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1. INTRODUCTION 

1.1. ASCOMYCETES 

Ascomycota is the largest phylum of fungi with around 65,000 species, which 

represents approximately 65% of all Fungi described to date (Hawksworth et al., 1995; 

Kirk et al., 2008). Members of the phylum Ascomycota are characterized by the 

endogenous formation of the sexual spores (ascospores) inside a sac-like structure 

called an ascus (Gr. askos = sac). The ascus usually contains 2N haploid ascospores, 

which is the result of karyogamy to form a diploid nucleus, followed by meiosis and one 

or more mitotic divisions (Tsuneda, 1983; Ingold and Hudson, 1993; Carlile et al., 2001). 

 

1.1.1. Vegetative organization    

The basic structure of ascomycetes, like the other members of the kingdom Fungi, 

is a typical eukaryotic cell surrounded by a thick wall composed of glycoproteins and 

polysaccharides, mainly chitin and beta-glucan. The composition of the cell wall may 

depend on growth conditions and the stage of development (Bowman and Free, 2006). 

Some fungal cell walls have melanin cross-linked to polysaccharides – pigments of high 

molecular weight formed by the oxidative polymerization of phenolic compounds – which 

provides defense against ultraviolet (UV) light, oxidizing agents and ionizing radiation, 

occasionally found in the environment. This polymer contributes to the virulence of a 

large number of pathogenic fungi since it protects the fungal cell against the immune 

response of hosts such as oxidant substances produced by immune effector cells, and 

immunomodulatory substances (Jacobson, 2000; Hamilton and Gomez, 2002; Eisenman 

and Casadevall, 2012).  

Ascomycetes can consist of a single cell (unicellular thallus or yeast) or be part of 

tubular filaments called hyphae (multicellular thallus or filamentous fungi), which are 

divided by transverse septa. The nuclei, cytoplasm and mitochondria can move from one 

hyphal compartment to a contiguous one through a central pore in these septa. There is 

significant structural diversity among ascomycetes, especially in structures with occluded 

pores. These plugs include non-membranous and membranous materials, such as 

granular lamellate structures and Woronin bodies, respectively (Alexopoulos et al., 1996; 

Mouriño-Pérez, 2013).  
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1.1.2. Reproduction 

Fungi reproduce by producing mitospores (asexual reproduction) or meiospores 

(sexual reproduction). Mitospores propagate a progeny that is genetically identical to the 

parental cell, whereas meiospores are usually the result of outcrossing and generate 

descendants with genes rearranged into new genotypes (Seifert and Samuels, 2000). In 

ascomycetes, the mitospores are called conidia, and the meiospores, ascospores. The 

sexual and asexual stages of a fungus are called teleomorph and anamorph, 

respectively (Fig. 1). Should a fungus be able to develop two or more anamorphs, these 

are called synanamorphs. Holomorph is the term used to denote all manifestations of the 

same genotype: that is, to designate the fungus as a whole, including all its phases and 

morphologies (the teleomorph and its anamorph or synanamorphs) (Kendrick, 1992; Kirk 

et al., 2008). The teleomorph and the anamorph may or may not coincide in time or 

space. For this reason, they are usually collected separately and, in some cases, are 

treated as different organisms. 

 

Fig. 1 Life cycle of the ascomycetes. The lower part shows the sexual stage (teleomorph), while 

the upper part shows the asexual stage (anamorph). The diploid phase of the life cycle is shaded 

in gray (de Hoog et al., 2000). 
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Sexual reproduction plays a key role in guaranteeing genetic diversity in fungal 

species. It takes place by the fusion of sexually compatible nuclei and the subsequent 

production of recombinant spores. In ascomycetes and some basidiomycetes, the locus 

involved in sexual reproduction is known as mating type (mat), which presents two 

alternative forms or idiomorphs. Compatible haploid strains are distinguished only by 

their mating type, because they are morphologically indistinguishable (Bistis, 1998). The 

names of the idiomorphs in heterothallic ascomycetes depend on the taxonomic group to 

which the fungus belongs and can even be specific to some species that were the 

models on which our understanding of the genetics of these genes was based. The 

idiomorphs of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe 

were designated α and a, and h- (matM) and h+ (matP), respectively. The idiomorphs in 

euascomycetes are referred to as mat A and mat a, mat - and mat + or MAT1-1 and 

MAT1-2 (Coppin et al., 1997; Glass and Staben, 1997; Perkins, 1999; Turgeon and 

Yoder, 2000). 

Unlike ascomycetes, the mating system in basidiomycetes involves multiple mating 

types. Some species can have up to four different types, so the sexual reproduction of 

these organisms is more complex (Kothe, 2001). In ascomycetes a mating system with 

multiple mating types has only been reported in Glomerella cingulata (Cisar and TeBeest, 

1999). 

There are three different mechanisms in the sexual reproduction of fungi: 

heterothallism, homothallism or pseudohomothallism. The strains of the heterothallic 

species (e.g. Cochliobolus heterostrophus, Neurospora crassa and Gibberella fujikuroi) 

have only one of these idiomorphs (mat-A or mat-a) and sexual spores form only 

between strains of opposite mating types. Homothallic species do not present a 

genetically definable mating type and the individuals are self-fertile. Therefore, in these 

organisms sexual reproduction does not require the interaction of two individuals. 

Pseudohomothallic species (e.g. Neurospora tetrasperma and Podospora anserina) 

develop some spores with two nuclei, one with each idiomorph, so they are capable of 

completing the sexual cycle themselves. However, other spores only contain a single 

nucleus (mat-A or mat-a), requiring another individual with the complementary mating 

type to complete the sexual cycle (Glass et al., 1990; Alexopoulos et al., 1996.; Pöggeler, 

2001). 

In mycelial ascomycetes, cytoplasmic fusion (plasmogamy) is followed by a short 

stage called dikaryophase (in which two genetically different, sexually compatible nuclei 

coexist in the same segment of hypha). Dikaryotic hyphae are usually protected inside 

an ascoma, which is formed from the growth and differentiation of haploid vegetative 

hyphae. Subsequently, nuclear fusion (karyogamy) and meiosis occur and produce 
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meiospores, which result in new mycelia that can propagate by mitospores and repeat 

the cycle (de Hoog et al., 2000). 

One example of heterothallic reproduction occurs in Neurospora crassa (Fig. 2). 

Haploid ascospores presenting one of the two idiomorphs (mat A or mat a) germinate to 

produce a multinucleated mycelium. Both strains, mat A and mat a, differentiate female 

sexual organs, the ascogonia, which are surrounded by vegetative hyphae in the form of 

protoperithecia. Through receptive hyphae (trichogynes), the ascogonia are fertilized by 

spermatia (spores of the opposite sex) that are also produced by both strains, leading to 

the formation of the perithecia and initiating the dikaryophase. During this phase the asci 

are formed inside the perithecia. Nuclear fusion takes place inside the asci between the 

stem cells of opposing MATs. The meiosis and a postmeiotic division generate 2N 

haploid (usually 8) ascospores, half of which have mat A and the other half mat a 

(Pöggeler, 2001). 
 

  
 

Fig. 2 Life cycle of heterothallic species Neurospora crassa (Pöggeler, 2001). 

 

A study of the mating types of the ascomycete Cochliobulus revealed that 

heterothallism is ancestral to homothallism, and supported the convergent origin for 

homothallism in this genus (Turgeon, 1998; Yun et al., 1999). In a recent study on 

Neurospora, Nygren et al. (2011) concluded that the ancestor of this genus was probably 

heterothallic, and that homothallism has evolved independently at least six times in the 

evolutionary history of the genus. These results agree with those previously obtained for 
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Cochliobulus. They also observed that N. tetrasperma and N. tetraspora, the two 

pseudohomothallic taxa of Neurospora, represent two independent evolutionary origins. 

Mating-type sequences can be used as phylogenetic markers to analyse closely related 

species due to the rapid evolution of mating-type genes (Pöggeler, 2001).  

 

1.1.3. Morphology of sexual reproductive structures 

As we mentioned above, the main defining feature of ascomycetes is that they 

produce ascospores inside the asci. The asci are produced from a fertile layer of fungal 

tissues called a hymenium (Gr. hymen = membrane) and, although they are occasionally 

naked, they usually develop inside "fruiting bodies" or ascocarps (Gr. askos = sac + 

karpos = fruit), known as ascomata. Historically, ascomata have been classified 

according to their morphological and physiological features: they are known as 

clesitothecia when they are globose and have no openings; gymnothecia when they 

have clusters of asci surrounded by a loose mesh of hyphae; perithecia when they are 

pear-shaped (but frequently spherical) fruiting bodies with a (usually pre-formed) apical 

opening; and apothecia, when they are cup- or disc-shaped and the asci are exposed to 

the environment (Fig. 3) (Kirk et al., 2008).  
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Fig. 3 Different type of ascoma. a. Cleistothecia (Corynascus novoguineensis FMR 6308). b. 

Gymnothecia (Myxotrichum stipitatum FMR 13122). c. Perithecia (Podospora setosa FMR 12787). 

d. Apothecia (Lasiobulus papillatus, picture taken from the website 

http://en.wikipedia.org/wiki/Lasiobolus). Scale bars: a,c, 10 μm; b, 50 μm. 

 

Some types of ascoma (mostly perithecia) can be borne on or embedded into a 

mass of vegetative hyphae called a stroma (Kirk et al., 2008). The ascoma wall, also 

known as the peridium, can consist of a variable number of layers of hyphae or cells, 

with a consistency that can be either membranaceous, coriaceous or stromatic, and 

have various surface textures (angularis, epidermoidea, globulosa, intricata, etc.). 

Moreover, ascomata can present hyphae-like hairs or true setae, which sometimes help 

insects and other animals to spread the fungi (Currah, 1985). The perithecial neck can 

also vary in shape (conical, cylindrical, obvoid, papillate, etc.) (Fig. 4). 
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Fig. 4 Different characteristics of ascomata. a. Stroma (Nemania illita ANM 1569). b. Textura 

angularis (Pseudoneurospora canariensis FMR 12323). c. Textura epidermoidea (Corynascus 

sexualis FMR 5691). d. Textura intricata (Xylarial FMR 13615). e. Ornamented peridial cells 

(Corynascus fumimontanus FMR 12372). f. Hyphae-like hairs (Zopfiella erostrata FMR 12758). g. 

Crown of setae around the ostiole (Microthecium sp. FMR 7183). h. neck papilliform (Jugulospora 

rotula FMR 12690). i. Hülle cells (Emericella quadrilineata FMR 8166). Scale bars: b,g,i, 10 μm; 

c,d,e, 5 μm; f,h, 50 μm. 

 

Various interascal tissues or sterile hyphae, called hamathecium (Gr. hama = 

together + theke = case), can develop in association with the asci in the ascomatal cavity. 

The fertile and sterile structures in this ascomatal cavity are known as the centrum. The 

most frequent types of sterile interascal tissue in the groups studied are paraphyses 

(hyphae that develop from the base of the cavity) and periphyses (hyphae which develop 

inside, or near, the ostiole of the perithecium) (Fig. 5) (Alexopoulos et al., 1996; Kirk et 

al., 2008). 

9

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



INTRODUCTION 

  

 

 

Fig. 5 Interascal tissues. a. Periphyses (Microthecium sp. FMR 7183). b. Paraphyses 

(Chaetosphaeria decastyla SMH 2629). Scale bars: 10 μm. 

 

Asci are classified according to the number of wall layers and how the ascospores 

are dispersed. There are three main types: protunicate, unitunicate and bitunicate. 

Protunicate asci have a thin and delicate wall composed of a single layer, and the 

ascospores are released by deliquescence. Unitunicate and bitunicate asci have two 

layers: the external wall layer, or exotunica, and the internal wall layer, or endotunica. In 

unitunicate asci these walls are attached and inseparable, and can be evanescent or 

persistent. This kind of asci can possess an operculum or an apical pore, through which 

the ascospores are released. Some groups have a structure known as the apical 

apparatus in which the pore is surrounded by an apical ring. Apical rings can be amyloid 

and stain blue in the presence of iodinated dyes (I+) or in amyloid and do not stain any 

colour in the presence of iodine (I-). In bitunicate asci, the wall is distinctly two-layered. 

The external wall layer is thin and rigid and the internal wall layer is thick and elastic. In 

this kind of asci, the endotunica expands and breaks the exotunica, releasing the 

ascospores through a pore at the apex of the endotunica. (Alexopoulos et al., 1996; 

Ulloa and Hanlin, 2000; Webster and Weber, 2007). Asci are variable in shape (spherical, 

cylindrical, ovoid, clavate, etc.), can contain a different number of ascospores (normally 

eight, but can be anything from one to several thousand), are sessile or stipitate, and are 

formed at various levels inside the ascoma or in a single level at the base of ascoma (Fig. 

6) (Petersen, 2013). 
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Fig. 6 Different types of asci. a. Ascus bitunicate (Boerlagiomyces websteri AMS-H-2002). b. 

Ascus unitunicate with apical apparatus (Rhamphoria sp. ANM 498-1). c. Asci unitunicate without 

apical apparatus (Eremascus fusisporus FMR 10815). d. Asci prototunicate (Leiothecium 

cristatum FMR 11998). e. Ascus 4-spored (Coronatomyces cubensis FMR 7132). f. Asci pluri-

spored (Podospora setosa FMR 12787). Scale bars: a‒d, 10 μm; e, 5 μm; f, 50 μm. 

 

Ascospores have a wide variety of forms. They can be unicellular or multicellular, 

hyaline or pigmented, smooth-walled or ornamented (spiny, warted, wrinkled, etc.), and 

may possess germ pores or germ slits, and other structures such as mucilaginous 

sheaths or appendages (Fig. 7). Ultrastructural studies have demonstrated that 

ascospores have a cell wall consisting of several layers. The innermost layer, the 

endospore, covers the cytoplasm, is thin and electron-translucent, and the last to be 

formed. Outside the endospore there is the epispore, a high electron-dense layer that 

determines the shape of the ascospore, and which is usually pigmented and may be 

ornamented. Surrounding the epispore there is the perispore, which can be hyaline or 

pigmented, smooth-walled or ornamented. The outermost layer is the exospore, the least 

electron-dense layer, apparently derived from the plasmatic membrane and other 

components of the ascal cytoplasm. This layer appears in the early stages of ascospore 

delimitation, together with the epispore (Cailleux, 1971; Webster and Weber, 2007). 
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Fig. 7 Different type of ascospores. a. Unicellular (Aspergillus spinulosus NRRL 4376). b. Two-

celled (Apiosordaria nigeriensis FMR 6363). c. Multicelled (Endoxylina tehuacanenis ANM 172). d. 

Muriform (Boerlagiomyces costaricensis INB0003471675). e. Globose (Hapsidospora irregularis 

FMR 13607). f. Citriform (Melanospora verrucispora FMR 13064). g. Fusiform (Chaetosphaeria 

ellisii ANM 917). h. Stellate (Aspergillus pluriseminatus FMR 5588). i. Germ slit (Coniolariella 

limonispora FMR 8579). j. Germ pores (Neurospora tetrasperma FMR 7369). k. Equatorial crests 

(Aspergillus sp. FMR 11861). l. Mucilaginous appendages (Toriella tubulifera FMR 9389).           

m. Smooth-walled (Naviculispora terrestris FMR 10060). n. Inwardly pitted (Neurospora calospora 

FMR 7825). o. Ridged (Neurospora dodgei FMR 7968). p. Irregularly reticulate (Leiothecium 
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cristatum FMR 11998). q. Regularly reticulate (Aspergillus tatenoi FMR 11735). r. Spinose 

(Eleutherascus lectardii FMR 5751). s. Verrucose (Talaromyces flavus FMR 11810). t. Verrucose 

to tuberculate (Pseudoneurospora canariensis FMR 12156). Scale bars: a‒c,h,i,m‒o,r,t, 5 μm; d,g, 

20 μm; e,j,k,p,q,s, 2.5 μm; f,l, 10 μm. 

 

1.1.4. Morphology of asexual reproductive structures 

Asexual reproduction in the ascomycetes takes place through the formation of 

conidia. Conidia are asexual spores and their development is known as conidiogenesis. 

There are two main ontogenetic processes: blastic and thallic. In blastic conidiogenesis, 

the conidium elongates and swells from a portion of the conidiogenous cell before it is 

delimited by a basal septum. There are two types of blastic development: holoblastic and 

enteroblastic. In holoblastic conidiogenesis, the outer and inner walls of a blastic 

conidiogenous cell take part in the formation of conidia, while in enteroblastic 

development the outer layer is perforated when the conidia are formed and is not 

included in the conidia. Thallic conidiogenesis occurs when a pre-existing segment of a 

hypha is transformed into a conidium or conidia. There are two different mechanisms in 

thallic conidiogenesis: holothallic and thallic-arthric. In holothallic development, a hyphal 

cell is converted into a single conidium, while in thallic-arthric conidiogenesis, the hypha 

is disarticulated into a series of conidia. Conidiogenous cells are responsible for the 

production of conidia. They have a wide variety of morphologies and determine the 

conidial ontogenetic processes. A conidiophore is a hypha bearing one or more 

conidiogenous cells. Conidia can be produced singly, in chains or in a mucilaginous 

mass (false heads), and are highly variable in shape (cylindrical, clavate, cuneiform, 

ellipsoid, spherical, etc.), size (one-celled to multicelled) and ornamentation (spiny, 

warted, wrinkled, etc.). They can be with or without mucilaginous appendages 

(Alexopoulos et al., 1996; Webster and Weber, 2007; Kirk et al., 2008) (Fig. 8).  
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Fig. 8 Different mechanisms in conidiogenesis. a. Enteroblastic, conidia born in phialides and 

arranged in chains (Aspergillus flavus FMR 9973). b. Enteroblastic, solitary conidia born in 

annelides (Scedosporium sp. FMR 12995). c. Holoblastic, conidia produced synchronously 

(Aureobasidium sp. FMR 13038). d. Thallic-arthric (Chrysosporium sp. FMR 10835). e. Holothallic 

(Chrysosporium sp. FMR 12084).Scale bars: a,d, 20 μm; b,e 5 μm; c, 10 μm. 

 

Chlamydospores and sclerotia are resistant, usually dormant structures 

(memnospores), and ensure fungal survival in extreme conditions. Chlamydospores are 

thick-walled, swollen, and can have one cell or several. They can form as intercalary, 

lateral or terminal on the hyphae. A sclerotium is a firm, more or less rounded, structure 

composed of a melanized pseudoparenchymatous thick-walled outer layer and an inner 

layer of interwoven hyphae (Alexopoulos et al., 1996; Webster and Weber, 2007; Kirk et 

al., 2008) (Fig. 9).  

 

Fig. 9 Other asexual structures. a. Chlamydospores (Chrysosporium sp. FMR 10835). b. 

Sclerotium (Penicillium sp. FMR 5772). Scale bar: a, 10 μm; b, 100 μm. 
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1.1.5. Nutrition 

Like other members of the kingdom Fungi, ascomycetes are heterotrophic and 

obtain essential nutrients from organisms that are dead (saprobes or necrotrophs) or 

living (biotrophs and parasites) (Carroll and Wicklow, 1992; Griffin, 1994). Saprobes play 

an important role in the recycling of decomposing plant material. Biotrophic fungi are 

capable of forming mutualistic symbiosis with algae (leading to the formation of lichens), 

roots (mycorrhizae) or leaves and/or stems of plants (endophytes or endobionts). Other 

mutualistic associations are with arthropods, such as ants and ambrosia beetles (Vega 

and Blackwell, 2005). About 18,000 species of ascomycetes are able to establish some 

kind of mutual association (Kendrick, 1998). Of all parasitic fungi, ascomycetes are the 

most important etiological agents of fungal infections in humans and animals. Of the 

many examples that could be given, Histoplasma capsulatum and Blastomyces 

dermatitidis are the etiological agents of histoplasmosis and blastomycosis, respectively 

(Hoog et al., 2000); Scedosporium apiospermum and Scedosporium prolificans are the 

etiological agents of scedosporiosis (Rodriguez-Tudela et al., 2009); and Aspergillus 

fumigatus is the main etiological agent of pulmonary aspergillosis (Hoog et al., 2000). 

With regard to plant parasites (phytopathogenic fungi), the pathogen Magnaporthe 

oryzae, can have devastating effects on rice crops; Blumeria graminis and 

Mycosphaerella raminicola are both important pathogens of cereals; Fusarium 

graminearum is responsible for significant damage to cereals; and F. oxysporum can 

cause considerable losses in such crops as tomato, cotton and banana (Dean et al., 

2012). 

 

1.1.6. Taxonomy 

Taxonomy is the science of classifying, naming and describing organisms. The lowest 

rank in taxonomy is the species, which is a group of individuals that can breed and 

produce a fertile progeny. The problem with applying this biological-species concept in 

fungi is the difficulty of mating and assessing its outcome (Guarro et al., 1999; Katoch 

and Kappor, 2014). The taxonomical ranks higher than the species are listed in Table 1, 

with the particular ending of each rank that defines their hierarchical position. 
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Table 1. Main taxonomic ranks used in fungal classification according to Hibbett et al. (2007). 

 

TAXONOMIC RANK ENDING 

Kingdom Undefined 

Subkingdom Undefined 

Phylum -mycota 

Subphylum -mycotina 

Class -mycetes 

Subclass -mycetidae 

Order -ales 

Family -aceae 

Genus Undefined 

Species Undefined 

 

The main goal of systematics is to understand the relationships between living 

organisms and the processes by which these organisms have evolved (Voigt and Kirk, 

2011). 

 

1.1.6.1. Classical taxonomy 

Traditional classification systems are largely based on the morphological features of 

organisms. They focus on the presence or absence of certain characters, and group 

different organisms in the same taxonomic category (or taxon) in such a way that all 

organisms in the same taxon are related to each other by common ancestry 

(Alexopoulos et al., 1996). However, sometimes this is not possible since morphological 

characters are not always phylogenetically informative and homologies are not easily 

distinguishable from analogies. Moreover, different taxonomists regard different features 

as relevant, which leads to different classifications (Weber, 2009). 

The morphological characters that are most commonly used to classify ascomycetes 

are the structures associated with sexual reproduction: for example, the type of ascoma 

and its ontogeny, the type of centrum, the morphology and ultrastructure of the asci and 

their dehiscence or the nature of the pre-formed apical structure for releasing spores, 

and the main characteristics of the ascospores (presence, type and number of germ 

structures and mucilaginous layers; appendages; color; ornamentation; and cell number). 

However, the ontogenetic processes involved in the production of the spores of their 

anamorphic stage have also been used (Barr, 1990). Although these features have the 

advantage that they are easily observable, there is little variation in morphology and 
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some of the characters used have been subjected to convergent evolution for some 

groups of organisms. 

According to Rogers (1994), the taxonomy of ascomycetes has three key problems: 

 Few species have been studied in detail. 

 The apparent age of ascomycetes and the probability that many of them have not 

survived has led to evolutionary relationships being interpreted from features which are 

often lacking in phylogenetic value.  

 Taxonomic systems are created on the basis of very few characters. 

Recent molecular studies have shown that some of the morphological characters 

widely used in taxonomy – for example, ascospore ornamentation – are not always 

phylogenetically informative (García et al., 2004), and other characters not taken into 

account for certain groups – for example the type of ascomata in Lasiosphaeriaceae – 

have proved to be useful for elucidating evolutionary relationships (Miller and Huhndorf, 

2005). Therefore, characters which are not phylogenetically informative for some 

taxonomic groups are valuable for others. The problem lies in defining what 

morphological characters are suitable for designing a classification system. These 

characters must be homologous to the group of organisms being compared and not 

homoplastic (i.e. characters that are the result of convergent, parallel, or reversible 

evolution). 

 

1.1.6.2. Molecular biology 

In the past, as discussed in the previous chapter, species of fungi were delimited 

mostly by their phenotypic traits, so most of the accepted species are known only by 

their morphological description. The main problem concerning the morpho-species 

concept is that a correct classification/identification is often time-consuming and 

laborious, and requires experience, ability and usually the use of different culture media 

and incubation temperatures, especially for genera with numerous species and/or with 

poorly differentiated morphological characters. Moreover, fungal structures can vary 

depending on the incubation time, the substrate and environmental conditions. These 

variables are minimized when molecular tools are used, which also have the advantage 

of being much faster, more specific and more accurate. Neither do they need the 

intervention of specialized taxonomists. Such molecular techniques as Restriction 

Fragment Length Polymorphism (RFLPs), Random Amplified Polymorphic DNA (RAPD) 

and Amplified Fragment Length Polymorphism (AFLP) are still used to type fungal 

isolates. However, the most widely used tool in fungal taxonomy is DNA sequencing, 

especially for those genes that encode nuclear ribosomal RNA (nrRNA). These genes 

17

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



INTRODUCTION 

  

 

are located in two adjacent transcriptional units that are transcribed separately. One of 

these units includes the 5S nrRNA (absent from certain fungal groups), and the other is 

composed of the 18S, 5.8S and 28S nrRNA genes, which are separated by two internal 

transcribed spacers (ITS1 and ITS2) and flanked by two external transcribed spacers 

(ETS). The two transcriptional units are separated by the intergenic spacers IGS1 and 

IGS2 (Fig. 10).  

 

 

 

 

Fig. 10 Structure of the nuclear ribosomal RNA gene cluster in fungi. 

 

The 18S small subunit (SSU) usually has around 1800 bp and is phylogenetically 

highly conserved between species of the same genus, and even among different genera. 

This gene is most commonly used for the taxonomical placement of individuals at order 

or family level. The 28S large subunit (LSU) has approximately 3400 bp and is usually 

employed to classify fungi at genus level and above, although it is also useful for species 

delimitation in some taxa (i.e., Onygenales and Sordariales). The nuclear ribosomal 

internal transcribed spacer (ITS) region, which includes the 5.8S gene and the internal 

transcribed spacers (ITS1 and ITS2), was recently designated as the official barcode 

marker for fungi (Scoch et al., 2012). DNA barcoding uses standardized primers to 

amplify the widest range of taxonomic groups and produce sequences of 500-800 bp for 

the identification of species. Several regions were evaluated recently by Scoch et al. 

(2012), including the mitochondrial cytochrome c oxidase subunit 1 (CO1) (which is 

useful for animal barcoding), the SSU and LSU regions, and several protein encoding 

gene regions (i.e. the largest subunit of RNA polymerase II (RPB1), the second largest 

subunit of RNA polymerase II (RPB2) and the minichromosome maintenance protein 

(MCM7)). The ITS was chosen as the best candidate for barcoding because it is easy to 

amplify and is a good marker for species-level identification due to the high information 

content. However, the percentage of identity to be considered as the cut-off for species 

delimitation remains controversial, because the interspecific variability of this region 

varies among different fungal taxonomic groups (Stchigel, 2000; Crous et al., 2009). Also, 

the necessity for another gene to distinguish all fungal species is being discussed 

because in some fungal groups, ITS can be largely conserved. In these cases, other 

genes, most of which encode structural proteins, have been used. In 2013, the main 

purpose of the international meeting “One Fungus = Which Genes” (1F = ?G) was to 

 
18S 28S5.8S

ITS1 ITS2

5S
3’ ETS IGS1 IGS25’ ETSIGS2

18S 28S5.8S
ITS1 ITS2

5S
3’ ETS IGS1 IGS25’ ETSIGS2
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explore which additional genes should be sequenced to identify and classify certain 

groups of fungi. 

At present, there are several different sequence databases (i.e. GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/), the European Molecular Biology Laboratory 

(EMBL) (http://www.ebi.ac.uk/embl/), the Biological Resource Center (NBRC) 

(http://www.nbrc.nite.go.jp/)) which contain a variety of gene sequences from a large 

number of fungi. Thus, comparing the sequences of our fungi to those deposited in the 

database can provide a great deal of taxonomic information. 

 

1.1.6.3. Molecular phylogeny 

The objective of a molecular phylogeny is to reconstruct the evolutionary 

relationships among organisms by comparing the nucleotide sequences of certain genes. 

Molecular phylogeny is based on the theory that mutations in a gene sequence 

constantly accumulate over time and are randomly distributed. Consequently, the 

differences noticed when comparing homologous nucleotide sequences from several 

taxa can provide information about the time elapsed since they evolved from a common 

ancestor, and reveals the shared derived characters that relate these individuals to their 

theoretical ancestor. 

Molecular characters have the advantage over morphological ones that they are 

exactly defined, quantifiable and highly reproducible. However, they also have some 

disadvantages, the main one of which is the use of only four “letters” (A, C, T, and G). 

Molecular homoplasy needs to be reduced because the presence of a common base in 

two different species may be the result of a random process and not necessarily 

because they descended from a common ancestor. Another common problem is data 

saturation. For example, a gene may have varied so much in its evolution that the signs 

of these changes eventually disappear or overlap. As a result, when one individual is 

compared with others, there may be a difference of only one nucleotide between them, 

the result of several past events that cannot be detected with the current sequences 

analyzed. 

Evolutionary distance matrices are constructed from multiple DNA sequence alignments 

and generated using such computer programs as Clustal, Mafft, Muscle, etc. (Thompson 

et al., 1997; Edgar, 2004; Katoh et al., 2009). These matrices are subjected to various 

statistical analyses. The result is a phylogenetic tree which is a graphical representation 

of the evolutionary relationships among these groups (Fig. 11). The trees are composed 

of nodes and branches. The external nodes are also called operational taxonomic units 

(OTUs) and the internal nodes hypothetical taxonomic units (HTUs) (they represent the 
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hypothetical ancestors of the OTUs). Branches show the relationships among the taxa in 

terms of descent and ancestry. Usually, trees indicate the length of their branches to 

show the time of emergence and the degree of sequence divergence. A clade is a 

cluster of related OTUs that descend from the same HTU. 
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Fig. 11 Schematic representation of a phylogenetic tree. 

 

The phylogenetic tree can be rooted or unrooted (Fig. 12). An unrooted tree only 

infers the relationships among the taxonomic units studied and does not give information 

about the direction of evolution. In a rooted tree, the root represents the common 

ancestor for all the taxonomic units, which shows the order of sequence inheritance. In 

order to get a correct rooted tree, an outgroup needs to be added to the analysis. This 

outgroup can be one or several sequences that are more distantly related to the 

sequences of the internal group than the OTUs from this internal group are to each other 

(Podsiadło and Polz-Dacewicz, 2013). 
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Fig. 12 Examples of rooted (A) and unrooted trees (B). 

 

In the tree, a group of species that includes a common ancestor and all its 

descendants is called monophyletic. A group containing some, but not all, descendants 

of two or more ancestors is called polyphyletic. A group that includes an ancestor, but 
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not all of its descendants is called paraphyletic (Fig. 13). The natural groups of species 

represented by genera, families and/or higher taxonomic ranks should be monophyletic. 

However, many fungal groups are paraphyletic or polyphyletic because most of them 

have been established on the basis of morphological characters, which do not always 

reflect the evolution of the species, but are the result of adaptation to their environment. 

One example of this is the polyphyly exhibited by many genera belonging to the family 

Lasiosphaeriaceae of the order Sordariales, such as Cercophora, Podospora and 

Zopfiella (Cai et al., 2006; Chang et al., 2010). It has even been demostrated that this 

family is paraphyletic, like Chaetomiaceae, another family of the same order (Huhndorf 

et al., 2004). 
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Fig. 13 Examples of monophyletic, polyphyletic, and paraphyletic groupings. 

 

The methods designed to infer phylogeny aim to be models of a process that 

reconstructs the evolutionary relationships between a group of individuals. The 

phylogenetic methods based on the analysis of DNA sequences can be grouped into two 

categories: distance-based methods and character-based methods (Lemey et al., 2009). 

Distance-based methods assume that the evolutionary distance between two taxa 

(defined as the measure of their dissimilarity) is directly related to their phylogenetic 

relationship. These distances are rebuilt by the comparison of pairs of sequences for 

which an index of differences is calculated. The distances calculated enable a matrix to 

be built from which the phylogenetic tree is constructed (Bowman et al., 1992). Neighbor-

joining (NJ) is one of the most widely used distance-based methods of phylogeny 

reconstruction (Saitou and Nei, 1987), which produces trees by forming clusters with the 

sequences that have the shortest genetic distance between them, following the principle 

of minimum evolution proposed by Saitou and Imanishi (1989). Thus, the NJ tree 

obtained is that in which the total sum of the lengths of its branches is shortest. The most 

significant advantage of NJ over other phylogenetic inference methods is the speed at 

which it processes data to obtain a relatively credible phylogram, making it one of the 
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most used methods for inferring phylogenetic relationships (Criscuolo and Gascuel, 

2008). Character-based methods consider each nucleotide position as a separate 

character. From the sequence alignment, this method evaluates the changes for each 

nucleotide position and establishes the possible phylogenetic relationships (DeSalle et 

al., 1994). Examples of these methods are: maximum parsimony (MP), maximum 

likelihood (ML) and Bayesian inference (BI). The MP method identifies the best tree as 

that which requires the minimum number of substitutions (Kolaczkowski and Thornton, 

2004). Using a suitable computer algorithm, the ML method builds the tree with the 

biggest value of the reliability algorithm (Guindon and Gascuel, 2003). The BI method 

does not select the single, most reliable tree but creates a highly reliable set of trees 

(Podsiadło and Polz-Dacewicz, 2013). Once the phylogenetic tree has been obtained by 

either method, it is necessary to determine their degree of reliability. There are various 

methods by which a statistical value that estimates the robustness of the groupings 

formed can be obtained, the bootstrap analysis being one of the most commonly used 

(Felsenstein, 1985; Hillis and Bull, 1993). This analysis determines an index of 

conservation frequency for each branch expressed as a percentage. A branch with a 

bootstrap value equal to or higher than 70% is considered to be well supported. 

Many authors have reported that multilocus analysis is more suitable for species 

delimitation than an individual marker (Dupuis et al., 2012). The concept of phylogenetic 

species defines species as the smallest monophyletic group of organisms that can be 

diagnosed on the basis of one or more derived characters (i.e. unique and exclusive 

taxon) (Cracraft, 1983). According to this definition individual groups can be diagnosed 

easily, but the decision on where to place the species limit is subjective (for example, a 

gene may have two different sequences because there are two alleles in a single 

population or because there are fixed differences between two different populations). 

This subjectivity can be avoided by multiple gene studies (concordance between the 

genealogies of more than one gene). The concordance between the tree branches 

obtained in the phylogenies based on different genes enables species to be connected. 

As can be seen in Figure 14, in genetically isolated species there is congruence between 

their genealogies since their branches overlap, whereas there is incongruence within 

species, which may be caused, for example, by recombination between individuals of the 

same species. Therefore, the transition from concordance to conflict marks the species 

boundaries. For this reason, recent phylogenies are inferred by the sequencing of 

several gene regions. For example, the sequences of four structural genes have been 

used in the Eurotiales: RPB1, RPB2, putative chaperonin complex component TCP-1 

(Cct8), and putative ribosome biogenesis protein (Tsr1) (Houbraken and Samson, 2011).  
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Fig. 14 Analysis of three genealogies (black, red and blue) (adapted from Taylor et al., 2000). 

 

The interpretation of the results derived from molecular data and the study of 

morphological characters are complementary methodologies, and using them both 

enables taxonomic and phylogenetic problems to be solved (Taylor et al., 1994). 

 

1.1.6.4. Polyphasic taxonomy 

Nowadays, physiological and nutritional abilities, ecological and biogeographic data, 

and extrolite profiles are also documented for some fungal groups, which are used in 

combination with molecular and morphological data to build a taxonomical system known 

as polyphasic taxonomy. Polyphasic studies have recently been developed for the 

genera Aspergillus and Penicillium (Frisvad and Samson, 2004; Samson and Varga, 

2009; Berni et al., 2011; Samson et al., 2011; Baquião et al., 2013), among others. 

 

 

1.1.6.5. Recent changes in nomenclature  

The International Code of Botanical Nomenclature (ICBN) has regulated fungal 

nomenclature since 1867. Between 1912 and 2011, and on the basis of Article 59 of the 

ICBN, different scientific names were given to the asexual and sexual morphs of the 

same species for non-lichenized ascomycetes and basidiomycetes. In the early 1990s, 

molecular data became available so it was possible to demonstrate that asexual and 

sexual morphs belong to the same fungus. For this reason, the need to maintain a dual 

nomenclature for pleomorphic fungi has been questioned (Gams, 2005; Hawksworth, 

2005; Rossman and Samuels, 2005). In April 2011 a symposium on fungal taxonomy 

entitled “One Fungus = One Name (1F = 1N)” was held in the Netherlands, and the 

ensuing Amsterdam Declaration on Fungal Nomenclature supported the rule that only 
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one name would be allowed for any fungal species (Hawskworth et al., 2011). However, 

numerous members of the mycological community disagreed, because they felt that 

these changes would have chaotic consequences (Gams et al., 2011). The changes 

proposed in the Amsterdam Declaration were accepted at the 18th International Botanical 

Congress held in Melbourne in July of the same year. The new code for regulating the 

fungal nomenclature was approved, Article 59 was replaced by the new rule of only one 

name for fungal species with pleomorphic life cycles, and the International Code of 

Botanical Nomenclature was renamed the International Code of Nomenclature for Algae, 

Fungi and Plants. Once it had been accepted that it would be desirable for each fungus 

to have only one name, a second symposium entitled "One Fungus = Which Name?" 

was held in Amsterdam in April 2012, the purpose of which was to address the drastic 

changes in the naming of pleomorphic fungi adopted in Melbourne (Braun, 2012). This 

second symposium discussed which name should be chosen for the species that had 

previously been described. The decision was to maintain the oldest name but to make 

exceptions in some cases (for example, if the latter name was the most widely used). It 

was also proposed to create lists of the names that had been accepted and rejected so 

as to minimize the impact that these changes would have on, for example, clinicians and 

clinical microbiologists. No restriction was placed on who might be involved in producing 

these lists except for the fact that they would have to be approved by several committees. 

The lists of names will be submitted for formal adoption in the next International 

Botanical Congress in China in 2017 (Hawskworth et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



INTRODUCTION 

 

 

1.1.7. Taxonomy of ascomycetes. Phylogenetic relationships with other 

taxa of the kingdom Fungi 

The phylum Ascomycota is phylogenetically related to Basidiomycota and both are 

classified in the subkingdom Dikarya (Fig. 15), which reflects their ability to form a 

dikaryotic phase during a part of their life cycles (Hibbet et al., 2007). 

 
 

 

Fig. 15 Phylogeny of kingdom Fungi. Branch lengths are not proportional to genetic distances. 

Picture taken from Hibbett et al., 2007. 

 

Ascomycetes are divided into three subphyla (i.e. Taphrinomycotina, 

Saccharomycotina and Pezizomycotina). Taphrinomycotina includes members belonging 

to the earliest divergence, Saccharomycotina comprises most of the yeasts, and 

Pezizomycotina is the largest subphylum and includes approximately 90% of all reported 

species of ascomycetes and the vast majority of filamentous, ascoma-producing species 

(Spatafora et al., 2006; Hibbett et al., 2007). Figure 16 shows the phylogeny and 

classification of the phylum Ascomycota, including all the subphylums, classes and 

orders. 
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Fig. 16 Phylogeny of the phylum Ascomycota. Picture taken from Hibbet et al. 2007. 

26

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



INTRODUCTION 

 

 

1.2. SOIL ASCOMYCETES 

Soil is an environment for living organisms on the earth’s surface. It is made up of a 

mixture of mineral and organic constituents that are in solid, gaseous and aqueous 

states (Voroney, 2006). The proportions of the main soil components are shown in 

Figure 17 and their distribution in Figure 18. The organic soil matter is the factor that 

plays the most important role in determining the structure of the microbial community 

because it contains large amounts of carbon, and directly supports microbial, plant and 

animal life by retaining essential nutrients and water in the soil (Simpson and Simpson, 

2012; García-Orenes et al., 2013). 

 

Fig. 17 Composition and percentage of each soil component. 

 

Fig, 18 Soil composition and structure. Picture taken from the website 

http://www.fao.org/docrep/r4082e/r4082e03.htm. 

 

The soil habitat is defined as the totality of living organisms inhabiting the soil, 

including plants, animals and microorganisms, and their abiotic environment. It is 

characterized by heterogeneities because its chemical, physical and biological 

characteristics vary in space and over time (Voroney, 2006).  
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Soil is the habitat of widely heterogeneous and extremely diverse microbial 

communities, which are complex and dynamic, and vary in composition depending on 

whether they are in one compartment or level or another (Alexander, 1977; Trabelsi and 

Mhamdi, 2013) (explained in Figure 19). The microorganisms in soil are involved in the 

biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, and the 

biodegradation or stabilization of environmental contaminants (Zhang et al., 2014).  

� 

Fig. 19 Vertical section of soil profile showing its different horizons. Scheme taken from the 

website http://www.geogonline.org.uk/soil_profile.htm. 

 

Soil is a dynamic ecosystem in which sources of organic and inorganic materials are 

transformed and renewed continuously by the physiological/metabolic activity of 

microorganisms (Ingold and Hudson, 1993; Kendrick, 1992). There are several million 
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prokaryotic and eukaryotic microorganisms in a single gram of soil (Curtis and Sloan, 

2005), and fungi are the dominant eukaryotic lineage in terms of biomass (Mueller and 

Schmit, 2007). Moreover, soil is a highly biodiverse habitat and the wide variety of 

microhabitats means that fungal communities are very diverse (Waksman, 1922; 

Domsch et al., 2007). Fungi grow in the spaces between the particles that make up the 

soil, such as the organic material and/or the roots, which provide an appropriate 

substrate for development. The fungal species present in this ecosystem are called soil 

fungi (Watanabe, 2002). They play a key role in the decomposition and mineralization of 

complex, recalcitrant compounds from plants and animals, such as cellulose, 

hemicellulose, lignin and chitin (Boddy et al., 2007). The metabolic activity of fungi 

promotes the redistribution of nutrients and contributes to the formation of humus, which 

immobilizes large amounts of nitrogen and thus maintains fertility and soil structure 

(Hawksworth, 1993; Kirk et al., 2008; Watanabe, 2002). Furthermore, fungi contribute to 

the structural development of soil by hyphal growth and the production of coagulating 

substances like glomalin, which can help the adhesion of soil microaggregates (Aspiras 

et al., 1971; Wright and Upadhyaya, 1998). In the soil, fungi establish complex relations 

with each other and with such other inhabitants as bacteria, algae, protozoa, helminthes 

and arthropods. The mutualistic associations of fungi and plants, which are called 

mycorrhizal symbioses, are widely known and have a determinant effect on plant 

nutrition, plant health, soil structure and even water uptake (Finlay, 2008). The spatial 

distribution of soil fungal communities depends on their response to environmental 

factors, such as soil nutrients, water availability, soil texture and vegetation (Wubet et al., 

2012). 

Many soil ascomycetes produce compounds that inhibit other organisms, such as 

antibiotics, carbon dioxide, ethylene or ammonium. Antibiotics are secondary metabolism 

substances (also called extrolytes), and occur when carbon sources are abundant but 

growth is limited by the absence of other essential nutrients, mostly nitrogen (Carlile et 

al., 2001). Many of the chemical compounds produced by fungi (for example, aflatoxins 

and ochratoxins) are highly toxic to humans, but others have been of great therapeutic 

value (for example, penicillins and cephalosporins). 

Some soil ascomycetes tolerate thermal shocks, desiccation and ultraviolet radiation 

better than other groups of fungi because of the high content of melanic substances in 

the cell walls of their conidia, ascospores and/or ascomata, which protect them from 

ultraviolet radiation. Some of them also tolerate short exposures to high temperatures 

probably due to the chemical composition and structure of the fungal walls, or are even 

thermotolerant or thermophilic. The occasional warming of their ecosystem is a natural 
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phenomenon for many soils (for example, when they are exposed to fire or solar 

irradiation) (Dix and Webster, 1995; Sussman, 1981). 

 

1.2.1. Mycostasis and dormancy phenomena   

The rapid disappearance of nutrients is probably one of the main causes of the soil’s 

inhibiting germination of fungal spores (Carlile et al., 2001; Dobbs and Hinson, 1953; 

Kendrick, 1992; Lockwood, 1964, 1977; Steiner and Lockwood, 1969). This 

phenomenon is known as mycostasis or fungistasis. The presence of inhibitory 

substances produced by different microorganisms (i.e. actinomycetes, fungi) is another 

determining factor in soil mycostasis (Bristow and Lockwood, 1975; Gupta and Tandon, 

1977), which can be interpreted as an advantageous adaptation because it delays 

ascospore germination until the activity of the microorganisms in the ecosystem is 

reduced, or until the nutritional status is restored (Carlile et al., 2001). 

