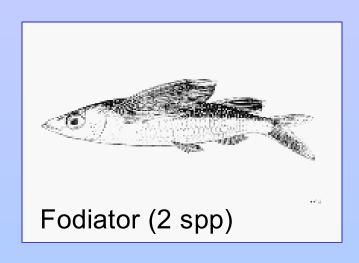
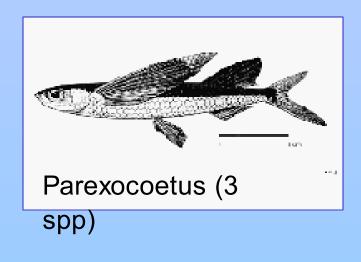
Flyingfish predators, prey and research methods: Lessons learned in the eastern Caribbean

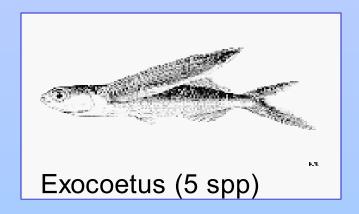
- Hazel A Oxenford
- Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill Campus, Barbados

Flyingfishes – Exocoetidae

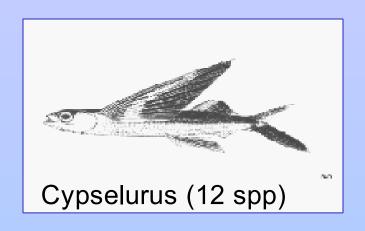
Order: Beloniformes 8 genera 67 species

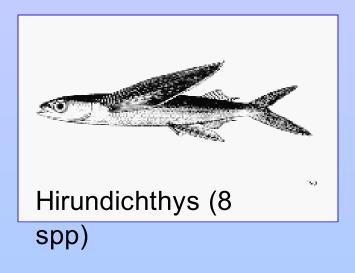

- Cheilopogon
- Cypselurus
- Danichthys
- Exocoetus




Source: Fishbase. Photo by C. Jesson

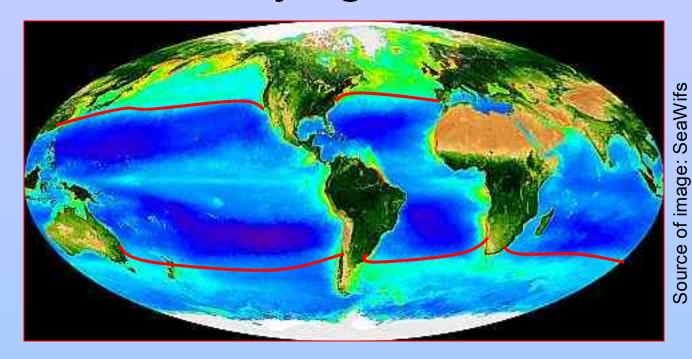
- Fodiator
- Hirundichthys
- Parexocoetus
- Prognichthys


Two-winged flyingfishes





Four-winged flyingfishes



Distribution and characteristics of flyingfishes

- Global distribution in tropics and subtropics
- Strictly epipelagic
- Oceanic and neritic species
- Most restricted to single ocean (some circum-global)
- Small (most < 30 cm)
- Capable of gliding flight

Importance to global fish yield

- Majority of species (> 30) support small scale fisheries
- Annual landings globally > 73,000 mt
- Best known flyingfish fishery is in Barbados
- The target species is the Atlantic fourwing flyingfish (Hirundichthys affinis)

Image removed

Traditional fishery in Barbados

- Ligon 1651
- Hughes 1750
- Schomburgk 1848
- Up to 1950s sailing boats

Economic importance of flyingfish to Barbados

TO X SU

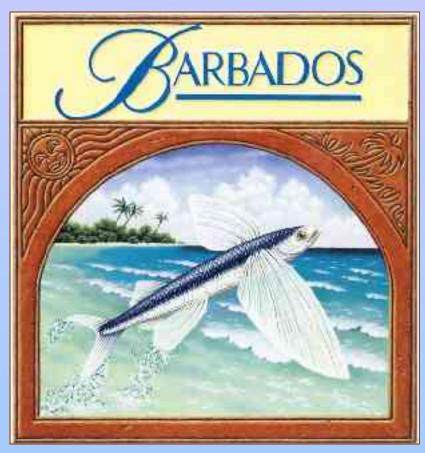
- 300 day-boats, 150 iceboats
- 1,100 fishers, 450
 persons in post harvest

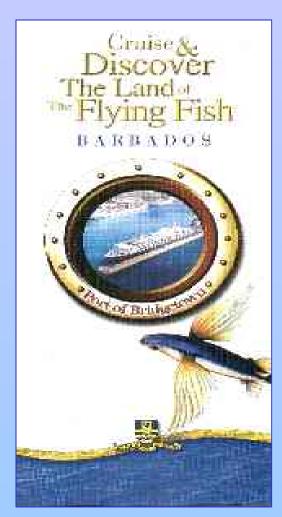
Economic importance of flyingfish to Barbados

- Landings > 2,000 mt per year
- Represent > 60% of annual fish landings
- Ex-vessel value of US \$ 2.65 million
- 6 fish processing companies

Cultural importance of flyingfish to Barbados

PREMIER The most highly recommended recommended attractions attractions in Barbados!


