
1

CS8592 OBJECT ORIENTED ANALYSIS AND DESIGN

UNIT-I V-Sem-CSE 2017-Regulations

UNIT I UNIFIED PROCESS AND USECASE DIAGRAMS 9

Introduction to OOAD with OO Basics – Unified Process – UML diagrams – Use Case –Case study –

the Next Gen POS system, Inception -Use case Modeling – Relating Use cases – include, extend and

generalization – When to use Use-cases

Question Bank – UNIT-I

1) What is the critcal ability of an Object Oriented System?

A critical ability of Object Oriented development is to skillfully assign responsibilities to

software objects. It is one activity that must be performed either while drawing a UML diagram or

programming and it strongly influences the robustness, maintainability, and reusability of software

components.

2) What is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather than a solution. For

example, if a new online trading system is desired, Analysis answers the following questions :
How will it be used?

What are its functions?
"Analysis" is a broad term, and it is refered as requirements analysis (an investigation of the

requirements) or object-oriented analysis (an investigation of the domain objects).

Design emphasizes a conceptual solution (in software and hardware) that fulfills the requirements,

rather than its implementation. For example, a description of a database schema and software objects.

Design ideas often exclude low-level or "obvious" details obvious to the intended consumers.

Ultimately, designs can be implemented, and the implementation (such as code) expresses the true and

complete realized design. As with analysis, the term is best qualified, as in object-oriented design or

database design.

Useful analysis and design have been summarized in the phrase do the right thing (analysis), and do the

thing right (design).

3) What is Object Oriented Analysis and Design?

During object-oriented analysis there is an emphasis on finding and describing the objects or concepts

in the problem domain. For example, in the case of the flight information system, some of the concepts

include Plane, Flight, and Pilot.

During object-oriented design (or simply, object design) there is an emphasis on defining software

objects and how they collaborate to fulfill the requirements. For example, a Plane software object may

have a tailNumber attribute and a getFlightHistory method (see Figure 1.1).

2

Figure 1.1. Object-orientation emphasizes representation of objects.

4) Define a Domain Model.

Object-oriented analysis is concerned with creating a description of the domain from the

perspective of objects. There is an identification of the concepts, attributes, and associations that are

considered noteworthy.
The result can be expressed in a domain model that shows the noteworthy domain concepts or

objects. For example, a partial domain model is shown in Figure 1.2.

. It can be noted that a domain model is not a description of software objects; it is a visualization

of the concepts or mental models of a real-world domain and it is also called a conceptual object

model.

Figure 1.2. Partial domain model of the dice game

5) What is the UML?

The Unified Modeling Language(UML) is a visual language for specifying, constructing and

documenting the artifacts of systems.
The word visual in the definition is a key point - the UML is the de facto standard diagramming

notation for drawing or presenting pictures (with some text) related to software primarily OO software

6) What are the three ways to apply UML?

3

1) UML as sketch Informal and incomplete diagrams (often hand sketched on whiteboards) created to

explore difficult parts of the problem or solution space, exploiting the power of visual languages.

2) UML as blueprint Relatively detailed design diagrams used either for
1) reverse engineering to visualize and better understanding existing code in UML diagrams, or for 2)

code generation (forward engineering).

If reverse engineering, a UML tool reads the source or binaries and generates (typically) UML

package, class, and sequence diagrams. These "blueprints" can help the reader understand the bigpicture

elements, structure, and collaborations.

Before programming, some detailed diagrams can provide guidance for code generation (e.g., in

Java), either manually or automatically with a tool. It's common that the diagrams are used for some

code, and other code is filled in by a developer while coding (perhaps also applying UML sketching).
3) UML as programming language - Complete executable specification of a software system in UML.

Executable code will be automatically generated, but is not normally seen or modified by developers;

one works only in the UML "programming language." This use of UML requires a practical way to

diagram all behavior or logic (probably using interaction or state diagrams), and is still under

development in terms of theory, tool robustness and usability.

Agile modeling emphasizes UML as sketch; this is a common way to apply the UML, often with a high

return on the investment of time (which is typically short).

7) What are the three perspectives to apply UML?

Three Perspectives to Apply UML
1. Conceptual perspective the diagrams are interpreted as describing things in a situation of the real

world or domain of interest.

2. Specification (software) perspective the diagrams (using the same notation as in the conceptual

perspective) describe software abstractions or components with specifications and interfaces, but no

commitment to a particular implementation (for example, not specifically a class in C# or Java).

3. Implementation (software) perspective the diagrams describe software

implementations in a particular technology (such as Java).

Figure 1.3. Different perspectives with UML.

8) Define a) Conceptual Class,b) Software Class,c) Implementation Class.

Conceptual class - real-world concept or thing. A conceptual or essential perspective. The UP

Domain Model contains conceptual classes.

4

Software class - a class representing a specification or implementation perspective of a software

component, regardless of the process or method.

Implementation class - a class implemented in a specific OO language such as Java.

9) What is the Unified Process(UP)?

A software development process describes an approach to building, deploying, and possibly

maintaining software.

The Unified Process has emerged as a popular iterative software development process for building

object-oriented systems. In particular, the Rational Unified Process or RUP, a detailed refinement of

the Unified Process, has been widely adopted.
The UP is very flexible and open, and encourages including skillful practices from other iterative

methods, such as from Extreme Programming (XP), Scrum, and so forth. For example, XP's test-

driven development, refactoring and continuous integration practices can fit within a UP project. So

can Scrum's common project room ("war room") and daily Scrum meeting practice.

The UP combines commonly accepted best practices, such as an iterative lifecycle and risk-driven

development, into a cohesive and well-documented process description.

10) What is the importance of the Unified Process(UP)?

1) The UP is an iterative process. Iterative development influences

how to introduce OOA/D , and to understand how it is best

practiced.

2) UP practices provide an example structure for how to do and thus how to explain OOA/D.

3) The UP is flexible, and can be applied in a lightweight and agile approach that includes

practices from other agile methods (such as XP or Scrum).

11) What is Iterative and Evolutionary Development?

A key practice in both the UP and most other modern methods is iterative development. In

this lifecycle approach, development is organized into a series of short, fixed-length (for example,

three-week) mini-projects called iterations; the outcome of each is a tested, integrated, and

executable partial system. Each iteration includes its own requirements analysis, design,

implementation, and testing activities.
The iterative lifecycle is based on the successive enlargement and refinement of a system through

multiple iterations, with cyclic feedback and adaptation as core drivers to converge upon a suitable

system. The system grows incrementally over time, iteration by iteration, and thus this approach is

also known as iterative and incremental development (see Figure 2.1). Because feedback and

adaptation evolve the specifications and design, it is also known as iterative and evolutionary

development. Early iterative process ideas were known as spiral development and evolutionary

development [Boehm]

5

Figure 1.4. Iterative and evolutionary development.
.

12) What are the benefits of iterative development?
Benefits include:

less project failure, better productivity, and lower defect rates; shown by research into

iterativeand evolutionary methods

 early rather than late mitigation of high risks (technical, requirements, objectives, usability, and

so forth) early visible progress

 early feedback, user engagement, and adaptation, leading to a refined system that more closely

meets the real needs of the stakeholders

 managed complexity; the team is not overwhelmed by "analysis paralysis" or very long and

complex steps

 the learning within an iteration can be methodically used to improve the development process

itself, iteration by iteration

13) Why is Waterfall is so failure prone?

There isn't one simple answer to why the waterfall is so failure-prone, but it is strongly related to a

key false assumption underlying many failed software projects that the specifications are predictable

and stable and can be correctly defined at the start, with low change rates. This turns out to be far

from accurate and a costly misunderstanding. A study by Boehm and Papaccio showed that a typical

software project experienced a 25% change in requirements. And this trend was corroborated in

another major study of thousands of software projects, with change rates that go even higher35% to

50% for large projects as illustrated in Figure 1.5.

6

Figure 1.5 Percentage of change on software projects of varying

sizes.

14) What is the need for feedback and adaptation?

The Need for Feedback and Adaptation
In complex, changing systems (such as most software projects) feedback and adaptation are key

ingredients for success.

 Feedback from early development, programmers trying to read specifications, and client

demos to refine the requirements.

 Feedback from tests and developers to refine the design or models.

 Feedback from the progress of the team tackling early features to refine the schedule and

estimates.

 Feedback from the client and marketplace to re-prioritize the features to tackle in the next

iteration

15) What are agile methods?

Agile development methods usually apply timeboxed iterative and evolutionary development,

employ adaptive planning, promote incremental delivery, and include other values and practices that

encourage agility,rapid and flexible response to change.

Agile methods share best practices like evolutionary refinement of plans, requirements, and

design. In addition, they promote practices and principles that reflect an agile sensibility of

simplicity, lightness, communication, self-organizing teams, and more.

16) Name any five agile principles.

a) Satisfy the customer through early and continuous delivery of valuable

software.

b) Agile processes harness change for customer’s competitive advantage.

c) Deliver working software frequently

7

d) Agile software promote sustainable development

e) The best,architecture,requirements,and designs emerge from self-organizing

teams

17) What is Agile Modeling?

The very act of modeling can and should provide a way to better understand the problem or

solution space. The purpose of doing UML is to quickly explore(more quickly than with code)

alternatives and the path to a good OO design. Many agile methods,such as feature-driven

Development,DSDM,and Scrum include significant modeling sessions, The purpose of modeling is

primarily support understanding and communication ,not documentation. Defer simple or

straightforward design problems until programming – solve them while programming and testing.

Model and apply the UML for the smaller percentage of unusual,difficult,tricky parts of the design

space. Prefer sketching UML on white boards,and capturing the diagrams with a digital camera.

Model in pairs(or traids) at the whiteboard – The purpose of modeling is to discover,understand

and share the understanding.

Create models in parallel. For example,start sketching in one whiteboard, Dynamic View UML

Interaction diagram,and in another whiteboard,the static view,the UML Class Diagram.

All prior diagrams are incomplete hints – throw-away explorations;only tested code demonstrates the

true code.

18) What are the other Critical UP practices?

The idea for UP practice is short timeboxed iterative,evolutionary,and adaptive development.

Some additional best practices and key ideas in UP are

 Tackle high-risk and high-value issue in eary iterations

 Continual evaluation,feedback and requirements from users

 Build cohesive,core architecture in ealy iterations

 Continuously verify quality;test early,often and realistically

 Practice Change Request and Configuration Management

19) What are the different UP Phases?

An UP Project organizes work and iterations across four major phases :

1) Inception – approximate Vision,Business case,Scope,vague estimates

2) Elaboration – Refined BVision,iterative implementation of the core architecture,resolution

of high risks,identification of most requirements and scope,more realistic estimates

3) Construction – Iterative implementation of the remaining lower risk and easier elements,and

preparation for deployment

4) Transition – beta tests,deployment

20) What are the UP disciplines?

In the UP,an artifact is the general term for any work product : Code,Web Graphics,Schema,Test

Documents,diagrams,model and so on.

Some of the artifacts in the following Disciplines are :

a) Business Modeling – The Domain Model artifact,to visualize noteworthy concepts in

the application domain

b) Requirements – The Use Case Model and Supplementary specification artifacts to

capture functional and non-functional requirements

c) Design – The Design Model artifact,to design the software artifacts

d) Implementation – Programming and building the system,not deploying it

21) What is Inception?

8

Envision the product scope,vision,and business case.

Do the stakeholders have basic agreement on the vision of the project,and is it worth investing in

serious investigations?

The purpose of inception stage is not to define all the requirements. The Up is not the waterfall and

the first phase inception is not the time todo all requirements or create believable estimates or plans.

That happens during elaboration.

22) How long is the Inception phase can be?

The intent of inception is to establish some initial common vision for the objectives of the

project,determine if it is feasible,and decide if its is worth some serious investigation in

elaboration. It can be brief.

23) List any five inception artifacts.

24) Define Requirements.

Requirements are capabilities and conditions to which the system – and more broadly,the project

must conform.

The UP promotes a set of best practices,one of which is to manage requirements.

In the context of changing and and unclear stakeholder’s wishes – Managing requirements means – a

systematic approach to finding,documenting,organizing,and tracking the changing requirements of a

system.

A prime challenge of requirements analysis is to find,communicate,and remember(Towrite down)

what is really needed,in a formthat clearly speaks to the client and development team members.

25) What are the types and categories of requirements?