In addition to being the primary habitat of geophylic fungi that are metabolically 

active, soil is also a reservoir of latent spores. Dormancy is the stage that usually 

precedes germination, and during this period spores undergo no morphological changes 

and they maintain basal metabolism. For example, in Neurospora, latent ascospores 

have rates of carbon dioxide production and consumption of oxygen that represent 

between 1 and 4% of somatic cells, respectively. The latent period depends on many 

factors and can last from a few hours to several years (Carlile et al., 2001). 

There are two types of dormancy: exogenous and endogenous (or constitutive) 

(Sussman, 1965). The first is a condition of the environment in which the propagules are 

a part. For example, the temperature may be inappropriate for germination or lack the 

essential nutrients. Because nutrients are quickly removed, soil is usually a nutritionally 

poor medium. It is probably for this reason that many soil fungi are latent for most of their 

life cycle, and develop only when nutrients are occasionally available. Endogenous 

dormancy depends on the structure and/or metabolism of the propagule, and requires 

precise and unusual conditions for disruption. The mechanisms involved in this kind of 

dormancy are diverse in nature, such as the low permeability of the cell wall or the 

production of germination self-inhibitors (Cooke and Whipps, 1993). The distinction 

between exogenous and endogenous dormancy is unclear, and both mechanisms are 

probably present in many spores. 

Spore germination involves the initiation of biochemical activity (absent or much 

reduced during dormancy), a gradual increase in metabolic rate, and morphological 

changes such as the enlargement and emission of the germ tube. The circumstances 

that determine the completion of the dormancy of the fungal spores vary among species 
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and among spore types from the same species (ascospores, macro- and microconidia, 

or chlamydospores) (Carlile et al., 2001). However, some general factors influence spore 

germination: for example, the presence of water or high humidity, the presence of 

oxygen or carbon dioxide, and variations in temperature. Some propagules of 

thermophilic fungi, such as conidia and ascospores, need a heat shock to break the 

dormancy (Dix and Webster, 1995). For some saprophytic fungi the appearance of 

water-soluble nutrients of low molecular weight (sugars and amino acids) is essential to 

germination. Sugars, alcohols, ketones, aldehydes and terpenes produced by plants 

activate the germination of a large number of fungal species. Moreover, the spores of 

coprophilous fungal species are activated by passing through the digestive tract of 

herbivorous animals, where they are exposed to a variety of chemical compounds 

(enzymes and acids) at elevated temperatures. 

 

1.2.2. Methodology for studying soil fungi   

Many studies have been undertaken on microorganisms in natural habitats, 

including techniques for the direct examination of samples by using the microscope, 

which reveals the distribution of microbial populations in soil particles (Gams et al., 1987; 

Garrett, 1981). However, if a mycelial fungus is to be identified, the morphology of the 

structures that produce the fungal propagules must be observed. In the natural medium, 

these may be absent, inconspicuous or hardly visible. Thus, they can only be identified if 

the fungus can be induced to grow and multiply in a culture medium, or if some genetic 

regions can be amplified and sequenced. Isolation methods, which enable fungi to grow 

in pure culture, can be direct or indirect (Carlile et al., 2001). Direct methods transfer 

spores or mycelium from the natural substrate to a sterile culture medium, while indirect 

methods inoculate a fraction of the soil sample directly onto the culture medium, and the 

fungal colonies that develop are then transferred to a new culture medium (which may or 

may not be the same as the primary isolation medium). The techniques based on direct 

extractions, which consist of directly isolating from soil without culture media or 

substrates, are more complex and difficult to perform. The differences in size and density 

of fungal propagules enable them to be separated from soil particles or other 

microorganisms using centrifugation, decantation or flotation in density gradients (Davet 

and Rouxel, 2000). 
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1.2.3. Importance of the study and conservation of soil fungi 

Several fungi are pathogens for humans, animals and plants. In humans, Candida 

spp. and Aspergillus spp. cause the most common opportunistic invasive mycoses that 

are associated with high rates of mortality in immunocompromised patients (Kück et al., 

2014). Pathogenic fungi are usually prevalent in soils but are generally suppressed by 

high fungal diversity (Brussaard et al., 2007). Moreover, fungi pose the greatest threat of 

infection to animals and plants, being the cause of 72% and 64% of all extinctions, 

respectively, and the risk appears to be increasing (Fisher et al., 2012). In agriculture, 

filamentous fungi destroy over 125 million tons of rice, wheat, maize, potatoes and 

soybeans every year (Fisher et al., 2012). However, most fungi have a wide range of 

advantages for man. For example, interest in fungi as a food and feed is increasing, 

because they have considerable nutritional value, are regarded as a delicacy, and are 

used in a variety of processing industries to produce bakery foodstuffs, cheese and 

alcoholic beverages (Ghorai et al., 2009). Fungi can also produce a spectrum of highly 

beneficial drugs and antibiotics because they have a widespread metabolism and 

produce a wealth of bioactive compounds, mostly secondary metabolites such as 

antifungals, antibacterials and insecticidal agents. One example is the cephalosporin 

group of antibiotics produced by Acremonium chrysogenum, and the lovastatin which is 

a statin cholesterol-lowering drug produced by Aspergillus terreus (Kück et al., 2014). 

Fungi are also used in modern agriculture as agents for the bio-control of plant diseases 

(for example, Trichoderma spp. and Gliocladium spp.) (Singh and Sachan, 2013), the 

cosmetic industry (Hyde et al., 2010), bioremediation (Harms et al., 2011), and plant 

biomass degradation (van den Brink et al., 2013). 

Bearing in mind that there are probably more than 5 million species of fungi, of 

which only about 99,000 have been described (Blackwell, 2011), surely there are 

numerous possibilities for discovering new fungal metabolites and new applications for 

these industrial needs. The first step in the investigation of biologically active compounds, 

or valuable organisms, is to isolate, identify and preserve them. The advantage of soil 

fungi is that the effort and cost involved in isolation, cultivation and preservation is 

minimum. Preserving fungi is also important because the earth’s habitats and biotas are 

being lost or biologically impoverished, largely as a result of human action (Novacek and 

Cleland, 2001). This is happening to such an extent extinction rates are up 1000 times 

(Brooks et al., 2006). 
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1.2.4. Previous studies on soil fungi and current knowledge of soil 

ascomycetes 

Adametz (1886), one of the pioneers of the study of soil fungi, isolated and named 

four species of yeast and eleven species of filamentous fungi. Subsequently, 

researchers from several countries gradually increased knowledge about soil mycobiota. 

Of these, Butler (1907), Hagem (1908), Jensen (1912), Oudemans and Koning (1912), 

Waksman (1916, 1917), Takahashi (1919), Chesters (1949) and Warcup (1959) are 

worthy of particular mention. However, the first important step in the study of soil fungi 

was in 1945, when Joseph C. Gilman published A manual of soil fungi, which reported 

about 600 species of fungi, about 200 of which belonged to the class Phycomycetes (not 

currently a valid class, and characterized by filamentous fungi with a coenocytic thallus 

that produced zygospores) and 32 to the class Ascomycetes (now Ascomycota). The 

remaining 385 were mitosporic (anamorphic) fungi. After this publication, which is the 

first compendium of soil fungi, an extensive series of monographs on the taxonomy and 

ecology of soil fungi were published. For example, Litvinov (1967) published a manual of 

soil fungi belonging to the order Moniliales (now invalid, mostly anamorphic Ascomycota) 

from the Soviet Union (USSR); Barron (1968) studied hyphomycetes (anamorphic fungi); 

and Domsch and Gams (1972), who described in detail 204 species belonging to the 

classes Ascomycetes, Basidiomycetes (now Basidiomycota), Deuteromycetes 

(anamorphic fungi), Oomycetes (not regarded as true fungi now) and Zygomycetes (a 

non valid class), including their geographic distribution, type of soil and/or the substrate 

on which they can develop, the optimal growth temperature, the use of certain nutrients, 

etc. The Compendium of soil fungi (Domsch et al., 1980), which picked up where a 

Manual of soil fungi left off, described 389 species, and is still frequently cited today. In 

the 1980s, Joseph von Arx published the monograph Fungi sporulating in pure culture 

(Arx, 1981), a reference work for identifying soil ascomycetes among other fungi, and 

Randolph S. Currah published Taxonomy of the Onygenales: Arthrodermataceae, 

Gymnascaceae, Myxotrichaceae and Onygenaceae, an exhaustive review of 

keratinolytic soil fungi (Currah, 1985). In the 1990s, the monographs by Abdel-aal H. 

Moubasher (1993) and Tsuneo Watanabe (1994) were published, although they are only 

of relative importance because of the limited geographical area taken into account. In 

this period Richard T. Hanlin also published three volumes of his work Illustrated genera 

of Ascomycetes, which describes and illustrates 200 genera of ascomycetes, and 

includes a dichotomous key for their identification (Hanlin, 1990, 1998a, 1998b). 

Particular emphasis should be given to the contributions made by Roy F. Cain, Paul F. 

Canon, Kouhei Furuya, Josep Guarro, David L. Hawksworth, Yoshikazu Horie, John C. 
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Krug, David W. Malloch, Takashi Matsushima, Robert A. Samson, Amelia C. Stolk and 

Shun-ishi Udagawa, who described a large number of new taxa for science. In Spain, 

several PhD theses have contributed to the knowledge of ascomycetes present in the 

soil of regions around the world by undertaking taxonomic studies, reassessing the 

previous taxonomy and describing new species (Punsola, 1985; Cano, 1989; Gené, 

1994; Stchigel, 2000; Rodríguez, 2003; Solé, 2004; García, 2005; Madrid, 2011). The 

most recent monograph on soil-borne ascomycetes is the Atlas of Soil Ascomycetes, 

authored by Guarro et al. in 2012, and which discusses the sexual morph of 

ascomycetes reported in soil throughout the world since 2011, with their respective 

phenotypic and geographic distribution. 

In recent years, the diversity, richness and distribution of fungal communities in 

different types of soil and geographical areas have been studied using new molecular 

tools based on high-throughput sequencing (for example, pyrosequencing, a non-

electrophoretic method of DNA-sequencing). These studies have made it possible to 

make a real estimation of the number of species that exist and also increase our 

knowledge of soil fungi and ascomycetes. Two examples of this kind of study are those 

undertaken by Jumpponen et al. (2010) and Porras-Alfaro et al. (2011), who studied 

fungal communities from different types of soil. Figure 20 shows the distribution of 

ascomycetes found in tallgrass prairie soil. There are more than 14,000 fungal 

sequences distributed across Basidiomycota, Ascomycota, basal fungal lineages and 

Glomeromycota. The first of these two studies also investigated the vertical distribution 

of fungi. It found that the richness and diversity of fungal communities declines with soil 

depth, and that different communities are found in different strata. Despite this, some 

members are found in increasing numbers at greater depths. Some studies have also 

been made of fungi in different locations (for example, Orgiazzi et al. (2012) 

characterized soil fungal communities from different Mediterranean land uses). On the 

basis of the results of recent studies, we can conclude that fungal communities vary in 

diversity and abundance between geographical regions, soil types and even between 

strata in the same soil (different vertical distribution).  
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Fig. 20 Distribution of ascomycetes by orders from a tallgrass prairie soil (adapted from 

Jumpponen et al., 2010). 

 

Recently, several studies have been undertaken to determine how latitude, 

temperature and precipitation influence the composition of fungal communities and the 

relationships between the evolutionary history of soil fungi and their biogeographical 

patterns (Sun et al., 2012; Coince et al., 2014; Treseder et al., 2014).  
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2. INTEREST AND OBJECTIVES 

Interest in fungi is increasing because of their potential as producers of bioactive 

molecules that can be used in medicine, veterinary and plant pathologies, and chemical 

and pharmaceutical industrial processes. Also, because they are eukaryotic organisms, 

they have structures and a genome organization similar to that of plants and animals, so 

they are easily manipulated and the filamentous ascomycetes are models for studying 

the basic aspects of cell regulation. One example is the work done by George Beadle 

and Edward Tatum on Neurospora crassa that was awarded the Nobel Prize in 

Physiology and Medicine in 1958, and opened up a new research field, genetic 

biochemistry. 

To date, about 99,000 fungal species have been described (Kirk et al., 2008). 

However, it was recently estimated that the approximate total is over five million species 

(Blackwell, 2011). Therefore, less than 2% of the extant fungi are known and thousands 

of species are waiting to be discovered. 

A total of 65% of the species described are ascomycetes (Kirk et al., 2008). 

However, sexual morphs have hardly been investigated. They are difficult to isolate in 

culture because the dormancy of their ascospores needs to be interrupted if they are to 

germinate and produce colonies with fertile structures. 

The soil is a huge reservoir for biodiversity, and fungi are the dominant eukaryotic 

lineage in terms of biomass (Mueller and Schmit, 2007). For both these reasons, it has 

been the subject of a great deal of research. Of the large number of studies on soil fungi, 

particular mention should be made of the recently published atlas that compiles all the 

information on taxonomy and geographical distribution for the sexual morphs of the 

phylum Ascomycota isolated from soil prior to 2011 (Guarro et al., 2012). 

The development and improvement of molecular biology tools allowed us to 

reassess the classical taxonomy, previously based on phenotypic (mostly morphological) 

characters, and to build a less subjective taxonomic system. 

Therefore, the main objectives of this thesis are: 

 To isolate members of the phylum Ascomycota from a variety of soil samples using 

different selective techniques. 

 To characterize phenotypically the noteworthy ascomycetes isolated from the soil 

samples processed. 

 To establish the phylogenetic relationships among members of the Ascomycota, 

particularly between the isolates derived from this thesis and related taxa, by 

analysing nucleotide sequences of different loci. 
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 To apply a polyphasic approach to reassess the taxonomy of certain groups of the 

phylum Ascomycota. 
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3. MATERIALS AND METHODS 

3.1. FIELD TECHNIQUES  

3.1.1. Origin of soil samples 

Soil samples were collected in different surveys done mostly by the scientific staff of 

the Mycology Unit of the Faculty of Medicine (Universitat Rovira i Virgili) of Reus (FMR), 

Spain. The soil samples were collected in tropical and subtropical (Argentina, Colombia, 

Costa Rica) and in temperate (Chile, Spain and USA) regions of the world. The places 

selected for collection were chosen based on the poor knowledge or the absence of data 

about the soil-borne fungi in the literature. The collecting period spanned from 1997 to 

2012, and a total of 140 samples were analyzed. Climatologic and biogeographic 

features of the sampled areas where the new taxa were recovered are described in 

detail in the “Materials and Methods” section of each article. 

 

3.1.2. Sampling and preservation of soil samples 

The collection of samples was accomplished by taking approximately 50100 g of 

the most superficial layer of soil without the organic material (horizon A-A0 ~1 cm deep). 

The samples were placed in sterile polyethylene bags, which were sealed with a rubber 

band and labelled. On returning to the laboratory, these were unsealed and stored at 

room temperature until processed. 

 

3.2. LABORATORY TECHNIQUES 

3.2.1. Methods for activation of latent spores  

After collection, soil samples were processed in the laboratory to break down the 

dormancy of the resting spores and to induce their germination. The methods for the 

metabolic activation of dormant spores were based on subjecting a small amount of each 

soil sample to aqueous solutions of selected chemical agents, or heating a suspension of 

a small quantity of the soil sample in water for a short time (30 minutes). 
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3.2.1.1. Spore activation using chemical agents 

3.2.1.1.1 Activation by acetic acid 

Approximately 1 g of each soil sample was suspended in 5 mL of 5 % v/v acetic acid 

(Panreac, Barcelona, Spain), shaking vigorously for 5 min and left for 5 min. The liquid 

layer was removed by decantation and the solid residue was resuspended in 10 mL of 

sterile water and plated onto three Petri dishes of 9 cm diameter in equal volumes 

(approx. 3 mL each). 1015 mL of melted potato carrot agar (PCA; grated potatoes, 20 g; 

grated carrot, 20 g; agar-agar, 20 g; distilled water, 1 L) with L-chloramphenicol (200 mg) 

and 1% w/v dieldrin™ in dimethyl-ketone (20 drops), which is used to inhibit the growth 

of bacterial colonies and the presence of mites, was placed on top of the soil suspension 

. All cultures were incubated at 15, 25 and 35 ºC 

(Stchigel, 2000). 

 

3.2.1.1.2. Activation by ethanol 

Approximately 1 g of each soil sample was suspended in 5 mL of 65 % v/v ethanol 

(Panreac, Barcelona, Spain), shaking vigorously for 5 min and left for 5 min. The 

following steps were the same as those for the acetic acid activation technique (Stchigel, 

2000). 

 

3.2.1.1.3. Activation by phenol 

Approximately 1 g of each soil sample was suspended in 5 mL of 2 % w/v phenol 

(Panreac, Barcelona, Spain), shaking vigorously for 5 min and left for 5 min. The 

following steps were the same as those described for the activation by acetic acid 

(Stchigel, 2000). 

 

3.2.1.2. Activation by heat 

Approximately 1 g of each soil sample was suspended in 10 mL of sterile water and 

homogenized by shaking vigorously. It was incubated in the water bath for 30 min at 

60 °C. Once the incubation was completed, the content of the tube was shaken again 

and plated onto three 9 cm diameter Petri dishes. The following steps were the same as 

those in the activation techniques using chemical agents (Stchigel, 2000). 
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3.2.2. Examination and isolation of taxonomically interesting fungi 

The fungal colonies that developed were examined under a stereo microscope 

(Cambridge Instruments Z45L). Several ascoma were taken using sterile hypodermic 

needles and deposited, usually on a drop of lactic acid (Panreac, Barcelona, Spain) or 

lactophenol (lactic acid, 20 g; phenol, 20 g; glycerol, 40 g; distilled water, 0.02 L), to a 

slide. When the presence of a capsule or gelatinous appendages, apparati at the apex of 

the asci, or dextrinoid / amyloid reactions were suspected, the mountings were also 

performed in distilled water, lactophenol cotton blue (Panreac, Barcelona, Spain) and 

Melzer reagent (chloral hydrate, 100 g; KI, 5 g; I2, 1.5 g; distilled water, 0.1 L), 

respectively. The sexual reproductive structures (ascomata, asci and ascospores) were 

observed and, when the specimens resulted of taxonomic interest, small portions of the 

colony from the primary culture were transferred to a couple of 5 cm diameter Petri 

dishes containing oatmeal agar (OA; oatmeal flakes, 30 g; agar-agar, 20 g; distilled 

water, 1L) using a sterile needle. The incubation conditions were the same as in the 

original plate culture where the specimens were recovered. If the specimen of interest 

was contaminated with another fungi, before the inoculation onto OA, some ascomata 

were removed with a needle and decontaminated by immersion into a drop of 1% 

sodium hypochlorite (NaClO) solution for different time periods (1, 2 or 5 min), and then 

washed with sterile distilled water to remove residual hypochlorite. 

 

3.2.3. Phenotypic identification of the ascomycetes isolated in pure culture 

The specimens isolated in pure culture were identified according to the criteria 

established for each genus, through the study of the fungal colonies growing in different 

culture media and at different temperatures, and by the morphological characterization of 

the somatic and reproductive structures. For some taxa, a biochemical characterization 

was also carried out. 

 

3.2.3.1. Cultural characterization 

For cultural characterization of the isolates of interest, the colonies were grown and 

incubated on different culture media (see below) at different temperatures (5, 15, 25, 35 

and 40 ºC) and times (from two weeks to one month), depending on the nature of the 

taxa: Czapek’s agar (Cz; Difco, Becton Dickinson, France), Czapek-Yeast Extract agar 

(CYA; K2HPO4, 1 g; Czapek’s concentrated solution, 0.01 L; extract or autolyzed yeast, 5 

g; sucrose, 30 g; agar-agar, 15 g; distilled water, 1 L), malt extract agar (MEA; meal 

extract, 20 g; agar-agar, 20 g; distilled water, 1 L), and malt extract agar with 40% 
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sucrose (MEA 40%; meal extract, 20 g; sucrose, 400 g; agar-agar, 20 g; distilled water, 1 

L), for members of the order Eurotiales; phytone yeast extract agar (PYE; papaic digest 

of soybean meal, 10 g; yeast extract, 5 g; dextrose, 40 g; streptomycin, 0.03 g; 

chloramphenicol, 0.05 g; agar-agar, 17 g; distilled water, 1 L), for members of the order 

Onygenales; and OA, PCA and potato dextrose agar (PDA, Pronadisa, Madrid, Spain), 

for ascomycetes in general. Colour notations were taken from the “Methuen handbook of 

colour” (Kornerup and Wanscher, 1984). The cultural characteristics were described 

every week up to one month, using the assistance of a stereomicroscope. An example of 

this is shown in Figure 21. The features of interest were: 

 Size of the colony (diameter in millimeters) 

 Shape/Form (lobulate, punctiform, circular, irregular, filamentous, rhizoid) 

 Colour of the surface and the reverse 

 Surface (smooth, veined, rough, cerebriform, radially folded, dull, wrinkled / 

shriveled, glistening) 

 Texture (mucoid, brittle, butyrous, dry, coriaceus, felted/felty, velvety, fasciculate, 

floccose, cottony, woolly, powdery, granulose) 

 Topography (flat, raised, convex, pulvinate, umbonate, crateriform) 

 Margins (regular, fringed, arachnoid, fimbriate, undulate, lobate, filamentous, 

curled, filiform) 

 Growing zones (bands, sectors, concentric circles) 

 Presence of exudates 

 Presence of fertile ascomata 

a b c

d fe

 

Fig. 21 Different types of colonies. a. velvety, cerebriform. b. cottony, raised. c. granulose, flat. d. 

woolly, radially folded, crateriform. e. lobulate, margins regular. f. filamentous, margins fringed.
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3.2.3.2. Biochemical tests 

The following biochemical tests were carried out for some taxa belonging to the 

Onygenales studied during the development of this thesis: 

 Resistance to cycloheximide was evaluated by growing on Mycosel agar (MYC; 

papaic digest of soybean meal, 10 g; dextrose, 10 g; cycloheximide, 0.4 g; 

chloramphenicol, 0.05 g; agar-agar, 15.5 g; distilled water, 1 L). 

 Growth rate, and alkalinization or acidification was tested on bromcresol purple 

milk solids glucose agar (BCP-MS-G; skim milk powder, 40 g; glucose, 20 g; 

agar-agar, 15 g; bromocresol purple solution [bromocresol purple, 0.16 g; ethanol 

95 % solution, 10 mL] 1 mL; distilled water, 1L).The acidification of the medium is 

observed by a colour change, from bluish to yellow, and the alkalinization, from 

bluish to deep purple. 

 Urease production on Christensen’s urea agar (Merck, Darmstadt, Germany). 

The splitting of the urea by urease produces a colour change of the medium, from 

yellow or yellowish-orange to fuchsia. 

 Lipase activity on Tween 80 opacity test medium (TOTM; bacteriological peptone, 

10 g; NaCl, 5 g; CaCl2, 0.1 g; Tween 80, 5 ml; agar-agar, 15 g; distilled water, 1 

L). The lipase activity is observed by opacity around the colony. 

 Keratinolytic capability was evaluated by culturing the fungus on blonde, sterile, 

prepubesence child's hair on tap water agar (TWA; agar-agar, 20 g; tap water, 1 

L) in a 9 cm diameter Petri dish, incubated for four weeks at 25 ºC in darkness, 

and examining the hairs under a bright-field microscope by mounting them in a 

drop of 20% KOH. 

 

3.2.3.3. Morphological characterization 

The main features of the vegetative and reproductive structures are follows: 

 Hyphae: colour, shape, diameter, presence of septa and anastomosis. 

 Ascomata: kind, colour, shape, size, initial forms; presence, kind, colour, shape, 

ornamentation and size of peridial hairs; thickness, number of layers and texture 

of the peridium; colour, shape, ornamentation and size of peridial cells; presence 

of paraphyses and periphyses and their colour, shape, branching pattern and 

disposition of the septa. 

 Asci: number of ascospores per ascus, shape and size, longevity (evanescent or 

persistent), presence of apical structures and staining reactions (amyloids, non-

amyloids or dextrinoid), presence and size of stipe. 
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 Ascospores: colour, shape and size, cell wall ornamentation, disposition in the 

asci, presence and number of septa and their disposition; presence, number and 

position of germ pores or furrows; presence of a mucilaginous layer or a sheath; 

presence, disposition, shape and size of mucilaginous appendages. 

 Anamorph: kind, colour, shape, size and ornamentation of the conidiophores and 

conidiogenous cells; kind of conidiogenesis; colour, shape, size, ornamentation, 

disposition and number of cells of the conidia. 

 Chlamydospores: presence, colour, shape, size, ornamentation and disposition. 

The descriptions of the new taxa, found during the development of this doctoral 

thesis, were also deposited in MycoBank (http://www.mycobank.org/). 

 

3.2.3.3.1. Microscopic mountings 

For microscopic examination and characterization of the fungal structures, the 

techniques listed below have been used:  

 Direct mounting: reproductive structures from a colony of the fungus of interest 

were removed using a hypodermic needle, and deposited onto a drop of 

mounting medium previously deposited in a slide. Then, it was covered by a 

coverslip and sealed with nail polish to prevent the drying of the preparation. 

 Microculture: into a Petri dish containing a culture medium suitable for fungal 

growth, blocks of 1 cm2 were cut and deposited aseptically on the surface of tap 

water agar (TWA). Subsequently, the four corners of the blocks were inoculated 

and each block covered with a sterile coverslip. When the fertile structures of the 

fungus were observed, the coverslip was carefully removed from the agar block 

and placed onto a drop of mounting medium previously deposited in a slide (Fig. 

22).  

 

 
 

Fig. 22 Example of microculture  
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3.2.4. Microscopic examination of the specimens 

Light field (with Nomarski and phase contrast condensers) and scanning electron 

microscopes were used to study in detail and to document the characteristics (including 

the measures) of the vegetative and reproductive structures of the specimens for their 

identification. 

 

3.2.4.1. Light field microscopy 

To study the morphological features of the taxonomically interesting taxa, the 

following microscopes were used: 

 Olympus BH2 

 Olympus CH2 

 Zeiss Axio Imager M1 

Images captation of the fungal structures were taken by Zeiss Axio Imager M1 light 

microscope. 

 

3.2.4.2. Scanning electron microscopy (SEM) 

In order to study more in detail the ornamentation of several fungal structures 

particularly of conidia and ascospores, the specimens were studied under scanning 

electron microscope (SEM) following the protocol described in Figueras and Guarro 

(1988 a, b) with some modifications (Stchigel 2000). A scanning electron microscope 

Jeol JSM-6400 of the Scientific-Technique Service of the University Rovira i Virgili 

(Tarragona, Spain) was employed. The working distance to the sample varied from 8 to 

39 mm, and the applied voltage ranged between 10 and 20 keV. 

 

3.2.5. Molecular study 

The molecular study was carried out to corroborate the morphological identification 

of the specimens, to assess the taxonomical placement of insertae sedis taxa, and to 

clarify the phylogenetic relationships of the fungi of taxonomic interest with their relatives. 

 

3.2.5.1. DNA extraction 

DNA extraction was performed directly from fungal colonies on PDA incubated at 

25 °C during a period of time to obtain enough fungal material (three days to two weeks). 

Young colonies were used to minimize the presence of pigments which might inhibit the 
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following PCR reactions. We used the Fast DNA kit protocol (Bio 101, Inc., Joshua Way, 

Vista, California, USA) according to the manufacturer.  

 

3.2.5.2. Amplification and sequencing 

Amplification and sequencing of the 5.8S nrRNA gene and the internal transcribed 

spacers 1 and 2 (ITS region) were performed with the primer pair ITS5/ITS4 as 

described by White et al. (1990). The D1 and D2 domains of the 28S large subunit of the 

nrRNA gene (D1−D2) were amplified using primers NL1/NL4 following the protocol of 

O`Donnell (1993). A larger fragment of the 28S which includes the D1, D2 and D3 

domains (D1−D3) was amplified with the LR0R/LR5 pairs of primers following the 

protocol published by Vilgalys and Hester (1990). Amplification and sequencing of the 

18S small subunit of the nrDNA gene was performed with the NS1/NS4 primer pair, 

according to Wu et al. (2002). A fragment of the actin (ACT) was amplified and 

sequenced with the Act-1/Act-4R pairs of primers following the protocols published by 

Voigt and Wöstemeyer (2000), and a fragment of the calmodulin (CAL) using the 

Cmd5/Cmd6 primer pair according to Hong et al. (2005). The fragments of the RNA 

polymerase II largest subunits (RPB1 and RPB2) and of the putative chaperonin 

complex related to TCP-1 (Cct8) were amplified with primer pairs RPB1-F1843/RPB1-

R3096, RPB2-5F/RPB2-7R and Cct8-F660/Cct8-R1595, respectively (Houbraken and 

Samson, 2011). Amplification of two different fragments of the β-tubulin (BT2) and of 

elongation factor (EF1) genes was performed with the Bt2a/Bt2b and BT2916/BT1819R 

primer pairs according to Glass and Donaldson (1995) and EF983F/EF2218R and EF-

1H/EF-2T according to Sung et al. (2007) and O’Donnell (2000), respectively. The 

nucleotidic sequences of the primers indicated in this paragraph and the size of the 

amplification product are shown in the table 2. The PCR reaction was carried out in a 

final volume of 40 μL that contained 20 a 60 ng of genomic DNA, 10X PCR Buffer (200 

mM Tris-HCl pH 8.4, 500 mM KCl), forward and reverse primers in a concentration of 10 

μM, MgCl2 50 mM, dNTP´s 0.2 mM (of each nucleotide), Taq DNA polimerase 5 U/μL 

(Invitrogen, Holanda), all diluted in sterile miliq water. The amplification program was: pre 

denaturation at 94 ºC, 5 min; 35 cycles of: 95 ºC, 30 s (denaturation), variable 

temperature depending on the gene (Table 2), 1 min (annealing) and 72 ºC, 1.5 min 

(extension); final extension at 72 ºC, 7 min. 
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Table 2. Details of the primers used to amplify and sequence the genes used in the molecular studies of this thesis. 

Locus Primer forward  
(5’  3’) 

Primer reverse  
(5’  3’) 

Annealing Tª 
(ºC) 

Product size  
(pb) 

ITS 
ITS 5 

GGAAGTAAAAGTCGTAACAAGG 
ITS 4 

TCCTCCGCTTATTGATATGC 
53 650750 

D1-D2 
NL1 

GCATATCAATAAGCGGAGGAAAAG 
NL4 

GGTCCGTGTTTCAAGACGG 
53 600650 

D1-D3 
LROR 

ACCCGCTGAACTTAAGC 
LR5 

TCCTGAGGGAAACTTCG 
53 800900 

SSU 
NS1 

GTAGTCATATGCTTGTCTC 
NS4 

CTTCCGTCAATTCCTTTAAG 
53 1,0501,100 

ACT 
Act-1 

TGGGACGATATGGAIAAIATCTGGCA 
Act-4R 

TCITCGTATTCTTGCTTIGAIATCCACAT 
56 850950 

BT2 
Bt2a 

GGYAACCARATHGGTGCYGCYTTC 
Bt2b 

ACCCTCRGTGTAGTGACCCTTGGC 
5860 450500 

 
BT1819R 

TTCCGTCCCGACAACTTCGT 
BT2916 

CTCAGCCTCAGTGAACTCCAT 
5055 9001,050 

CAL 
Cmd5 

CCGAGTACAAGGAGGCCTTC 
Cmd6 

CCGATAGAGGTCATAACGTGG 
5558 550650 

Cct8 
Cct8-F660 

GIGTKGTBAAGATCATGGGWGG 
Cct8-R1595 

RTCMACRCCNGTIGTCCAGTA 
50 700850 

EF1 
EF983F 

GCYCCYGGHCAYCGTGAYTTYAT 
EF2218R 

ATGACACCRACRGCRACRGTYTG 
5860 9001,050 

 
EF-1H 

ATGGGTAAGGARGACAAGAC 
EF-2T 

GGARGTACCAGTSATCATGTT 
53 500650 
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RPB1 

RPB1-F1843 
ATTTYGAYGGTGAYGARATGAAC 

RPB1-R3096 
GRACRGTDCCRTCATAYTTRACC 

49 850950 

RPB2 
RPB2-5F 

GGGGWGAYCAGAAGAAGGC 
RPB2-7R 

CCCATRGCTTGYTTRCCCAT 
5662 1,0001,100 
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Once obtained a correct amplification following the protocols mentioned for each 

locus and verified using agarose gel electrophoresis at 2% (Pronadisa, Madrid, Spain), 

followed by RedSafe DNA Stain (iNtRON Biotechnology, Seoul, Korea) staining, the 

amplified products were sent to Macrogen (Netherlands and Korea) for sequencing these 

using a 3730 XL DNA analyzer (Applied Biosystems).  

The software SeqMan version 7.0.0 (Lasergene, Madison, Wisconsin) were used to 

obtain consensus sequences from the complementary sequences of each isolate.  

 

3.2.5.3. Molecular identification 

BLAST searches (Altschul et al., 1990) were performed to compare molecular data 

of the isolates studied with those of other fungi deposited in the GenBank database 

(http://blast.ncbi.nlm.nih.gov). The genes usually used were 28S and ITS. 

 

3.2.5.4. Sequence alignment 

Nucleotide sequence alignments were performed with ClustalX version 1.81 

(Thompson et al. 1997), followed by manual adjustments with MEGA5 and MEGA6 

(Tamura et al. 2011, 2013) or with a text editor.  

 

3.2.5.5. Phylogenetic analyses 

For the phylogenetic inference, the following methods were used: 

 Neighbor-joining (NJ) and Maximum likelihood (ML): trees were inferred using 

MEGA5 and MEGA 6 (Tamura et al. 2011, 2013), with partial deletion of gaps, the 

substitution model proposed by the program, and 1000 bootstrap replicates. 

Bootstrap support values ≥ 70% were considered significant. 

 Maximum parsimony (MP): this analyses were performed using the PAUP* version 

4.9b10 software (Swofford, 2002), obtaining the trees after 100 heuristic searches 

with random sequence addition and tree bisection-reconnection branch-swapping 

algorithms, collapsing zero-length branches and saving all minimal length trees. 

The robustness of branches was assessed by bootstrap analysis of 1000 replicates, 

considering significant bootstrap support values ≥ 70%. 

 Bayesian inference (BI): the bayesian analyses were performed in the MrBayes 

(version 3.1) computer program (Huelsenbeck and Ronquist, 2001), running 

1.000.000 generations in four chains, saving the trees every 100 generations. The 

25% of all trees obtained were used to construct a 50% majority-rule consensus 

tree. Bayesian posterior probability scores ≥0.95 were considered significant. 
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3.2.5.6. Archive of nucleotide sequences and alignments 

The sequences generated during our research were deposited in the European 

Molecular Biology Larboratory (EMBL) (http://www.ebi.ac.uk/embl/Submission/) and in 

the The National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/). The alignments used in the cladistic analyses were 

deposited in TreeBASE (www.treebase.org). 

 

3.2.6. Conservation of the isolates of interest 

The fungi isolated in pure culture were preserved using different methods of 

conservation and in different culture collections. 

 

3.2.6.1. Conservation in slants 

Melted PCA, PDA and OA were introduced aseptically into polyethylene sterile 

tubes and inclined to form a slant after sealed by a plastic cap. Once the medium gelled 

and the control of sterility passed, the slants were inoculated with the fungus of interest. 

The fungi were grown at optimum temperature in an incubator (Selecta, Barcelona, 

Spain) during the time required for the ascomata formation. Finally, to guarantee the 

conservation, the cultures were totally covered with sterile mineral oil (petrolate or liquid 

paraffin), and preserved at room temperature. 

 

3.2.6.2. Conservation in sterile water 

Colony blocks about 5 mm2 of sporulated cultures on agar medium were transferred 

to glass vials containing 5 mL of sterilized distilled water. Then they were stored at room 

temperature. 

 

3.2.6.3. Conservation by lyophilisation 

The strains were cultured on agar medium to obtain abundant sporulation. The 

colonies were scraped and mixed with 3 mL of a 10% skim milk solution (Difco, USA), a 

cryoprotectant, which was previously sterilized at 115 °C for 15 min. The plates were 

slightly agitated and, then 1 mL of this solution was dispensed in 3 mL sterile glass vials 

and placed in the lyophilizer (Advantage 2.0 Series; Virtis Company Gardiner, USA). 

Sublimation was achieved when the temperature of the condenser reached 45° C, and 

after the vacuum of 200 mTorr was made, the following lyophilization cycle was 
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performed: -30° C (240 min), -10ºC (240 min), +10 °C (300 min), and +30°C (300 min). 

After the process was complete, the vials were sealed under vacuum and stored at room 

temperature. 

 

3.2.6.4. Dried cultures 

The holotypes, which consisted of the primary isolate of the new taxon, were dried 

in a heater at 4555 °C for several days. These were sent for deposit to the 

Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands. The isotypes 

(cultures derived from the type culture, which were also dried in the heater) where 

deposited in the Faculty of Medicine, Reus (FMR), Tarragona, Spain. 

 

3.2.6.5. Preservation of living cultures 

The living cultures of the new or interesting taxa were deposited in the following 

collections: 

 Biological Resource Center (NBRC), Japan 

 Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands 

 Faculty of Medicine, Reus (FMR) 
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4. RESULTS AND DISCUSSION 

The fungal taxonomy was traditionally based on the description and comparison of 

the reproductive (asexual and sexual) and vegetative structures and, secondary, on 

cultural characterization of the specimens. However, with the advent of molecular 

techniques (the PCR-based amplification of genomic loci and their sequencing) in the 

1990s, it has changed considerably. Molecular studies have revealed that the use of 

morphological features to infer phylogenetic relationships between the taxa included in 

certain families of the Ascomycota can lead to erroneous conclusions because, as was 

mentioned previously, these taxonomic criteria have some disadvantages. Because of 

the building of a stable taxonomic system implies that it must be as objective as possible, 

both molecular and morphological data must be taken into account. Greater use is also 

being made of polyphasic studies, which combine morphological and molecular data with 

physiological and nutritional abilities, ecological and biogeographic information, and the 

analysis of extrolites profiles. 

During the developing of this thesis, a total of 171 ascomycetes were isolated in 

pure culture and morphologically characterized and presumptively identified, amplifying 

and sequencing the domains D1D3 of the 28S nrRNA gene and the ITS region of the 

nrRNA of 123 of them (Table 3). Both loci were used to verify the morphological 

identification by BLAST search, and also to display their phylogenetic relationships with 

other Ascomycota. Occasionally other loci were amplified and sequenced when the 

phylogeny obtained using the ribosomal genomic regions did not have sufficiently 

resolution, or to reinforce that. Other type and reference strains were obtained from 

different collections to incorporate in the phylogenetic analysis (Table 4). 

A phylogenetic analysis of the D1D3 sequences of all the isolates molecularly 

studied and of the reference strains for other collections was carried out to verify their 

taxonomic placement and study the phylogenetic relationships among them. The length 

of the amplicon used was 821 bp, of which 344 bp were parsimony informative. Figure 

23 shows the Maximum Likelihood tree inferred. 

In the phylogenetic study, our isolates were located in five well-supported main 

clades, belonging to the classes Dothideomycetes (100% bs / 1 pp), Eurotiomycetes 

(97% bs / 1 pp), Leotiomycetes (93% bs / - pp), Sordariomycetes (100% bs / 1 pp) and 

Pezizomycetes (100% bs / 1 pp).  We observed that a large number of isolates were 

located in Eurotiomycetes and Sordariomycetes (43% and 47% of the isolates, 

respectively), which suggested that the techniques for spore activation employing 

chemical agents and heat were especially useful for recovering such taxa. 
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Our molecular and phenotypic results (developed below) provided new and 

noteworthy taxonomic/systematic information about certain known taxa and led us to 

propose 5 new genus, 13 new species and 47 new combinations.  
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Table 3. Isolates sequenced during the development of the thesis. 