- National dish
- Dollar coin
- Definitive stamps
- Promotionary material



Source: Fishbase

Cultural importance of flyingfish to Barbados

Barbados Port Authority

Cultural importance of flyingfish to Barbados

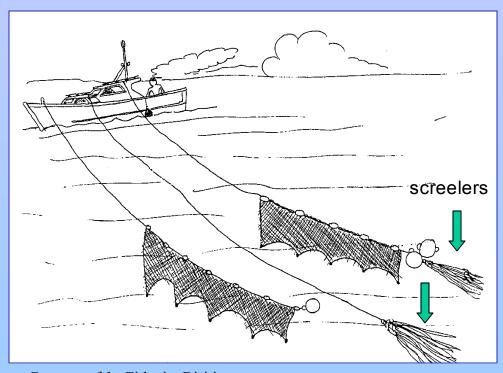
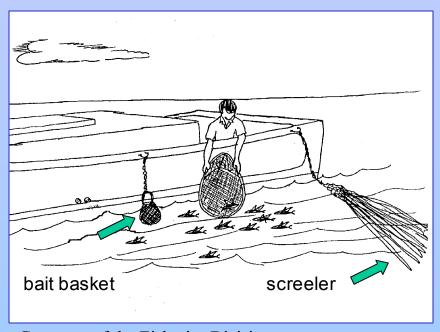


Image removed

A way of life for many Barbadians

Fishing Techniques in Barbados

- Surface floating gillnets
- FADs ("screelers")

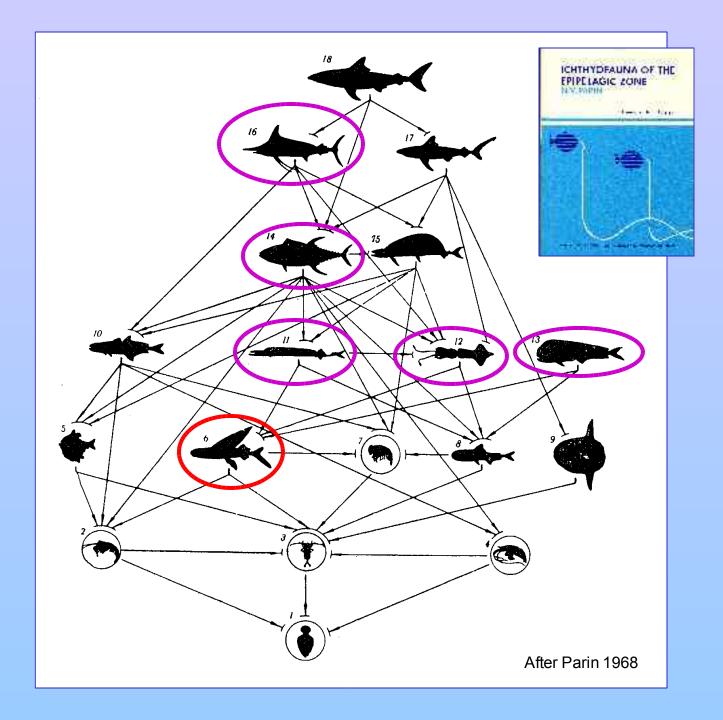


Courtesy of the Fisheries Division

Fishing Techniques in Barbados

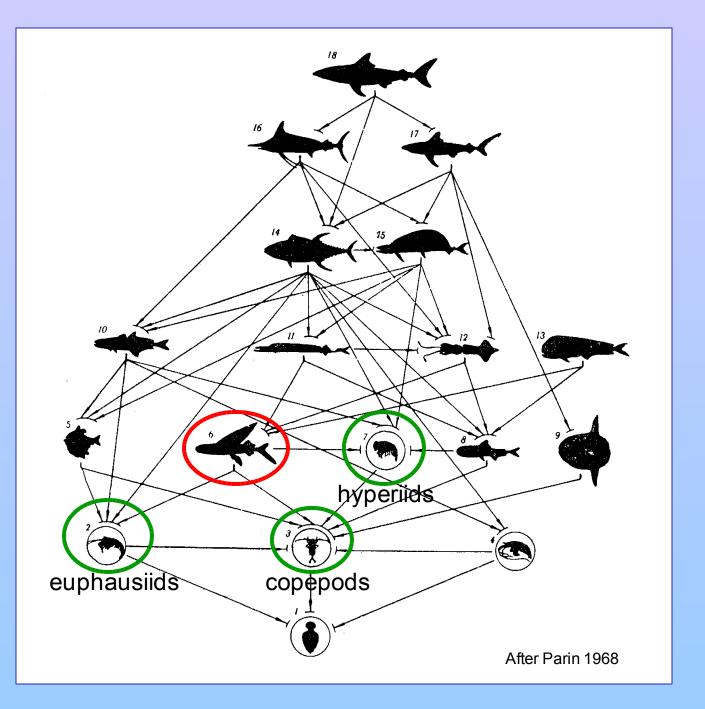
- Dipnets
- Chum basket

Courtesy of the Fisheries Division


Predators

Marine mammals

- dolphins
- sea lions

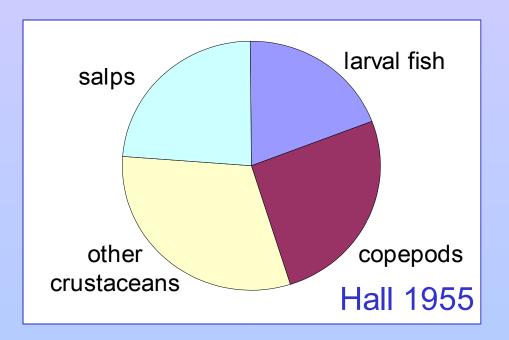

Sea birds

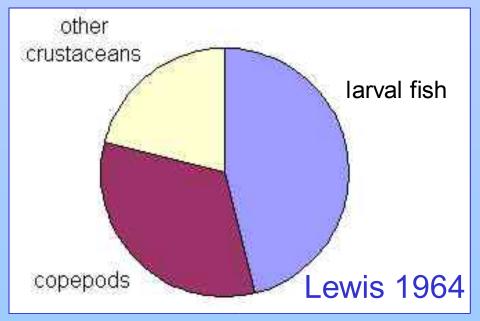
- boobies
- noddies
- frigate birds

Prey

- small finfishes
- pteropods
- ostracods
- amphipods
- decapods
- chaetognaths
- ascidians
- siphonophores
- salps

