

CSC 3112: Principles of Programming Languages 6/29



Subprogram Parameters

In nearly all programming languages, the correspondence
between actual and formal parameters—or the binding of
actual parameters to formal parameters—is done by position.
Such parameters are called positional parameters

When parameter lists are long, it is easy for a programmer to
make mistakes in the order of actual parameters in the list.
One solution to this problem is to provide keyword parameters

Keyword parameters: the name of the formal parameter to
which an actual parameter is to be bound is specified with the
actual parameter in a call.

The advantage of keyword parameters is that they can appear
in any order in the actual parameter list

CSC 3112: Principles of Programming Languages 7/29



Keyword Parameters

Ada function

sumer(length = my_length,

list = my_array,

sum = my_sum)

formal parameters: length, list, sum

What is the disadvantage of having keyword parameters?

Find out about programming languages:

whose subprograms’ formal parameters accept default values.
which allow a variable number of parameters.

CSC 3112: Principles of Programming Languages 8/29



Design Issues for Subprograms

Are local variables statically or dynamically allocated?

Can subprogram definitions appear in other subprogram
definitions?

What parameter-passing method or methods are used?

Are the types of the actual parameters checked against the
types of the formal parameters?

If subprograms can be passed as parameters and subprograms
can be nested, what is the referencing environment of a
passed subprogram?

Can subprograms be overloaded?

Can subprograms be generic?

If the language allows nested subprograms, are closures
supported?

CSC 3112: Principles of Programming Languages 9/29



Design Issues for Subprograms

An overloaded subprogram is one that has the same name as
another subprogram in the same referencing environment.

A generic subprogram is one whose computation can be done
on data of different types in different calls.

A closure is a nested subprogram and its referencing
environment, which together allow the subprogram to be
called from anywhere in a program

CSC 3112: Principles of Programming Languages 10/29



Parameter-Passing Methods

One of the design issues of subprograms

Parameter passing methods: the ways in which parameters are
transmitted to and/or from called subprograms

The call by reference method allows the procedure to change
the value of the parameter, whereas call by value method
guarantees that the procedure will not change the value of the
parameter.

CSC 3112: Principles of Programming Languages 11/29



Semantics Models of Parameter passing

Formal parameters are characterized by one of three distinct
semantics models:

they can receive data from the corresponding actual
parameter: in mode

they can transmit data to the actual parameter: out mode

they can do both: inout mode

CSC 3112: Principles of Programming Languages 12/29



Example

consider a subprogram that takes two arrays of int values as
parameters—list1 and list2. The subprogram must add list1 to
list2 and return the result as a revised version of list2.
Furthermore, the subprogram must create a new array from the
two given arrays and return it.

list1 should be in mode, because it is not to be changed by
the subprogram

list2 must be inout mode, because the subprogram needs the
given value of the array and must return its new value

the third array should be out mode, because there is no initial
value for this array and its computed value must be returned
to the caller

CSC 3112: Principles of Programming Languages 13/29



Conceptual Model of Data transfer

two conceptual models of how data transfers take place in
parameter transmission:

an actual value is copied (to the caller, to the called, or both
ways)

an access path is transmitted. Most commonly, the access
path is a simple pointer or reference

CSC 3112: Principles of Programming Languages 14/29



Illustration

the figure illustrates the three semantics models of parameter
passing when values are copied

CSC 3112: Principles of Programming Languages 15/29



Implementation Models of Parameter Passing

Pass-by-value

Pass-by-result

Pass-by-value-result

Pass-by-reference

Pass-by-name

CSC 3112: Principles of Programming Languages 16/29



Pass by value

implements in-mode semantics

the value of the actual parameter is used to initialize the
corresponding formal parameter, which then acts as a local
variable in the subprogram

Pass-by-value is normally implemented by copy. Alternative is
by transmitting an access path to the value of the actual
parameter in the caller, but that would require that the value
be in a write-protected cell (one that can only be read).