Taxa FMR  Origin GenBank accession #  

   ITS LSU 

Achaetomium sp. 13001 Argentina, Iguazu National Park   
Anthracobia muelleri  13609 Spain, Gran Canaria, Barranco Laurel   
Aphanoascella galapagosensis 12019 Lesions on the carapace of a Galapagos tortoise, South Texas zoological collection JQ864081 JQ864082 
Apiosordaria backusii 12439 Tennessee, Great Smoky Mountains National Park  KP981423 
Apiosordaria backusii 13591 Spain, Tarragona, “Els Gorgs de la Febró”  KP981424 
Arnium sp. 13412 India, Gualior  KP981428 
Aspergillus auratus 11604 Colombia, Bogotá, Natural Park   
Aspergillus auratus  11802 Colombia, Isla de los Micos   
Aspergillus fischeri 11606 Colombia, Bogotá, Natural Park   
Aspergillus fischeri 11804 Colombia, Isla de los Micos   
Aspergillus fischeri 11803 Colombia, Bogotá, Natural Park   
Aspergillus fischeri 11860 Colombia, Bogotá, Natural Park   
Aspergillus fischeri 11862 Colombia, Leticia, “Parque de los Loros”   
Aspergillus fischeri 11912  Colombia, Leticia, “Parque de los Loros”   
Aspergillus fischeri 11921 Colombia, Leticia, “Parque de los Loros”   
Aspergillus fischeri 12006 Argentina, Misiones, Iguazu National Park   
Aspergillus fischeri 13506 Argentina, Posadas, Alberto Roth botanical garden   
Aspergillus fischeri 13512 Argentina, Misiones, Iguazu National Park   
Aspergillus fischeri 11922 Colombia, Leticia, “Parque de los Loros”   
Aspergillus fischeri 11923 Colombia, Leticia, “Parque de los Loros”   
Aspergillus fischeri 11924 Colombia, Bogotá, Natural Park   
Aspergiilus fischeri 13512 Argentina, Misiones, Iguazu National Park   
Aspergillus laciniosus  11807 Colombia, Bogotá, Natural Park   
Aspergillus laciniosus 13504 Argentina, San Ignacio   
Aspergillus laciniosus 13515 Argentina, Posadas, Alberto Roth botanical garden   
Aspergillus quadricinctus 13511 Spain, Mallorca, Trenc    
Aspergillus tsunodae 13605 Colombia, Bogotá, Natural Park   
Aspergillus nidulans 13507 Spain, Malaga, “Sierra de las Nieves”   
Aspergillus posadasensis 12168 Argentina, Posadas, Alberto Roth botanical garden HG529483 HG529485 
Aspergillus posadasensis 12322 Argentina, Posadas, Alberto Roth botanical garden HG529484 HG529486 
Aspergillus tatenoi 11735 Colombia, Leticia, “Parque de los Loros”   
Aspergillus tatenoi 12010 Argentina, Misiones, Iguazu National Park   
Aspergillus tsunodae 13605 Argentina, Misiones, Iguazu National Park   
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Auxarthron longisporum 12768
T
 Portugal, Beja, Castro Verde HG326873 HG326874 

Auxarthron ostraviense 14372 Colombia. Amacayacu   
Auxarthron umbrinum 13614 Spain, Madrid   
Chaetomidium arxii 12364 Spain, Gran Canaria  KP204014  
Chaetomium bostrychodes 12161 Colombia, Leticia, “Parque de los Loros”   
Chaetomium brasiliense 11849 Colombia, Leticia, “Parque de los Loros”   
Chaetomium flavigenum  13488 Tennessee, Great Smoky Mountains National Park   
Chaetomium fusiforme 13491 Colombia, Leticia, “Parque de los Loros”   
Chaetomium gracile 13489 Tennessee, Great Smoky Mountains National Park   
Chaetomium indicum 13610 Tennessee, Great Smoky Mountains National Park   
Chaetomium megasporum 11909 Colombia, Leticia, “Parque de los Loros”   
Chaetomium robustum 12163 Spain, Gran Canario, Pico de Osorio   
Chaetomium robustum  13487 Tennessee, Great Smoky Mountains National Park   
Chaetomium spiralotrichum 12004 Spain, Gran Canaria, Pico de Osorio   
Corynascella inaequalis 12440 Spain, Gran Canaria   
Corynascus fumimontanus 12372

T
 Tennessee, Great Smoky Mountains National Park LK932694 LK932706 

Corynascus verrucosus 12369 Tennessee, Great Smoky Mountains National Park LK932699 LK932704 
Corynascus verrucosus 12783 Tennessee, Great Smoky Mountains National Park LK932695 LK932705 
Diplogelasinospora moalensis 13034

T
 Principado de Asturia, Cangas del Narcea, Veiga de Rengos, Moal HG514152 KP981430 

Diplogelasinospora princeps 12784 Tennessee, Great Smoky Mountains National Park   
Diplogelasinospora princeps 13414 Tennessee, Great Smoky Mountains National Park  KP981431 
Diplogelasinospora princeps 13415 Tennessee, Great Smoky Mountains National Park  KP981432 
Diplogelasinospora princeps 13665 Spain, Galicia, Betanzos, Mandeo river   
Emmonsiellopsis coralliformis 4024

T
 Spain, Girona, Empuriabrava KP101585 KP101585 

Emmonsiellopsis terrestris 4023 Spain, Girona, Estartit KP101582 KP101583 
Hamigera avellanea 11805 Colombia, Leticia, “Parque de los Loros”   
Hamigera avellanea 13505 Argentina, Misiones, Iguazu National Park   
Hamigera avellanea 13513 Tennessee, Great Smoky Mountains National Park   
Hamigera paravellanea 11605 Colombia, Bogotá, Natural Park   
Hamigera paravellanea 13503 Tennessee, Great Smoky Mountains National Park   
Hapsidospora irregularis 13607 Spain, Mallorca, Sa Calobra   
Jugulospora rotula 12428 Tennessee, Great Smoky Mountains National Park  KP981436 
Jugulospora rotula 12690 North Carolina, Great Smoky Mountains National Park  KP981437 
Jugulospora rotula 12781 Tennessee, Great Smoky Mountains National Park  KP981438 
Lasiobolidium orbiculoides 13606 Chile   
Leiothecium cristatum 11998 Argentina, Misiones, Iguazu National Park KF732838 HG529487 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



  

Leiothecium ellipsoideum 11997 Argentina, Misiones, Iguazu National Park   
Leucothecium emdenii 12366 Tennessee, Great Smoky Mountains National Park   
Medusitheca citrispora 12767

T
 North Carolina, Great Smoky Mountain National Park, Cartoogechaye Creek 

Campground 
KP981477 KP981453 

Microthecium fayodii 12363  Tennessee, Great Smoky Mountains National Park KP981482 KP981460 
Microthecium fimicola 5483 Australia, Moara KP981485 KP981463 
Microthecium fimicola 12370 Tennessee, Great Smoky Mountains National Park KP981486 KP981464 
Microthecium fimicola 13148 Spain, Aragon, Los Valles Occidentales KP981487 KP981465 
Microthecium japonicum 12371 Spain, Gran Canaria, Pico de Osorio KP981488 KP981467 
Microthecium levitum 6218 Nepal, Bhadgaon KP981489 KP981468 
Microthecium levitum 10098 Nigeria, Enugu, Nsukka KP981490 KP981469 
Microthecium levitum 13884 Spain, Catalonia, Vall Fosca KP981491 KP981470 
Microthecium sp. 6725 Egypt, Sinai  KP981494 KP981474 
Microthecium sp. 7183 New South Wales, Sydney, Blue Mountains KP981495 KP981475 
Microthecium sp.  12373 Forest soil, USA, North Carolina, Great Smoky Mountain   
Myxotrichum sp. 13210 Spain, Navarra, Baraibar   
Myxotrichum stipitatum 13122 Spain, Galicia, Betanzos, Mandeo river   
Myxotrichum stipitatum 13664 Spain, Galicia, “Parque natural de Olveira”    
Naviculispora terrestris 10060

T
 Argentina, Tucumán province, Tafí del Valle  KP981439 

Neurospora dictyophora 12886 Tennessee, Great Smoky Mountains National Park   
Neurospora novoguineensis  12697 Argentina, Posadas, Alberto Roth botanical garden   
Neurospora indica 12429 Tennessee, Great Smoky Mountains National Park   
Paecilomyces niveus 11806 Colombia, Leticia, “Parque de los Loros”   
Podospora setosa 12787 Spain, Gran Canaria  KP981441 
Preussia flaganni  13603 Spain, Gran Canaria, Los Picos de Gáldar   
Preussia funicola 13611 Argentina, Posadas, Alberto Roth botanical garden   
Preussia funicola 14373 Argentina, Posadas, Alberto Roth botanical garden   
Pseudallescheria fusoidea 12001 Colombia, Leticia, “Parque de los Loros”   
Pseudallescheria fusoidea 13416 Spain, Tarragona, Prades   
Pseudeurotium ovale 13600 Tennessee, Great Smoky Mountains National Park KP686192 KP686193 
Pseudoneurospora canariensis 12156

T
 Spain, Gran Canaria, Pico de Osorio  HG326871 

Pseudoneurospora canariensis 12323 Spain, Gran Canaria, Pico de Osorio  HG326872 
Oidiodendron flavum 13883 Spain, Galicia, Betanzos, Mandeo river   
Rinaldiella pentagonospora 12018

T
 Contaminated human lesion, USA, Georgia, Dahlonega KC702789 KP981442 

Sordaria prolifica 13599 Spain, Mallorca, Cap de les salines    
Talaromyces bacillisporus 11600 Colombia, Bogotá, National Park   
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Talaromyces bacillisporus 11908 Colombia, Leticia, “Parque de los Loros”   
Talaromyces flavus 11800 Colombia, Bogotá, National Park   
Talaromyces flavus 12162 Colombia, Leticia, “Parque de los Loros”   
Talaromyces sp. 7185 Australia, Sidney, Blue Montains   
Talaromyces sp. 7186 Spain, Zamora, Sanabria lake   
Talaromyces sp. 11601 Colombia, Bogotá, National Park   
Talaromyces sp. 12374 Spain, Gran Canaria, Pico de Osorio   
Talaromyces stipitatus 11736 Colombia, Isla de los Micos   
Talaromyces trachyspermus 11801 Colombia, Leticia, “Parque de los Loros”   
Talaromyces trachyspermus 11810 Colombia, Leticia, “Parque de los Loros”   
Thelebolus microcarpus 7544 Argentina, Tucumán, Tafí el Valle, Abra del Infiernillo  LN609269 LN609269 
Thermothelomyces heterothallica 5174 Spain  LK932692 
Thermothelomyces heterothallica 5175 Spain  LK932693 
Thermothelomyces heterothallica 13215 Tennessee, Great Smoky Mountains National Park LK932697 LK932703 
Thielavia terricola 12785 Tennessee, Great Smoky Mountains National Park   
Thielavia terricola 12786 Spain, Gran Canaria LK932696  
Warcupia terrestris  12689 Tennessee, Great Smoky Mountains National Park   
Zopfiella longicaudata 12365 Tennessee, Great Smoky Mountains National Park  KP981448 
Zopfiella longicaudata 12782 Spain, Gran Canaria  KP981449 
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Table 4. Type and reference strain obtained from different collections sequenced by us. 

Taxa Strain GenBank accession # 

  ITS LSU 

Annulispora ellipsospora (=Sphaerodes 
ellipsospora) 

NBRC 31376
T
  KP981451 

Annulispora singaporensis (=Sphaerodes 
singaporensis) 

NBRC 30865
T
  KP981452 

Apiosordaria sacchari CBS 713.70  KP981425 
Apiosordaria striatispora CBS 154.77

T
  KP981426 

Apiosordaria vermicularis CBS 303.81
T 

 KP981427 
Aspergillus cejpii  CBS 124389   
Cercophora mirabilis CBS 120402  KP981429 
Corynascella humicola  CBS 337.72

T
   

Corynascella inaequalis CBS 331.75
T
 LK932700  

Corynascella inquinata  CBS 155.80
T
   

Corynascus novoguineensis NBRC 9556 LK932698  
Corynascus sepedonium (=Corynascus similis) IMI 378521   
Corynascus verrucosus IMI 378522

T
   

Corynascus sexualis IMI 378520
T
  LK932708 

Emmonsiellopsis terrestris CBS 273.33
T
   

Helicocarpus griseus (=Ajellomyces griseus) CBS 128.88
T
 KP686191  

Jugulospora carbonaria (=Apiosordaria 
antarctica) 

IMI 381338  KP981433 

Jugulospora rotula (=Apiosordaria hispanica) CBS 110112  KP981434 
Jugulospora rotula (=Apiosordaria globosa) CBS 110113  KP981435 
Melanospora damnosa CBS 113681 KP981478 KP981454 
Melanospora kurssanoviana NBRC 8098 KP981479 KP981455 
Melanospora verrucispora NBRC 31375

T
 KP981480 KP981456 

Melanospora zamiae NBRC 7902  KP981457 
Microthecium ciliatum (=Pteridiosperma 
ciliatum) 

NBRC 9829 KP981481 KP981458 

Microthecium compressum (=Sphaerodes 
compressa) 

NBRC 8627  KP981459 

Microthecium fimbriatum (=Melanospora 
fimbriata) 

NBRC 8523 KP981483 KP981461 

Microthecium fimicola (=Sphaerodes fimicola) NBRC 8354 KP981484 KP981462 
Microthecium fusisporum (=Melanospora 
fusispora) 

NBRC 8806  KP981466 

Microthecium quadrangularum (=Sphaerodes 
quadrangularis) 

CBS 112763
T
 KP981492 KP981471 

Microthecium retisporum (=Sphaerodes 
retispora) 

NBRC 8366  KP981472 

Microthecium sepedonioides (=Papulaspora 
sepedonioides) 

FMR 11933 KP981493 KP981473 

Microthecium zobelii (=Melanospora zobelii) NBRC 9442  KP981476 
Myceliophthora lutea MUCL 10070 LK932701 LK932707 
Myceliophthora lutea MUCL 10071 LK932702  
Podospora fimiseda CBS 482.64  KP981440 
Triangularia batistae CBS 381.68

T
  KP981443 

Triangularia mangenotii  CBS 419.67
T
  KP981444 

Zopfiella attenuata CBS 266.77
T
  KP981445 

Zopfiella karachiensis  CBS 657.74  KP981447 
Zopfiella pleuropora CBS 518.70

T
  KP981450 
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Fig. 23 Maximum-likelihood (ML) tree obtained from D1D3 sequences of our isolates and type 

and reference strains of ascomycetes. Saccharomyces cerivisiae was used as outgroup. 

Bootstrap support values ≥70/Bayesian posterior probability scores ≥0.95 are indicated along 

branches. Branch lengths are proportional to distance. Type strains of the different species are 

indicated with 
T
. 
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4.1. EUROTIALES 

The order Eurotiales (Benny and Kimbrough, 1980) includes the families 

Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae (Houbraken 

and Samson, 2011; Castellano et al., 2012). It has been widely studied because it 

encompasses the economically important genera Aspergillus and Penicillium. Both 

genera have a worldwide distribution and a high social impact because they include 

pathogenic species causing diseases in both humans and animals, and spoilage and 

production of toxic secondary metabolites (mycotoxins) on food, but other species are 

involved in such industrial processes as the production of enzymes (e.g. amylases), 

antibiotics (e.g. penicillin), food preservatives (e.g. citric and gluconic acids), fermented 

foods (e.g. cheeses and sausages) and drugs (e.g. lovastatin) (Frisvad et al. 2004, 

Papagianni, 2007; Perrone et al., 2006; Wösten et al., 2007; Baker and Bennett, 2008; 

Giraud et al., 2010; Ludemann et al., 2010; Goswami et al., 2012; Visagie et al., 

2014a,b). Recent changes in fungal nomenclature, which have led to use a single name 

for each fungus (McNeill et al., 2012), resulted in the renaming of a high number of 

sexual morphs as Aspergillus and Penicillium species. Nowadays, Aspergillus is 

composed of 339 species and Penicillium of 354 (Samson et al., 2014; Visagie et al., 

2014b). 

Figure 24 shows the result of the phylogenetic study based on D1D3 sequences of 

our isolates belonging to the order Eurotiales plus other type and reference strains 

belonging to the same order. The length of the amplicons used in the combined data set 

was 785 bp, 192 bp of which were parsimony informative. 

In Figure 24, our isolates were distributed among the families Aspergillaceae, 

Thermoascaceae and Trichocomaceae; however, most of them belonged to the 

Aspergillaceae, specifically to the genus Aspergillus. 
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Fig. 24 Maximum-likelihood (ML) tree obtained from D1D3 sequences of our isolates, and type 

and reference strains of the Eurotiales. Jugulospora rotula and Pseudoneurospora canariensis 

were used as outgroup. Bootstrap support values ≥70/Bayesian posterior probability scores ≥0.95 

are indicated along branches. Branch lengths are proportional to distance. Type strains of the 

different species are indicated with 
T
. 
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The isolates FMR 12168 and FMR 12322 were displayed as a new species of that 

genus (Aspergillus posadasensis), whereas the isolate FMR 11998 represented a new 

species of the genus Leiothecium (Leiothecium cristatum), which also belongs to the 

Aspergillaceae and was monospecific until this new species was described. Both new 

taxa are fully described and illustrated in section 4.1.1. 

The type strain of Talaromyces striatus grouped in the same well-supported clade 

(98% bs / - pp) that four of our isolates, e.g. FMR 7185, FMR 7186, FMR 11601 and 

FMR 12374). This clade was related to the genus Hamigera and phylogenetically distant 

from the clade of Talaromyces spp. including their type species. A phylogenetic study 

performed by Houbraken and Samson (2011) also placed T. striatus in a clade 

independent from Talaromyces, and it was recently excluded from this genus (Yilmaz et 

al., 2014). Although these recent studies regarded T. striatus as a Hamigera species 

(Hamigera striata), this taxon was not located in the Hamigera spp. clade. This was 

observed by Peterson et al. (2010), who excluded T. striatus from the genus Hamigera. 

Consequently, the correct taxonomical placement of this taxon has still to be clarified. 

On the basis of our molecular results, T. striatus represents a new genus of the 

family Aspergillaceae. This taxon can be differentiated from the closest genus Hamigera 

by their ascospore ornamentation, consisting on longitudinal ridges while it is warted in 

Hamigera spp (Fig. 25).  The isolates FMR 7185, FMR 7186 and FMR 11601 represent 

a new species of this new genus, which can be distinguished from T. striatus by the size 

and the colour of the ascospores, as well as the pattern of their ridges. This proposal is 

actually in preparation. 

a b

 

Fig. 25 Comparison of ascospore morphology of Hamigera spp. and Talaromyces striatus.           

a. Hamigera paravellanea FMR 11605. b. Talaromyces striatus FMR 8816. Scale bars: 5 μm. 
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We describe two novel fungi isolated from soil samples collected in Northern Argentina and

belonging to the family Aspergillaceae of the order Eurotiales: Leiothecium cristatum sp. nov. and

Aspergillus posadasensis sp. nov. Leiothecium cristatum sp. nov., represented by the ex-type

strain FMR 11998T (5CBS 134260T5NBRC 109843T), is distinguishable morphologically from

the type species of the genus, Leiothecium ellipsoideum, by the presence of irregular reticulate

ascospores with two prominent equatorial crests, and Aspergillus posadasensis sp. nov.,

represented by the ex-type strain FMR 12168T (5CBS 134259T5NBRC 109845T), is

differentiated from Aspergillus acanthosporus, the nearest species phylogenetically, by its non-

sclerotioid ascomata and a lack of an asexual stage on all culture media tested. The taxonomic

proposals are supported by the analysis of the sequences of the internal transcribed spacer

region, the D1–D2 domains of the 28S rRNA gene, the fragments of the RNA polymerase II

largest subunit, and the putative chaperonin complex related to TCP-1, b-tubulin and calmodulin

genes.

Introduction
Members of the order Eurotiales G.W. Martin ex Benny &
Kimbrough (1980) are mainly characterized by the pro-
duction of spherical to ovoid, thin-walled evanescent
(prototunicate) asci, which arise free on the mycelium or
are, more usually, produced within globose, nonostiolate
ascomata, and by one-celled, globose or lenticular, smooth-
walled or ornamented ascospores (spinulose, reticulate,

tuberculate, etc.), frequently with equatorial thickenings
or crests. Their asexual stages are mostly phialidic, but can
also show a retrogressive conidiogenesis. At the time of
writing, the order comprises three monophyletic fami-
lies, Aspergillaceae, Thermoascaceae and Trichocomaceae
(Houbraken & Samson, 2011).

The genus Aspergillus is the most common and largest of
the family Aspergillaceae and of the order Eurotiales. Gams
et al. (1985) divided the genus into six subgenera and 18
sections. However, Peterson (2008), using a multigene
phylogeny based on sequences of partial fragments of b-
tubulin (BT2), calmodulin (CAL) and RNA polymerase II
(RPB2) genes, and ribosomal [internal transcribed spacer
(ITS) and large subunit (LSU)] genes, only accepted five
subgenera (Aspergillus, Circumdati, Fumigati, Nidulantes
and Ornati). Most recently, Houbraken & Samson (2011)
also used the sequences of RPB2 and other structural genes
[RPB1, the putative ribosome biogenesis protein (Tsr1)
and the putative chaperonin complex component TCP-1
(Cct8)], and concluded that most of the morphospecies
traditionally belonging to the genus Aspergillus were included
in the Aspergillus s. str. clade, which was divided into four
subgenera and 17 sections. The genus Cristaspora has a single
species that lacks an anamorph stage (Fort & Guarro, 1984);
the genus Phialosimplex has conidiogenous cells consisting of
simple phialides, sometimes proliferating to form a second
opening (Sigler et al., 2010); and the genus Polypaecilum has

Abbreviations: ITS, internal transcribed spacer; LSU, large subunit; ML,
maximum-likelihood; SEM, scanning electron microscope.

The GenBank/EMBL/DDBJ accession numbers for the D1–D2,
ITS, Cct8, RPB1 and RPB2 loci sequences of the ex-type strain
of Leiothecium cristatum sp. nov. are HG529487, KF732838,
HF954979, HF954982, and HF954976, respectively. The GenBank/
EMBL/DDBJ accession numbers for the D1–D2, ITS, Cct8, RPB1,
RPB2, CAL and BT2 loci sequences of the ex-type strain of Aspergillus
posadasensis sp. nov. are HG529485, HG529483, HF954980,
HF954983, HF954977, HG529488 and HG529481, respectively,
and those of Aspergillus posadasensis sp. nov. FMR 12322, are
HG529486, HG529484, HF954981, HF954984, HF954978,
HG529489, and HG529482, respectively. The GenBank/EMBL/
DDBJ accession number for the D1–D2 locus sequence of the ex-
type strain of Leiothecium ellipsoideum is KF732839.

The MycoBank (http://www.mycobank.org) accession numbers of
Leiothecium cristatum and Aspergillus posadasensis are MB803513
and MB803514, respectively.

A supplementary table and a supplementary figure are available with the
online version of this paper.
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conidiogenous cells that are polyphialides (Smith, 1961). All
three of these genera are morphologically very dissimilar to
the typical Aspergillus and were surprisingly also placed in the
mentioned Aspergillus s. str. clade (Houbraken & Samson,
2011).

During a survey on soil-borne ascomycetes from Northern
Argentina, two fungi apparently related to some members
of the order Eurotiales were isolated in pure culture. These
fungi were phenotypically and molecularly characterized
and are proposed here as novel species.

Methods
Soil sampling and fungal isolation. Soil samples were collected in

Misiones Province, Argentina, at two locations: the Iguazú National

Park (225u 419 28.50 254u 269 54.95940) and the Alberto Roth

botanical garden (227u 249 28.60920 255u 539 48.11580). Both loca-

tions are included in the Paranaense phytogeographical province of

the Amazonian domain at the neotropical region. They have a hot,

wet climate with an average annual temperature of 21 uC, an average

maximum temperature of about 32 uC and an average minimum

temperature of about 10 uC. The total annual rainfall is about

1900 mm. The Iguazú National Park is situated in the boundaries of
the Iguazú River, and has an area of around 550 km2. The soil is

acidic, red and lateritic. The park has more than 300 species of plants,

including trees, ferns, shrubs, lianas, epiphytes and herbs. The Alberto

Roth botanical garden is on the south side of the city of Posadas, and

has an area of 11 ha. The altitude ranges from 75 to 100 m, and the

terrain is mostly basaltic. This location also has a broad diversity of

trees, shrubs and herbs, of which 109 are native species.

To carry out the isolation of the soil-borne ascomycetes, we followed a

previously described protocol (Stchigel et al., 2001). Approximately 1 g

of each soil sample was suspended in 5 ml of 5 % (v/v) acetic acid,

shaken vigorously for 5 min and left for 5 min. The liquid layer was

decanted and the residual soil was resuspended in 9 ml sterile water and

plated onto three Petri dishes of 9 cm diameter. Melted potato carrot

agar [PCA: grated potatoes, 20 g; grated carrot, 20 g; agar-agar, 20 g; L-

chloramphenicol, 100 mg; 1 % (w/v) dieldrin in dimethyl-ketone, 20

drops; tap water, 1 l] at 50–55 uC was placed on top of the soil
suspension and mixed by hand. All cultures were incubated at 15, 25

and 35 uC. The ascomata of the taxonomically interesting fungi were

transferred using a sterile needle to two 5 cm-diameter Petri dishes

containing oatmeal agar (OA: oatmeal flakes, 30 g; agar-agar, 20 g; tap

water, 1 l) and incubated under the same conditions as described above.

Phenotypic study. For cultural characterization, the isolates were

grown for up to 30 days on OA, PCA, potato dextrose agar (PDA;

Pronadisa), Czapek’s yeast extract agar (CYA: sucrose, 30 g; sodium

nitrate, 3 g; yeast extract, 5 g; potassium phosphate, 1 g; potassium
chloride, 0.5 g; magnesium sulphate, 0.5 g; iron sulphate, 0.01 g; agar,

15 g; tap water, 1 l) and malt extract agar (MEA: bacteriological

peptone, 1 g; glucose, 20 g; malt extract, 20 g; agar, 15 g; tap water, 1 l)

at 25 uC. Colour notations in parentheses are from Kornerup &

Wanscher (1984). To induce the production of asexual reproductive

structures, the isolates were grown on MEA+40 % sucrose (Samson

et al., 2007) at 25 and 37 uC. In order to determine the minimum and

maximum temperatures of growth of the isolates, a 5 uC increment

from 5 to 40 uC, and 2 uC increment from 40 to 50 uC, were used.

Fertile fungal structures were mounted and measured in water and in

lactic acid. Photomicrographs of the structures were taken with a Zeiss
Axio Imager M1 light microscope. The scanning electron microscope

(SEM) techniques used were described previously by Figueras & Guarro

(1988). SEM micrographs were taken with a JEOL JSM 840 at 15 keV.

BLAST search and phylogenetic study. The DNA of the isolates of

interest (see Table S1, available in the online Supplementary

Material) was extracted and purified directly from fungal colonies

according to the Fast DNA kit protocol (MP Biomedicals). D1–D2,

ITS, RPB1, RPB2 and Cct8 genes were amplified for all isolates, and

BT2 and CAL genes were also amplified for isolates FMR 12168T and

FMR 12322, according to Cano et al. (2004) (D1–D2 and ITS),

Houbraken & Samson (2011) (RPB1, RPB2 and Cct8), Glass &

Donaldson (1995) (BT2) and Hong et al. (2005) (CAL). The

sequences of these amplicons were obtained using the protocol of

the Taq Dye-Deoxy Terminator Cycle Sequencing kit (Applied

Biosystems, Foster City, CA, USA). PCR products were purified and

sequenced at Macrogen Europe with a 3730XL DNA analyser

(Applied Biosystems). Consensus sequences were obtained using

SeqMan (version 7.0.0; DNASTAR) and they were aligned using

CLUSTAL X (version 1.83) (Thompson et al., 1997) followed by

manual adjustments with a text editor. Sequences retrieved from the

GenBank database and included in this analysis are also given in

Table S1. ITS, D1–D2 and CAL BLAST searches were carried out in

order to corroborate the previous taxonomical placement of our

isolates. The phylogenetic analyses of the combined dataset (RPB1,

RPB2 and Cct8) of our isolates and selected members of the families

Aspergillaceae and Trichocomaceae were carried out using MEGA

software version 5.05 (Tamura et al., 2011). The combined dataset

was tested for incongruence with the partition homogeneity test

(PHT) as implemented in PAUP* (Swofford, 2002). The maximum-

likelihood (ML) method using the Tamura–Nei model with gamma

distribution, was carried out for the phylogenetic analyses of RPB1,

RPB2 and Cct8, and Kimura’s two-parameter model with invariable

sites for the ML phylogenetic analysis of BT2 sequences, both with

the pairwise deletion of gaps option. The robustness of branches was

assessed by bootstrap analysis with 1000 replicates. The sequences

generated in this study (see Table S1) were deposited in the GenBank

database and the alignments used in the phylogenetic analyses were

deposited in TreeBASE: (www.treebase.org, accession URL:http://

purl.org/phylo/treebase/phylows/study/TB2:S15962).

Results

Phenotypic study

The isolate FMR 11998T, from a soil sample of the Iguazú
National Park (Table S1), was identified as belonging to the
genus Leiothecium based on the presence of typical mor-
phological features, such as spherical, glabrous, dark brown,
non-ostiolate ascomata with a peridium of textura angularis;
one-celled, hyaline, ellipsoidal, reticulate ascospores; and
absence of an asexual stage. Two other isolates, FMR 12168T

and FMR 12322, from two soil samples of the Alberto Roth
botanical garden were classified as belonging to the genus
Cristaspora. They were characterized by the production of
orange, spherical, non-ostiolate ascomata covered by a dense
mass of aerial hyphae; hyaline to subhyaline ascospores with
two equatorial crests and a convex surface verruculose to
echinulate and the absence of an asexual stage on all culture
media tested.

BLAST search

The BLAST search with the D1–D2 sequence of isolate
FMR 11998T (GenBank accession no. HG529487) showed
97 % similarity with the sequence of the type strain of
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Leiothecium ellipsoideum (FJ358285) whereas isolates FMR
12168T (HG529485) and FMR 12322 (HG529486) showed
99 % similarity with Aspergillus clavatus (JN938924) and
the type strain of Aspergillus acanthosporus (EF669992).
The most related member of the order Eurotiales in the ITS
BLAST search of isolate FMR 11998T (KF732838) showed a
sequence similarity of less than 90 % (Aspergillus fischer-
ianus), but the similarity between the sequence of the
former with that of the type strain of L. ellipsoideum,
sequenced in this study (KF732839), was 92.76 %. The
BLAST search of ITS sequences of isolates FMR 12168T

(HG529483) and FMR 12322 (HG529484) showed 98.19 %
and 98.43 % similarity, respectively, with the type strain of
A. clavatus, and the same sequence similarity (98.42 %) for
the two isolates with the ITS sequence of the type strain
of A. acanthosporus (EF669992). The BLAST search with
the CAL sequences of isolates FMR 12168T (HG529488)
and FMR 12322 (HG529489) showed 93 % and 93.2 %
similarity, respectively, with the type strain of A. clavatus
(EU078665), and 90.87 % for both strains with the type
strain of A. acanthosporus (EU078676).

Phylogenetic study

The lengths of the fragments of the three genes used in the
combined dataset were 646 bp (Cct8), 695 bp (RPB1) and
887 bp (RPB2), from which 220, 250 and 311 bp were
parsimony informative, respectively. The length of the final
alignment was 2228 bp. The result of the partition
homogeneity test showed that the datasets for the three
loci were congruent (P50.29) and could be combined.

Fig. 1 shows the tree inferred from a ML analysis of the
combined dataset. A main clade with a bootstrap support of
100 % grouped the members of the family Aspergillaceae,
including the novel isolates. Isolate FMR 11998T grouped in
a terminal clade with the type strain of L. ellipsoideum (89 %
bootstrap support) whereas the isolates FMR 12168T and
FMR 12322 grouped with the type strains of A. acanthos-
porus and A. clavatus (100 % bootstrap support), despite
these two isolates initially being morphologically identified
as belonging to the genus Cristaspora.

A phylogenetic analysis of the ITS region (415 bp), CAL
(367 bp) and BT2 (381 bp) was carried out in order to
assess the genetic relatedness of the isolates FMR 12168T

and FMR 12322 with other members of the sect. Clavati of
the genus Aspergillus. The ITS and CAL ML trees showed
the same topology that was observed in the BT2 ML tree.
We only included results of the last locus (Fig. S1) because
BT2 was the most phylogenetically informative, and
sequences of all species of this section were available in
the GenBank database. The tree revealed two main clades
(with bootstrap support of 89 % and 93 %, respectively).
The first one encompassed three sister clades, all of them
with 100 % bootstrap support, corresponding to four
isolates of A. clavatus for the first sister clade, two novel
isolates (FMR 12168T and 12322) for the second, and four
strains of A. acanthosporus for the third sister clade. In the

second main clade of the tree (93 % bootstrap support)
other species of this section were located, i.e. Aspergillus
rhizopodus, Aspergillus clavatonicus, Aspergillus longivesica and
Aspergillus giganteus.

TAXONOMY

The previous data demonstrated that isolate FMR 11998T

belongs to the genus Leiothecium but is distinguishable
molecularly from the only species of this genus L. ellip-
soideum, and also morphologically mainly by the presence of
irregular reticulate ascospores with two prominent equat-
orial crests in our isolate. Our studies also provide evidence
that isolates FMR 12168T and FMR 12322 are molecularly
and morphologically different from A. acanthosporus and A.
clavatus, the nearest phylogenetic species, by the production
of non-sclerotioid ascomata and the absence of an anamor-
phic stage in our isolates. Therefore, we propose the
following novel species: Leiothecium cristatum sp. nov. and
Aspergillus posadasensis sp. nov.

Description of Leiothecium cristatum Y. Marı́n,
Stchigel & Cano sp. nov. (Fig. 2)

Leiothecium cristatum (cris.ta9tum. L. neut. adj. cristatum
referring to the equatorial crests of the ascospores).

Colonies on PDA attaining a diameter of 71–73 mm after
7 days at 25 uC, cottony, white, margins fringed; reverse
yellowish-white to pale yellow (M. 3A2 to 3A3). Hyphae
thick- and smooth-walled, hyaline to pale brown, septate,
3–9 mm wide. Ascomata initials arising on aerial and
submerged hyphae as lateral branches, consisting of single
coils. Ascomata superficial and immersed on the medium,
spherical, glabrous, dark brown, non-ostiolate, 100–
220 mm diameter; peridium brown, three-layered, 15–
20 mm thick, textura angularis, composed of polyhedric
flattened cells of 10–20 mm diameter. Asci eight-spored,
broadly clavate to spherical, non-catenulate, 12–16610–
14 mm, evanescent. Ascospores one-celled, hyaline, ellips-
oidal, 6–8.564.5–5.5 mm, irregularly reticulated due to the
anastomosing low ridges, with two prominent crests of 0.5–
1 mm. Chlamydospores mostly terminal, sometimes inter-
calary, hyaline, subspherical to ellipsoidal, smooth- and
thick-walled, 12–19613–18.5 mm. Anamorph not observed.
Colonies on MEA are similar to those on PDA. After 7 days
at 25 uC, colonies on OA and PCA of 34–36 and 61–64 mm
diameter, respectively. Minimum and maximum growth
temperatures are 15 and 35 uC, respectively.

Holotype is CBS-H 21130, a dried culture; isotype FMR
11998T.

Mycobank accession no. MB803513.

The ex-type culture is FMR 11998T (5CBS 134260T5

NBRC 109843T), isolated from a rainforest soil sample, in
Iguazú National Park, Misiones province, Argentina
(225u 419 28.50 254u 269 54.95940, 2 August 1997, M.
Calduch, J. Guarro and A. M. Stchigel.

Two novel species of Eurotiales
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Description of Aspergillus posadasensis Y.
Marı́n, Stchigel & Cano sp. nov. (Fig. 3)

Aspergillus posadasensis (po.sa.das.en9sis. N.L. masc. adj.
posadasensis belonging to Posadas, capital city of the
Misiones province, Argentina).

Colonies on PDA attaining 52–58 mm in diameter after
14 days at 25 uC, velvety, white, irregularly folded and with
fringed margins; reverse yellowish-white to pale yellow (M.
3A2 to 3A3). Ascomata superficial, spherical, tomentose,
orange to brown at maturity, non-ostiolate, 330–720 mm
diameter; peridium 20–30 mm thick, composed of an outer
layer of orange–brown moniliform hyphae, and three to five
inner layers of flattened, prismatic, brown cells 6–12 mm
in diameter. Asci eight-spored, globose to subglobose,
9–12.568.5–10 mm, evanescent at maturity. Ascospores
one-celled, hyaline to subhyaline, globose to subglobose,
3.5–4.563–4 mm, with two equatorial crests, 0.5–1 mm
wide; convex surface of ascospores ornamented with
triangular projections, long ridge lines and microtubercles.
Anamorph not observed in any of the culture media tested,
including MEA+40 % sucrose. Colonies on PCA attaining a
diameter of 52–58 mm after 14 days at 25 uC, velvety to
cottony, with fringed margins, white; reverse white to
yellowish-white (M. 2A2). Colonies on MEA attaining 18–
20 mm in diameter after 14 days at 25 uC, velvety, white,
with orange–grey to brownish-grey (M. 5B2 to 5C2)
margins, fimbriate; reverse brownish-orange to yellowish-
brown (M. 5C4 to 5E4), white to yellowish-white (M. 4A1 to
4A2) at the margins; ascomata produced. Colonies on CYA
attaining 16–20 mm in diameter after 14 days at 25 uC,

flattened, mycelium mostly submerged, yellowish-white
(M. 2A2); reverse yellowish-white (M. 2A2); ascomata not
formed. Minimum and maximum growth temperatures are
15 and 42 uC, respectively.

Holotype is CBS-H 21131, a dried culture; isotype FMR
12168T.

Mycobank accession no. MB803514.

The ex-type culture is FMR 12168T (5CBS 134259T5

NBRC 109845T), isolated from a soil sample in Alberto
Roth botanical garden, Misiones province, Argentina
(227u 249 28.60920 255u 539 48.11580) 2 August 1997,
M. Calduch, J. Guarro and A.M. Stchigel.

Other specimen examined: FMR 12322 (from the same
origin and source).

Discussion
The genus Leiothecium was erected by Samson &
Mouchacca (1975) to include an ascomycete isolated from
soil in Greece. Later, this fungus was also reported from
soil in South America, Asia and Europe, and from seeds of
the capsicum and nest material of a ground-nesting solitary
bee in North America, in areas of temperate climate. This
fungus shows some similarities with Ascorhiza and Hapsi-
dospora (Samson & Mouchacca, 1975) because of the
presence of cleistothecial ascomata and reticulate ascos-
pores. They also mentioned the possible relationship of
Leiothecium with Monascus, but they remarked on the

0.05

100 Aspergillus posadasensis FMR 12168T

Aspergillus acanthosporus CBS 558.71T

Aspergillus clavatus NRRL 1LT

Aspergillus cervinus CBS 196.64NT

Cristaspora arxii CBS 525.83T

Xeromyces bisporus CBS 236.71NT

Leiothecium ellipsoideum CBS 607.74T

Monascus purpureus CBS 109.07T

Monascus argentinensis CBS 109402T

Monascus lunisporas CBS 113675

Talaromyces byssochlamydoides CBS 413.71T

Talaromyces flavus CBS 310.38NT
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Leiothecium cristatum FMR 11998T
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Fig. 1. Maximum-likelihood (ML) rooted tree obtained from the combined DNA sequence data from three loci (Cct8, RPB1 and
RPB2) of the novel isolates and 11 selected species belonging to the family Aspergillaceae, chosen because of their molecular
or morphological similarity to the novel isolates. Talaromyces byssochlamydoides CBS 413.71T and Talaromyces flavus CBS
310.38T (family Trichocomaceae) were used as outgroups. Bootstrap support values ¢70 % are indicated at the nodes.
Branch lengths are proportional to distance. Type and Neotype strains of the different species are indicated with T and NT

respectively. Bar, 0.05 substitutions per nucleotide position.
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differences among them (ascomata with a very thin, plec-

tenchymatous peridial wall in Monascus vs prosenchymatous

and thickness in Leiothecium; smooth-walled ascospores

in Monascus vs reticulate in Leiothecium; and the presence of

an anamorph with retrogressive ontogeny in Monascus,

which is absent in Leiothecium). Despite Hapsidospora and

Leiothecium producing dark-coloured, closed ascomata,

Leiothecium can be differentiated morphologically from

Hapsidospora because the latter produces dark, globose asco-

spores of 5–7.5 mm diameter (Guarro et al., 2012), which are
hyaline and ellipsoidal, of 7–8.564.5–5.5 mm in Leiothecium.

Ascorhiza lacks of original type material, and has a poor
description (Lechtova-Trnka, 1931) lacking of any illustra-
tions, therefore it cannot be compared with Leiothecium, and
its validity as a taxon is doubtful.

A recent phylogenetic study carried out by Houbraken &
Samson (2011), based on the nucleotidic sequences of Cct8,
RPB1, RPB2 and Tsr1 genes demonstrated that the genus
Leiothecium belongs to the family Aspergillaceae, while in
a previous molecular study, based on the analysis of SSU
and LSU rRNA gene sequences (Suh & Blackwell,
1999), Hapsidospora had been placed in the Hypocreales.

(a) (b)

(d)(c)

(e) (f) (g)

Fig. 2. Morphology of Leiothecium cristatum sp. nov. FMR 11998T. (a), (b) Ascoma; (c) detail of the peridium; (d) asci and
terminal chlamydospores; (e), (f) ascus; (g) ascospores (SEM). The fungus was grown on PDA at 256C during two weeks.
Bars, 50 mm (a); 25 mm (b); 20 mm (c); 10 mm(d, e); 5 mm (f, g).
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Our molecular analysis, using three of those genes,
demonstrates that the isolate FMR 11998T represents a
novel species of Leiothecium. This fungus is morphologi-
cally distinguishable from L. ellipsoideum by the presence
of two prominent equatorial crests (absent in L. ellip-
soideum) and an irregular pattern in its ascospore wall
ornamentation (which is more regularly reticulate in L.
ellipsoideum).

The molecular study of the isolates FMR 12168T and FMR
12322 shows that they are related to A. acanthosporus
and A. clavatus. The type strain of A. acanthosporus was
isolated from a soil sample in the Solomon Islands,
Papua-New Guinea (Udagawa & Takada, 1971), along
with another three isolates from the same source of the
same country. Houbraken & Samson (2011) placed A.
acanthosporus into the section Clavati of Aspergillus subg.

Fumigati. Aspergillus posadasensis is easily distinguishable

from A. acanthosporus by the non-sclerotioid nature of its

ascomata and the absence of an anamorph. Other taxa

which are morphologically similar to the novel species

and belong to Aspergillus subgenus Fumigati are Asper-

gillus aureola and Aspergillus spinosus. They also produce

ascospores with two equatorial crests and a similar

ornamentation to that of A. posadasensis; however, their

ascomata are white or very pale yellow, and both produce

an anamorph. There are other members of the genus

Aspergillus of which no conidiophore structures have been

described. Conidiophore structures in Aspergillus monodii,

which is accommodated in Aspergillus section Usti, are

also not known. However, A. monodii has different

ascospores and produces Hülle cells and ascomata in

stromata.

(a) (c)

(d)(b)

(e) (f)

Fig. 3. Morphology of Aspergillus posadasensis sp. nov. FMR 12168T. (a) Ascoma; (b) detail of the peridium; (c, d) asci; (e, f)
ascospores. The fungus was grown on PDA at 256C during two weeks. Bars, 100 mm (a); 20 mm (b); 10 mm (c, d); 5 mm (e);
2.5 mm (f).
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tubercule d’Astragalus alopecuroı̈des. C R Hebd Seances Acad Sci 192,
497–500.

Peterson, S. W. (2008). Phylogenetic analysis of Aspergillus
species using DNA sequences from four loci. Mycologia 100,
205–226.

Samson, R. A. & Mouchacca, J. (1975). Two new soil-borne
cleistothecial ascomycetes. Can J Bot 53, 1634–1639.

Samson, R. A., Hong, S., Peterson, S. W., Frisvad, J. C. & Varga, J.
(2007). Polyphasic taxonomy of Aspergillus section Fumigati and its
teleomorph Neosartorya. Stud Mycol 59, 147–203.

Sigler, L., Sutton, D. A., Gibas, C. F. C., Summerbell, R. C., Noel, R. K.
& Iwen, P. C. (2010). Phialosimplex, a new anamorphic genus
associated with infections in dogs and having phylogenetic affinity to
the Trichocomaceae. Med Mycol 48, 335–345.

Smith, G. (1961). Polypaecilum gen. nov. Trans Br Mycol Soc 44, 437–
440.

Stchigel, A. M., Cano, J., Mac Cormack, W. P. & Guarro, J. (2001).
Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete
from Antarctica. Mycol Res 105, 377–382.

Suh, S.-O. & Blackwell, M. (1999). Molecular phylogeny of the
cleistothecial fungi placed in Cephalothecaceae and Pseudeurotiaceae.
Mycologia 91, 836–848.

Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony
(and other methods), version 4. Sunderland, MA: Sinauer Associates.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar,
S. (2011). MEGA5: molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum par-
simony methods. Mol Biol Evol 28, 2731–2739.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &
Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible
strategies for multiple sequence alignment aided by quality analysis
tools. Nucleic Acids Res 25, 4876–4882.

Udagawa, S. & Takada, M. (1971). Mycological reports from New
Guinea and the Solomon Islands. 10. Soil and coprophilous
microfungi. Bull Natl Sci Mus Tokyo 14, 501–515.

Two novel species of Eurotiales

http://ijs.sgmjournals.org 2877

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



4.2. MELANOSPORALES 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

 

 

4.2. MELANOSPORALES 

The order Melanosporales was recently introduced by Zhang and Blackwell in a 

phylogenetic study based on the genes SSU, LSU, RPB2 and EF1 (Hibbett et al., 2007). 

This order consists of only one family, Ceratostomataceae, which groups the genera 

Annulispora, Arxiomyces, Medusitheca, Melanospora, Microthecium, 

Pseudomicrothecium, Pustulipora, Rhytidospora, Scopinella, Syspastospora and 

Vittatispora. While this thesis was being drafted, the genus Melanospora was redefined, 

Microthecium re-established and Annulispora, Pseudomicrothecium and Medusitheca 

introduced (see the article in section 4.2.1. for more details). The taxa belonging to this 

order are frequently isolated from soils, but they have always been difficult to study 

molecularly because most of them are mycoparasites, and are consequently very difficult 

to isolate and grow in pure culture. This is why many sequences of the Melanosporales 

deposited in databases really correspond to the host. This also explains why it is very 

difficult to obtain the reproductive structures in vitro: in many cases isolates cannot grow 

without their host or lose their ability to develop reproductive structures, thus hindering 

the morphological study. 

As part of this thesis, we used sequences of four loci (SSU, D1−D3, ITS, ACT and EF1) 

to make the first phylogenetic study of a large number of taxa belonging to the 

Melanosporales (section 4.2.1.). This work revealed that ascomatal morphology is more 

phylogenetically informative than the ornamentation of the ascospores, even though the 

latter has traditionally been used to delimit genera within the Melanosporales, as was 

previously reported for the Sordariales by Miller and Huhndorf (2005). The greatest 

difficulty during the phylogenetic study was the low interspecific molecular variability of 

Microthecium. All the loci sequenced did not show enough variability to differentiate 

species. We also sequenced fragments of BT2 and RPB2, but they showed a high 

molecular interspecific identity (100% or close to it) and were of no use for our study. 
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Abstract: The order Melanosporales comprisses a large group of ascomycetes, most of 

them mycoparasites, characterized by ascomata usually ostiolate and translucent, 

unitunicate asci and unicellular, pigmented ascospores with germ pores or germ slits. The 

largest and most studied genera are Melanospora and Sphaerodes, but their 

circumscriptions and boundaries with other related genera are not yet resolved. In this 

study the taxonomy of Melanospora and related taxa have been re-evaluated based on the 

phylogenetic analyses of nuclear rRNA, actin and elongation factor genes sequences of  

fresh isolates and numerous type and reference strains. As a result of this analysis the 

genus Melanospora has been restricted to species with ostiolate ascomata with a neck 

composed of intermixed hyphae and a phialidic asexual state. The genus Microthecium 

has been re-established and circumscribed to the species of Melanospora and Sphaerodes 

with absence of neck in the ascoma, or, if present, short and composed of angular cells 

similar to those of the peridium, and usually producing bulbils. Three new genera have 
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been proposed: Dactylidispora, showing ascospores with a raised rim surrounding both 

terminal germ pores; Medusitheca, with densely setose, dark ascomata; and 

Pseudomicrothecium, characterized by ascospores with indistinct germ pores. 