In the UP, requirements are categorized according to the FURPS+ model [Grady92], a useful

mnemonic with the following meaning :

 Functional - features, capabilities, security.

 Usability - human factors, help, documentation.

 Reliability - frequency of failure, recoverability, predictability.

 Performance - response times, throughput, accuracy, availability, resource usage.

 Supportability - adaptability, maintainability, internationalization, configurability.

9

The "+" in FURPS+ indicates ancillary and sub-factors, such as:

 Implementation resource limitations, languages and tools, hardware, ...

 Interface constraints imposed by interfacing with external systems.

 Operations system management in its operational setting.

 Packaging for example, a physical box.

 Legal licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a checklist for requirements

coverage, to reduce the risk of not considering some important facet of the system.

Some of these requirements are collectively called the quality attributes, quality requirements, or

the "- ilities" of a system. These include usability, reliability, performance, and supportability. In

common usage, requirements are categorized as functional (behavioral) or non-functional (everything

else); some dislike this broad generalization [BCK98], but it is very widely used.

26) What are the key requirement artifacts?

The Key requirements artifacts are :

Use-Case Model - A set of typical scenarios of using a system. There are primarily for

functional

(behavioral) requirements.

Supplementary Specification - Basically, everything not in the use cases. This artifact is

primarily for all non-functional requirements, such as performance or licensing. It is also the

place to record functional features not expressed (or expressible) as use cases; for example, a

report generation.

Glossary - In its simplest form, the Glossary defines noteworthy terms. It also encompasses the

concept of the data dictionary, which records requirements related to data, such as validation

rules, acceptable values, and so forth. The Glossary can detail any element: an attribute of an

object, a parameter of an operation call, a report layout, and so forth.

Vision - Summarizes high-level requirements that are elaborated in the Use-Case Model and

Supplementary Specification, and summarizes the business case for the project. A short

executive overview document for quickly learning the project's big ideas.

Business Rules - Business rules (also called Domain Rules) typically describe requirements or

policies that transcend one software projectthey are required in the domain or business, and

many applications may need to conform to them. An excellent example is government tax laws.

Domain rule details may be recorded in the Supplementary Specification, but because they are

usually more enduring and applicable than for one software project, placing them in a central

Business Rules artifact (shared by all analysts of the company) makes for better reuse of the

analysis effort.

27) What are Use Cases?

Informally, use cases are text stories of some actor using a system to meet goals.

Use Case Example :

Process Sale: A customer arrives at a checkout with items to purchase. The cashier uses the POS

system to record each purchased item. The system presents a running total and line-item

details. The customer enters payment information, which the system validates and records. The

system updates inventory. The customer receives a receipt from the system and then leaves with

the items.

10

Notice that use cases are not diagrams, they are text . Focusing on secondary-value UML use

case diagrams rather than the important use case text is a common mistake for use case novices.

Use cases often need to be more detailed or structured than this example, but the essence is

discovering and recording functional requirements by writing stories of using a system to

fulfill user goals; that is, cases of use.

28) Define a) Actors,b)Scenarios,and c) Use cases.

Definition: What are Actors, Scenarios, and Use Cases?

Informal definitions:

An actor is something with behavior, such as a person (identified by role), computer system, or

organization; for example, a cashier.

11

A scenario is a specific sequence of actions and interactions between actors and the system; it is

also called a use case instance. It is one particular story of using a system, or one path through

the use case; for example, the scenario of successfully purchasing items with cash, or the

scenario of failing to purchase items because of a credit payment denial.

Informally then, a use case is a collection of related success and failure scenarios that describe

an actor using a system to support a goal

Definition of a use case provided by the RUP :

A set of use-case instances, where each instance is a sequence of actions a system performs that

yields an observable result of value to a particular actor [RUP].

29) What is Use-case Modeling?

Use-Case Model is the set of all written use cases; it is a model of the

system's functionality and environment. Use cases are text documents, not diagrams, and use-

case modeling is primarily an act of writing text, not drawing diagrams.
The Use-Case Model is not the only requirement artifact in the UP. There are also the

Supplementary Specification, Glossary, Vision, and Business Rules. These are all useful for

requirements analysis, but secondary at this point.
The Use-Case Model may optionally include a UML use case diagram to show the names of

use cases and actors, and their relationships. This gives a nice context diagram of a system

and its environment. It also provides a quick way to list the use cases by name.
There is nothing object-oriented about use cases; we're not doing OO analysis when writing

them. Use cases are a key requirements input to classic OOA/D.

30) What are the three kinds of Actors?

Definition: What are Three Kinds of Actors?

Actors are roles played not only by people, but by organizations, software, and machines.

There are three kinds of external actors in relation to the SuD:

1) Primary actor has user goals fulfilled through using services of the SuD. For example,

the cashier.
Why identify? To find user goals, which drive the use cases.

2) Supporting actor provides a service (for example, information) to the SuD. The

automated payment authorization service is an example. Often a computer system, but

could be an organization or person.
Why identify? To clarify external interfaces and protocols.

3) Offstage actor has an interest in the behavior of the use case, but is not primary or

supporting; for example, a government tax agency.

Why identify? To ensure that all necessary interests are identified and satisfied.

31) What are the common use case artifacts?

32) What are preconditions and postconditions?

Preconditions and Success Guarantees (Postconditions)

12

Preconditions state what must always be true before a scenario is begun in the use case.

Preconditions are not tested within the use case; rather, they are conditions that are assumed to

be true. Typically, a precondition implies a scenario of another use case, such as logging in, that

has successfully completed.

Success guarantees (or postconditions) state what must be true on successful completion of the

use case either the main success scenario or some alternate path. The guarantee should meet the

needs of all stakeholders.

EXAMPLE :

Preconditions: Cashier is identified and authenticated.

Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated. Accounting and

Inventory are updated. Commissions recorded. Receipt is generated.

33) How to find Use cases?

Guideline: How to Find Use

Cases

Use cases are defined to satisfy the goals of the primary actors. Hence, the basic procedure

is:

1) Choose the system boundary. Is it just a software application, the hardware and

application as a unit, that plus a person using it, or an entire organization?

2) Identify the primary actorsthose that have goals fulfilled through using services of the

system.

3) Identify the goals for each primary actor.

4) Define use cases that satisfy user goals; name them according to their goal. Usually, user-

goal level use cases will be one-to-one with user goals, but there is at least one exception,

as will be examined.

34) What does Use case Diagram represent? Give an

example. Applying UML: Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use cases and actors, and

the relationships between them.

Guideline
A simple use case diagram is drawn in conjunction with an actor-goal list.

A use case diagram is an excellent picture of the system context; it makes a good context

diagram, that is, showing the boundary of a system, what lies outside of it, and how it gets used.

It serves as a communication tool that summarizes the behavior of a system and its actors. A

sample partial use case context diagram for the NextGen system is shown below.

13

Figure 1.5. Partial use case context diagram.

35) Define use case relationships a)Include b)Extend

Include Relationship
Use cases can be related to each other.
It is common to have some partial behavior that is common across several use cases. For example, the description of paying

by credit occurs in several use cases, including Process Sale, Process Rental, Contribute to Lay-away Plan, and so forth.

Rather than duplicate this text, it is desirable to separate it into its own subfunction use case, and indicate its inclusion. This is

simply refactoring and linking text to avoid duplication.

The include relationship can be used for most use case relationship problems.

14

To summarize:

Factor out subfunction use cases and use the Include relationship when:
• They are duplicated in other use cases.

• A use case is very complex and long, and separating it into subunits aids
comprehension.

Extend Relationship
 Extend puts additional behavior in a use case that does not

know about it.

 It is shown as a dotted line with an arrow point and labeled <<extend>>

 In this case, a customer can request a catalog when placing an order

The following diagram illustrates use case Include relationship

Example of Use Case Extend relationship

1

1

CS8592 Object Oriented Analysis and Design
V-Sem-CSE V-Sem-IT Anna University

 2017 Regulations

UNIT II STATIC UML DIAGRAMS 9

Class Diagram–– Elaboration – Domain Model – Finding conceptual classes and description classes –

Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies –

Aggregation and Composition – Relationship between sequence diagrams and use cases – When to use

Class Diagrams

--- ---------

-

Question Bank

UNIT-II

1) Define a Domain Model.
Object-oriented analysis is concerned with creating a description of the domain from the

perspective of objects. There is an identification of the concepts, attributes, and associations
that are considered noteworthy.

The result can be expressed in a domain model that shows the noteworthy
domain concepts or objects. For example, a partial domain model is shown in Figure
1.2.
. It can be noted that a domain model is not a description of software objects; it is a
visualization of the concepts or mental models of a real-world domain and it is also called
a conceptual object model.

Figure 1.2. Partial domain model of the dice game

2) Define a) Conceptual Class,b) Software Class,c) Implementation Class.
Conceptual class - real-world concept or thing. A conceptual or essential perspective. The

UP Domain Model contains conceptual classes.

2

Software class - a class representing a specification or implementation perspective of
a software component, regardless of the process or method.
Implementation class - a class implemented in a specific OO language such as Java.
3) What are the different UP Phases?

An UP Project organizes work and iterations across four major phases :

1) Inception – approximate Vision,Business case,Scope,vague estimates

2) Elaboration – Refined BVision,iterative implementation of the core

architecture,resolution of high risks,identification of most requirements and
scope,more realistic estimates

3) Construction – Iterative implementation of the remaining lower risk and
easier elements,and preparation for deployment

4) Transition – beta tests, deployment
4) What are the UP disciplines?

In the UP,an artifact is the general term for any work product :
Code,Web Graphics,Schema,Test Documents,diagrams,model and so on.
Some of the artifacts in the following Disciplines are :

a) Business Modeling – The Domain Model artifact,to visualize noteworthy
concepts in the application domain

b) Requirements – The Use Case Model and Supplementary specification
artifacts to capture functional and non-functional requirements

c) Design – The Design Model artifact,to design the software artifacts

d) Implementation – Programming and building the system,not deploying it
5) What is Inception?

Envision the product scope,vision,and business case.
Do the stakeholders have basic agreement on the vision of the project,and is it worth investing

in serious investigations?
The purpose of inception stage is not to define all the requirements. The Up is not the

waterfall and the first phase inception is not the time todo all requirements or create

believable estimates or plans. That happens during elaboration.
6) How long is the Inception phase can be?

The intent of inception is to establish some initial common vision for the objectives of
the project,determine if it is feasible,and decide if its is worth some serious investigation
in elaboration. It can be brief.

7) List any five inception artifacts.

3

8) Define Requirements.

Requirements are capabilities and conditions to which the system – and more
broadly,the project must conform.
The UP promotes a set of best practices,one of which is to manage requirements.
In the context of changing and and unclear stakeholder’s wishes – Managing requirements
means – a systematic approach to finding,documenting,organizing,and tracking the changing
requirements of a system.

A prime challenge of requirements analysis is to find,communicate,and
remember(Towrite down) what is really needed,in a formthat clearly speaks to the client and
development team members.

9) What are the types and categories of requirements?
In the UP, requirements are categorized according to the FURPS+ model [Grady92], a

useful mnemonic with the following meaning :
 Functional - features, capabilities, security.

 Usability - human factors, help, documentation.

 Reliability - frequency of failure, recoverability, predictability.

 Performance - response times, throughput, accuracy, availability, resource usage.

 Supportability - adaptability, maintainability, internationalization,
configurability.

 Implementation resource limitations, languages and tools, hardware, ...

 Interface constraints imposed by interfacing with external systems.

 Operations system management in its operational setting.

 Packaging for example, a physical box.

 Legal licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a checklist for

requirements coverage, to reduce the risk of not considering some important facet of the system.
Some of these requirements are collectively called the quality attributes, quality

requirements, or the "- ilities" of a system. These include usability, reliability, performance,

and supportability. In common usage, requirements are categorized as functional (behavioral) or
non-functional (everything else); some dislike this broad generalization [BCK98], but it is very

widely used.

10) What are the key requirement artifacts?