Flyingfish prey studies


Flyingfish species	Common name	Prey items	Age	Tropic	References	n	
, , ,			ŭ	level			
Exocoetus monocirrhus	barbel flyingfish	planktonic copepods, pelagic gastropods,	juvenile		Gorelova 1980		
		radiolaria, salphidae, chaetognatha					
Prognichthys sealei	sailor flyingfish	planktonic copepods, ostracods, gastropods	juvenile		Gorelova 1980		
Hirundichthys affinis	fourwing flyingfish	small finfishes, planktonic copepods, euphausic	adult		Hall 1955, Lewis et al 196	441, 293	
		amphipods, chaetognaths, siphonophores,			Barroso 1967	317, 931,	
		gastropods, pteropods, squids, salps, fish eggs	3,		Cruz & Araujo 1971		
		macroalgae fragments, marine insects					
Cheilopogon cyanopterus	margined flyingfish	planktonic crustaceans, other zooplankton	juv/adult		Heemstra and Parin 1986		
Parexocoetus brachypterus	sailfin flyingfish	zooplankton	juv/adult		Lewis 1961		
					Masuda and Allen 1993		
Cheilopogon heterurus	Mediterranean flyingfish	planktonic copepods, euphausiids,	larvae	3.1	Lipskaya 1987	17, 22	
		fish eggs/larvae					
Exocoetus obtusirostris	oceanic two-wing flyingfish	ascidians, planktonic copepods	larvae	3	Lipskaya 1987	20, 10	
Exocoetus volitans	tropical two-wing flyingfish	planktonic copepods, ascidians	larvae	3.0 - 3.1	Lipskaya 1987	0, 10, 4, 3, 15	
Hirundichthys speculiger	mirrorwing flyingfish	planktonic copepods	larvae	3	Lipskaya 1987		
Cheilopogon agoo	Japanese flyingfish	zooplankton	juv/adult		Masuda and Allen 1993		
Cheilopogon doederleinii	n/a	zooplankton	juv/adult		Masuda and Allen 1993		
C. pinnatibarbatus japonicus	n/a	zooplankton	juv/adult		Masuda and Allen 1993		
Cypselurus hiraii	n/a	zooplankton	juv/adult		Masuda and Allen 1993		
Cypselurus poecilopterus	yellow-wing flyingfish	zooplankton	juv/adult		Masuda and Allen 1993		
Cheilopogon rapanouiensis	Easter island flyingfish	small finfishes, zooplankton	juv/adult		Parin 1996		
Cheilopogon furcatus	spotfin flyingfish	finfishes, zooplankton	juv/adult		Parin 1999		
Cheilopogon intermedius	n/a	small finfishes, zooplankton	juv/adult		Parin 1999		
Cheilopogon pitcairnensis	n/a	small finfishes, zooplankton	juv/adult		Parin 1999		
Cheilopogon spilonotopterus	stained flyingfish	small finfishes, zooplankton	juv/adult		Parin 1999		
Cheilopogon spilopterus	manyspotted flyingfish	small finfishes	juv/adult		Parin 1999		
Cheilopogon suttoni	Sutton's flyingfish	small finfishes, zooplankton	juv/adult		Parin 1999		
Cypselurus hexazona	n/a	small finfishes, zooplankton	juv/adult		Parin 1999		
Cypselurus oligolepis	largescale flyingfish	small finfishes, zooplankton	juv/adult		Parin 1999		
Cypselurus opisthopus	black-finned flyingfish	small finfishes, zooplankton	juv/adult		Parin 1999		
Cheilopogon pinnatibarbatus	Bennett's flyingfish	zooplankton, finfishes	juv/adult		Parin and Gibbs 1990		
C. pinnatibarbatus melanoceru	n/a	zooplankton, planktonic crustacean	juv/adult		Paulin et al 1989		


Primary source: FishBase

Detailed diet composition

Hirundichthys affinis

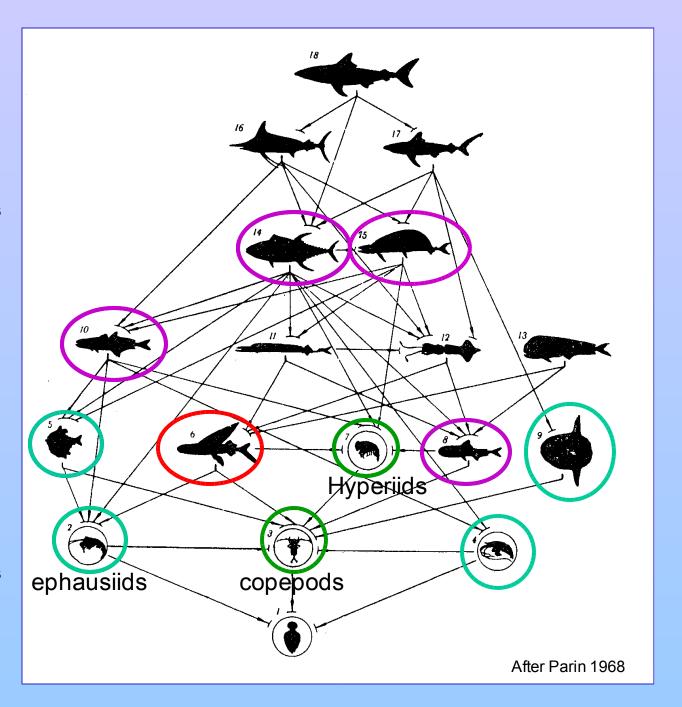
Early studies used frequency of occurrence in stomachs

Feeding Habits

- Feed exclusively on small zooplankton
- Actively hunt mostly for small finfishes, copepods and other crustaceans
- Also eat other planktonic invertebrates
- Can be considered tertiary-level feeders
- Feed mostly at night
- Feed actively through the spawning season