Dichotomous keys to identify the species of Melanospora and Microthecium, as well as a 

brief description of the accepted species of both genera are provided. 

 

Keywords: Dactylidispora, Ceratostomataceae, Medusitheca, Melanospora, 

Melanosporales, Microthecium, Pseudomicrothecium, soil, Sphaerodes. 

 

INTRODUCTION 

The family Ceratostomataceae (Winter 1887) includes near a hundred species, often 

mycoparasitic and characterized by ostiolate and rostrate, or less frequently non-ostiolate, 

translucent ascomata, unitunicate and evanescent asci, brown, exceptionally hyaline, 

unicellular ascospores with a germ pore at each end, less frequently with only one germ 

pore or germ slits, and phialidic asexual morphs. Currently, the family Ceratostomataceae 

is included in Melanosporales (Chaudhary et al. 2006; Zhang et al. 2006; Hibbett et al. 

2007), although historically it had been placed in other orders such as Aspergillales 

(Gaüman 1964), Hypocreales (Alexopoulos 1962; Spatafora and Blackwell 1994a; 

Rehner and Samuels 1995; Jones and Blackwell 1998; Zhang and Blackwell 2002) and 

Sphaeriales (Bessey 1950; Dennis 1968). This family comprises eleven genera that 

produce sexual morph, i.e. Arxiomyces, Melanospora, Persiciospora, Pteridiosperma, 

Pustulipora, Rhytidospora, Scopinella, Setiferotheca, Sphaerodes, Syspatospora and 

Vittatispora. Melanospora, the largest genus of this family, with more than fifty species 

was erected by Corda (1837) to accommodate Ceratostoma chionea and two new species, 

Melanospora zamiae and Melanospora leucotricha, M. zamiae chosen later as type secies 
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of the genus (Kowalski 1965). Melanospora is characterized by usually perithecial 

ascomata with a long neck and a translucent, pale yellow to reddish-brown peridium, and 

mostly smooth-walled, brown, ellipsoidal to citriform, rarely discoid or fusiform 

ascospores, with a depressed germ pore at each end, occasionally surrounded by a raised 

rim (Guarro et al. 2012). Related genera are Microthecium and Sphaerodes. The former 

was erected in 1842 by Corda to place M. zobelii and distinguishable from Melanospora 

by the presence of non-ostiolate, usually immersed ascomata. Sphaerodes, introduced in 

1909 by Clements to accomodate Melanospora episphaeria, is similar to Melanospora 

but encompassing species with reticulate ascospores. However, the boundaries between 

Melanospora and its relatives remained confuse. Doguet (1955) carried out a revision of 

Melanospora, synonymizing several species and transferring additional species from 

other genera, mostly from Sphaeroderma, which had been proposed by Fuckel (1877) and 

distinguished from Melanospora by the absence of ascomatal neck.  Doguet (1955) 

considered the production of the neck as a non stable taxonomic character influenced by 

culture media. Doguet divided Melanospora into several sections on the basis of the 

morphology of the ascospores (shape and ornamentation) and ascomata (presence or 

absence of neck, and its size when present). The most comprehensive revision of 

Melanospora and related genera was carried out by Cannon and Hawksworth (1982), 

mainly based on the structure of the ascospore wall under SEM, the species of 

Microthecium being transferred to Melanospora and Sphaerodes. However, more recent 

molecular studies demonstrated that Melanospora and Sphaerodes are both polyphyletic 

(Zhang and Blackwell 2002; Fan et al. 2012). Other genera included in the family are 

Arxiomyces, which produces ovoid to ellipsoidal ascospores with a rounded apex and a 

truncate base, and a large sunken germ pore (Cannon and Hawksworth 1982, 1983); 

Persiciospora, characterized by ascospores with a pitted wall and a faint reticulation 
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(Cannon and Hawksworth 1982); Pteridiosperma, with ascospores ornamented with 

longitudinal wing-like appendages (Krug and Jeng 1979); Pustulipora, distinguished by 

its ascospores with a germ pore at each end surrounded by a cushion-like structure 

showing an irregular pustulate appearance (Cannon 1982); Rhytidospora, characterized 

by non-ostiolate ascomata with a cephalothecoid peridium (Krug and Jeng 1979); 

Scopinella, producing brown, cuboid-ellipsoidal ascospores with two prominent 

longitudinal germ slits (Cannon and Hawksworth 1982); Setiferotheca, which produces 

ascospores similar to those of Arxiomyces and ascomata with a crown of dark brown setae 

surrounding the ostiole; Syspastospora, with ascomata with a long neck composed of 

parallelly arranged hyphae and cylindrical ascospores with a large terminal slightly 

sunken germ pore at each end (Cannon and Hawksworth 1982); and Vittatispora, which 

produces ascomata similar to those of Syspatospora and citriform ascospores with a 

longitudinal, thick, hyaline ridge (Chaudhary et al. 2006). Practically all the taxonomic 

studies performed about these fungi have been exclusively based on the morphological 

characterization of the reproductive structures based on fungarium specimens. Mainly due 

to their mycoparasitism, these fungi do not grow in pure culture and not fructify in 

absence of their hosts. The obtention of reliable sequences from Melanosporales is also 

difficult because the massive interfering presence of DNA of their hosts. Based on the 

study of several fresh soil-borne isolates and reference and type strains obtained from 

different culture collections, and sequences retriewed from the GenBank and NBRC 

databases, we have revised the phylogenetic relationships of the most relevant genera of 

the Ceratostomataceae. Consequently, the genus Melanospora has been redefined, 

Microthecium re-established, and three new genera proposed. 
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MATERIALS AND METHODS 

Fungal isolates 

The strains included in this study are listed in Table 1. The fresh isolates included in the 

study have been isolated from soil. For their isolation, we followed previously described 

procedures for activation of dormant ascospores in soil, using acetic acid and phenol 

solutions (Stchigel et al. 2001; García et al. 2003). Ascomata were transferred to 5 cm 

diam Petri dishes containing oatmeal agar (OA: oatmeal flakes, 30 g; agar-agar, 20 g; 

distilled water, 1 L) using a sterile needle, which were incubated at 15, 25 and 35ºC. 

 

Morphological study 

For cultural characterization, the isolates were grown for up to 30 d on OA, potato carrot 

agar (PCA: grated potatoes, 20 g; grated carrot, 20 g; agar-agar, 20 g; L-chloramphenicol, 

100 mg; distilled water, 1 L), and potato dextrose agar (PDA; Pronadisa, Madrid, Spain) 

at 5, 10, 15, 20, 25, 30, 35 and 40ºC. Color notations in parentheses are from Kornerup 

and Wanscher (1984). Vegetative and reproductive structures were examined under an 

Olympus BH-1 light field microscope, by direct mounting of the ascomata or 

microcultures performed on OA and PDA, on lactic acid and water. Pictures were 

obtained by a Zeiss Axio Imager M1 lightfield microscope. The samples for scanning 

electron microscope (SEM) were processed according to Figueras and Guarro (1988), and 

SEM micrographs taken by using a Jeol JSM 840 at 15 keV microscope. 

 

Molecular study 

The DNA of the fungal isolates (Table I) was extracted and purified directly from the 

colonies according to the Fast DNA Kit protocol (MP Biomedicals, Solon, Ohio). The 

amplification of the 18S small subunit (18S) and D1−D3 domains of the 28S large 
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subunit (28S) of the nuclear rRNA genes, internal transcribed spacer region (ITS) of the 

nuclear rDNA, and partial segments of actin (ACT) and elongation factor (EF1) loci were 

performed according to White et al. (1990) (18S), Vilgalys and Hester (1990) (28S), Cano 

et al. (2004) (ITS), Voigt and Wöstermeyer (2000) (ACT) and Houbraken et al. (2007) 

(EF1). The sequences of the amplicons were obtained using the protocol of the Taq Dye-

Deoxy Terminator Cycle Sequencing Kit. PCR products were purified and sequenced at 

Macrogen Europe (Amsterdam, The Netherlands) with a 3730XL DNA analyzer (Applied 

Biosystems), and the consensus sequences were obtained using SeqMan (version 7.0.0; 

DNASTAR, Madison, WI, USA). The sequences were aligned using the Clustal W 

implemented in MEGA v. 6.06 (Tamura et al. 2013), followed by a manual adjustment 

under the same software platform. Sequences retrieved from GenBank and NBRC 

included in this analysis are in Table I. Phylogenetic analyses were carried out using 

MEGA v. 6.06. We performed a first analysis based on 18S sequences of our isolates and 

type and reference strains of members of Melanosporales and of some members of the 

orders Chaetosphaeriales, Coniochaetales, Coronophorales, Hypocreales, Microascales, 

Sordariales and Xylariales, using Thelebolus ellipsoideus (Thelebolales) as outgroups, in 

order to determine the taxonomic placement of our isolates. A second study, carried out to 

infer the phylogenetic relationships among the members of Melanosporales, was based in 

the analysis of a combined data set including the ITS, 28S, ACT and EF1 sequences of 

our isolates and type and reference strains of a large number of Melanosporales, and 

including Nectria cinnabarina and Pseudallescheria fusoidea as outgroups. Because the 

living strains of certain members of the Melanosporales included in previous works were 

not available for the present study, we built a phylogenetic tree using their 28S sequences 

and those of representatives of all terminal clades displayed in the previous multilocus 

trees. Maximum Likelihood (ML) method using Kimura 2-parameter model and Tamura-
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Nei, both with gamma distribution and the pair-wise deletion of gaps option, were used 

for the phylogenetic analysis of 18S and, of the combined dataset and 28S, respectively. 

The robustness of branches was assessed by bootstrap analysis with 1,000 replicates. 

Bayesian inference (BI) was carried out using MrBayes v. 3.1 following the parameters 

detailed in Alvarez et al. (2010). The sequences generated in this study were deposited in 

GenBank database (Table I) and the alignments used in the phylogenetic analyses are 

deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S17079). 

 

RESULTS 

The length of the 18S alignment used in this study was of 970 bp, 186 bp of which were 

parsimony informative. All the members of Melanosporales included in the 18S ML 

phylogenetic tree, including our isolates, were placed in a main clade, with a bootstrap 

support (bs) of 99% and bayesian posterior probability (pp) of 1 (Fig. 1). Within this main 

clade, our isolate CBS 137837, whose morphological features did not match with any 

previously described taxon, was clearly separated from the other strains included in the 

study constituting a basal branch representing a new genus. The other fungi included in 

Melanosporales were grouped together with a highly support (79% bs / 1 pp) and divided 

in three subclades. The first one (94% bs / - pp), grouped most of the isolates 

morphologically identified as Melanospora spp., Persiciospora spp. and Sphaerodes spp., 

including reference strains of Melanospora brevirostris, M. fimbriata, M. fusispora, M. 

zobelii, Papulaspora sepedonioides, Pteridiosperma ciliatum, Sphaerodes compressa, S. 

fimicola, S. tenuissima and S. quadrangularis, without significant genetic distances 

among them. The second subclade (81% bs / 0.95 pp) comprised the type strains of 

Sphaerodes ellipsospora and Sphaerodes singaporensis and a reference strain of 

Melanospora kurssanowiana, the latter one clearly separated from S. ellipsospora and S. 

97

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

 

singaporensis, which were grouped with high support (98% bs / 1 pp). In the last 

subclade (100% bs / 1 pp) were nested the type species of the genus Melanospora (M. 

zamiae), the type strains of Melanospora verrucosa and Sphaerodes mycoparasitica, and 

reference strains of Melanospora damnosa and Melanospora tiffanii. 

The lengths of the individual alignments used in the combined data set were 795 bp 

(28S), 535 bp (ITS), 727 bp (ACT) and 846 bp (EF1), and the final total alignment was 

2903 bp, 555 bp of which were parsimony informative. In the tree derived from the 

combined data set (Fig. 2), the Melanosporales were divided into five monophyletic 

clades. The first one (93% bs/ 1 pp; Clade Microthecium) grouped all our isolates except 

the isolate CBS 137837, and type or reference strains of Melanospora fimbriata, M. 

fusispora, M. zobelii, Papulaspora sepedonioides, Pteridiosperma ciliatum, Sphaerodes 

compressa, S. fimicola, S. tenuissima and S. quadrangularis. All the fungi belonging to 

this clade have cleistothecial ascomata without neck or when present it is short and 

composed of angular cells as the rest of the ascomatal peridium. Bulbils (microsclerotial-

like asexual propagules) are present in most of these species (Fig. 3). In spite of the high 

morphological variability showed by the members of this clade, the loci used in the 

phylogenetic analysis were not able to separate the species from each others. The second 

clade (99% bs/ 1 pp; Clade Melanospora) comprissed the type species M. zamiae and 

reference strains of M. verrucosa and of M. damnosa.The members of this clade showed 

ostiolate ascomata with a long neck composed of hyphae irregularly arranged, and with a 

crown of setae at the apex. In addition, an asexual morph characterized by solitary, 

sessile, flask-shaped phialides was commonly present (Fig.4). The reference strain of 

Melanospora kurssanoviana, which did not sporulate, and our isolate CBS 137837 

formed two independent branches. The isolate CBS 137837 produced globose, non-

ostiolate dark ascomata densely setose, and smooth-walled ascospores with a depressed 
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germ pore at each end (Fig. 5). The last clade (99% bs/ 1pp; Clade Dactylidispora) was 

composed by the type strains of Sphaerodes ellipsospora and S. singaporensis, both 

characterized by translucent ascomata and ascospores with a raised rim surrounding the 

germ pores. 

The length of the 28S alignment was of 808 pb, 111 pb of which were parsimony 

informative. The five monophyletic well-supported clades (Dactylidispora, Medusitheca, 

Melanospora, Melanospora kurssanoviana and Microthecium clades) obtained in the 

other two phylogenetic trees were also represented in the 28S ML tree (Fig. 6). Apart 

from these clades, two independent terminal branches corresponding to the type strains of 

Melanospora subterranea and of Vittatispora coorgii, respectively were also shown. Both 

taxa showed distinctive morphological features unique in Melanosporales, e.g. ascospores 

with indisctinct germ pores in M. subterranea and with a longitudinal thick hyaline ridge 

in V. coorgii. 

 

Taxonomy  

Key to the accepted genera of the Melanosporales producing sexual morph (adapted from 

Cannon and Hawksworth 1982) 

1. Ascospores with longitudinal germ slits...........................................................Scopinella 

1. Ascospores with germ pores............................................................................................2 

2. Ascospores with a broad germ pore and a small basal appendage...................................3 

2. Ascospores with a germ pore at each end........................................................................4 

3. Ascomata with a crown of dark brown setae surrounding the ostiole..........Setiferotheca 

3. Ascoma without setae......................................................................................Arxiomyces 

4. Ascospores oblong or cylindric-fusiform, and germ pores crateriform…..Syspastospora 

4. Ascospores ellipsoidal to citriform..................................................................................5 
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5.Ascoma ostiolate; neck long, composed of hyphae irregularly 

arranged.............................................................................................................Melanospora 

5. Ascoma non-ostiolate or ostiolate; neck absent or short, conical, composed of angular 

cells as in the peridium.........................................................................................................6 

6. Ascospores with indistinct germ pores.............................................Pseudomicrothecium 

6. Ascospores with conspicuous germ pores........................................................................7 

7. Ascospores with a longitudinal hyaline ridge.................................................Vittatispora 

7. Ascospores without ridges...............................................................................................8 

8. Germ pores surrounded by hyaline structures..................................................................9 

8. Germ pores without such structures...............................................................................10 

9. Germ pores with a raised rim.....................................................................Dactylidispora 

9. Germ pores with a blistered, rarely cushion-like, structure.............................Pustulipora 

10. Peridium cephalothecoid...........................................................................Rhytidiospora 

10. Peridium not cephalothecoid........................................................................................11 

11. Ascomata densely setose; peridium dark.....................................................Medusitheca 

11. Ascomata glabrous or surrounded by hyphae-like hairs; peridium 

translucent........................................................................................................Microthecium 

 

Dactylidispora Y. Marín, Stchigel, Guarro, Cano, gen. nov.  

MycoBank MB812079. 

Type species. Dactylidispora ellipsospora (Takada) Y. Marín, Stchigel, Guarro & Cano. 

Etymology. From Latin annulus–, ring, and –spora, spore, due to the raised rim that 

surround the germ pores of the ascospores. 

Diagnosis: This genus is characterized by the production of smooth-walled ascospores 

with a germ pore, surrounded by a raised rim, at each end. 
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Ascomata superficial, globose to pyriform, ostiolate or not, yellowish-brown, 

appearing dark brown when the ascospores are mature, glabrous or setose; neck cellular, 

short, conical, with a crown of setae surrounding the ostiole; peridium membranaceous, 

of textura angularis. Asci 8-spored, broadly clavate, short-stipitate, evanescent. 

Ascospores one-celled, at first hyaline, becoming brown to dark brown, fusiform or 

citriform, umbonate and truncate at the ends, smooth-walled, with one germ pore at each 

end; germ pores depressed, surrounded by a raised rim. Asexual morph absent, or 

phialidic; phialides solitary, flask-shaped, arising on fertile hyphae; conidia hyaline, 

subglobose to ovoid, smooth-walled. 

 

Dactylidispora collipora (Stchigel & Guarro) Y. Marín, Stchigel, Guarro & Cano, comb. 

nov.   

MycoBank MB812080. 

Basionym. Melanospora collipora Stchigel & Guarro, in Stchigel, Guarro & Figueras, Mycol. Res. 101: 446 

(1997) 

Notes — This species produces ostiolate ascomata with a crown of setae around the 

ostiole, ellipsoidal ascospores, and bulbils. 

Dactylidispora ellipsospora (Takada) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812081. 

Basionym. Microthecium ellipsosporum Takada, in Kobayasi et al., Bull. natn. Sci. Mus., Tokyo 16: 527 

(1973) 

≡ Sphaerodes ellipsospora (Takada) Dania García, Stchigel & Guarro, Stud. Mycol. 50: 67 (2004) 

Notes — Dactylidispora ellipsospora is characterized by  non-ostiolate ascomata, 

fusiform ascospores and  absence of an asexual morph. 
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Dactylidispora singaporensis (Morinaga, Minoura & Udagawa) Y. Marín, Stchigel, 

Guarro & Cano, comb. nov.  

MycoBank MB812082. 

Basionym. Melanospora singaporensis Morinaga, Minoura & Udagawa, Trans. Mycol. Soc. Japan 19: 142 

(1978) 

≡ Sphaerodes singaporensis (Morinaga, Minoura & Udagawa) Dania García, Stchigel & Guarro, Stud. 

Mycol. 50: 67 (2004) 

Notes — Dactylidispora singaporensis is distinguished by its ostiolate ascomata, 

citriform ascospores, and a phialidic asexual morph. 

 

Medusitheca Y. Marín, Stchigel, D. García, Guarro & Cano, gen. nov. Fig. 4 

MycoBank MB812084. 

Type species. Medusitheca citrispora Y. Marín, Stchigel, D. García, Guarro, A.N. Mill. & 

Cano. 

Etymology. From Greek μέδουσα, jellyfish, and τείχος, wall, because of the 

resemblance of the ascomata to a jellyfish due to the abundant presence of setae. 

Diagnosis: This genus is characterized by dark and strongly setose non-ostiolate 

ascomata.  

Ascomata superficial or immersed, solitary o gregarious, globose, non-ostiolate, 

strongly setose, semi-translucent, pale brown to brown, appearing black when ascospores 

are mature; setae right, becoming sinouse toward the apex, pale brown to brown, non-

septate, rarely 1-septate, thick-walled, verrucous to tuberculate, sometimes branched; 

peridium membranaceous, of textura angularis to textura globulosa. Asci 8-spored, 

globose to subglobose. Ascospores 1-celled, at first hyaline, becoming brown to dark 

brown, ellipsoidal, one-celled, smooth-walled, with a depressed germ pore at each end. 
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Medusitheca citrispora Y. Marín, Stchigel, D. García, Guarro, A.N. Mill. & Cano, sp. 

nov. Fig. 4 

MycoBank MB812085. 

Etymology. From Latin citrum-, lemon, and -spora, spore, referring to the lemon-shaped 

ascospores. 

Colonies on PDA attaining a diam of 7075 mm after 14 d at 35ºC, cottony and 

granulose (due to the presence of a high number of ascomata), white with grey to black 

dots, depressed at the centre, margins fringed; reverse yellowish-white to pale yellow (M. 

4A2 to 4A3) and with olive brown (M. 4F2) dots. Mycelium composed of hyaline to pale 

yellow, septate, branched, smooth-walled hyphae, 13 µm diam. Ascomata immersed in 

the mycelium, solitary or gregarious, globose, cleistothecial, 130280 µm, setose, semi-

translucent, pale brown to brown, appearing black when ascospores are mature; setae 

right, becoming sinuous toward the apex, 20200 µm long, 520 µm wide at the base, 

tapering gradually to a rounded tip of 25 µm diam, pale brown to brown, non-septate, 

rarely 1-septate, thick-walled, verrucose to tuberculate, sometimes branched; peridium 

membranaceous, composed of 5-6 layers of flattened cells, 3040 µm thick, of textura 

angularis to textura globulosa, peridial cells of 530 µm diam. Asci 8-spored, globose to 

subglobose, 2025 x 1520 µm, soon evanescent, without apical structures, disposed at 

the centrum. Ascospores irregularly arranged into the asci, 1-celled, at first hyaline, 

becoming brown to dark brown with the age, smooth- and thick-walled, ellipsoidal, 

2027 x 1015 µm, with one germ pore at each end; germ pores 0.752 µm diam, 

depressed. Asexual morph absent. 

Culture characteristics — Colonies on OA attaining a diam of 5060 mm in 14 d 

at 35°C, white to orange white (M. 5A2) with brownish grey dots (M. 5F2), cottony and 

granulose due to the presence of numerous ascomata, margins arachnoid; reverse 
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yellowish-white to golden grey (M. 4A2 to 4C2). Minimum and maximum temperature of 

growth 20 and 40ºC, respectively. Optimum temperature of growth 35ºC. 

Specimens examined. USA, North Carolina, Great Smoky Mountains National 

Park, Cartoogechaye Creek Campground (35.137548; -83.491525), forest soil, 15-VII-

2008, col. A. N. Miller, M. Calduch and A. M. Stchigel (holotype CBS H-21596, cultures 

ex-type CBS 137837 = FMR 12767). 

 

Melanospora Corda, Icon. fung. (Prague) 1: 24. 1837, emend. Fig. 3 

Type species. Melanospora zamiae Corda, Icon. fung. (Prague) 1: 24 (1837) 

Ascomata superficial to immersed, globose to subglobose, ostiolate, yellowish-

orange or reddish, tomentose or glabrous, with, usually, a long neck composed of 

intermixed hypha, with a ring of rigid, hyaline, septate, smooth- and thick-walled setae; 

peridium membranaceous, translucent, of textura angularis. Periphysis present. 

Paraphyses absent. Asci 8-spored, clavate, rounded at the apex, without apical structures, 

thin-walled, evanescent. Ascospores 1-celled, at first hyaline but later becoming brown to 

dark brown, fusiform, ellipsoidal or citriform, smooth-walled or reticulate or verrucose, 

with a terminal apiculate germ pore at each end. Asexual morph phialidic, hyaline. Bulbils 

uncommon. 

Notes — This genus is distinguished by ascomata translucent with a neck composed of 

intermixed hyphae and with an apical crown of setae, smooth or ornamented ascospores 

with an apiculate germ pore at each end, and a phialidic asexual morph. 
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Key to the species of Melanospora 

1. Ascospores ornamented....................................................................................................2 

1. Ascospores smooth-walled...............................................................................................4 

2. Ascospores irregularly verrucose.............................................................M. verrucispora 

2. Ascospores reticulate........................................................................................................3 

3. Ascospores coarsely reticulate, 18–24 × 9–12 μm...............................M. mycoparasitica 

3. Ascospores slightly reticulate, 19–24 × 8–10 μm..............................................M. tiffanii 

4. Ascospores discoid-ellipsoidal.........................................................................................5 

4. Ascospores otherwise.......................................................................................................7 

5. Ascus 4-spored; ascospores 1419 x 1214 x 89 μm..............................M. longisetosa 

5. Ascus 8-spored; ascospores smaller.................................................................................6  

6. Neck 250400 μm; ascospores 7.516 x 612 x 47 μm................................M. chionea 

6. Neck 150200(260) μm; ascospores 10.512(13.5) x 910.5(12) x 79 

μm........................................................................................................M. washingtonensis 

7. Ascomata usually narrower than 100 μm; ascospores citriform to rhomboidal, 1825 x 

1014 μm.........................................................................................................M. damnosa 

7. Ascomata usually broader than 100 μm; ascospores ellipsoidal to citriform…...............8 

8. Ascomata strongly tomentose; neck 15002000 μm long.......................…....M. caprina 

8. Ascomata weakly or not tomentose, neck shorter than 1500 μm.....................................9 

9. Neck shorter than 250 μm long; setae 4080(200) μm long...........................M. zamiae 

9. Neck longer than 800 μm...............................................................................................10 

10. Setae longer than 100 μm..............................................................................M. arenaria 

10. Setae up to 50 μm long................................................................................M. lagenaria 
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Melanospora arenaria L. Fisch. & Mont., in Montagne, Annls. Sci. Nat., Bot., sér. 4 5: 

337 (1856)  

Notes — Melanospora arenaria is characterized by ascomata with a long neck and 

ellipsoidal to citriform, smooth-walled ascospores. It is similar to Melanospora caprina, 

but this has more tomentose ascomata. 

Melanospora caprina (Fr.) Sacc., Syll. fung. (Abellini) 2: 462 (1883) 

Basionym. Sphaeria caprina Fr., Fl. Danic. 11: tab. 1859, fig. 2 (1825) 

≡ Ceratostoma caprinum (Fr.) Fr., Summa veg. Scand., Section Post. (Stockholm): 396 (1849) 

≡ Cerastoma caprinum (Fr.) Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 522 (1875) 

= Sphaeria vervecina Desm., Annls Sci. Nat., Bot., sér. 2 17: 13 (1842) 

≡ Melanospora vervecina (Desm.) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 126 (1870) 

= Melanospora vervecina f. arundinis Sacc., Syll. fung. (Abellini) 2: 461 (1883) 

Notes — Melanospora caprina is distinguished from the other species of the genus by its 

larger, densely white-tomentose, ascomata with a very long neck, and the ellipsoidal to 

citriform, smooth-walled ascospores with slightly apiculate germ pores.  

Melanospora chionea (Fr.) Corda, Icon. fung. (Prague) 1: 24 (1837) 

Basionym. Ceratostoma chioneum Fr., Observ. mycol. (Havniae) 2: 340 (1818) 

≡ Sphaeria chionea (Fr.) Fr., Syst. mycol. (Lundae) 2: 446 (1823) 

≡ Melanospora chionea var. chionea (Fr.) Corda, Icon. fung. (Prague) 1: 24, tab. 7, fig. 297 (1837) 

= Sphaeria biformis var. brachystoma Pers., Syn. meth. fung. (Göttingen) 1: 60 (1801) 

≡ Melanospora chionea var. brachystoma (Pers.) Sacc., Syll. fung. (Abellini) 2: 461 (1883) 

= Sphaeria leucophaea Fr., Elench. fung. (Greifswald) 2: 92 (1828) 

≡ Ceratostoma leucophaeum (Fr.) Fr., Summa veg. Scand., Section Post. (Stockholm): 396 (1849) 

≡ Melanospora chionea var. leucophea (Fr.) Sacc., Syll. fung. (Abellini) 2: 461 (1883)  

= Melanospora antarctica Speg., Boln Acad. nac. Cienc. Córdoba 11: 233 (1888) 

Notes — This species is characterized by white-tomentose ascomata and discoid, smooth-

walled ascospores with depressed germ pores. 
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Melanospora damnosa (Sacc.) Lindau, in Engler & Prantl, Nat. Pflanzenfam., Teil. I 

(Leipzig) 1: 353 (1897). Fig. 3a,d 

Basionym. Sphaeroderma damnosum Sacc., in Berlese, Riv. Patol. veg., Pavia 3: tabs VII-VIII, nos 1-6 

(1896) 

Notes — Melanospora damnosa is distinguised by ascomata with a short neck and 

citriform to rhomboidal, smooth-walled ascospores with a slightly apiculate germ pore at 

each end. 

Melanospora lagenaria (Pers.) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 126 (1870) 

Basionym. Sphaeria lagenaria Pers., Syn. meth. fung. (Göttingen) 1: 58 (1801) 

≡ Ceratostoma lagenaria (Pers.) Fr. [as 'lagenarium'], Syst. veg., Edn 16: 392 (1827) 

≡ Auerswaldia lagenaria (Pers.) Rabenh., Hedwigia 1: 116 (1857) 

≡ Cerastoma lagenaria (Pers.) Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 522 (1875)  

≡ Phaeostoma lagenaria (Pers.) Munk [as 'lagenarium'], Dansk bot. Ark. 17: 82 (1957) 

= Sphaeria vervecina Desm., Annls Sci. Nat., Bot., sér. 2 17: 13 (1842) 

= Melanospora lagenaria var. tetraspora Rehm, Hedwigia 30: 259 (1891) 

Notes — Melanospora lagenaria is similar to M. caprina, but the former has less 

tomentose ascomata, shorter necks with a poorly developed crown of setae. 

Melanospora longisetosa P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 130 (1982).  

Notes — This species is characterized by 4-spored asci and discoid, smooth-walled 

ascospores. 

Melanospora mycoparasitica (Vujan.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812086 

Basionym. Sphaerodes mycoparasitica Vujan., Mycol. Res. 113: 1173 (2009) 

Notes — Melanospora mycoparasitica is distinguished by fusiform and coarsely 

reticulate ascospores. 

Melanospora tiffanii Kowalski, Mycologia 57: 279 (1965) 

Notes — This species produces fusiform and slightly reticulate ascospores. 
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Melanospora verrucispora Takada, in Kobayasi et al., Bull. natn. Sci. Mus., Tokyo 16: 

525 (1973). Fig. 3e,f 

Notes — This species is distinguished by its irregularly verrucose ascospores. 

Melanospora washingtonensis Nitzan, J.D. Rogers & D.A. Johnson, Sydowia 56: 282 

(2004) 

Notes — This species is similar to M. chionea, but they differ in the length of the neck 

(150200(266) μm in M. washingtonensis and 250400 μm in M. chionea) and in the 

size the ascospores (10.512(13.5) x 910.5(12) x 79 μm in M. washingtonensis and 

7.516 x 612 x 47 μm in M. chionea), as well as in the presence of phialidic asexual 

morph in M. washingtonensis. 

Melanospora zamiae Corda., Icon. fung. (Prague) 1: 24 (1837). Fig. 3b,c 

= Melanospora leucotricha Corda, Icon. fung. (Prague) 1: 25 (1837) 

= Melanospora coemansii Westend., Bull. Acad. R. Sci. Belg., Cl. Sci.: 579 (1857) 

= Melanospora cirrhata Berk. in Cooke, Grevillea 16: 102 (1888) 

= Melanospora globosa Berl., Malpighia 5: 409 (1891) 

= Melanospora pampeana Speg., Anal. Mus. nac. Hist. nat. B. Aires 6: 287 (1898) 

= Melanospora townei Griffiths, Bull. Torrey bot. Club 26: 434 (1899)  

= Melanospora rhizophila Peglion & Sacc., Annls mycol. 11: 16 (1913) 

= Melanospora mattiroloana Mirande [as 'mattiroliana'], Bull. Soc. mycol. Fr. 32: 72 (1916) 

= Melanospora schmidtii Sacc., Syll. fung. (Abellini) 24: 650 (1926) 

= Melanospora asclepiadis Zerova, J. Inst. Bot. Acad. Sci. Ukraine 12: 155 (1937) 

Notes — Melanospora zamiae is characterized by the production of ellipsoidal to 

citriform and smooth-walled ascospores with a depressed germ pore at each end. Doguet 

(1955) described the presence of bulbils; however, later studies on this fungus  did not 

mention the presence of those propagules (Calviello 1973, Cannon and Hawksworth 

1982). In any case, the bulbils rarely occur in the genus. 
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We could not include the species Melanospora arenaria, M. caprina, M. chionea, M. 

lagenaria, M. tiffanii and M. washingtonensis in the present study since their type species 

are not available; however, these species are well described in the protologues and their 

inclusion in Melanospora seems undoubtable. 

 

DOUBTFUL SPECIES 

Melanospora aculeata (E.C. Hansen), Vidensk. Meddel. Dansk Naturhist. Foren. 

Kjøbenhavn 59: 15 (1877) 

Notes — Cultures of this species were not available, but this species was described 

producing small asci (1821 x 78 μm) and ascospores (46 x 34 μm). This species 

produced ostiolate ascomata without a neck, typical of Microthecium; however, so small 

ascospores have never seen in that genus. 

Melanospora cervicula Hotson, Proc. Amer. Acad. Arts & Sci. 48: 254 (1912)  

Notes — Cultures were not available, but jutging from the protologue, it could be a 

species of Melanospora since it shows a long neck (85140 μm), which is a typical 

distinction for the genus; however, in the original description the structure of the neck is 

not mentioned.   

Melanospora endobiotica Woron., Notul. syst. Inst. cryptog. Horti bot. petropol. 3: 31 

(1924) 

Notes — Cultures were not available, and pictures or drawings were not included in the 

protologue. It was reported as morphologically related to Melanospora rhizophila (now 

considered a synonym of Melanospora zamiae (Doguet 1955)) when was described 

(Woronichin 1924). 
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EXCLUDED SPECIES 

Melanospora arachnophila Fuckel, Jb. nassau. Ver. Naturk. 23-24: 127 (1870) 

Notes — This species shows cylindrical asci and hyaline ascospores, features never seen 

in Melanospora. It was already excluded fron Melanospora by Doguet (1955). 

Melanospora argadis Czerepan., Nov. sist. Niz. Rast. 3: 177 (1966) 

Notes — This species shows morphological features never observed in Melanospora, e.g. 

the small size of their asci (1014 x 56.5 μm) and of their olivaceous ascospores (55.5 

x 33.5 μm). The original description is not enough detailed to ascertain its possible  

taxonomical placement. 

Melanospora exsola Bat. & H.P. Upadhyay, Atas Inst. Micol. Univ. Recife 2: 331 (1965) 

Notes — This species is excluded from Melanospora because its dark brown, setose 

ascomata and small ascospores (4.512 x 47 μm) which seems to indicate a closer 

relationship with Chaetomium. 

Melanospora gigantea (Massee & Crossl.) Massee & Crossl., Fungus Flora of Yorkshire 

(Leeds): 215 (1905) 

Notes — Descriptions of this species and of its basyonym, Sphaeroderma gigantea, were 

not found. 

Melanospora lucifuga (Jungh.) Sacc., Syll. fung. (Abellini) 2: 464 (1883)  

Notes — Cultures were not available and the original description lacks of asci and 

ascospores description. Therefore, we agree with Doguet (1955) in the exclusion of this 

fungus from Melanospora. 

Melanospora kurssanoviana (Beliakova) Czerepan., Notul. syst. Sect. cryptog. Inst. bot. 

Acad. Sci. U.S.S.R. 15: 84 (1962) 

Notes — In this phylogenetic study, M. kurssanoviana was placed in a lineage far from 

the Melanosporales. Unfortunately, the only living culture available apparently has lost its 
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ability to develop reproductive structures, and we did not find in the description and the 

drawing provided when was originally described as a new species of Chaetomium any 

distinctive morphological feature to differentiate and delimitate this species from the 

other members of Melanosporales. 

Melanospora macrospora P. Karst., Hedwigia 30: 299 (1891) 

Notes — Doguet (1955) excluded this species due to the production of very large 

(480500 x 3336 m) cylindrical asci and ascospores (4252 x 2835 m), 

morphological features not observed in members of Melanosporales. 

Melanospora octahedrica Pat., Cat. Rais. Pl. Cellul. Tunisie (Paris): 109 (1897) 

Notes — This species is transferred to Scopinella by the shape of their ascospores. 

Scopinella octahedrica (Pat.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812087. 

Melanospora pascuensis Stchigel & Guarro, Mycol. Res. 103: 1305 (1999) 

Notes — This species is excluded from Melanospora since its neck is cellular or absent. It 

is characterized by dark ring-like structure around the germ pores of the ascospores. This 

species could be a new genus since this kind of structure around the germ pore has never 

seen in other members of Melanosporales, considering that this structure could be 

phylogenetically informative as in the case of Dactylidispora, which is distinguished by 

its ascospores with a raised rim around the germ pores. However, the living culture of the 

type strain of this fungus was contaminated with other fungus and it could not be included 

in the molecular study. 

Melanospora setchellii (Harkn.) Sacc. & P. Syd., Syll. fung. (Abellini) 16: 564 (1902) 

Notes — This species is excluded from Melanospora since it produces cylindrical asci 

within the ascospores are linearly disposed, feature never observed in the species of that 

genus. 
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Melanospora similis Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 126: 343 

(1917) 

Notes — There are not cultures of this species, and was described in German, without 

Latin diagnosis. This species is morphologically similar to Pustulipora corticola, 

differing only by the shape of the ascospores (symmetric in Melanospora similis and 

assymetric in Pustulipora corticola). Neither pictures nor drawings were included in the 

protologue to determine if cushion-like structures surrounding the germ pore, typical of 

Pustulipora, were produced. 

Melanospora vitrea (Corda) Sacc., Syll. fung. (Abellini) 2: 463 (1883)  

Basionym. Sphaeronaema vitreum Corda, Icon. fung. (Prague) 1: 25 (1837) 

Notes —Doguet (1955) excluded this species because it produces oblate and pale yellow 

ascospores. 

 

Microthecium Corda, Icon. fung. (Prague) 5: 30, 74 (1842), emend. Fig. 2 

Type species. Microthecium zobelii Corda, Icon. fung. (Prague) 5: 74. 1842. 

= Sphaerodes Clem., Gen. fung. (Minneapolis): 44, 173. 1909. 

= Pteridiosperma J.C. Krug & Jeng, Mycotaxon 10: 44. 1979. 

= Persiciospora P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 133. 1982. 

Ascomata superficial or immersed, globose to subglobose or pyriform, ostiolate or 

not, yellowish-orange or reddish, tomentose or glabrous; neck short or absent, conical, 

composed of angular cells similar to those of the peridial cells, usually with a crown of 

hyaline, septate, smooth- and thick-walled setae around the ostiole; peridium 

membranaceous, translucent, of textura angularis. Periphysis present. Paraphyses absent. 

Asci 8-spored, clavate, rounded at the apex, without apical structures, thin-walled, 

evanescent. Ascospores 1-celled, at first hyaline becoming brown to dark brown with the 

age, ellipsoidal, fusiform, navicular or citriform, smooth, reticulate, pitted or wrinkled, 
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with a terminal apiculate or depressed germ pore at each end. Asexual morph phialidic, 

hyaline. Bulbils usually produced, pale orange to reddish-orange. 

Notes — Microthecium has translucent ascomata of textura angularis, cellular necks 

short or absent, ascospores smooth-walled or ornamented with a depressed or apiculate 

germ pore at each end, often producing bulbils and a phialidic asexual morph. 

 

Key to the species of Microthecium 

1. Sexual morph absent, only producing of bulbils....................................M. sepedonioides 

1. Sexual morph present.......................................................................................................2 

2. Ascomata non-ostiolate....................................................................................................3 

2. Ascomata ostiolate.........................................................................................................13 

3. Ascospores with the surface ornamented.........................................................................4 

3. Ascospores smooth or nearly so.......................................................................................9 

4. Ascospores pitted and with wing-like ridges, 1721 x 810 µm...............M. foveolatum 

4. Ascospores coarsely reticulate.........................................................................................5 

5. Asci 4-spored....................................................................................................................6 

5. Asci 8-spored....................................................................................................................7 

6. Ascospores (25)2834(40) x 1418(20) µm.............................................M. beatonii 

6. Ascospores 2228 x 1215 x 911 µm, 1/3 of which are coarsely reticulate and 

remaining smooth-walled the rest....................................................................M. perplexum 

7. Ascospores 2534 x 1218 µm………………………...........................M. episphaerium 

7. Ascospores 1720 x 1012 x 79 µm.........................................................M. retisporum 

8. Ascomata smaller than 120 µm; ascospores finely reticulated under SEM, 1923 x 

(12)1415(17) x 1013 µm......................................................................M. tenuissimum 

8. Ascomata larger than 120 µm..........................................................................................9 
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9. Ascospores shorter than 20 µm......................................................................................10 

9. Ascospores longer than 20 µm.......................................................................................11 

10. Ascospores 1519 x 1113 x 89 µm, with the narrow faces coarsely reticulate and 

the rest smooth...........................................................................................M. compressum 

10. Ascospores 1017 x 812 x 910 µm, completely smooth-walled...…..…M. levitum 

11. Ascospores fusiform, 2021 x 8 x 7 µm...................................................M. hypomyces 

11. Ascospores citriform....................................................................................................12 

12. Ascospores 2830 x 1213(15) µm..........................................................M. geoporae 

12. Ascospores 1825 x 8.512 x 69 µm............................................................M. zobelii 

13. Ascospores ornamentated with wing-like appendages.................................................14 

13. Ascospores otherwise...................................................................................................15 

14. Ascospores with wrinkles, (12)1318 x (7)810 µm................................M. ciliatum 

14. Ascospores pitted-walled, (17)2022(24) x 1214 x 1012................M. lenticulare 

15. Ascospores with the surface ornamentated..................................................................16 

15. Ascospores smooth-walled...........................................................................................23 

16. Ascospores punctate or punctate-reticulate..................................................................17 

16. Ascospores reticulate or striate-reticulate....................................................................19 

17. Ascospores punctate, ellipsoidal, 1721 x 1315 μm................................M. africanum 

17. Ascospores punctate-reticulate, ellipsoidal-fusiform...................................................18 

18. Ascospores delicately punctate, asexual morph and bulbils present..........M. japonicum 

18. Ascospores coarsely punctate, asexual morph and bulbils absents...............M. moreaui 

19. Ascospores striate-reticulate.........................................................................................20 

19. Ascospores reticulate....................................................................................................21 

20. Ascospores with incospicuous ridges forming a very coarse reticulum, 1822(28) x 

9.511(13) x 89 µm..............................................................................M. micropertusum 
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20. Ascospores without ridges or reticulum, 2636 x 1317μm….....................M. masonii 

21. Ascospores with 46 prominent longitudinal ribs, 2328(30) x 1012 x 810 

µm...........................................................................................................M. quadrangulatum 

21. Ascospores without longitudinal ribs, coarsely reticulate…........................................22 

22. Ascospores spindle-shaped, 19.522 x 8.511 µm......................................M. internum 

22. Ascospores citriform to fusiform, 1420 x 1017 µm..................................M. fimicola 

23. Crown of setae absent...............................................................................M. nectrioides 

23. Crown of setae present around the ostiole....................................................................24 

24. Ascospores citriform, 2024 x 1114 µm................................................M. marchicum 

24. Ascospores otherwise...................................................................................................25 

25. Ascospores ellipsoid to citriform, often somewhat plataniform..................................26 

25. Ascospores otherwise...................................................................................................28 

26. Bulbils present; ascospores 2032 x 1016 µm................................................M. fallax 

26. Bulbils absents..............................................................................................................27  

27. Ascospores 2134 x 1117 µm................................................................M. brevirostris 

27. Ascospores 1822 x 911 µm...................................................................M. fimbriatum 

28. Ascospores ellipsoid to fusiform, 2025 x 712 µm................................M. fusisporum 

28. Ascospores ellipsoid to navicular.................................................................................29 

29. Ascospores (9.5)1112(13) x 44.5 µm.....................................................M. pegleri 

29. Ascospores longer tan 15 µm.......................................................................................30 

30. Ascospores 1624 x 812 µm.........................................................................M. fayodii 

30. Ascospores 2530 x 1115 µm..........................................................M. brevirostratum 
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Microthecium africanum (J.C. Krug) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812088. 

Basionym. Persiciospora africana J.C. Krug, Mycologia 80: 416 (1988) 

Notes — Microthecium africanum is characterized by ostiolate ascomata and punctate 

ellipsoidal ascospores. Although it was reported the presence of asexual morph with two 

different sort of conidia (i), 14(5)-celled, globose and smooth-walled at first but 

becoming cylindrical and coarsely verrucose later; (ii), 12-celled, large, usually 

cylindrical and smooth-walled), probably the strain was not a pure culture because the 

18S and 28S sequences match with Fusarium spp. and the pictures of those conidia 

resemble the chlamydospores produced by several species of this genus. 

