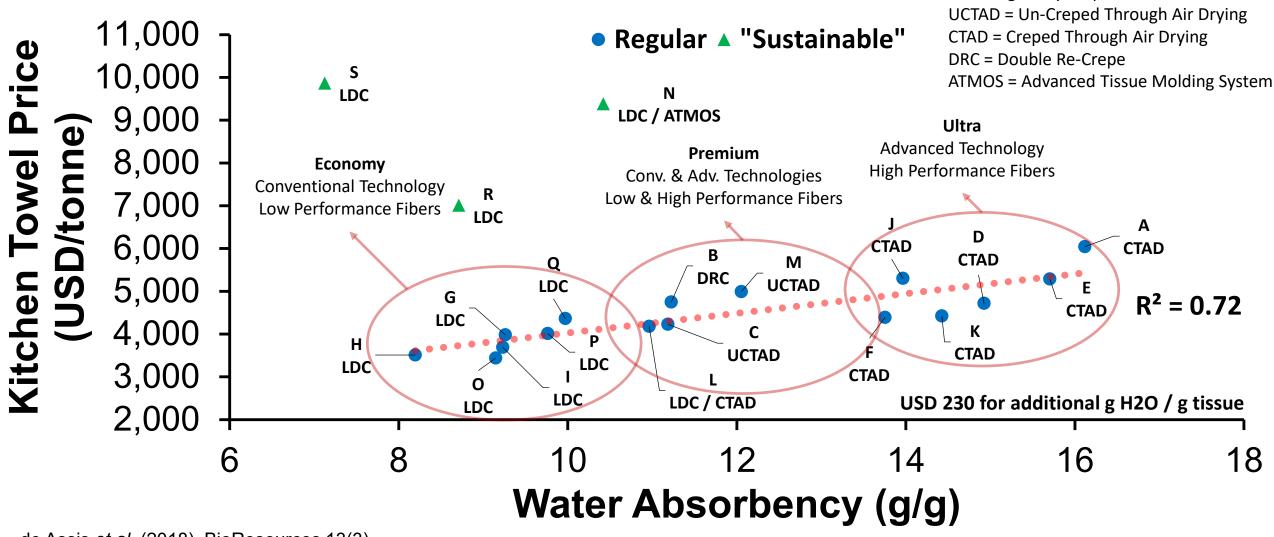


Comparison of Wood and Non-wood Market Pulps for Tissue Applications

Tiago de Assis ², Hasan Jameel ¹ Ronalds Gonzalez ¹, Lee Reisinger ³, Dale Kavalew ⁴, Clay Cambell ²

¹ NC State University - Department of Forest Biomaterials
 ² Kemira
 ³ ReiTech Incorporated
 ⁴ Dale Kavalew and Associates LLC


Objectives and Goals

- ✓ Understand what fibers features are desired for a given tissue property
- ✓ Evaluate what **fibers** are suitable for a specific **tissue application**
- Create a data base (fibers vs properties) to optimize performance and/or cost of tissue products

Systematic evaluation of the **impact of different fibers** (wood, non-wood and recycled) on the **performance** and **value** of tissue paper

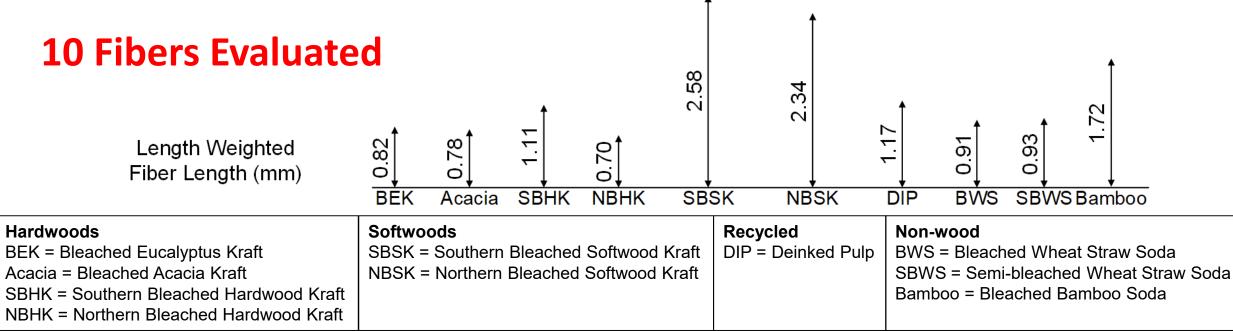
Price and Performance

de Assis et al. (2018), BioResources 13(3).