The Key requirements artifacts are :

Use-Case Model - A set of typical scenarios of using a system. There are primarily
for functional
(behavioral) requirements.
Supplementary Specification - Basically, everything not in the use cases. This artifact is

primarily for all non-functional requirements, such as performance or licensing. It is also

the place to record functional features not expressed (or expressible) as use cases; for
example, a report generation.
Glossary - In its simplest form, the Glossary defines noteworthy terms. It also

encompasses the concept of the data dictionary, which records requirements related to
data, such as validation rules, acceptable values, and so forth. The Glossary can detail any

4

4

element: an attribute of an object, a parameter of an operation call, a report layout, and
so forth.
Vision - Summarizes high-level requirements that are elaborated in the Use-Case Model

and Supplementary Specification, and summarizes the business case for the project. A

short executive overview document for quickly learning the project's big ideas. Business

Rules - Business rules (also called Domain Rules) typically describe requirements or

policies that transcend one software projectthey are required in the domain or business,

and many applications may need to conform to them. An excellent example is

government tax laws. Domain rule details may be recorded in the Supplementary

Specification, but because they are usually more enduring and applicable than for one

software project, placing them in a central Business Rules artifact (shared by all analysts

of the company) makes for better reuse of the analysis effort.
11) What are Use Cases?

Informally, use cases are text stories of some actor using a system to meet goals.
Use Case Example :
Process Sale: A customer arrives at a checkout with items to purchase. The cashier uses

the POS system to record each purchased item. The system presents a running total and

line-item details. The customer enters payment information, which the system validates

and records. The system updates inventory. The customer receives a receipt from the

system and then leaves with the items.
Notice that use cases are not diagrams, they are text. Focusing on secondary-value UML
use case diagrams rather than the important use case text is a common mistake for use

case novices.
Use cases often need to be more detailed or structured than this example, but the essence
is discovering and recording functional requirements by writing stories of using a

system to fulfill user goals; that is, cases of use.

5

5

12) What is Use-case Modeling?
Use-Case Model is the set of all written use cases; it is a model of

the system's functionality and environment. Use cases are text documents, not diagrams,

and use-case modeling is primarily an act of writing text, not drawing diagrams.
The Use-Case Model is not the only requirement artifact in the UP. There are also

the Supplementary Specification, Glossary, Vision, and Business Rules. These
are all useful for requirements analysis, but secondary at this point.
The Use-Case Model may optionally include a UML use case diagram to show the
names of use cases and actors, and their relationships. This gives a nice context

diagram of a system and its environment. It also provides a quick way to list the use

cases by name.
There is nothing object-oriented about use cases; we're not doing OO analysis when
writing them. Use cases are a key requirements input to classic OOA/D.

13) What are the three kinds of Actors?

Definition: What are Three Kinds of Actors?
Actors are roles played not only by people, but by organizations, software,

and machines. There are three kinds of external actors in relation to the SuD:

1) Primary actor has user goals fulfilled through using services of the SuD.
For example, the cashier.
Why identify? To find user goals, which drive the use cases.

2) Supporting actor provides a service (for example, information) to the SuD. The

automated payment authorization service is an example. Often a computer system,
but could be an organization or person.
Why identify? To clarify external interfaces and protocols.

3) Offstage actor has an interest in the behavior of the use case, but is not primary

or supporting; for example, a government tax agency.

Why identify? To ensure that all necessary interests are identified and satisfied.

14) What are preconditions and postconditions?

Preconditions and Success Guarantees (Postconditions)

Preconditions state what must always be true before a scenario is begun in the use case.
Preconditions are not tested within the use case; rather, they are conditions that are

assumed to be true. Typically, a precondition implies a scenario of another use case, such

as logging in, that has successfully completed.
Success guarantees (or postconditions) state what must be true on successful

completion of the use case either the main success scenario or some alternate path.

The guarantee should meet the needs of all stakeholders. EXAMPLE :

Preconditions: Cashier is identified and authenticated.

6

6

Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.
15) How to find Use cases? Guideline:

How to Find Use Cases
Use cases are defined to satisfy the goals of the primary actors. Hence, the basic

procedure is:
1) Choose the system boundary. Is it just a software application, the hardware

and application as a unit, that plus a person using it, or an entire organization?
2) Identify the primary actorsthose that have goals fulfilled through using services

of the system.
3) Identify the goals for each primary actor.
4) Define use cases that satisfy user goals; name them according to their goal.

Usually, user-goal level use cases will be one-to-one with user goals, but there
is at least one exception, as will be examined.

16) What does Use case Diagram represent? Give an example.
Applying UML: Use Case Diagrams
The UML provides use case diagram notation to illustrate the names of use cases
and actors, and the relationships between them.

Guideline

A simple use case diagram is drawn in conjunction with an actor-goal list.
A use case diagram is an excellent picture of the system context; it makes a good

context diagram, that is, showing the boundary of a system, what lies outside of it, and
how it gets used. It serves as a communication tool that summarizes the behavior of a

system and its actors. A sample partial use case context diagram for the NextGen

system is shown below.

Figure 1.5. Partial use case context diagram.

7

7

17) Define use case relationships a)Include b) Extend c) Generalization

Include Relationship
Use cases can be related to each other.
It is common to have some partial behavior that is common across several use cases. For example, the description

of paying by credit occurs in several use cases, including Process Sale, Process Rental, Contribute to Lay-away
Plan, and so forth. Rather than duplicate this text, it is desirable to separate it into its own subfunction use case, and

indicate its inclusion. This is simply refactoring and linking text to avoid duplication. The include relationship can
be used for most use case relationship problems.
To summarize:
Factor out subfunction use cases and use the Include relationship when:

• They are duplicated in other use cases.
• A use case is very complex and long, and separating it into subunits aids
comprehension.
Extend Relationship

 Extend puts additional behavior in a use case that does not know about it.

 It is shown as a dotted line with an arrow point and labeled <<extend>>

 In this case, a customer can request a catalog when placing an order

The following diagram illustrates use case Include relationship

Example of Use Case Extend relationship

8

8

18) What is Elaboration?
 Elaboration often consists of two or more iterations(2 to 6 weeks duration)

 Each iteration is time-boxed(i.e. End Date fixed)

 Elaboration is not Design Phase(i.e. the model is not fully developed)

 Also it is not throw away Prototype;rather the code and design are production quality

In other words,Elaboration is the initial series of iterations during which
 The core ,risky software architecture is programmed and tested

 The majority of requirements are discovered and stabilized

 The major risks are mitigated or reduced

19) Define Elaboration.
Build the core architecture,resolve the high risk elements,Define most

Requirements,and Estimate the overall schedule and resources

20) Define the first iteration is elaboration phase.
Iteration-1 of Elaboration Phase emphasizes fundamental and common OOA/D

skills used in building OO Systems.
Example – NextGen POS

:
Iteration 1 Requirements

The requirements for the first iteration of the NextGen POS application follow:
 Implement a basic, key scenario of the Process Sale use case: entering items and

receiving a cash payment.

9

9

 Implement a Start Up use case as necessary to support the initialization needs

of the iteration.

 Nothing fancy or complex is handled, just a simple happy path scenario, and the
design and implementation to support it.

 There is no collaboration with external services, such as a tax calculator or
product database.

 No complex pricing rules are applied.

 The design and implementation of the supporting UI ,database,are done(Not in detail)

 Subsequent iterations will grow on this foundation.

21) What happens in inception?
Inception is a short step to elaboration. It determines basic feasibility,risk and scope,to
decide if the project is worth more serious investigation

22) What are the likely activities and artifacts in inception?
 A short requirement workshop

 Most actors,goals and Use Cases named.

 Most use cases written in brief format; 1—20% of use cases written in fully dressed
format

 Most influential and risky quality requirements identified

 Supplementary specification written(Version One)

 Risk List

 Technical proof-of-Concept,User Interface-Oriented Prototypes

 Decision on components : to buy/build/reuse taken(Eg. To buy Tax calculation package

 High Level candidate Architecture made(not a detailed,final or correct one made)

 Used as starting point of investigation(Eg. A Java Client side application with no
Application Server, and no Oracle for Database

23) What artifacts may start in Inception?

Slno Artifact Features

01 Domain Model Visualization of Domain concepts

02 Design Model

 Set of Diagrams describing the Logical

 Design(Software Class

 Diagrams,Object Interaction

 Diagrams,and Package Diagrams)

03 Software Architecture

 A Learning Aid

 Document

 Key Architectural Issues & their

 Resolution in summary form

 Summary of outstanding Design Ideas

 & its motivation

04 Data Model

 Database Schemas

 Mapping between Objects & Non-

 Object representations

10

10

05 Use Case Story

 Describe UI,Navigation Paths,Usability

 Boards,UI Prototypes Models

24) What is a Domain Model?

A domain Model is the most important and classic model in OO Analysis.
 It illustrates noteworthy Concepts in a Domain.

 Source of Inspiration for designing some software objects(which become inputs to several
artifacts)

25) Give an example of domain model with UML class Diagram notation.

Fig 2.1 Partial Domain Model – A Visual Dictionary
Explanation

A partial Domain Model drawn with UML class diagram notation -:
 Conceptual classes of Payment and Sale are significant in this domain.

 A payment is related to Sale which is meaningful to note.

 The Sale has date and time (Attributes we care about)

26) What are the criteria in planning the next iteration during elaboration phase?

Risk Technical complexity and factors such as uncertainity of effort

 or usability

Coverage Major parts of the system are at least touched on early iterations

Criticality Functions that client consider of high business value

11

11

27) Why call a domain model a visual dictionary?
A domain model is a visual dictionary of
 the noteworthy abstractions

 domain vocabulary,and

 information content

A domain model visualizes and relates words or concepts in the domain. It also shows
an abstraction of the conceptual classes and shows how they relate to each other.

28) What are conceptual classes?

Conceptual Classes

Informally, a conceptual class is an idea, thing, or object.
More formally, a conceptual class may be considered in terms of its symbol, intension,
and extension

• Symbol—words or images representing a conceptual class.

• Intension—the definition of a conceptual class.

• Extension—the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase
transaction. We may choose to name it by the symbol Sale. The intension of a

Sale may state that it "represents the event of a purchase transaction, and has a
date and time." The extension of Sale is all the examples of sales; in other words,

the set of all sales.

29) Are domain and Data Models are the same thing?
A domain model is not a data model (which by definition shows persistent data to be

stored somewhere)

30) How a domain model is created?

12

12

Steps involved in creating a domain model :
 Find the conceptual classes

 Draw them as classes in a UML class diagram

 Add associations and attributes

31) What are the three strategies to find conceptual classes?
a) Reuse or modify existing models(First,Best,and easiest approach). There

are published ,well crafted domain models and data models for many

common domains ,such as inventory,finance,health,banking,and so forth.
b) Use a Category List

c) Identify noun phrases.

32) What is Conceptual Class Category List?
We can kick start the creation of a domain model by making a list of candidate

conceptual classes. The following table contains many common categories(which are usually
worth considering as meeting business information needs)

13

13

33) Explain the method of finding conceptual classes using Noun Phrase Identification.
Noun phrase identification is another useful technique which is based on linguistic

analysis.
 It is based on identifying the nouns and noun phrases in textual descriptions of a

domain, which can be considered as candidate conceptual classes or attributes.

 The fully dressed use cases are an excellent description to draw from for this
analysis. For example, the current scenario of the Process Sale use case can be
used.

For example,Noun phrases are identified (shown in bold) from Process Sale
Use case as per the text description below :

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.
4. System records sale line item and presents item description, price,
and running total. Price calculated from a set of price rules.
Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.
8. System logs the completed sale and sends sale and payment information to
the external Accounting (for accounting and commissions) and Inventory
systems (to update inventory).
9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

34) Explain with an example,the method of finding and drawing conceptual classes.

14

14

From the category list and known phrase analysis,a list is generated of candidate
conceptual classes for the domain. The list is constrained to the requirements and a

simplified version as for iteration-1. As an example the following are identified list of
conceptal classes for Process Sale scenario :

 Sale Cashier

 CashPayment Customer

 SalesLineItem Store

 Item ProductDescription

 Register ProductCatalog

 Ledger

 Item Store Sale

Register

 Sales LineItem Cashier Customer Ledger

 Cash Payment Product catalog Product

 Description

Fig. Initial POS Domain Model

35) What are Description classes? Give examples.
A Description class contains information that descrkibes something else. For example,a
ProductDescription that records the price,picture,and text descriptions of an item.This was first

named the Item-Descriptor pattern.
The need for description classes

 An item instance represents a physical item in a store;it may have a serial number

 An item has description,price,and itemID

 A Product Description class records information about items

 Even if all inventoried items are sold and corresponding item software instances are
deleted,the Product Description still remains.

36) What is Association? Explain with an example.
An association is a relationship between classes(more precisely,instances of these classes)

that indicates some meaningful and interesting connections.

37) Explain Association using UML notation.

