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Diversity of colacosome-interacting mycoparasites expands the understanding of
the evolution and ecology of Microbotryomycetes
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Abstract: Mycoparasites in Basidiomycota comprise a diverse group of fungi, both morphologically and phylogenetically. They interact with their hosts
through either fusion-interaction or colacosome-interaction. Colacosomes are subcellular structures formed by the mycoparasite at the host-parasite
interface, which penetrate the parasite and host cell walls. Previously, these structures were detected in 19 fungal species, usually by means of transmission
electron microscopy. Most colacosome-forming species have been assigned to Microbotryomycetes (Pucciniomycotina, Basidiomycota), a highly diverse
class, comprising saprobic yeasts, mycoparasites, and phytoparasites. In general, these myco- and phytoparasites are dimorphic organisms, with a parasitic
filamentous morph and saprobic yeast morph. We investigated colacosome-forming mycoparasites based on fungarium material, freshly collected specimens,
and cultures of yeast morphs. We characterised the micromorphology of filamentous morphs, the physiological characteristics of yeast morphs, and inferred
phylogenetic relationships based on DNA sequence data from seven loci. We outline and employ an epifluorescence-based microscopic method to assess
the presence and organisation of colacosomes. We describe five new species in the genus Colacogloea, the novel dimorphic mycoparasite Mycogloiocolax
gerardii, and provide the first report of a sexual, mycoparasitic morph in Colacogloea philyla and in the genus Slooffia. We detected colacosomes in eight
fungal species, which brings the total number of known colacosome-forming fungi to 27. Finally, we revealed three distinct types of colacosome organisation
in Microbotryomycetes.

Key words: Basidiomycota, epifluorescence microscopy, molecular phylogeny, new taxa, Transmission Electron Microscopy, Pucciniomycotina, systematics,
yeasts.
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INTRODUCTION

Fungi are heterotrophic eukaryotes, relying on other living organisms
or organic substrates to meet their nutritional needs (Willis 2018).
Based on the specific nutrient substrate and type of interaction they
engage in, fungi are generally assigned to the following ecological
guilds: (i) saprotrophs decomposing dead organic material; (ii)
mutualistic symbionts engaging in trophic interactions that are
beneficial for both partners and (iii) parasites deriving nutrients from
other living organisms. Recently, the scientific community started
considering fungal ecological strategies rather as a continuum,
in which fungal species have mixtures of ecological capabilities
ranging from saprotrophic to symbiotic to parasitic (e.g., Selosse
et al. 2018). Moreover, fungi with complex lifecycles may have

changing ecological strategies when alternating the different stages
of their life histories (Bandoni 1995, Boekhout et al. 2011, Begerow
etal. 2017). Parasitic stages of fungi interact with a huge diversity of
host organisms, comprising both prokaryotes as well as organisms
in all major groups of eukaryotes: e.g., Amoebozoa, Alveolates,
Heterokontae, Metazoa, Viridiplantae and Fungi (Begerow et al.
2017, 2018, Naranjo-Ortiz & Gabaldon 2019). Fungal species
that engage in parasitic interactions with other fungi as host are
denoted as mycoparasites (Kirk et al. 2008).

Mycoparasitism is phylogenetically widespread within the
kingdom Fungi, and has been reported in eight phyla thus far.
These are Rozellomycota, Blastocladiomycota, Zoopagomycota,
Mortierellomycota, Kickxellomycota, Mucoromycota, Ascomycota,
and Basidiomycota (Begerow et al. 2017, 2018, Naranjo-Ortiz &
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Gabaldén 2019). The prevalence of mycoparasitism in multiple
early-diverging lineages has led to the hypothesis that this strategy
arose early in fungal evolution, which is supported by 400 million-
year-old year Devonian fossil data (Hass et al. 1994). Among
Basidiomycota, roughly 200 species of mycoparasites are currently
known, making up less than 0.5 % of the currently described species
diversity (according to He et al. 2019). Although this number seems
to be rather modest based on current knowledge, basidiomycetous
mycoparasitic fungi exhibit a high level of phylogenetic, macro- and
micromorphological, and ecological diversity.

Molecular phylogenies have revealed that mycoparasitism
mainly occurs in two subphyla of Basidiomycota: Agaricomycotina
and Pucciniomycotina (Fig. 1) (Weill et al. 2004, Bauer et al.
2006, Begerow et al. 2017). In Agaricomycotina, the majority of
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mycoparasites are members of Tremellomycetes, whereas only
few belong to Agaricomycetes, e.g., species of Asterophora,
Pseudoboletus, and Squamanita (Redhead et al. 1994, Oberwinkler
2012, Weil et al. 2014, Koch & Herr 2021, Caiafa & Smith
2022). In Pucciniomycotina, mycoparasitism is phylogenetically
widespread, occurring in at least six out of ten currently
recognised classes: Agaricostilbomycetes, Classiculomycetes,
Cryptomycocolacomycetes, Cystobasidiomycetes, Microbotryo-
mycetes, and Spiculogloeomycetes (Bauer et al. 2006, Aime
et al. 2006, 2014, Oberwinkler 2017, Begerow et al. 2017,
2018). The occurrence of mycoparasitism in Tritirachiomycetes
(Pucciniomycotina) was suggested by Aime et al. (2014), although
no cellular interaction structures or specific mechanisms for nutrient
transfer were reported (Beguin 2010).

Agaricomycotina

| Wallemiomycotina

Ustilaginomycotina

Basidiomycota

Pucciniomycotina

Entorrhizomycota

Fig. 1. Phylogram of Basidiomycota, interpretation based on of different previously published phylogenetic reconstructions of this phylum (Aime et al. 2006,
Bauer et al. 2006, Schell et al. 2011, Wang et al. 2015a, Zhao et al. 2017, He et al. 2019). Names of classes indicated in red represent those comprising
mycoparasitic species. Colacosome-interacting (Co) mycoparasites belong to Cryptomycocolacomycetes and Microbotryomycetes. Nanopore fusion-
interacting (NF) mycoparasites belong to Agaricostilbomycetes, Classiculomycetes, Cystobasidiomycetes, Spiculogloeomycetes and Tremellomycetes.
Micropore fusion-interacting (MF) mycoparasites belong to Pucciniomycetes.
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Basidiomycetous mycoparasites show remarkable variation
in the production of basidiomata. Within Agaricomycetes, they
typically produce mushroom-like basidiomata, whereas various
Tremellomycetes normally produce gelatinous basidiomata.
Moreover, many mycoparasites do not produce basidiomata, but
grow in or between the tissues of their host. This characteristic
growth type was referred to as intrahymenial growth by Oberwinkler
(1964) and occurs in multiple genera of Tremellomycetes
(e.g., Phragmoxenidium, Syzygospora, and Tremella) and
Pucciniomycotina  (Achroomyces, Colacogloea, Kryptastrina,
Naohidea, Occultifur, Spiculogloea, and Zygogloea). However,
not all intrahymenial species are mycoparasites, e.g., species in
Tulasnella and Serendipita are regarded as species with saprobic
and symbiotic capabilities (Weil} et al. 2016, Oberwinkler et al.
2017). Host species of basidiomycetous mycoparasites generally
belong to Agaricomycetes, primarily corticioid fungi and jelly fungi,
although some ascomycetous hosts are also known. Despite the
hosts usually being widespread in nature, these mycoparasites
are rarely reported. Due to their inconspicuousness, they are
frequently overlooked and difficult to discern. Observations often
happen accidentally, e.g., during microscopic investigation of the
host fungus. This results in a limited availability of cultures and
DNA sequence data for these mycoparasites, impeding their
phylogenetic placement as well as their species delimitation
(Kachalkin et al. 2019).

The majority of basidiomycetous mycoparasites in
Pucciniomycotina and Tremellomycetes are characterised by
dimorphic lifecycles. Generally, dimorphic fungi alternate between an
ontogenetic haploid yeast stage, and an infectious dikaryotic hyphal
stage (Brefeld 1888, Bandoni 1995, Boekhout et al. 2011, Begerow et
al. 2017). These different stages of the lifecycle coincide with distinct
types of growth, reproduction, karyological situation, and ecological
strategies for nutrient acquisition (Begerow et al. 2017). Due to
a certain degree of variation in these life histories, it is difficult to
establish a uniform terminology that applies for all species. In literature
considering dimorphic basidiomycetes, the two different stages are
generally referred to as ‘yeast stage’ and ‘filamentous stage’. In
this manuscript, we apply the terms ‘yeast morph’ and ‘filamentous
morph’ to describe the different stages of the life cycle, based on how
these stages can be observed and recognised. The yeast morph is
a unicellular stage, characterised by budding of basidiospores. It is
considered to be saprobic, and in most cases to represent the haploid
stage. Following conjugation (mating) of compatible yeast cells, a
dikaryotic hyphal stage is initiated, which generally leads to sexual
reproduction. In the case of dimorphic mycoparasites, this stage has
adaptations for host-parasite interaction and is here referred to as
the filamentous morph. To complete the lifecycle, basidia develop
from dikaryotic hyphae, in which meiosis takes place and eventually
basidiospores are formed. In some species, mono- or dikaryotic
conidia may be formed along with sexual structures. It is important to
mention that not for all dimorphic species in Basidiomycota the entire
lifecycle has been observed in natural or laboratory conditions. For
example, many mycoparasites are only known from their filamentous
morph. It is assumed that a yeast morph exists for these species,
although it was never isolated in culture.

The functional interaction between a mycoparasite and its host
fungus differs among various lineages of Basidiomycota. Two major
interaction mechanisms have been described: (i) fusion-interaction
and (ii) colacosome-interaction (Oberwinkler & Bauer 2018). A
large variation at the ultrastructural level exists within each of these
interaction types (Bauer 2004, Bauer et al. 2006, Oberwinkler &
Bauer 2018).
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COLACOSOME-INTERACTING MYCOPARASITES

The first interaction mechanism is the fusion-interaction.
Most basidiomycetous mycoparasites interact with their host by
means of haustoria, which are often referred to as ‘tremelloid
haustoria’” or ‘nanopore fusion haustoria’ (Bauer 2004).
Haustoria are produced by the parasite and can be recognised
by light microscopy as structures with often three discernible
regions: a swollen base, a tapered middle region and an apex.
Haustoria either attach to host hyphae or invaginate host cells.
Depending on the species, one or more nanopore channels,
with a diameter of 14-19 nm, are formed at the contact interface
of the haustorium apex and host hypha (Bauer 2004). These
channels are formed by fusion of the host and parasite’s plasma
membranes and establish cytoplasmic connection between
host and parasite. This is in sharp contrast to basidiomycetous
haustorial phytoparasites where no membrane fusion occurs and
the cytoplasm of both interaction partners remains separated.
As such, this phenomenon of cytoplasmic continuity between
host and parasite is unique among fungal mycoparasites. Bauer
(2004) hypothesised that cytoplasmic continuity facilitates
nutrient transfer, but this remains to be investigated. The fusion-
interaction is phylogenetically widespread in Tremellomycetes
and Pucciniomycotina. Nevertheless, there is a large degree of
difference in ultrastructure of these nanopore fusion haustoria
among different lineages (Bauer 2004). The micropore fusion-
interaction, in which fusion channels have a diameter of 1-2 pum,
was so far only reported in Tuberculina species (Helicobasidiales)
(Bauer et al. 2004, Lutz et al. 2004).

The second host-parasite interaction mechanism is the
colacosome-interaction. Colacosomes are subcellular structures
of 0.5-1 um in diameter and are comprised of an electron-dense
core surrounded by a membrane and an electron-transparent
sheath (Kreger-van Rij & Veenhuis 1971b, Bauer & Oberwinkler
1991). They are formed in hyphae of the mycoparasite along
the host—parasite interface (Fig. 2). Colacosomes, initially
named lenticular bodies, were first reported from axenic cultures
of Rhodosporidiobolus ruineniae, Rhodotorula toruloides, R.
sphaerocarpa, and Sporobolomyces johnsonii (Kreger-van Rij &
Veenhuis 1971b). These species, traditionally referred to as ‘red
yeast', are dimorphic fungi completing their lifecycle in culture, and
colacosomes are formed along the contact surface of touching
hyphae of the same species. Later, colacosomes were reported
in hyphae of seven more dimorphic Microbotryomycetes growing
in axenic culture (Table 1) (Kreger-van Rij & Veenhuis 1971a,
De Hoog & Boekhout 1982, Boekhout et al. 1992, Sampaio
et al. 2003). Bauer & Oberwinkler (1991) introduced the term
‘colacosomes’ when they discovered these structures for the first
time along the host-parasite interface of the basidiomycetous
mycoparasite Colacogloea effusa [as Platygloea peniophorae] and
its host Peniophorella praetermissa. Since the term colacosomes
has been in wider use than lenticular bodies, and several taxon
names have their etymology based on this term, we prefer to adopt
this term throughout the manuscript.

Bauer & Oberwinkler (1991) studied the ultrastructure of
colacosomes and provided a schematic hypothesis of their
development, which remains largely hypothetical [figs 8-13 in
Bauer & Oberwinkler (1991)]. During colacosome development, the
plasmalemma of the mycoparasite invaginates internally, creating
an entirely membrane-enclosed globular space. This enclosed
compartment becomes filled with electron-dense components, and
a secondary cell wall around the invagination is produced by the
mycoparasite, visible as an electron-transparent sheath. Next, the
electron-dense components extrude through a tubular projection,
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Fig. 2. Brightfield, epifluorescence and transmission electron microscopy (TEM) of Colacogloea universitatis-gandavensis sp. nov. A, B. Whole-mount

Sy

preparation, stained with Congo red and DAPI, visualised using brightfield (A) and epifluorescence (B) microscopy. Epifluorescence microscopy facilitates fast
detection of colacosomes as they exhibit bright fluorescence signals. Inset shows the intricate host—parasite (Ho-Pa) interface. Arrowheads indicate regions
of colacosome clustering. Note the occurrence of individual colacosomes in parasite tissue (bright spots). C, D. Serial sections of a Spurr-embedded sample,
showing the same region. Corresponding structures are indicated with arrows. (C) Section stained with Congo red and visualised using epifluorescence
microscopy. (D) Equivalent serial section of the same region as in (C), visualised using TEM. E, F. High-magnification details of colacosome clusters
(arrowheads), composed of many individual colacosomes (asterisks), arranged in parasitic hyphae (Pa) along the host-parasite interface (Ho-Pa), showing
their typical electron dense cores. Scale bars: A-D = 20 ym, E =10 ym, F =200 nm.

penetrating the outer cell wall of the parasite and eventually the cell
wall of the host fungus.

To date, the function of colacosomes remains unclear. Bauer
& Oberwinkler (1991) provided the first hypothesis on the function
of colacosomes, suggesting they are involved in the mycoparasitic
interaction, possibly facilitating transfer of nutrients from host to
parasite. Also a structural role was proposed, in which colacosomes
can anchor parasite hyphae to host cells (Bauer & Oberwinkler
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1991, Bauer 2004, Bauer et al. 2006, Begerow et al. 2017,
Oberwinkler & Bauer 2018). Using X-ray diffraction, Kreger-van
Rij & Veenhuis (1971b) determined that the electron-transparent
sheath envelopping the colacosome is a chitin-rich structure.
However, the biochemical composition of the electron-dense part
of the colacosomes remains unknown.

Colacosomes have currently been reported from 19
fungal species, distributed over 11 genera in two classes
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of  Pucciniomycotina: Cryptomycocolacomycetes ~ and
Microbotryomycetes (Table 1). For four species, i.e., Atractocolax
pulvinatus, Colacogloea allantospora, C. bispora, and Krieglsteinera
lasiosphaeriae, no living cultures and/or DNA sequence data are
currently available, and their placement in Microbotryomycetes
is tentative (Kirschner et al. 1999, Oberwinkler et al. 1999,
Oberwinkler 2017). Filamentous morphs of colacosome-forming
fungi which are associated with a host fungus are considered to
represent a mycoparasitic stage. However, the ecology of fungi in
which colacosomes were only observed in pure culture conditions
is less clear, since no host—parasite interaction was observed.
These species were often isolated as yeasts from a variety of
substrates such as phylloplanes, soils, and (decaying) organic
substrates, and are generally believed to be saprobes. However,
because of their ability to produce colacosomes, these species are
discussed to also have mycoparasitic capabilities (Sampaio et al.
2003, Boekhout et al. 2011, Begerow et al. 2017, 2018).

Most likely, the diversity of colacosome-forming mycoparasites
is much broader than currently known, a statement for which at
least three reasons can be put forward. A first argument is that
for all currently known colacosome-forming species, only one or
a few collections or isolates were investigated. This leaves room
for unexplored diversity in species complexes and (pseudo-)
cryptic diversity. Secondly, due to the rather recent discovery of
colacosomes and the lack of specialised tools to visualise and
detect them, it is likely that for various currently known fungicolous
fungi the presence of colacosomes is yet to be assessed.
Currently, more than 20 species assigned to the heterogenous
morphogenera Achroomyces and Platygloea are presumed
mycoparasites, for which no detailed information on the host-
parasite interaction is available (Bandoni 1956, Oberwinkler et
al. 1990a). Such mycoparasites, for which no haustoria have
been observed, are potential colacosome-interacting species and
should be investigated more carefully. Thirdly, many colacosome-
forming fungi remain undescribed due to their inconspicuous
nature. These species either have minute basidiomata, or only
grow intrahymenially. It has also been noted that many yeasts in
Cystobasidiomycetes and Microbotryomycetes are slow-growing
fastidious or extremophilic species and are known from a few
isolates only (Buzzini et al. 2018). Therefore, many groups in these
two classes remain largely undersampled (Kachalkin et al. 2019).