LDC = Light Dry Crepe

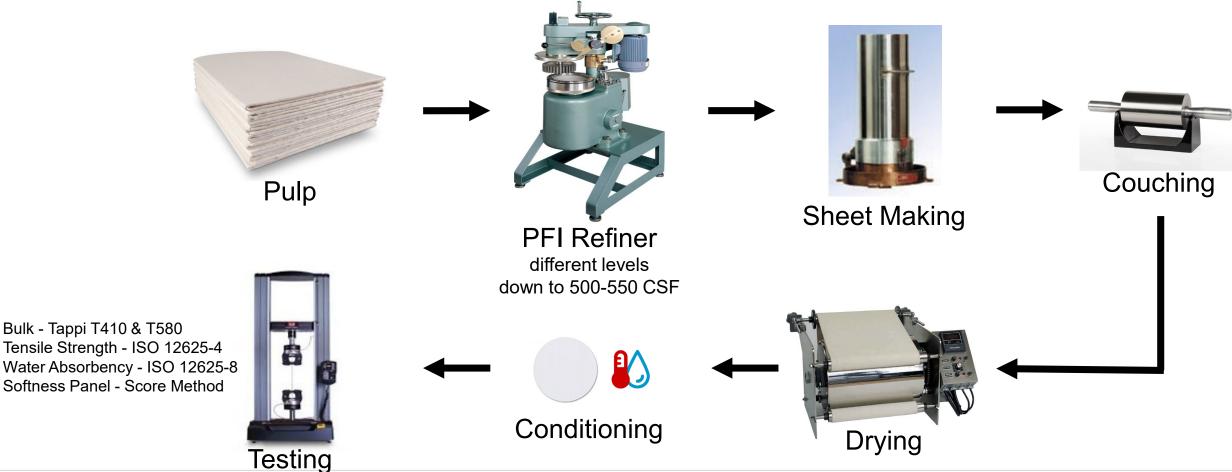
Cellulosic Fibers and Tissue Paper Performance

Hardwood Fibers	Softwood Fibers
 Short Fibers (length ~ 1 mm) Source of Softness and Absorbency 	 Long Fibers (length ~ 2.5 mm) Source of Strength and Absorbency
 Single Species Northern: birch, aspen Southern: eucalyptus, acacia 	 Single Species Northern: spruce Southern: radiata pine
 Multiple Species Northern: aspen, maple, birch, beech Southern: gum, oak, poplar, ash, beech 	 Multiple Species Northern: pine, spruce, fir, hemlock, cedar, larch Southern: pines-loblolly, slash, shortleaf, longleaf
Non-Wood Fibers	Recycled Fibers
 Diverse Fiber Morphology Diverse Performance High Content of Fines Examples: wheat straw, bagasse, bamboo 	 Fiber Blend (long and short fibers) Low Performance (stiff fibers, fines, impurities) Cheaper than Virgin Fibers Examples: SOP (Sorted Office Paper) OCC (Old Corrugated Containers)
Nanko <i>et al. (2</i> 005). The World of Market Pulp	

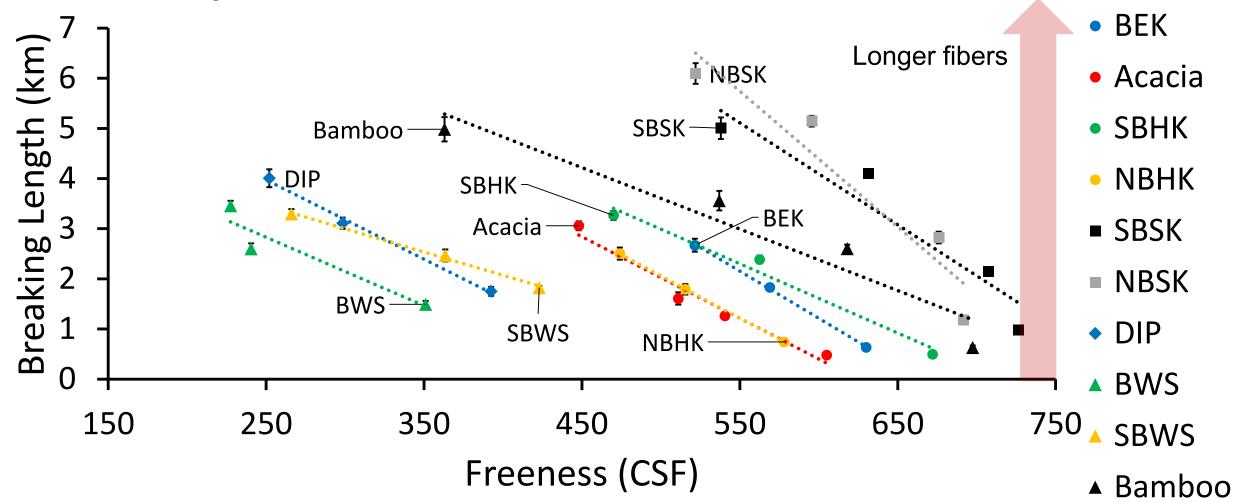

Nanko et al. (2005), The World of Market Pulp.

Woody, Non-woody and Recycled Pulps

• Morphology (Fiber Quality Analyzer - OpTest)

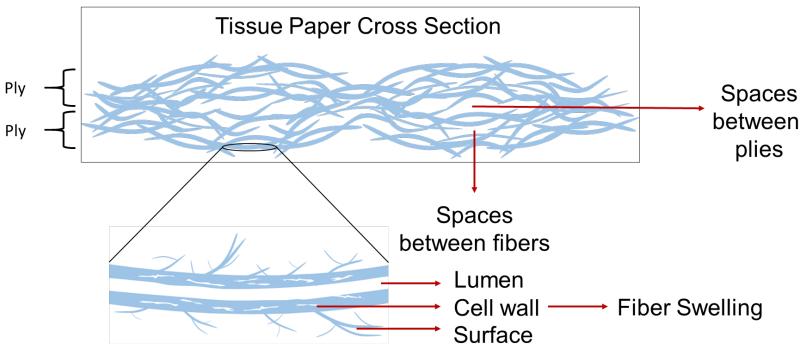

Width (µm)	16.4	0	18.5	0.0		28.4		4 00 00		0.0 10	
Coarseness (mg/km)	73	62	110	72	216	135	98	84	88	92	•
Length Weighted Fines (%)	4.5	5.0	14.9	9.5	5.0	3.8	10.4	18.3	14.3	12.8	
Population (million fibers/g)	18.8	23.5	10.4	22.9	2.7	4.3	13.5	19.3	16.6	9.6	