UML Definition:
Associations are defined as semantic relationship between two or more classifiers that
involve connections among their instances

15

15

Records-current

Register Sale

38) What is multiplicity?
Multiplicity defines how many instances of class A can be associated with one
instance of a class B.

Stocks
Store

Item

1 +

Fig. Multiplicity of an Association

39) Give the method of finding Associations using Common Association List.

Category Examples

A is a transaction related to another CashPayment – Sale

transaction B Cancellation - Reservation

A is a line item of a transaction B SalesLineItem - Sale

A is a product or service for a transaction Item – SalesLineItem

B(or line item) (or Sale)

 Flight - Reservation

A is a role related to a transaction B Customer – Payment
 Passenger - Ticket

A is a physical or logical part of B Drawer – Register

 Square - Board

 Seat - AirPlane

A is physically or logically contained in /or Register – Store

B Item-Shelf

 Square-Board

 Passenger - Airline

A is a description for B ProductDescription – Item

 FlightDescription - Flight

A is known Sale – Register

/logged/recorded/reported/captured in B Piece – Square

 Reservation - Flightmanifest

A is a member of B Cashier – Store

 Player – monnopolyGame

 Pilot - Airline

A is an organizational Subunit of B Department – Store

16

16

 Maintenance - Airline

A uses or manages or owns B Cashier – Register

 Player – Piece

 Pilot - Airplane

A is nest to B SalesLineItem – SalesLineItem

 Square – Square

 City - City

40) Define an attribute. Explain with an example using UML
notation. An attribute is a logical data value of an object.

Example

Sale needs a dateTime attribute
Store needs a name and address

Cahier needs an ID

Sale

dateTime

/ total : Money

Fig. Class and attributes

41) How attributes are used in Domain Models? Explain using examples.

17

17

42) How domain model is further refined after the first iteration?
Generalization and specializations are fundamental concepts in domain modeling.

Conceptual class hierarchies are often inspiration for Software class hierarchies that exploits
inheritance and reduce duplication of code.

Packages are a way to organize large domain models into smaller units.
Domain model is further refined with Generalization,Specialization,Association

classes,Time intervals,Composition and packages,usage of subclasses

43) How Domain Model is incrementally developed?
The domain model is incrementally developed by considering concepts in the requirements

for this iteration.

44) Explain Generalization-Specialization hierarchy with an example.
Generalization is the activity of identifying commonality among concepts and defining
superclass(general concept) and subclass(specialized concept) relationships. It is a way

to construct taxonomic classifications among concepts which are illustrated in class
hierarchies.

 18

18

Identifying a superclass and subclasses leads to economy of
expression,improved comprehension and a reduction in repeated information.

45) Explain Class Hierarchies with an example

Payment
 superclass - more general

 concept

these are conceptual

classes, not software

classes

Cash Credit Check
subclass - more

specialized concept

Payment Payment Payment

• Identify superclasses and subclasses when they help us
understand concepts in more general, abstract terms
and reduce repeated information.

• Expand class hierarchy relevant to the current iteration
and show them in the Domain Model.

46) How Conceptual subclass and Super Classes are related in terms of set

membership? Explain using Venn Diagram.
Conceptual subclasses and superclasses are related interms of set membership. By

definition,all members of a conceptual subclass set are members of their superclass set. For
example,interms of set membership,all instances of the set CreditPayment are also members of
the set Payment. This is shown in the venn diagram shown below.

Payment

CheckPayment
CashPayment CreditPayment

47) Explain Subclass Conformance.
When a class hierarchy is created,statements about superclasses that apply to subclasses are

made. For example,the following fig. states that all Payments have an amount and are
associated with a Sale.

Payment

Pays-for

Sale

amount : Money 1

1

Cash Credit Check

Payment Payment Payment

19

19

All Payment subclasses must conform to having an amount and paying for a Sale.

48) What is 100% Rule? Or What is the rule of Conformance to Superclass Definition?
100% of the conceptual Superclass’s definition should be applicable to the subclass. The
subclass must conform to 100% of the Superclass’s:
1) attributes

2) associations

49) What are the strong motivation to partition a conceptual class with subclasses?
The following are the strong motivations to partition a class into subclasses : Create
a conceptual subclass of a superclass when :

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest
3. The subclass concept is operated on,handled,reacted-to,or

manipulated differently than the superclass or other subclasses

50) Give examples of motivations to partition a Conceptual Class into Subclasses

Conceptual Subclass Motivation Examples

The subclass has additional attribute of Payments – NA

interest Library – Book,Subclass of

 LoanableResource,has an ISBN attribute

The Subclass has additional associations of Payments – CreditPayment,subclass of

interest Payment,is associated with CreditCard

 Library –video,subclass of

 LoanableResource,is associated with

 Director.

The subclass concept is operated Payments – CreditPayment,subclass of

upon,handled,reacted to,or manipulated payment,is handled differently than than

differently than the super class or other other kinds of payments in how it is

subclasses,in ways that are of interest authorized.

 Library-Software,subclass of

 LoanableResource,requires a depsosit

 before it may be loaned.

The subclass concept represents an animate Payments – not applicable.
thing(for example,animal,robot)that Library – not applicable.

behaves differently than the superclass or Market Research – MaleHuman,subclass of

other subclasses,in ways that are of interest Human,behaves differently than

 FwemaleHuman with respect to shopping

 habits.

51) Explain how a Conceptual Super Class is defined and when?
Generalization into a common Superclass is made when commonality is identified among

potential subclasses.

52) What are the guide lines followed in defining a Super Class?

20

20

GuideLine

Create a superclass in a generalization relationship to subclasses when :
 The potential conceptual subclasses repreent variations of a similar

concept.

 The subclasses will confirm to the 100% and Is-a rules.

 All subclasses have the same attribute that can be factored out and
expressed in the superclass

 All subclasses have the same association that can be factored out and
related to the super class.

53) Explain in detail an example how a superclass-subclass hierarchies are defined

and give justification.

Payment

Pays-for

Sale

amount : Money 1

1

Cash Credit Check

Payment Payment Payment

Creditcard Check

 Authorizes-payments-of * Store

 *

superclass justified by AuthorizationService

common attributes and
address

associations
additional associations

 name

 phoneNumber

Credit Check
Authorization Authorization

Service Service

1 1
 Authorizes Authorizes

* *
Credit Check

Payment Payment

54) What are Abstract Conceptual Classes?
If every member of a class C must also be a member of a subclass C is called an

abstract conceptual class.

 21

21

For example,assume that every Payment instance must more specifically be an instance of the
subclass CreditPayment,CashPayment,or CheckPayment. Since every Payment member is also

a member of a subclass,Payment is an abstract conceptual class by definition.
Payment

CashPayment CreditPayment CheckPayment

Abstract Classes
 Def.: If every instance of a class C must also be an instance of a subclass, then C is called an

abstract conceptual class.

Payment

CashPayment CreditPayment CheckPayment

 If a Payment instance exists which is not a member of a subclass, then Payment is not

abstract – it is concrete.

Abstract Classes

Payment

Cash Credit Check

Payment Payment Payment

55) Explain with an example modeling of changing states.

not useful Payment

these subclasses are

changing states of the
Unauthorized Authorized

superclass

Payment Payment

Assume that a payment can either be in an unauthorized or authorized state and it is
meaningful to Payment in the domain PaymentState better

 * Is- 1

Guideline.

 Unauthorized Authorized

 State State

22

22

Do not model the states of a concept X as subclasses of X. Rather,either :
 Define a state hierarchy and associate the states with X,or

 Ignore showing the states in of a concept in the domain model,show the states in the state
diagrams instead.

56) Explain with example Assocition classes.

Store

address
name

Company

*

*

 AuthorizationService

Authorizes-payments-via
1..* name

address

 phoneNumber

ServiceContract
an association class

merchantID
its attributes are related to the association

Employs * Person
on the association

a person may have Employment

employment with several

companies salary

Jail
1 Incarcerates * Person

 JailTerm

 dateOfIncarceration

 Married-to

 0..1 0..1

 Person

57) Define a) Aggregation b) Composition.
Aggregation is a vague kind of association in the UML that loosely suggests whole-part

relationships

58) What are the guidelines for identifying composition?
Compositions is also known as composite aggregation,is a strong kind of whole-part

aggregation and is useful to show in some models. A composition relationship implies that 1) an

instance of the part(such as a Square) belongs to only one composite instance(such as a Board) at
a time, 2) the part must always belong to a composite,and 3) the composite is responsible for the

creation and deletion of its parts – either by itself creating/deleting the parts,or by collaborating

23

23

with other objects. Related to this constraint is that if the composite is destroyed,its parts must
either be destroyed,or attached to another composite – no free floating Fingers allowed.

Example
In the POS domain,the SalesLineItems may be considered as part of a composite Sale; In

general,transaction line items are viewed as parts of an aggregate transaction. In addition to

conformance to this pattern,there is a create/delete dependency of the line items on the Sale –
their lifetime is bound within the lifetime of the Sale. Figure. Aggregation in the point-of-

sale application

Sale
1..*

SalesLineItem

1

.

Product Product

Catalog 1 1..* Description

59) What are the benefits of showing Composition?
It clarifies the domain constraints regarding the eligible existence of the part

independent of the whole. In composite aggregation,the part may not exist outside of the
lifetime of the whole.

 During design work,this has an impact on the create-delete dependencies between
the whole and part software classes and database elements(in terms of referential
integrity and cascading delete paths)

 It consists in the identification of a creator(the composite) using the GRASP
Creator Pattern.

 Operations – such as copy and delete – applied to the whole often propagate to the parts.

60) What are Association Role Names?
Each end of an association is a role,which has various properties,such as :

1. Name

2. Multiplicity
A role name identifies an end of an association and ideally describes the role played by

objects in the association

24

24

61) What is qualified Association?
A qualifier may be used in an association; it distinguishes the set of objects at the far end

of the association based on the qualifier value. An association with a qualifier is a qualified

association.
For example,ProductDescriptions may be distinguished in a ProductCatalog by their

itemID,as illustrated in the figure below.

 As contrasted in previous figure (a) vs. (b), qualification reduces the multiplicity at the far end

from the qualifier, usually down from many to one.

 Qualifiers do not usually add compelling useful new information, and we can fall into the trap of
―design – think‖.

 However,they can sharpen understanding about the domain.

1

CS8592 OBJECT ORIENTED ANALYSIS AND DESIGN
VI-Sem-IT 2017-Regulations

UNIT III DYNAMIC AND IMPLEMENTATION UML

DIAGRAMS 9

Dynamic Diagrams – UML interaction diagrams – System sequence diagram – Collaboration diagram – When to

use Communication Diagrams – State machine diagram and Modelling –When to use State Diagrams – Activity

diagram – When to use activity diagrams Implementation Diagrams – UML package diagram – When to use

package diagrams – Component and Deployment Diagrams – When to use Component and Deployment diagrams

--

Question Bank – 2 marks
UNIT-III

1) What are UML state machine diagrams?
Statechart Diagrams

A UML statechart diagram, as shown in Figure 29.1, illustrates the interesting

events and states of an object, and the behavior of an object in reaction to an

event. Transitions are shown as arrows, labeled with their event. States are

shown in rounded rectangles.

2) Define events,states,and transitions?

Events, States, and Transitions
 An event is a significant or noteworthy occurrence.

For example:

A telephone receiver is taken off the hook.

 A state is the condition of an object at a moment in time—the time

between events.
For example:
• A telephone is in the state of being "idle" after the receiver is placed on the

hook and until it is taken off the hook.

 A transition is a relationship between two states that indicates that when an

event occurs, the object moves from the prior state to the subsequent state. For example:

• When the event "off hook" occurs, transition the telephone from the "idle" to

"active" state.

3) Explain state machine diagram with an example.

A statechart diagram shows the lifecycle of an object: what events it experiences,

its transitions, and the states it is in between these events.

4) What is transition action?

A transition can cause an action to fire. In a software implementation, this may

represent the invocation of a method of the class of the statechart diagram.

5) What is guard condition?

A transition may also have a conditional guard—or boolean test. The

transition only occurs if the test passes.

6) What are nested states?

3

A state allows nesting to contain substates; a substate inherits the transitions of

its superstate (the enclosing state). This is a key contribution of the Harel

state-chart diagram notation that UML is based on, as it leads to succinct

statechart diagrams. Substates may be graphically shown by nesting them in a

superstate box.

