Seasonal occurrence of mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan

${ }^{\circ}$ Chiyuki Sassa ${ }^{1}$ and Yuichi Hirota ${ }^{2}$

Seikai National Fisheries Research Institute, Fisheries Research Agency, 1551-8 Taira-machi, Nagasaki, 851-2213, Japan, csassa@fra.affrc.go.jp National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan

1. Introduction

Mesopelagic fishes (1) occur in all the world's oceans, (2) have high species diversity, (3) numerically dominate in the oceanic fish assemblage, (4) ha high biomass - global estimate of $10^{10} t$, and (5) act as an important link Thus, mesopelagic fishes are a key component of oceanic ecosystems.

Most mesopelagic fishes spend their larval stages in the productive epipelagic zone of the upper $\mathbf{2 0 0} \mathrm{m}$ layer, and move to the mesopelagic zone when they begin transformation from larval to juvenile stages ${ }^{2}$. Recent studies shows that the Kuroshio region is an important spawning ground for various specie of mesopelagic fishes ${ }^{3}$. However, information on the annual reproductive cycle of mesopelagic fishes has been limited in this region.

In this study, to describe the reproductive seasonality, we examined the seasonal occurrence patterns of the mesopelagic fish larvae in Tosa Bay which is strongly influenced by the Kuroshio.

3. Oceanographic conditions

The position of the Kuroshio axis is represented by the $16.5^{\circ} \mathrm{C}$ isotherm
200 m depth throughout the sampling period, thus, our sampling station was concluded to be located on the onshore side of the Kuroshio axis.

Mean temperature over the $0-100 \mathrm{~m}\left(\mathrm{~T}_{0-100}\right)$ during January to March was lowest of the year, and began to increase from April. T_{0-100} showed peak values between August and October, and then declined during November December. Mean salinity over the $0-100 \mathrm{~m}\left(\mathrm{~S}_{0-100}\right)$ declined from June and showed the lowest values between August and October, due to increase of inflows of freshwater. The water column was vertically well mixed during January to March, and the seasonal thermocline occurred during May to September

4. Monthly chang	in larval abundanc
	In total, 2,558 mesopelagic fish larva May to June. This peak was due to extremely high abundance of Diaphus stubby spp. , This peak corresponded with the peak in ooplankton biomass with a 1-2 month lag.
	The mean percentage of mesopelagic fish larvae to total abundance of fish larvae (including epipelagic and demersal fishes) ranged from 19.2 to 51.3%, except for <5\% during March to April due to extremely high abundance of the Japanese larvae.

5. Species composition			
Larvae of the dominant families Myctophidae, Sternoptychidae, Gonostomatidae, Bathylagidae, and Phosspecies (or types) belonging to 18 genera.			
Taxon	No. of	\%	Rank
Bathylagidae			
Lipolasus ochovensis	85	3.33	
Gonostomatidae			
Cysclolhone spp.	56	2.19	
		0.04	
S. gracile			
Argyropelecus spp.	13	0.51	14
Sichlyyidae			
Mystophidae $\begin{aligned} & \text { Vinereria nimbaria } \\ & \end{aligned}$			
	1	0.04	2
	7	0.27	
		3.21	
Diaphusus stubby type Diosenichlys culunicus	1200	${ }_{\text {a }}^{46.97}$	12
	1	0.04	22
Lampadena luminosa		0.16	
Luanpanyctus sp. A	48	${ }_{1.18}$	11
		0.47	${ }^{15}$
Lampanyctus spp. Lobiunchia gemelurii		0.12	19
Msctophum asperum		9.04	
	2	${ }^{0.35}$	
N. ${ }_{\text {Naponicus }}^{\text {Smbolophorus evermammi }}$	${ }_{73}^{136}$		
reent of the total mesopelagic fish catch.			
Twelve most abundant taxa accou 96.9% of the total mesopelagic fish	$\begin{aligned} & \text { inted for } \\ & \text { h catch. } \end{aligned}$		

6. Grouping of seasonal occurrence

In the larvae of the $\mathbf{1 2}$ dominant mesopelagic fish species, mean abundances in each month for the four years were standardized as a percentage of summed mean abundance over 12 months. The Bray-Curtis similarity index was adopted to distinguish the seasonal occurrence patterns of the larvae. Clustering by the group average was used to construct similarity matrices. The non-metric multidimensional scaling (MDS) ordination was also carried

7. Reproductive seasonality

The seasonal occurrence patterns of the larvae were categorized into five groups in accordance with physical properties of the water column: Winter (Notoscopelus japonicus and Lipolagus ochotensis); Spring (Symbolophorus evermanni and Maurolicus japonicus); Early summer (Myctophum asperum and Diaphus stubby type); Autumn (Lampanyctus sp. A, Cyclothone spp., and Sigmops gracile); and Year-round (Vinciguerria nimbaria, Diaphus slender type, and Diogenichthys atlanticus) groups. There were no species that showed peak abundance during August to September.

8. Interannual variations

No significant difference was observed in the months of peak abundances of the dominant 12 mesopelagic fish larvae during 2001 to 2004, suggesting that each species has a fixed seasonal pattern of reproduction.

The various patterns of seasonal occurrence would result in seasonal habita segregation of the larvae among species in the productive epipelagic zone where most of mesopelagic fish larvae develop.

The seasonal habitat segregation as well as the reported species-specific patterns of vertical distribution ${ }^{2}$) and feeding ${ }^{6,7)}$ of the mesopelagic fish larvae possibly contributes to reduce intraspecific competition for food resources in the oligotrophic waters of the Kuroshio.

9. Conclusions

- To describe the reproductive seasonality, we examined the seasonal occurrence patterns of the mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan, based on monthly samples collected from January 2001 to December 2004.
- The samples included 26 mesopelagic fish species or types belonging to 13 genera. A peak abundance of the total mesopelagic fish larvae was during May to June.
- The dominant 12 taxa showed marked seasonality with high abundances in one particular period (i.e. Winter, Spring, Early summer, and Autumn groups), although year round occurrence was also observed (i.e. Year-round group)
- No significant difference was observed in the seasonal occurrence patterns, suggesting that each species has a fixed seasonal pattern of reproduction