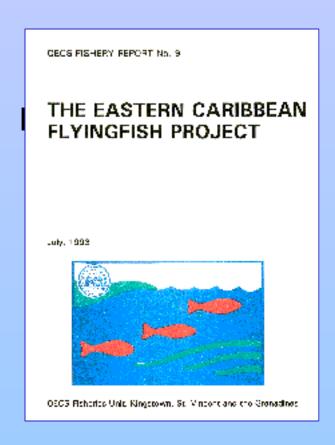
Competitors

For Euphausiids:


- fishes of the 'shifting layers'
- small deep water fishes (Chiasmodon)
- Tuna

For Copepods:

- euphausiids
- shrimp
- shifting layer fishes
- hyperiids
- myctophiids
- molas


For Hyperiids:

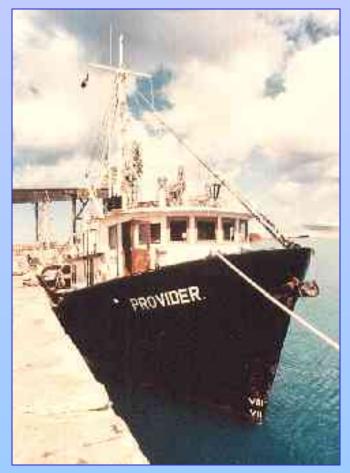
- myctophids
- small deep water fishes
- tunas
- snake mackerels

Research Methods

- Eastern Caribbean Flyingfish Project
- Funded by IDRC
- 5-year duration (1986-1991)
- University of the West Indies and Research Institute
- Fishery Divisions of 7 countries
- 3 scientists, 4 MPhil students

Research Methods

- Distribution and abundance of adults, juveniles, larvae and eggs
- Movements
- Age determination
- Spawning behaviour
- Genetic population structure


Distribution and Relative Abundance

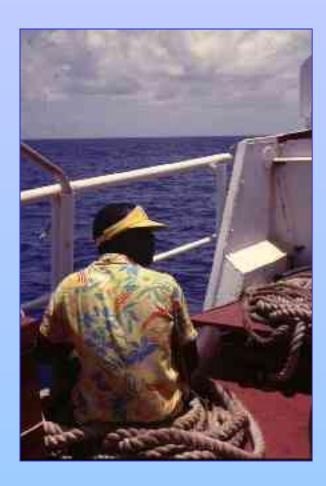
Adults and Juveniles

- Acoustic gear
- Visual survey
- Night-lighting
- Predator gut contents
- Fishery catch data

Eggs and Larvae

Neuston net tows

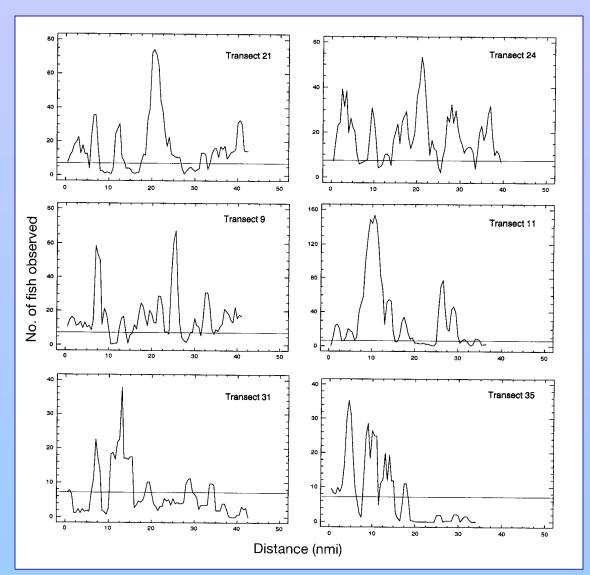
Survey vessel


Sonar Technology Adults and juveniles

- Hull mounted fish finder (vertical and side scan)
- Surface towed sonar (looking up, looking down)

Conclusion

Significant failure!


Adults and juveniles

VISUAL (JUL	K.	TA S	HEET	16												JISE NO: 1
Name: .	• • • •	· · · · ·			• • • •	• • •	-			SI	eet	No:	• • •	/ No	. of	she	ets
/essel_l				bivo	er				OB	SCF	LUC	R PO	517	W,	Pn	7	
Date: 25./4/88						OBSCRUCE POSITY PROT Time: Start											
ransec	t No	·:	٤,						0 20	inis G-A	sh 45	۰۰.۲.۱ ۱۲	h: h:	rs ,	_		
ind ove	er:	bow	st	ern (port	$>_{ m sta}$	rboa	rd :	Sun pos	itic	ned:	infi	~([`	Ge.	hind	0,	erhead
essel (trav	elli		inte	o va gona	ves I ly i	awa nto										
irundio	hth	ys a	ffin	is					Cypselı	rus	cyan	opter	านธ				
4			Numi	ber o	obse:	rved				Num	ber o	bse	rved				
'ime mins)	<5	5-9	10- 14	15~ 19	20- 24	25- 29	>30	Comments '	Time (mins)	<5	5- ₉	10- 14	15- 19	20- 24	25- 29	>30	Comments
			12				12	3/2/1/4/1	7,1	0						1	,
0						27	27	2/1/2/3/1	1/10/	0							,
5		8		Γ	T	J <i>-</i>	8	1/1/2/1/1	7	٥	`.					T	,
0							35	3/1/4/4/3	12/7/3	b						7	,
5					20	Ī	20	1/3/2/1/14	14/1	0						-4	
0		7					7	1/1/1/2/1		0						O T	
5	3						3	1,1,1		0							,
0	6						0	i		0						7	
5	Q.						3	1/1/1		δ						+	
0	3					(12	4/3	7/5		0						+	
5					W			1/1/1/20/		0			0			+	
0		4					6	1/3/.1.1		0						1	,
arexoco	etu	s bra	ichy	ter	is				Unident	ifie	<u>a</u> │					_	
]				2/		21	6/12/2/1		3						0	
o	2	1					2	11.1		٥						0	
5 ,	0		· ·				O	<i>!</i>		2						2	ν Σ
0						26	26	18/11/18/1		0						0	,
5			13				13	11/17/1/31		7						.¥	
0					2/		21	115/2/2/1		0	1					6	
5	1						1	<i>,</i>		ō			0			ō	
5	1			17			17	7/6/4/		Ö			-3			<u>~</u> _	
5	1						32	5/2/10/15	7	ď	†			†		۵	`
0					(a	1		77 7 1 1 1	25/1	<u>s</u>	†					0	
5	0				48	ナー	0		4	-0-1			+			g Ø	
0	4							1/3		0	†				†	Ü	,
	7		- 1			- 1	4 1 (~	13		9		,				<u> </u>	