Most studies that reported the presence of colacosomes in
fungi made use of transmission electron microscopy (TEM) (Table
1). Sample preparation for TEM is a labour-intensive process
requiring knowledge and equipment for embedding, sectioning,
staining, and imaging (Oberwinkler & Bauer 2018). Therefore, it
is currently challenging to perform a large-scale screening for the
presence of colacosomes in fungal specimens. One study reported
on the presumed presence of colacosomes based on Congo red
stained samples visualised with brightfield microscopy (Bandoni et
al. 2002). A reliable light microscopy-based method would be more
efficient and accessible to detect the presence of colacosomes
compared to TEM. Further, it could allow for a wide screening for
colacosome-forming fungi towards improving our knowledge of the
diversity of these mycoparasites.

In this paper, we aim to investigate the taxonomy and
phylogenetic relationships of colacosome-forming mycoparasites.
To do so, we developed an accessible and easy light microscopy-
based method for colacosome detection, which we validated using
correlative light microscopy and TEM. This helped us to find out
how the colacosomes are organised along the host-parasite
interface. Using this microscopy technique, freshly collected
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samples of mycoparasites from various host species were
investigated for the presence of colacosomes. Positively assessed
colacosome-interacting mycoparasites were isolated in pure
culture. These samples were used for phenotypic characterisation
of their filamentous- and yeast morphs, and DNA sequencing
of seven genetic loci. To assess the phylogenetic relationships
of these mycoparasites, we compiled an extensive dataset of
Microbotryomycetes based on the seven loci commonly used in
this class. We also generated DNA sequences of additional loci for
certain species to obtain a better phylogenetic resolution (Table 3).
This allowed to determine the phylogenetic diversity, -relationships,
and -distribution of colacosome-forming mycoparasites, and
to explore how they influence the current classification of
Microbotryomycetes. We translated obtained results into a
taxonomic arrangement of colacosome-forming mycoparasites,
and an updated classification of Microbotryomycetes. Integration
of these different types of information allows to formulate an
evolutionary hypothesis on colacosome-interacting mycoparasites.

MATERIALS AND METHODS

Material examined

Samples of colacosome-forming fungi were collected from
different places in Europe (Belgium, Denmark, Finland, France,
Germany, Norway, The Netherlands) in recent years. Herbarium
collections from C, GENT, H, LIP, and PC (sensu Thiers 2022)
were investigated. Examined collections are listed under the
species descriptions in the taxonomic part of this paper. Collections
indicated with an asterisk (*) were isolated in pure culture and
used for DNA sequencing. GenBank accession numbers are listed
in Table 3. Specimens indicated with (°) were investigated using
epifluorescence microscopy and/or TEM. Some additional ex-
type yeast cultures were obtained from the fungal collection of the
Leibniz Institute DSMZ - German Collection of Microorganisms
and Cell Cultures (Braunschweig, Germany). These cultures were
used to sequence additional loci for phylogenetic analysis.

Light microscopy and morphology

Whole-mount preparations from fresh and dried host basidiomes
were mounted in a Congo red staining solution in ddH,0 according to
Clémencon (2009). In some cases, the Congo red staining solution
was supplemented with DAPI (4'6-diamidino-2-phenylindole, with a
final concentration of 1 ug/mL) for staining of nuclei. Some species
were additionally studied using Cotton Blue staining solution
(0.025 % wl/v in Lactic acid). Specimens were investigated for
micromorphological characters using phase-contrast optics (Leica
DM 1000 Led), brightfield and epifluorescence microscopy using
a Nikon Plan Fluor 100x objective with 1.3 numeric aperture on a
Nikon Eclipse Ni-U microscope, using a TRITC (excitation: 543/22
nm; dichroic mirror 652 nm; emission: 593/40 nm) and/or DAPI
filters (excitation: 387/11 nm; dichroic mirror 409 nm; emission:
447/60 nm). The presence of colacosomes was evaluated using
epifluorescence microscopy of Congo red stained samples.
Photographs of microscopic structures were taken with a Nikon
DS-Fi3 camera and Nikon NIS-Elements software, including the
Extended Depth of Field module. Pictures were edited and compiled
in Photoshop CS6. The basidiospores and conidia represented
in the composite plates are a compilation from different pictures.
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For each collection, at least 30 basidiospores and 15 basidia
and conidia were measured. The measurements are presented
following Parmasto & Parmasto (1987), with 5 % tails excluded
and given in parentheses. The following abbreviations are used
in the species descriptions: L — mean basidiospore length, W
- mean basidiospore width, Q' — L/W ratio, Q — mean L/W ratio,
and n — number of measurements per specimens measured. The
basidiospore length measurements include the apiculus since it is
often impossible to unequivocally determine its exact border with
the main spore body. Basidia were measured using Nikon software,
by drawing a polygonal line from the basal clamp of the basidium,
over the middle of each transversal septum, to the distal end of
the top cell (not including the upper sterigma if inserted apically).
Structure and terminology of morphological diagnoses follow Spirin
et al. (2018) and Savchenko et al. (2021).

Correlative light and Transmission Electron

Microscopy

The sample fixation protocol is based on Bauer et al. (2006), with slight
modifications. Samples were fixed in 2 % viv glutaraldehyde in 0.1
M sodium cacodylate buffer (pH 7.2) at room temperature for 12 h in
a rotating device. Following six 10 min incubations in 0.1 M sodium
cacodylate buffer, samples were post fixed in 1 % v/v osmium tetroxide
in cacodylate buffer for 1.5 h in darkness. Samples were dehydrated
in acetone, using 15 min changes at 10, 20, 30, 50, 70, 95 % viv and
three times in 100 % acetone. Samples were infiltrated by Spurr’s resin
in acetone using 15 min changes at 25, 50, 75 % viv and three times
in 100 % Spurr’s resin. Samples were polymerised overnight in Spurr’s
resin at 60 °C. Serial sections were made to perform correlative light-
and transmission electron microscopy. First, semi-thin sections of 300
nm thick, made using an ultramicrotome (UC6; Leica microsystems,
Vienna) equipped with a diamond ultra-knife (DIATOME), were collected
on polysine coated slides. Immediately after, ultrathin sections of 80 nm
thick were made and collected on copper slot grids. Semi-thin sections
were mounted in Congo red and viewed using an epifluorescence
microscope equipped with a TRITC filter. Ultra-thin sections were
stained for 27 min in 1 % uranyl acetate at 37 °C and 10 min in 3 %
lead citrate at 20 °C. Grids were examined with a JEM-1010 TEM (Jeol
Inc., Peabody, MA, USA) using a 60 keV electron beam. Images were
recorded with a CCD side-mounted Veleta camera. Same areas were
imaged.

Isolation procedure

Isolates of the different species were obtained by a spore drop method
(Clémengon 2009) on MYP medium plates (0.4 g peptone 0.8 g yeast
extract, 5.6 g malt extract and 16 g agar kobe-1 in 800 ml ddH,0). A
small piece of infected host tissue was dissected and attached to the
lid of a Petri plate. Plates were left at room temperature and the lid
was rotated clockwise 1 h, 2 h, 4 h, 6 h, and 8 h after initial inoculation
to allow sporulation on different places of the medium. Subsequently,
the fungal sample was removed, and germinating spores were
isolated on new MYP plates to obtain pure isolates. Cultures of all
isolated collections were deposited at DSMZ.

Phenotypic characterisation of yeast morphs

Physiological tests were performed in liquid media according to
the methods described in Kurtzman et al. (2011), in custom-made
microplates (Nunc 96-Well Flat Bottom plate, Thermo Fisher



Scientific) and tubes (Passer et al. 2019) using the same standard
set of substrates. Tests were incubated at room temperature
and controlled every 3-4 d until for in total 3 wk. Culture growth
in microplates was measured on Varioskan LUX (Thermo Fisher
Scientific) plate reader at 600 nm wavelength. Maximal growth
temperature was determined on potato-dextrose agar (PDA, Difco
BD) and micromorphological features were examined on PDA, CMA
(DSMZ  medium 191, https://mediadive.dsmz.de/medium/191),
and YM agars (DSMZ medium 186, https://mediadive.dsmz.de/
medium/186). A summary of the obtained results from the growth
tests is given in Supplementary Table 1.

DNA extraction, PCR amplification, and sequencing

DNA from cultures was extracted using a CTAB-based protocol.
From each culture, a loop of yeast cells was harvested and stored
in 500 pL CTAB buffer. After addition of 0.3 % mercaptoethanol, the
samples were homogenised in a thermoshaker at 65 °C and 600
rom for 1.5 h. Subsequently, 500 L chloroform-iso-amylalcohol
was added and the samples were vortexed. Next, samples were
centrifuged for 10 min at 12 000 rpm, after which the upper phase was
transferred to another tube. After repeating this step one more time,
500 L cold iso-propanol was added to the upper phase, samples
were shaken and left at -20 °C for 20 min to precipitate the DNA.
Subsequently, the samples were centrifuged at 12 000 rpm for 10
min at4 °C and the pellet was washed twice with 70 % EtOH. Finally,
the DNA pellet was diluted in 50 pL Milli-Q water. PCR reactions
were performed for the following seven loci: the small subunit (SSU),
the internal transcribed spacers, including the 5.8S locus (ITS), and
the large subunit (LSU) of the nuclear ribosomal DNA, the largest
subunit of RNA polymerase Il (RPB1), the second largest subunit
of RNA polymerase Il (RPB2), the translation elongation factor
(TEF1-a) and mitochondrial cytochrome-b (CYT-B). Conditions for
the amplification of seven genetic markers are given in Table 2. PCR
products were purified using ThermoFisher FastAP Thermosensitive
Alkaline Phosphatase and Exonuclease | (Thermo Fisher Scientific
Inc., Massachusetts, USA). Purified products were sent to Macrogen
(Amsterdam, The Netherlands) for Sanger sequencing using the
same primers on an automated ABI 3730 XL capillary sequencer.
Forward and reverse sequence reads were assembled into contigs
in the BioloMICS software (BioAware SA NV, Hannut, Belgium).
DNA extraction and amplification of Colacogloea universitatis-
gandavensis sp. nov. was performed using a Multiple Displacement
Amplification (MDA) procedure, using the Repli-g Whole Genome
Amplification kit (QIAGEN, Hilden, Germany). Collection NS 20-022
was used for the dissection of two small pieces of parasite tissue
(2 mm? each) under a dissecting microscope. Subsequently, PCR
reactions of the SSU, ITS, and LSU region were performed using
conditions listed in Table 2. DSMZ cultures were cultivated on PDA
(Difco BD) for 7 d at room temperature. Their DNA was isolated with
the MasterPure Yeast DNA Purification Kit (Epicentre, San Diego,
USA) following the manufacturer’s instructions. PCR products were
purified with innuPREP PCRpure Kit (Analytik Jena, Jena, Germany)
and sequenced on ABI 3500 XL capillary sequencer. Assembly and
editing of sequence reads were performed with Sequencher v. 5.4.5
(Gene Codes Corporation, Michigan, USA).

Phylogenetic analyses

DNA sequences were downloaded from GenBank and are listed in
Table 3. To compile the dataset, we used DNA sequence data from
Wang et al. (2015a, b), which were complemented with sequence
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data of remaining taxa within Microbotryomycetes (Table 3). The
phytoparasitic Microbotryales are represented by a limited set of
taxa as in Wang et al. (2015a) and Li et al. (2020). To exclude
possible contaminant sequences from public databases, we
blasted all downloaded sequences against the NCBI nucleotide
database. Contaminant sequences were removed from the
dataset. Sequences of each region were aligned with the online
version of MAFFT (Katoh et al. 2019) using the L-INS-i algorithm
for the ITS dataset and the Iterative FFT-NS-i algorithm for the LSU,
SSU, RPB1, RPB2, TEF1-a, and CYT-B datasets. Trailing ends of
the alignments were trimmed and manually curated in MEGA v.
7 (Kumar et al. 2016). The ITS locus was partitioned in the TS,
5.8S and ITS2 regions. The ITS1 and ITS2 regions of the alignment
were trimmed using TrimAL v. 1.1, with the following settings: 0.6
as gap threshold and 50 as minimum percentage of positions to
conserve (Capella-Gutiérrez et al. 2009). Alignments of all regions
were manually inspected and refined, and intronic regions manually
removed. Final alignments are deposited in TreeBASE (http://purl.
org/phylo/treebase/phylows/study/TB2:S30327). ModelFinder as
implemented in IQ-TREE v. 1.6.12 was used to infer the best model
of evolution for each partition using the Akaike Information Criterion
(AIC) (Kalyaanamoorthy et al. 2017). Maximum Likelihood analyses
were performed using IQ-TREE v. 1.6.12 for single partitions and
the concatenated dataset (Nguyen et al. 2015, Chernomor et al.
2016). The concatenated dataset was partitioned as follows: SSU,
ITS1, 5.8S, ITS2, LSU, RPB1, RPB2, TEF1-a, and CYT-B. All
analyses were performed using ultrafast bootstrapping procedure
with 2 000 bootstrap replicates (Hoang et al. 2018).

RESULTS

Epifluorescence-based colacosome visualisation

Because the assessment of the presence of colacosomes using
TEM of fungal samples is a labour-intensive and time-consuming
task, we developed a more efficient and affordable, light microscopy-
based method for the detection of these structures. We compared
the detectability of colacosomes in Congo red-stained samples of
mycoparasites using brightfield and epifluorescence microscopy.
Epifluorescence microscopy proved to be superior to brightfield
imaging as colacosomes exhibit intense fluorescence signals and
are visible as bright circular structures (compare Fig. 2A, B). As is
evident from Fig. 2B, this approach allows to distinguish between
host and parasite cells, as well as to detect individual and clustered
colacosomes (Fig. 2B inset). Colacosomes are easy to distinguish
due to the strong contrast between the bright signal emitted by
the stained secondary cell wall enveloping them and the black
background. To verify whether the bright signals originate from the
colacosomes, we performed correlative light microscopy and TEM
of Colacogloea universitatis-gandavensis sp. nov. (Fig. 2C, F).
The host-parasite interface encompasses parasite gall-like cells
enveloping host hyphae. Colacosomes are positioned in the parasite
cells along the host—parasite interface. When the same area in the
sections is imaged using epifluorescence microscopy and TEM
(Fig. 2C, D), it becomes apparent that the bright fluorescent signals
correspond to colacosomes. Contrary to the whole-mount prepared
sample (Fig. 2A, B), individual colacosomes are visible as bright
circles with a dark core in semithin sections (Fig. 2C). This core does
not stain with Congo red and becomes visible because the 300 nm
section is less thin than the diameter of colacosomes. Magnification
of this area using TEM further shows the ultrastructure of individual
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colacosomes, which consist of an electron dense core surrounded by
amembrane and a secondary cell wall (Fig. 2E, F). Colacosomes are
also clearly visible using a 40x objective and could be detected and
discriminated from other structures (data not shown). Although other
chitin-containing structures such as thick-walled conidia also emit
bright fluorescent signals, they cannot be mistaken for colacosomes
due to their size, shape and/or organisation.

We applied this method to assess the presence of colacosomes
in nine mycoparasitic species (Figs 5F, G, 7H, 9G, H, 11G, H, 13F,
G, 15G, 17G, 19F, G, 21G). Samples for which the presence of
colacosomes was positively assessed were isolated in pure
culture and further studied for their phylogenetic relationships and
phenotypic characteristics (i.e., micromorphology of the filamentous
morph in the specimen, and characterisation of the yeast morph in
axenic culture).

Phylogenetic reconstruction

To visualise the placement of colacosome-forming species in
the Microbotryomycetes and their evolutionary relationships, we
performed a phylogenetic analysis using the commonly used seven
loci, incorporating a broad representation of all known lineages
within this class. The final dataset included 238 isolates and 5 855
characters, of which 2 815 were parsimony-informative and 2 281
were invariant. A summary of the partitions, number of sequences,
number of parsimony-informative- and constant sites, and selected
models is presented in Table 4. The full partition model AIC score
is 381 436.460 (LnL = -190 078,230 df:640). Figure 3 shows the
retrieved tree topology. This seven-locus ML tree is used as basis for
clade recognition, an updated classification of Microbotryomycetes,
and one of the criteria used for species delimitation.

All currently described families and orders of Microbotryomycetes
are recovered as monophyletic clades, with support values given in
Table 5. Deeper nodes, depicting the relationships among higher
taxa, are not resolved. Clades containing isolates and specimens
that were newly sequenced are indicated in boxes in the phylogenetic
reconstruction (Fig. 3). The inclusion of colacosome-forming
mycoparasites allows to recognise several new phylogenetic lineages
in Microbotryomycetes. A first new lineage comprises four isolates
of Atractocolax pulvinatus, which forms a distinct lineage within
Microbotryomycetes. A second new lineage comprises the clade
of Mycogloiocolax gerardii sp. nov. and the currently undescribed
yeast isolate KBP Y-6479, for which the family Mycogloiocolacaceae
fam. nov. is proposed (see taxonomy section). Within the genus
Colacogloea, five new lineages can be recognised, each representing
a new species in the Colacogloea effusa species complex (see
taxonomy section). A separate ML phylogenetic reconstruction of the
genus Colacogloea based on the three rDNA loci SSU, ITS and LSU
(results not shown) rendered the same topology as retrieved in our
seven-locus class-wide reconstruction. Seven isolates identified as
Platygloea micra cluster within the genus Slooffia with high support.
These isolates are clearly conspecific, but are distant from the other
described species within the genus, prompting a recombination (see
taxonomy section).