Microthecium beatonii D. Hawksw., Trans. Mycol. Soc. Japan 18: 145 (1977) 

Notes — This species is characterized by non-ostiolate ascomata, 4-spored asci and very 

coarsely reticulate, citriform ascospores. These morphological features are also observed 

in Microthecium perplexum, but this species produces only a third of the ascospores 

coarsely reticulated remaining smooth-walled the rest. Microthecium episphaerium and 

Microthecium retisporum differs from M. beatonii because both produce 8-spored asci. 

Both species can be distinguished by the size of their ascospores (2534 x 1218 µm in 

M. episphaerium and 1720 x 1012 x 79 µm in M. retisporum). Moreover, M. 

retisporum produces a phialidic asexual morph and bulbils, absent in M. beatonii, M. 

episphaerium and M. perplexum. 

Microthecium brevirostratum (Moreau) Y. Marín, Stchigel, Guarro & Cano, comb. nov.  

Mycobank MB812089. 

Basionym. Melanospora brevirostrata Moreau, Bull. trimest. Soc. mycol. Fr. 61: 59 (1945) 

Notes — Microthecium brevirostratum together with Microthecium fayodii and 

Microthecium pegleri produces ostiolate ascomata, smooth-walled, ellipsoidal to 
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navicular or citriform ascospores and bulbils. Microthecium brevirostratum is easily 

distinguished by its ascospores with apiculate germ pores and the presence of a phialidic 

asexual morph (ascospores showing depressed germ pores and lacking of an asexual 

morph in the other species). Microthecium fayodii and M. pegleri differ in the size of the 

ascospores, being M. pegleri the species with the smaller ascospores in Microthecium 

((9.5)1112(13) x 44.5 µm).  

Microthecium brevirostre (Fuckel) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812090. 

Basionym. Teichospora brevirostris Fuckel, Jb. nassau. Ver. Naturk. 23-24: 161 (1870)  

≡ Strickeria brevirostris (Fuckel) G. Winter, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.2: 283 (1885) 

≡ Melanospora brevirostris (Fuckel) Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 123: 94 

(1914) 

= Sphaeria brevirostris Fr., Syst. mycol. (Lundae) 2: 474 (1823) 

≡ Cerastoma brevirostre (Fr.) Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 521 (1875) 

≡ Ceratostoma brevirostre (Fr.) Sacc., Syll. fung. (Abellini) 1: 216 (1882) 

= Ceratostoma helvellae Cooke, Grevillea 1: 175 (1873) 

≡ Melanospora helvellae (Cooke) Sacc., Syll. fung. (Abellini) 2: 462 (1883) 

= Melanospora sphaerodermoides Grove, J. Bot., Lond. 23: 4 (1885)  

= Melanospora sphaerodermoides var. sphaerodermoides Grove, J. Bot., Lond. 23: 4 (1885)  

= Thielavia soppittii Crossl., Naturalist, London: 7 (1901) 

= Rosellinia aurea McAlpine, Fungus Diseases of stone-fruit trees in Australia: 102 (1902) 

≡ Melanospora aurea (McAlpine) Doguet, Botaniste 39: 124 (1955) 

= Melanospora sphaerodermoides var. rubella Pidopl., Fungus flora of coarse fodders: 69 (1948) 

= Melanospora camelina Faurel & Schotter, Revue Mycol., Paris 30: 144 (1965) 

= Melanospora tulasnei Udagawa & Cain, Can. J. Bot. 47: 1932 (1970) 

Notes — Microthecium brevirostris, Microthecium fallax and Microthecium fimbriatum 

produce ostiolate ascomata and ellipsoidal to citriform, often plataniform, smooth-walled 

ascospores with an apiculate germ pore at each end. M. fimbriatum is easily distinguished 
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by its smaller (100110 µm) and reddish ascomata and M. fallax differs in the production 

of bulbils.  

Microthecium ciliatum Udagawa & Takada, Trans. Mycol. Soc. Japan 15: 23 (1974) 

≡ Pteridiosperma ciliatum (Udagawa & Y. Takeda) J.C. Krug & Jeng, Mycotaxon 10: 45 (1979) 

Notes — This species is characterized by non-ostiolate ascomata and ellipsoidal to 

fusiform ascospores ornamented with wing-like appendages and wrinkles, and the 

production of a phialidic asexual morph and bulbils. Microthecium lenticulare and 

Microthecium foveolatum also present ascospores with wing-like appendages, but these 

are pitted. Moreover, both species do not produce bulbils. Microthecium foveolatum, such 

as M. ciliatum, is characterized by non-ostiolate ascomata and the production of a 

phialidic asexual morph, whereas Microthecium lenticulare has ostiolate ascomata and 

lacks asexual morphs. 

Microthecium compressum Udagawa & Cain, Can. J. Bot. 47: 1921 (1970) 

≡ Sphaerodes compressa (Udagawa & Cain) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 145 (1982) 

Notes — This species is distinguished by non-ostiolate ascomata and citrifom, bilaterally 

flattened ascospores, with the narrow faces coarsely reticulate and the widest ones smooth 

or nearly so, plus the production of a phialidic asexual morph. 

Microthecium episphaerium (W. Phillips & Plowr.) Höhn., Sber. Akad. Wiss. Wien, 

Math.-naturw. Kl., Abt. 1 123: 98 (1914) 

Basionym. Melanospora episphaeria W. Phillips & Plowr., Grevillea 10: 71 (1881) 

≡ Sphaeroderma episphaerium (W. Phillips & Plowr.) Sacc., Syll. fung. (Abellini) 2: 460 (1883) 

≡ Sphaerodes episphaerium (W. Phillips & Plowr.) Clem. [as 'episphaericum'], Gen. fung. (Minneapolis): 

1‒227 (1909) 

≡ Vittadinula episphaeria (W. Phillips & Plowr.) Clem. & Shear, Gen. fung., Edn 2 (Minneapolis): 281 

(1931) 

= Sphaeroderma epimyces Höhn., Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-

naturw. Klasse Abt. I 116: 103 (1907) 
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≡ Melanospora epimyces (Höhn.) Doguet, Botaniste 39: 125 (1955) 

Microthecium fallaciosum (Zukal) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812772. 

Basionym. Melanospora fallax Zukal, Ascomyceten: 28 (1889) 

= Melanospora anomala Hotson, Proc. Amer. Acad. Arts & Sci.: 257 (1912) 

= Melanospora papillata Hotson, Proc. Amer. Acad. Arts & Sci.: 251 (1912) 

= Melanospora phaseoli Roll-Hansen, Blyttia 6: 73 (1948) 

Microthecium fayodii (Vuill.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. Fig. 2b, f, 

m 

MycoBank MB812091. 

Basionym. Melanospora fayodii Vuill. [as 'fayodi'], Bull. Séanc. Soc. Sci. Nancy, Sér. 2 8: 33 (1887) 

Microthecium fimbriatum (Rostr.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812092.  

Basionym. Sphaeroderma fimbriatum Rostr., Oest. Grönl. Svampe: 25 (1894) 

≡ Melanospora fimbriata (Rostr.) Petch, Trans. Br. mycol. Soc. 21: 253 (1938) 

Microthecium fimicola (E.C. Hansen) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

Fig. 2c, k, n 

MycoBank MB812093. 

Basionym. Melanospora fimicola E.C. Hansen, Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn: 15 

(1876) 

≡ Sphaeroderma fimicola (E.C. Hansen) Sacc., Syll. fung. (Abellini) 2: 460 (1883) 

≡ Sphaerodes fimicola (E.C. Hansen) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 146 (1982) 

= Melanospora ornata Zukal, Verh. zool.-bot. Ges. Wien 35: 340 (1886) 

≡ Sphaerodes ornata (Zukal) Arx, Gen. Fungi Sporul. Cult., Edn 3 (Vaduz): 156 (1981) 

= Sphaeroderma hulseboschii Oudem., Contrib. Flora Mycol. d. Pays-Bas 11: 23 (1886) 

≡ Melanospora hulseboschii (Oudem.) Doguet, Botaniste 39: 121 (1955) 

= Melanospora affine Sacc. & Flageolet, Bull. Soc. mycol. Fr. 12: 67 (1896) 

= Melanospora manginii Vincens [as 'mangini'], Bull. Soc. mycol. Fr. 33: 69 (1917) 
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≡ Sphaerodes manginii (Zukal) Arx, Gen. Fungi Sporul. Cult., Edn 3 (Vaduz): 156 (1981) 

Notes — Microthecium fimicola is characterized by ostiolate ascomata and coarsely 

reticulate ascospores with a strongly apiculate germ pore at both ends. The other species 

with ostiolate ascomata and reticulate ascospores are Microthecium internum and 

Microthecium quadrangularis. The main differences among them are the shape and the 

size of the ascospores, being citrifrom in M. fimicola, spindle-shaped in M. internum and 

fusiform in M. quadrangularis. The production of bulbils has been only observed in M. 

fimicola, although this production was not reported before. 

Microthecium foveolatum Udagawa & Y. Horie, in Hawksworth & Udagawa, Trans. 

Mycol. Soc. Japan 18: 149 (1977) 

≡ Pteridiosperma foveolatum (Udagawa & Y. Horie) J.C. Krug & Jeng, Mycotaxon 10: 45 (1979) 

Microthecium fusisporum (Petch) Y. Marín, Stchigel, Guarro & Cano, comb. nov.  

MycoBank MB812094. 

Basionym. Sphaeroderma fusisporum Petch, Naturalist, London: 58 (1936) 

≡ Melanospora fusispora (Petch) Doguet, Botaniste 39: 215 (1955) 

= Melanospora fusispora var. fusispora (Petch) Doguet, Botaniste 39: 215 (1955)  

= Melanospora fusispora var. parvispora Matsush., Matsush. Mycol. Mem. 8: 24 (1995) 

Notes — Microthecium fusisporum is related to Microthecium nectrioides, both showing 

ostiolate ascomata and smooth-walled, fusiform ascospores. However, M. nectrioides can 

be distinguished by the absence of the crown of setae around the ostiole and its more 

asymmetric ascospores. 

Microthecium geoporae (W. Oberm.) Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., 

Abt. 1 123: 98 (1914) 

Basionym. Guttularia geoporae W. Oberm., Mykol. Zentbl. 3: 9 (1913) 

Notes — This species produces non-ostiolate ascomata and smooth-walled, citrifrom 

ascospores. Other species of Melanospora characterized by the production of non-
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ostiolate ascomata and smooth-walled ascospores are Microthecium hypomyces, 

Microthecium levitum and Microthecium zobelii. Microthecium hypomyces is 

distinguished by its fusiform ascospores (citriform in the other species) and M. levitum by 

the presence of bulbils and a phialidic asexual morph. Microthecium geoporae and M. 

zobelii are distinguished by the size of their ascospores (2830 x 1213(15) µm in M. 

geoporae and 1825 x 8.512 x 69 µm in M. zobelii). Microthecium tenuissimum shows 

similar morphological features to these species but its ascospores are finely reticulate 

under SEM and its ascomata are smaller than the other species (less than 120 µm). 

Microthecium hypomyces (Höhn.) Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., 

Abt. 1 123: 50 (1914) 

Basionym. Sphaeroderma hypomyces Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 116: 102 

(1907) 

≡ Melanospora hypomyces (Höhn.) Doguet, Botaniste 39: 215 (1955) 

Microthecium internum (Tehon & G.L. Stout) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov.  

MycoBank MB812095. 

Basionym. Melanospora interna Tehon & G.L. Stout, Mycologia 21: 181 (1929) 

Microthecium japonicum (Y. Horie, Udagawa & P.F. Cannon) Y. Marín, Stchigel, 

Guarro & Cano, comb. nov. Fig. 2h 

MycoBank MB812096. 

Basionym. Persiciospora japonica Y. Horie, Udagawa & P.F. Cannon, Mycotaxon 25: 233 (1986) 

Notes — Microthecium japonicum is characterized by ostiolate ascomata and punctate-

reticulate, ellipsoidal to fusiform ascospores, similar to Microthecium moureai. However, 

M. japonicum produces a phialidic asexual morph and bulbils (which are absent in M. 

moureai) and delicately reticulate ascospores (coarsely reticulate in M. moureai). 
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Microthecium lenticulare (Udagawa & T. Muroi) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov.  

MycoBank MB812097. 

Basionym. Pteridiosperma lenticulare Udagawa & T. Muroi [as 'lenticularis'], Trans. Mycol. Soc. Japan 22: 

20 (1981) 

Microthecium levitum Udagawa & Cain, Can. J. Bot. 47: 1917. 1970. Fig. 2a, e, i  

≡ Sphaerodes levita (Udagawa & Cain) Dania García, Stchigel & Guarro, Stud. Mycol. 50: 67 (2004) 

Microthecium marchicum (Lindau) Y. Marín, Stchigel, Guarro & Cano, comb. nov.  

MycoBank MB812099. 

 Basionym. Chaetomium marchicum Lindau, Hedwigia 35: 56 (1896) 

≡ Sphaeroderma marchicum (Lindau) Sacc. & P. Syd., Syll. fung. (Abellini) 14: 627 (1899) 

Notes — Microthecium marchicum is characterized by ostiolate ascomata and smooth-

walled citrifrom ascospores. Its ascospores are similar to those of M. geoporae, 

Microthecium hypomyces, Microthecium levitum and Microthecium zobelii, but all of 

them produce non-ostiolate ascomata. 

Microthecium masonii (Kirschst.) Y. Marín, Stchigel, Guarro & Cano, comb. nov.  

MycoBank MB812100. 

Basionym. Ceratostoma masonii Kirschst., Trans. Br. mycol. Soc. 18: 306 (1934) 

≡ Persiciospora masonii (Kirschst.) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 135 (1982) 

Notes — Microthecium masonii is characterized by ostiolate ascomata and faintly striate-

reticulate, ellipsoidal to fusiform ascospores. The same sort of ascospore ornamentation is 

also observed in Microthecium micropertusum, but it is easily distinguished by the 

presence of inconspicuous ridges forming a very coarse reticulum, and a phialidic asexual 

morph. 

Microthecium micropertusum (Petch) Y. Marín, Stchigel, Guarro & Cano, comb. nov.  

MycoBank MB812101. 

Basionym. Sphaerodes micropertusa Y. Horie, Udagawa & P.F. Cannon, Mycotaxon 25: 236 (1986) 
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Microthecium moreaui (P.F. Cannon & D. Hawksw.) Y. Marín, Stchigel, Guarro & 

Cano, comb. nov.  

MycoBank MB812102. 

Basionym. Persiciospora moreaui P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 134 (1982) 

Microthecium nectrioides (Marchal) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB812103. 

Basionym. Sphaeroderma nectrioides Marchal, Bull. Soc. R. Bot. Belg. 23: 25 (1884) 

≡ Melanospora nectrioides (Marchal) Doguet, Botaniste 39: 121 (1955) 

= Melanospora asparagi G. Arnaud, Ann. Serv. Epiph. 2: 273 (1915) 

Microthecium pegleri (D. Hawksw. & A. Henrici) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov.  

MycoBank MB812104. 

Basionym. Melanospora pegleri D. Hawksw. & A. Henrici, Kew Bull. 54: 795 (1999) 

Microthecium perplexum D. Hawksw., Trans. Mycol. Soc. Japan 18: 151 (1977) 

≡ Sphaerodes perplexa (D. Hawksw.) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 148 (1982) 

Microthecium quadrangulatum (E.C. Hansen) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov. Fig. 2d, j 

MycoBank MB812105. 

Basionym. Sphaerodes quadrangularis Dania García, Stchigel & Guarro, Stud. Mycol. 50: 64 (2004) 

Microthecium retisporum Udagawa & Cain, Can. J. Bot. 47: 1926 (1970). Fig. 2g, l 

≡ Sphaerodes retispora (Udagawa & Cain) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 84: 149 (1982) 

= Microthecium retisporum var. inferius Udagawa & Cain [as 'inferior'], Can. J. Bot. 47: 1928 (1970) 

≡ Sphaerodes retispora var. inferior (Udagawa & Cain) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 

84: 149 (1982) 

= Microthecium retisporum var. retisporum Udagawa & Cain, Can. J. Bot. 47: 1926 (1970) 

≡ Sphaerodes retispora var. retispora (Udagawa & Cain) P.F. Cannon & D. Hawksw., J. Linn. Soc., Bot. 

84: 149 (1982) 
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Microthecium sepedonioides (Preuss) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

Fig. 2o 

MycoBank MB812106. 

Basionym. Papulaspora sepedonioides Preuss, Linnaea 24: 112 (1851) 

Notes — Microthecium sepedonioides only produces bulbils. The sexual morph has never 

been observed. 

Microthecium tenuissimum (Dania García, Stchigel & Guarro) Y. Marín, Stchigel, 

Guarro & Cano, comb. nov.  

MycoBank MB812107. 

Basionym. Sphaerodes tenuissima Dania García, Stchigel & Guarro, Stud. Mycol. 50: 65. 2004. 

Microthecium zobelii Corda, Icon. fung. (Prague) 5: 74 (1842).  

≡ Sphaeria zobelii (Corda) Tul. & C. Tul., Fungi hypog.: 186 (1851) 

≡ Ceratostoma zobelii (Corda) Berk., Journal of the Royal Horticultural Society 4: 402 (1860) 

≡ Melanospora zobelii (Corda) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 127 (1870) 

= Melanospora zobelii var. zobelii (Corda) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 127 (1870)    

= Melanospora coprophila Zukal, Verh. zool.-bot. Vereins Wien 37: 25 (1887) 

= Melanospora marchicum Lindau, Hedwigia 35: 56 (1896) 

= Melanospora zobelii var. minor Pidopl. Fungus flora of coarse fodders: 68 (1953) 

 

The species M. africanum, M. beatonii, M. brevirostratum, M. episphaerium, M. 

foveolatum, M. geoporae, M. hypomyces, M. internum, M. lenticulare, M. marchicum, M. 

masonii, M. micropertusum, M. moureai, M. nectrioides, M. pegleri and M. perplexum 

were not included in the present study because we could not locate the specimens since 

the holotype or live cultures of most of them are not available. However, these species 

were transferred to Microthecium, based on their complete and well illustrated 

descrptions. 
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EXCLUDED SPECIES 

Microthecium ryvardenianum Aramb. & Gamundí, Agarica 6: 124 (1985)  

Notes — This species is excluded from Microthecium because presents morphological 

features atypical of Melanosporales, e.g. allantoid ascospores when immature and striate 

when mature. 

 

Pseudomicrothecium Y. Marín, Stchigel, Guarro, Cano, gen. nov.   

MycoBank MB812108. 

Type species. Pseudomicrothecium subterraneum (L. Fan, C.L. Hou, P.F. Cannon & 

Yong Li) Y. Marín, Stchigel, Guarro & Cano. 

Etymology. The name refers to the morphological resemblance to Microthecium. 

Diagnosis: This genus is characterized by non-ostiolate ascomata, 2-spored asci and 

smooth-walled ascospores with an indistinct germ pore at each end. 

Ascomata immersed, growing in internal tissues of Tuber spp. ascomata, globose, 

non-ostiolate, translucent, light brown to mid brown, appearing dark brown when the 

ascospores are mature, glabrous or setose; peridium membranaceous, textura angularis. 

Asci 2-spored, clavate, short-stipitate, evanescent. Ascospores one-celled, at first hyaline, 

becoming dark brown to blackish, ellipsoidal to citriform, umbonate and truncate at both 

ends, germ pores indistinct, terminal. Asexual morph absent. 

Pseudomicrothecium subterraneum (L. Fan, C.L. Hou, P.F. Cannon & Yong Li) Y. 

Marín, Stchigel, Guarro & Cano, comb. nov.  

MycoBank MB812109. 

Basionym. Melanospora subterranea L. Fan, C.L. Hou, P.F. Cannon & Yong Li, Mycologia 104: 1434 

(2012) 
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DISCUSSION 

We have revised the taxonomy of relevant members of the family Ceratostomataceae 

based on the analysis of 18S, 28S, ITS, ACT and EF sequences. The study strongly 

supported the order Melanosporales proposed by Zhang and Blackwell in 2007 (Hibbett 

et al. 2007). The phylogenetic inference showed five lineages corresponding to the genera 

Dactylidispora, Medusitheca, Melanospora and Microthecium, and to Melanospora 

kurssanoviana. Our results agree with previous works (Zhang and Blackwell 2002; Fan et 

al. 2012) which demonstrated that the ornamentation of the ascospores under SEM, which 

had been traditionally used to delimitate most of the genera of Melanosporales, is not 

useful to establish phylogenetic relationships among these fungi. Similarly, the 

morphology of the ascospores resulted also to be a poor predictor for the generic 

delimitation in the family Sordariaceae, and consequently the genera Gelasinospora and 

Neurospora being synonymyzed (Dettman et al. 2001; García et al. 2004; Nygren et al. 

2011). In our case, two of the most relevant genera of Melanosporales, Melanospora and 

Microthecium grouped species with both smooth and ornamented cell walls. By contast, a 

phylogenetic study of the Lasiosphaeriaceae (Miller and Huhndorf 2005) revealed that the 

nature of the ascomal wall (peridium) is much more phylogenetically informative than the 

ornamentation of the ascospores, being proposed several new genera, i.e. Immersiella, 

Lasiosphaeria and Lasiosphaeris, or emending others, such as Schizothecium, based on 

this fact (Miller and Huhndorf 2004; Cai et al. 2005). In our study, the new genus 

Medusitheca is a clear example of the relevance of the ascomal morphology for 

phylogenetic relationships. Arxiomyces, Medusitheca and Scopinella are the only genera 

into the Melanosporales characterized by the production of dark ascomata. Medusitheca 

constitutes the lineage phylogenetically most distant from the rest of the genera included 

in this study, although its ascospores are similar to those of Melanospora and 
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Microthecium. Scopinella can be easily distinguished from Medusitheca by its cuboid-

ellipsoidal ascospores with two prominent longitudinal germ slits, and Arxiomyces by its 

ellipsoidal ascospores, rounded at the apex and truncated at the base, with a broad germ 

pore that bears a small appendage.  

Melanospora resulted restricted to the species with the ascoma bearing a neck composed 

of interwoven hyphae and, mostly, with a crown of setae at the top of the neck. This kind 

of neck differentiates this genus from Microthecium that has a neck composed by angular 

cells similar to those of the peridium, and showing a crown of setae surrounding the 

ostiole rather than disposed at the apex of the neck. The only exception was Melanospora 

mycoparasitica that does not show that kind of neck. Nevertheless, it could be due to this 

species was described and illustrated at an early stage of the ascoma development. In a 

study on the development and the cytology of Melanospora tiffanii, other species 

accepted in Melanospora based on the morphology, Kowalski (1965) displayed some 

figures of that species in early stages of development, and the neck seems similar to the 

neck of M. mycoparasitica. Melanospora arenaria, Melanospora caprina, Melanospora 

chionea, Melanospora langenaria, Melanospora longisetosa and Melanospora 

washingtonensis are the other species that produce long hyphal necks; therefore these 

have been kept in the emended genus Melanospora although it could not be included in 

the phylogenetic study. 

The neck of Melanospora spp. is morphologically similar to those of the genera 

Syspastospora and Vittatispora, which are also composed of hyphae. Syspastospora was 

introduced in 1982 by Cannon and Hawksworth to re-accommodate Melanospora 

parasitica, with three additional species described later (S. boninensis, S. cladoniae and S. 

tropicalis). This genus differs from Melanospora in the structure of the ascomatal neck 

composed of hyphae in a parallel arrangemend (interwoven hyphae in Melanospora) and 
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the cylindrical to barrel-shaped ascospores with a large, slightly sunken germ pore at both 

ends (which are ellipsoidal, citriform or fusiform, having much smaller, apiculate or 

depressed germ pores, in Melanospora). Vittatispora was proposed by Chaudhary et al. 

(2006) and characterized by ascospores with a thick hyaline longitudinal ridge. In the ML 

phylogenetic tree based on LSU sequences, this taxon constituted a lineage independent 

from the other members of Melanosporales. Vittatispora is morphologically related to 

Dactylidispora, both characterized by a raised rim surrounding the germ pores of the 

ascospores. The presence of a raised rim was also described in Melanospora collipora 

(Stchigel et al. 1997), being consequently transfered to Dactylidispora. Pustulipora is 

also morphologically similar to Dactylidispora being characterized by blistered, rarely 

cushion-like, structures surrounding the germ pore (Cannon 1982), although 

unfortunately it could not be included into the phylogenetic study since living cultures are 

not available. 

The new genus Pseudomicrothecium is proposed here to accommodate Melanospora 

subterranea, since in the LSU phylogenetic tree it demonstrated to be a separate lineage. 

The ascomata of Pseudomicrothecium are similar to those of Microthecium (globose and 

non-ostiolate), but the former produces 2-spored asci and ascospores with indistinct germ 

pores. Asci containing two ascospores have been only observed in some species of 

Scopinella, i.e. Scopinella gallicola and S. sphaerophila. 

Melanospora pascuensis, which now is excluded from that genus, is characterized by 

dark ring-like structures around the germ pores of the ascospores (Stchigel et al. 1999). 

Because the only available strain is contaminated by other fungus (probably the host), it 

was not included in the phylogenetic study. 

The phylogenetic inference demonstrated that Melanopora kurssanoviana represented a 

new lineage located far from the other species of Melanosporales which suggests that this 

128

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

species represent a new genus. However, it is not proposed because the colonies of this 

fungus in spite of all the attempts to induce sporulation remained sterile and a detailed 

morphological study was not possible. The infertility of the cultures is probably due to the 

fact that these species are mycoparasites, needing the presence of the host to develop the 

reproductive structures. The mycoparasitism of Melanospora, Syspastospora and the 

species previously belonged to Persiciospora and Sphaerodes have already been 

demonstrated by numerous authors (Doguet 1955; Calviello 1973; Jordan and Barnett 

1978; Harveson and Kimbrough 2000; Harveson and Kimbrough 2001), and even this 

ability is exploited in biocontrol of phytopathogenic fungi (Vujanovic and Goh 2009; Goh 

and Vujanovic 2010). 

Sphaeronaemella and Viennotidia, both characterized by pale and translucent ascomata, 

have been related to Melanospora (Cannon and Hawksworth 1982). However, they differ 

from the genera of Melanosporales because both produce hyaline ascospores, while in the 

Melanosporales they are pigmented. Our results agree with other authors that have 

demonstrated a closer phylogenetic relationship of the two mentioned genera with the 

order Microascales (Spatafora and Blackwell 1994b; Hausner and Reid 2004). Our SSU 

tree inference seems to demonstrate that Sphaeronaemella and Viennotidia together with 

the genus Gabarnaudia (which only displays an asexual morph) could represent a new 

order of the Sordariomycetes. However, further studies including more genes are needed 

to confirm more accurately their taxonomic status. 

The placement of our isolate of Persiciospora japonicum in the Microthecium clade 

demonstrated that the ornamentation of the ascospores, which is pitted in Persiciospora 

spp., is of poor taxonomic value, and all the species of Persiciospora should be 

transferred to Microthecium because the presence of a typical cellular neck of the 

ascomata in both genera. Surprisingly, in previous phylogenetic studies members of 
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Persiciospora were placed in the Hypocreales, closely related to Nectria (Zhang and 

Blackwell 2002; Maharachchikumbura et al. 2015). However, probably this was due to 

the probable contamination of the cultures of Persiciospora with sequences of the 

hypocrealean host (Fan et al. 2012). The same occurs, probably, with the sequences of 

Scopinella and Syspastospora, which led to a possible erroneous classification of both 

taxa in the Hypocreales (Zhang and Blackwell 2002; Chaudhary et al. 2006; Fan et al. 

2012; Maharachchikumbura et al. 2015). 

Pteridiosperma ciliatum, a member of the Melanosporales with ascospores with 

longitudinal wing-like ridges anastomosing to form a reticulum (a relevant feature of 

Pteridiosperma), was also located in the Microthecium clade, proving once again that the 

ascospore ornamentation is not phylogenetically informative. Consequently, we have 

synonymyzed the genus Pteridiosperma with Microthecium since Pteridiosperma spp. 

show non-ostiolate ascomata, or if ostiolate they show a short neck composed of angular 

cells. 

The genus Sphaerodes is also synonymized here with Microthecium because its type 

species, S. episphaerium, shows morphological features (non-ostiolate ascomata) that fit 

with such re-established genus. Most of the species of Sphaerodes, with the exception of 

S. ellipsospora and S. singaporensis, which are now located in the new genus 

Dactylidispora, are also transferred to Microthecium since these produces non-ostiolate or 

ostiolate ascomata without neck, or less frequently with a short neck composed of angular 

cells like the ascomata ones. Other relevant feature of the genus Microthecium is the 

production of bulbils. These propagules are typical of Papulaspora, an anamorphic genus 

that encompasses more than fourty species. Although it was initially established as a 

genus without a sexual stage (Hotson 1912), its link with species of Melanospora and of 

Chaetomium has been reported (Roll-Hansen 1948; Zhang et al. 2004). In our 
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phylogenetic study Papulaspora sepedonioides, the type species of the genus was nested 

in the Microthecium clade, and therefore transferred to this genus. The relationship of this 

species with Melanosporales had already previously demonstrated by Davey et al. (2008). 

However, Papulaspora is a polyphyletic genus, and other species of the genus have been 

reported as belonging to the classes Leotiomycetes and Sordariomycetes (Ascomycota). 

The relationship of some species of Papulaspora with the Melanosporales is also 

suggested by the production of similar phialidic asexual morphs (Van Beyma 1931; 

Hotson 1942). 

There are important morphological differences among the strains of Microthecium that 

suggest the presence of several species into the genus; however, our phylogenetic study, 

in spite of having used five loci, was not able to resolve the boundaries among them. 

Further studies are needed looking for appropriate molecular loci for this purpose. 
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Table 1 Isolates and reference strains of members of Melanosporales included in this study. 

 
Taxa Strain Source         GenBank accession #  

   LSU ITS ACT EF1 

Annulispora ellipsospora NBRC 31376
T
 Forest soil, Papua New Guinea, Buin, Bougainville Island  KP981451 03137601* KP981545 KP981579 

Annulispora singaporensis NBRC 30865
T
 Soil, Singapore KP981452 03086502* KP981546 KP981580 

Nectria cinnabarina CBS 127383 Austria, Niederösterreich, Litschau HM534894 HM534894 - HM534873


  

Medusitheca citrispora CBS 137837
T
  

(=FMR 12767
T
) 

Forest soil, USA, North Carolina, Great Smoky Mountain 

National Park, Cartoogechaye Creek Campground 

KP981453 KP981477 KP981547 KP981581 

Melanospora damnosa CBS 113681
NT

 Soil, France, Pont d'Espagne KP981454 KP981478 KP981543 KP981582 

Melanospora kurssanoviana NBRC 8098 Unknown KP981455 KP981479 KP981548 KP981583 

Melanospora verrucispora NBRC 31375
T
 Forest soil, Papua New Guinea, Kebil, Chimb Dist.  KP981456 KP981480 KP981549 KP981584 

Melanospora zamiae NBRC 7902 Unknown KP981457 00790201* KP981544 KP981585 

Microthecium ciliatum NBRC 9829 Soil, unknown KP981458 KP981481 KP981524 KP981586 

Microthecium compressum NBRC 8627 Unkown KP981459 00862701* KP981525 KP981587 

Microthecium fayodii FMR 12363 Soil, Tennessee, Great Smoky Mountains National Park, 

Cosby Creek trail 
KP981460 KP981482 KP981526 KP981588 

Microthecium fimbriatum NBRC 8523 Unknown KP981461 KP981483 KP981527 KP981589 

Microthecium fimicola NBRC 8354 Unknown KP981462 KP981484 KP981528 KP981590 

Microthecium fimicola FMR 5483 Soil, Moara, Australia KP981463 KP981485 KP981529 KP981591 

Microthecium fimicola FMR 12370 Soil, Spain, Gran Canaria, x KP981464 KP981486 KP981530 KP981592 

Microthecium fimicola FMR 13418 Soil, Spain, Aragon, Los Valles Occidentales KP981465 KP981487 KP981531 KP981593 

Microthecium fusisporum NBRC 8806 Unknown KP981466 00880601* KP981532 KP981594 

Microthecium japonicum FMR 12371 Soil, Spain, Gran Canaria, Pico de Osorio KP981467 KP981488 KP981533 KP981595 

Microthecium levitum FMR 6218 

(=CBS 966.97) 

Soil, Nepal, Bhadgaon KP981468 KP981489 KP981534 KP981596 

Microthecium levitum FMR 10098 Soil, Nigeria, Enugu. Nsukka KP981469 KP981490 KP981535 KP981597 

Microthecium levitum FMR 13884 Soil, Spain, Catalonia, Vall Fosca KP981470 KP981491 KP981536 KP981598 

Microthecium 

quadrangulatum 

CBS 112763
T
 Soil, Spain, Asturias, Muniellos Biological Absolute 

Reserve  

KP981471 KP981492 KP981537 KP981599 

Microthecium retisporum NBRC 8366 Soil, Japan KP981472 00836601* KP981538 KP981600 

Microthecium sepedonioides FMR 11933 Forest soil, Spain, Aragón, valle de Ordesa KP981473 KP981493 KP981539 KP981601 

Microthecium sp. FMR 6725 

(=CBS 102190) 

Desert soil, Egypt, Sinai  KP981474 KP981494 KP981540 KP981602 

       

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

Microthecium sp. FMR 7183 

(=CBS 108937) 

Forest soil, New South Wales, Sydney, Blue Mountains KP981475 KP981495 KP981541 KP981603 

 

Microthecium sp. FMR 12373 Forest soil, USA, North Carolina, Great Smoky Mountain Pendent Pendent Pendent Pendent 

Microthecium zobelii NBRC 9442 Decaying carpophore, Coriolus flabelliformis  KP981476 00944201* KP981542 KP981604 

Pseudallescheria fusoidea CBS 106.53
T
 Soil, Panama, Guipo EF151316 AY878941 - - 

 
T and NT Type and neotype strains, respectively; * sequences retrieved from NBRC database; CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; FMR, Facultat de 
Medicina, Reus, Spain; NBRC, Biological Resource Center, Chiba, Japan. 
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Fig. 1 Maximum-likelihood (ML) tree obtained from 18S sequences of our isolates and reference 

strains included in Melanosporales, and strains belonging to the orders Chaetosphaeriales, 

Coniochaetales, Coronophorales, Halosphaeriales, Hypocreales, Microascales, Sordariales and 

Xylariales. Thelebolus ellipsoideus was used as outgroup. Bootstrap support values ≥70/Bayesian 

posterior probability scores ≥0.95 are indicated along branches. Type strains of the different 

species are indicated with 
T
. 
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Fig. 2 Maximum-likelihood (ML) tree obtained from the combined DNA sequence data from three loci (ITS, act and EF1) of our isolates and selected strains of the order 

Melanosporales. Nectria cinnabarina and Pseudallescheria fusoidea were used as outgroup. Bootstrap support values ≥70/Bayesian posterior probability scores ≥0.95 are 

indicated along branches. Branch lengths are proportional to distance. Type strains of the different species are indicated with 
T
.  
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Fig. 3 Morphological features of the genus Microthecium. Microthecium levitum FMR 10098. a. Non-

ostiolate ascoma; e. asci; i. ascospore (SEM). Microthecium fayodii FMR 12363. b. Ostiolate ascomata; f. 

ascospores; m. variable shaped bulbils. Microthecium fimicola FMR 5483. c. Detail of cellular neck. k. 

ascospores; n. bulbil. Microthecium quadrangulatum CBS 112763
T
. d. Crown of setae around the ostiole. 

j. ascospore SEM. Microthecium retisporum NBRC 8366. g. Ascospores. l. asexual morph. Microthecium 

japonicum FMR 12371. h. Ascospore SEM. Microthecium sepedonioides FMR 11933. o. Bulbil. Scale 

bars: a, b, m = 50 μm; c, d = 20 μm; eg, n, o = 10 μm; h, jl = 5 μm; i = 2.5 μm.  
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Fig. 4 Morphological features of the genus Melanospora. Melanospora damnosa CBS 113681. a. 

Ascoma; d. ascospore germinating. Melanospora zamiae NBRC 7902. b. Detail of peridium; c. detail of 

hyphal neck. Melanospora verrucispora NBRC 31375
T
. e. Ascospores; f. phialidic asexual morph. Scale 

bars: a = 50 μm; b ,c, f = 10 μm; d, e = 5 μm. 

 

Fig. 5 Medusitheca citrispora CBS 137837
T
. a. Ascomata; b. asci; c. ascospore; d. ascospore (SEM); 

e.depressed germ pore. Scale bars: a = 50 μm; b = 10 μm; c, d = 5 μm; e = 1 μm. 
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Fig. 6 Maximum-likelihood (ML) tree obtained from 28S sequence of representants of the lineage obtained in the other two phylogenetic studies and the type strains of 

Melanospora subterranea and Vittatispora coorgii. Bertia moriformis and Nectria pseudotrichia were used as outgroup. Bootstrap support values ≥70/Bayesian posterior 

probability scores ≥0.95 are indicated along branches. Branch lengths are proportional to distance. Type strains of the different species are indicated with 
T
. 
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4.3. ONYGENALES 

The order Onygenales encompasses members of the Ascomycota which produce 

gymnothecial or, less frequently, cleistothecial ascomata, prototunicate evanescent asci, 

unicellular ascospores and blastic and/or arthric conidia. Recently, extensive molecular 

studies involving taxa of the class Eurotiomycetes have been performed to clarify the 

phylogenetic relation between taxa included in the Onygenales. These studies have led 

to some changes being proposed: the exclusion of the genera Arachnomyces and 

Spiromastigoides (formally named Spiromastix), and the resulting establishment of the 

new orders Arachnomycetales and Spiromastixales (Gibas et al., 2002; Rizzo et al., 

2014); and the proposal of the family Nannizziopsiaceae within the Onygenales to 

contain the species of the genus Nanniziopsis, which have the particularity of causing 

skin infections in reptiles (Stchigel et al., 2013). All these phylogenetic studies were 

based on the analysis of only one genomic locus (SSU or D1D2).  

Figure 26 shows the tree based on ITS and D1D2 sequences of our taxa belonging 

to the Onygenales (indicated in bold). The lengths of the individual alignments used in 

the combined data set were 465 bp (ITS) and 456 bp (D1D2). The total alignment was 

921 bp, 339 bp of which were parsimony informative. Our isolates were located in the 

families Onygenaceae and Ajellomycetaceae. We observed that the family 

Onygenaceae was polyphyletic being divided in two main well-supported clades (99% bs 

/ 0.98 pp and 99% bs / 1 pp). Two of the isolates included in the family Onygenaceae  

FMR 12019 and FMR 12768  corresponded to undescribed taxa. Therefore, we 

introduced the new genus Aphanoascella to place the new species Aphanoascella 

galapagosensis (section 4.3.1), and we proposed the new species Aurxarthron 

longisporum (section 4.3.2). Moreover, during the phenotypic and molecular study of 

Aphanoascella, the genus Aphanoascus was redefined, being restricted to those species 

with reticulate ascospores and without an equatorial rim, and the genus Keratinophyton 

re-established to incorporate species whose ascospores are pitted and display a 

conspicuous equatorial rim.  

Our study also demonstrated that the family Ajellomycetaceae was in a terminal 

clade independent from that of the Onygenales, suggesting that it could represent a new 

order. Most of the taxa belonging to this family are thermally dimorphic and pathogenic 

for animals, including humans. Under environmental conditions they grow as molds with 

a filamentous thallus, but in physiological conditions, when the spores are inhaled into 

the lungs of the mammalian hosts, they turn into yeast-like structures (Klein and Tebbets, 

2007). These cause systemic mycoses called adiaspiromycosis, blastomycosis, 

histoplasmosis and paracoccidioidomycosis, depending on the nature of the etiologic 

149

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

  

agent. Within the Ajellomycetaceae clade, the isolates FMR 4023 and FMR 4024, 

together with the isolates CBS 273.77 and UAMH 141, which were previously identified 

as Emmonsia parva, were located in a well-supported subclade representing a new 

genus, Emmonsiellopsis, and two new species, E. coralliformis and E. terrestris. This 

new genus, unlike the other taxa in the first main clade, did not produce the yeast-like 

morph or adiaspores in the in vitro or in vivo studies carried out by us. Moreover, the 

type and a reference strain of Ajellomyces griseus were also grouped in a well-supported 

subclade independently from the other genera. Therefore, we introduced the genus 

Helicocarpus to accommodate this taxon on the basis of the molecular results and 

morphological differences since unlike the other species of the Ajellomycetaceae, it does 

not have an asexual morph or yeast-like structures. The sexual morph also differs from 

those of the other species, producing lenticular to oblate and sparingly pitted ascospores 

that are not minute, whereas the other species present minute, globose to subglobose, 

finely spinulose or roughened ascospores. Finally, the type species of Blastomyces and 

Emmonsia clustered in the same well-supported clade suggesting that both genera 

should probably be synonymized, even though there are a few morphological differences. 

Blastomyces dermatitidis, for instance, is not inhibited by cycloheximide and its conidia 

are usually solitary and sessile, or produced on conidiophores that are only slightly 

swollen or not swollen at all. On the other hand, Emmonsia spp. are more or less 

sensitive to the cycloheximide, and the conidia are produced on swollen conidiophores 

and frequently in chains. However, these differences are not enough to regard both 

genera as different. Moreover, the sexual morph produced by both taxa is almost 

identical. For more details about members of the family Ajellomycetaceae see section 

4.3.3. 

The low number of taxa recovered from these families during the developing of this 

thesis is probably related to the isolation techniques used (i.e. acetic acid, ethanol and 

phenol “activations”). Their ascospores probably have a thinner cell wall than other taxa 

of the Ascomycota (i.e., Coniochaetales, Eurotiales, Sordariales and Xylariales), and 

their ascospores do not resist the treatment with these chemicals. The same occurs with 

the members of the family Myxotrichaceae, which has hardly been isolated either. These 

fungi can only be recovered from soil using methods such as those used by Punsola 

(1985) and Cano (1989). One example is the “ToKaVa hair-baiting method” described by 

Vanbreuseghem (1952). 
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Fig. 26 Maximum-likelihood (ML) tree obtained from the ITS and D1D2 sequence data of our 

isolates and selected strains of the subclass Eurotiomycetidae. Pseudogymnoascus destructans 

and Pseudeurotium ovale were used as outgroup. Bootstrap support values ≥70/Bayesian 

posterior probability scores ≥0.95 are indicated along branches. Branch lengths are proportional 

to distance. Type and neotype strains of the different species are indicated with 
T
 and 

NT
, 

respectively. 

 

151

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



4.3.1. Isolation and characterization of a new fungal genus and 

species, Aphanoascella galapagosensis, from carapace keratitis of 

a Galapagos tortoise (Chelonoidis nigra microphyes) 

Sutton DA, Marín Y, Thompson EH, Wickes BL, Fu J, García D, 

Swinford A, de Maar T, Guarro  

Medical Mycology 2013; 51: 113‒20 
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 A wild caught, Volcan Darwin Tortoise, also called a 

Galapagos Tortoise ( Chelonoidis nigra microphyes ), esti-

mated to be approximately 50 years old and residing in a 

zoological collection in south Texas, was observed to develop 

white discoloration in lower areas of the carapace. The 

lesions were fi rst noted during a summer with signifi cant 

rainfall. Only one animal in eight was affected. These lesions 

slowly expanded over the next 3 years across the lower quad-

rants of the costal scutes, upper quadrants of the marginal 

scutes and the plastral bridge (Fig. 1). Lesions were most 

severe along scute sutures, areas of the newest keratin 

growth. All lesions were situated below the high water mark 

of the animal ’ s mud wallow. The affected keratin developed 

an eroded shale-like pattern. Scraping of the crumbling sur-

face revealed healthy keratin or bone underneath. Samples 

of the scraped material were harvested and submitted to a 

veterinary diagnostic laboratory for fungal culture.   

   Received   26  April  2012    ; Received in fi nal revised form   5 June   2012; 

Accepted 7 June   2012.   