Disadvantage: if copies are used, additional storage is required
for the formal parameter. The storage and the copy
operations can be costly if the parameter is large

Advantage: is fast for scalars in both linkage cost and access
time

CSC 3112: Principles of Programming Languages 17/29



Pass by result

an implementation model for out-mode parameters

no value is transmitted to the subprogram.

the corresponding formal parameter acts as a local variable,
but just before control is transferred back to the caller, its
value is transmitted back to the caller’s actual parameter,
which must be a variable.

CSC 3112: Principles of Programming Languages 18/29



Pass-by-value-result

an implementation model for inout-mode parameters in which
actual values are copied

a combination of pass-by-value and pass-by-result

the value of the actual parameter is used to initialize the
corresponding formal parameter, which then acts as a local
variable

formal parameters must have local storage associated with the
called subprogram. At subprogram termination, the value of
the formal parameter is transmitted back to the actual
parameter

CSC 3112: Principles of Programming Languages 19/29



Pass-by-reference

is a second implementation model for inout-mode parameters.

rather than copying data values back and forth,like in
pass-by-value-result, the pass-by-reference method transmits
an access path, usually just an address, to the called
subprogram

provides the access path to the cell storing the actual
parameter.

the called subprogram is allowed to access the actual
parameter in the calling program unit.

the actual parameter is shared with the called subprogram.

CSC 3112: Principles of Programming Languages 20/29



Pass by Name

an inout-mode parameter transmission method that does not
correspond to a single implementation model

the actual parameter is textually substituted for the
corresponding formal parameter in all its occurrences in the
subprograms

different from those discussed so far; formal parameters are
bound to actual values or addresses at the time of the
subprogram call

a formal parameter is bound to an access method at the time
of the subprogram call, but the actual binding to a value or an
address is delayed until the formal parameter is assigned or
referenced

CSC 3112: Principles of Programming Languages 21/29



Operator Overloading

An overloaded operator is one that has multiple meanings.
The types of its operands determine the meaning of a
particular instance of an overloaded operator.

For example, if the * operator has two floating-point operands
in a Java program, it specifies floating-point multiplication.

But if the same operator has two integer operands, it specifies
integer multiplication.

CSC 3112: Principles of Programming Languages 22/29



Overloaded Subprograms

An overloaded subprogram is a subprogram that has the same
name as another subprogram in the same referencing
environment.

Every version of an overloaded subprogram must have a
unique protocol; that is, it must be different from the others
in the number, order, or types of its parameters, or in its
return if it is a function.

The meaning of a call to an overloaded subprogram is
determined by the actual parameter list.

Users are also allowed to write multiple versions of
subprograms with the same name in Ada, Java, C++, and C#

CSC 3112: Principles of Programming Languages 23/29



Signatures

In any programming language, a signature is what
distinguishes one function or method from another

In C, every function has to have a different name

In Java, two methods have to differ in their names or in the
number or types of their parameters
foo(int i) and foo(int i, int j) are different
foo(int i) and foo(int k) are the same
foo(int i, double d) and foo(double d, int i) are different

In C++, the signature also includes the return type but not in
Java!

CSC 3112: Principles of Programming Languages 24/29



Polymorphism

Polymorphism means many (poly) shapes (morph)

In Java, polymorphism refers to the fact that you can have
multiple methods with the same name in the same class

There are two kinds of polymorphism:
- Overloading: Two or more methods with different signatures
- Overriding: Replacing an inherited method with another
having the same signature

CSC 3112: Principles of Programming Languages 25/29



Overloading

CSC 3112: Principles of Programming Languages 26/29



Overriding

CSC 3112: Principles of Programming Languages 27/29



Generic Subprograms

A programmer should not need to write four different sort
subprograms to sort four arrays that differ only in element
type.

A generic subprogram is one whose computation can be done
on data of different types in different calls.

A generic or polymorphic subprogram takes parameters of
different types on different activations.

Overloaded subprograms provide a particular kind of
polymorphism called ad hoc polymorphism.

Parametric polymorphism is provided by a subprogram that
takes a generic parameter that is used in a type expression
that describes the types of the parameters of the subprogram.

CSC 3112: Principles of Programming Languages 28/29



Exercise

Review Questions: 8, 10, 15, 16
Problem Set 5, 7, 11, 12, 15

CSC 3112: Principles of Programming Languages 29/29