Handsheet Making


• Modified TAPPI handsheet making procedure (30 g/m², uncreped)

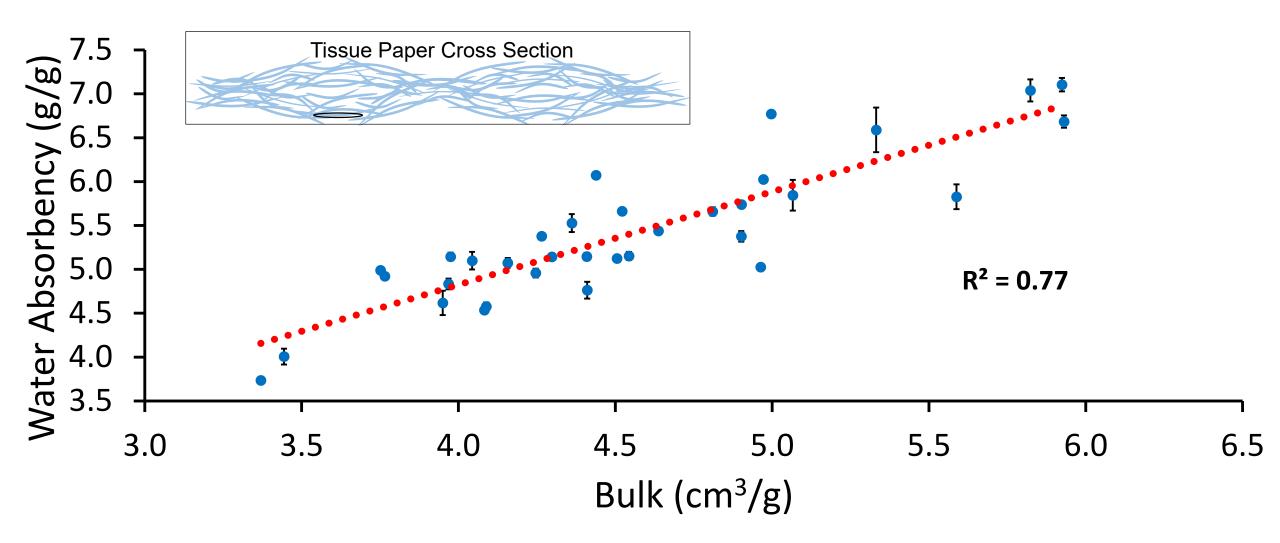
Tensile Strength

• Tensile Strength vs Freeness

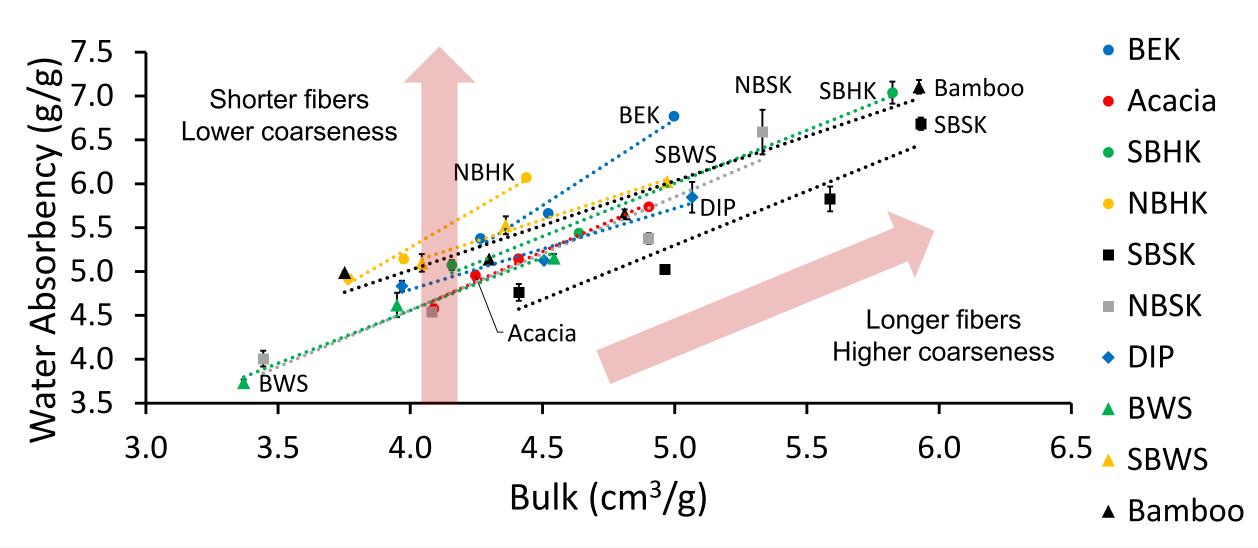

7

Fibers/Sheet Structure and Water Absorbency

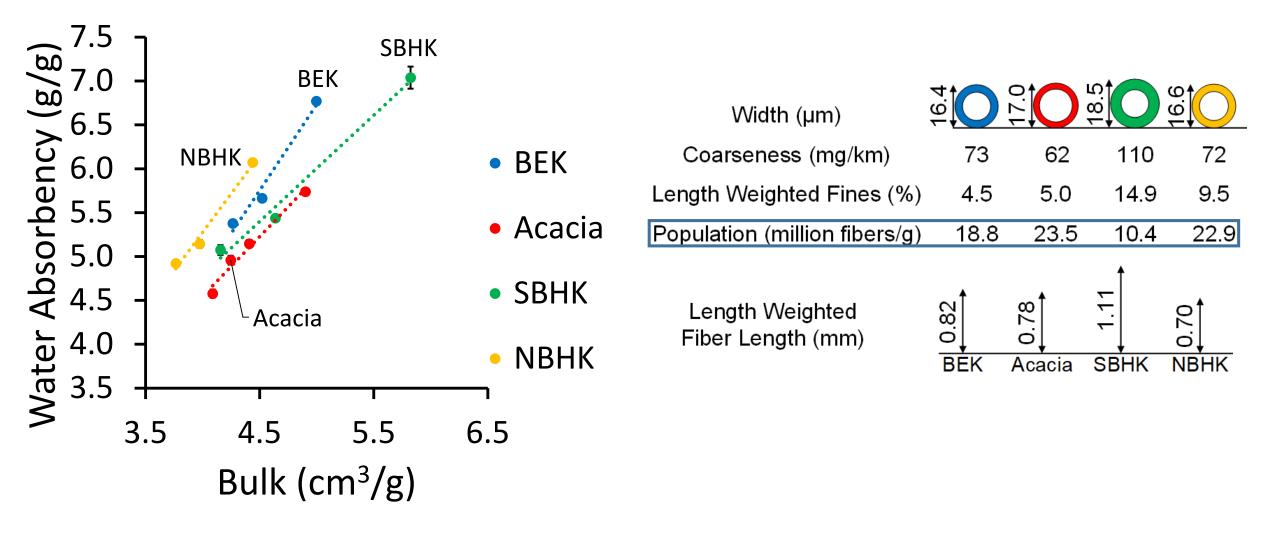
- Water Absorbtion in Tissue Paper
- \checkmark Ability to absorb and retain water
- Essential property for toweling products


- ✓ Absorbency rate: how fast
 ✓ Absorbency capacity: how much
- ✓ High absorbency → hydrophilic fibers forming a porous and stable fiber web structure

¹ Ko *et al.* (2016), J. of Korea Tappi 48(5);
 ² Hollmark (1984), Handbook of Phys. & Mech. Testing of Paper & Pbd. Volume 2, Chapter 20.



Water Absorbency and Bulk



Water Absorbency vs Bulk

Water Absorbency vs Fiber Dimensions

Water Absorbency and Swelling

• Sheet Swelling

 $V_{\text{swelling}} = V_{\text{sheet wet}} - V_{\text{sheet dry}}$

Measures change in pore volume and change in fiber dimensions