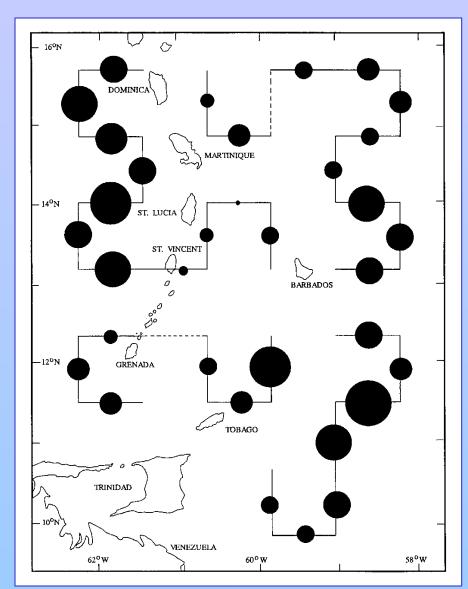
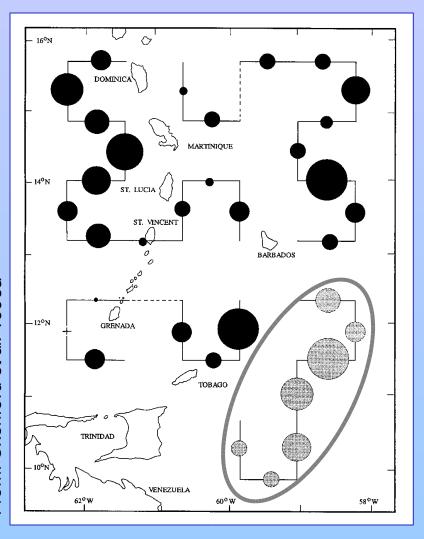
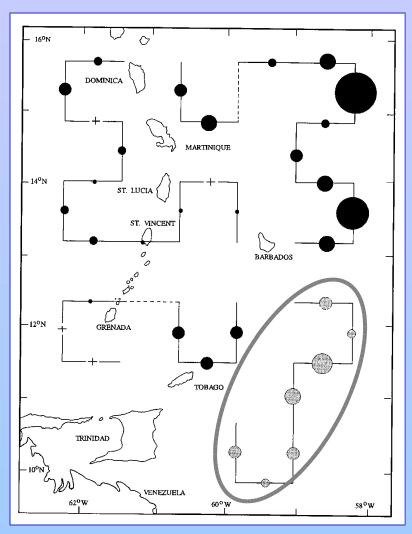

Distribution and size of flyingfish patches

Image removed


From: Oxenford et al. 1995a


Relative abundance of all flyingfishes across the eastern Caribbean

From: Oxenford et al. 1995a

Parexocoetus brachypterus

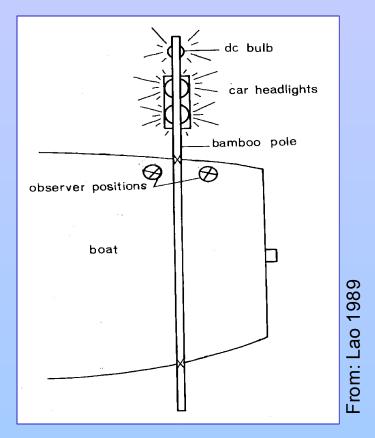
Cheilopogon cypselurus

From: Oxenford et al. 1995a

Note:

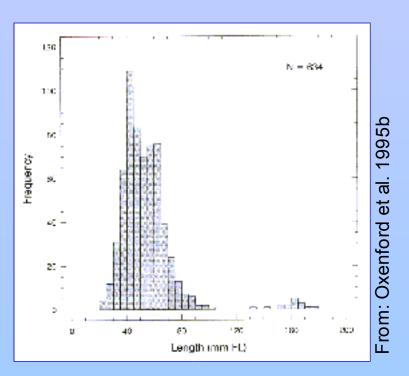
- Assumes a constant proportion of the school flies
- Close correlation with other indices (dipnet data)

Conclusions

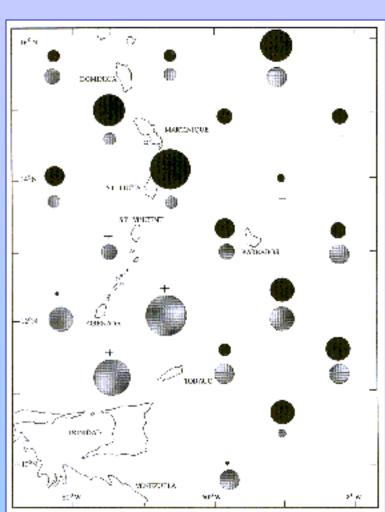

- Provide reliable data on relative abundance
- Easy and relatively inexpensive
- Suitable for individual species
- Objectivity could be improved with additional instrumental recording (e.g. video)