Taxonomy

Based on the combined results from comparison of
micromorphological characters of filamentous morphs, assimilation
growth essays of yeast morphs, and the seven-locus phylogenetic
reconstruction, we draw the following taxonomic conclusions as
outlined below.

—
» DIVERSITY
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Order Heterogastridiales Oberw. & R. Bauer, Mycologia 82: 57.
1990.

Slooffia Q.M. Wang et al., Stud. Mycol. 81: 186. 2015. emend.

Generic description: Genus of dimorphic fungi. Basidiomata
are absent. Filamentous morph develops intrahymenial in the
host, sometimes producing a whitish layer overgrowing the host
basidiome. Hyphal system monomytic, hyaline, thin-walled,
smooth, clamped at all septa. Hyphidia absent. Cystidia absent.
Basidia cylindrical to slightly clavate, often strongly curved to a 90°
angle, transversally septate, mature basidia four-celled, clamped,
thin-walled, originating from a distinct probasidium which collapses
after maturation of the basidium. Sterigmata originating laterally
or apically from basidial cells, rarely bifurcating. Basidiospores
of irregular shape, smooth, hyaline, inamyloid. Germination of
basidiospores occurs by either hyphae, budding or secondary
spore production. Conidiophores stalked, basally clamped, with
apically numerous appendages. Conidia irregularly shaped, thick-
walled, cyanophilous.

Habitat, substrate, and ecology. Slooffia species have been
isolated as yeasts from soils, litter, insect faeces and basidiomata
of Myxarium podlachicum. Yeast morphs are presumed to have a
saprobic ecology. A filamentous morph has only been observed
for Slooffia micra comb. nov., which represents a colacosome-
interacting mycoparasitic stage, developing intrahymenially in the
host Myxarium podlachicum.

Distribution: Slooffia species have been recorded from various
European countries, Brazil, India and the USA (Hamamoto et al.
2011, Sampaio 2011, Bezerra et al. 2013, Buzzini et al. 2017).

Type: Slooffia tsugae (Phaff & Carmo Souza) Q.M. Wang, F.Y. Bai,
M. Groenew. & Boekhout

Slooffia micra (Bourdot & Galzin) Schoutteten, comb. nov.
MycoBank MB 848660. Figs 4, 5.
Basionym: Platygloea micra Bourdot & Galzin, Bull. Trimestriel
Soc. Mycol. France 39: 261. 1924.

Typus: France, Aveyron, on rotten wood of Populus, 23 Oct. 1915, A.
Galzin (holotype, PC Bourdot 19438°). As only one specimen of this
species is available in the collection of Bourdot and Galzin in the Paris
herbarium (PC), this specimen is to be interpreted as the holotype,
although it was not mentioned as such by the original authors (ICNafp
Art. 9.1). Belgium, Prov. West-Viaanderen, leper, Palingbeek, on piece
of wood of an unidentified deciduous tree, growing in the hymenium of
Myxarium podlachicum, 16 Oct. 2019, M. Detollenaere (epitype GENT NS
19-337*°, designated here, MycoBank MBT 10013261, culture ex-epitype
DSM 112421).

Synonym: Achroomyces insignis Hauerslev, Mycotaxon 49: 218.
1993.

Typus: Denmark, Zealand, Copenhaguen, Hareskoven, on decorticated
branch of an unidentified tree, growing in the hymenium of Myxarium
podlachicum, 21 Sep. 1991, K. Hauerslev (holotype, C C19753 =
KH7222°). The Netherlands, Prov. Groningen, Tjuchem, Huisweersterbos,
on decorticated branch of an unidentified deciduous tree, growing in the
hymenium of Myxarium podlachicum, 14 Feb. 2020, I. Somhorst (epitype
GENT IS 20-006*°, designated here, MycoBank MBT 10013262, culture
ex-epitype DSM 112423).
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Fig. 3. Phylogenetic relationships of colacosome-forming species in Microbotryomycetes based on a seven-locus ML tree inference. Species names in bold
indicate taxonomic novelties. Species which were explicitly investigated for the presence of colacosomes are indicated with a * symbol behind the species
name. Species for which the presence of colacosomes was positively assessed are indicated by blue-filled circles. Blue circles with black outline indicate
species which have been isolated as a mycoparasite and for which an interaction with a host was reported. Blue circles without outline indicate species which
were only reported to form colacosomes in pure culture. Species for which currently only a filamentous morph was observed are indicated by a branching
hyphae icon, for all other species in the tree, at least a yeast morph is known. Clades investigated in detail in this study are indicated with boxes. Boxes in
yellow tones represent the Colacogloea effusa complex. Green vertical lines represent the highest described taxon available for species in the tree (family or
order). Numbers on branches indicate ultrafast bootstrap values. Cystobasidiomycetes and Spiculogloeomycetes are used as outgroup.
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Fig. 3. (Continued).
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Table 4. Summary of the seven genetic loci included in the phylogenetic ML analysis, with for every partition the number of incorporated sequences,
total number of sites, number of parsimony informative sites, number of invariable sites, and the selected model of nucleotide substitution as selected by

ModelFinder.

Partition Locus Sequences Sites
1 SSU 192 1848
2 ITS1 226 153
3 5.88 226 168
4 ITS2 226 207
5 LSU 229 646
6 RPB1 174 616
7 RPB2 192 866
8 TEF1-a 196 950
9 CYT-B 163 401
Concatenated 9 loci 238 5855

Informative sites Invariable sites Model

408 1108 TIM+F+R8
146 3 GTR+F+R5
17 45 K2P+R7

185 12 TVM+F+R5
313 277 GTR+F+R10
447 107 GTR+F+R6
476 297 SYM+R4
469 347 GTR+F+R10
254 85 TVM+F+R5
2815 2281 —

Table 5. Summary of support values for higher taxa in Microbotryomycetes recovered in the seven-locus ML phylogenetic reconstruction.

Taxon Ultrafast Bootstrap value
Camptobasidiaceae 100
Chrysozymaceae 92
Colacogloeaceae 100
Curvibasidiales 100
Heitmaniales 100
Heterogastridiales 79
Kriegeriales 100
Leucosporidiales 100
Microbotryales 84
Rosettozymales 100
Sporidiobolales 100

Description of filamentous morph: Intrahymenial, often invisible
but sometimes producing a whitish pruinose layer on the host
species. Monomitic; hyphae hyaline, thin-walled, smooth, clamped
at all septa, 1.1-2.7 ym in diam. Hyphidia absent. Cystidia absent.
Probasidia variable in shape, often pyriform, thin walled, collapsing
after maturation of the basidium, 8.1-17.8 x 2.3-8.6 um. Basidia
narrowly clavate, often strongly curved, (21.6-)22.2-29.8(-31.4)
x (45-)4.8-6.4 pm (n=20/1), transversally septate, mature
basidia four-celled, often somewhat constricted at each septum,
clamped at the base, thin-walled. Sterigmata simple or more rarely
bifurcate, up to 18 um long. Basidiospores of irregular shape,
ellipsoid-angular to drop- or comma-shaped, (2.9-)3.0-4.5(-4.8) x
1.5-2.9(-3.0), L = 3.69, W = 2.19, Q" = (1.35-)1.36-2.21(-2.25),
Q=1.72 (n = 30/1), germinating by hyphae, budding or secondary
spores. Conidiophores stalked, stalk often somewhat widened,
basally clamped, with numerous apical appendages (where
conidia are formed), (9.1-)10.5-22.3(-30.6) x (1.4-)2.0-3.9(-4.3)
pm. Conidia irregularly shaped, ellipsoid to curved, often with one
flattened side, thick-walled (wall up to 1 um), cyanophilous, (4.0-)
4.1-5.7(-5.8) x (2.8-)3.1-3.9(-4.3) pym. Colacosomes scattered,
no vesicular gall-like cells observed.

Description of yeast morph: After growth on YM agar plates for 1 mo
at 22 °C, the streak culture is white to cream-coloured, glistening,
mucoid and smooth. The margin is entire. Cells are subglobose
to ovoid, occurring singly or in pairs, and proliferating by polar
budding. Good growth on D-glucose, L-sorbose, D-glucosamine,

—
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Li et al. (2020)
Doweld (2001)

D-arabinose, sucrose (delayed), a,a-trehalose, me a-D-glucoside,
cellobiose, raffinose, melezitose, ribitol, D-glucitol, D-mannitol,
5-keto-D-gluconate, D-gluconate, and D-glucuronate. Weak growth
on maltose, lactose, glycerol, L-arabinitol, galactitol, ethanol,
D-glucarate, and L-tartaric acid. No growth on D-galactose,
D-ribose, D-xylose, L-arabinose, L-rhamnose, salicin, melibiose,
inulin, starch, erythritol, myo-inositol, D-galacturonate, DL-lactate,
succinate, citrate, D-tartaric acid, and L-malic acid. No growth in
the presence of 5 %, 8 %, and 10 % NaCl. No growth on MEA with
50 % and 60 % glucose. No starch-like substance is produced.
Urea hydrolysis and the Diazonium blue B reaction is positive.
Maximum growth temperature: 35 °C.

Habitat and distribution: Growing in the hymenium of Myxarium
podlachicum (= M. subhyalinum), for further synonymy see Spirin et
al. (2019). This species has been recorded from various European
countries: Belgium, Denmark, Germany, France, Norway and The
Netherlands.

Materials examined: Denmark, Zealand, Enghave Skov ved Dragsholm,
on decorticated branch of Fraxinus, growing in the hymenium of Myxarium
podlachicum, 28 Jun. 2009, J. Heilmann-Clausen, JHC 09-049 (H,
duplicate in GENT). Belgium, Prov. Antwerpen, Mechelen, Kauwdaalbos,
on fallen log op Populus, growing in the hymenium of Myxarium
podlachicum, 28 Feb. 2020, G. Van Autgaerden, GVA 20-056* (GENT).
Netherlands, Prov. Utrecht, Houten, Nieuw Wulven, on piece of wood
of an unidentified deciduous tree, growing in the hymenium of Myxarium
podlachicum, 8 Mar. 2019, I. Nannenga-Bruggeman, ID 3883* (GENT);
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Prov. Utrecht, Zeist-West, De Brink, on piece of wood of an unidentified
deciduous tree, growing in the hymenium of Myxarium podlachicum, 2
Oct. 2020, I. Nannenga-Bruggeman, ID 7081* (GENT); Prov. Gelderland,
Ruurlo, Morsdijk, on fallen decorticated branch of Alnus, growing in the
hymenium of Myxarium podlachicum, 27 Jul. 2020, H. Wassink, HW
347* (GENT). Norway, Hedmark, Stange, Rotlia, rotten stem of Corylus
avellana, growing on Myxarium podlachicum, 26 Sep. 2018, V. Spirin, VS
12419* (O, H).

Notes: Colacosomes in this species are formed in mycoparasite
hyphae in places where physical contact with other hyphae
occurs (mostly host hyphae). Colacosomes can also be found
in conidiophores and probasidia. In certain places at the host-
parasite interface, hyphae of the mycoparasite coil around hyphae
of the host, resulting in rosette-like structures when viewed in
epifluorescence microscopy. In these structures, colacosomes
are formed abundantly at the contact surface (see Fig. 5F, G).
Colacosomes have also been observed attaching to hyphae of the
mycoparasite, which may be interpreted as self-parasitism. During
fluorescence microscopical investigation of the holotypes of A.
insignis (1991) and P. micra (1915), colacosomes could easily be
observed. This may indicate a high durability of these structures.
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Fig. 4. Slooffia micra comb. nov. (KH7222) line
drawings. A. Basidiospores. B. Basidia. C. Cluster
of conidiophores. D. Conidia. E. Basidioles,
arrows indicate probasidia. Black dots represent
colacosomes. Scale bar = 10 um.

Microbotryomycetes incertae sedis

Family Chrysozymaceae Q.M. Wang et al., Stud. Mycol. 81: 183.
2015.

Fellozyma cerberi (A.M. Yurkov et al.) Schoutteten & Yurkov,
comb. nov. MycoBank MB 848664.

Basionym: Hamamotoa cerberi A.M. Yurkov et al., Mycol. Prog. 15:
854. 2016.

Fellozyma telluris (A.M. Yurkov et al.) Schoutteten & Yurkov,
comb. nov. MycoBank MB 848665.

Basionym: Hamamotoa telluris A.M. Yurkov et al., Mycol. Prog. 15:
855. 2016.

Family Colacogloeaceae Q.M. Wang et al., Stud. Mycol. 81: 182.
2015.

Colacogloea Oberw. & Bandoni, Canad. J. Bot. 68: 2532. 1991.
emend.

Generic description: Genus of dimorphic fungi. Basidiomata
pulvinate or absent. Filamentous morphs mostly develop
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Fig. 5. Slooffia micra comb. nov. (KH7222). A. Basidiome (VS 12419). B. Basidiole (left) and cluster of conidiophores (right), note colacosomes in hyphae and
conidiophores. C. Three-septate basidium with three sterigmata, the first cell of the basidium and the probasidium are collapsed. D. Conidia. E. Basidiospores. F.
Host—parasite interface, Pa = parasite hyphae, Ho = host hyphae, arrowheads indicate some positions of colacosomes. Scale bars =10 um.
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intrahymenially in the hymenium of their host species, producing a
yellow to orange, slimy to arid layer overgrowing the host basidiome.
Hyphal system monomytic, hyaline, thin-walled, smooth, clamped
at all septa. Hyphidia present in some species. Cystidia absent.
Basidia cylindrical to clavate, straight to sinuous to curved in
some species, transversally septate, two- to four-celled, clamped
at basal cell, thin-walled, without distinct probasidium. Sterigmata
originating laterally or apically from basidial cells. Basidiospores
ellipsoid to curved, smooth, hyaline, thin-walled, often with a
prominent apiculus. Germination of basidiospores either occurs by
hyphae, budding or secondary spore production. Conidia present
in most species, usually thick-walled and cyanophilous, globose,
ellipsoid to ovoid or irregularly shaped, monokaryotic or dikaryotic,
zygoconidia present in some species. Yeast colonies are usually
cream-coloured, mucoid to butyrous. Yeast cells proliferate by polar
budding, no ballistoconidia are formed. Major CoQ system Q-10.

Habitat, substrate, and ecology: Filamentous morphs of Colacogloea
species which have been observed to engage in mycoparasitic
interactions were mainly isolated from the hymenia of corticioid
fungi, especially from the genera Peniophorella and Tubulicrinis.
Colacogloea papilionacea was isolated from bark beetle galleries
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of Pinus sylvestris and is characterised by a dikaryotic yeast
morph. Colacogloea species of which currently only the yeast
morph has been observed were isolated from marine and terrestrial
environments, including soils and phylloplanes. Yeast morphs are
presumed to have a saprobic ecology.

Distribution: Colacogloea species have been recorded from
various countries, including Austria, Belgium, Brazil, Canada,
China, Denmark, Finland, France, Germany, India, Italy, Japan,
The Netherlands, Norway, Poland, Portugal, Russian Federation,
Spain, Sweden, Switzerland, and the Unites States of America
(Sampaio et al. 2011, Bezerra et al. 2013, Buzzini et al. 2017,
Menolli & Sanchez-Garcia 2020).

Type: Colacogloea effusa (J. Schrét.) V. Malysheva et al.

Colacogloea bettinae Schoutteten & Begerow, sp. nov. MycoBank
MB 848655. Figs 6, 7.

Etymology: Named after Bettina Greschner-Aschenbrenner, who
conducted an extensive study of the Colacogloea effusa species
complex for her master dissertation (Diplomarbeit) at the former

Fig. 6. Colacogloea bettinae sp. nov. (NS 19-391)
line drawings. A. Basidiospores and germinating
basidiospores with secondary spores. B. Cluster
of basidia and conidiophores. C. Cluster of
conidiophores, showing subsequent stages of
conidiogenesis. Each conidiophore consists of
two conidiogenous cells. Each cell produces a
conidium, of which one grows larger than the
other. Subsequently the two daughter conidia
fuse, and the cellular content of the smaller
conidium is transferred to the larger conidium,
after which the zygoconidium is abscised. The cell
wall of the smeller conidium remains attached to
the larger conidium. D. Conidia. E. Gall-like cell
of the parasite (Pa) enveloping a host hyphae
(Ho). Black dots represent colacosomes. Note the
different distribution of colacosomes in the gall-like
cell and the hyphae. Scale bars = 10 um.
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Fig. 7. Colacogloea bettinae sp. nov. (NS 19-391). A. Basidiome. B. Three-septate basidium with four sterigmata, note one attached basidiospore. C. Cluster
of conidiophores and conidia. D. Conidia. E. Basidiospores. F, G. Host-parasite interface, Pa = parasite cell, Ho = host cell, arrowheads indicate gall-like
cells of the parasite enveloping host hyphae, colacosomes are formed along the contact interface within these galls. Scale bars: A=1 cm; B-G =10 um.
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Lehrstuhl flr Spezielle Botanik und Mykologie (University of
Tibingen), supervised by the late dr. Robert Bauer and prof. Franz
Oberwinkler.