Market Pulp	PFI Refining Revolutions	Dry Caliper (µm)	Wet Caliper (µm)	Sheet Swelling (%)	ABS _{swelling} (g _{water} /g _{fiber})
	Unrefined	151	180	19.5	1.0
BEK	1000	141	176	25.1	1.1
	2000	131	162	24.1	1.0
	Unrefined	150	173	15.1	0.7
Acacia	500	141	164	16.3	0.7
Acacia	1000	131	151	15.0	0.6
	2000	134	154	15.2	0.6
	Unrefined	176	202	14.9	0.9
SBHK	1000	139	167	20.1	0.9
	2000	125	157	25.5	1.1
	Unrefined	129	164	27.9	1.2
NBHK	500	126	158	25.9	1.0
	1000	121	152	26.3	1.0

 $ABS_{\text{swelling}}\left(\frac{g_{\text{water}}}{g_{\text{fiber}}}\right) = \frac{m_{\text{water}}}{m_{\text{sheet}}} = \frac{\rho_{\text{water}}}{\rho_{\text{sheet wet}}} - \frac{\rho_{\text{water}}}{\rho_{\text{sheet dry}}}$

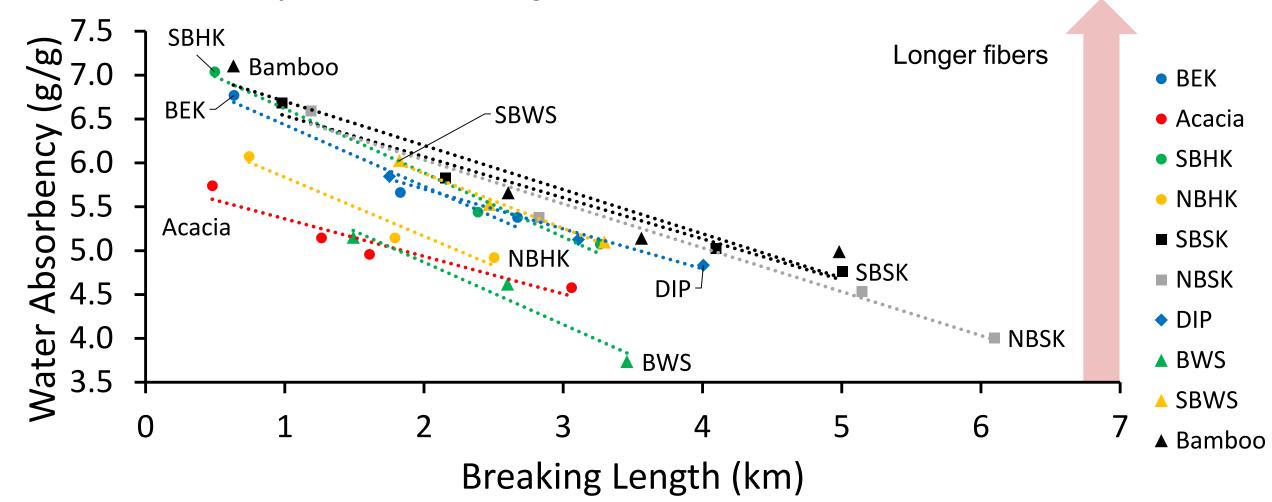
Sheet Swelling and Water Absorbency

✓ Factors affecting fiber swelling

Hemicellulose, carboxyl groups, cell wall porosity and amorphous cellulose (positive effect) Lignin and extractives (negative effect)