Night-Lighting and Dipnetting Adults and juveniles

Image removed


Traditional flyingfish fishing in Tokelau

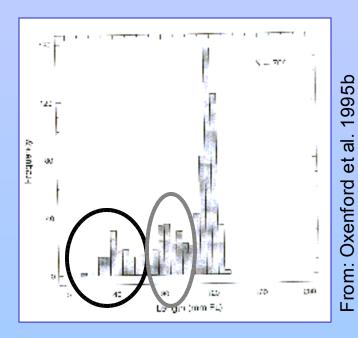
- 200 watt spot lamps
- 5 mm mesh dipnet
- 4 replicate stations
- 40 mins each



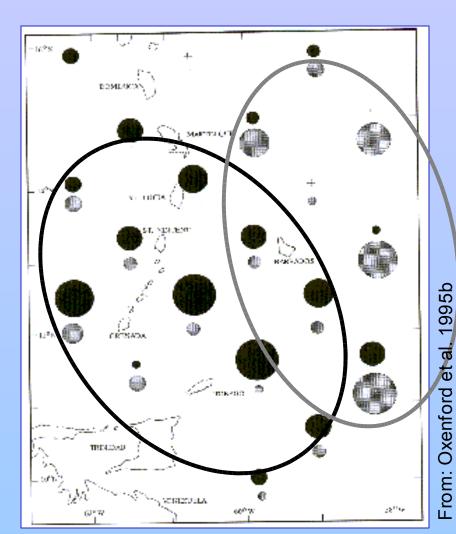
Arrangement of nightlights on small fishing vessel

Partitioning by species

Exocoetus volitans


From: Oxenford et al.

1995b

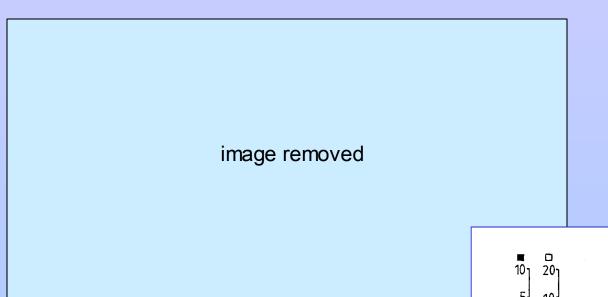


Hirundichthys affinis

Partitioning by size

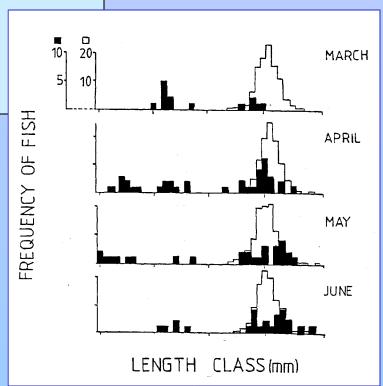
Parexocoetus brachypterus

small juveniles


large juveniles

Comparing distribution of four-winged flyingfishes among years

graphic removed

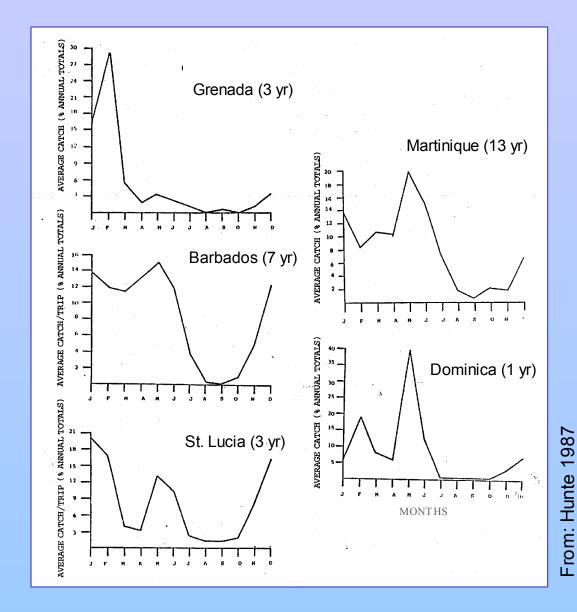

From: Pitman et al. 2002

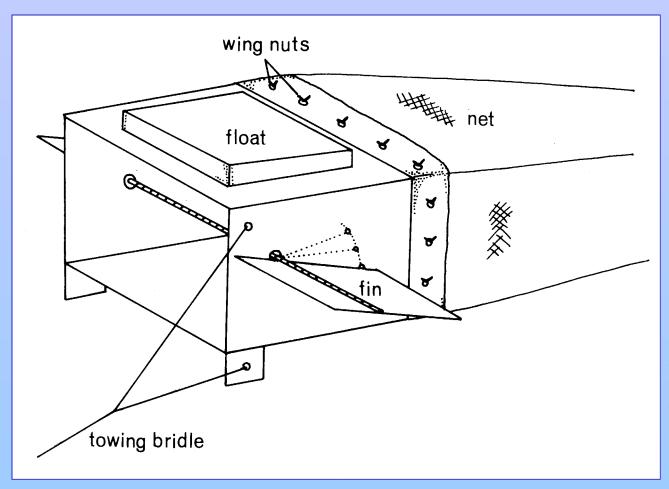
Predator Gut Contents: Adults and juveniles

Monthly size frequency of Hirundichthys affinis sampled by the fishery (gillnet and hooks) and by dolphinfish predators