For example, when a transition to the Active state occurs, creation and transition

into the PlayingDialTone substate occurs. No matter what substate the
object is in, if the on hook event related to the Active superstate occurs, a transition

to the Idle state occurs.

7) Explain with a diagram a sample state machine for legal sequence of use case operations.

The following state machine diagram shows legal sequencing of a use case operation :

Example application :
Process Sale use case.

3

4

8) What is a system operation?

Operation contracts may be defined for system operationsoperations that the system as a black

box component offers in its public interface. System operations can be identified while sketching

SSDs, as in Figure abobe. To be more precise, the SSDs show system eventsevents or I/O

messages relative to the system. Input system events imply the system has system operations to

handle the events, just as an OO message (a kind of event or signal) is handled by an OO method

(a kind of operation).

The entire set of system operations, across all use cases, defines the public system interface,

viewing the system as a single component or class. In the UML, the system as a whole can

be represented as one object of a class named (for xample) System.

9) What are operation contracts?

Use cases or system features are the main ways in the UP to describe system behavior, and

are usually sufficient. Sometimes a more detailed or precise description of system behavior

has value. Operation contracts

use a pre- and post-condition form to describe detailed changes to objects in a domain model, as

the result of a system operation. A domain model is the most common OOA model, but

operation contracts and state models (introduced on p. 485) can also be useful OOA-related

artifacts.

Operation contracts may be considered part of the UP Use-Case Model because they provide

more analysis detail on the effect of the system operations implied in the use cases.

10) Explain operation contract with an example.

Example

4

5

Here's an operation contract for the enterItem system operation. The critical element is

the postconditions; the

other parts are useful but less important.
Contract CO2: enterItem

Operation: enterItem(itemID: ItemID, quantity: integer)

Cross References: Use Cases: Process Sale

Preconditions: There is a sale underway.

Postconditions:
- A SalesLineItem instance sli was created (instance creation).

- sli was associated with the current Sale (association formed).

- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductDescription, based on itemID match

(association formed).

The categorizations such as "(instance creation)" are a learning aid, not properly part of

the contract.

11) What are post conditions?

• Describe changes in the state of objects in the domain model that are true when the operation

has finished.

• They are not actions to be performed during the operation

• Postconditions fall into these categories :

– Instance creation and deletion

– Attribute modification

– Associations (UML links) formed and broken.

12) Explain guidelines for how to create and write contracts?

Apply the following advice to create contracts:

1. Identify system operations from the SSDs.

For system operations that are complex and perhaps subtle in their results, or

which are not clear in the use case, construct a contract.
2. To describe the postconditions, use the following categories:

 instance creation and deletion

 attribute modification

 associations formed and broken

3. Writing Contracts
As mentioned, write the postconditions in a declarative, passive past tense form (was …) to

emphasize the observation of a change rather than a design of how it is going to be achieved.

For example:
(better) A SalesLineItem was created.
(worse) Create a SalesLineItem.

Remember to establish an association between existing objects or those newly created.

For example,
it is not enough that a new SalesLineItem instance is created when the enterItem operation

occurs. After the operation is complete, it should also be true that the newly created instance

was associated with Sale;
thus:

The SalesLineItem was associated with the Sale (association formed).

5

6

13) Discuss few examples on operation contracts.

Example: NextGen POS Contracts

System Operations of the Process Sale Use Case
Contract CO1: makeNewSale
Operation: makeNewSale()
Cross References:
Use Cases: Process Sale
Preconditions: none
Postconditions:
- A Sale instance s was created (instance creation).
- s was associated with a Register (association formed).

- Attributes of s were initialized.
Note the vague description in the last postcondition. If understandable, it's fine.
On a project, all these particular postconditions are so obvious from the use case that the

makeNewSale contract should probably not be written.
Recall one of the guiding principles of healthy process and the UP: Keep it as light as possible, and avoid all
artifacts unless they really add value.
Contract CO2: enterItem
Operation: enterItem(itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale
Preconditions: There is a sale underway.
Postconditions:
- A SalesLineItem instance sli was created (instance creation).

- sli was associated with the current Sale (association formed).
- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductDescription, based on itemID
match (association formed).
Contract CO3: endSale

14) What is an implementation model?

In UP terms, there exists an Implementation Model. This is all the implementation artifacts,

such as the source code, database definitions, JSP/XML/HTML pages, and so forth. Thus, the

code being created in this chapter can be considered part of the UP Implementation Model.

15) What are the steps involved in mapping design to code?

Mapping Designs to Code
Implementation in an object-oriented language requires writing source code for:

 class and interface definitions

 method definitions

16) Explain with an example of creating class definitions from DCDs.

Creating Class Definitions from DCDs
At the very least, DCDs depict the class or interface name, superclasses, operation signatures,

and attributes of a class. This is sufficient to create a basic class definition in an OO language. If

the DCD was drawn in a UML tool, it can generate the basic class definition from the diagrams.
Defining a Class with Method Signatures and Attributes

From the DCD, a mapping to the attribute definitions (Java fields) and method signatures for the

Java definition of SalesLineItem is straightforward, as shown in Figure below.

6

7

17) Explain in detail using an example how methods can be created from interaction diagrams?

Creating Methods from Interaction Diagrams
The sequence of the messages in an interaction diagram translates to a series of statements in the

method definitions. The enterItem interaction diagram in Figure 20.2 illustrates the Java

definition of the enterItem method. For this example, we will explore the implementation of the

Register and its enterItem method. A Java

definition of the Register class is shown in Figure below.

7

8

The enterItem message is sent to a Register instance; therefore, the enterItem method is defined

in class

Register.

public void enterItem(ItemID itemID, int qty)

Message 1: A getProductDescription message is sent to the ProductCatalog to retrieve a

ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);
In summary, each sequenced message within a method, as shown on the interaction diagram, is

mapped to a

statement in the Java method.
The complete enterItem method and its relationship to the interaction diagram is shown in Figure

20.4

8

9

18) What are collection classes? Give examples.

Collection Classes in Code
One-to-many relationships are common. For example, a Sale must maintain visibility to a group of

many SalesLineItem instances, as shown in Figure 20.5. In OO programming languages, these

relationships are usually implemented with the introduction of a collection object, such as a List or

Map, or even a simple array.

For example, the Java libraries contain collection classes such as ArrayList and HashMap, which

implement the List and Map interfaces, respectively. Using ArrayList, the Sale class can define

an attribute that maintains an ordered list of SalesLineItem instances.
The choice of collection class is of course influenced by the requirements; key-based

lookup requires the use of a Map, a growing ordered list requires a List, and so on.
As a small point, note that the lineItems attribute is declared in terms of its interface.

9

10

Guideline: If an object implements an interface, declare the variable in terms of the interface, not

the concrete class.
For example, in Figure 20.5 the definition for the lineItems attribute demonstrates this guideline:

private List lineItems = new ArrayList();

19) Wite short notes on a) Exception and error handling

Exception and error handling has been ignored in the beginning. The main focus was on

responsibility assignment and object design. But during implementation phase we need to

consider the large-scale exception handling strategies during design modeling.

The operation syntax allows to specify how exceptions are to be handles :

Example :
+ getPlayer(name : string) : Player {exception IOException}

Public Player getplayer(string name_ throws exception

20) What is Test driven development?(TDD)

Test-Driven or Test-First Development
An excellent practice promoted by the Extreme Programming (XP) method [Beck00], and

applicable to the UP and other iterative methods (as most XP practices are), is test-driven

development (TDD) or test-first development. In this practice, unit testing code is written

before the code to be tested, and the developer writes unit testing code for all production code.

The basic rhythm is to write a little test code, then write a little production code, make it pass the

test, then write some more test code, and so forth.

21) Explain in detail a sample application for mapping design to code.

This section presents a sample domain layer of classes in Java for this iteration. The code

generation is largely derived from the design class diagrams and interaction diagrams defined in the

design work, based on the principles of mapping designs to code. The main point of this listing is to

show that there is a translation from design artifacts to a foundation of code. This code defines a

simple case; it is not meant to illustrate a robust, fully developed Java program with

synchronization, exception handling, and so on.
Comments excluded on purpose, in the interest of brevity, as the code is simple.

Class Payment
// all classes are probably in a package named
// something like:
package com.foo.nextgen.domain;
public class Payment
{
private Money amount;
public Payment(Money cashTendered){ amount = cashTendered; }

public Money getAmount() { return amount; }
}

10

11

Class ProductCatalog
public class ProductCatalog
{
private Map<ItemID, ProductDescription>
descriptions = new HashMap()<ItemID, ProductDescription>;

public ProductCatalog()
{
// sample data
ItemID id1 = new ItemID(100);
ItemID id2 = new ItemID(200);
Money price = new Money(3);
ProductDescription desc;
desc = new ProductDescription(id1, price, "product 1");

descriptions.put(id1, desc);
desc = new ProductDescription(id2, price, "product 2");

descriptions.put(id2, desc);
}
public ProductDescription getProductDescription(ItemID id)
{
return descriptions.get(id);
}
}

Class Register
public class Register
{
private ProductCatalog catalog;
private Sale currentSale;
public Register(ProductCatalog catalog)
{
this.catalog = catalog;
}
public void endSale()
{
currentSale.becomeComplete();
}
public void enterItem(ItemID id, int quantity)
{
ProductDescription desc = catalog.getProductDescription(id);

currentSale.makeLineItem(desc, quantity);
}
public void makeNewSale()
{
currentSale = new Sale();
}
public void makePayment(Money cashTendered)
{
currentSale.makePayment(cashTendered);
}
}

Class ProductDescription
public class ProductDescription
{
private ItemID id;
private Money price;
private String description;
public ProductDescription
(ItemID id, Money price, String description)
{
this.id = id;
this.price = price;
this.description = description;
}
public ItemID getItemID() { return id; }
public Money getPrice() { return price; }

11

12

public String getDescription() { return description; }

}

Class Sale
public class Sale
{
private List<SalesLineItem> lineItems =
new ArrayList()<SalesLineItem>;
private Date date = new Date();
private boolean isComplete = false;
private Payment payment;
public Money getBalance()
{
return payment.getAmount().minus(getTotal());
}
public void becomeComplete() { isComplete = true; }

public boolean isComplete() { return isComplete; }

public void makeLineItem
(ProductDescription desc, int quantity)
{
lineItems.add(new SalesLineItem(desc, quantity));
}
public Money getTotal()
{
Money total = new Money();
Money subtotal = null;
for (SalesLineItem lineItem : lineItems)
{
subtotal = lineItem.getSubtotal();
total.add(subtotal);
}
return total;
}
public void makePayment(Money cashTendered)
{
payment = new Payment(cashTendered);
}
}

Class SalesLineItem
public class SalesLineItem
{
private int quantity;
private ProductDescription description;
public SalesLineItem (ProductDescription desc, int quantity)
{
this.description = desc;
this.quantity = quantity;
}
public Money getSubtotal()
{
return description.getPrice().times(quantity);
}
}

Class Store
public class Store
{
private ProductCatalog catalog = new ProductCatalog();

private Register register = new Register(catalog);

public Register getRegister() { return register; }
}

22) What are deployment diagrams?

12

13

Deployment Diagrams
A deployment diagram shows the assignment of concrete software artifacts (such as executable

files) to computational nodes (something with processing services). It shows the deployment of

software elements to the physical architecture and the communication (usually on a network)

between physical elements. See Figure

37.1. Deployment diagrams are useful to communicate the physical or deployment architecture.

23) What are the basic elements of deployment diagrams?