Typus: Netherlands, Prov. Gelderland, Veluwe region, Brummen,
Leusveld, on a decorticated branch of an unidentified deciduous tree,
growing in the hymenium of Peniophorella pubera, 15 Nov. 2019,
N. Schoutteten (holotype GENT NS 19-391*°, culture ex-type DSM
112418).

Description of filamentous morph: Intrahymenial, producing a
whitish to yellowish slimy layer on the hymenial surface of the
host basidiome. Monomitic; hyphae hyaline, thin-walled, smooth,
clamped at all septa, 2.7-4.4 ym in diam. Hyphidia absent. Cystidia
absent. Basidia tubular-clavate, sinuous to strongly curved,
(25.5-)31-50(-51) x 4.6-7.2(-7.4) ym (n = 20/1), transversally
septate, four-celled when mature, clamped at the base, thin-walled,
often arranged in clusters of 2-5. Sterigmata up to 46 um long.
Basidiospores ellipsoid, with ventral side often flattened to concave,
(6.7-)6.8-8.8(-9.0) x 4-5.9(-6.7) pm, L = 7.60 pym, W = 4.96
pm, Q = (1.1-)1.2-1.8, Q = 1.54 (n = 60/2), often with prominent
apiculus up to 1.8 x 1.2 um, germinating by hyphae, budding or
secondary spore production. Conidiophores comprised of two cells
being separated by a septum, each cell apically giving rise to a
conidium, basally clamped, often arranged in clusters, intermixed
with basidia, 12.5-24.5 x 3-4.8 um. Mature conidia ellipsoid
to ovoid, more rarely subfusiform, sometimes asymmetrical or
becoming oblong, rarely with a small lateral outgrowth, always with
an appendage (cell wall remnant of the smaller twin-conidium),
thick-walled (wall up to 1 um), cyanophilous, dikaryotic, 6-8.1(-
8.3) x (2.9-)3.0-4.6(-4.8) pm (n = 30). Colacosomes arranged
both scattered in parasite hyphae and in vesicular gall-like cells
produced by this species.

Description of yeast morph: After growth on YM agar plates for 1 mo
at 22 °C, the streak culture is white to cream-coloured, glistening,
mucoid and smooth. The margin is entire. Cells are subglobose to
ovoid, occurring singly or in pairs, and proliferating by polar budding.
Good growth on D-glucose, D-glucosamine, D-ribose, D-arabinose,
sucrose, me a-D-glucoside, glycerol, ribitol, D-glucitol, D-mannitol,
5-keto-D-gluconate, D-gluconate, and succinate. Weak growth on
L-sorbose, D-xylose, L-arabinose, L-rhamnose, lactose, raffinose,
galactitol, ethanol, D-glucarate, and L-tartaric acid. No growth on
D-galactose, maltose, a,a-trehalose, cellobiose, salicin, melibiose,
melezitose, inulin, starch, erythritol, L-arabinitol, myo-inositol,
D-glucuronate, D-galacturonate, DL-lactate, citrate, D-tartaric
acid, and L-malic acid. Growth in the presence of 5 % and 8 %
but not 10 % NaCl. Weak growth on MEA with 50 % and 60 %
glucose. No starch-like substance is produced. Urea hydrolysis
and the Diazonium blue B reaction is positive. Maximum growth
temperature: 35 °C.

Habitat and distribution: This species has up to now only been
found in the Netherlands, in mixed forests, always associated with
the host species Peniophorella pubera.

Materials examined: The Netherlands, Drenthe, Gasteren, Gasterensche
Holt, on a rotten branch of an unidentified deciduous tree, growing in the
hymenium of Peniophorella pubera, 5 Sep. 2020, R. Enzlin, ENZ 20-043
(GENT); Gelderland, Bronckhorst, Hekenbroek, Hoog Keppel, on a fallen
branch of an unidentified tree, growing in the hymenium of Peniophorella
pubera, 19 Jul. 2020, M. Gotink, MG 407* (GENT).
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Notes: This is one of the two Colacogloea species described in
this study which agrees with the morphotype illustrated by Martin
(1940) (see also C. universitatis-gandavensis sp. nov. and in
discussion). Conidiogenesis in this species is of the same type as
in C. universitatis-gandavensis, where more elaborate observations
are provided. The colacosome organisation is similar to the one
observed in C. universitatis-gandavensis. Colacosomes are mainly
arranged in vesicular gall-like cells produced by the mycoparasite.
To a lesser extent, colacosomes are also scattered in mycoparasite
hyphae. The cell wall of these vesicular gall-like cells invaginates
at places where a host hypha makes physical contact. The latter
continues to grow into the invagination. As a result, the host hypha
is surrounded by the gall-like cell of the mycoparasite. Along the
contact surface, colacosomes are formed in the gall-like cell at
regular distance from each other.

Colacogloea biconidiata Schoutteten, sp. nov. MycoBank MB
848656. Figs 8, 9.

Etymology: Referring to two different types of conidia in this species.

Typus: Norway, Hedmark, Gitvola, on decorticated branch of Picea abies,
growing in the hymenium of Peniophorella praetermissa s.I., 26 Sep. 2018,
V. Spirin (holotype O VS12415*°, isotype GENT GENTFT00143, culture
ex-type DSM 112405).

Description of filamentous morph: Intrahymenial, producing a yellow
to orange, gelatinous layer on the host, remaining visible as yellow
or orange patches when dried. Monomitic; hyphae hyaline, thin-
walled, smooth, clamped at all septa, 1.3—-4.5 ym in diam. Hyphidia
present, simple, 1-2 pm in diam. Cystidia absent. Basidia tubular-
clavate, straight to sinuous or slightly curved, (31.1-)31.8-50.2(-
50.6) x 4.1-5.3(-6.9) um (n = 17/1), transversally septate, four-
celled when mature, clamped at the base, thin-walled. Sterigmata
up to 54 um long. Basidiospores ellipsoid to broadly ellipsoid,
6.7-12.2(-12.5) x 4.4-8.8(-10.2) ym, L=8.06, W=5.22, Q"= 1.2-
1.8(-1.9), Q = 1.49 (n = 67/1), with distinct apiculus up t0 2.5 x 2.3
pm, germinating by hyphae, budding or secondary spores. Conidia
of two types: (1) irregularly shaped - ellipsoid, subfusiform to oblong
or barrel-shaped, sometimes angular, thick-walled (wall up to 1.2
pm), strongly cyanophilous, 6.1-13.2(-15.4) x 3.2-7.1(-7.2) (n =
20/1); (2) predominantly (sub)globose, thick-walled, cyanophilous,
(3.1-)3.5-4.5(-4.6) x (2.7-)2.8-3.7(-3.8) (n = 20/1). Colacosomes
scattered, no vesicular gall-like cells observed.

Description of yeast morph: After growth on YM agar plates for
1 mo at 22 °C, the streak culture is white to cream-coloured,
glistening, mucoid and smooth. The margin is entire. Cells are
subglobose to ovoid, occurring singly or in pairs, and proliferating
by polar budding. Growth on D-glucose, D-glucosamine, D-ribose,
D-arabinose, me a-D-glucoside, glycerol, D-glucitol, D-gluconate,
succinate and L-malic acid. Weak growth on maltose (delayed),
salicin, inulin, galactitol, and D-tartaric acid. No growth on
D-galactose, L-sorbose, D-xylose, L-arabinose, L-rhamnose,
sucrose, a,a-trehalose, cellobiose, melibiose, lactose, raffinose,
melezitose, starch, erythritol, ribitol, L-arabinitol, D-mannitol, myo-
inositol, 5-keto-D-gluconate, D-glucuronate, D-galacturonate, DL-
lactate, citrate, ethanol, D-glucarate, and L-tartaric acid. Growth in
the presence of 5 % but not 8 % and 10 % NaCl. Weak growth on
MEA with 50 % but not 60 % glucose. No starch-like substance is
produced. Urea hydrolysis and the Diazonium blue B reaction is
positive. Maximum growth temperature: 35 °C.
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Fig. 8. Colacogloea biconidiata sp. nov. (VS 12415) line drawings. A. Basidiospores and germinating basidiospores by hyphae and secondary spores. B.
Cluster of basidia and basidioles. C. Type-1 conidiophores. D. Type-1 conidia with basal clamps. E. Type-2 conidiophores. F. Type-2 conidia. G. Hyphidium.

Black dots represent colacosomes. Scale bars = 10 um.

Habitat and distribution: Currently only known from the type location
in Norway, where it was collected in in a subalpine grazing area, on
coniferous wood.

Material examined: This species is only known from the type collection.

Notes: This is the only species in the genus currently known to
produce two types of conidia, produced by two distinct types of
conidiophores. The colacosomes of this species occur scattered
throughout the mycoparasite hyphae, more densely arranged
in the places of physical contact between host and parasite
cells. Interestingly, this mycoparasite seems to induce additional
branching of host hyphae, probably to increase the contact surface
where colacosomes can be formed.
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Colacogloea effusa (J. Schrét.) V. Malysheva et al., Mycol. Prog.
20: 414. 2021. Figs 10, 11.

Basionym: Platygloea effusa J. Schrét. in Cohn, Kryptogamen
Flora von Schlesien 3(1): 384. 1889.

Typus: Denmark, Midtjylland: Norddjurs, Lavenholm Skov, on rotten
deciduous wood, 26 Aug. 2009, J. Heilmann-Clausen (neotype C JHC
09-304, isoneotype GENT GENTFT00145).

Synonyms: Colacogloea peniophorae (Bourdot & Galzin) Oberw. &
Bandoni, Canad. J. Bot. 68: 2532. 1991.

Platygloea peniophorae Bourdot & Galzin, Bull. Trimestriel Soc.
Mycol. France 25: 17. 1909.
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Fig. 9. Colacogloea biconidiata sp. nov. (VS 12415). A. Basidiome.. B. Three-septate basidium with four sterigmata, note hyphae with numerous colacosomes
and three well stained conidia. C. Type-1 conidiophore and attached conidium with basal clamp. D. Cluster of type-1 conidiophores and conidia. E. Cluster of
type-2 conidiophores. F. Upper row represent type-1 conidia, lower row represent type-2 conidia. G. Basidiospores. H. Host—parasite interface, Pa = parasite
cell, Ho = host cell, arrowheads indicate some positions of colacosomes. Scale bars: A= 1 c¢cm; B-G = 10 um.
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Typus: France, Allier, Saint-Priest, 10 Aug. 1908, H. Bourdot (lectotype
PC Bourdot 5945, designated here, MycoBank MBT 10013259). Ibid.,
Saint-Bonnet de Trongais, Forét de Trongais, réserve de Futaine Colbert,
16 Nov. 2021, N. Schoutteten (epitype GENT NS 21-146*°, designated
here, MycoBank MBT 10013260, culture ex-epitype DSM 113583).

Description of filamentous morph: Intrahymenial, first visible
as yellowish to orange, slimy patches or pustules on the host
species, later fusing together and forming opalescent or yellowish,
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Fig. 10. Colacogloea effusa (NS 21-146) line
drawings. A. Basidiospores and germinating
basidiospores by hyphae and secondary spores. B.
Basidia. C. Conidiophore. D. Conidia. E. Hyphidia.
Black dots represent colacosomes. Scale bars = 10
pm.

crustaceous basidiomes with tuberculate hymenial surface,
darkening to reddish or brownish and remaining well-visible after
drying. Monomitic; hyphae hyaline, often guttulate, thin-walled,
smooth, clamped at all septa, 1.8-2.6 um in diam. Hyphidia simple
or occasionally branched, 1.2-2.5 pm in diam. Cystidia absent.
Basidia narrowly tubular-clavate, straight to curved, sometimes
slightly sinuous, (33.5-)42.2-64.1(-70.8) x (4.4-)4.6-5.6 um (n
= 40/2), transversally septate, four-celled when mature, clamped
at the base, thin-walled, without distinct probasidium. Sterigmata
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Fig. 11. Colacogloea effusa (NS 21-146). A. Basidiome. B. Cluster of basidium, basidiole and hyphidia. C. Three-septate basidium with four sterigmata.
D. Conidiophores. E. Conidia. F. Basidiospores. G, H. Host—parasite interface, Pa = parasite cell, Ho = host cell, arrowheads indicate some positions of
colacosomes. Scale bars: A=1cm; B-H =10 um.
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up to 48 um long. Basidiospores ellipsoid to reniform, (6.7-)
6.9-10.6(-11) x (4.5-)4.7-7.3(-8) ym, L = 8.33 ym, W = 5.81
pm, Q' = (1.0-)1.2-1.7, Q = 1.4-1.7 (n = 80/2), with prominent
apiculus up to 2 um, germinating by hyphae, budding or secondary
spores. Conidia ellipsoid, ovoid to subfusiform, often asymmetric,
sometimes angular, mostly guttulate, thick-walled (up to 1 um),
strongly cyanophilous, basally clamped, (5.7-)6.5-8.7(-8.9) x
(3.1-)3.2-4(—4.1) um. Colacosomes scattered, no vesicular gall-
like cells observed.

Description of yeast morph: After growth on YM agar plates for 1 mo
at 22 °C, the streak culture is white to cream-coloured, glistening,
mucoid and smooth. The margin is entire. Cells are subglobose to
ovoid, occurring singly or in pairs, and proliferating by polar budding.
Growth on D-glucose, D-ribose, D-arabinose, me a-D-glucoside,
glycerol, ribitol, D-glucitol, D-mannitol, D-gluconate, succinate, and
D-glucarate. No growth on D-galactose, L-sorbose, D-glucosamine,
D-xylose, L-arabinose, L-rhamnose, sucrose, maltose, a,a-
trehalose, cellobiose, salicin, melibiose, lactose, raffinose,
melezitose, inulin, starch, erythritol, L-arabinitol, galactitol, myo-
inositol, 5-keto-D-gluconate, D-glucuronate, D-galacturonate, DL-
lactate, citrate, ethanol, L-malic acid, L-tartaric acid, and D-tartaric
acid. Growth in the presence of 5 % and 8 % but not 10 % NaCl.
Weak growth on MEA with 50 % and 60 % glucose. No starch-like
substance is produced. Urea hydrolysis and the Diazonium blue B
reaction is positive. Maximum growth temperature: 35 °C.

Habitat and distribution: Colacogloea effusa is presumably the most
common species in the C. effusa species complex, with records
from most European countries. Most specimens we collected,
isolated and sequenced belong to this species. On a global scale,
this species has been reported from various continents: Africa, Asia,
Europe, North America, and South America (most of them under
the name Colacogloea peniophorae). However, since most of these
observations have been identified based on micromorphological
characteristics only, it may well be that a substantial part of them
belongs to other species within this species complex. It is also
possible that previous reports of C. effusa actually comprise yet
undescribed species, which may be especially true for specimens
reported outside our sampling area. All our C. effusa collections
come from deciduous wood substrates in temperate forests in
Europe.

Materials examined: Finland, Varsinaissuomi, Raasepori, Framnas, on
an unidentified deciduous tree, growing in the basidiome of Peniophorella
praetermissa s.l., 21 Nov. 2019, J. Pennanen, JN 4226* (H). France,
Departement Allier, St. Bonnet de Trongais, Tour de I'étang, on an
unidentified deciduous tree, growing in the basidiome of Peniophorella
praetermissa s.I., 15 Nov. 2021, N. Schoutteten, NS 21-138* (GENT);
Departement Allier, St. Bonnet de Trongais, Réserve de Nantigny, on an
unidentified deciduous tree, growing in the basidiome of Peniophorella
praetermissa s.I., 14 Nov. 2021, N. Schoutteten, NS 21-128* (GENT). Italy,
Piedmont: Alessandria, Voltaggio, Capanne di Marcarolo Nat. Regional
Park, on a fallen branch of an unidentified tree, growing in the basidiome of
Peniophorella praetermissa s.I., 16 Oct. 2019, N. Schoutteten, NS 19-279*
(GENT). Netherlands, Prov. Utrecht, Zeist, Beerschoten, on decorticated
piece of deciduous wood, growing in the basidiome of Peniophorella
praetermissa s.l., 10 Oct. 2019, I. Nannenga-Bruggeman, D 6351* (GENT);
ibid. ID 6343* (GENT); Prov. Utrecht, Nieuw Wulven, lepenbos, on fallen
branch of a deciduous tree, growing in the basidiome of Peniophorella
praetermissa s.l., 13 Oct. 2020, I. Nannenga-Bruggeman, 1D 7117* (GENT);
Prov. Utrecht, Zeist, Overrijnwijck, on a fallen branch of an unidentified
deciduous tree, growing in the basidiome of Peniophorella praetermissa
s.l, 5 Nov. 2020, I. Nannenga-Bruggeman, 1D 7149* (GENT); Prov.
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Utrecht, De Bilt, Sandwijck, on a fallen branch of an unidentified deciduous
tree, growing in the basidiome of Peniophorella praetermissa s.1., 10 Dec.
2020, I. Nannenga-Bruggeman, 1D 7323* (GENT); Prov. Gelderland,
Barchem, Beekvliet, on fallen branch of Alnus, growing in the basidiome of
Peniophorella praetermissa s.I., 11 Jul. 2020, M. Gotink, MG 445* (GENT);
Prov. Groningen, Kolham, Uiterdijken, paddenstoelenreservaat, on fallen
branch of Picea, growing in the basidiome of Peniophorella praetermissa
s.l., 23 Nov. 2019, R. Enzlin, ENZ 19-092* (GENT); Prov. Groningen,
Weende, Lieftinghsbroek, on a fallen branch of an unidentified deciduous
tree, growing in the basidiome of Peniophorella praetermissa s.I., 30
Oct. 2020, R. Enzlin, ENZ 20-051* (GENT); Prov. Drenthe, Gasteren,
Gasterensche Holt, on a fallen branch of an unidentified deciduous tree,
growing in the basidiome of Peniophorella praetermissa s.l., 5 Sep. 2020,
R. Enzlin, ENZ 20-042* (GENT). Prov. Zeeland, Oosterland, De Maire, on
a fallen branch of an unidentified deciduous tree, growing in the basidiome
of Peniophorella praetermissa s.l., 6 Nov. 2021, N. Schoutteten, NS 21-
110* (GENT).