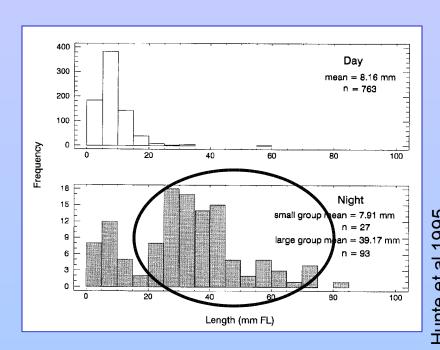
- from dolphinfish
 - ☐ from fishery

From: Storey 1983


Fishery Dependent Catch Data: Adults

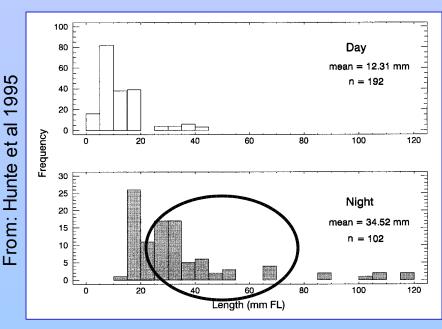

Dominica canoe

Barbados day launch



Neuston Net Tows: Eggs and larvae

From: Oxenford et al 1986


Neuston Net Tows: Eggs and larvae

Day collections

- Larvae more abundant
- only small larvae captured

Exocoetus volitans

Parexocoetus brachypterus

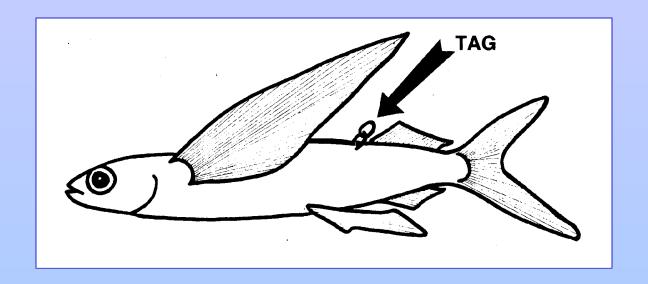
Adult Movements: Tagging Hirundichthys affinis

Off Barbados

- Mulloney 1961 (n = 762)
- Lewis 1964 (n = 1,288)

Off Brazil

• Barroso 1967 (n = 552)


Results

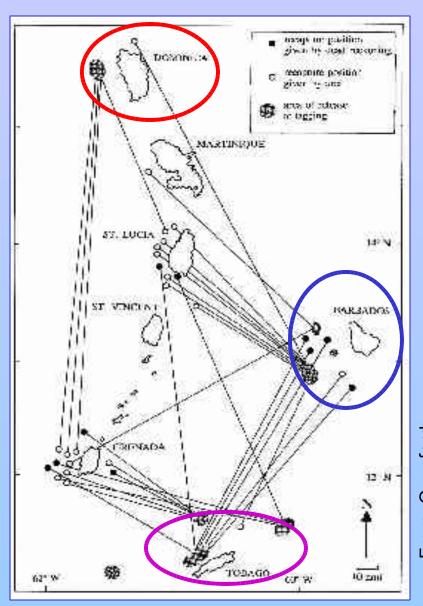
- Local recapture of 1 6.4%
- Time-at-large up to 50 days

From: Barroso 1967

Adult Movements: Tagging

- 7,019 flyingfish tagged
- Floy fingerling tags
- Hand-stitched in 30 sec
- Captured by dipnet and barbless hook
- Tagged and released across the eastern Caribbean
- 1988 and 1989 fishing seasons

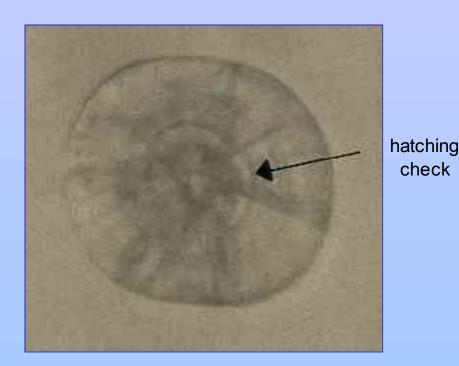
Adult Movements: Tagging


Public awareness campaign

Adult Movements: Tagging

Results

- 4.5% recaptured
- Mean time-at-large: 3 weeks, maximum: 121 days
- Greatest recorded displacement: 200 nmi
- Fastest speed > 16 nmi/day
- 10% recaptures showed transboundary movement
- Transboundary movements same for males and females
- Greater movement by maturing fish than running ripe or spent fish
- No tag returns in following season

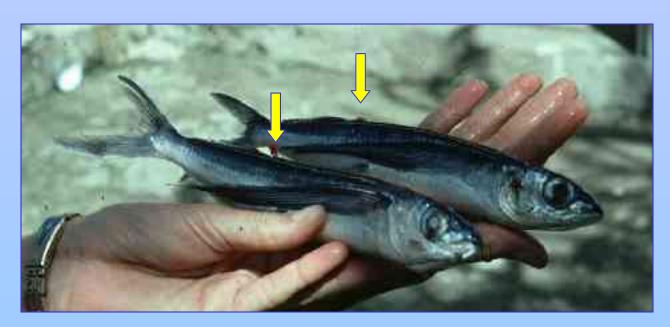


From: Oxentord

Age Determination: Adults and juveniles

Otolith growth checks

- Otoliths must be ground and polished
- Viewed under 500 x
- Good agreement between readers
- Presumed daily rings clearly visible in lapilli of juveniles and adults
- Rings cannot be counted beyond 120



Lapillus otolith from Hirundichthys affinis

Age Determination

Validating daily rings

- Marking captive adults with OTC
- Marking, tagging and releasing (n = 946)