The basic element of a deployment diagram is a node,

of two types:

device node (or device) A physical (e.g., digital electronic) computing resource with

processing and memory services to execute software, such as a typical computer or a mobile

phone. execution environment node (EEN) This is a software computing resource that runs

within an outer node (such as a computer) and which itself provides a service to host and

execute other executable software elements. For example:
an operating system (OS) is software that hosts and executes programs

a virtual machine (VM, such as the Java or .NET VM) hosts and executes programs a

database engine (such as PostgreSQL) receives SQL program requests and executes them, and

hosts/executes internal stored procedures (written in Java or a proprietary language)

a Web browser hosts and executes JavaScript, Java applets, Flash, and other executable technologies

a workflow engine
a servlet container or EJB container
As the UML specification suggests, many node types may show stereotypes, such as «server», «OS»,

13

14

«database», or «browser», but these are not official predefined UML stereotypes.
Note that a device node or EEN may contain another EEN. For example, a virtual machine within an OS within a

computer. A particular EEN can be implied, or not shown, or indicated informally with a UML property string; for

example, {OS=Linux}. For example, there may not be value in showing the OS EEN as an explicit node. Figure 37.1
shows alternate styles, using the OS as an example.
The normal connection between nodes is a communication path, which may be labeled with the protocol.
These usually indicate the network connections.
A node may contain and show an artifacta concrete physical element, usually a file. This includes executables such as JARs,

assemblies, .exe files, and scripts. It also includes data files such as XML, HTML, and so forth.
A deployment diagram usually shows an example set of instances (rather than classes). For example, an
instance of a server computer running an instance of the Linux OS. Generally in the UML, concrete instances are shown with

an underline under their name, and the absence of an underline signifies a class rather than an instance. Note that a major

exception to this rule is instances in interaction diagramsthere, the names of things signifying instances in lifeline boxes are not

underlined. In any event, in deployment diagrams, you will usually see the objects with their name underlined, to indicate
instances. However, the UML specification states that for deployment diagrams, the underlining may be omitted and assumed.
Therefore, you can see examples in both styles.

24) Define a component.

A component represents a modular part of a system that encapsulates its contents and whose

manifestation is replaceable within its environment. A component defines its behavior in terms of

provided and required interfaces. As such, a component serves as a type, whose conformance is

defined by these provided and required interfaces

25) Explain UML components with a diagram.

14

1

CS8592 Object Oriented Analysis and Design

V-Sem-CSE 2017-Regulations

UNIT IV DESIGN PATTERNS 9

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling –

High Cohesion – Controller Design Patterns – creational – factory method – structural – Bridge –

Adapter – behavioural – Strategy – observer –Applying GoF design patterns – Mapping design to

code

Question Bank

UNIT-IV

1) What are the artifact inputs to Object Design?

2) What are the activities of Object Design?

2

3) What is GRASP?

 GRASP is an acronym for „General Responsibility Assignment Software Patterns‟.

 GRASP provides guidance for assigning responsibilities to classes and, to a limited extent,

determining the classes that will be in a design in an object-oriented system. In short

GRASP stands for designing objects with responsibilities

4) What are GRASP principles?

 The GRASP principles or patterns are a learning aid to help you understand essential

object design in a methodical,rational,explainable way. This approach is based on

patterns of assigning responsibilities.

 GRASP defines nine basic Object Oriented Design principles or basic building blocks in

design.

o Information Expert.

o Creator

o Controller

o Low coupling

o High Cohesion

o Polymorphism

o Pure fabrication

o Indirection

3

o Protected variations

GRASP: Examples

 Larman presents GRASP as “named problem/solution pairs”, for example:

 Name Problem

1) Expert

2) Creator

3) Low coupling

4) High Cohesion

5) Controller

What is the most basic principle by which

responsibilities are assigned?

 Who should be responsible for creating a

new instance of a class?

 How to support low dependency and

increased reuse?

 How to keep complexity manageable?

 Who should be responsible for handling a

system event?

5) What are patterns?

In Object Oriented Design,a pattern is a named description of a Problem and Solutions

that can be applied to new contexts. Many patterns,given a category of problem,guide

the assignment of responsibilities to objects.

6) What are Design Patterns?

In software engineering, a design pattern is a general repeatable solution to a

commonly occurring problem in software design. A design pattern isn't a finished design

that can be transformed directly into code. It is a description or template for how to solve

a problem that can be used in many different situations

7) What is GOF?

GOF refers to the four authors(Gamma,Helm,Johnson,and Vlissides) known as the

Gang-of-four who have written a book “design Patterns” which is considered as Bible of

design pattern books. The book describes 23 patterns for Object Oriented Design..

8) What is Responsibility Driven Design(RDD) approach?

In RDD,we think about the design of Software Objects as having responsibilities – an

abstraction of what they do. The UML defines a responsibility as “a Contract or

Obligation of a Classifier

4

9) Explain Responsibility Driven Design using examples.

Examples of responsibilities

 “A Sale is responsible for creating

 SalesLineItems” (doing)

 “A Sale is responsible for knowing its total”

 (knowing)

 Knowing responsibilities are related to

 attributes, associations in the domain model

 Doing responsibilities can be expressed at

 different granularities.

 Doing responsibilities are implemented by

 means of methods

10) Explain Creator Pattern with an example.

5

 Creator

• Problem: Who should be responsible for creating a new instance of some class ?

• The creation of objects is one of the most common activities in an object-oriented

system. Consequently, it is useful to have a general principle for assignment of

creation responsibilities. Assigned well, the design can support low coupling

increased clarity, encapsulation, and reusability.

Solution

• Assign class B the responsibility to create an instance of class A if one or more of the

following is true :

– B aggregates A objects .

– B contains A objects.

– B records instances of A objects.

– B closely uses A objects.

– B has the initializing data that will be passed to A when it is created

– B is a creator of A objects.

6

Discussion of Creator pattern

 Responsibilities for object creation are common

 Connect an object to its creator when:

– Aggregator aggregates Part

– Container contains Content

– Recorder records

– Initializing data passed in during creation

11) Explain ‘Information Expert’ with an example.

Information Expert

• By Information expert we should look for the class of objects that has the

information needed to determine the total.

• Problem : What is a general principle of assigning responsibilities to objects?

• Solution: Assign a responsibility to the information expert – a class that has the

information necessary to fulfill the responsibility.

7

12) Explain ‘Low Coupling’ with an example.

Low Coupling

• Coupling is a measure of how strongly one element is connected to, has knowledge of, or

relies on other element.

• Low Coupling Pattern

• Problem:

• How to support a low dependency,low change impact ,and increased reuse?

• Solution:

• Assign a responsibility so that coupling remains low.

13) Define pattern ‘Controller’

8

14) Define pattern ‘High Cohesion’.

In software design a basic quality known as cohesion informally measures how

functionally related the operations of a software element are, and also measures how

much work a software element is doing. As a simple contrasting example, an object Big

with 100 methods and 2,000 source lines of code (SLOC) is doing a lot more than an

object Small with 10 methods and 200 source lines. And if the 100 methods of Big are

covering many different areas of responsibility (such as database access and random

number generation), then Big has less focus or functional cohesion than Small. In

summary, both the amount of code and the relatedness of the code are an indicator of an

object's cohesion.

To be clear, bad cohesion (low cohesion) doesn't just imply an object does work only by

itself; indeed, a low cohesion object with 2,000 SLOC probably collaborates with many

9

other objects. Now, here's a key point: All that interaction tends to also create bad (high)

coupling. Bad cohesion and bad coupling often go hand-in-hand.

In terms of the contrasting designs in Figure 17.11, the left-hand version of

MonopolyGame has worse cohesion than the right-hand version, since the left-hand

version is making the MonopolyGame object itself do all the work, rather than

delegating and distributing work among objects. This leads to the principle of High

Cohesion, which is used to evaluate different design choices. All other things being

equal, prefer a design with higher

cohesion.

Name: High Cohesion

Problem: How to keep objects focused, understandable, and manageable, and as a side

 effect, support Low Coupling?

Solution: (advice) Assign responsibilities so that cohesion remains high. Use this to evaluate

 alternatives. We can say that the right-hand design better supports High Cohesion

 than the left-hand version.

15) What is use case realization?

"A use-case realization describes how a particular use case is realized within the Design

Model, in terms of collaborating objects" [RUP]. More precisely, a designer can describe

the design of one or more scenarios of a use case; each of these is called a use case

realization (though non-standard, perhaps better called a scenario realization). Use case

realization is a UP term used to remind us of the connection between the requirements

expressed as use cases and the object design that satisfies the requirements.

UML diagrams are a common language to illustrate use case realizations. And as we

explored in the prior chapter, we can apply principles and patterns of object design, such

as Information Expert and Low Coupling, during this use case realization design work.

To review, Figure 18.1 illustrates the relationship between some UP artifacts,

emphasizing the Use Case Model and the Design Modeluse case realizations.

Some relevant artifact-influence points include the following:

The use case suggests the system operations that are shown in SSDs.

The system operations become the starting messages entering the Controllers for domain

layer interaction diagrams. See Figure 18.2.

This is a key point often missed by those new to OOA/D modeling.

Figure 18.2. Communication diagrams and system operation
handling.

10

Domain layer interaction diagrams illustrate how objects interact to fulfill the

required tasks the use case realization.

16) What is Visibility?

Visibility is the ability of one object to see or have reference to another.

In common usage, visibility is the ability of an object to "see" or have a reference to another
object. More generally, it is related to the issue of scope: Is one resource (such as an instance)
within the scope of another?
Visibility Between Objects

The designs created for the system operations (enterItem, and so on) illustrate messages

between objects. For a sender object to send a message to a receiver object, the sender must

be visible to the receiver,the sender must have some kind of reference or pointer to the

receiver object.

For example, the getProductDescription message sent from a Register to a ProductCatalog

implies that the ProductCatalog instance is visible to the Register instance, as shown in

Figure 19.1.

Figure 19.1. Visibility from the Register to ProductCatalog is required.

11

When creating a design of interacting objects, it is necessary to ensure that the necessary

visibility is present to support message interaction.

17) Write short notes on a)Attribute visibility b)Parameter Visibility c)Local visibility

d)Global visibility

There are four common ways that visibility can be achieved from object A to object B:
Attribute visibility B is an attribute of A.
Parameter visibility B is a parameter of a method of A.
Local visibility B is a (non-parameter) local object in a method of A.
Global visibility B is in some way globally visible.

The motivation to consider visibility is this:

For an object A to send a message to an object B, B must be visible to A.
For example, to create an interaction diagram in which a message is sent from a Register
instance to a ProductCatalog instance, the Register must have visibility to the ProductCatalog. A
typical visibility solution is that a reference to the ProductCatalog instance is maintained as an
attribute of the Register.

Attribute Visibility
Attribute visibility from A to B exists when B is an attribute of A. It is a relatively permanent
visibility because it persists as long as A and B exist. This is a very common form of visibility in
object-oriented systems.
To illustrate, in a Java class definition for Register, a Register instance may have attribute

visibility to a ProductCatalog, since it is an attribute (Java instance variable) of the Register.
public class Register

{

...

private ProductCatalog catalog;

...

}

This visibility is required because in the enterItem diagram shown in Figure 19.2, a Register

needs to send the getProductDescription message to a ProductCatalog:

12

Figure 19.2. Attribute visibility.

Parameter Visibility
Parameter visibility from A to B exists when B is passed as a parameter to a method of A. It is
a relatively temporary visibility because it persists only within the scope of the method. After
attribute visibility, it is the second most common form of visibility in object-oriented systems.
To illustrate, when the makeLineItem message is sent to a Sale instance, a ProductDescription
instance is passed as a parameter. Within the scope of the makeLineItem method, the Sale has

parameter visibility to a ProductDescription (see Figure 19.3).

13

Local Visibility

Local visibility from A to B exists when B is declared as a local object within a method of

A. It is a relatively temporary visibility because it persists only within the scope of the

method. After parameter visibility, it is the third most common form of visibility in object-

oriented systems.

Two common means by which local visibility is achieved are:

Create a new local instance and assign it to a local variable.

Assign the returning object from a method invocation to a local variable.

As with parameter visibility, it is common to transform locally declared visibility into

attribute visibility.

An example of the second variation (assigning the returning object to a local variable) can

be found in the enterItem method of class Register (Figure 19.5).

Global Visibility
Global visibility from A to B exists when B is global to A. It is a relatively permanent visibility
because it persists as long as A and B exist. It is the least common form of visibility in object-

oriented systems.
One way to achieve global visibility is to assign an instance to a global variable, which is possible
in some languages, such as C++, but not others, such as Java.
The preferred method to achieve global visibility is to use the Singleton pattern

18) Explain with a diagram Factory pattern.

Factory
This is also called Simple Factory or Concrete Factory. This pattern is not a GoF design pattern, but
extremely widespread. It is also a simplification of the GoF Abstract Factory pattern (p. 597), and often
described as a variation of Abstract Factory, although that's not strictly accurate. Nevertheless, because
of its prevalence and association with GoF, it is presented now.
The adapter raises a new problem in the design: In the prior Adapter pattern solution for external

services with varying interfaces, who creates the adapters? And how to determine which class of adapter

to create, such as TaxMaster-Adapter or GoodAsGoldTaxProAdapter?