Notes: The colacosomes of this species occur scattered in the
mycoparasite hyphae, more densely arranged in the places of
physical contact between host and parasite cells. No proliferation
of host hyphae has been observed.

Colacogloea fennica Schoutteten & Miettinen, sp. nov. MycoBank
MB 848657. Figs 12, 13.

Etymology. Referring to the country where the holotype of this
species was collected.

Typus: Finland, Helsinki, Koskela, on fallen log of Pinus sylvestris,
growing in the hymenium of Peniophorella praetermissa s.1., 3 Dec. 2020,
O. Miettinen (holotype GENT OM 24483*°, isotype H 6014790, culture
ex-type DSM 112417).

Description of filamentous morph: Intrahymenial, producing yellow
to orange, slimy layer on the host species, remaining visible as
yellow to orange warts when dried. Monomitic; hyphae hyaline, thin-
walled, smooth, clamped at all septa, 2.2—-4.2 um in diam. Hyphidia
present, simple or occasionally branched, 1-2 um in diam. Cystidia
absent. Basidia narrowly tubular-clavate, straight to curved or
sinuous, (50.7-)52.1-73.0(-73.2) x (4.7-)5.3-6.9(~7.0) ym (n =
20/1), transversally septate, four-celled when mature, clamped at
the base, thin-walled. Sterigmata up to 46 um long. Basidiospores
ellipsoid to broadly ellipsoid, more rarely subglobose, guttulate,
(6.7-)6.8-10.5 x (5.2-)5.3-8.2(-8.8) um, L = 8.56 pum, W = 6.91
pm, Q' = (1.0-)1.1-1.5(-1.6), Q = 1.27 (n = 81/3), with prominent
apiculus up to 1.2 x 1 ym, germinating by hyphae, budding or
secondary spores. Conidia fusiform to amygdaliform, rarely oblong
or asymmetric, mostly guttulate, thick-walled (walls up to 1 um),
strongly cyanophilous, basally clamped, 7.2-10.8(-13) x 3.5-
5.0(-5.2) um. Colacosomes scattered, no vesicular gall-like cells
observed.

Description of yeast morph: After growth on YM agar plates for 1 mo
at 22 °C, the streak culture is white to cream-coloured, glistening,
mucoid and smooth. The margin is entire. Cells are subglobose to
ovoid, occurring singly or in pairs, and proliferating by polar budding.
Growth on D-glucose, D-glucosamine, D-ribose, D-arabinose, me
a-D-glucoside, glycerol, D-mannitol, D-glucitol, and D-gluconate.
Weak growth on erythritol, galactitol, and D-tartaric acid. No growth
on D-galactose, L-sorbose, sucrose, maltose, cellobiose, a,a-
trehalose, melibiose, raffinose, melezitose, inulin, starch, D-xylose,
L-arabinose, L-rhamnose, ribitol, salicin, lactose, L-arabinitol, myo-
inositol, 5-keto-D-gluconate, D-glucuronate, D-galacturonate, DL-
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Fig. 12. Colacogloea fennica sp. nov. (OM 22483) line drawings. A. Basidiospores and germinating basidiospores by secondary spores. B. Basidium and
basidiole. C. Conidiophore and basidium. D. Conidia, note the clamp at the base of conidia. E. Hyphidium. Black dots represent colacosomes. Scale bar =

10 pum.

lactate, succinate, citrate, ethanol, D-glucarate, L-tartaric acid, and
L-malic acid. Growth in the presence of 5 % but not 8 % and 10 %
NaCl. Growth on MEA with 50 % but not 60 % glucose. No starch-
like substance is produced. Urea hydrolysis and the Diazonium
blue B reaction is positive. Maximum growth temperature: 35 °C.

Habitat and distribution: Growing on coniferous wood, currently

found only on Pinus sylvestris. Up to now only known from Finland,
where it was collected in mixed forests and parks.
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Materials examined: Finland, Helsinki, Koskela, on fallen log of Pinus
sylvestris, growing in the hymenium of Peniophorella praetermissa s.1., 26
May 2020, O. Miettinen, OM 23714 (= H 6200175); ibid. 1 Sep. 2021, N.
Schoutteten, NS 21-014* (GENT); Helsinki, Lehtisaari, on fallen branch of
Pinus sylvestris, growing in the hymenium of Peniophorella praetermissa
s.l, 15 Oct. 2008, H. Kotiranta, Kotiranta 22473 (= H 6073961).

Notes: The colacosomes occur scattered in the mycoparasite
hyphae, more densely arranged in the places of physical contact
between host and parasite cells. No proliferation of host hyphae
has been observed.
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Fig. 13. Colacogloea fennica sp. nov. (OM 22483). A. Basidiome. B. Three-septate basidium with four sterigmata, note colacosomes in hyphae bearing the
basidium but not in the basidium. C. Basidiole. D. Cluster of conidiophores and conidia, note colacosomes in hyphae but not in conidiophores. E. Conidia.
F. Basidiospores. G, H. Host-parasite interface, Pa = parasite cell, Ho = host cell, arrowheads indicate some positions of colacosomes. Scale bars: A = 1
cm; B-G =10 pum.
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Colacogloea microspora Schoutteten, sp. nov. MycoBank MB
848658. Figs 14, 15.

Etymology: Referring to the small size of the basidiospores of this
species compared to other representatives of the Colacogloea
effusa species complex.

Typus: Belgium, Flanders, Vlaams-Brabant, Asse, domain of Hoeve
Heierveld, on fallen branch of a deciduous tree (probably Corylus
avellana), growing in the hymenium of Peniophorella praetermissa s.1., 27
Oct. 2020, N. Schoutteten (holotype GENT NS 20-141*°, culture ex-type
DSM 112413).

Description of filamentous morph: Intrahymenial, producing a
yellow to orange, slimy to arid layer on the host species, remaining
visible as yellow to orange warts after drying. Monomitic; hyphae
hyaline, thin-walled, smooth, clamped at all septa, 2.4-3.9 ym in

diam. Hyphidia absent. Cystidia absent. Basidia tubular-clavate,
straight to sinuous to curved, (26.0-)27.6-43.7(—44.3) x (3.3-
)4.2-5.4(-5.5) pum (n=18/1), transversally septate, four-celled
when mature, clamped at the base, thin-walled, often arranged
in clusters of 3-5 and appearing as scattered groups, quickly
collapsing after reaching maturity. Sterigmata up to 22 um long.
Basidiospores ellipsoid to broadly ellipsoid to subglobose, (5.1-
)5.2-8.0(-8.2) x (3.0-)3.8-5.3 ym, L = 6.66 um, W = 4.53 um,
Q =1.1-1.8(2.1), Q = 1.48 (n = 48/1), germinating by hyphae,
budding or secondary spores; apiculus occasionally eccentric, up
to 1 um. Conidia variable, fusiform to angular, often widened in the
middle, sometimes oblong, slightly curved or slightly asymmetric,
occasionally with a small basal outgrowth, mostly guttulate, thick-
walled (walls up to 1.2 um), strongly cyanophilous, basally clamped,
(6.9-)7.2-11.1(-12.7) x (3.1-)3.6-4.8(-5.3) pm. Colacosomes
scattered, no vesicular gall-like cells observed.

Fig. 14. Colacogloea microspora sp. nov. (NS 20-141) line drawings. A. Basidiospores and germinating basidiospores by hyphae and secondary spores. B.
Two basidia and basidiole. C. Conidiophore. D. Conidia. Black dots represent colacosomes. Scale bar = 10 um.
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Fig. 15. Colacogloea microspora sp. nov. (NS 20-141). A. Basidiome. B, C. Three-septate basidia with sterigmata, note colacosomes in hyphae. D. Cluster
of conidiophores and conidia, note colacosomes in hyphae. E. Conidia. F. Basidiospores. G. Host—parasite interface, Pa = parasite cell, Ho = host cell,
arrowheads indicate some positions of colacosomes. Scale bars: A= 1 cm; B-G =10 pum.
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Description of yeast morph: After growth on YM agar plates for
1 mo at 22 °C, the streak culture is white to cream-coloured,
glistening, mucoid and smooth. The margin is entire. Cells are
subglobose to ovoid, occurring singly or in pairs, and proliferating
by polar budding. Growth on D-glucose, D-glucosamine, D-ribose,
D-arabinose, me a-D-glucoside, melezitose, glycerol, ribitol,
D-glucitol, D-mannitol, galactitol, D-gluconate, D-glucarate, and
L-tartaric acid. Weak growth on L-sorbose, sucrose, erythritol, and
D-tartaric acid. No growth on D-galactose, D-xylose, L-arabinose,
L-rhamnose, maltose, a,a-trehalose, cellobiose, salicin, melibiose,
lactose, raffinose, inulin, starch, L-arabinitol, myo-inositol, 5-keto-D-
gluconate, D-glucuronate, D-galacturonate, DL-lactate, succinate,
citrate, ethanol, and L-malic acid. Growth in the presence of 5 %
but not 8 % and 10 % NaCl. Growth on MEA with 50 % but not 60 %
glucose. No starch-like substance is produced. Urea hydrolysis
and the Diazonium blue B reaction is positive. Maximum growth
temperature: 35 °C.

Habitat and distribution: Up to now only found in Belgium, in a
private forest-like garden, growing on a fallen, partly decorticated
branch of a deciduous tree species, probably Coryllus avellana.

Material examined: This species is only known from the type collection.

Notes: The yellow patches on the host hymenium mostly comprise
conidial tissue. Basidia and basidiospores are to be found in
adjacent regions which macroscopically do not seem to be
infected. The colacosomes of this species occur scattered in the
mycoparasite hyphae, more densely arranged in the places of
physical contact between host and parasite cells. No proliferation
of host hyphae has been observed.

Colacogloea philyla (Van der Walt et al.) Q.M. Wang et al., Stud.
Mycol. 81: 183. 2015. Figs 16, 17.

Basionym: Torulopsis philyla Van der Walt et al., Antonie van
Leeuwenhoek 37: 464. 1971.

Fig. 16. Colacogloea philyla (MG 438) line drawings. A. Basidiospores and germinating basidiospores by hyphae and secondary spores. B. Basidium.
C. Conidiophore. D. Conidia. E. Hyphidium. Black dots represent colacosomes. Scale bars = 10 pym.
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Fig. 17. Colacogloea philyla (MG 438). A. Basidiome. B. Cluster of three-septate basidia, basidioles and hyphidia. C. Two-septate basidium with apical
sterigma. D. Cluster of conidiophores and conidia, note the colacosomes in the hyphae but not in the conidiophores. E. Conidia. F. Basidiospores. G, H.
Host—parasite interface, Pa = parasite cell, Ho = host cell, arrowheads indicate some positions of colacosomes. Scale bars: A= 1 cm; B-H = 10 um.
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Description of filamentous morph: Intrahymenial, producing a yellow
to orange slimy layer on the host species, remaining visible as
yellow to orange warts after drying. Monomitic; hyphae hyaline, thin-
walled, smooth, clamped at all septa, 1.8-2.5 um in diam. Hyphidia
present, simple or occasionally branched, 1-2 pym in diam. Cystidia
absent. Basidia narrowly tubular-clavate, straight to curved, (31.0-
)39.0-56.2(-65.0) x (3.0-)3.2-4.5 um (n = 20/1), transversally
septate, four-celled when mature, clamped at the base, thin-walled.
Sterigmata up to 39 um long. Basidiospores subfusiform, often
somewhat curved, guttulate, (6.8-)6.9-9.5(-10.2) x (3.3-)3.4-5.1
pm, L =831 ym, W = 4.27 ym, Q = (1.6-)1.7-2.4(-2.7), Q =
1.96 (n = 30/1), with prominent apiculus up to 2 um, germinating
by hyphae, budding or secondary spores. Conidia highly variable
in shape, ellipsoid, ovoid, subfusiform, elongated, angular, often
asymmetric with variable outgrowths, mostly guttulate, thick-walled
(wall up to 1 pm), strongly cyanophilous, basally clamped, (6.3-)
6.6-9.8(-10.6) x 3-4.9(-5.1) um. Colacosomes scattered, no
vesicular gall-like cells observed.

Habitat and distribution: Currently, the filamentous morph of
Colacogloea philyla has only been observed in one collection
from a conifer forest in the Netherlands, and is described and
illustrated in this study. The ex-type strain of C. philyla was
isolated as a yeast obtained from beetle galleries in Harpephyllum
caffru (Anacardiaceae) in South Africa. Other yeast strains of this
species were isolated from decaying wood in South Africa and
Portugal (Sampaio 2011). Since the host Peniophorella pubera is
a geographically widespread species, it is likely that the dikaryotic
mycoparasitic stage can also be found around the localities where
C. philyla was isolated as a yeast. Blast results of the ITS region
in GenBank indicate this species was also isolated from mangrove
sediments in India.

Material examined: Netherlands, Prov. Flevoland, Zeewolde, Horsterwold,
Stille Kern, on a decorticated Picea branch, growing in the hymenium of
Peniophorella pubera, 3 Oct. 2020, M. Gotink, MG 438*° (GENT).

Notes: This is one of two species recovered from the host
Peniophorella pubera. The colacosomes of this species occur
scattered in the mycoparasite hyphae, more densely arranged in
the places of physical contact between host and parasite cells.
Similar to observations in C. biconidiata sp. nov., this mycoparasite
seems to induce additional branching of host hyphae, increasing
the availability of contact surface where colacosomes can be
formed.

Colacogloea  universitatis-gandavensis ~ Schoutteten &
Verbeken, sp. nov. MycoBank MB 848659. Figs 2, 18, 19.

Etymology. The holotype is found on one of the campuses of
Ghent University and we name the species after the university to
acknowledge and stimulate the efforts for the Biodiversity plan,
which is an official policy plan approved by the Board of Governors
in 2020 and aims to realize a net gain in biodiversity on UGent
campuses by 2030.

Typus: Belgium, Prov. Oost-Vlaanderen, Gontrode, Aelmoeseneiebos,
on a log of an unidentified deciduous tree, growing in the hymenium of
Peniophorella praetermissa s.I., 18 Sep. 2021, N. Schoutteten (holotype
GENT NS 21-013°).

Description of filamentous morph: Intrahymenial, producing a
yellow to orange, slimy to arid layer on the host species, rarely
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making small emergences (< 0.5 mm long) on the host hymenium.
Monomitic; hyphae hyaline, thin-walled, smooth, clamped at all
septa, 1.8-4.8 um in diam. Hyphidia absent. Cystidia absent.
Basidia tubular-clavate, straight to curved or sinuous, (25.5-)26-
36(-37.5) x5-6.5(-7) um (n=17/1), transversally septate and, often
somewhat constricted at each septum, four-celled when mature,
clamped at the base, thin-walled, often arranged in clusters of 2-5.
Sterigmata up to 38 um long. Basidiospores ellipsoid to broadly
ellipsoid, (6.7-)6.8-9.8(-10.8) x (4.2-)4.5-7.2(-7.5) um, L = 7.83
pm, W=5.22 ym, Q'=1.2-1.8, Q = 1.51 (n = 34/1), with prominent
apiculus up to 1 um, germinating by hyphae or secondary spores,
budding by secondary spores. Conidiophores are comprised of two
cells being separated by a septum, each cell apically giving rise to
a conidium, basally clamped, often arranged in clusters, intermixed
with basidia, 11.5-28.5 x 3-5 um. Mature conidia ellipsoid to ovoid,
more rarely subfusiform, sometimes asymmetrical or becoming
oblong, rarely with a small side outgrowth, mature conidia bearing
an appendage (cell wall remnant of the smaller twin-conidium),
thick-walled (walls up to 1 pm), cyanophilous, dikaryotic, (5.0-)
5.2-7.9(-8.8) x (3.2-)3.3-4.9(-5.1). Colacosomes arranged both
scattered in parasite hyphae and in gall-like cells produced by this
species.

Habitat and distribution: Collections of this species have been found
in deciduous and mixed forests in Western, Central and Northern
Europe (Belgium, Finland, Switzerland and The Netherlands). This
species may also be present in North America, as morphologically
similar collections have been reported by Martin (1940) and
Bandoni (1973). Whether these North-American collections are
truly conspecific with C. universitatis-gandavensis sp. nov. or rather
represents a closely related species remains to be investigated.