Tagged fish marked with OTC

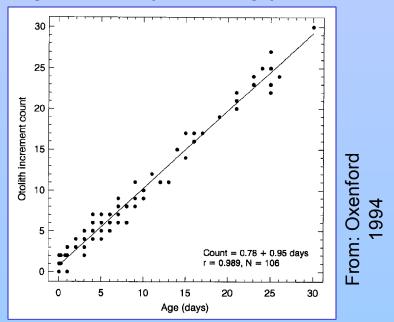
Age Determination

Validating daily rings Laboratory rearing

- Hatched in 3-6 days
- Fed on brine shrimp

Collecting eggs of Hirundichthys affinis

Otoliths in newly hatched *H.affinis* larva



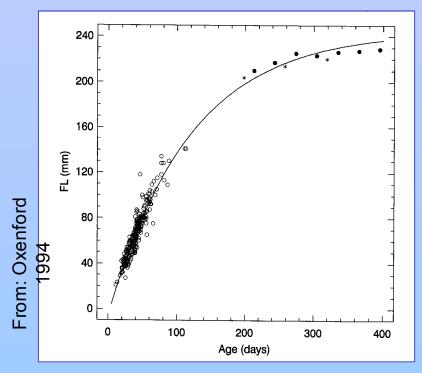
Flyingfish larvae

Age Determination

Validating daily rings Laboratory rearing

- Sacrificed every day for counting rings
- Maintained in laboratory for 52 days
- Rings and days strongly correlated

Otoliths growth checks vs known age



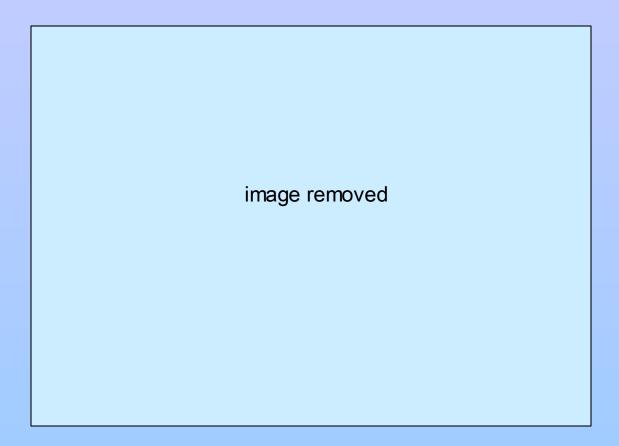
Laboratory reared larvae of Hirundichthys affinis

Age Determination: Further validation

Modal progression

 Fishery independent sampling

Von Bertalanffy growth curve for Hirundichthys affinis


Radio chemical dating

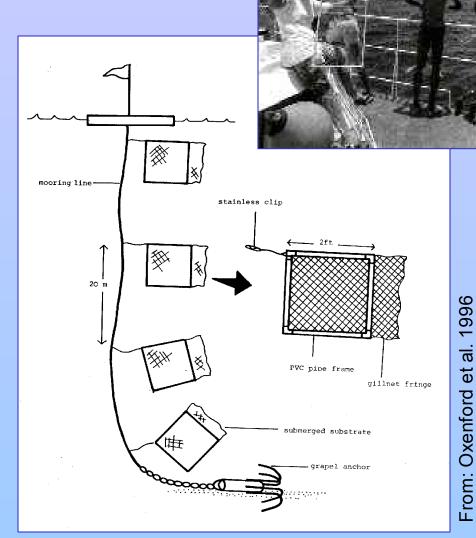
Th-228/Ra-228 radio isotopic pair

Conclusions

- Otoliths show daily rings suitable for aging juveniles
- Larvae easy to hatch in laboratory
- Juvenile growth is fast (1.4 mm/day)
- Growth rate slows markedly after sexual maturity
- Radiochemical dating feasible but expensive
- Fishing gear very size selective

Reproductive Characteristics: Spawning behaviour

Flyingfish spawning on surface substrate (screeler)

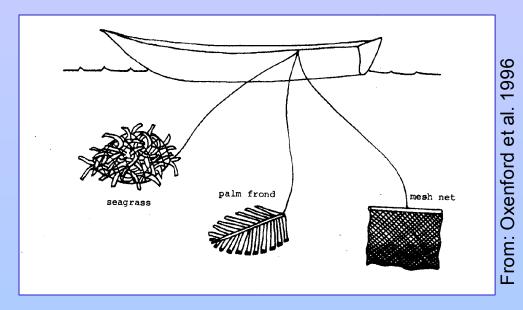

Spawning Behaviour

The mystery?

- Scarcity of spawning substrata (flotsam)
- Scarcity of eggs
- Newly hatched larvae swim upwards
- Anecdotal evidence from fishers

The test

- Provided substrates at different depths
- Provided surface substrates for sinking


Experimental spawning substrata moorings

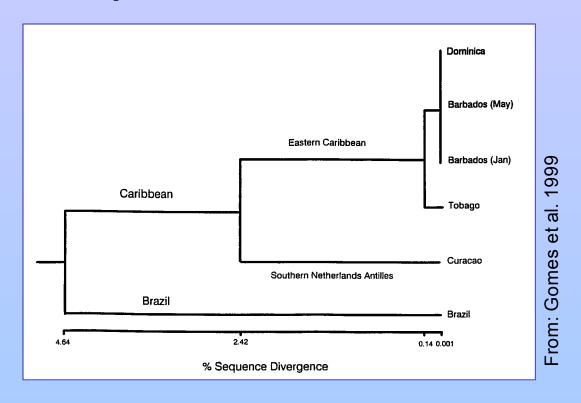
Spawning Behaviour

Results

- Flyingfish did spawn on substrata at 20 m depth
- Strong preference for surface

Results

- Flyingfish spawned on all 3 substrata
- Experiment inconclusive as insufficient time


- mtDNA RFLPs
- gDNA RAPDs

Frequency of composite mitotypes of *H. affinis*

1999 From: Gomes et al.

Population Genetics

- Consistent results for RFLPs and RAPDs
- Clear separation of populations

- 3 distinct unit stocks
- Shared management in eastern Caribbean