Stat 331 Selected Homework 8 Solutions

Let $X_{i}=\left\{\begin{array}{ll}1 & \text { If } i^{\text {th }} \text { couple remains } \\ 0 & \text { Otherwise }\end{array} \quad\right.$ where $i=1,2, \ldots, N$
Because we have 2 N individuals and n deaths:
$E\left(X_{i}\right)=P\left\{X_{i}=1\right\}=\frac{\binom{2 N-2}{n}}{\binom{2 N}{n}}$
We want $E\left(\sum_{i=1}^{N} X_{i}\right)=N \cdot E\left(X_{i}\right)=\frac{(2 N-n)(2 N-n-1)}{2(2 N-1)}$
Problem 3.79
Let N : = Number of Rallies until the next point is scored
Let A: = Event that Ann wins next rally
Let $\mathrm{B}:=$ Event that Ann loses next rally and wins that one after that
Then $\mu=\mathrm{E}(\mathrm{N} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{E}(\mathrm{N} \mid \mathrm{B}) \mathrm{P}(\mathrm{A})=1 \cdot \mathrm{p}+(1+\mu) \cdot(1-\mathrm{p})$, solving for $\mu, \mu=\frac{1}{\mathrm{p}}$

Problem 3.83

Let $\mathrm{E}(\mathrm{n}):=$ Expected wait for n consecutive Heads. To get n consecutive heads, you must get $\mathrm{n}-1$ consecutive heads. After $\mathrm{n}-1$ consecutive heads the following can happen:

- You can get another head with probability $1 / 2$
- You can get a tail with probability $1 / 2$ and then start over

Thus we can write:
$\mathrm{E}(\mathrm{n})=1 / 2(\mathrm{E}(\mathrm{n}-1)+1)+1 / 2(\mathrm{E}(\mathrm{n}-1)+1+\mathrm{E}(\mathrm{n}))$
Solving For $\mathrm{E}(\mathrm{n})$ we get $\mathrm{E}(\mathrm{n})=2 \mathrm{E}(\mathrm{n}-1)+2$
Proof by induction that $\mathrm{E}(\mathrm{n})=2^{\mathrm{n}+1}-2$:
First Show it's true for $\mathrm{n}=1, \mathrm{E}(1)=2$, this is true because the expected wait time for an event with probability p is $1 / \mathrm{p}$, thus $\mathrm{E}(1)=1 /(1 / 2)=2$.

Assume that the above holds for n and show that it is true for $\mathrm{n}=\mathrm{k}+1$:

$$
\begin{aligned}
\mathrm{E}(\mathrm{k}+1) & =2 \mathrm{E}(\mathrm{k})+2 \\
& =2\left(2^{\mathrm{k}+1}-2\right)+2 \\
& =2^{\mathrm{k}+2}-4+2 \\
& =2^{(\mathrm{k}+1)+1}-2
\end{aligned}
$$

Therefore $\mathrm{E}(\mathrm{n})=2^{\mathrm{n}+1}-2$

Extra Problems

Problem 3

From Class $\bar{X} \mid H_{0} \sim N\left(0, \sigma^{2} / n\right)$ and $\bar{X} \mid H_{1} \sim N\left(A, \sigma^{2} / n\right)$
a) $\mathrm{P}_{\mathrm{F}}=\mathrm{P}\left(\overline{\mathrm{X}}>\gamma \mid \mathrm{H}_{1}\right)=1-\mathrm{P}\left(\overline{\mathrm{X}} \leq \gamma \mid \mathrm{H}_{0}\right)=1-\Phi\left(\frac{\gamma}{\sigma / \sqrt{\mathrm{n}}}\right) \Rightarrow \gamma=\frac{\sigma}{\sqrt{\mathrm{n}}} \Phi^{-1}(1-\alpha)$
b) $\mathrm{P}_{\mathrm{M}}=\mathrm{P}\left(\overline{\mathrm{X}}<\gamma \mid \mathrm{H}_{1}\right)=\Phi\left(\frac{\gamma-\mathrm{A}}{\sigma / \sqrt{\mathrm{n}}}\right)=\Phi\left(\Phi^{-1}(1-\alpha)-\frac{\mathrm{A} \sqrt{\mathrm{n}}}{\sigma}\right)$
c) $\mathrm{P}_{\mathrm{M}}=\mathrm{P}\left(\overline{\mathrm{X}}<\gamma \mid \mathrm{H}_{1}\right)=\Phi\left(\Phi^{-1}(1-\alpha)-\sqrt{\mathrm{SNR}}\right)$, thus higher SNR means smaller P_{M}. The name is appropriate since larger SNR \Leftrightarrow larger n, A or smaller σ^{2}.