Correspondence: Deanna A. Sutton, Department of Pathology, University 

of Texas Health Science Center at San Antonio, San Antonio, Texas, 
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 Original Articles

  Isolation and characterization of a new fungal genus

and species, Aphanoascella galapagosensis, from 

carapace keratitis of a Galapagos tortoise 

(Chelonoidis nigra microphyes)      

    D.  A.   SUTTON   *   ,       Y.    MAR Í N  #   ,        E. H.   THOMPSON   * ,         B. L.   WICKES   †    ,        J.   FU   †    ,        D.   GARC Í A  # ,        A.   SWINFORD   ‡    ,  

      T. DE   MAAR   §    &     J.   GUARRO  #       

  Departments of    *   Pathology  &     †   Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 

San Antonio, Texas, USA,    ‡   Texas Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA,    §   Gladys Porter Zoo, 

Brownsville, Texas, USA, and   #  Mycology Unit, Medical School, Universitat Rovira i Virgili, Reus, Spain                              

 A new fungal genus and species,  Aphanoascella galapagosensis,  recovered from 
carapace keratitis in a Galapagos tortoise residing in a south Texas zoological 
collection, is characterized and described. The presence of a pale peridium composed 
of textura epidermoidea surrounded by scarce H ü lle cell-like chlamydospores, and 
the characteristic reticulate ascospores with an equatorial rim separates it from other 
genera within the Onygenales. The phylogenetic tree inferred from the analysis of D1/
D2 sequences demonstrates that this fungus represents a new lineage within that order. 
As D1/D2 and ITS sequence data also shows a further separation of  Aphanoascus  
spp. into two monophyletic groups, we propose to retain the generic name  Keratinophyton  
for species whose ascospores are pitted and display a conspicuous equatorial rim, and 
thereby propose new combinations in this genus for four  Aphanoascus  species.  

  Keywords   Onygenales  ,   Aphanoascella  ,   Aphanoascella galapagosensis  ,   Galapagos 
tortoise  ,   Keratinophyton   

  Introduction 

 In recent years there have been anecdotal reports of a form 

of keratitis affecting carapaces (shells) of dry land tortoises 

kept in captivity and residing in the wild on the Galapagos 

Islands. The syndrome is commonly seen in tortoises living 

in zoological gardens in Florida and the Gulf Coast states 

and may be associated with prolonged exposure to moisture. 

In these cases, the keratin in the scute sutures of the cara-

paces turns white and powdery, and is easily scraped away 

to reveal normal black keratin or underlying bone. It has 

been hypothesized that the etiology is potentially mycotic. 

© 2013 ISHAM DOI: 10.3109/13693786.2012.701767

Medical Mycology February 2013, 51, 113–120
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collection as UTHSC 11-1518 and tentatively identifi ed as 

an  Aphanoascus  species based on ascomata and ascospore 

formation resembling those seen in this genus. However, 

the isolate was subsequently referred to Spain for more 

in-depth study when a BLAST search of the ITS and 

D1/D2 sequence data in GenBank failed to return an 

identifi cation with any signifi cant percent identity. 

  Morphologic identifi cation.  The fungal isolate was grown 

on oat meal agar (OA), potato carrot agar (PCA), potato 

dextrose agar (PDA) and Czapek agar (Cz) plates at 

15 ° C, 25 ° C and 35 ° C. Color notations in parentheses are 

from Kornerup and Wanscher [1]. The fungal structures 

were measured after 2 months of growth on Cz using 

lactophenol-stained mounts (Fig. 3). Photomicrographs 

were obtained with a Leitz Dialux 20 EB microscope. 

Scanning electron microscopy techniques were described 

previously by Figueras and Guarro [2]. 

  DNA extraction and sequencing.  Template DNA was pre-

pared from a 24 h culture of UTHSC 11-1518 ( �  R-4747) 

grown on potato dextrose agar at 30 ° C as previously 

described [3]. PCR reactions were then performed in a 

50  μ l volume using 3  μ l of template DNA, 5  μ l 10  �  PCR 

buffer, 5  μ l of a 10  μ M stock solution of each primer 

(ITS-1 forward primer [4] and NL-4 reverse primer [5,6]), 

1.5  μ l of 10 mM dNTP (Invitrogen, Carlsbad, CA), and 

2.5 U of    Taq  Extender (Fisher Scientifi c, Pittsburgh, PA). 

PCR reactions were performed in an Eppendorf Master 

Thermocycler (Eppendorf) and were run with a tempera-

ture profi le of 2 min at 94 ° C followed by 30 cycles of 

20 s at 94 ° C, 20s at 60 ° C, and 1 min at 72 ° C. The 30 cycles 

were followed by 5 min at 72 ° C. 

 

  Fig. 1  Lesions on the carapace of a 50-year-old Galapagos Tortoise 

( Chelonoidis nigra microphyes ) due to  Aphanoascella galapagosensis . 

Extent of lesions (A), close up of right side (B), and depth of erosion (C).  

   Fig. 2  Colony of  Aphanoascella galapagosensis  on potato fl akes agar 

after 3 weeks incubation at 25 ° C, measuring approximately 20  μ m in 

diameter.  

 Materials and methods  

 Fungal isolation and initial identifi cation 

 The carapace scrapings were inoculated onto Sabouraud 

dextrose, potato dextrose, Mycobiotic, and dermatophyte 

test medium agars (Remel, Lenexa, KS) and incubated at 

25 ° C for 3 weeks. Heavy growth of a white to buff-colored 

fungus was observed on all media. The colony morphology 

of the isolate was downy to cottony and resembled a der-

matophyte, but could not be identifi ed by conventional 

laboratory methods, and was forwarded to the Fungus 

Testing Laboratory, Department of Pathology, The 

University of Texas Health Science Center at San Antonio, 

San Antonio, TX, for further attempts at identifi cation. 

There the isolate, Fig. 2, was accessioned into their 
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Fig. 3  Microscopic features of  Aphanoascella galapagosensis  (Czapek, 2 months, 25 ° C). (1) Non-ostiolate, spherical ascoma, bar  �    50  μ m; (2)  textura 
epidermoidea,  bar  �    10  μ m; (3) H ü lle cells (chlamydospore-like) covering the ascoma, bar  �    10  μ m; (4, 5  &  6) asci and ascospores, bar  �    5  μ m; 

(7  &  8) scanning electron microscopy of oblate ascospores demonstrating irregular reticulate wall, anastomosing ridges and an equatorial ridge, bar  �    

2.5  μ m; (9) intercalary arthroconidia, bar  �    20  μ m; (10 and 11) arthroconidia borne on straight primary hyphae or on short loosely curved or sinuous 

lateral branches, bar  �    20  μ m; (12) alternating or adjacent cylindrical to slightly barrel-shaped arthroconidia, bar  �    20  μ m.  

 PCR products were purifi ed with a QIAquick PCR 

Purifi cation Kit (Qiagen, Valencia, CA) and sequenced on 

both strands using the two fl anking primers (ITS-1 and 

NL-4), as well as two internal primer runs (ITS-4 

and NL-1) [5,6]. Sequencing was performed at the 

UTHSCSA Advanced Nucleic Acids Core Facility and 

data were edited using Sequencing Analysis Software 

v5.3.1 (Applied Biosystems, Foster City, CA). 

  Sequence analysis.  The sequence data were assembled 

and analyzed using MacVector software (MacVector, Inc, 

Cary, NC) and then searched using the ITS-1 and ITS-4 

primer sequences to delineate the ITS region, as well as 

the NL-1 and NL-4 sequences to delineate the D1/D2 

region. The ITS and D1/D2 regions were then used 

in separate BLASTn searches of GenBank at the 

NCBI website (http://www.ncbi.nlm.nih.gov/BLAST/). 
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Sequence-based identities with a cutoff of 97% or greater 

and query length of 90% or greater were considered 

signifi cant. 

  Alignment and phylogenetic reconstruction.  Phylogenetic 

analyses of the two regions selected for study were 

performed using the neighbor-joining (NJ) method with 

the MEGA 2.1 computer program. The NJ tree was 

constructed using maximum composite likelihood method 

[7] with the pairwise deletion of gaps option. The robust-

ness of branches was assessed by bootstrap analysis with 

1000 replicates. 

  Nucleotide sequence accession numbers.  GenBank nucle-

otide sequence accession numbers for the case isolate and 

morphologically similar species are listed in Table 1.    

 Results 

 A BLAST search using the ITS region (18S partial, ITS1, 

5.8S, ITS2, 28S partial) provided only insignifi cant hits 

from GenBank, the top three of which were  Aphanoascus 
foetidus  (accession# AJ439448.1, 88% identity), 

 Chrysosporium lucknowense  (accession# AJ131682.1, 

88% identity), and  Chrysosporium mephiticum  

(accession# AJ131683.1, 87% identity). None of which 

were considered signifi cant for a conspecifi c isolate 

(  �   97% identity). The D1/D2 region (28S partial sequence) 

also did not return a signifi cant BLAST hit, with the top 

three closest identities being  Chrysosporium keratinophilum  

(accession# AB359446.1, 94% identity),  Chrysosporium 
keratinophilum  (accession# AB359445.1, 94% identity), 

and  Aphanoascus verrucosus  (accession# AB075348.1, 

   Table 1  LSU and ITS DNA sequences included in the phylogenetic analyses.  

GenBank no.

Family Species LSU ITS

Arthrodermataceae  Arthroderma ciferrii EF413625
 Ctenomyces serratus AY176733

Gymnoascaceae  Gymonascus aurantiacus AY176747
 Gymnoascus littoralis FJ35827
 Gymnoascus ruber AY176746

Onygenaceae  Amauroascus niger AY176706
 Aphanoascus canadensis AJ439435
 Aphanoascus clathratus AJ439436
 Aphanoascus cubensis AJ439432
 Aphanoascus durus AB075345 AJ439434
 Aphanoascus foetidus AJ439448
 Aphanoascus fulvescens JN941548 AF038357
 Aphanoascus hispanicus AJ439438
 Aphanoascus keratinophilus AJ133436
 Aphanoascus mephitalis AY176725 AJ439439
 Aphanoascus orissi AJ315843
 Aphanoascus pinarensis AJ439433
 Aphanoascus punsolae AJ439440
 Aphanoascus reticulisporus JN941550 JN943435
 Aphanoascus saturnoideus AB075347 AJ439442
 Aphanoascus terreus JN941552 JN943438
 Aphanoascus verrucosus JN941554 JN943439
 Aphanoascella galapagosensis JQ864082 JQ864081
 Chrysosporium  sp. AJ439445
 Chrysosporium evolceanui AJ005368
 Chrysosporium fl uviale AJ005367
 Chrysosporium indicum AJ439446
 Chrysosporium keratinophilum AJ131681
 Chrysosporium lucknowense AJ131682
 Chrysosporium minutisporosum AJ131689
 Chrysosporium siglerae AJ131684
 Chrysosporium submersum AJ131686
 Chrysosporium tropicum AJ131685
 Chrysosporium zonatum AJ390393
 Uncinocarpus queenslandicus AB075358 AB361646
 Uncinocarpus reesii AY176724

Trichocomaceae  Byssochlamys nivea AY176750
 Eurotium herbariorum AY176751

Sordariaceae  Neurospora nigeriensis FR774265
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 Fig. 4  NJ tree based on LSU rDNA sequences, including 19 taxa belonging to Onygenales, two taxa belonging to Eurotiales and  Neurospora nigeriensis  

as outgroup. Bootstrap values of 70% or greater are indicated above the internodes.  

94% identity). The phylogenetic tree inferred from the 

analysis of the D1/D2 sequences showed a clear genetic 

separation between  Aphanoascus  spp. and other genera 

of Onygenales included in the study (Fig. 4). It also 

demonstrated that the species of  Aphanoascus  included in 

the study were grouped in two highly supported clades 

(98% and 94%, respectively). One clade included those 

species displaying reticulate-walled ascospores without 

an equatorial rim, and the other clade consisted of isolates 

with pitted ascospores with a prominent equatorial 

rim. The new fungus described here represents a new lin-

eage phylogenetically distant from the two mentioned 

clades. The ITS phylogenetic tree (Fig. 5) showed a 

similar topology, confi rming that there is insuffi cient evi-

dence to place the currently accepted  Aphanoascus  spp. 

into the same genus and that the new fungus is not related 

with any of the two clades of  Aphanoascus .   

 Taxonomy 

  Aphanoascella  D.A. Sutton, Y. Mar í n, E.H. Thompson 

et Guarro, gen. nov. 

 Anamorph : Malbranchea  sp. 

 Etym: Similar to  Aphanoascus  

 MycoBank: MB 564389 

 Ascomata superfi cialia, sphaerica, non-ostiolata, cum chla-

mydosporae  ‘ h ü lle ’  cellulis similis, aurantiaca vel brunnea; 

peridium cum textura epidermoidea. Asci octospori, sub-

globosi vel ellipsoidei, muris evanescentibus. Ascosporae 

unicellulares, oblatae, reticulatae, cum crista equatoriali, 

subhyalinae vel aurantiaca. Anamorphosis: Arthroconidia 

hyalina, tenuitunicata, laevia. 

 Species typica:  Aphanoascella galapagosensis  D.A. Sutton, 

Y. Mar í n, E.H. Thompson et Guarro 

 Ascomata superfi cial, spherical, non-ostiolate, orange to 

brown at maturity, surrounded by H ü lle cell-like chlamy-

dospores; peridium pale, with textura epidermoidea. Asci 

8-spored, subglobose to oblate, evanescent. Ascospores 

one-celled, oblate, reticulate, with an equatorial rim, sub-

hyaline to orange in mass. Anamorph: Arthroconidia hya-

line, thin-walled, smooth. 

 Type species:  Aphanoascella galapagosensis  D.A. Sutton, 

Y. Mar í n, E.H. Thompson  &  Guarro 

  Aphanoascella galapagosensis  D.A. Sutton, Y. Mar í n, 

E.H. Thompson et Guarro sp. nov. 

 Anamorph:  Malbranchea  sp. 

 Etym.:  galapagosensis  latinized from the name Galapagos 

Islands referring to the type locality. 

 MycoBank: MB 564390 

 Hyphae vegetativae hyalinae, ramosae, 2 – 4 crassae. 

Ascomata superfi cialia, sphaerica, non-ostiolata, cum 

chlamydosporae  ‘ h ü lle ’  cellulis similis, 170 – 270  μ m 

diam, aurantiaca vel brunnea; peridium 4 – 7  μ m crassi, 
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 Fig. 5  NJ tree based on ITS sequences from  Aphanoascus  and  Chrysosporium  species and our isolated  Uncinocarpus queenslandicus  as outgroup. 

Bootstrap values of 70% or greater are indicated above the internodes.  

et 3 – 4 stratiorum compositum, ex textura epidermoidea. 

Asci octospori, subglobosi vel ellipsoidei, 10 – 14.5  �  

7 – 11  μ m, evanescentes. Ascosporae oblatae, reticulatae, 

cum crista equatoriali, hyalinae vel aurantiaca in massa, 

5 – 6  �  3 – 4.5  μ m. Arthroconidia cylindrica vel sub-

doliformia, laevia, hyalina, 4 – 11(–13)  �  2 – 4  μ m, in senec-

tute infl ata. 

 Colonies on potato carrot agar (PCA) reaching 12 – 13 mm 

in diameter after 14 days at 25 ° C, white, velvety to cottony, 

margins fringed; reverse uncolored. Growth at 15 and 

35 ° C was very restricted on all media tested. Vegetative 

hyphae hyaline, branched, smooth, septate, 2 – 4  μ m broad, 

thin-walled. Ascomata superfi cial, spherical, non-ostiolate, 

surrounded by H ü lle cell-like chlamydospores, 170 – 270  μ m 

diam, orange to brown at maturity, ascoma wall pale, 

4 – 7  μ m thick, composed of 3 – 4 layers of fl attened cells, 

 textura epidermoidea.  Asci numerous, 8-spored, subglo-

bose to ellipsoidal, 10 – 14.5  �  7 – 11  μ m, evanescent. 

Ascospores oblate, with an irregularly reticulate wall 

formed by inconspicuous and anastomosed ridges, with an 

equatorial rim 0.5 – 1  μ m broad, sub-hyaline to orange in 
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mass, 5 – 6  �  3 – 4.5  μ m (including rim). Arthroconidia 

borne on the straight primary hyphae or on short loosely 

curved or sinuous lateral branches, separated by one or 

more alternate empty cells, or rarely, formed immediately 

adjacent to each other. Arthroconidia cylindrical or 

barrel-shaped, slightly broader than the width of the inter-

connecting hyphae, hyaline, smooth, 4 – 11(–13)  �  2 – 4  μ m. 

 Holotype: CBS H-20943 (ex-type strains CBS 132345, 

FMR12019, UTHSC 11-1518)   

 Discussion 

 The ascomycete genus  Aphanoascus  (Onygenaceae, 

Onygenales) encompasses a large number of species char-

acterized by spherical, pale to dark brown ascomata, 

lenticular ascospores, either discoid or oblate, with or 

without an equatorial rim, pale to dark brown with a 

reticulate, pitted or verrucose wall, and with anamorphs 

belonging to the genera  Chrysosporium  or  Malbranchea . 

Members of the genus are found in soil or dung. While 

some species are keratinophilic [8,9,10], rarely do they 

cause human infections. Although poorly supported genet-

ically, two morphologically well-differentiated groups 

were defi ned within the genus, i.e., one comprising species 

with reticulate ascospores and without a rim, and a 

second with pitted ascospores and with an equatorial rim 

[9]. This second group included two species that previously 

belonged to the genus  Keratinophyton , i.e.  A. terreus  and 

 A. durum . The new fungus shows unique morphological 

characteristics which are intermediate between the two 

mentioned groups and is also genetically unrelated. The 

ascospores of  Aphanoascus pinarensis  and  Aphanoascus 
cubensis,  when observed under light microscopy, appear 

to have equatorial crests, but when examined by SEM, 

such structures are in fact prolongations of the reticules of 

the surface. The genus  Aphanoascella  is characterized by 

the presence of a pale peridium composed of textura epi-

dermoidea surrounded by scarce H ü lle cell-like chlamy-

dospores, and by its characteristic reticulate ascospores 

with an equatorial rim. These features separate it from 

other genera within the Onygenales. 

 In Onygenales ribosomal genes have been commonly 

used to infer molecular phylogenies [11 – 15]. In general, 

the genetic distances among the genera of Onygenales are 

considerably large and probably numerous species could 

be proposed as new genera, although most of them would 

be monotypic. The percent similarity between the type 

strains of  Aphanosacus fulvescens  and  Aphanoascus 
terreus  ( Keratinophyton terreum ), which are the type 

species of  Aphanoascus  and  Keratinophyton , is 81.3%. 

Between these species and the new fungus, the percent 

similarity is 78.7% and 80.35%, respectively. 

 Reconsidering the phenotypic and molecular data con-

cerning these fungi we believe it is more appropriate to 

maintain the generic name  Keratinophyton  for those spe-

cies with ascospores with a pitted wall and a conspicuous 

equatorial rim, which were clearly separated from the clade 

where the type species of  Aphanoascus ,  A. fulvescens , was 

nested. Therefore, the new combinations are proposed. 

  Keratinophyton multiporum  (Cano  &  Guarro) Guarro  &  

Y. Mar í n, comb. nov. 

 Basyonym  Aphanoascus multiporus  Cano  &  Guarro, 

Mycol. Res. 366. 1990. 

 MycoBank: MB 800127 

  Keratinophyton hispanicum  (Cano  &  Guarro) Guarro  &  

Y. Mar í n, comb. nov. 

 Basyonym  Aphanoascus hispanicus  Cano  &  Guarro, 

Mycol. Res. 94: 364. 1990. 

 MycoBank: MB 800128 

  Keratinophyton punsolae  (Cano  &  Guarro) Guarro  &  

Y. Mar í n, comb. nov. 

 Basyonym  Aphanoascus punsolae  Cano  &  Guarro, 

Mycotaxon 38: 162. 1990. 

 MycoBank: MB 800129 

  Keratinophyton saturnoideum  (Cano  &  Guarro) Guarro  &  

Y. Mar í n, comb. nov. 

 Basyonym  Aphanoascus saturnoideus  Cano  &  Guarro, 

Mycol. Res. 94: 370. 1990. 

 MycoBank: MB 800130 

 Various disease syndromes involving the shells of 

tortoises and turtles ( Chelonia ) have been described since 

the 1980s [16,17]. The chelonian shell is composed of 

bony plates with intercalating areas of epidermis (scutes). 

Just as the integumentary systems of other animals can 

become diseased due to a wide range of causes, from nutri-

tional defi ciencies to infectious agents, the shells of tor-

toises can be similarly affl icted, though the etiologies are 

less well-documented. Two studies of populations of 

wild desert tortoises in California suffering from high 

morbidity rates and shell disease [18,19] failed to demon-

strate a single defi nitive cause for necrotic lesions, despite 

extensive pathological and microbiologic evaluations. 

The authors speculated that in these tortoises, the shell 

lesions might be attributable to chronic toxicoses or 

nutrient defi ciencies. Conversely, in a study of Texas 

tortoises ( Gopherus berlandieri ) demonstrating scute 

necrosis, the fungus  Fusarium semitectum  was isolated and 

believed to have been the etiologic agent [20]. 

 It is unknown at this time if the newly-characterized

fungal isolate in this report,  Aphanoascella galapagosensis , 

is a primary pathogen of the scute disease observed in this 
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tortoise, or represents an opportunistic, secondary patho-

gen. Lesions similar to the ones seen in this tortoise have 

been observed in multiple tortoises of another species at 

the same zoological park, and a similar fungus was iso-

lated. These animals demonstrate a different pattern of 

lesion but share the possibility of prolonged exposure to 

moisture. Attempts are currently underway to identify 

these strains and determine potential commonality with our 

case isolate in the Galapagos tortoise. 

 While there is no present indication that this fungus 

affects mortality in tortoises, any disease process causes 

some morbidity. Morbidity may decrease resistance to other 

diseases, longevity or reproductive success. In the hus-

bandry and breeding of endangered species any increase in 

morbidity may affect the progress of the species ’  recupera-

tion. Further research into the identity, prevalence, epide-

miology and possible treatment of this fungus is proposed 

to reduce any negative effects on these rare animals. 

              Declaration of interest: The authors report no confl icts of 

interest. The authors alone are responsible for the writing 

and content of the paper.   

 References 

    Kornerup   A,   Wanscher   JH.     1 Methuen Handbook of Colour  .  New York, 

NY: Hastings House Publishers ,  1984.   

    Figueras   MJ,   Guarro   J. A    scanning electron microscopic study of 2 

ascoma development in  Chaetomium malaysiense  .   Mycologia    1988;  

  80  :  298 – 306 .  

    Romanelli   AM,   Sutton   DA,   Thompson   EH,   Rinaldi   MG,   Wickes   BL.   3 

 Sequence-based identifi cation of fi lamentous basidiomycetous fungi 

from clinical specimens: a cautionary note .   J Clin Microbiol    2010;  

  48  :  741 – 752 .  

    White   TJ,   Bruns   TD,   Lee   SB,   Taylor   JW.    Amplifi cation and direct 4 

sequencing of fungal ribosomal RNA genes for phylogenetics . In: 

  Innis MA ,  Gelfand DH ,  Sninsky JJ , White T C  (eds).    PCR Protocols: 
A Guide to Methods and Applications  .  New York, NY: Academic 

Press,   1990 :  305 – 322 .  

    Iwen   PC,   Hinrichs   SH,   Rupp   ME.    Utilization of the internal 5 

transcribed spacer regions as molecular targets to detect and identify 

human fungal pathogens .   Med Mycol    2002;    40  :  87 – 109 .  

    Kurtzman   CP,   Robnett   CJ.    Identifi cation of clinically important 6 

ascomycetous yeasts based on nucleotide divergence in the 5 ′  end of 

the large-subunit (26S) ribosomal DNA gene .   J Clin Microbiol    1997;  

  35  :  1216 – 1223 .  

    Tamura   K,   Dudley   J,   Nei   M,   Kumar   S.    MEGA4: molecular evolution-7 

ary genetics an á lisis (MEGA) software 4.0 .   Mol Biol Evol    2007;    24  : 

 1596 – 1599 .  

    Cano   J,   Guarro   J.    The genus  8 Aphanoascus  .   Mycol Res    1990;    94  : 

 355 – 377 .  

    Cano   J,   Guarro   J,   Zaror   L.    Two new species of  9 Aphanoascus  

(Ascomycotina) .   Mycotaxon    1990;    38  :  161 – 166 .  

    Cano   J,   Sagu é s   M,   Barrio   E,   10 et   al  .  Molecular taxonomy of  

Aphanoascus  and description of two new species .   Stud Mycol    2002;  

  47  :  153 – 164 .  

    Doveri   F,   Pecchia   S,   Vergara   M,   Sarrocco   S,   Vannacci   G.    A com-11 

parative study of  Neogymnomyces virgineus , a new keratinolytic spe-

cies from dung, and its relationships with the Onygenales .   Fungal 
Diversity    2012;    52  :  13 – 34 .  

    Gibas   CFC,   Sigler   L,   Summerbell   RC,   Currah   RS.    Phylogeny of 12 

the genus  Arachnomyces  and its anamorphs and the establishment 

of Arachnomycetales, a new eurotiomycete order in the Ascomycota . 

  Stud Mycol    2002;    47  :  131 – 139 .  

    Sol é    M,   Cano   J,   Pitarch ,  B.   Stchigel ,  AM ,     Guarro   J.   Molecular 13 

phylogeny of  Gymnoascus  and related genera.  Stud Mycol    2002;    

47  :  141 – 152 .  

    Sugiyama   M,   Mikawa   T.    Phylogenetic analysis on the nonpathogenic 14 

genus  Spiromastix  (Onygenaceae) and related onygenalean taxa based 

on large subunit (LSU) ribosomal DNA sequences .   Mycoscience   

 2001;    42  :  413 – 421 .  

    Sugiyama   M,   Summerbell   RC,   Mikawa   T.    Molecular phylogeny of 15 

onygenalean fungi based on small subunit (SSU) and large subunit 

(LSU) ribosomal DNA sequences .   Stud Mycol    2002;    47  :  5 – 23 .  

    Jacobsen   ER.    Disease of reptiles. Part I. Noninfectious diseases . 16 

  Compend Cont Ed Pract Vet    1981;    3  :  122 – 126 .  

    Jacobsen   ER.    Diseases of the integumentary system of reptiles . 17 

In:   Nesbitt GH , Ackerman  L  (eds).    Dermatology for the Small 
Animal Practitioner  .  Lawrenceville, NJ: Veterinary Learning Systems ,  

 1991 :  225 – 239 .  

    Homer   BL,   Berry   KH,   Brown   MB,   Ellis   G,   Jacobsen   ER.    Pathology 18 

of diseases in wild desert tortoises from California .   J Wildlife Dis   

 1998;    34  :  508 – 523 .  

    Jacobsen   ER,   Wronski   TJ,   Schumacher   J,   Reggiardo   C,   Berry   KH.   19 

 Cutaneous dyskeratosis in free-ranging desert tortoises,  Gopherus 
agassizii , in the Colorado desert of southern California .   J Zoo Wildlife 
Med    1994;    25  :  68 – 81 .  

    Rose   FL,   Koke   J,   Koehn   R,   Smith   D.    Identifi cation of the etiological 20 

agent for necrotizing scute disease in the Texas tortoise .   J Wildlife Dis   

 2001;    37  :  223 – 228 .    

This paper was fi rst published online on Early Online on 23 July 2012.

 

162

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015

http://mmy.oxfordjournals.org/


4.3.2. Auxarthron longisporum 

Stchigel AM, Marin-Felix Y, Guarro J, Cano-Lira JF  

Fungal Planet description sheets, Persoonia 2013; 31: 266‒267 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

  

165

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

166

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



4.3.3. Emmonsiellopsis, a new genus related to the thermally 
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Original article

Emmonsiellopsis, a new genus related to the thermally dimorphic
fungi of the family Ajellomycetaceae

Y. Marin-Felix, A. M. Stchigel, J. F. Cano-Lira, M. Sanchis, E. Mayayo and J. Guarro

Mycology Unit, Medical School & IISPV, Universitat Rovira i Virgili, Reus, Spain

Summary Two interesting fungi were isolated from fluvial sediments collected in the North of

Spain. They were morphologically related to the thermally dimorphic fungi of the

family Ajellomycetaceae, but the analysis of the internal transcribed spacer region of

the rDNA, and the domains D1 and D2 of the 28S rRNA gene sequences confirmed

that they were different from all the species described in that family. They were

accommodated in the new genus Emmonsiellopsis as E. coralliformis sp. nov. and

E. terrestris sp. nov. The two species are distinguished mainly by the maximum temper-

ature of growth (up to 33 °C for E. coralliformis and to 42 °C for E. terrestris), the

dendritic mycelium of E. coralliformis and the conidial ornamentation (verrucose in

E. coralliformis and spinulose in E. terrestris). In addition, the phylogenetic data dem-

onstrated that Ajellomyces griseus also represents a new genus within the Ajellomy-

cetaceae, namely Helicocarpus. This new genus is easily distinguished by the lack of

asexual morph, the production of brownish gymnothecial ascomata and oblate to

lenticular, sparingly pitted ascospores. The proposal of both new genera was

confirmed by the analysis of actin gene sequences.

Key words: Ajellomycetaceae, Emmonsiellopsis, Helicocarpus, phylogeny, taxonomy, dimorphic fungi.

Introduction

The thermally dimorphic fungi are a group of systemic

pathogens that develop a mycelial morph in the envi-

ronment, such as soil, but that grow as a yeast-like

morph at body temperature (35–37 °C) and are

responsible for severe infections.1 Currently, apart

from the genera Coccidioides and Sporothrix and the

species Talaromyces marneffei, the thermally dimorphic

fungi are included in the family Ajellomycetaceae

(Onygenales, Eurotiomycetes, Ascomycota). Most of

these fungi produce endemic mycoses, being repre-

sented by the genera Blastomyces, Emmonsia,

Histoplasma, Paracoccidioides and Lacazia.2,3 The only

sexual morph found for some members of this family,

although only in nature (and consequently not devel-

oping in infected tissues of the host), is Ajellomyces.

The species of Ajellomyces are heterothallic and char-

acterised by globose to stellate gymnothecial ascomata

ornamented with spirally twisted appendages, and

minute, oblate or subglobose to globose, finely spinu-

lose or roughened ascospores. The asexual morphs are

characterised by one-celled, smooth-walled “aleurocon-

idia” (blastoconidia arising singly, laterally on a

hyphae) in Paracoccidioides, smooth to echinulate in

Emmonsia and Blastomyces, and rough or warty in

Histoplasma.4–6 Although some taxonomic studies have

been conducted in the order Onygenales in recent

years,7,8 those concerning the family Ajellomycetaceae

are very rare. The new species Paracoccidioides lutzii

and Blastomyces gilchristii were recently proposed to

accommodate several strains that had previously been

identified as Paracoccidioides brasiliensis and Blastomyces

dermatitidis, respectively, based on molecular data.9,10

During a survey on fluvial sediments in Spain, two
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different fungi, morphologically related to Emmonsia,

were isolated in pure culture. These isolates were phe-

notypically and molecularly characterised and pro-

posed here as new species. In addition, based on a

phylogenetic study of the species of Ajellomycetaceae,

the taxonomy of that family has been reviewed.

Materials and methods

Sediment sampling and fungal isolation

We collected numerous fluvial sediments from Girona,

Spain, at the location of Empuriabrava (42.23, 3.12) and

Estartit (42.03, 3.19). For the isolation of the ascomyce-

tes present in these samples we followed a previously

described protocol using the “actidione (cycloheximide)

submerged particle plating technique”.11 Briefly, approxi-

mately 2 g of sediment was plated onto three Petri dishes

of 9 cm diameter, and melted Sabouraud glucose agar

(SGA: glucose, 20 g; peptone, 10 g; agar-agar, 15 g;

tap water, 1 l) was added with L-chloramphenicol

(100 mg l�1) and cycloheximide (2 g l�1) at 50–55 °C,
mixed by hand and incubated at room temperature,

alternating 12-h intervals of darkness and fluorescent

light. Portions of the colonies of the fungi considered of

interest were transferred using a sterile needle to 5 cm

diameter Petri dishes containing oatmeal agar (OA: oat-

meal flakes, 30 g; agar-agar, 20 g; tap water, 1 l). The

cultures were incubated at 15, 25 and 35 °C.

Phenotypic study

Two of the isolates, CBS 137499 and CBS 137500,

belonging to the Ajellomycetaceae, and the morpholog-

ically related strain Emmonsia parva CBS 273.77 were

grown for up to 30 days on phytone yeast extract agar

(PYE: papaic digest of soy bean meal, 10 g; yeast

extract, 5 g; dextrose, 40 g; streptomycin, 0.03 g; chl-

oramphenicol, 0.05 g; agar-agar, 17 g; tap water, 1 l)

and potato dextrose agar (PDA; Pronadisa, Madrid,

Spain) at 5, 15, 25, 28, 30, 33, 35, 37, 40, 42 and

44 °C, for testing growth rates. Colour notations in

parentheses are from Kornerup & Wanscher.12 To test

the development of the yeast-like morph, the isolates

were grown for 10 days on brain and heart infusion

agar (BHIA; Difco, Sparks, MD, USA) and BHIA supple-

mented with 5% sheep blood (MAIM, Barcelona, Spain)

and tryptic soy agar supplemented with 5% sheep

blood (TSA + 5% sheep blood; Difco, Madrid, Spain) at

33, 35, 37, 40 and 42 °C. Tolerance to cycloheximide

was evaluated by measuring growth rates on Mycosel

agar (MYC: papaic digest of soybean meal, 10 g;

dextrose, 10 g; cycloheximide, 0.4 g; chloramphenicol,

0.05 g; agar-agar, 15.5 g; tap water, 1 l), as well as

the response on bromocresol purple-milk solids-glucose

agar (BCP-MS-G: skim milk powder, 40 g; glucose,

20 g; agar-agar, 15 g; bromocresol purple solution

[bromocresol purple, 0.16 g; ethanol 95% solution,

10 ml] 1 ml; tap water, 1 l).13 Production of urease

was determined on Christensen’s urea agar (Merck,

Darmstadt, Germany) and the lipase activity on Tween

80 opacity test medium (TOTM: bacteriological pep-

tone, 10 g; NaCl, 5 g; CaCl2, 0.1 g; Tween 80, 5 ml;

agar-agar, 15 g; tap water, 1 l). The keratinolytic

capability was evaluated by culturing the fungus on

blonde, sterile, prepubertal child’s hair on tap water

agar (TWA: agar-agar, 20 g; tap water, 1 l) in a 9 cm

diameter Petri dish, incubating for 4 weeks at 25 °C in

darkness, and examining the hairs under a light-field

microscope by mounting them on a drop of 20% KOH.14

In vivo study

The potential virulence of the fungi was determined in

a murine model. The isolates CBS 137499 and CBS

137500 were subcultured on PDA plates at 25 °C for

30 days. Inocula were prepared by flooding the fungal

growth with saline solution and filtering through ster-

ile gauze to remove clumps of conidia and hyphae.

The resulting suspensions were adjusted to the desired

concentration by haemocytometer count and viability

was confirmed by serial plating on PDA.

Male OF1 mice, 4 weeks old, weighing 30 g

(Charles River, Criffa S.A., Barcelona, Spain) were

used. Animals were housed in standard boxes with

free access to food and water. All animal care proce-

dures were supervised and approved by the Universitat

Rovira i Virgili Animal Welfare and Ethics Committee.

Groups of five animals were immunosuppressed by an

intraperitoneal (i.p.) injection of 200 mg kg�1 of

cyclophosphamide 2 days prior to infection and then

every 5 days. Mice were challenged i.p. with 1 9 104,

1 9 105 and 1 9 106 CFU of each of the two isolates

in 0.2 ml of sterile saline.

Virulence was evaluated by survival and histopatho-

logical studies. For the survival study, groups of five

mice were established and were checked daily for

30 days after challenge. For histopathology examina-

tion, groups of five mice were established and on day

30 post infection the animals were killed and the

livers, kidneys and lungs were aseptically removed in

order to observe the progress of the infection. Later,

half of each organ was fixed with 10% buffered forma-

lin. Samples were dehydrated, paraffin embedded, and
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sliced into 2-lm sections, which were coloured with

haematoxylin–eosin (H-E), periodic acid-Schiff, and

Grocott methenamine silver stainings.

Phylogenetic study

The DNA of the isolates CBS 137499 and CBS

137500, and the strains Pseudeurotium ovale FMR

13600, Emmonsia parva CBS 273.33 and Ajellomyces

griseus CBS 128.88 (culture ex-type) was extracted

and purified directly from the fungal colonies accord-

ing to the Fast DNA Kit protocol (MP Biomedicals,

Solon, Ohio). The internal transcribed spacer (ITS)

region of the nuclear rDNA was amplified with the pri-

mer pair ITS5 and ITS4,15 the D1 and D2 domains of

the 28S rRNA (D1/D2) gene were amplified with the

primer pair NL1–NL4,16 and a fragment of actin gene

(ACT) was amplified with the primers Act1 and

Act4R.17 The sequences of these amplicons were

obtained using the protocol of the Taq Dye-Deoxy Ter-

minator Cycle Sequencing Kit. PCR products were

purified and sequenced at Macrogen Europe (Amster-

dam, the Netherlands) with a 3730XL DNA analyser

(Applied Biosystems, Foster City, CA, USA) and the

consensus sequences were obtained using SeqMan

(version 7.0.0; DNASTAR, Madison, WI, USA). Our

sequences, together with sequences retrieved from

GenBank and NBRC database, were aligned using

MEGA v. 6.06 (Tamura, Stecher, Peterson, Filipski and

Kumar, 2013), which was also used to carry out the

maximum likelihood (ML) phylogenetic analysis. This

analysis was based on the combined data set (ITS and

D1/D2) of our isolates, type species and reference

strains included in the family Ajellomycetaceae (with

the exception of Lacazia loboi), selected members of the

orders Arachnomycetales, Ascosphaerales, Eurotiales,

Onygenales and Spiromastixales, and a strain of Pseud-

eurotium ovale (FMR 13600) and the type strain of

Pseudogymnoascus destructans (Leotiomycetes) as out-

group. To corroborate the possibility of combining the

loci for the phylogenetic analysis, the phylogeny from

each one was obtained and compared, and given that

no incongruence was observed, they were combined.

The ML phylogeny was constructed using the Tam-

ura-Nei model with gamma distribution and invariant

sites, with the partial deletion of gaps option. Maxi-

mum parsimony (MP) was analysed using the PAUP*
version 4.0b10 software (Sinauer Associates, Inc. Pub-

lishers, Sunderland, MA, USA) and Bayesian inference

(BI) using MrBayes v. 3.2 (Ronquist, Huelsenbeck and

Teslenko, 2011), following the parameters detailed in

previous studies.18,19 The sequences generated in this

study were deposited in GenBank. Accession numbers

for the sequences of the ITS, D1/D2 and ACT loci of

CBS 137500 are KP101584, KP101585 and

KP686189, and those of CBS 137499 are KP101582,

KP101583 and KP686188 respectively. The accession

number for the sequence of the ACT locus of CBS

273.77 is KP686187, for the ITS and ACT loci of the

ex-type strain of Ajellomyces griseus is KP686191 and

KP686190, and for the ITS and D1/D2 loci of Pseudeu-

rotium ovale FMR 13600 is KP686192 and KP686193

respectively. The alignment used in the phylogenetic

analyses can be found in TreeBASE (www.tree

base.org) under the accession number S17054.

Results

Field collections

Among the numerous fungi recovered from the study

of the fluvial sediments, the strains CBS 137499 and

CBS 137500 were included in the phylogenetic study

because they showed typical morphological features of

Emmonsia-related taxa.

Molecular analysis

The lengths of the amplicons used in the combined data

set of the first phylogenetic study were 360 bp (ITS) and

456 bp (D1/D2). The length of the final combined align-

ment was 816 bp, from which 288 bp were parsimony

informative. Figure 1 shows the ML-tree inferred from the

combined data set. Our two isolates were located in a

well-supported subclade, with a ML-bootstrap support

(ML-bs) of 99%, MP-bootstrap support (MP-bs) of 96%

and less than 0.95 bayesian posterior probability (pp),

within a main clade (86% ML-bs / -% MP-bs / - pp) com-

posed of all the members of the Ajellomycetaceae included

in the study, i.e. reference strains of Ajellomyces griseus,

Blastomyces dermatitidis, Blastomyces gilchristii, Emmonsia

crescens, Emmonsia parva, Emmonsia pasteuriana, Histoplas-

ma capsulatum, Paracoccidioides brasiliensis and Paracoccidi-

oides lutzii, and some strains identified as Emmonsia spp.

Strain CBS 137500 formed a terminal branch (species I)

and strain CBS 137499 clustered (99% ML-bs / 98% MP-

bs / 1 pp) with two strains UAMH 141 and CBS 273.77

previously identified as Emmonsia parva and representing

a new species (species II). While the genera Histoplasma

(100% ML-bs / 100% MP-bs / 1 pp) and Paracoccidioides

(99% ML-bs / 99% MP-bs / 1 pp) constituted two sepa-

rated well-supported subclades, this phylogenetic study

was unable to resolve the circumscription and boundaries

of the genera Blastomyces and Emmonsia. The two isolates
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of Ajellomyces griseus included in the study (the type strain

and a reference strain) were placed at considerable

genetic distance from the other members of the family,

showing that they are a different lineage. The comparison

of ACT nucleotide sequences of the members of Ajellomy-

cetaceae included in this study, the total length of the

alignment being 835 bp, revealed that Blastomyces derma-

titidis was the most closely related to the isolates of species

I (85% identity) and species II (83% identity). The similar-

ity between the ACT sequences of the two isolates of the

species II was 99%, and between the isolates of species I

and II it was 92%. The identity between the type strain of

Ajellomyces griseus and the type species of Ajellomyces, A.

dermatitidis (Blastomyces dermatitidis) was 86%.

Morphology

The two isolates of the species II (CBS 273.77 and

CBS 137499) produced similar morphology, i.e.

smooth-walled and spinulose blastoconidia that are

mostly sessile, but also on short or long, sometimes

inflated, pedicels, while the isolate of species I (CBS

137500) also formed blastoconidia that are mostly

sessile or on pedicels but the conidia were smooth-

walled and verrucose, and the long, inflated pedicels

were much less abundant than in species II. Species I

also produced a characteristic dendritic mycelium.

Physiology

On BCP-MS-G, the isolates of species I and II showed

acidity and casein hydrolysis. All the isolates were tol-

erant to cycloheximide but not keratinolytic. Also, all

of them produced urease on Christensen’s urea agar

and lipase on TOTM. Neither yeast-like morphs nor

adiaspores were observed in BHIA, BHIA + 5% sheep

blood or TSA + 5% sheep blood for all strains. The

maximum growth temperature was 33 °C for the iso-

late of species I and 42 °C for species II.

In vivo study

The histopathological study did not show the produc-

tion of any type of lesion nor yeast-like morph or

other invasive structure in any of the organs studied.

The molecular results demonstrated that species I

and II represent two species of a genus different from

those previously known in Ajellomycetaceae, therefore

they are proposed as new in the next section. It was

also proven that Ajellomyces griseus corresponds to a

new genus within the family Ajellomycetaceae, which

agrees with morphological data as it is the only species

of Ajellomycetaceae that does not show any type of

asexual morph or a yeast-like morph either.

Taxonomy

Emmonsiellopsis Y. Mar�ın, Stchigel, Guarro &

Cano, gen. nov. — MycoBank MB 811334.

Etymology: referring to the morphological similarity

with Emmonsia.

Diagnosis: Characterised by its smooth-walled and

verrucose or spinulose conidia, born sessile or on pedi-

cels, rarely septate and intercalary, and the lack of

sexual morph, yeast-like phase and adiaspores.

Hyphae septate, branched, hyaline, smooth- and

thin- to thick-walled, sometimes contorted to dendritic.

Conidia blastic, hyaline, globose to ovoid or clavate,

smooth-walled and verrucose or spinulose, thick-

walled, rarely 1-septate, sessile, born laterally or termi-

nally on the hyphae, or on pedicels, solitary or in

chains of two conidia, rarely intercalary. Pedicels hya-

line, short or long, smooth- and thin-walled, inflated

at the middle or at the apex. Chlamydospores, sexual

morph and yeast-like morph absent (Figs. 2 and

Fig. 3).

Type species: Emmonsiellopsis terrestris Y. Mar�ın,

Stchigel, Guarro & Cano.