14

If some domain object creates them, the responsibilities of the domain object are going beyond pure

application logic (such as sales total calculations) and into other concerns related to connectivity with
external software components.
This point underscores another fundamental design principle (usually considered an architectural design
principle): Design to maintain a separation of concerns. That is, modularize or separate distinct
concerns into different areas, so that each has a cohesive purpose. Fundamentally, it is an application of
the GRASP High Cohesion principle. For example, the domain layer of software objects emphasizes
relatively pure application logic responsibilities, whereas a different group of objects is responsible for the

concern of connectivity to external systems.
Therefore, choosing a domain object (such as a Register) to create the adapters does not support the
goal of a separation of concerns, and lowers its cohesion.
A common alternative in this case is to apply the Factory pattern, in which a Pure Fabrication "factory"
object is defined to create objects.

Factory objects have several advantages:

Separate the responsibility of complex creation into cohesive helper objects.

Hide potentially complex creation logic.
Allow introduction of performance-enhancing memory management strategies, such as object caching or
recycling.

Name: Factory

Problem: Who should be responsible for creating objects when there are special considerations,
such as complex creation logic, a desire to separate the creation responsibilities for better
cohesion, and so forth?

Solution: (advice) Create a Pure Fabrication object called a Factory that handles the creation.

A Factory solution is illustrated in Figure 26.5.

Figure 26.5. The Factory pattern.

Note that in the ServicesFactory, the logic to decide which class to create is resolved by reading
in the class name from an external source (for example, via a system property if Java is used)
and then dynamically loading the class. This is an example of a partial data-driven design. This
design achieves Protected Variations with respect to changes in the implementation class of the
adapter. Without changing the source code in this factory class, we can create instances of new

adapter classes by changing the property value and ensuring that the new class is visible in the
Java class path for loading.

Related Patterns

15

Factories are often accessed with the Singleton pattern.

19) Explain Singleton pattern with a diagram.

Singleton (GoF)
The ServicesFactory raises another new problem in the design: Who creates the factory itself, and

how is it accessed?
First, observe that only one instance of the factory is needed within the process. Second, quick
reflection
suggests that the methods of this factory may need to be called from various places in the code,
as different places need access to the adapters for calling on the external services. Thus, there is
a visibility problem: How to get visibility to this single ServicesFactory instance?

One solution is pass the ServicesFactory instance around as a parameter to wherever a visibility

need is
discovered for it, or to initialize the objects that need visibility to it, with a permanent reference.
This is possible but inconvenient; an alternative is the Singleton pattern.
Occasionally, it is desirable to support global visibility or a single access point to a single instance
of a class rather than some other form of visibility. This is true for the ServicesFactory instance.

Name: Singleton

Problem: Exactly one instance of a class is allowedit is a "singleton." Objects need a global and
single point of access.

Solution: (advice) Define a static method of the class that returns the singleton.

For example, Figure 26.6 shows an implementation of the Singleton pattern.

Applying UML: Notice how a singleton is illustrated, with a '1' in the top right corner of the name
compartment.

16

Thus, the key idea is that class X defines a static method getInstance that itself provides a single

instance of X.
With this approach, a developer has global visibility to this single instance, via the static
getInstance method of the class, as in this example:
public class Register

{

public void initialize()

{

… do some work …

// accessing the singleton Factory via the getInstance call

accountingAdapter =

ServicesFactory.getInstance().getAccountingAdapter();

… do some work …

}

// other methods…

} // end of class

Since visibility to public classes is global in scope (in most languages), at any point in the code, in

any method of any class, one can write
SingletonClass.getInstance()
in order to obtain visibility to the singleton instance, and then send it a message, such as
SingletonClass.getInstance().doFoo(). And it's hard to beat the feeling of being able to globally
doFoo!

20) Explain Adapter pattern with a diagram

Adapter (GoF)

The NextGen problem explored on p. 414 to motivate the Polymorphism pattern and its

solution is more specifically an example of the GoF Adapter pattern.

Name: Adapter

Problem: How to resolve incompatible interfaces, or provide a stable interface to similar

components with different interfaces?

Solution: (advice) Convert the original interface of a component into another interface,

through an intermediate adapter object.

To review: The NextGen POS system needs to support several kinds of external third-

party services, including tax calculators, credit authorization services, inventory systems,

and accounting systems, among others. Each has a different API, which can't be

changed.

A solution is to add a level of indirection with objects that adapt the varying external

interfaces to a consistent interface used within the application. The solution is illustrated

in Figure 26.1.

17

As illustrated in Figure 26.2, a particular adapter instance will be instantiated for the chosen
external service[1] , such as SAP for accounting, and will adapt the postSale request to the

external interface, such as a SOAP XML interface over HTTPS for an intranet Web service offered
by SAP.

21) Explain Adapter,Factory,and Singleton patterns applied to the design with a

diagram.

Factory

18

This is also called Simple Factory or Concrete Factory. This pattern is not a GoF design

pattern, but extremely widespread. It is also a simplification of the GoF Abstract Factory

pattern (p. 597), and often described as a variation of Abstract Factory, although that's not

strictly accurate. Nevertheless, because of its prevalence and association with GoF, it is

presented now.

The adapter raises a new problem in the design: In the prior Adapter pattern solution for

external services with varying interfaces, who creates the adapters? And how to determine

which class of adapter to create, such as TaxMaster-Adapter or

GoodAsGoldTaxProAdapter?

If some domain object creates them, the responsibilities of the domain object are going

beyond pure application logic (such as sales total calculations) and into other concerns

related to connectivity with external software components.

This point underscores another fundamental design principle (usually considered an

architectural design principle): Design to maintain a separation of concerns. That is,

modularize or separate distinct concerns into different areas, so that each has a cohesive

purpose. Fundamentally, it is an application of the GRASP High Cohesion principle. For

example, the domain layer of software objects emphasizes relatively pure application

logic responsibilities, whereas a different group of objects is responsible for the concern of

connectivity to external systems.

Therefore, choosing a domain object (such as a Register) to create the adapters does not

support the goal of a separation of concerns, and lowers its cohesion.

A common alternative in this case is to apply the Factory pattern, in which a Pure

Fabrication "factory" object is defined to create objects.

Factory objects have several advantages:

Separate the responsibility of complex creation into cohesive helper objects.

Hide potentially complex creation logic.

Allow introduction of performance-enhancing memory management strategies, such as

object caching or recycling.

Name: Factory

Problem: Who should be responsible for creating objects when there are special

considerations,such as complex creation logic, a desire to separate the creation

responsibilities for better cohesion, and so forth?

Solution: (advice) Create a Pure Fabrication object called a Factory that handles the

creation.

A Factory solution is illustrated in Figure 26.5.

Figure 26.5. The Factory pattern.

19

Note that in the ServicesFactory, the logic to decide which class to create is resolved by

reading in the class name from an external source (for example, via a system property if Java

is used) and then dynamically loading the class. This is an example of a partial data-driven

design. This design achieves Protected Variations with respect to changes in the

implementation class of the adapter. Without changing the source code in this factory class,

we can create instances of new adapter classes by changing the property value and ensuring

that the new class is visible in the Java class path for loading.

Singleton (GoF)
The ServicesFactory raises another new problem in the design: Who creates the factory itself, and

how is it accessed?
First, observe that only one instance of the factory is needed within the process. Second, quick
reflection suggests that the methods of this factory may need to be called from various places in
the code, as different places need access to the adapters for calling on the external services.
Thus, there is a visibility problem: How to get visibility to this single ServicesFactory instance?
One solution is pass the ServicesFactory instance around as a parameter to wherever a visibility
need is discovered for it, or to initialize the objects that need visibility to it, with a permanent

reference. This is possible but inconvenient; an alternative is the Singleton pattern.
Occasionally, it is desirable to support global visibility or a single access point to a single instance
of a class rather than some other form of visibility. This is true for the ServicesFactory instance.

Name: Singleton

Problem: Exactly one instance of a class is allowedit is a "singleton." Objects need a global and
single point of access.

Solution: (advice) Define a static method of the class that returns the singleton.
For example, Figure 26.6 shows an implementation of the Singleton pattern.

20

Figure 26.6. The Singleton pattern in the ServicesFactory class.

22) Explain with a diagram composite pattern

Composite (GoF) and Other Design Principles
To raise yet another interesting requirements and design problem: How do we handle the case of
multiple, conflicting pricing policies? For example, suppose a store has the following policies in effect
today (Monday):
20% senior discount policy
preferred customer discount of 15% off sales over $400

on Monday, there is $50 off purchases over $500

buy 1 case of Darjeeling tea, get 15% discount off of everything

Suppose a senior who is also a preferred customer buys 1 case of Darjeeling tea, and $600 of
veggieburgers
(clearly an enthusiastic vegetarian who loves chai). What pricing policy should be applied?

To clarify: There are now pricing strategies that attach to the sale by virtue of three factors:

1. time period (Monday)
2. customer type (senior)
3. a particular line item product (Darjeeling tea)
Another point of clarification: Three of the four example policies are really just "percentage discount"
strategies, which simplifies our view of the problem.
Part of the answer to this problem requires defining the store's conflict resolution strategy. Usually, a
store applies the "best for the customer" (lowest price) conflict resolution strategy, but this is not

required, and it could change. For example, during a difficult financial period, the store may have to use
a "highest price" conflict resolution strategy.
The first point to note is that there can exist multiple co-existing strategies, that is, one sale may have
several pricing strategies. Another point to note is that a pricing strategy can be related to the type of
customer (for example, a senior). This has creation design implications: The customer type must be
known by the StrategyFactory at the time of creation of a pricing strategy for the customer.

Similarly, a pricing strategy can be related to the type of product being bought (for example, Darjeeling
tea).
This likewise has creation design implications: The ProductDescription must be known by the
StrategyFactory at the time of creation of a pricing strategy influenced by the product.
Is there a way to change the design so that the Sale object does not know if it is dealing with one or
many pricing strategies, and also offer a design for the conflict resolution? Yes, with the Composite
pattern.

Name: Composite

Problem: How to treat a group or composition structure of objects the same way (polymorphically)
as a non-composite (atomic) object?

Solution: (advice) Define classes for composite and atomic objects so that they implement the same
interface.

For example, a new class called CompositeBestForCustomerPricingStrategy (well, at least it's
descriptive) can implement the ISalesPricingStrategy and itself contain other ISalesPricingStrategy
objects. Figure 26.14 explains the design idea in detail.

Observe that in this design, the composite classes such as CompositeBestForCustomerPricingStrategy
inherit an attribute pricingStrategies that contains a list of more ISalePricingStrategy objects. This is a

signature feature of a composite object: The outer composite object contains a list of inner objects, and

21

both the outer and inner objects implement the same interface. That is, the composite class itself

implements the ISalePricingStrategy interface.

23) What is the use of Façade pattern(GOF)

Facade (GoF)
Another requirement chosen for this iteration is pluggable business rules. That is, at predictable
points in the scenarios, such as when makeNewSale or enterItem occurs in the Process Sale use

case, or when a cashier starts cashing in, different customers who wish to purchase the NextGen
POS would like to customize its behavior slightly.
To be more precise, assume that rules are desired that can invalidate an action. For example:

22

Suppose when a new sale is created, it is possible to identify that it will be paid by a gift

certificate (this is possible and common). Then, a store may have a rule to only allow one item to
be purchased if a gift certificate is used. Consequently, subsequent enterItem operations, after
the first, should be invalidated.
If the sale is paid by a gift certificate, invalidate all payment types of change due back to the
customer except for another gift certificate. For example, if the cashier requested change in the
form of cash, or as a credit to the customer's store account, invalidate those requests.
Suppose when a new sale is created, it is possible to identify that it is for a charitable donation

(from the store to the charity). A store may also have a rule to only allow item entries less than
$250 each, and also to only add items to the sale if the currently logged in "cashier" is a
manager. In terms of requirements analysis, the specific scenario points across all use cases
(enterItem, chooseCashChange, ...) must be identified. For this exploration, only the enterItem
point will be considered, but the same solution applies equally to all points.
Suppose that the software architect wants a design that has low impact on the existing software
components.

That is, she or he wants to design for a separation of concerns, and factor out this rule handling

into a separate concern. Furthermore, suppose that the architect is unsure of the best
implementation for this pluggable rule handling, and may want to experiment with different
solutions for representing, loading, and evaluating the rules. For example, rules can be
implemented with the Strategy pattern, or with free open-source rule
interpreters that read and interpret a set of IF-THEN rules, or with commercial, purchased rule

interpreters, among other solutions.
To solve this design problem, the Facade pattern can be used.