Materials examined: Belgium, Prov. Oost-Vlaanderen, Aalst, Osbroek,
on fallen branch of an unidentified deciduous tree species, growing in the
hymenium of Peniophorella praetermissa s.l., 05 Sep. 2020, N. Schoutteten,
NS 20-022*° (GENT). Finland, Varsinaissuomi, Turku, Ruissalo, on fallen
branch of Quercus robur, growing in the hymenium of Peniophorella
praetermissa s.l., 9 Sep. 1937, M. Laurila, H 6086094. Netherlands,
Zeeland, Schelphoek, on a decorticated branch of an unidentified
deciduous tree, growing in the hymenium of Peniophorella praetermissa
s.l, 5 Nov. 2021, B. Miedema, Miedema 2021014 (GENT); Zeeland,
nature reserve De Schotsman, on a decorticated branch of an unidentified
deciduous tree, growing in the hymenium of Peniophorella praetermissa
s.l, 7 Nov. 2021, H. Wassink, NS 21-112 (GENT). Switzerland, Ticino
region, Sementina, Boschetti, on a decorticated branch of an unidentified
tree, growing in the hymenium of Peniophorella praetermissa s.I., 13 Oct.
2019, N. Schoutteten, NS 19-119 (GENT).

Notes: This is the second species that we propose which is similar
to the morphotype illustrated by Martin (1940) (see also C. bettinae
sp. nov. and discussion). Basidia have only been observed in
three out of six investigated specimens. The conidial state is
always the most prominent, with basidia occurring in clusters with
conidiophores. Unfortunately, no cultures could be obtained of this
species.

Conidiogenesis in this species is a remarkable process with
conidiophores consisting of two distinct cells (Fig. 17D). These two
cells are separated by a septum, which is characterised by a simple
septal pore (Greschner-Aschenbrenner 1997). One of these cells
comprises the ‘stalk’ of the conidiophore and an apical abscission
site where the conidium is produced (conidiophore cell 1). The
second cell is much smaller and has a similar apical abscission
site (conidiophore cell 2). Each cell of the conidiophore produces
a conidium at the apical abscission site. The conidium produced
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Fig. 18. Colacogloea universitatis-gandavensis sp. nov. (H6086094) line drawings. A. Basidiospores and germinating basidiospores by secondary spores.
B. Cluster of basidia and conidiophores. C. Conidiophore. D. Conidiophores showing subsequent stages of conidiogenesis and conidia. E. Gall-like cell of
the parasite (Pa) enveloping a host hyphae (Ho). Black dots represent colacosomes. Scale bars = 10 um.

by conidiophore cell 1 grows remarkably larger than the conidium
produced by conidiophore cell 2. At this stage, each daughter
conidium is monokaryotic. At a certain moment, the two daughter
conidia fuse forming a zygoconidium. Greschner-Aschenbrenner
(1997) showed that the zygoconidium is abscised shortly after
formation, leaving a scar at the conidiophore which can only be seen
by TEM. During the short-lived zygoconidium stage, the cytoplasm
(including the nucleus) of the smaller conidium is transferred to
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the larger conidium. Following this transfer the larger conidium
becomes dikaryotic. The remnants of the smaller conidium, ie.,
the empty, collapsed cell wall remains attached to the cell wall of
the larger conidium. The same type of conidiogenesis occurs in C.
bettinae sp. nov.

Colacosomes are mainly arranged in vesicular gall-like cells
produced by the mycoparasite. To a lesser extent, colacosomes
also scattered in mycoparasite hyphae. The cell wall of these gall-
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Fig. 19. Colacogloea universitatis-gandavensis sp. nov. (NS 21-013). A. Basidiome. B. Cluster of three-septate basidium with four sterigmata and
conidiophores, note one attached basidiospore. C. Cluster of basidium, basidiole and conidiophores. D. Cluster of conidiophores, note the colacosomes in
hyphae. E. Conidia. F. Basidiospores. G. Host-parasite interface, Pa = parasite cell, Ho = host cell, arrowheads indicate some gall-like cells of the parasite
enveloping host hyphae, colacosomes are formed along the contact interface within these galls. Scale bars: A= 1 ¢m; B-G =10 um.
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like structures invaginates at places where a host hypha makes
physical contact. The latter continues to grow into the invagination
where it becomes surrounded by the cell wall of the mycoparasite.

COLACOSOME-INTERACTING MYCOPARASITES

Colacosomes are formed at regular distances along the contact
surface within these galls.

Identification key based on filamentous morphs to the species within the Colacogloea effusa species complex

1a  Growing on Peniophorella pubera ............c..ccceeevorreenenenninnen.
1b  Growing on Peniophorella praetermissa S.I. ........cccocoevvevenenne.

........................................................................................................... 3

2a Conidia of the mycoparasite of irregular shape, no appendage present. Basidiospores subfusiform.

Colacosomes SCAttered ............coceeeveiieeieeeeeeeee e

.............................................................................. Colacogloea philyla

2b  Conidia of the mycoparasite of type of regular shape, generally with appendage of remaining cell wall. Ventral side of basidiospores

flattened to concave. Colacosomes arranged in gall-like cells

........................................................................... Colacogloea bettinae

3a Conidia of the mycoparasite of regular shape, generally with appendage of the remaining cell wall. Basidiospores (broadly) ellipsoid.

Colacosomes arranged in gall-like Cells ..........ccooeviininiiineinene,
3b  Conidia without appendage. Colacosomes scattered ..................

4a  Two types of conidia and conidiophores present. Basidiospores large, up to 12.5 pm in length

............................................... Colacogloea universitatis-gandavensis

4b  Only one type of conidia. Basidiospores not exceeding 11 M i IENGHN .......covriiiicc e

5a Basidiospores small, most spores < 8um in length, (5.1-)5.2-8.0(-8.2) x (3.0-)3.8-5.3 UM ...ccocoevvevivrrerne.

5b  Basidiospores larger, often = 8 pmin length, up to 11 pm ..........

6a Basidiospores ellipsoid to reniform, Q> 1.4 .......ccccoeveeeevinnenn
6b Basidiospores ellipsoid to broadly ellipsoid, Q< 1.4 ...........cc......

Family Mycogloiocolacaceae Schoutteten & Yurkov, fam. nov.
MycoBank MB 848661.

Description: Member of Microbotryomycetes. This family is mainly
circumscribed by the phylogenetic analysis based on seven loci, in
which it forms a well-supported lineage. The family includes species
with a dimorphic life cycle. Filamentous morphs are mycoparasitic,
only develop in presence of the host, and are characterised by
transversally septate basidia and the presence of colacosomes. The
diagnosis and nomenclature of the family Mycogloiocolacaceae are
based on the genus Mycogloiocolax gen. nov.

Type genus: Mycogloiocolax Schoutteten & Rodel

Mycogloiocolax Schoutteten & Rddel, gen. nov. MycoBank MB
848662.

Etymology: The name is based on a similar etymology used for other
genera of colacosome-interacting mycoparasites. Gloios refers
to the slimy layer produced by the mycoparasite Mycogloiocolax
gerardii when growing in its host. Colax refers to the parasitic
nature of this species.

Type: Mycogloiocolax gerardii Schoutteten & Rodel

Generic description: Genus of dimorphic fungi. Basidiomata
absent. Filamentous morph develops intrahymenial in the host,
visible in fresh condition as a hyaline gelatinous, slimy layer
overgrowing the host basidiome, turning to a thin, almost invisible,
gelatinous layer in dry condition. Monomitic; hyphae hyaline, thin-
walled, smooth, clamped at all septa. Hyphidia absent. Cystidia
absent. Basidia cylindrical to tubular-clavate, often curved, sinuous
or winding, transversally septate, mature basidia two-, rarely
three- or four-celled, basally clamped, thin-walled. Basidiospores
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.............................................................................. Colacogloea effusa
............................................................................ Colacogloea fennica

fusiform to amygdaliform, with suprahilar depression, asymmetric,
smooth, hyaline, inamyloid, with a prominent apiculus, germinating
by hyphae, budding or secondary spores. Conidia ellipsoid to
subfusiform, thin-walled. Colacosomes scattered, no vesicular gall-
like cells observed.

Mycogloiocolax gerardii Schoutteten & Rodel, sp. nov. MycoBank
MB 848663. Figs 20, 21.

Etymology: Named after the French amateur mycologist Gérard
Trichies, who has made large efforts in documenting and illustrating
the diversity of heterobasidiomycetes in France.

Typus: Germany, Saxony, near Molbis (51°1116.2°N 12°30°'28.9°E),
growing in the basidiome of Xenasmatella tulasnelloidea (Hohn. & Litsch.)
Oberw., 22 Oct. 2020, T. Rédel (holotype GENT TR 04096*°, culture ex-
type DSM 112426).

Description of filamentous morph: Intrahymenial, visible in fresh
condition as a hyaline gelatinous, slimy layer overgrowing the host
basidiome, turning to a thin, almost invisible, gelatinous layer in
dry condition. Monomitic; hyphae hyaline, thin-walled, smooth,
clamped at all septa, 1.2-3.3 pm in diam. Hyphidia absent. Cystidia
absent. Basidia cylindrical to tubular-clavate, often curved, sinuous
or winding, (28.3-)31.8-34.9(-37.8) x (3.0-)3.2-4.7(4.9) um (n
= 20/2), transversally septate, mature basidia two-, rarely three-
or four-celled, basally clamped, thin-walled. Sterigmata up to 27
pm long. Basidiospores fusiform to amygdaliform, with suprahilar
depression, asymmetric, smooth, hyaline, inamyloid, (5.8-)6.0-
10.1(-10.2) x (2.4-)3.6-5.8(-6.0) um, L = 8.20, W =4.72, Q' =
(1.2-)1.3-2.1(-4.1), Q= 1.79 (n = 31/1), with a prominent apiculus,
germinating by hyphae, budding or secondary spores. Conidia
ellipsoid to subfusiform, thin-walled, (3.6-)4.0-5.2(-5.8) x 2.0-
2.6(-2.8) pm. Colacosomes scattered, no vesicular gall-like cells
observed.
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Fig. 20. Mycogloiocolax gerardii sp. nov. (TR 04096) line drawings. A. Basidiospores and germinating basidiospores by budding, hyphae and secondary
spores. B. Basidia and basidioles. C. Conidiophores. D. Conidia. Black dots represent colacosomes. Scale bars = 10 pum.

Description of yeast morph: After growth on YM agar plates for 1 mo
at 22 °C, the streak culture is white to cream-coloured, glistening,
mucoid and smooth. The margin is entire. Cells are subglobose
to ovoid, occurring singly or in pairs, and proliferating by polar
budding. Good growth on D-glucose, D-arabinose, cellobiose,
inulin, starch, glycerol, ribitol, D-glucitol, D-mannitol, galactitol,
D-glucarate, D-tartaric acid, and L-malic acid. Weak growth on
L-sorbose, D-glucosamine, D-ribose, L-arabinose, L-rhamnose,
me a-D-glucoside, salicin, raffinose, erythritol, D-gluconate, and
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succinate. No growth on D-xylose, sucrose, maltose, a,a-trehalose,
melibiose, lactose, melezitose, L-arabinitol, myo-inositol, 5-keto-
D-gluconate, D-glucuronate, D-galacturonate, DL-lactate, citrate,
ethanol, and L-tartaric acid. Weak growth in the presence of 5 %
and 8 % but not 10 % NaCl. Growth on MEA with 50 % but not
with 60 % glucose. No starch-like substance is produced. Urea
hydrolysis and the Diazonium blue B reaction is positive. Maximum
growth temperature: 35 °C.
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Fig. 21. Mycogloiocolax gerardii sp. nov. (TR 04096). A. Basidiome. B, C. One-septate basidia with two sterigmata. D. Conidiophore and conidia. E. Conidia.
F. Basidiospores. G. Host-parasite interface, Pa = parasite hyphae, Ho = host hyphae, arrowheads indicate some positions of colacosomes. Scale bar: A =
1cm; B-G =10 um.
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Habitat and distribution: This species is an intrahymenial
mycoparasite of the corticioid fungus Xenasmatella tulasnelloidea.
Only three collections of this mycoparasite have currently been
reported, from Denmark, France, and Germany. Based on the
distribution of the host fungus, it is likely that this mycoparasite has
a wider distribution than currently known and may be expected in
various other (European) countries.

Materials examined: Denmark, Tadre Mglle, growing on the basidiome
of Xenasmatella tulasnelloidea, 05 Jan. 2013, T. Leessge, DMS-495673°
= GENTFTO00154 (GENT). France, Moselle, Neufchef, growing on the
basidiome of Xenasmatella tulasnelloidea (as Phlebiella tulasnelloidea),
25 Jun. 2004, G. Trichies, GT 04098° (LIP).

Notes: This species has been reported and illustrated for the first
time by Gerard Trichiés (2006), based on a collection from 2004
growing on Xenasmatella tulasnelloidea. Although the author
realised that the specimen most likely represented an undescribed
species, he decided not to describe it due to the limited set of
micromorphological characters available for species delimitation.
So far, it is the only mycoparasite reported from this host species.
Colacosomes of Mycogloiocolax gerardii sp. nov. are formed in
mycoparasite hyphae in places where physical contact with other
hyphae occurs. Colacosomes can also be found in conidiophores,
basidia and (germinating) basidiospores (Fig. 21D, G).

Updated classification of Microbotryomycetes

Below we provide an updated classification of the currently
described genera in Microbotryomycetes, including colacosome-
forming species.

Genera accepted in Curvibasidiales:
Curvibasidium Samp. & Golubev
Pseudoleucosporidium V. de Garcia et al.

Genus accepted in Heitmaniales:
Heitmania X.Z. Liu et al.

Genera accepted in Heterogastridiales:

Atractocolax R. Kirschner et al.

Hyalopycnis Hohn (syn. Heterogastridium Oberw. & R. Bauer)
Pycnopulvinus Toome & Aime

Slooffia Q.M. Wang et al.

Genera accepted in Kriegeriales:
Kriegeria Bres.

Yamadamyces Q.M. Wang et al.
Meredithblackwellia Toome & Aime
Phenoliferia Q.M. Wang et al.
Libkindia MaSinova, A. Pontes et al.

Genera accepted in Leucosporidiales:
Leucosporidium Fell et al.
Sampaiozyma Q.M. Wang et al.

Genera accepted in Sporidiobolales:

Sporobolomyces Kluyver & C.B. Niel

Rhodosporidiobolus Q.M. Wang et al.
Rhodotorula F.C. Harrison
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Genus accepted in Rosettozymales:
Rosettozyma Q.M. Wang & F.Y. Bai

Genera accepted in Camptobasidiaceae:
Camptobasidium Marvanova & Suberkr.
Glaciozyma Turchetti et al.

Cryolevonia A. Pontes et al.
Psychromyces L. Perini & Zalar

Genera accepted in Chrysozymaceae:
Chrysozyma Q.M. Wang et al.
Bannozyma Q.M. Wang et al.
Fellozyma Q.M. Wang et al.
Hamamotoa Q.M. Wang et al.
Yurkovia Mainova et al.

Genera accepted in Colacogloeaceae:
Colacogloea Oberw. & Bandoni
Udeniozyma Q.M. Wang et al.

Genus accepted in Mycogloiocolacaceae fam. nov.:
Mycogloiocolax Schoutteten & Rddel gen. nov.

Microbotryomycetes incertae sedis:
Oberwinklerozyma Q.M. Wang et al.
Pseudohyphozyma Q.M. Wang et al.
Reniforma Pore & Sorenson
Spencerozyma Q.M. Wang et al.
Trigonosporomyces Q.M. Wang et al.
Vonarxula Q.M. Wang et al.
Yunzhangia Q.M. Wang et al.

DISCUSSION

In order to formulate an evolutionary hypothesis on colacosome-
interacting mycoparasites in Microbotryomycetes, we organised
the discussion in three major sections. In the first section, we focus
on the proposed method for epifluorescence-based colacosome
visualisation. The second section deals with three different aspects
of the phylogenetic reconstruction, discussing (A) general aspects
of the Microbotryomycetes phylogenetic reconstruction, (B) specific
clades comprising colacosome-forming species and clades for
which we sequenced additional loci, and (C) the phylogenetic
distribution of colacosome-forming species. In the third section we
discuss our results on the diversity, ecology and morphology of the
four mycoparasitic genera investigated in this study: Atractocolax,
Colacogloea, Mycogloiocolax gen. nov. and Slooffia.

Epifluorescence-based colacosome visualisation

The detection of colacosomes in fungi is an indispensable step
in order to understand the species diversity that form these
structures, as well as the evolution of the colacosome-interaction.
Most previous reports of colacosomes were solely based on
TEM imaging of fungal samples, derived either from (co-)cultures
or directly from fresh basidiomata (Table 1). We describe an
epifluorescence-based method to easily detect colacosomes and
infer their organisation. This is in contrast to Oberwinkler & Bauer
(2018) who stressed the necessity of TEM for the detection of
colacosomes. The sample preparation encompasses conventional
Congo red staining of whole-mount preparations (Clémengon



2009). We showed that epifluorescence microscopy is a more
suitable method to detect colacosomes because it provides more
contrast compared to traditional brightfield imaging. Colacosomes
are clearly visible as they emit intense fluorescent signals in the
red part of the spectrum upon illumination with green fluorescent
light. Congo red strongly stains the secondary cell wall surrounding
the colacosomes (Fig. 2C), which was shown by Kreger-van Rij
& Veenhuis (1971b) to be a chitin-rich structure. Congo red has a
strong affinity for chitin and polysaccharides (Matsuoka et al. 1995).
Additionally, host- and parasite cell walls emit fluorescence signals
that are strong enough to discriminate host and parasite hyphae
and to determine the organisation of colacosomes. If nuclei need
to be visualised, DAPI can be added to the Congo red staining
solution, and DAPI emission can be observed using an appropriate
UV filter set (Fig. 2B). In contrast to TEM, fluorescence microscopy
is more accessible to researchers. Our approach requires a TRITC
filter, which is one of the standard filter sets in most epifluorescence
microscopes. Combined with the easy sample preparation,
this method will allow more researchers to easily screen for the
presence of colacosomes in fungal samples, and enlarge the list of
species known to be capable of forming these structures.