XPS (X-ray Photoelectron Spectroscopy) – Surface Composition							
Market Pulp	O/C Ratio	C - C or C - H	C – O	$\mathbf{C} = \mathbf{O} \text{ or } \mathbf{O} - \mathbf{C} - \mathbf{O}$	O = C – O		
BEK	0.78	21	59	20	< 1		
Acacia	0.75	28	51	20	< 1		
SBHK	0.84	19	60	21	< 1		
NBHK	0.80	23	55	22	< 1		

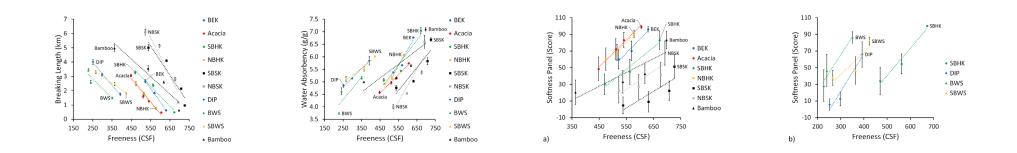
Market Pulp	ABS _{swelling} (g/g)				
BEK	1.0				
Acacia	0.6				
SBHK	1.0				
NBHK	1.1				


Concentration of hydrophobic material on fiber surface ^{1, 2}

¹ Neto *et al.* (2004), Nordic P&P Res. J. 19(4); ² Perng *et al.* (2018), Pan Pacific Fibre Value Chain Conference.

Water Absorbency

• Water Absorbency vs Tensile Strength



Conclusions

- Fiber Properties
 - \checkmark As tensile strength increases with refining bulk decreases
 - ✓ Bulk (pore volume) \rightarrow major contributor for water absorbency
 - ✓ Other properties are also important (e.g. hydrophilicity, swellability, surface area)
 - \checkmark Long and coarse fibers \rightarrow bigger pores (absorbency rate and capacity)
 - \checkmark Short and thin fibers \rightarrow smaller pores (capacity and water retention)
- Market Pulps
 - ✓ Bamboo, SBSK, NBSK, SBHK, BEK \rightarrow superior water absorbency at given strength
 - ✓ DIP, SBWS \rightarrow intermediate water absorbency at given strength
 - ✓ NBHK, Acacia, BWS \rightarrow inferior water absorbency at given strength

- Fiber Blending Optimization Models
 - ✓ Database (10 different fibers + different refining levels + major tissue properties)

- ✓ Tissue products → manufactured with fiber blending and different levels of refining
- Optimize performance and cost of tissue furnish with fiber blending
 Develop mathematical models to optimize performance

• Fiber Blending Optimization Models

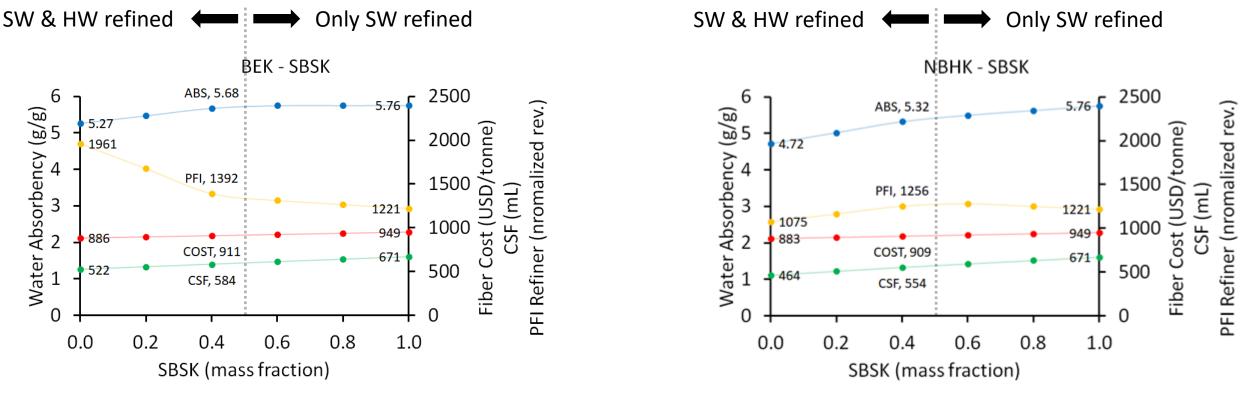
Case Study - Water Absorbency

- ✓ Linear Regression (y = ax + b)
- $ABS_n = f$ (Tensile Strength_n)
- ABS_n = f (Canadian Standard Freeness_n)
- $ABS_n = f(PFI revolutions_n) \rightarrow indirect measure of refining energy$
- ✓ Assumption Properties of fiber blend follows a linear mixing rule ^{1, 2, 3}

 $P_{\text{Fiber Blend}} = P_1^*X_1 + P_2^*X_2 + ... + P_n^*X_n;$ $P_n = \text{property of pulp } n;$ $X_n = \text{mass fraction of pulp } n$

✓ Nonlinear Optimization

¹ Kullander *et al.* (2012), Nordic P&P Res. J.; ² Tutuş *et al.* (2017), Drvna Industrija (68)4; ³ Perng *et al.* (2018), Pan Pacific Fibre Value Chain Conference.