Name: Façade

Problem: A common, unified interface to a disparate set of implementations or interfacessuch as

within a subsystemis required. There may be undesirable coupling to many things in the
subsystem, or the implementation of the subsystem may change. What to do?

Solution: (advice) Define a single point of contact to the subsystema facade object that wraps the

subsystem. This facade object presents a single unified interface and is responsible for
collaborating with the subsystem components.

A Facade is a "front-end" object that is the single point of entry for the services of a subsystem[2]

; the implementation and other components of the subsystem are private and can't be seen by
external components.
Facade provides Protected Variations from changes in the implementation of a subsystem.
[2] "Subsystem" is here used in an informal sense to indicate a separate grouping of related components, not exactly as defined in the
UML.

For example, we will define a "rule engine" subsystem, whose specific implementation is not yet
known.[3] It will be responsible for evaluating a set of rules against an operation (by some hidden
implementation), and then indicating if any of the rules invalidated the operation.

23

Note the use of the Singleton pattern. Facades are often accessed via Singleton.

With this design, the complexity and implementation of how rules will be

represented and evaluated are hidden in the "rules engine" subsystem, accessed via

the POSRuleEngineFacade facade. Observe that the subsystem hidden by the facade

object could contain dozens or hundreds of classes of objects, or even a non-

objectoriented solution, yet as a client to the subsystem, we see only its one public

access point.

And a separation of concerns has been achieved to some degreeall the rule-handling

concerns have been delegated to another subsystem.

24) Explain with an example Observer pattern.

 Observer/Publish-Subscribe/Delegation Event
Model

(GoF)
Another requirement for the iteration is adding the ability for a GUI window to refresh its display
of the sale total when the total changes (see Figure 26.21). The idea is to solve the problem for
this one case, and then in later iterations, extend the solution to refreshing the GUI display for

other changing data as well.

24

�

Why not do the following as a solution? When the Sale changes its total, the Sale object sends a
message to a window, asking it to refresh its display.

To review, the Model-View Separation principle discourages such solutions. It states that "model"
objects (non- UI objects such as a Sale) should not know about view or presentation objects such
as a window. It promotes Low Coupling from other layers to the presentation (UI) layer of
objects.

A consequence of supporting this low coupling is that it allows the replacement of the view or
presentation layer by a new one, or of particular windows by new windows, without impacting the
non-UI objects. If model objects do not know about Java Swing objects (for example), then it is

possible to unplug a Swing interface, or unplug a particular window, and plug in something else.
Thus, Model-View Separation supports Protected Variations with respect to a changing user
interface.
To solve this design problem, the Observer pattern can be used.

Name: Observer (Publish-Subscribe)

Problem: Different kinds of subscriber objects are interested in the state changes or events of a
publisher object, and want to react in their own unique way when the publisher generates
an event. Moreover, the publisher wants to maintain low coupling to the subscribers.
What to do?

Solution: (advice) Define a "subscriber" or "listener" interface. Subscribers implement this
interface. The
publisher can dynamically register subscribers who are interested in an event and notify
them when an event occurs.

An example solution is described in detail in Figure 26.22.

25

The major ideas and steps in this example:
1. An interface is defined; in this case, PropertyListener with the operation
onPropertyEvent.

2. Define the window to implement the interface.

 SaleFrame1 will implement the method onPropertyEvent.
3. When the SaleFrame1 window is initialized, pass it the Sale instance from which it is

displaying the total. The SaleFrame1 window registers or subscribes to the Sale instance
for notification of "property events," via the addPropertyListener message. That is, when
a property (such as total) changes, the window wants to be notified.
4. Note that the Sale does not know about SaleFrame1 objects; rather, it only knows
about objects that implement the PropertyListener interface. This lowers the coupling of

the Sale to the windowthe coupling is only to an interface, not to a GUI class.
5. The Sale instance is thus a publisher of "property events." When the total changes, it
iterates across all subscribing PropertyListeners, notifying each.
6. The SaleFrame1 object is the observer/subscriber/listener. In Figure 26.23, it
subscribes to interest in property events of the Sale, which is a publisher of property
events. The Sale adds the object to its list of PropertyListener subscribers. Note that the

Sale does not know about the SaleFrame1 as a SaleFrame1 object,
but only as a PropertyListener object; this lowers the coupling from the model up to the
view layer.

26

As illustrated in Figure 26.24, when the Sale total changes, it iterates across all its registered subscribers,
and "publishes an event" by sending the onPropertyEvent message to each.

CS8592 Object Oriented Analysis and Design

V-Sem-CSE - 2017-Regulations

UNIT V TESTING 9

Object Oriented Methodologies – Software Quality Assurance – Impact of object orientation on Testing –

Develop Test Cases and Test Plans

--- --------------

Question Bank

UNIT-V

1) What are different Object Oriented Methodologies?

A methodology is explained as the science of methods.

• A method is a set of procedures in which a specific goal is approached step by step.

Too Many Methodologies
• 1986: Booch came up with the object-oriented design concept,

 the Booch method.

• 1987: Sally Shlaer and Steve Mellor came up with the concept of the recursive design

approach.

 1989: Beck and Cunningham came up with class-responsibilitycollaboration (CRC) cards.

• 1990: Wirfs-Brock, Wilkerson, and Wiener came up with responsibilitydriven design.

• 1991: Peter Coad and Ed Yourdon developed the Coad lightweight and

 prototype-oriented approach.

• 1991: Jim Rumbaugh led a team at the research labs of General Electric

to develop the object modeling technique (OMT).

• 1994: Ivar Jacobson introduced the concept of the use case.

Survey of Some of the ObjectOriented Methodologies
• Many methodologies are available to choose from for system development.

• Here, we look at the methodologies developed by Rumbaugh et al.,

 Booch, and Jacobson which are the origins of the Unified Modeling

 Language (UML) and the bases of the UA.

28) a) What is OMT? Explain with examples a) Object Model b) OMT Dynamic Model.

 (OR)

 b) Explain briefly the four phases of OMT model. Explain with example OMT Functional Model.

I. The object modeling technique (OMT) presented by Jim Rumbaugh and his coworkers

describes a metod for analysis, design, implementation of using an Object Oriented

Technique. OMT is fast intuitive approach for identifying and modeling all the objects

making up the system. Details such as class, attributes, method, inheritance, and association

also can be expressed easily.

OMT consists of four phases, which can be performed iteratively :

1) Analysis – The results are objects and dynamic and functional models.

2) System Design – the results are structure of the basic architecture of the system along

with high-level strategy decisions.

3) Object Design – This phase produces a design document , consisting of detailed

objects static, dynamic, and functional models.

4) Implementation – This activity produces reusable, extendible and robust code.

The OMT Functional Model :

The OMT Data flow Diagram (DFD) shows the flow of data between different processes in

business. An OMT DFD provides a simple and intuitive method for describing business

processes without focusing on the details of computer systems.

Data Flow Diagrams use four primary symbols :

1) The process is any function being performed ; for example , verify password or PINin

the ATM system.

2) The data flow shows the direction of data element movement; for example PIN code.

3) The data store is a location where data are stored; for example , account is a data

store in the ATM example.

4) An external entity is a source or destination of a data element; for example, the ATM

card reader.

10) Explain briefly units of OO Testing.

Individual methods are units
Levels of testing – 1

Four levels
 Method

 Class

 Integration

 System

At port level – same as traditional testing

Levels of testing – 2

Classes are units

Three levels
 Class

Unit testing

 Integration
Interclass testing

 System

At port level

12) What are the implications of composition and Encapsulation?
Composition (as opposed to decomposition) is the central design strategy in O-O Software
development. Together with the goal of reuse , composition creates the need for very stron

unit testing. Because a unit(class) may be composed with previously unknown other units , the

12
traditional notions of coupling and cohesion are applicable. Encapsulation has the potential
to resolve this concern, but only if the units (classes) are highly cohesive and very loosely

coupled. The main implication of composition is that , even presuming very good unit-level
testing, the real burden is at the integration testing level.

13) What are the implications of Inheritance in OO-Testing?

Eventhough , a class is considered as unit of testing as a natural choice, the role of Inheritance

complicates the matter. If a given class inherits attributes and/or operations from super classes , the

stand

alone compilation criterion of a unit is sacrificed. However, the “flattened classes” concept alleviates

this problem. A flattened class is an original class expanded to include all the attributes and

operations it inherits.

Unit Testing on a flattened class solves the inheritance problem , but it raises another. A flattened

class will not be part of a final system, so some uncertainty remains. Also the methods in a

flattened class might not be sufficient to test the class. This leads to unending chain of methods

testing other methods.

EXAMPLE

The LHS Fig. shows a UML inheritance diagram of a part of a simple automated teller machine. The fig.

on the RHS shows the “flattened” checkingAccount and savingsAccount classes. Here we need to test

the getbalance and setBalance operations twice resulting in losing some of the benefits of

Object Orientation.

14) What are the implications of Polymorphism on OO-Testing?

Testing with different objects introduces redundant tests on inherited methods
 Lose hoped for economies

 Similarly testing polymorphism introduces redundant testing

Polymorphism Issues are summarized as below :

13

 Repeatedly testing same methods

 Time can then be wasted if not addressed

 Potentially can be avoided, and actually save time

15) Briefly explain class testing.

Class Testing

 Class test cases are created by examining the specification of the class.

o This is more difficult if the class is a subclass and inherits data and behavior from a

super class. A complicated class hierarchy can be pose significant testing problems.
 If you have a state model for the class, test each transition - devise a driver that sets an object of the

class in the source state of the transition and generates the transition event.

 Class Constraints/Invariants should be incorporated into the class test.

 All class methods should be tested, but testing a method in isolation from the rest of the class is usually
meaningless

o Method Testing
 A public method in a class is typically tested using a black-box approach.

o Start from the specification, no need to look at the method body.
o Consider each parameter in the method signature, and identify its equivalence classes.
o Incorporate pre-conditions and post-conditions in your test of a method.
o Test exceptions.

 For complex logic, also use white-box testing or static testing.

16) What are the common guide lines for Units?

The common guidelines are that an Unit is :

(1) The smallest chunk that can be compiled by itself.

(2) A single procedure/function (Standalone)

(3) Something so small it would be developed by one person.

17) Discuss the merits and demerits of a) Methods as Units b) Classes as Units in OO unit

testing?

(a) Methods as Units.
A method implements a single function, and it would not be assigned to more than
one person, so methods might ideally be considered as units. The smallest compilation
is problematic.

(b) Classes as Units

14

Also if we are using fully flattened classes , we will need to unflatten them to their original form
when unit testing is complete.

Define Object Oriented Integration testing.

• Interclass Testing
• The first level of integration testing for object-oriented software

– Focus on interactions between classes
• Bottom-up integration according to “depends” relation

– A depends on B: Build and test B, then A
• Start from use/include hierarchy

– Implementation-level parallel to logical “depends” relation
• Class A makes method calls on class B
• Class A objects include references to class B methods

– but only if reference means “is part of”

18) Compare unit testing and Integration testing in OO Testing.

OO definitions of unit and integration testing
• Procedural software

– unit = single program, function, or procedure
more often: a unit of work that may correspond to one or more intertwined functions or
programs

• Object oriented software
– unit = class or (small) cluster of strongly related classes

(e.g., sets of Java classes that correspond to exceptions)
– unit testing = intra-class testing

– integration testing = inter-class testing (cluster of classes)
– dealing with single methods separately is usually too expensive (complex scaffolding), so

methods are usually tested in the context of the class they belong to
19) Explain in detail about OO Integration testing.

15

16
A sequence diagram traces ana execution-time path through a collaboraton diagram. Thick vertical

lines represent either a class or an instance of a class, and the arrows are labelled with the

messsages sent by (instances of) classes in their time order. The portion of oocalendar application

that prints out the new date is shown as sequence diagram as in Fig below :

20) What are MM-Paths for OO Software? Give an example.

17
An MM-Path in Object-Oriented Software is a sequence of method executions linked by

messages.

An MM-Path starts with a method and ends when it reaches a method that does not issue

any message of its own; this is the point of quiescence.

The figure below is an example of MM-Path for the collaboration diagram of OO Calendar

example shown above. With this formulation we can view object oriented integration

testing independently of whether the units were chosen as methods or classes.

