
STAT 530: Decision Theory Starting Points

We start with a loss function, L(θ, a), which reflects the loss (or negative
utility) when action a is chosen and the state of nature is θ. Less grandiosely,
we might have that θ is the value of the parameter being estimated and a is
the estimate. In such a case, squared-error loss, L(θ, a) = (a − θ)2, is one
common choice.

Now think about a ‘rule’ (or estimator!) dictating what action to take based
on what data y are observed, i.e., choose a = δ(y).

The performance of a given δ() is assessed via its risk function:

R(θ, δ) = Eθ{L(θ, δ(Y ))}

=

∫
L(θ, δ(y))p(y|θ)dy,

reflecting, at each θ, average performance under repeated sampling. The mean-
squared-error of an estimator is a prototypical risk function.

If two estimators δ1() and δ2() have risk functions that do not cross, then the
situation is clear - we prefer the one with lower risk function. We might say
that δ1 beats δ2 if R(θ, δ1) ≤ R(θ, δ2) for all θ, with strict inequality for some
θ.

This leads to the following terminology:
A rule is inadmissible if it is beaten by some other rule.
A rule is admissible if it is not beaten by any other rule.

Very often we find ourselves comparing two estimators whose risk functions
cross, i.e., neither beats the other. One suggestion is to then compare on
the basis of the maximum value of the risk function (so called minimaxity).
Another suggestion is to compare on the basis of some sort of average (across
θ) of the risk function.

The Bayes risk of δ() with respect to the ‘prior distribution’ θ ∼ π is

r(π, δ) = EπR(θ, δ)

=

∫
R(θ, δ)dΠ(θ).

Note that the Bayes risk can be evaluated for any estimation scheme, not just
a Bayesian estimation scheme. Note also that the emphasis is now on choosing
a ‘prior’ π reflecting how we wish to weight θ values in determining average
performance - not on choosing π to reflect pre-data belief.



Just to confuse things further, when we do perform Bayesian analysis we can
talk about yet another form of risk: the posterior risk of choosing a particular
action. That is

ρπ(a; y) = E {L(θ, a)|Y = y}

=

∫
L(θ, a)π(θ|y).

The task is then to make connections between how Bayesian and non-Bayesian
estimation procedures perform according to these sorts of criteria.