Emmonsiellopsis coralliformis Y. Mar�ın, Stchigel,

Guarro & Cano, sp. nov. — MycoBank MB 811335.

Etymology: the epithet refers to the coral-shape of

the hyphae.

Diagnosis: Characterised by its maximum tempera-

ture of growth of 33 °C, dendritic mycelium and

smooth-walled and verrucose conidia.

Colonies on PYE at 28 °C attaining a diameter of

26–31 mm after 28 days, orange grey to brownish

grey (M. 5B2 to 5D2), velvety, cerebriform, pulvinate,

margins regular; reverse pale orange to greyish orange

(M. 5A3 to 5B3). Hyphae septate, branched, hyaline,

smooth- and thin- to thick-walled, sinuose, contorted

to dendritic, 1–5 lm wide. Conidia blastic, hyaline,

Figure 1 Maximum likelihood (ML) tree obtained from the combined DNA sequence data from two loci (ITS and D1/D2) of our isolates,

type species and reference strains included in the family Ajellomycetaceae, with the exception of Lacazia loboi, and members of all the

families and orders of the subclass Eurotiomycetidae. The type strain of Pseudogymnoascus destructans and one strain of Pseudeurotium

ovale were used as outgroup. ML and maximum parsimony (MP) bootstrap support values ≥70 and Bayesian posterior probability scores

≥0.95 are indicated along branches. New taxa are indicated in boldface and type and neotype strains of the different species with
T and NT respectively.

© 2015 Blackwell Verlag GmbH 5

Taxonomy of the Ajellomycetaceae

173

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



globose to ovoid, smooth-walled and verrucose, thick-

walled, rarely 1-septate, 3–11 9 2–7 lm, sessile,

borne laterally or terminally on the hyphae, on pedi-

cels, solitary or in chains of two conidia, rarely inter-

calary. Pedicels hyaline, short, rarely long, smooth-

and thin-walled, rarely inflated at the middle or at the

apex, 1–3 lm wide. Chlamydospores, sexual morph

and yeast-like phase not observed (Fig. 2a–i).
Colonies on PDA at 25 °C attaining a diameter of

25–28 mm after 28 days, pale yellow to olive brown

(M. 4A3 to 4D3) and white at the margins, velvety,

cerebriform, margins regular; reverse pale yellow to

olive brown (M. 4A3 to 4D3).

Minimum and maximum temperatures of growth

15 and 33 °C respectively. Tolerant to cycloheximide

(colonies reaching a diam of 25–26 mm on MYC after

28 days at 28 °C), urease positive, non-keratinolytic,

and showing acidity and casein hydrolysis on BCP-

MS-G, lipase positive.

Specimens examined:

Spain, Girona, Empuriabrava (42.23, 3.12), fluvial

sediment, 09-VI-1991, col. P. Vidal, holotype CBS

H-21624, cultures ex-type CBS 137500, FMR 4024.

Emmonsiellopsis terrestris Y. Mar�ın, Stchigel,

Guarro & Cano, sp. nov. — MycoBank MB 811598.

Etymology: the epithet refers to the origin of the

ex-type strain.

Diagnosis: Characterised by its maximum growth

temperature of 42 °C, the long and usually inflated

pedicels and smooth-walled and spinulose conidia.

Colonies on PYE at 28 °C attaining a diameter of

66–75 mm after 28 days, greyish orange to greyish

brown (M. 6B3 to 6D3), velvety to woolly, irregularly

folded, margins regular; reverse light orange to dark

orange (M. 5A5 to 5A8). Hyphae septate, branched,

hyaline, smooth- and thin-walled, 1–5 lm wide. Coni-

dia blastic, hyaline, globose to clavate or pyriform,

smooth-walled and spinulose, thick-walled, rarely 1-

septate, 3–8(–10) 9 2.5–5.5 lm, sessile, borne later-

ally or, less frequently, terminally on the hyphae, on

pedicels, solitary, rarely in chains of two conidia,

rarely intercalary. Pedicels hyaline, short or long,

smooth- and thin-walled, sometimes inflated at the

middle or at the apex, 1–3.5 lm wide. Chlamydosp-

ores, sexual morph and yeast-like phase absent

(Fig. 3a–g).

Colonies on PDA at 25 °C attaining a diameter of

61–70 mm after 28 days, orange white to pale orange

(M. 5A2 to 5A3), velvety to slightly woolly, slightly

irregularly folded, margins regular; reverse yellowish

white to pale yellow (M. 4A2 to 4A3).

Minimum and maximum growth temperatures of

20 and 42 °C respectively. Tolerant to cycloheximide

(colonies reaching a diam of 52–55 mm on MYC after

28 days at 28 °C), urease test positive, non-keratino-

lytic, and showing acidity and hydrolysis of casein on

BCP-MS-G depending on the strain, lipase positive.

Specimens examined:

USA, Kansas, Phillips County, ex soil, VI-1977, col.

C.W. Emmons, holotype CBS H-22118, cultures

ex-type CBS 273.77, FMR 13882, UAMH 2304;

Spain, Girona, Estartit (42.03, 3.19), ex fluvial sedi-

ment, 08-XI-1990, col. P. Vidal, living cultures CBS

137499, FMR 4023.

Helicocarpus Y. Mar�ın, Guarro, Cano & Stchigel,

gen. nov. — MycoBank MB 811275.

Etymology: referring to the spirally twisted append-

ages of the ascomata.

Diagnosis: Characterised by its gymnothecial asco-

mata with spirally twisted appendages, lenticular to

oblate and sparingly pitted ascospores, and its lack of

asexual morph and yeast-like phase.

Ascomata gymnothecial, pale greyish brown, glo-

bose; peridium composed of irregularly branched, con-

torted hyphae with spirally twisted appendages;

appendages thick- and smooth-walled, septate, arising

from the central part of the ascoma, usually coiled.

Asci 8-spored, pyriform to ellipsoidal, evanescent. As-

cospores lenticular to oblate, hyaline, smooth-walled

under light-field microscope, sparingly pitted along the

equatorial zone, under scanning electron microscope,

without germ pores.

Type species: Helicocarpus griseus (Currah & Locq.-Lin.)

Y. Mar�ın, Guarro, Cano & Stchigel.

Helicocarpus griseus (Currah & Locq.-Lin.)

Y. Mar�ın, Guarro, Cano & Stchigel, comb. nov. — Myco-

Bank MB 811337.

Basionym. Spiromastix grisea Currah & Locq.-Lin.,

Can. J. Bot. 66: 1135. 1988.

� Ajellomyces griseus (Currah & Locq.-Lin.) Unter. &

J.A. Scott [as ‘grisea’], in Untereiner, Scott, Naveau,

Currah & Bachewich, Stud. Mycol. 47: 33. 2002.

Figure 2 Emmonsiellopsis coralliformis sp. nov. CBS 137500. (a) Colony on PDA after 28 days at 25 °C (surface). (b) Colony on PYE

after 28 days at 28 °C (surface). (c) Colony on Mycosel after 28 days at 28 °C (surface). (d) Globose to ovoid conidia borne sessile and

on pedicels. (e) Contorted to dendritic hyphae. (f) Sessile conidia and conidia bornig on pedicels. (g) Smooth-walled and verrucose coni-

dia borne sessile and on pedicels. (h) Sessile conidia. (i) Conidium on an inflated pedicel. (j) Verrucose intercalary conidia.

© 2015 Blackwell Verlag GmbH6

Y. Marin-Felix et al.

174

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



(a)

(d) (e) (h)

(i)

(j)

(f) (g)

(b) (c)

© 2015 Blackwell Verlag GmbH 7

Taxonomy of the Ajellomycetaceae

175

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



(a) (b) (c)

(d) (e) (f)

(g)

(i)

(h)

Figure 3 Emmonsiellopsis terrestris sp. nov. CBS 273.77. (a) Colony on PDA after 28 days at 25 °C (surface). (b) Colony on PYE after

28 days at 28 °C (surface). (c) Colony on Mycosel after 28 days at 28 °C (surface). (d) Smooth-walled, globose to ovoid conidia borne

sessile or on pedicels. (e) Sessile conidia. (f, g) Conidia on inflated pedicels. (h) Sessile conidium and conidium borning on inflated

pedicel. (i) spinulose conidia.
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� Spiromastigoides grisea (Currah & Locq.-Lin.)

Doweld, Index Fungorum 30: 1. 2013.

Discussion

On the basis of newly described species belonging to the

Ajellomycetaceae, the taxonomy of the family has been

revised. Our phylogenetic studies based on the analysis

of the combined data set of ITS and D1/D2 sequences

show that our isolates belong to a new genus, Emmonsi-

ellopsis, closely related to the pathogenic, thermally

dimorphic fungi of the family Ajellomycetaceae. In fact,

two of the isolates of this new genus, CBS 273.77 and

UAMH 141, had been identified previously in different

studies as Emmonsia parva.20,21 However, the two spe-

cies of Emmonsiellopsis can be differentiated from the

other members of this family for a series of outstanding

features, mainly the absence of thermal dimorphism.

Emmonsiellopsis is morphologically similar to Blastomy-

ces and Emmonsia. The three genera are characterised

by whitish colonies, and globose to piriform aleurioconi-

dia, sessile or on pedicels, and usually solitary. However,

Blastomyces on nutritionally rich media at 37 °C, or

infecting host tissues, produces yeast-like structures

with double-contoured refractile walls and a broad base.

The conidia of Emmonsia crescens and E. parva on blood

agar at 37 °C may inflate and become transformed into

adiaspores. On the other hand, Emmonsia pasteuriana on

BHIA with blood at 37 °C produces yeast-like structures

with thin walls and polar budding on a narrow base.

The production of the yeast-like morph or adiaspores

was not observed in our fungi even in the different cul-

ture media traditionally used to obtain this and was not

observed in the in vivo study either. This appears to con-

tradict a previous study that has shown the ability of

UAMH 141 to produce adiaspores larger than Emmonsia

parva.20

Emmonsiellopsis can produce septate and intercalary

conidia, though only scarcely. The only genus of the

Ajellomycetaceae that also presents septate and interca-

lary conidia, even more frequently than in Emmonsiell-

opsis, is Paracoccidioides. Furthermore, Paracoccidioides

differs by the production of only smooth-walled conidia

and yeast-like structures when it infects a host. Histopl-

asma is easily distinguishable from Emmonsiellopsis and

other Ajellomycetaceae by its production of tuberculate

macroconidia and microconidia with more or less

roughened walls.

The main differences between the two species of Em-

monsiellopsis are the maximum temperature of growth

(33 °C for E. coralliformis and 42 °C for E. terrestris),

the presence of contorted to dendritic mycelium in

E. coralliformis and the conidial ornamentation (verru-

cose in E. coralliformis and spinulose in E. terrestris).

Apart from those, long and inflated pedicels are more

common in E. terrestris than in E. coralliformis.

The new genus Helicocarpus is introduced to accom-

modate Ajellomyces griseus, which in the present phylo-

genetic study is located very far away from the other

fungi tested. It was originally described as a species of

Spiromastix22 but later transferred to the Ajellomyces

because it was grouped with the type species of Ajello-

myces, A. dermatitidis.23 A phylogenetic study of the

genus Spiromastix, recently renamed as Spiromastigo-

ides,24 confirmed the correct placement of A. griseus into

the family Ajellomycetaceae.8 The morphology of this

species agrees with the molecular results because it does

not produce asexual morphs, unlike the other species of

Ajellomycetaceae, or a yeast-like morph. Helicocarpus

griseus also differs from the other species of Ajellomyces

by its bigger, lenticular to oblate and pitted ascospores,

whereas in the other species they are minute, globose to

subglobose, finely spinulose or roughened.6

Although Blastomyces and Emmonsia are considered

separate genera because of some phenotypic differ-

ences and their different infecting morphs, our phylo-

genetic study has failed to delimit and separate them.

The main phenotypic differences are that cyclohexi-

mide does not inhibit Blastomyces dermatitidis, whose

conidia are mostly solitary and sessile, or scarcely pro-

duced on non-swollen / slightly swollen conidiophores,

whereas Emmonsia spp. are more or less sensitive to

the cycloheximide and their conidia are produced on

swollen conidiophores and frequently in short chains;

however, the sexual morphs produced by both taxa

are almost identical. The recent new species Blastomy-

ces gilchristii grouped in the same well-supported clade

as the type strain of B. dermatitidis, showing a nucleo-

tide identity of almost 100%, suggesting that the pro-

posal as a new taxon could be wrong. Although seven

genomic loci were sequenced to propose the new spe-

cies B. gilchristii, the overall genetic diversity from

B. dermatitidis was only 1.29%,10 and considering that

there are no phenotypic differences between both spe-

cies, we do not accept B. gilchristii as a valid taxon.

Several phylogenetic studies have also placed the spe-

cies Lacazia loboi in the family Ajellomycetaceae.25–27

The monotypic genus Lacazia is phylogenetically close

to Paracoccidioides. Lacazia loboi produces lobomycosis,

a chronic cutaneous and subcutaneous infection in

mammals.28,29 This species is only known at its para-

sitic stage.

In our phylogenetic study, the family Ajellomyceta-

ceae constituted an independent lineage, clearly
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separate from the other orders of the class Eurotiomy-

cetes. This agrees with previous phylogenies also based

on ribosomal genes, where the placement of Ajellomy-

cetaceae was independent from Onygenales.8,23,30,31

However, further phylogenetic studies including more

genes must be carried out to verify whether or not this

family constitutes a new order. Although the new

fungi in this study are apparently not pathogenic to

mammals, the likelihood of finding isolates that are

morphologically compatible with the dimorphic fungi

of the Ajellomycetaceae as saprobes in soil and river

sediments, must be treated with caution considering

their potential for causing severe infections.
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4.4. SORDARIALES 

The order Sordariales (Hawksworth and Eriksson, 1986) is taxonomically diverse. 

Depending on the authors, it had consisted of 7 to 14 families, until Huhndorf et al. (2004) 

carried out a phylogenetic study and restricted it to three: i.e. Chaetomiaceae, 

Lasiosphaeriaceae and Sordariaceae. Figure 27 shows the phylogenetic tree based on 

D1D3 sequences of our isolates belonging to the Sordariales, which have been 

distributed in these three families. The length of the alignments used was 827 bp 

(D1D3), of which 169 bp were parsimony informative. 

Figure 27 shows that the families Chaetomiaceae and Lasiosphaeriaceae did not 

form monophyletic clades. This was first demonstrated by Huhndorf et al. (2004), who 

decided to refer to both families as complexes to emphasize their paraphyletic nature. 

Further studies on more genes should be made in order to delimit both families 

accurately. The problematical situation within these families also includes lots of genera 

not well-delimited, being most of them of polyphyletic nature. Miller and Huhndorf (2005) 

also carried out a phylogenetic study using the D1D3, BT2 and RPB2 sequences of 

many members of the Sordariales, mostly from the family Lasiosphaeriaceae. They 

observed that the morphology of the ascospore was an extremely homoplastic 

taxonomic character and could not be used to predict phylogenetic relationships, but the 

nature of the ascomata wall could be used to delimit certain genera and clades. 

Subsequently, Cai et al. (2005) reached the same conclusion, considering the ascomatal 

wall a better predictor of phylogeny. On the basis of these criteria, they redefined the 

genus Schizothecium (Lasiosphaeriaceae) after performing a phylogenetic study using 

D1D3, ITS and BT2 sequences. 

Since most of the genera of the Lasiosphaeriaceae are artificial and taxonomically 

unsustainable, we carried out a phylogenetic study to clarify their correct placement as 

well as to determine their boundaries, using a large number of fungi isolated by us and 

also studying several type and reference strains. The main results were that Bombardia 

and Jugulospora were redefined, the new genera Navicularispora, Rinaldiella and 

Rhypophila, and the new species Naviculispora citrispora, Rinaldiella pentagonospora 

introduced (section 4.4.1 and 4.4.2), and a new species of Diplogelasinospora 

(Diplogelasinospora moalensis) described (section 4.4.3). Moreover, the new genus 

Rhypophila and the new combination Rhypophila cochleariformis, Rhypophila 

Rhypophila decipiens, Rhypophila myriaspora and Rhypophila pleiospora, were 

proposed. 

In the Sordariaceace, ascospore ornamentation used to be one of the 

characteristics most commonly used for generic delimitation, although the introduction of 
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molecular tools and phylogenetic analysis demonstrated that this criterion is not always 

taxonomically useful (Dettman et al., 2001, García et al. 2004). In 2004, and despite the 

differences in ascospore ornamentation, García et al. tranferred the species included in 

Gelasinospora to Neurospora on the basis of a phylogenetic study using D1D2 

sequences. They also introduced the genus Pseudoneurospora to accommodate the 

species Pseudoneurospora amorphoporcata, previously classified in Gelasinospora. The 

re-circumscription of the genus Neurospora and the position of the new genus were 

corroborated by Nygren et al. (2011) in a phylogenetic study using seven nuclear loci. 

One of our isolates located in this family belongs to Pseudoneurospora, which until this 

point had been regarded as a monotypic genus. Therefore, Pseudoneurospora 

canariensis sp. nov. was described and illustrated (section 4.4.4). 

The phylogenetic tree also shows that most of the genera included in 

Chaetomiaceae are polyphyletic (i.e. Achaetomium, Chaetomium, Chaetomidium, 

Corynascella and Thielavia). Thus, these genera should be subjected in the future to a 

deep phenotypic and phylogenetic study. Our study based on ITS, EF1 and RPB2 

(section 4.4.5) showed that the species traditionally included in Myceliophthora could be 

separated into four monophyletic clades, each of which represents a genus with different 

phenotypical and physiological features. Therefore, we have restricted Myceliophthora to 

the type species, re-established Corynascus and introduced the genera Crassicarpon 

and Thermothelomyces to accommodate five species previously belonging to 

Myceliophthora.  

The large number (77 of 171) of isolates belonging to the Sordariales obtained 

during the development of this thesis demonstrates that the “activation” techniques used 

to recover ascomycetes in pure culture were highly selective for recovering of such taxa, 

as was reported in previous studies (Stchigel, 2000; Rodríguez, 2003; García, 2005). 
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Fig. 27 Maximum-likelihood (ML) tree obtained from D1D3 sequences of our isolates and type 

and reference strains of members of the Sordariales obtained by us and retrieved from GenBank 

and NBRC database. Chaetosphaeria ovoidea was used as outgroup. Bootstrap support values 

≥70/Bayesian posterior probability scores ≥0.95 are indicated along branches. Branch lengths are 

proportional to distance. Type strains of the different species are indicated with 
T
.
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Abstract: The polyphyletic family Lasiosphaeriaceae (order Sordariales, class 

Sordariomycetes, phylum Ascomycota) comprises approximately 30 genera with 

paraphysate ascomata, asci with apical differentiations, and mostly two-celled ascospores, 

composed of a dark apical cell and a hyaline basal one, frequently with mucilaginous 

appendages. The delimitation of the genera of this family has been based on ascospore 

morphology, but recent molecular studies have demonstrated that the largest genera are 
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polyphyletic and that ascomatal wall morphology is better indicator of phylogenetic 

relationships. We carried out a phylogenetic analysis based on partial nuc 28S rDNA, β-

tubulin (BT2) and ribosomal polymerase II subunit 2 (RPB2) genes sequences of fresh 

soil isolates and reference strains of species of Lasiosphaeriaceae, from different 

geographic regions, for a better delimitation of the members of this family. According to 

our results, we redefine the genera Jugulospora and Bombardia and propose the new 

genera Naviculispora and Rhypophila. 

 

Keywords: Ascomycota, Lasiosphaeriaceae, Sordariales, soil. 

 

INTRODUCTION 

The family Lasiosphaeriaceae, erected in 1932 by Nannfeldt, is the largest and most 

diverse family of Sordariales (phylum Ascomycota). It comprises usually coprophilous, 

plant debris inhabitant and soil-borne species that develop ascomata paraphysate with 

different types of peridia. The asci are cylindrical or clavate, unitunicate and non-amyloid 

but usually with an apical apparatus, and the ascospores are mostly two-celled with an 

apical dark cell and a hyaline basal cell, generally smooth-walled, with germ pores and 

mostly with mucilaginous appendages (Lunqvist 1972). The boundaries of this family 

have not been well defined and its relationships particularly with Sordariaceae, 

considered as its synonym by some authors, are unclear (Munk 1953, 1958; Dennis 1960, 

1968). Lundqvist (1972) distinguished the family Sordariaceae by absence of paraphyses 

and by having one-celled ascospores often with gelatinous sheaths, but never with 

mucilaginous appendages. This author performed the most comprehensive review of 

these fungi, based on morphological criteria, being Arnium, Cercophora, Podospora and 

Zopfiella the largest genera of the family. However, recent molecular studies have 

190

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

  

demonstrated that the family and most of its genera are polyphyletic (Huhndorf et al. 

2004, Miller and Huhndorf 2004, 2005, Cai et al. 2005, Chang et al. 2010, Kruys et al. 

2015) and hence the taxonomy of Lasiosphaeriaceae has become obsolete. Some 

lasiosphaeriaceous genera, such as Lasiosphaeria and Schyzothecium, has been 

satisfactorily revised in recent years, mainly by using DNA sequence analysis (Miller and 

Huhndorf 2004, Cai et al. 2005) but the delimitation of many others is still confusing. The 

genus Zopfiella currently comprises 21 species characterized by usually non-ostiolate, 

membranaceous to coriaceous ascomata, more or less clavate asci and two-celled 

ascospores with a dark and smooth-walled upper cell, and a hyaline or pale brown lower 

cell (Guarro et al. 1991). Triangularia and Apiosordaria also show two-celled ascospores 

but the former can be distinguished by a conical upper cell, triangular in lateral view, and 

a triangular or hemispherical lower cell, while that Apiosordaria shows ascospores with a 

pitted or spiny upper cell (Guarro and Cano 1988, Guarro et al. 2012). Arnium comprises 

species with particular peridia which can be from membranaceous and light coloured to 

coriaceous or carbonaceous and opaque, its ascospores being dark, 1-celled or with a 

transverse septum, and often with gelatinous appendages or sheats   (Lundqvist 1972, 

Kruys et al. 2015). Two large and polymorphic genera that share some morphological 

features are Cercophora and Podospora. They can be distinguished by their immature 

ascospores, which in Podospora have a septum already in the first stages of development 

while the upper cell swells and becomes pigmented, while in Cercophora the septation, 

swelling and pigmentation of the ascospores occur at a later stages of their development. 

Podospora was revised by Mirza and Cain (1969) who accepted 64 species while 

Lundqvist (1972) accepted near 80 species in Cercophora. More recently, Chang et al. 

(2010) demonstrated that that both genera were polyphyletic. 
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Some recent molecular studies have demonstrated that the traditional circumscription of 

most of the genera of Lasiosphaeriaceae are artificial and unsustainable, being the 

ascospores morphology an extremely homoplastic character not useful to predict 

phylogenetic  relationships (Miller and Huhndorf 2004, 2005). The appreciation about 

that the morphology of the ascospores is not always useful as a taxonomic criterion to 

separate genera has also been reported in the Sordariales, e.g. the genus Gelasinospora 

was assimilated to Neurospora despite of the different pattern in the ascospore 

ornamentation (Dettman et al. 2001; García et al. 2004). By contrast, Miller and 

Huhndorf (2005) demonstrated that in Sordariales the structure of the ascomata wall is 

clearly more useful for genera delimitation than ascospore morphology. 

In an effort to contribute to the more natural definition of the taxa included in 

Lasiosphaeriaceae we have carried out a phylogenetic study based on the sequences of 

28S nrDNA and fragments of BT2 and RPB2 genes of a significant set of  reference and 

fresh strains of species of ascomycetes isolated from soil belonging to this family. 

 

MATERIALS AND METHODS 

Soil sampling and fungal isolation. — Soil samples were collected in Great Smoky 

Mountains National Park, an International Biosphere Reserve of USA, in Gwalior, India, 

in different locations of Spain, and in Abra del Infiernillo in Tafí del Valle, Argentina. 

For the isolation of soil-borne ascomycetes we followed a previously described procedure 

(Stchigel et al. 2000) to activate dormant spores by using thermal shock at 60 ºC, and 

chemical agents, i.e. 5 % v/v acetic acid and 2 % w/v phenol. Fungal colonies were 

examined under a stereomicroscope and sexual structures were transferred to Petri dishes 

containing oatmeal agar (OA: oatmeal flakes, 30 g; agar-agar, 20 g; distilled water, 1 L) 

using a sterile needle, being incubated at 15, 25 and 35 ºC. 
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Phenotypic study — For cultural characterization, the isolates were grown for up to 30 d 

on OA, potato-carrot agar (PCA; grated potatoes, 20 g; grated carrot, 20 g; agar-agar, 20 

g; L-chloramphenicol, 100 mg; distilled water, 1 L) and potato dextrose agar (PDA; 

Pronadisa, Madrid, Spain) at 5, 10, 15, 25, 30, 35 and 40 C. Color notations in 

parentheses are from Kornerup and Wanscher (1984). Fertile fungal structures were 

mounted and measured on water and on lactic acid. Photomicrographs were obtained with 

a Zeiss Axio Imager M1 light field microscope. The scanning electron microscope  

techniques used were described previously by Figueras and Guarro (1988) and  

micrographs were taken with a Jeol JSM 840 at 15 keV. 

Molecular study — DNA of the fungal isolates (Table I) was extracted and purified 

directly from colonies according to the Fast DNA Kit protocol (MP Biomedicals, Solon, 

Ohio). The amplification of the D1−D3 domains of the 28S large subunit (D1D3) of the 

nuc rRNA genes and fragments of BT2 and RPB2 genes were performed according to 

Vilgalys and Hester (1990) (D1D3) and Miller and Huhndorf (2005) (BT2 and RPB2). 

The sequences of these amplicons were obtained using the protocol of the Taq Dye-

Deoxy Terminator Cycle Sequencing Kit. PCR products were purified and sequenced at 

Macrogen Europe (Amsterdam, The Netherlands) with a 3730XL DNA analyzer (Applied 

Biosystems). Consensus sequences were obtained using SeqMan (version 7.0.0; 

DNASTAR, Madison, WI, USA) and the sequences were aligned using Clustal X 

(version 2.0) (Larkin et al. 2007) followed by manual adjustments with a text editor. Two 

phylogenetic analyses were carried out based on the domains D1D2 of the 28S gene 

(D1D2) sequences and on the combination of the three loci sequences (D1D3, BT2 and 

RPB2), of our isolates belonging to the Lasiosphaeriaceae and selected members of the 

families Lasiosphaeriaceae, Sordariaceae and Chaetomiaceae, and Camarops amorpha 

and Chaetosphaeria ovoidea as outgroups, using MEGA v. 6.06 (Tamura et al. 2013). 

193

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

  

Maximum Likelihood (ML) method using the Tamura-Nei and the General Time 

Reversible models were carried out for the phylogenetic analysis of D1D2 and of the 

combined dataset, respectively, both with a gamma distribution, invariable sites and the 

pair-wise deletion of gaps option. The robustness of branches was assessed by bootstrap 

analysis with 1000 replicates. Bayesian inference (BI) was carried out using MrBayes v. 

3.1 according to Alvarez et al. (2010). The sequences generated in this study are 

deposited in GenBank (Table I) and the alignments used in the phylogenetic analyses are 

deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S17160).  

 

RESULTS 

The length of the D1D2 alignment was of 468 bp, 148 bp of them being parsimony 

informative. The lengths of the individual alignments used in the combined dataset were 

814 bp (D1D3), 554 bp (BT2) and 797 bp (RPB2), and the final total alignment was 

2165 bp, 757 bp of which were parsimony informative. In the D1D2 and in the 

combined dataset trees (Figs. 1 and 2), the members of the family Lasiosphaeriaceae were 

grouped in three main clades (Lasiosphaeriaceae I, II and III); other well suppoted clades 

represented the members of the families Chaetomiaceae and Sordariaceae, and of the 

genus Diplogelasinospora. The genera Apiosordaria, Arnium, Cercophora, Podospora, 

Triangularia and Zopfiella revealed to be polyphyletic with their members scattered in 

different clades of the three groups of Lasiosphaeriaceae. By contrast the genera 

Apodospora, Cuspidatispora, Diffractella, Diplogelasinospora, Echria, Fimetariella, 

Lasiosphaeria, Lasiosphaeris, Rinaldiella, Schizothecium and Zygospermella constituted 

monophyletic clades in both phylogenetic trees. Despite in the D1D2 tree the species of 

Immersiella grouped with Arnium hirtum, the species of that genus were placed in a 

monophyletic terminal clade in the tree based on the combined dataset. Immersiella was 
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only well-delimitated in a monophyletic terminal clade in the tree based on the combined 

dataset, whereas in the D1D2 tree the species of this genus grouped with Arnium hirtum.  

In the D1D2 tree, our isolate CBS 137295 (species I) was located in the 

Lasiophaeriaceae I clade, constituting a well-supported subclade (73% bs/ 0.99 pp) 

together with Arnium caballinum, Arnium japonense, Arnium leporinum, and Cercophora 

aquatica. However, species I constituted a terminal branch with a nucleotide identity 

lower than 95% with respect to the other species of that subclade. In the combined dataset 

tree, species I also grouped with A. japonense but with no significant support and at a 

considerable phylogenetic distance among them. Species I was easily distinguished from 

the other members of Lasiosphaeriaceae by its ascospores with a navicular and septate 

upper cell and a pale brown, thick-walled, non collapsing lower cell. Sequences of the 

species Bombardia bombarda and Bombardioidea anartia, constituted in both tree a well 

supported subclade within the Lasiosphaeriaceae I clade with a nucleotide identity 

between both species higher than 98%. Both genera share a particular fruiting-body, i.e.  

ostiolate, multi-layered, with the two outer layers stromatic, which is unique in the  

family. In the D1D2 tree, also within the Lasiosphaeriaceae I, the species Podospora 

cochleariformis, Podospora decipiens and Podospora pleiospora, located in the section 

Rhypophila by Lundqvist (1972), formed a  well-supported clade (genus I) (94% bs/ 1 

pp). These species share some characteristic features not present in other species of 

Podospora such as an ascomatal neck with elongate tubercles at the base, asci usually 

with more than 8 ascospores and ascospores with a lower cell usually longer than the 

upper cell.  

In both trees, Lasiosphaeriaceae II grouped several species of Cladorrhinum, which were 

characterized by only the presence of an asexual morph consisting of conidiogenous cells 

with lateral phialidic openings that produce one-celled conidia in slimy masses, together 
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with some species of Apiosordaria, Triangularia, Podospora and Cercophora which 

produce a Cladorrhinum-like asexual morph too. Apiosordaria vermicularis is the only 

lasiosphaeriaceous species studied that constitutes the exception among the species 

producing a Cladorrhinum-like asexual morph, because it was placed in both trees into 

the clade Lasiosphaeriaceae III constituting a terminal independent branch. 

In both trees, the clade Lasiosphaeriaceae III included a well-supported subclade that 

grouped a reference strain of Jugulospora rotula, a reference strain of Strattonia 

carbonaria, the type strains of Apiosordaria antarctica, Apiosordaria globosa and 

Apiosordaria hispanica, and an isolate that based on morphological features (ascospores 

with a warted upper cell with longitudinal ridges) we identified as Rhexosporium 

terrestre. All these species produces similar ascomata (semi-transparent, with dark brown 

papillate necks) clavate and early septate ascospores with the upper cell warted or finely 

granulate. 

Based on the molecular and morphological results mentioned above, we propose the new 

genus Naviculispora to accommodate our isolate CBS 137295 (species I), the synonymy 

of Bombardioidea with Bombardia, the redefinition of Jugulospora and the raising of 

Podospora section Rhypophila (genus I) to a genus level. 

 

Taxonomy 

Bombardia (Fr.) P. Karst. — MycoBank MB616 

Type species: Bombardia fasciculata Fr., Bidr. Känn. Finl. Nat. Folk 23: 20. 1873. 

Basionym: Sphaeria subgen. Bombardia Fr., Summa vegetabilium Scandinaviae 2: 389. 1849. 

= Bombardioidea C. Moreau ex N. Lundq., Symb. bot. upsal. 20: 274. 1972. 

Ascomata ostiolate, clavate to fusiform, tough, multi-layered; peridium black, 

carbonaceous; two outer layers stromatic. Paraphyses filiform, septate. Asci 4 or 8-

spored, clavate or cylindrical, very long-stipitate, with a thickened apical ring. 

196

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



RESULTS AND DISCUSSION 

  

Ascospores one- or two-celled, with a single apical germ pore when two-celled, or with 

one germ pore at each end with several smaller pores surrounding them or scattered all 

over when one-celled; gelatinous sheath usually present in the species producing one-

celled ascospores. 

 

Bombardia anartia (J.C. Krug & J.A. Scott) Y. Marín, Stchigel, Guarro & Cano, comb. 

nov.  

MycoBank MB 812138 

Basionym: Bombardioidea anartia J.C. Krug & J.A. Scott, Can. J. Bot. 72: 1303. 1994. 

 

Bombardia bombardioides (Auersw.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB 812139 

Basionym: Sordaria bombardioides Auersw., in Niessl, Verh. nat. Ver. Brünn 10: 189. 1872. 

≡ Hypocopra bombardioides (Auersw.) Sacc., Syll. fung. (Abellini) 1: 243. 1882. 

≡  Bombardioidea bombardioides (Auersw.) C. Moreau ex C. Moreau, in Lundqvist, Symb. bot. upsal. 20: 

277. 1972. 

 

Bombardia serignanensis (Fabre) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB 812141 

Basionym: Hypocopra serignanensis Fabre, Annls Sci. Nat., Bot. 9: 77. 1879.  

≡  Bombardioidea serignanensis (Fabre) N. Lundq., Symb. bot. upsal. 20: 284. 1972. 

 

Bombardia stercoris (DC.) Y. Marín, Stchigel, Guarro & Cano, comb. nov. 

MycoBank MB 812142 

Basionym. Sphaeria stercoris DC., in Lamarck & de Candolle, Fl. franç., Edn 3 (Paris) 2: 294. 1805. 

≡ Sporormia stercoris (DC.) Pirotta, Monogr. Spororm.: no. 1. 1878. 

≡ Bombardioidea stercoris (DC.) N. Lundq., Symb. bot. upsal. 20: 281. 1972. 
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= Sordaria maxima Niessl, Verh. nat. Ver. Brünn: 38. 1870. 

≡ Hypocopra maxima (Niessl) Sacc., Syll. fung. (Abellini) 1: 245. 1882. 

 

Jugulospora N. Lundq., Symb. bot. upsal. 20(no. 1): 256. 1972, emend. Fig. 3 

= Rhexosporium Udagawa & Furuya, Trans. Mycol. Soc. Japan 18: 302. 1977. 

Type species: Jugulospora rotula (Cooke) N. Lundq.  

Ascomata ostiolate, covered with pale brown, flexuous, septate, thick-walled 

hairs; neck dark brown to black, composed of papillate cells disposed around the ostiole; 

peridium membranaceous, semi-transparent, 39-layered; outer peridial cells 

isodiametric. Paraphyses filiform. Asci 8-spored, cylindrical, with a thin apical ring. 

Ascospores at first one-celled, hyaline, clavate, early septate; upper cell brown, navicular, 

globose or obovoid, warted or finely granulated, sometimes with warts arranged forming 

ridges or large spots, with an apical germ pore; lower cell hyaline, conical to cylindrical, 

collapsing, smooth-walled to slightly warted. Asexual morph absent or present, conidia 

hyaline to pale brown, almost smooth-walled, ovate to elongate, produced laterally or 

terminally on undifferentiated hyphae, solitary. 

 

Jugulospora carbonaria (W. Phillips & Plowr.) Y. Marín, Stchigel, Guarro, A.N. Mill. & 

Huhndorf, comb. nov. Fig. 3c, d, m, n   

MycoBank MB 812137 

Basionym: Sphaeria carbonaria W. Phillips & Plowr., Grevillea 2(no. 22): 188. 1874. 

≡ Podospora carbonaria (W. Phillips & Plowr.) Niessl, Hedwigia 22: 156. 1883. 

≡ Psilosphaeria carbonaria (W. Phillips & Plowr.) Cooke & Plowr., Grevillea 7(no. 43): 85. 1879. 

≡ Sordaria carbonaria (W. Phillips & Plowr.) Sacc., Syll. fung. (Abellini) 1: 233. 1882. 

≡ Strattonia carbonaria (W. Phillips & Plowr.) N. Lundq., Symb. bot. upsal. 20(no. 1): 269 (1972) 

≡ Zopfiella carbonaria (W. Phillips & Plowr.) Arx, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 

76(3): 291. 1973. 
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   = Apiosordaria antarctica Stchigel & Guarro, in Stchigel, Guarro & Mac Cormack, Mycologia 95: 1219. 

2003. 

 

Jugulospora rotula (Cooke) N. Lundq., emend. Fig. 3a, b, el 

Basionym: Sphaeria rotula Cooke, Handb. Brit. Fungi 2: no. 2598. 1871. 

= Apiosordaria globosa Dania García, Stchigel & Guarro, Mycologia 95: 137. 2003. 

= Apiosordaria hispanica Dania García, Stchigel & Guarro, Mycologia 95: 134. 2003. 

= Rhexosporium terrestre Udagawa & Furuya, Trans. Mycol. Soc. Japan 18: 303. 1977. 

Ascomata scattered to aggregated, superficial or immersed, pyriform, pale brown 

to brown, semi-transparent, ostiolate, 350770 x 200540 µm, covered with pale brown, 

wide near the base, septate hyphae-like hairs of 15 µm diam; neck brown to dark-brown, 

cylindrical to conical, papillate, 78280 µm long, 90250 µm wide; peridium 

membranaceous, 39-layered, 1545 µm thick, brownish-orange to brown; outer layers 

with textura angularis to textura intricata; inner layers with textura epidermoidea. 

Paraphyses and periphyses filiform-ventricose, up to 2 µm in diam. Asci 8-spored, 

cylindrical, evanescent, 146250 x 1428 µm, stipitate, with a thin apical ring. 

Ascospores at first hyaline, one-celled and clavate, becoming transversely septate and two 

celled; upper cell dark brown, obovoid to globose, truncate at the base, ornamented with 

warts arranged uniformly or forming longitudinal ridges or large spots, 1829 x 1227 

µm, with an apical to lateral germ pore of 0.53 µm; lower cell hyaline, conical, smooth-

walled to slightly warted, 16 µm, collapsing; gelatinous cauda absent. Asexual morph 

absent or present, conidia hyaline to pale-coloured, almost smooth-walled, ovate to 

elongate, 26 x 1.52.5 µm, produced laterally or terminally on undifferentiated hyphae, 

solitary. 

Specimens examined: USA, NORTH CAROLINA, Great Smoky Mountains National 

Park, from soil, 8-VIII-2008, M. Calduch, A.N. Miller & A.M. Stchigel, culture FMR 
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12690; USA, TENNESSEE, Great Smoky Mountains National Park, from soil, 9-VIII-

2008, M. Calduch, A.N. Miller & A.M. Stchigel, culture FMR 12781; SPAIN, 

TARRAGONA, Els Gorgs de la Febró, from soil, 25-IX-1996, A.M. Stchigel & M. 

Calduch, culture CBS 110112, ex-type strain of Apiosordaria hispanica; SPAIN, 

TARRAGONA, Els Gorgs de la Febró, from soil, 25-IX-1996, A.M. Stchigel & M. 

Calduch, culture CBS 110113, ex-type strain of Apiosordaria globosa; ANTARCTICA, 

King George Island, Jubany Argentinian base, from soil, 11-XI-1996, W. Mac Cormack, 

culture IMI 381338, ex-type strain of Apiosordaria antarctica; JAPAN, from burned soil, 

Y. Horie, culture ATCC 34567. 

 

Naviculispora Stchigel, Y. Marín, Cano & Guarro, gen. nov. Fig. 4  

MycoBank MB 812135 

Type species: Naviculispora terrestris Stchigel, Cano, Y. Marín & Guarro. 

Etymology. From Latin navicularibus-, navicular, and -spora, spore, referring to the shape 

of the ascospores.  

Diagnosis: This genus is distinguished by the production of ascospores with a dark 

navicular brown upper cell, and a pale brown to brown thick-walled lower cell which 

does not collapse with the age, and holoblastic conidia with a small truncate base, sessile, 

or less commonly on sympodially proliferating conidiophores. 

Ascomata scattered to aggregated, superficial and immersed, pyriform, ostiolate, 

pale brown to brown, covered with brown, septate hyphae-like hairs, with a short neck; 

neck brown to dark-brown, cylindrical to conical, papillate; peridium membranaceous of 

textura angularis. Asci 8-spored, cylindrical, evanescent, short-stipitate, with a small 

apical ring, ascospores uniseriate to biseriate. Ascospores at first hyaline, one-celled and 

clavate, becoming transversely septate and two celled; upper cell dark brown, navicular, 
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truncate at the base, septate, with a subapical to lateral germ pore; lower cell thick-walled, 

pale brown to brown, cylindric-conical, not collapsing with the age; gelatinous cauda 

absent. Asexual morph present, conidia holoblastic, hyaline to subhyaline, ellipsoidal to 

obovoid or clavate, with a small truncate base, sessile, or less commonly on sympodially 

proliferating conidiophores. 

 

Naviculispora terrestris Stchigel, Y. Marín, Cano, & Guarro, sp. nov. Fig. 4  

MycoBank MB 812136  

Typification. ARGENTINA: Tucumán province, Tafí del Valle, -26.8667, -

65.6833, from soil, 17-V-2000, A. M. Stchigel, J. Cano, J. Guarro. (holotype CBS H-

21595). Ex-type culture CBS 137295, FMR 10060). 

Etymology. Referring to the source where the species has been isolated. 

Mycelium composed of subhyaline to brown, septate, smooth-walled, branched hyphae, 

1.54 µm wide. Ascomata scattered to aggregated, superficial or immersed, pyriform, 

pale brown to brown, ostiolate, 210410 x 160380 µm, covered with brown, septate 

hyphae-like hairs, with a short neck, occasionally with 2 necks; neck brown to dark-

brown, cylindrical to conical, papillate, 3570 µm long, 62.5105 µm wide; peridium 

membranaceous, textura angularis, 1020 µm thick, composed of up to 10 layers of 

flattened cells of 210 µm in diam. Asci 8-spored, cylindrical, evanescent, 100150 x 

1520 µm, short-stipitate, with small apical ring, ascospores arranged uniseriately to 

biseriately. Ascospores at first hyaline, one-celled, clavate, becoming transversely septate 

and two-celled; upper cell dark brown, navicular, 2029 x 913.5 µm, truncate at the 

base, septate, with a subapical to lateral germ pore of 0.51 µm; lower cell thick-walled, 

pale brown, cylindric-conical, 1014(17) x (2)34 µm, not collapsing; lacking of 

gelatinous cauda. Asexual morph present, conidia holoblastic, 38 x 23 µm, hyaline to 
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subhyaline, ellipsoidal to ovoid or clavate, with a small truncate base, sessile, produced 

laterally and terminally on the hyphae, or less commonly on sympodially proliferating 

conidiophores. 

Culture characteristics — Colonies on PCA attaining a diam. of 4047 mm in 14 d at 25 

ºC, velvety, slightly lobulate, margins fringed, radially zonate, greyish-brown (M 5D3 to 

5E3) and brown to dark brown (6E3 to 6F3) at centre; reverse greyish-yellow to olive 

brown (4B4 to 4D4). Colonies on OA attaining a diam. of 3538 mm in 14 d at 25 ºC, 

velvety, margins regular to slightly arachnoid, grey to greyish-brown (M 8F1 to 8F3); 

reverse grey to greyish brown (M 8F1 to 8F3). Ascomata produced after at least two 

months. Maximum and minimum temperatures of growth, 5 and 30 ºC, respectively. 

Optimal temperature 25 ºC. 

 

Rhypophila Y. Marín, A.N. Mill., Guarro & Huhndorf, gen. nov. Fig. 5 

MycoBank MB 812130 

Type species: Rhypophila myriospora (P. Crouan & H. Crouan) Y. Marín, A.N. Mill., 

Guarro & Huhndorf.  

Etymology. Due to the section Rhypophila of the genus Podospora (Lundqvist 1972) 

where these species were included.  

Diagnosis: Ascomata ostiolate, with a neck showing elongated tubercles at the base, asci 

normally containing more than 8 ascospores, and ascospores with a lower cell as long as, 

or longer than, the upper cell. 