- Model 1: Maximize water absorbency @ required tensile strength
 - ✓ Variables: X_n = mass fraction of fiber n T_n = tensile strength of fiber n n = 2 (pairs of HW and SW)
 - ✓ Objective function: **MAX** (ABS = $ABS_1 * X_1 + ABS_2 * X_2$)

ABS_n = $(a_n^*T_n + b_n)$ (linear regression) MAX { ABS = $(a_1^*T_1 + b_1)^*X_1 + (a_2^*T_2 + b_2)^*X_2$ }

✓ Constrains: $T_1 * X_1 + T_2 * X_2 >= T_{min}$; $T_{min} = 2.67$ km (kitchen towel) $T_{n MIN} <= T_n <= T_{n MAX}$ (values are within the refining levels evaluated)

Maximize water absorbency @ required tensile strength

→ Absorbency (g/g) → Fiber Cost (USD/tonne) → CSF (mL) → PFI Refiner (rev.)

✓ Maximum absorbency was calculated at a given SW/HW ratio

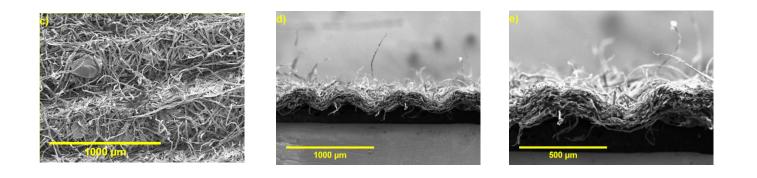
✓ Trade-off between absorbency and manufacturing variables can be analyzed

- Minimize fiber cost @ required strength and absorbency
 - ✓ Variables: X_n = mass fraction of fiber n
 T_n = tensile strength of fiber n
 P_n = price of fiber n
 - ✓ Objective function: **MIN** ($P = P_1 X_1 + P_2 X_2 + ... + P_n X_n$)
 - ✓ Constrains: $T_1 * X_1 + T_2 * X_2 + ... + T_n * X_n >= T_{min}$; Tmin = 2.67 km (kitchen towel) ABS₁ * X₁ + ABS₂ * X₂ + ... + ABS_n * X_n >= ABS_{min}; ABS_{min} = 5.8 g/g $T_{n \text{ MIN}} <= T_n <= T_{n \text{ MAX}}$ (values are within the refining levels evaluated) $X_1 + X_2 + ... + X_n = 1$; 0 <= X_n <= 1

• Minimize fiber cost @ required strength and absorbency

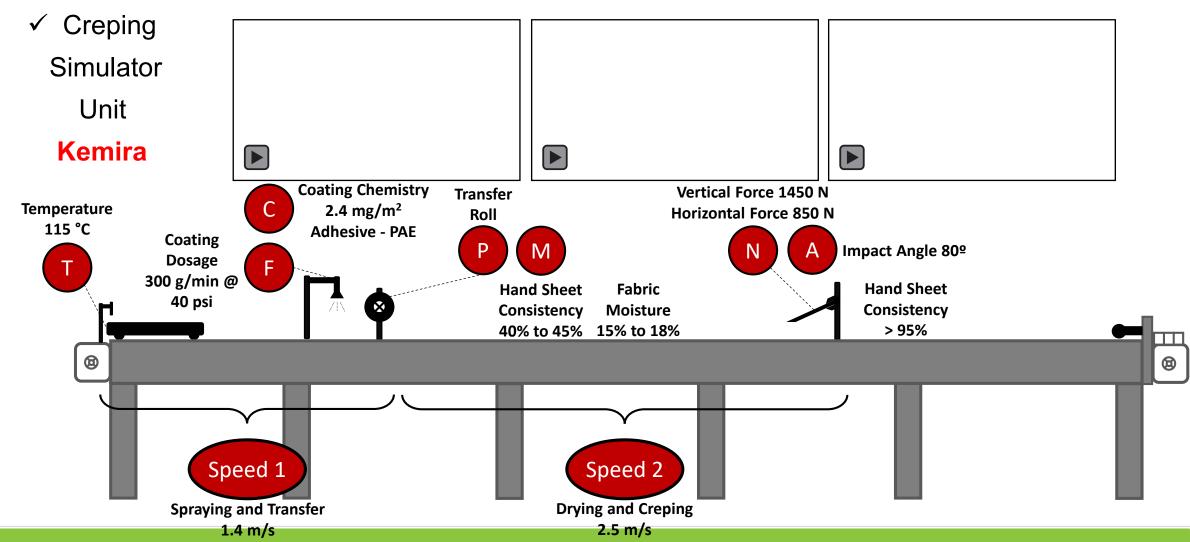
RISI - Q2 2019 - Delivered List Price @ 20% Discount - US East							
Market	Pulp		USD/tonne				
BEK		885.60					
SBHI	<		883.20				
NBH	К		883.20				
SBS	κ		948.80				
NBSK		1036.00					
DIP		712.00					
Market Pulp	X (mass fract	ion)	Fiber Cost (USD/tonne)				
SBHK (unrefined)	0.48		883.20				
SBSK (refined)	0.35		948.80				
DIP (refined)	0.17		712.00				
Fiber Blend	1.00		875.93				