Phylogenetic reconstruction

A. General Microbotryomycetes phylogeny

Our analysis of Microbotryomycetes included 33 isolates derived
from colacosome-interacting mycoparasites belonging to the genera
Atractocolax, Colacogloea, Mycogloiocolax gen. nov. and Slooffia.
To obtain a better phylogenetic resolution, newly generated DNA
sequences of ribosomal and/or protein-coding loci of Colacogloea
demeterae, Glaciozyma litorale, Hamamotoa cerberi, Hamamotoa
telluris, Libkindia masarykiana, Slooffia velesii, and Yurkovia
mendeliana were analysed in the current study.

Our seven-locus ML phylogenetic reconstruction of the class
Microbotryomycetes (Fig. 3) follows previous studies (Wang et
al. 2015a, Li et al. 2020, Perini et al. 2021) and includes almost
all currently described species from this group, except for the
order Microbotryales, that is represented by ten isolates from four
genera, similar to Wang et al. (2015a, b) and Li et al. (2020). Most
previously described higher taxa within Microbotryomycetes are
resolved as strongly supported monophyletic clades in our analysis
(Table 5).

Ouranalysisrevealsfivedistinctcladesthatwere notyetassigned
to higher taxa: 1) the lineage of the genus Oberwinklerozyma; 2)
the lineage of the genera Reniforma and Yunzhangia, along with
presently unclassified yeast isolates KBP Y-5457, KBP Y-4635
and KBP Y-4912; 3) the genus Pseudohyphozyma; 4) the genus
Slooffia; and 5) the genus Atractocolax. The supported clustering
of Reniforma and Yunzhangia as sister to Microbotryales was
also observed in the seven-locus phylogenetic reconstruction of
Li et al. (2020), whereas Wang et al. (2015a, b) found these two
genera in a cluster with Heterogastridium. As in Li et al. (2020),
the order Rosettozymales is found here to be sister to all other
Microbotryomycetes, although with low support in both analyses.
As observed in various previous studies, the phylogenetic
relationships of the monotypic genera Reniforma, Spencerozyma,
Trigonosporomyces, and Vonarxula remain unresolved, and
these representatives are generally placed on long branches
in phylogenetic ML analyses (Wang et al. 2015b, Li et al. 2020).
Long branches can be the result of fast-evolving genetic regions
and/or taxon sampling error (Prasanna et al. 2019, Galindo et al.
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2021). Improved sampling will potentially lead to a more robust
phylogenetic placement for these taxa.

Our phylogenetic analysis (Fig. 3) includes the recently
described genera Cryolevonia and Psychromyces and revises
the placement of the genera Libkindia, and Yurkovia, and the
composition of the order Kriegeriales. The order Kriegeriales was
erected by Toome & Aime (2013) based on phylogenetic analyses
incorporating the three nuclear ribosomal loci SSU, ITS and LSU to
accommodate the families Camptobasidiaceae and Kriegeriaceae.
In our analysis, Kriegeriales is monophyletic and strongly
supported, but only accommodates the family Kriegeriaceae, with
the genera Kriegeria, Libkindia, Meredithblackwellia, Phenolipheria
and Yamadamyces. Similar to findings by Wang et al. (2015a),
MasSinova et al. (2017), de Garcia et al. (2020), Li et al. (2020)
and Perini et al. (2021), our analysis reveals Camptobasidiaceae
as a separate monophyletic, strongly supported lineage
including the genera Camptobasidium, Glaciozyma, Cryolevonia,
and Psychromyces. The inclusion of Camptobasidiaceae in
Kriegeriales seems to be an artefact retrieved in analyses based
on phylogenetic reconstructions that only incorporate ribosomal
DNA sequence data (Toome & Aime 2013, Wang et al. 20153, Li et
al. 2020). When nuclear (and mitochondrial) protein coding genes
are incorporated in the analyses, both families are retrieved as
separate monophyletic lineages (Li et al. 2020, Perini et al. 2021).
However, due to the lack of support for deeper nodes, a possible
sister relationship of the families cannot be ruled out.

Interestingly, the family Kriegeriaceae has not always been
recovered as monophyletic by several authors (Wang et al. 2015b,
Li et al. 2020, Pontes et al. 2020, Perini et al. 2021). On one hand,
these analyses were sensitive to taxon sampling. On the other hand,
we found that the published DNA sequences of the protein-coding
genes RPB1, RPB2, TEF-1a and mitochondrial CYT-B for the type
strains of Kriegeria eriophori (CBS 8387) and Libkindia masarykiana
(PYCC 6886) and Yurkovia mendeliana (PYCC 6884) were in fact
derived from Candida (Ascomycota) contaminations. Furthermore,
for the ex-type strain of Meredithblackwellia eburnea only SSU, ITS
and LSU rDNA sequences are available in public databases. It may
be expected that accurate DNA sequences of the aforementioned
protein-coding genes of these species will lead to more consistent
phylogenetic reconstructions of Microbotryomycetes, and the
family Kriegeriaceae and order Kriegeriales in particular. In
our analyses, the genus Yamadamyces is polyphyletic (Fig. 3),
and it could be argued that both Yamadamyces species should
be placed in Meredithblackwellia. A more robust dataset could
also reveal whether the two yeast genera Meredithblackwellia
and Yamadamyces should be merged with the dimorphic genus
Kriegeria. These genera share a unique morphology of budding
yeast morphs, forming rosettes (Oberwinkler 2017). However, due
to the lack of protein-coding DNA sequence data for multiple loci,
we refrain from such taxonomic conclusions here.

B. Discussion of specific clades

Chrysozymaceae — This family was proposed by Wang et al.
(2015b), to accommodate the genera Bannozyma, Chrysozyma,
Fellozyma, and Hamamotoa which formed a strongly supported
clade in seven-locus phylogenetic reconstructions (Wang et
al. 2015a, b). In our phylogenetic reconstruction, this family is
recovered as monophyletic, with an ultrafast bootstrap (UFB)
support value of 92 (Fig. 3). Interestingly, in the analysis of Li et
al. (2020), this family proved to be polyphyletic in a constrained
LSU ML analyses, whereas in the seven-locus ML analysis this
family was found strongly supported and monophyletic. Perini
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et al. (2021) found this family to be monophyletic and strongly
supported based on a seven-locus phylogenetic ML reconstruction
(including SSU, 5.8S, LSU, RPB1, RPB2, EF1-a and CYT-B). In
our analysis, three strongly supported clades can be recognised
within this family: 1) the lineage with the genera Bannozyma and
Chrysozyma, 2) the lineage comprising Fellozyma, Hamamotoa
cerberi and H. telluris, and 3) the lineage comprising the genus
Yurkovia, Hamamotoa lignophila and H. singularis. Our analyses
indicate the genus Hamamotoa to be polyphyletic, based on which
we propose Fellozyma cerberi comb. nov. and Fellozyma telluris
comb. nov. These two species were described by Yurkov et al.
(2016) using a LSU-based analysis. Even though the statistical
support for the placement was low in their analysis (NJ: 53 %),
the authors justified their placement to Hamamotoa by their high
sequence similarity (99 %) to H. singularis (Yurkov et al. 2016). The
polyphyly of Hamamotoa was also detected by Kachalkin (2022)
based on a combined ITS-LSU analysis. Our study additionally
highlights the fact that LSU phylogenies have strong limitations
compared to multi-locus analyses. Comparing overall distances
in the type genus of the family, Chrysozyma, and in the genera
Fellozyma, Hamamotoa and Yurkovia (Fig. 3), we cannot exclude
merging the three latter genera into a single genus in the future.

Colacogloeaceae — This family comprises the genera Colacogloea
and Udeniozyma, and is retrieved as a monophyletic clade in
our phylogenetic reconstruction (Fig. 3). The monotypic genus
Udeniozyma is recovered as sister to the genus Colacogloea
with strong bootstrap support. The same sister relationship was
also recovered by Wang et al. (2015a, b) and Li et al. (2020).
Similar to the pattern observed in the LSU-based phylogenetic
ML reconstruction of Wang et al. (2021), the genus Colacogloea
is composed of two distinct subclades. Subclade 1 comprises
species recovered as yeast morphs from soils and phylloplanes,
and no conjugation or filamentous morphs have been reported for
them so far. Subclade 2 mainly comprises dimorphic species of
which the filamentous morph represents a mycoparasitic stage
and engages in colacosome-interaction. Subclade 2 includes the
genus type Colacogloea effusa, and a few species isolated as
yeasts from plant substrates for which the filamentous morph was
not yet reported. Most likely all Colacogloea species are dimorphic
colacosome-interacting mycoparasites. However, for many species
the mycoparasitic stage remains to be discovered. This is especially
true for Colacogloea retinophila and C. terpenoidalis, which are
nested in subclade 2 and whose closest relatives are known to
have a mycoparasitic stage. Colacogloea philyla, another member
of subclade 2, was originally isolated as a yeast from bark beetle
galleries. Crossing experiments using the available strains failed
to induce dikaryotisation, and a filamentous morph was until now
never reported (Sampaio 2011). We discovered that the filamentous
morph of C. philyla is a mycoparasite developing in the hymenium
of Peniophorella pubera. Whether the genus Colacogloea should
be split in two based on these subclades remains to be seen,
but we argue that this phylogenetic pattern alone, combined with
insufficient knowledge on the biology and ecology of these species
provide insufficient ground to make such decision.

Heterogastridiales — This order was established by Oberwinkler
et al. (1990) along with the family Heterogastridiaceae to
accommodate Hyalopycnis blepharistoma, a filamentous fungus
originally described as asexually reproducing. Oberwinkler et al.
(1990) observed the sexual stage of this fungus, for which they
proposed the name Heterogastridium pycnidioideum, which serves
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as nomenclatural basis for the family and the order. Contrary to
Aime et al. (2018), we advocate for the protection of the name
Heterogastridium over Hyalopycnis. In our analysis, this species
clusters with Pycnopulvinus aurantiacus. These two species
produce pycnidioid and stilboid structures respectively, and both
are presumed mycoparasites. Various colacosome-forming fungi
from the genera Atractocolax, Colacogloea and Krieglsteinera have
been tentatively assigned to this order based on micromorphological
similarites and the presence of colacosomes, but these
relationships have never been tested for phylogenetic support. We
show that the genera Afractocolax and Slooffia can be assigned to
Heterogastridiales (Fig. 3). On the contrary, the genus Colacogloea
forms a well-supported and distinct clade in our analysis. It is
possible that other, yet to be sequenced, Colacogloea species or
Krieglsteinera lasiosphaeriae belong to Heterogastridiales. For the
time being, we prefer to treat those species for which no genetic
data is available as Microbotryomycetes incertae sedis.

C. Phylogenetic distribution of colacosome-forming
species

Prior to this study, the presence of colacosomes was reported
from 17 species from nine genera in Microbotryomycetes (Table
1). We provide evidence for the presence of colacosomes in eight
more species belonging to three genera in this class, resulting in
at least 25 species and 11 genera of Microbotryomycetes from
which colacosomes are reported. Phylogenetically, colacosome-
forming species are widely distributed within this class, and are
currently reported from six lineages: the families Chrysozymaceae,
Colacogloeaceae, and Mycogloiocolacaceae fam. nov., and orders
Heterogastridiales, Leucosporidiales, and Sporidiobolales. The
clade with most colacosome-forming taxa is Colacogloeaceae
(eight species), followed by Sporidiobolales (five species) and
Leucosporidiales  (four  species). Within  Colacogloeaceae,
colacosome-forming species are restricted to the so-called
subclade 2 of the genus Colacogloea (sensu Wang et al. 2021),
which contains all currently known mycoparasites within the genus.
As outlined below, reconstructing the evolution of the capability of
colacosome formation in Microbotryomycetes remains difficult for
two major reasons, being firstly, an insufficient screening for these
structures, and secondly, a poor phylogenetic resolution of the
deeper nodes of this class.

As shown in Fig. 3, only few species of Microbotryomycetes
have been subjected to adequate screening for the presence
of colacosomes. We believe that the vast majority of
Microbotryomycetes are dimorphic fungi, although for many
species only the haploid stage or yeast morph is known. It should
be considered that colacosomes are generally produced only
in the dikaryotic stage of the lifecycle of these organisms, which
requires conjugation of cells from compatible strains and it might
be complicated to obtain in culture under laboratory conditions due
to the lack of a compatible strain. Since only one or a few strains
are available for the majority of Microbotryomycetes, compatible
strains for crossing experiments are rarely available. Also, for
some species, colacosome forming may require the presence of
a suitable host. Consequently, the situation in which for a certain
species the dikaryotic stage was not observed, or colacosomes
have not been observed, should not be interpreted as the proved
inability of that respective species to produce colacosomes. Due
to these reasons, proving the inability of a species to produce
colacosomes is very difficult, and a certain degree of ambiguity will
often remain. As a good example, Sampaio et al. (2003) applied
such crossing experiments in a number of Microbotryomycetes.



The authors assessed the presence of colacosomes based on TEM
investigation of yeast- and filamentous morphs, and reported four
species which were devoid of colacosomes, i.e., Camptobasidium
hydrophylum, Kriegeria eriophori, Glaciozyma antarctica, and
Pseudoleucosporidium fasciculatum.

The second reason is that the absence of strongly supported
deepernodesinphylogeneticreconstructions of Microbotryomycetes
does not allow to infer relationships between the different clades
and, thus, predict the presence of colacosomes in ancestors and
any random species within Microbotryomycetes. One distinct
pattern that was already reported is the absence of colacosomes
in the two phytoparasitic lineages within Microbotryomycetes,
namely the genus Kriegeria and the order comprising anther
smuts, Microbotryales (Sampaio et al. 2003, Bauer 2004, Bauer et
al. 2006). Weild et al. (2004) already suggested that phytoparasitic
lineages in Microbotryomycetes, i.e., Microbotryales and Kriegeria,
most likely evolved from colacosome-interacting mycoparasitic
ancestors. This hypothesis is strongly supported by our data, given
the wide phylogenetic distribution of the colacosome-interaction and
mycoparasitic taxa in our reconstruction of Microbotryomycetes.

Mycoparasitic genera in Microbotryomycetes

The genus Colacogloea

The genus Platygloea comprises a heterogenous group of fungi
that only shares the character of transversally septate basidia
(Schroter 1887, Bandoni 1956). Bourdot & Galzin (1909) described
Platygloea peniophorae as a mycoparasite of the corticioid fungi
Peniophorella praetermissa and Peniophorella pubera. Following
the discovery of colacosomes in Platygloea peniophorae by Bauer
and Oberwinkler (1991), the genus Colacogloea was introduced for
this species (Oberwinkler et al. 1990a). The authors argued that
the combined occurrence of simple septal pores, colacosomes,
and yeast budding of basidiospores is sufficient to separate Pl.
peniophorae from Platygloea disciformis, which is considered
the type species of the genus Platygloea (syn. Achroomyces).
Following the introduction of the genus Colacogloea, three more
filamentous mycoparasites were assigned to the genus, based on
the presence of colacosomes: C. allantospora, C. bispora, and C.
papilionacea (Oberwinkler et al. 1999, Kirschner & Oberwinkler
2000, Bandoni et al. 2002). More recently, Wang et al. (2015a, b)
assigned several yeast species from the genera Rhodotorula and
Sporobolomyces to the genus Colacogloea based on phylogenetic
reconstructions. These species were isolated as yeasts from
various substrates, mostly plants and soils, but little is known about
their ecology. Although it may be assumed these species have
dimorphic lifecycles, only the yeast morph was observed for these
species, and the presence of colacosomes has not been assessed
(Wang et al. 2015b, Yurkov et al. 2016, Li et al. 2021, Wang et al.
2021).

The instatement of the genus Colacogloea to accommodate
the mycoparasite Platygloea peniophorae resulted in the name
Colacogloea peniophorae, which was assigned as generic type
(Oberwinkler et al. 1990a). Recently, Malysheva et al. (2021)
provided evidence for the synonymy of Platygloea effusa and C.
peniophorae, and proposed the name Colacogloea effusa as valid
name for this taxon. Platygloea effusa was originally interpreted
as a resupinate saprobic species with transversally septate
basidia growing on rotten stumps, and was not recognised as a
mycoparasite at that time (Schroter 1887). Malysheva et al. (2021)
assigned a neotype for Platygloea effusa, but the authors did not
provide typification of Platygloea peniophorae. Here, we selected
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a lectotype from the herbarium of Bourdot (PC) which was used for
the original description of Platygloea peniophorae, and assigned an
epitype to support the lectotype. The selected epitype was recently
collected in the same area of the lectotype, and its yeast morph
was isolated in pure culture allowing molecular characterisation.