Fisher Solve - Q1 2019 - Delivered Price - US Southeast							
Market Pulp			USD/tonne				
BEK			843.91				
SBH	(853.99					
NBHI	<	849.62					
SBSK			847.19				
NBSK			919.48				
DIP		835.56					
Market Pulp	X (mass fract	ion)	Fiber Cost (USD/tonne)				
BEK (unrefined)	0.30		843.91				
SBHK (unrefined)	0.22		853.99				
SBSK (refined)	0.47	847.19					
Fiber Blend	1.00		847.71				


- ✓ Similar performance can be achieved with different fiber blends
- ✓ Market pulp prices determine the composition of the fiber blend that minimizes cost

Fiber Blending Optimization Models and Tissue Paper Performance

- Non-linear modeling can be used to optimize tissue furnish performance and cost via fiber blending
- The trade-off among manufacturing variables (e.g. refining energy, freeness, fiber cost) and tissue properties (e.g. strength, softness, absorbency) can be evaluated systematically
- Models can be specifically developed according to the goals and constrains of a given mill

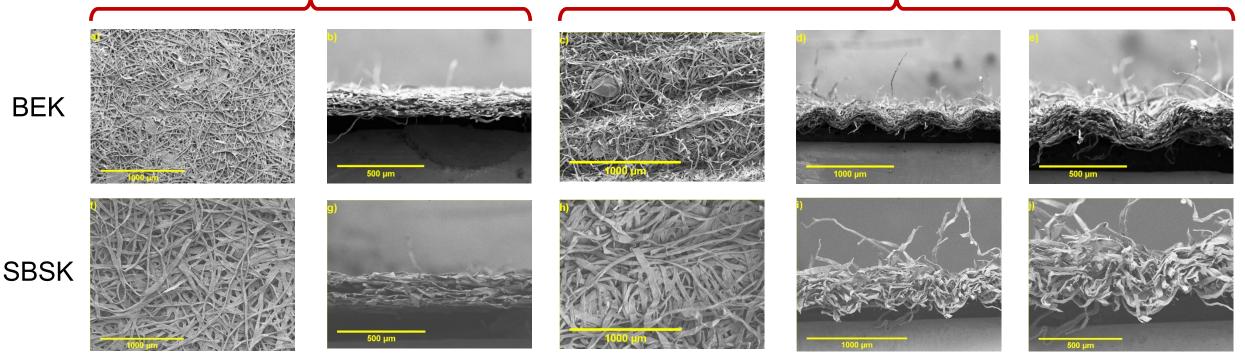


24

• Methodology

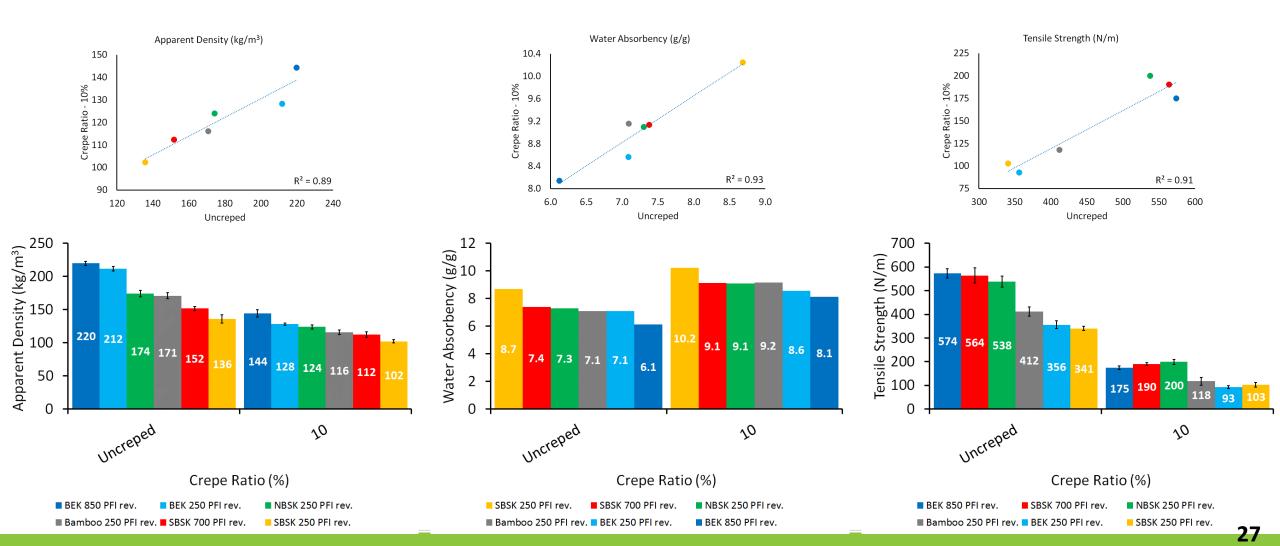
Creped Handsheets vs Commercial Products

Tissue Product	Creped Hand Sheets (BEK 850 PFI rev.)	Consumer Bath Tissue		Professional Bath Tissue
Technology	Creping Simulator	Advanced*	Conventional**	Conventional**
Tensile Strength Index (Nm/g)	4.7	5.5 ± 1.8	6.2 ± 2.9	5.2 ± 1.9
Apparent Density (kg/m ³)	144	92 ± 24	124 ± 24	128 ± 32
Water Absorbency (g/g)	8.1	9.8 ± 0.8	7.7 ± 1.0	7.5 ± 0.5
TSA Softness (TS7 - dB)	11.6	10.1 ± 1.9	14.0 ± 3.0	19.2 ± 4.0


*Advanced Technology: CTAD (Creped Through-Air Drying) or UCTAD (Uncreped Through-Air Drying) **Conventional Technology LDC (Light Cry Crepe)

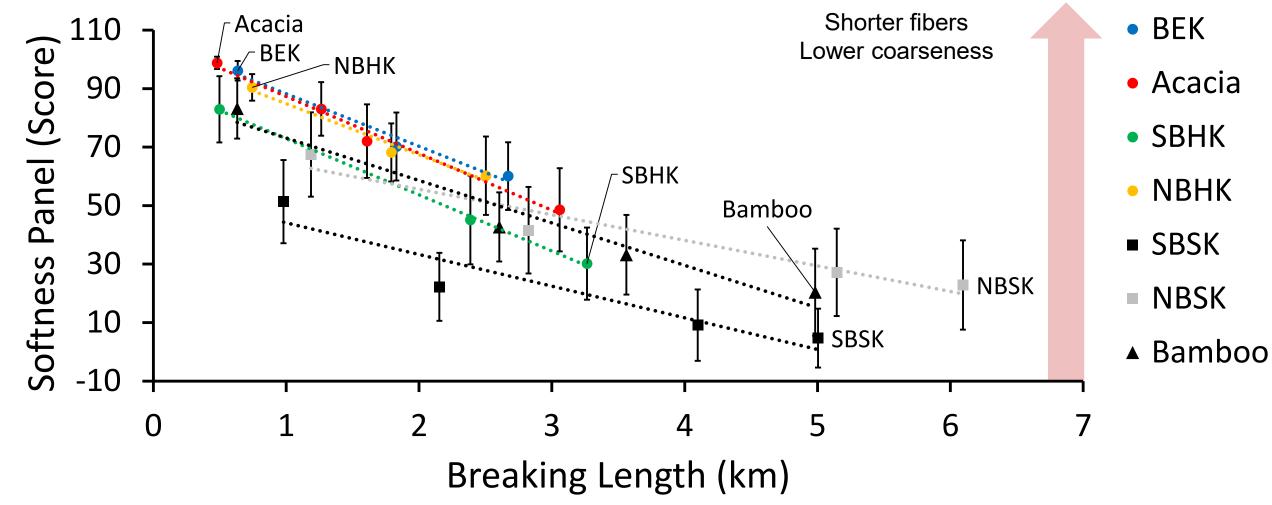
• Crepe Structure, Tissue Properties (BEK 850 PFI rev; SBSK 700 PFI rev → similar strength)

Uncreped Handsheets


Creped Handsheets

- ✓ Crepe folds
- $\checkmark\,$ Buckling and distortion of fibers
- ✓ Delamination of fiber web (surface)
- ✓ Free fiber ends

• Uncreped vs Creped Handsheets (BEK, SBSK, NBSK, Bamboo → different refining levels)



- ✓ The performance of creped handsheets was similar to commercial products
- ✓ Creping process promotes significant changes in the fiber web structure to enhance softness and absorbency at the expense of lower strength
- ✓ Long and coarse fibers are more resistant to the creping process when compared to short and thin fibers
- ✓ A reasonable correlation was found between the properties of uncreped and creped handsheets made with different fibers

Bath Tissue Properties - Softness

• Softness vs Tensile Strength (Panel 1)

Conclusions

- Cellulosic Fibers and Tissue Paper Performance
 - ✓ Important fiber features for tissue paper properties were identified
 - > Long fibers \rightarrow strength and water absorbency
 - \blacktriangleright Long and thin fibers \rightarrow strength and water absorbency without sacrificing softness significantly
 - > Short and thin fibers \rightarrow superior softness
 - ✓ Data base of fibers and tissue paper properties was created
 - ✓ Fiber blending models are a useful tools to optimize tissue paper furnish
- Creping Process and Tissue Paper Performance
 - \checkmark A methodology to study the creping process at lab scale was developed
 - ✓ Performance of creped sheets is similar to commercial products

Future Work

- Fibers for Tissue Manufacturing
 - ✓ Evaluate other tissue making fibers
- Fiber Blending Optimization Models
 - ✓ Investigate the linearity between fiber blending and tissue properties
 - \checkmark Perform a case study for a tissue mill
- Creping Simulator Unit
 - ✓ Investigate creping variables (e.g. basis weight, angle, adhesion) to improve sheet quality
 - ✓ Develop methodology to better characterize the crepe structure

Thank you !

de Assis *et al.* (2019). Comparison of Wood and Non-Wood Pulps for Tissue Paper. BioResources14(3).

> Contact: Hasan Jameel – jameel@ncsu.edu Ronalds Gonzalez - <u>rwgonzal@ncsu.edu</u>

Opportunities

- Understand how to better utilize fibers to optimize manufacturing costs and/or increase product value
 - ✓ Current used fibers
 - ✓ Underused fibers (e.g. OCC, southern HW, northern HW)
 - ✓ Alternative fibers (e.g. non-wood, virgin unbleached)

⁴ http://truegreenpaper.com/: ⁵ https://www.tissueworld.com