Literature research shows that the mycoparasite PI.
peniophorae has been reported and documented from Europe and
North America (Bourdot & Maire 1920, Bourdot & Galzin 1928,
Pilat 1957, Bandoni 1973). As outlined below, a certain degree
of morphological variation has been observed, and two distinct
morphotypes can be recognised.

In their seminal work Hyménomycétes de France, Bourdot
& Galzin (1928) mentioned some degree of variation in macro-
and micromorphological characters between studied collections
of Platygloea peniophorae and assigned them to different forms
of the same species (see also Bourdot & Maire 1920, Bourdot
1932). The authors also reported two different host species for
this mycoparasite, but never suggested this taxon may comprise
different species. The morphotype illustrated by Bourdot & Galzin
(1928) is here referred to as the ‘non-gall-like morphotype’.

Martin (1940) reported a strongly deviating collection from this
typical Platygloea peniophorae. He illustrated an American collection
of PI. peniophorae (fig. 5 in Martin 1940), which produced vesicular
gall-like cells and thick-walled oval conidia with attached remnants
- here referred to as the ‘gall-like morphotype’ (Martin 1940). These
characters described from Martins’ collection are highly reminiscent
of those that we observed in Colacogloea bettinae sp. nov. and C.
universitatis-gandavensis sp. nov. (see Figs 6 and 18). Interestingly,
Martin (1940) noted that these gall-like cells become filled with
‘oval bodies’ in some cases ‘surrounding a central columella-like
stalk’. These oval bodies can now be interpreted as colacosomes,
surrounding an invaginating host hyphae in the gall-like cell of the
mycoparasite. As such, Martin (1940) was the first to provide an
illustrated report of colacosomes. Based on morphological studies
of Canadian and European collections, Bandoni (1973) illustrated
these two distinct morphotypes of Pl. peniophorae and argued they
may constitute two different species, though he neither mentioned
nor illustrated the gall-like cells. According to his insights,
specimens of the gall-ike morphotype are restricted to North
America, whereas those of the non-gall-like morphotype occurred
in both Europe and North-America. When Oberwinkler et al. (1990)
proposed the genus Colacogloea, the authors investigated and
illustrated the typical non-gall-like morphotype of Pl. peniophorae.
They briefly mentioned the existence of the gall-like morphotype
illustrated by Martin (1940) and suggested the two forms may
comprise two different species. This idea was later supported by
Greschner-Aschenbrenner (1997) based on detailed comparison
of micromorphological and ultrastructural characters. However, her
taxonomic conclusions were never formally published. We name
one of our species after her, since she made the most in-depth
comparative study of these two aforementioned morphotypes (see
C. bettinae sp. nov.).

For our study of the Colacogloea effusa species complex,
we studied freshly sampled European collections from Belgium,
France, The Netherlands, Finland and Norway. Our collections
were found on two different host species: Peniophorella
praetermissa and Pe. pubera. Among our collections, we not
only found the typical non-gall-like morphotype, but also the gall-
like morphotype as illustrated by Martin (1940), which until now
was believed to be restricted to North America (Bandoni 1973).
A polyphasic approach combining micromorphological analyses,
yeast morph characterisation, and a multilocus phylogenetic
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reconstruction allow us to recognise seven different species
within the Colacogloea effusa species complex. Most of our
sequenced collections are assigned to C. effusa (syn. Platygloea
peniophorae), which is a parasite of Pe. praetermissa. On the same
host species, four other colacosome-forming mycoparasites can be
recognised. Of them, C. biconidiata sp. nov., C. fennica sp. nov.,
and C. microspora sp. nov. resemble the non-gall-like morphotype,
whereas C. universitatis-gandavensis sp. nov. resembles the gall-
like morphotype. On the host Pe. pubera, two distinct mycoparasitic
species were found. The first, C. philyla, constitutes the non-gall-
like morphotype, whereas C. bettinae sp. nov. constitutes the gall-
like morphotype. These seven species within the C. effusa complex
can be separated based on a combination of characteristics such
as yeast morph physiology, host species, shape and dimensions of
spores, basidia, and conidia. Hallenberg et al. (2007) showed that
Pe. praetermissa, one the two host species of the C. effusa species
complex, constitutes a species complex itself. It is possible that
the mycoparasites might be strictly host specific, although there
currently is not enough data available to test this hypothesis.

Two major differences can be recognised between species of
the gall-like (Colacogloea bettinae sp. nov. and C. universitatis-
gandavensis sp. nov.) and the non-gall-like morphotypes (C.
biconidiata sp. nov., C. effusa, C. fennica sp. nov., C. microspora
sp. nov., and C. philyla).

The first difference concerns the conidiogenesis and the shape
of conidia. In the gall-like morphotype, conidia are born on distinct,
stalked conidiophores which consist of two apical lids, each giving
rise to a daughter conidium (Figs 6C, 18D). In a later stage, these
two daughter conidia merge, forming a zygoconidium. The content,
incl. the nucleus, of one daughter conidium is transferred to the
other daughter conidium. In the non-gall-like morphotype, conidia
are born singly, with a basal clamp connection, and formed on
conidiophores which can be interpreted as terminal hyphae (Figs
8C, 10C, 12C, 14C, 16C). In the gall-like morphotype, conidia are
characterised by a regular, oval shape and the presence of an
appendage (= cell wall remnants of the second daughter conidium
of which the content was transferred) (Figs 6D, 18D). In species
of the non-gall-like morphotype, conidia have a more irregular
shape, and do not have such an appendage (Figs 8D, 10D, 12D,
14D, 16D). To date, zygoconidia have been reported from three
different Colacogloea species: C. bettinae sp. nov., C. papilionacea
and C. universitatis-gandavensis sp. nov. (Kirschner & Oberwinkler
2000). This character is considered rare among Basidiomycota,
with only few other genera sharing this character: Papiliotrema,
Trimorphomyces, Syzygospora (Tremellomycetes), and Zygogloea
(Basidiomycota incertae sedis) (Oberwinkler & Bandoni 1983,
Roberts 1994, Weild et al. 2014).

The second difference is the organisation of colacosomes
in the hyphae of the mycoparasite. In the gall-like morphotype,
most colacosomes are positioned at regular distances in vesicular
gall-like cells along the host-parasite interface (Figs 6E, 18E).
To a lesser extent, colacosomes also occur scattered in hyphae,
conidiophores, or rarely, other elements of the mycoparasite. In the
non-gall-like morphotype, no vesicular gall-like cells are present
and colacosomes occur scattered in hyphae of the mycoparasite,
with highest concentrations at those places where physical contact
with host hyphae is established. In all the species that have
been investigated by TEM, colacosomes were also observed in
mycoparasite hyphae making contact with other hyphae of the
same individual. This phenomenon was also observed in other
colacosome-forming species and self-parasitism was put forward
as an explanation for this phenomenon (Greschner-Aschenbrenner
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1997, van der Klei et al. 2011). Both the scattered colacosome
organisation and the organisation of colacosomes in vesicular
gall-like cells have been observed in other mycoparasites in
Microbotryomycetes and Cryptomycocolacomycetes (Table 1).
Regarding the vesicular gall-like cells, an interesting question
on whether the mycoparasite attracts a host hypha to grow into
the invagination of the gall-like cell, or the gall-like cell actively
overgrows a host hypha after which colacosomes are formed at the
contact interface, remains unanswered.

The genus Mycogloiocolax gen. nov.

In this study, we erect the genus Mycogloiocolax gen. nov. and family
Mycogloiocolacaceae fam. nov. for a clade comprising isolates of
two distinct species. The first isolate represents Mycogloiocolax
gerardii sp. nov., a dimorphic fungus, of which the filamentous
morph represents a colacosome-interacting mycoparasitic stage.
This stage develops intrahymenially in the basidiome of the
corticioid fungus Xenasmatella tulasnelloidea and is visible as a
gelatinous, hyaline layer overgrowing the host in humid conditions.
Its yeast morph was isolated in pure culture. Currently, this is the
only known mycoparasite of Xenasmatella species. This species
was reported for the first time by Trichies (2006), who illustrated
his collection with drawings and a description, but did not decide
to formally publish it as a new species. Due to the limited set of
available morphological characteristics, he assigned his collection
tentatively to the genus Achroomyces, which is a heterogenous
gathering of Basidiomycota with transversally septate basidia. In
his description, he mentions the basidia as strictly bisporic. We
observed only bisporic basidia with sterigmata, although we also
observed some basidioles with two and three septa, but never with
outgrowing sterigmata in these cases.

The second isolate in this clade represents the yeast strain
KBP Y-6479 (DSM 110867), representing a currently undescribed
species. It was derived as an endophyte from a lichen thallus
of Cladonia rangiferina, collected near Pokachi town, Tyumen
region, Russia. We know this species only from this single strain,
and its ecology and distribution patterns remain largely unknown
(Dr. Aleksey Kachalkin, pers. comm.). Physiologically, strain
KBP Y-6479 differs very markedly from Mycogloiocolax gerardii
sp. nov., and has a maximum growth temperature below 30 °C
(Supplementary Table 1).

The genus Slooffia
The genus Slooffia was erected by Wang et al. (2015b) to
accommodate yeast species comprising the Sporobolomyces
tsugae clade. All these species were isolated as yeasts from
different natural environments and substrates, including
phylloplanes, dead organic material and soils. Only one or a few
number of isolates are available for the currently known Slooffia
species, and no filamentous morphs were reported in literature
so far. The yeast morphs are considered to be saprobic (Sampaio
2011, Wang et al. 2015b, Begerow et al. 2018). Slooffia micra
comb. nov. represents the first species in the genus for which the
filamentous morph is observed in natural conditions, representing
a colacosome-interacting mycoparasitic stage. It can be assumed
that filamentous morphs of other Slooffia species exist, and it is
possible that they also engage in mycoparasitism, although this
remains to be investigated. As outlined below, the filamentous
morph of S. micra has previously been illustrated and formally
described under two names by different authors.

Bourdot & Galzin (1924) described Platygloea micra as a
heterobasidiomycete with transversally septate basidia, growing on



rotten Populus wood. The authors did not mention the presence
of a second fungal species or a possible mycoparasitic interaction
in the description of their collection. Reinvestigation of the only
specimen of this species in the herbarium of Bourdot (PC),
showed the presence of hyphae, longitudinally septate basidia and
basidiospores of the host species Myxarium podlachicium, although
the state of these structures was degraded. The gelatinous context
of the host basidiome was probably misinterpreted by Bourdot &
Galzin (1924, 1928) as being part of Pl. micra. We easily detected
the presence of colasosomes in hyphae of the mycoparasite by
epifluorescence microscopy (result not shown). Hauerslev (1993)
described Achroomyces insignis as an intrahymenial mycoparasite
of Myxarium podlachicium, although he did not observe
interaction structures. However, investigation of the holotype by
epifluorescence microscopy clearly demonstrated the presence of
colacosomes (Fig. 5). Interestingly, Hauerslev (1993) interpreted
the conidia as chlamydospores (= thick-walled spores which are
formed directly on hyphae), and did not mention the presence of
the typical conidiophores (Fig. 5B). Comparing the type specimens
of both species for their ecological and micromorphological
characteristics, we conclude that Platygloea micra and A. insignis
are conspecific. We select epitypes for both names and ex-type
cultures are available for both types. The host-parasite interface
of Slooffia micra comb. nov. is characterised by hyphae of the
mycoparasite coiling around host hyphae. This results in rosette-
like structures when imaged with epifluorescence microscopy (Fig.
5F, G). At the contact interface, colacosomes are densely arranged.
To a lesser extent, colacosomes also occur scattered in hyphae
of this species. The coiling of mycoparasite hyphae around host
hyphae is also known from Colacogloea papilionacea (compare fig. 1
in Kirschner & Oberwinkler (2000) with Fig. 5F, G in this publication).

We investigated two other presumed mycoparasitic species of
Myxarium spp. which have been published previously. Platygloea
abdita Bandoni was described from the USA (Bandoni 1959),
and Cystobasidium sebaceum G.W. Martin was described
from Colombia (Martin 1939). Since no recent collections or
cultures of these species are available, DNA sequence data is
not available. Epifluorescence microscopy imaging of Pl. abdita
and Cystobasidium sebaceum showed that both species are
colacosome-interacting mycoparasites of Myxarium spp. (N.
Schoutteten, results not shown). Differences in micromorphological
characters suggest that these species are not conspecific
with Slooffia micra comb. nov. (results not shown). Since both
mycoparasites share the colacosome-interaction, the same type of
conidiophores, and the same host genus as S. micra, it is possible
that they belong to the genus Slooffia. However, such conclusions
can only be made when DNA sequences are available and support
is provided by phylogenetic reconstructions.

The genus Atractocolax

The genus Atractocolax was erected by Kirschner et al. (2001) to
accommodate A. pulvinatus, a peculiar dimorphic mycoparasite,
isolated from bark beetle galleries in decaying logs of coniferous
tree species in Germany and Switzerland. This species develops
pulvinate basidiomes and has transversally septate basidia.
Passively released spores accumulate in slimy droplets extruding
from the basidiome, which may be an adaptation to insect dispersal
(Kirschner et al. 1999). Although the authors succeeded in
isolating the species in axenic culture, DNA sequence data was
never generated and its classification in Microbotryomycetes was
tentative. In our seven-locus ML phylogenetic reconstruction (Fig.
3), A. pulvinatus is recovered as sister lineage to the clade of
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Hyalopycnis and Pycnopulvinus, and thus we propose to include
this species in the order Heterogastridiales.

It is unclear whether the samples for TEM were derived from
mixed or axenic cultures, but the published pictures only show
colacosomes interacting with hyphae of the mycoparasite itself
(Kirschner 1999, Oberwinkler & Bauer 2018). The host range
of A. pulvinatus is not known, but it is assumed that the host is
an ophiostomatoid ascomycete, a group of fungi frequently co-
occurring on the same substrate (Kirschner et al. 1999). To our
knowledge, the species was never recollected in its sexual morph
after the original publication. A search for similar sequences in
public sequence databases revealed three yeasts from a study
screening for xylose-fermenting yeasts in the gut microbiome of
the wood-feeding termite Reticulitermes chinensis (Ali et al. 2017).
These isolates were originally identified as Hamamotoa lignophila.
Our results show that these three isolates are conspecific with A.
pulvinatus. By extrapolating physiological results of Ali et al. (2017),
we conclude that A. pulvinatus is capable of fermenting D-xylose
and producing ethanol. Anaerobic conversion of carbohydrates,
fermentation, is rare among Basidiomycota species, and is
limited to slow glucose fermentation by, e.g., Rhynchogastrema
glucofermentans, Filobasidium capsuligenum, and species of
the genera Mrakia and Phaffia (Tremellomycetes) (Fell 2011,
Fell & Johnson 2011, Kwon-Chung 2011). Touchette et al. (2022)
recently reported fermentation of glucose for one other species in
Microbotryomycetes, i.e., Rhodotorula frigidialcoholis, suggesting
that production of ethanol could be a yet little studied adaptation to
life at low temperatures. This character should be carefully studied
in the future for other representatives of this class, especially those
isolated from cold habitats.

CONCLUSIONS

The present study demonstrates the diversity of colacosome-
forming fungi in Microbotryomycetes and shows the utility of
Congo red staining combined with epifluorescence microscopy
for easy colacosome detection. Freshly collected and cultivated
colacosome-forming  mycoparasites  allowed analyses of
micromorphology, yeast morph characterisation, and generation of
nucleotide sequence data. Based on our results, the total number
of fungi in which colacosomes have been detected increases to
27. We reveal three distinct types of colacosome organisation in
Microbotryomycetes, being a scattered occurrence, hyphae of
the mycoparasite coiled around host hyphae, and vesicular gall-
like cells of the mycoparasite surrounding host hyphae. We show
that the colacosome-forming fungus Afractocolax pulvinatus is
a member of Microbotryomycetes, related to Slooffia and other
members of Heterogastridiales. Platygloea micra is identified as a
colacosome-interacting mycoparasite of Myxarium podlachicum.
This species is combined in the genus Slooffia, hitherto only known
from yeast morphs, and thus it represents the first species for which
a filamentous morph is reported, representing a mycoparasitic
stage. In the genus Colacogloea, five new species are described
in the C. effusa species complex, and the first report of the
filamentous morph of C. philyla is presented as a colacosome-
interacting mycoparasite. The family Mycogloiocolacaceae fam.
nov. is proposed for the newly described Mycogloiocolax gerardii
sp. hov., a colacosome-interacting mycoparasite of Xenasmatella
tulasnelloidea. Sequences obtained from these mycoparasites,
derived from yeast cultures and filamentous morphs, allowed us
to produce a robust phylogeny of Microbotryomycetes, resolving
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several problematic taxa. Within Microbotryomycetes, colacosomes
occur in the families Chrysozymaceae, Colacogloeaceae, and
Mycogloiocolacaceae fam. nov. and the orders Heterogastridiales,
Leucosporidiales, and Sporidiobolales. A mycoparasitic strategy is
likely for species that were found to only produce colacosomes in
pure culture, although their host range remains to be determined.
These combined results improve our understanding of the diversity
and ecology of Microbotryomycetes. Further field sampling and
careful analyses of mycoparasites and lichenicolous fungi, including
their cultivation, will be key to further resolving evolutionary
relationships in this class of fungi.
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