Ascomata scattered or aggregated, semi-immersed or superficial, pyriform, 

ostiolate, glabrous or covered with flexous or stiff hairs; neck long, conical or cylindrical, 

with blackish, obtuse, straight or curved, elongate tubercles at the base; peridium 

membranaceous, semi-transparent, yellowish to light brown. Paraphyses present or 
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absent. Asci 8 to 128-spored, clavate, long or short stipitate; apical ring absent or 

indistinct, ascospores biseriate or irregularly arranged. Ascospores at first hyaline, one-

celled, cylindrical or spatuliform, later swelling above, clavate, becoming transversely 

uniseptate; upper cell ellipsoidal to ellipsoidal-fusiform, dark brown, with an apical or 

subapical germ pore; lower cell cylindrical to cylindrical-obclavate, hyaline, same length 

or longer than upper cell, frequently collapsing; several small secondary appendages at 

the base of the lower cell; apical gelatinous cauda absent or present, fibrillate or lamellate. 

Asexual morph absent. 

 

Key to species of Rhypophila 

1. Asci 8-spored..................................................................................................R. decipiens 

1. Asci 16 to 128-spored......................................................................................................2 

2. Asci 128-spored; upper and lower cells shorter than 20 µm; absence of cauda and 

gelatinous appendages...........................................................................R. cochleariformis 

2. Asci 16 to 32-spored; upper and lower cells longer than 20 µm; fibrillate upper cauda 

and gelatinous appendages in the lower cell.....................................................................3 

3. Asci 16 or 32-spored; upper cell 2334 x 1419 µm..................................R. myriaspora 

3. Asci 64-spored; upper cell 2537 x 1823 µm............................................R. pleiospora 

 

Rhypophila cochleariformis (Cailleux) Y. Marín, A.N. Mill., Guarro & Huhndorf, comb. 

nov.   

MycoBank MB 812131 

Basionym: Podospora cochleariformis Cailleux, Cahiers de La Maboké 7: 100. 1969. 
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Rhypophila decipiens (G. Winter ex Fuckel) Y. Marín, A.N. Mill., Guarro & Huhndorf, 

comb. nov. Fig. 5e, gi 

MycoBank MB 812132 

Basionym: Sordaria decipiens G. Winter, Abh. naturforsch. Ges. Halle 13: 28. 1873. 

≡ Podospora decipiens (G. Winter ex Fuckel) Niessl, Hedwigia 22: 156. 1883. 

≡ Pleurage decipiens (G. Winter) Kuntze, Revis. gen. pl. (Leipzig) 3(2): 505. 1898. 

 

Rhypophila myriospora (P. Crouan & H. Crouan) Y. Marín, A.N. Mill., Guarro & 

Huhndorf, comb. nov. Fig. 5b, d, k 

MycoBank MB 812133 

Basionym. Sordaria myriospora P. Crouan & H. Crouan, Florule Finistère (Paris): 22. 1867. 

≡ Ryparobius myriosporus (P. Crouan & H. Crouan) Boud., Boud., Annls Sci. Nat., Bot., sér. 5 10: 240. 

1869.  

≡ Philocopra myriospora (P. Crouan & H. Crouan) Sacc., Syll. fung. (Abellini) 1: 251. 1882. 

≡ Podospora myriospora (P. Crouan & H. Crouan) Niessl, Hedwigia 22: 156. 1883.  

≡ Ascophanus myriosporus (P. Crouan & H. Crouan) Quél., Enchir. fung. (Paris): 296. 1886. 

 

Rhypophila pleiospora (G. Winter) Y. Marín, A.N. Mill., Guarro & Huhndorf, comb. nov. 

Fig. 5a, c, f, j 

MycoBank MB 812134 

Basionym. Sordaria pleiospora G. Winter, Abh. naturforsch. Ges. Halle 13: 13. 1873. 

≡ Philocopra pleiospora (G. Winter) Sacc., Syll. fung. (Abellini) 1: 249. 1882. 

≡ Podospora pleiospora (G. Winter) Niessl, Hedwigia 22: 156. 1883. 

= Podospora decipiens var. pleiospora (G. Winter) Chenant., Bull. Soc. mycol. Fr. 35: 114. 1919. 

 

DISCUSSION 

We performed a phylogenetic study based on 28S, BT2 and RPB2 sequences of members 

of the family Lasiosphaeriaceae in order to contribute to a more natural classification of 
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this family. Up to now, the taxonomy of this fungal group is mainly based, with the 

exception of some recent phylogenetic approaches (Miller and Huhndorf 2004, Cai et al. 

2005, Kruys et al. 2015), on morphological criteria that has been demonstrated to be 

unsustainable. Our data corroborated that Lasiosphaeriaceae is paraphyletic as was 

demonstrated in previous phylogenetic studies (Huhndorf et al. 2004, Miller and 

Huhndorf 2005, Kruys et al. 2015), being divided in three main clades (Lasiosphaeriaceae 

I, II and III).  

The study also confirmed that several large genera were clearly polyphyletic, their 

members being scattered in the three mentioned clades. The clade corresponding to 

Lasiosphaeriaceae II, grouped all the species, included in the study, that only produce 

asexual morphs in the genus Cladorrhinum, i.e. Cladorrhinum flexuosum, Cladorrhinum 

foecundissimum, Cladorrhinum microsclerotigenum, Cladorrhinum phialophoroides and 

Cladorrhinum samala, and species that produced both, ascomata and  Cladorrhinum-like 

asexual morphs. The fact that this particular type of conidiogenesis is also present in the 

members of this clade among the Ascomycota suggests that members of clade 

Lasiosphaeriaceae II could represent a new family characterized by the presence of this 

particular asexual morph. The placement of members of Lasiosphaeriaceae producing a 

Cladorrhinum-like asexual morph together to Cladorrhinum spp. was previously 

observed by Madrid et al. (2011) in a phylogenetic study of that genus. However, there 

are few taxa in Lasiosphaeriaceae II that produce a holoblastic asexual morph different 

from Cladorrhinum, e.g. Cercophora terricola, Podospora austro-america and 

Podospora pauciseta. Therefore, further phylogenetic studies will be needed in order to 

corroborate this hypothesis. The only species that shows Cladorrhinum asexual morph 

and did not group in Lasiosphaeriaceae II is Apiosordaria vermicularis, that additionally 

produces an holoblastic asexual morph. This species constitutes an independent lineage 
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and considering that shows a combination of morphological features unique in 

Ascomycota i.e. the presence of two types of asexual morphs, one of them with probably 

phylogenetic significance (Cladorrhinum), probably it is represent a new genus.  

The new monotypic genus Naviculispora is characterized by the particular morphology of 

the ascospore with presence of a septum in the upper cell. Such feature can be also 

present in other members of Lasiosphaeriaceae; however, Naviculispora can be easily 

distinguished from such taxa by ascospores with brownish, thick-walled lower cells that 

do not collapse with the age. The most phylogenetically related species is Arnium 

caballinum. This latter species produces 1-celled ascospores, although Lundqvist (1972) 

mentioned also the occasional presence of a septum. The species with ascospores with a 

septate upper cell included in this study were dispersed in different clades which 

demonstrated the poor taxonomic value of this feature. For instance while Zopfiella 

tabulata (the type species of the genus) was located in a  well-supported clade of 

Lasiosphaeriaceae I together with Cercophora sulphurella, Corylomyces selenospora, 

Jobellisia rhynchostoma and Podospora dydima all them with septate ascospore upper 

cell, another species of Zopfiella with the same characteristic, Z. pleuropora, was nested 

with species of other genera without such feature such as Cercophora sparsa and 

Anopodium ampullaceum.. Zopfiella pleuropora grouped with Zopfiella attenuata in a 

well-supported subclade in both phylogenetic studies. Both differ from the other species 

having ascospores with septate upper cell by its non-ostiolate ascomata. Cercophora 

areolata and Cercophora ambigua, which grouped together in a well-supported clade in 

Lasiosphaeriaceae I, also present a septate upper cell; however, both species are easily 

distinguished by their ascomata with an areolate peridium breaking in polyhedral plates 

when crushes. On the basis of phenotypic and genotypic data, both species could 

represent a new genus which would demonstrate that the ascoma wall morphology is a 
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good predictor of phylogenetic relationships, as was previously demonstrated by Miller 

and Huhndorf (2005). Apart from the species mentioned above, Cercophora 

newfieldiana, Cercophora sordarioides and occasionally Cercophora atropurpurea, 

included in Lasiosphaeriaceae III clade, show also a septum in the upper ascospore cell. 

The two latter species were located in independent terminal branches whereas C. 

newfieldiana was grouped with other lasiosphaeriaceous species without a septum in the 

upper cell. These three species can be easily distinguished from the new genus 

Naviculispora by the evanescent lower cell in C. newfieldiana and C. sordarioides, and 

by the 3‒5-septate lower cell in C. atropurpurea. 

Further evidence about the relevance of the ascomata structure as a phylogenetically 

informative taxonomic character has been observed in the close molecular relationships 

between Bombardioidea and Bombardia, that show a very similar ascoma wall structure 

(stromatic) and that are proposed here as synonyms. When Lundqvist proposed the genus 

Bombardioidea (Lundqvist, 1972) already mentioned the similarity of the ascomata 

among both genera, but based on the ascospore morphology of such genera that are two-

celled in Bombardia and one-celled in Bombardioidea, considered both genera as 

different. The ascomata of Bombardia are composed of two stromatic outer layers, being 

the most internal of which fibrous and cartilaginous (Lundqvist 1972). This kind of 

peridium is unique in Lasiosphaeriaceae. Other species of the family such as Arnium 

ontariensis, Cercophora albicollis, Cercophora costaricensis, Cercophora elephantina, 

Cercophora palmicola, Cercophora scortea, Podospora appendiculata, Podospora 

fimiseda and Podospora perplexens also have a pseudo-bombardioid peridium with a 

similar structure, showing also a gelatinized wall layer. However, important differences 

exist between bombardioid and pseudo-bombardioid ascomata since the latter are non-

stromatic and the gelatinized wall layer is composed of interwoven hyphae (Miller 2003). 
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Moreover, the species with pseudo-bombardioid ascomata lack a carbonaceous elongated 

base of the ascomata which is present in Bombardia (Lundqvist, 1972). Only four of the 

above mentioned species were included in the present study, i.e. C. costaricensis, C. 

scortea, P. appendiculata and P. fimiseda which were nested in different clades, C. 

scortea and P. appendiculata in Lasiosphaeriaceae I, and C. costariciensis and P. 

fimiseda in Lasiosphaeriaceae II. This suggests that this sort of ascoma could have 

evolved independently at least two times in the evolutionary history of the family. 

Because Podospora fimiseda is the type species of Podospora, we considered the 

possibility of reducing Podospora to only those species with pseudo-bombardioid 

peridium. However, the fact that some species without pseudo-bombardioid such as 

Apiosordaria sacchari and Apiosordaria striatispora were nested in the same clade that 

P. fimiseda and C. costariciensis, makes this hypothesis, at least based on the available 

data, inconsistent. Consequently, further studies are needed to delimitate more correctly 

the complex genus Podospora. 

The genus Jugulospora was introduced by Lundqvist (1972) to accommodate Sphaeria 

rotula based on its verrucose ascospores, with anastomosing warts arranged in large 

spots. The molecular data demonstrated that A. globosa, A. hispanica and R. terrestre, 

with also warted ascospores, belonged to J. rotula, being synonymized therein. 

Rhexosporium was proposed as a new genus by Udagawa and Furuya (1977) due to the 

presence of the longitudinal ridges in the upper cell of the ascospores, despite these 

authors cited a similar ascospore ornamentation in Apiosordaria and Jugulospora spp. 

Observing the pictures of the ascospores under SEM, we noticed that such ridges were 

really a linear arrangement of warts and, then, not differing much respect to the 

ornamentation of those of J. rotula. In the present study, J. rotula was emended to 

incorporate all the morphological features observed in the species synonymized. Based on 
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the early ascospore septation, the negative staining of the apical ring of the asci with 

cotton blue and the presence of paraphysis, Lundqvist (1972) highlighted the close 

similarity of Jugulospora with Strattonia carbonaria. Our study confirmed the similarity 

between such fungi already demonstrated in previous phylogenetic studies (Miller and 

Huhndorf 2005, Kruys et al. 2015). Therefore, we transferred Strattonia carbonaria to 

Jugulospora as J. carbonaria. Although the name Strattonia is older than Jugulospora, 

the type species of that genus, S. tetraspora, has an ascomatal neck with rigid, cylindrical, 

septate, long hairs and ascospores with a gelatinous sheath, features which don’t match 

with those of Jugulospora. Hence, the genus Strattonia should be reduced to those 

species with themorphology of the type species. Both species of Jugulospora are easily 

distinguished among them by the ornamentation of the ascospores, being finely 

granulated in J. carbonaria and warted in J. rotula. Apiosordaria antarctica is 

synonymized with Jugulospora carbonaria, which shows common morphological 

features. The only difference among them is the length of the neck, which was described 

as short in J. carbonaria and reaching to 400 µm in length in A. antarctica.  

Rhypophila spp. are characterized by the production of ostiolate ascomata with dark 

elongate tubercles at the base of a long neck and asci usually with more than 8 

ascospores, and ascospores with lower cell at least as long as the upper one. The species 

grouped in this genus were formerly classified in Podospora but in a separate section 

called Rhypophila (Lundqvist 1972). Similar asci are seen in Schizothecium, but this 

genus is distinguished by swollen agglutinated hairs or prominent protruding peridial 

cells all over the ascomata, and the lower cell of the ascospores is usually persistent and 

not so long as in Rhypophila. Rhypophila myriospora was not included in the 

phylogenetic study since there are not sequences of the loci used of this species. 

However, it is considered a species of this new genus due to the morphological features 
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and the molecular study based on ITS region and GPD gene carried out by Chang et al. 

(2010) which corroborated its location in the clade that grouped the other species of 

Rhypophyla. Although R. decipiens and R. pleiospora did not show molecular variability 

in the D1D2 tree, these were considered as different species also on the basis of the 

molecular data shown by Chang et al. (2010). 

Currently, the phylogenetic relationships of the most important genera of 

Lasiosphaeriaceae remain unclear and an important effort, trying to study more strains 

representing the different taxa included in this family, is required to solve this problem. 

Important caveats for the progress of the studies on this field are the absence of ex type 

cultures for sequencing and the fact that numerous sequences available from coprophilous 

species are obtained directly from fungi growing in their natural substrates. Herbivores 

dung are usually colonized by a huge number of species and it is difficult to ascertain if 

the amplified DNA belong really to the suspected fungus.  
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Table 1 Isolates and reference strains of the order Sordariales included in this study 

 
Taxa Strain Source GenBank accession # 

   LSU BT RPB2 

Anopodium ampullaceum MJR 40/07 GenBank KF557662 KF557701 - 

Anopodium ampullaceum E00218015 GenBank KF557663 KF557702 - 

Apiosordaria verruculosa F-152365 GenBank AY346258 AY780086 AY780150 

Apiosordaria backusii  ATCC 34568 GenBank AY780051 AY780085 AY780149 

Apiosordaria backusii FMR 12439 Soil, Tennessee, Great Smoky Mountains National Park KP981423 KP981550 KP981605 
Apiosordaria backusii FMR 13591 Soil, Spain, Tarragona, Els Gorgs de la Febró KP981424 KP981551 KP981606 
Apiosordaria sacchari CBS 713.70 Root, Jamaica, Janswood Estates KP981425 KP981552 KP981607 
Apiosordaria striatispora CBS 154.77

T
 Soil, Thailand, Sukhotai KP981426 KP981553 KP981608 

Apiosordaria vermicularis CBS 303.81
T
 Soil, Hong Kong, Campus of University of Hong Kong KP981427 KP981554 KP981609 

Apodospora gotlandica E00204952 GenBank KF557664 KF557703 - 

Apodospora simulans Kruys 701 GenBank KF557666 KF557704 - 

Apodospora simulans  GenBank KF557667 KF557705 - 

Arnium arizonense Santesson 18211-c GenBank KF557668 KF557706 - 

Arnium arizonense Kruys 724 GenBank KF557669 KF557707 - 

Arnium arizonense E00204509 GenBank KF557670 KF557708 - 

Arnium cirriferum CBS 120041 GenBank KF557673 KF557709 - 

Arnium hirtum E00204950 GenBank KF557675 KF557711 - 

Arnium hirtum E00204487 GenBank KF557676 KF557712 - 

Arnium japonense SANK 10273 GenBank KF557680 KF557713 - 

Arnium mendax Lundqvist 20874-c GenBank KF557687 KF557716 - 

Arnium mendax E00122117 GenBank KF557688 KF557717 - 

Arnium olerum CBS 120012 GenBank KF557689 KF557718 - 

Arnium sp.  FMR 13412 Soil, India, Gualior KP981428 KP981555 KP981610 
Arnium tomentosum  GenBank KF557691 KF557720 - 

Bombardia anartia 

(=Bombardioidea anartia) 

HHB99-1 GenBank AY346264 AY780092 AY780155 

Bombardia bombarda AR1903 GenBank AY780052 AY780089 AY780152 

Bombardia bombarda SMH 3391 GenBank AY346263 AY780090 AY780153 

Bombardia bombarda SMH 4821 GenBank AY780053 AY780091 AY780154 

Camarops amorpha SMH 1450 GenBank AY780054 AY780093 AY780156 

Cercophora areolata UAMH 7495 GenBank AY587936 AY600252 AY600275 

Cercophora atropurpurea SMH 2961 GenBank AY780056 AY780099 - 
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Cercophora atropurpurea SMH 3073 GenBank AY780057 AY780100 AY780160 

Cercophora coprophila SMH 3794 GenBank AY780058 AY780102 AY780162 

Cercophora costaricensis SMH 4021 GenBank AY780059 AY780103 AY780163 

Cercophora mirabilis CBS 120402 Wallaby dung, Australia, Victoria, Eucalyptus forest near Healesville KP981429 KP981556 KP981611 
Cercophora newfieldiana SMH 2622 GenBank AF064642 AF466019 AY780166 

Cercophora newfieldiana SMH 3303 GenBank AY780062 AY780106 AY780167 

Cercophora scortea  GJS L556 GenBank AY780063 AY780107 AY780168 

Cercophora striata SMH 3431 GenBank AY780065 AY780108 AY780169 

Cercophora sparsa  JF 00229 GenBank AY587937 AY600253 - 

Cercophora sulphurella SMH 2531 GenBank AY587938 AY600254 AY600276 

Cercophora terricola ATCC 200395 GenBank AY780067 AY780109 AY780170 

Chaetomium fimeti CBS 168.71 GenBank FJ666358 FJ666374 - 

Chaetomium globosum SMH 4214b GenBank AY346272 AY780110 - 

Chaetomium microascoides F-153395 GenBank AY346273 AY780111 AY780171 

Chaetosphaeria ovoidea SMH 2605 GenBank AF064641 AF466057 AY780173 

Corylomyces selenosporus CBS 113930
T
 Dry fruti, France, Saint Pé de Bigorre DQ327607 KP981557 KP981612 

Corynascus sepedonium FMR 9123 GenBank FJ666364 FJ666380 - 

Diplogelasinospora 

moalensis 

FMR 13034
T
 

(CBS 136018
T
) 

Soil, Spain, Principado de Asturia, Cangas del Narcea, Veiga de 

Rengos, Moal 
KP981430 KP981558 KP981613 

Diplogelasinospora princeps FMR 13414 Soil, Tennessee, Great Smoky Mountains National Park KP981431 KP981559 KP981614 
Diplogelasinospora princeps FMR 13415 Soil, Tennessee, Great Smoky Mountains National Park KP981432 KP981560 KP981615 
Echria gigantospora F77-1 GenBank KF557674 KF557710 - 

Echria macrotheca Lundqvist 2311 GenBank KF557684 KF557715 - 

Fimetariella rabenhorstii Lundqvist 20410-c GenBank KF557694 KF557721 - 

Immersiella caudata SMH 3298 GenBank AY436407 AY780101 AY780161 

Immersiella immersa SMH 4104 GenBank AY436403 AY780123 AY780181 

Jugulospora carbonaria ATCC 34567 GenBank AY346302 AY780141 AY780196 

Jugulospora carbonaria IMI 381338 Soil, Antarctica, King George Island, Jubany Argentinian base KP981433 KP981561 KP981616 
Jugulospora rotula ATCC 38359 GenBank AY346287 AY780120 AY780178 

Jugulospora rotula 

(≡Apiosordaria hispanica) 

CBS 110112 Soil, Spain, Tarragona, Gorgs de la Febró KP981434 KP981562 KP981617 

Jugulospora rotula 

(≡Apiosordaria globosa) 

CBS 110113 Soil, Spain, Tarragona, Gorgs de la Febró KP981435 KP981563 KP981618 

Jugulospora rotula 

(≡Rhexosporium terrestre) 

FMR 12428 Soil, Tennessee, Great Smoky Mountains National Park KP981436 KP981564 KP981619 

Jugulospora rotula FMR 12690 Soil, North Carolina, Great Smoky Mountains National Park KP981437 KP981565 KP981620 
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Jugulospora rotula FMR 12781 Soil, Tennessee, Great Smoky Mountains National Park KP981438 KP981566 KP981621 
Lasiosphaeria glabrata TL 4529 GenBank AY436410 AY600255 AY600277 

Lasiosphaeria lanuginosa SMH 3819 GenBank AY436412 AY600262 AY600283 

Lasiosphaeria ovina SMH 1538 GenBank AF064643 AF466046 AY600287 

Lasiosphaeria rugulosa SMH 1518 GenBank AY436414 AY600272 AY600294 

Lasiosphaeria sorbina GJS L555 GenBank AY436415 AY600273 AY600295 

Lasiosphaeris hirsuta SMH 1543 GenBank AY436417 AY780121 AY780179 

Lasiosphaeris hispida SMH 3336 GenBank AY436419 AY780122 AY780180 

Naviculispora terrestris CBS 137295
T
 
 

(=FMR 10060
T
) 

Soil, Argentina, Tucumán province, Tafí del Valle KP981439 KP981567 KP981622 

Neurospora crassa MUCL 19026 GenBank AF286411 M13630 AF107789 

Neurospora pannoica TRTC 51327 GenBank AY780070 AY780126 AY780185 

Neurospora tetrasperma ATCC 96230 GenBank AY346280 AY780117 AY780176 

Podospora appendiculata CBS 212.97 GenBank AY780071 AY780129 AY780186 

Podospora fibrinocaudata TRTC 48343 GenBank AY780074 AY780131 AY780188 

Podospora fimiseda CBS 990.96 GenBank AY346296 AY780133 AY780190 

Podospora fimiseda CBS 482.64 Dung of cow, Switzerland, Kt. Aargau, Ober-Erlinsbach, Barmelweid KP981440 KP981568 KP981623 
Podospora setosa FMR 12787 Spain, Gran Canaria KP981441 KP981569 KP981624 
Rinaldiella pentagonospora CBS 132344

T
 Contaminated human lesion, USA, Georgia, Dahlonega KP981442 KP981570 KP981625 

Rypophyla decipiens 

(≡Podospora decipiens) 

CBS 258.64 GenBank AY780073 AY780130 AY780187 

Schizothecium curvisporum ATCC 36709 GenBank AY346300 AY780136 AY780192 

Schizothecium fimbriatum CBS 144.54 GenBank AY780075 AY780132 AY780189 

Sordaria fimicola SMH 4106 GenBank AY780079 AY780138 AY780194 

Sordaria macrospora  Buck s.n. GenBank AY346301 AY780140 AY780195 

Triangularia batistae CBS 381.68
T
 Soil, Brazil KP981443 KP981577 KP981626 

Triangularia mangenotii  CBS 419.67
T
 Leaf, France, near Bordeaux KP981444 KP981571 KP981627 

Triangularia tanzaniensis TRTC 51981
T
 GenBank AY780081 AY780143 AY780197 

Zopfiella attenuata CBS 266.77
T
 Soil, Japan KP981445 KP981572 KP981628 

Zopfiella karachiensis  CBS 657.74 Arid soil, Egypt, Western Desert, Kharga Oasis KP981447 KP981478 KP981630 
Zopfiella longicaudata FMR 12365 Soil, Tennessee, Great Smoky Mountains National Park KP981448 KP981474 KP981631 
Zopfiella longicaudata FMR 12782 Soil, Spain, Gran Canaria KP981449 KP981475 KP981632 
Zopfiella pleuropora CBS 518.70

T
 Dung of deer, Ontario, Haliburton Co., S of Dorset KP981450 KP981476 KP981633 

Zygopleurage zygospora SMH 4219 GenBank AY346306 AY780147 - 

Zygospermella insignis Lundqvist 2444 GenBank KF557698 KF557722 - 

Zygospermella insignis E00204312 GenBank KF557699 KF557723 - 
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RESULTS AND DISCUSSION 

  

 

 

Fig. 1 Maximum-likelihood (ML) tree obtained from D1−D2 sequences of our isolates and selected 

strains belonging to the families Chaetomiaceae, Lasiosphaeriaceae and Sordariaceae. 

Camarops amorpha and Chaetosphaeria ovoidea were used as outgroup. Bootstrap support 

values ≥70 and Bayesian posterior probability scores ≥0.95 are indicated along branches. Type 

and neotype strains of the different species are indicated with 
T
 and 

NT
, respectively.  
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Fig. 2 Maximum-likelihood (ML) tree obtained from the combined DNA sequence data from three 

loci (D1−D3, BT2 and RPB2) of our isolates and selected strains belonging to the families 

Chaetomiaceae, Lasiosphaeriaceae and Sordariaceae. Camarops amorpha and Chaetosphaeria 

ovoidea were used as outgroup. Bootstrap support values ≥70/Bayesian posterior probability 

scores ≥0.95 are indicated along branches. Branch lengths are proportional to distance. Type 

strains of the different species are indicated with 
T
. 
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Fig. 3 Morphology of Jugulospora. Ascoma. a. Jugulospora rotula FMR 12428. b. Jugulospora 

rotula FMR 12690. Detail of the papillate neck. c, d. Jugulospora carbonaria ATCC 34657. Ascus. 

e. Jugulospora rotula FMR 12428. Immatured ascospores. f, g. Jugulospora rotula FMR 12428. 

Different ascospore morphology of Jugulospora rotula. h. CBS 12690. i. CBS 110113. j. CBS 

110112. k, l. FMR 12428. Ascospores of Jugulospora carbonaria. m. ATCC 34567. n. IMI 381338. 

Bars: a, b = 100 μm. c, e = 20 μm. d = 10 μm. e = 15 μm. f−n = 5 μm. 
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Fig. 4 Naviculispora terrestris CBS 137295
T
. a. Ascomata. b, c. asci. d, e, f. ascospores. g. 

conidia sessile. h. conidia borning on sympodially proliferating conidiophores. Bars: a = 100 μm. 

b, c = 20 μm. d = 15 μm. e, f = 10 μm. g, h = 5 μm.  
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Fig. 5 Morphology of Rhypophila. Ascoma. a. Rhypophila pleiospora LyRS9223.1. b. Rhypophila 

myriospora CBS 115804. Elongated tubercles at the neck. c. Rhypophila pleiospora LyRS9223.1. 

d. Rhypophila myriospora CBS 115804. Ascus. e. Rhypophila decipiens LyRS8109.2. f. 

Rhypophila pleiospora LyRS9223.1. Immatured ascospores. g, h. Rhypophila decipiens 

LyRS8109.2. Different ascospore morphology. i. Rhypophila decipiens LyRS8109.2. j. Rhypophila 

pleiospora LyRS9223.1. k. Rhypophila myriospora CBS 115804. Bars: b = 100 μm. c, d = 15 μm. 

e, f = 25 μm. g, h, j, k = 10 μm. i = 20 μm.  
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4.4.2. Rinaldiella pentagonospora 

Sutton DA, Marin-Felix Y, Guarro J, Thompson EH 

Fungal Planet description sheets, Persoonia 2014; 32: 300‒301 
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4.4.3. Diplogelasinospora moalensis 

García D, Marin-Felix Y, Cano-Lira JF  

Fungal Planet description sheets, Persoonia 2014; 32: 286‒287 
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4.4.4. Pseudoneurospora canariensis 

Marin-Felix Y, Stchigel AM, García D, Guarro J, Cano-Lira JF 

Fungal Planet description sheets, Persoonia 2014; 32: 298‒299 
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4.4.5. A re-evaluation of the genus Myceliophthora (Sordariales, 

Ascomycota): its segregation into four genera and description of 

Corynascus fumimontanus sp. nov. 

Marin-Felix Y, Stchigel AM, Miller AN, Guarro J, Cano-Lira JF 

Mycologia, in press 
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Short title:  Segregation genus Myceliophthora 

A re-evaluation of the genus Myceliophthora (Sordariales, Ascomycota): its segregation 

into four genera and description of Corynascus fumimontanus sp. nov. 

Yasmina Marin-Felix 

Alberto M. Stchigel1 

Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 

21, 43201 Reus, Tarragona, Spain 

Andrew N. Miller 

Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., 61820 

Champaign, Illinois 

Josep Guarro 

José F. Cano-Lira 

Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 

21, 43201 Reus, Tarragona, Spain 

Abstract: Based on a number of isolates of Myceliophthora (Chaetomiaceae, 

Sordariales, Ascomycota) recently isolated from soil samples collected in USA, the 

taxonomy of the genus was re-evaluated through phylogenetic analyses of sequences 

from the nuc rDNA internal transcribed spacer region and genes for the second largest 

subunit of RNA polymerase II and translation elongation factor 1�ҏ. Members of 

Myceliophthora were split into four monophyletic clades strongly supported by 

molecular and phenotypic data. Such clades correspond with Myceliophthora, now 

restricted only to the type species of the genus Corynascus, which is re-established with 

five species, the new monotypic genus Crassicarpon and also the new genus 

Thermothelomyces (comprising four species). Myceliophthora lutea is mesophilic and a 

permanently asexual morph compared to the members of the other three mentioned 

 In Press at Mycologia, preliminary version published on February 6, 2015 as doi:10.3852/14-228
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genera, which also are able to sexually reproduce morphs with experimentally proven 

links to their asexual morphs. The asexual morph of M. lutea is characterized by 

broadly ellipsoidal, smooth-walled conidia with a wide, truncate base. Crassicarpon 

thermophilum is thermophilic and heterothallic and produces spherical to cuneiform, 

smooth-walled conidia and cleistothecial ascomata of smooth-walled, angular cells and 

ascospores with a germ pore at each end. Corynascus spp. are homothallic and 

mesophilic and produce spherical, mostly ornamented conidia and cleistothecial 

ascomata with textura epidermoidea composed of ornamented wall cells, and ascospores 

with one germ pore at each end. Thermothelomyces spp. are thermophilic, heterothallic 

and characterized by similar ascomata and conidia as Corynascus spp., but its 

ascospores exhibit only a single germ pore. A dichotomous key to distinguish 

Myceliophthora from the other mentioned genera are provided, as well as dichotomous 

keys to identify the species of Corynascus and Thermothelomyces. A new species, 

namely Corynascus fumimontanus, characterized by verrucose ascomatal wall cells and 

irregularly shaped ascospores, is described and illustrated. 

Key words: Chaetomiaceae, Crassicarpon, Pezizomycotina, soilborne fungi, 

Thermothelomyces 

INTRODUCTION 

Myceliophthora spp. (Chaetomiaceae, Sordariales) traditionally were 

characterized by the production of one-celled, subhyaline to reddish brown, smooth-

walled to verrucose, globose to pyriform blastoconidia, sessile or arising on swollen 

protrusions from the vegetative hyphae, solitary or in short chains, and show a narrow 

basal scar due to their rhexolytic dehiscence (Oorschot 1980). Mycelia and conidia of 

Myceliopthora spp. are mostly hyaline or nearly so, with the only exception of the 

conidia of Myceliophthora hinnulea, which become dark brown with age, and the 
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mycelium of Myceliopthora vellerea, which is pale brown. The conidiogenesis in 

Myceliophthora spp. is similar among them, producing holoblastic conidia, sessile 

(frequently named as aleuroconidia) or on micronematous to semimicronematous 

conidiophores, mostly solitary but also grouped in short chains of 2–4 conidia. Sessile 

holoblastic conidia are also present in other members of the family Chaetomiaceae, that 

is Thielavia arenaria, Thielavia microspora and Thielavia subthermophila (Mouchacca 

1973). Myceliophthora spp. are mostly found in soil but they also have been reported on 

compost used for growing mushrooms (Costantin and Matruchot 1894), some species 

being parasites of mushrooms (Costantine 1892) and rarely infecting human (Hoog et 

al. 2000). 

The genus Myceliophthora was erected by Costantin (1892) to accommodate the 

mycoparasitic fungus Myceliophthora lutea, characterized by pyriform to globose 

conidia born terminally or laterally on aerial hyphae, sometimes with a basal short 

pedicel, and occasionally producing an additional apical conidium. Later three new 

species were added to the genus, they are Myceliophthora sulphurea Goddard (Goddard 

1913), Myceliophthora fusca Doyer (Doyer 1927) and Myceliophthora inflata Burnside 

(Burnside 1928). van Oorschot (1977, 1980) revised the genus and transferred three 

additional species, Myceliophthora fergusii (Klopotek) Oorschot and Myceliophthora 

thermophila (Apinis) Oorschot from Chrysosporium and Myceliophthora vellerea 

(Sacc. & Speg.) Oorschot from Sporotrichum. The same author excluded M. fusca, M. 

inflata and M. sulphurea from the genus. Myceliophthora fusca was thought to be 

identical to Ptychogaster rubescens Boud., the anamorph of the basidiomycete 

Punctularia atropurpurascens (Berk. & Br.) Petch; M. inflata was synonymized with 

Taifanglania inflata (Burnside) Z.Q. Liang, Y.F. Han & H.L. Chu; and M. sulphurea 

was found indistinguishable from Chrysosporium merdarium (Ehrenb.) J.W. Carmich. 
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More recently Myceliophthora hinnulea Awao & Udagawa (Awao and Udagawa 1983) 

was described. 

The sexual morphs of Myceliophthora have been included in several genera 

belonging to different orders and even classes, Arthroderma (Arthroderma 

tuberculatum Kuehn; order Onygenales; class Eurotiomycetes), Corynascus 

(Corynascus spp.; order Sordariales; class Sordariomycetes) and Ctenomyces 

(Ctenomyces serratus Eidam; order Onygenales; class Eurotiomycetes) (Oorschot 1980, 

Guarro et al. 1985, Stchigel et al. 2000). Some of these sexual morphs from 

heterothallic species have been obtained in vitro by crossing sexually compatible 

strains, as is the case for Arthroderma tuberculatum, Myceliopthora 

thermophila/Corynascus heterothallicus and Myceliophthora fergusii/Corynascus 

thermophilus (Klopotek 1974, 1976). On the other hand, crossings of isolates of 

Myceliophthora gutulata, Myceliophthora hinnulea and Myceliophthora lutea have 

never been reported to produce their sexual stage. The homothallic species of 

Corynascus produced ascomata in monospore cultures on several culture media (von 

Arx et al. 1984; Oorschot 1980). Myceliophthora spp. linked with their sexual morph 

have never been treated as a Myceliophthora-like asexual stage. 

The genus Corynascus was proposed by von Arx in 1973 based on two species 

of Thielavia (i.e. Thielavia novoguineensis Udagawa & Y. Horie and Thielavia 

sepedonium C.W. Emmons) that possess ascospores with two germ pores, one at each 

end, as opposed to species of Thielavia that have only a single germ pore. Three 

additional species of Thielavia also were transferred under the same criteria to 

Corynascus, (i.e. Thielavia heterothallica Klopotek, Thielavia setosa Dade and 

Thielavia thermophila Fergus & Sinden Klopotek [Klopotek 1974, von Arx 1975, von 

Arx et al. 1984]. In 1978 Corynascus setosus moved to Chaetomidium (Lodha 1978). In 
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the current century, three new species have been included in Corynascus (i.e. 

Corynascus sexualis Stchigel, Cano & Guarro, Corynascus similis Stchigel, Cano & 

Guarro and Corynascus verrucosus Stchigel, Cano & Guarro [Stchigel et al. 2000]). 

In a recent phylogenetic study (van den Brink et al. 2012), Corynascus spp. 

grouped together with the type species of Myceliophthora (M. lutea), and based on the 

current fungal nomenclature (McNeill et al. 2012), the name Myceliophthora was 

chosen while Corynascus was considered a synonym. In the same study Myceliophthora 

vellerea was placed far from M. lutea, clustering with C. serratus and A. tuberculatum 

in a different and phylogenetically distant clade (family Arthrodermataceae), being 

therefore excluded from Myceliophthora. Myceliophthora is restricted currently to those 

species belonging to the family Chaetomiaceae (Sordariales), characterized by the 

production of cleistothecial ascomata with an ascomata wall of textura epidermoidea, 

unitunicate asci and one-celled, ellipsoidal or broadly fusiform, brownish ascospores, 

usually with a distinct germ pore at each end (Stchigel et al. 2000, Guarro et al. 2012). 

Zhang et al. (2014) described the new species Myceliophthora guttulata Y. Zhang & L. 

Cai, from a soil sample in China. The following 11 species of Myceliophthora currently 

are accepted (i.e. the already mentioned M. fergusii, M. guttulata, M. heterothallica, M. 

hinnulea, M. lutea, M. thermophila, in addition to M. novoguineensis [Udagawa & Y. 

Horie] van den Brink & Samson, M. sepedonium [C.W. Emmons] van den Brink & 

Samson, M. sexualis [Stchigel, Cano & Guarro] van den Brink & Samson, M. similis 

[Stchigel, Cano & Guarro] van den Brink & Samson, and M. verrucosa [Stchigel, Cano 

& Guarro] van den Brink & Samson [van den Brink et al. 2012, Zhang et al. 2014]). 

During a survey on soilborne ascomycetes from Great Smoky Mountains 

National Park (USA), several fungi belonging to Myceliophthora were isolated. 

Becausee some of these isolates could not be properly identified, a phylogenetic and 
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phenotypic study was conducted to better define the boundaries between 

Myceliophthora and related genera, resulting in the proposal of two new genera and one 

new species. 

MATERIALS AND METHODS 

Soil sampling and isolation of fungi.—Soil samples were collected in Aug 2008 in Great Smoky 

Mountains National Park (35.60, í83.52), USA, located in Tennessee and North Carolina and containing 

more than 2100 square kilometres. This area is mainly composed of cove hardwood, hemlock, northern 

hardwood, pine-oak and spruce-fir forests (Whittaker 1956) and includes more than 1570 species of 

vascular plants of which 130 are native trees (Sharkey 2001). To carry out the isolation of soilborne 

ascomycetes we followed a previously described protocol for activation of the dormant ascospores using 

acetic acid (Stchigel et al. 2001). Fungal structures of those specimens that developed in the primary 

cultures were examined under the stereomicroscope and transferred with a sterile needle to Petri dishes 

containing oatmeal agar (OA; oatmeal flakes, 30 g; agar-agar, 20 g; tap water, 1 L), and incubated at 15, 

25 and 35 C. 

Phenotypic study.—Fungal isolates were grown on OA, potato-carrot agar (PCA; grated potatoes, 20 g; 

grated carrot, 20 g; agar-agar, 20 g; L-chloramphenicol, 100 mg; 1% w/v dieldrin™ in dimethyl-ketone, 

20 drops; tap water, 1 L) and potato dextrose agar (PDA; Pronadisa, Madrid, Spain) at 5, 15, 25, 30, 35, 

40, 45 and 50 C. Color notations in parentheses in the species descriptions are from Kornerup and 

Wanscher (1984). Fertile fungal structures were mounted and measured in lactic acid. Photomicrographs 

were obtained with a Zeiss Axio Imager M1 light microscope. The scanning electron microscope (SEM) 

techniques used were described by Figueras and Guarro (1988). SEM micrographs were taken with a Jeol 

JSM 840 at 15 keV. 

Phylogenetic studies.—DNA of the isolates was extracted and purified directly from fungal colonies 

according to the Fast DNA Kit protocol (MP Biomedicals, Solon, Ohio). The amplification of the internal 

transcribed spacer region (ITS) of the nuc rDNA (ITS1-5.8S-ITS2) and partial segments of the translation 

elongation factor 1-� (EF1) and RNA polymerase II (RPB2) loci was performed for all isolates, 

according to Cano et al. (2004) (ITS) and Houbraken et al. (2007) (RPB2 and EF1). The sequences of 

these amplicons were obtained with the protocol of the Taq Dye-Deoxy Terminator Cycle Sequencing 

Kit, and PCR products were purified and sequenced by Macrogen Europe (Amsterdam, the Netherlands) 

with a 3730XL DNA analyzer (Applied Biosystems). Consensus sequences were obtained with SeqMan 
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(7.0.0; DNASTAR, Madison, Wisconsin), and the sequences were aligned with Clustal X 2.0 (Larkin et 

al. 2007) followed by manual adjustments with a text editor. Sequences retrieved from GenBank and 

included in these analyses are provided (TABLE I). The phylogenetic analyses was carried out with 

MEGA 5.21 of the combined dataset (ITS, RPB2, EF1) of our isolates, the type and reference strains of 

the accepted species of Myceliophthora, the type strain of Corynascella inaequalis and one strain of 

Thielavia terricola, Chaetomidium arxii and Chaetomium globosum, using the type strain of Hypocrea 

aurantefussa and a strain of Nectria pseudotrichia as outgroups, (Tamura et al. 2011). The combined 

dataset was tested for incongruence with the partition homogeneity test (PHT) as implemented in PAUP* 

(Swofford 2002). Maximum likelihood (ML) analysis was conducted on the dataset using the Tamura-Nei 

model, with gamma distribution and the pairwise deletion of gaps option. The robustness of branches was 

assessed by bootstrap analysis with 1000 replicates. Bayesian inference (BI) was carried out with 

MrBayes 3.1 following the parameters detailed in Alvarez et al. (2010). The sequences generated in this 

study are deposited in GenBank, and the alignments used in the phylogenetic analyses are deposited in 

TreeBASE: (www.treebase.org, accessionURL: 

http://purl.org/phylo/treebase/phylows/study/TB2:S16736). 

RESULTS 

The individual alignments used in the combined dataset were 473 bp (ITS), 634 bp 

(EF1) and 499 bp (RPB2), and the final total alignment was 1606 bp, 361 bp of which 

were parsimony informative. Because the result of the partition homogeneity test 

showed that the dataset for the three loci were congruent (P = 0.508), they were 

combined into a single dataset. ML analysis produced a single tree (FIG. 1). Three of 

our recently collected American isolates (CBS 137294, CBS 135878, CBS 137791) 

grouped in a main clade (71% bs and less than 0.95 bayesian posterior probability [pp]) 

with the type strains of M. lutea, M. novoguineensis, M. sepedonium, M. sexualis and 

M. similis. This clade was divided into two sister clades. The first one included the type 

strain and other strains of M. lutea (100% bs/1 pp), which were characterized by 

holoblastic, pyriform to globose, thick- and smooth-walled hyaline conidia, broadly 

truncate at the base, sometimes with a pedicel, borne terminally or laterally on aerial 
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hyphae (FIG. 2). Myceliophthora lutea is mesophilic, with an optimal growth at 30–35 

C. The second sister clade (99% bs/1 pp) grouped species that previously were included 

in Corynascus, including the type species of this genus. For this reason we think 

Corynascus should be re-established. Within the Corynascus spp. sister clade our isolate 

CBS 137294 formed a terminal branch, although at significant distance, together with 

M. sexualis (100% bs/1 pp). This isolate had both asexual and sexual morphs, the latter 

being characterized by cleistothecial ascomata with an ascomatal wall of textura 

epidermoidea composed of verrucose cells, and irregularly-shaped ascospores with a 

germ pore at each end. Its conidia were globose, yellowish and verrucose (FIG. 3). The 

optimal growth of this fungus was at 35–40 C. This combination of features does not 

match any known species. Its most closely related species, M. sexualis, can be 

differentiated by the absence of an asexual morph and ascomata composed of verrucose 

cells and limoniform ascospores. The type strains of M. novoguineensis, M. 

sepedonium, M. sexualis, M. similis and M. verrucosa, all grouped in the same clade, 

being characterized by their homothallism, in contrast with the members of the other 

clades, and by the production of cleistothecial ascomata of textura epidermoidea and 

ornamented (mostly reticulate) ascomata wall cells, and brown ascospores with a 

distinct germ pore at each end (FIG. 4). The asexual morph was observed in all these 

species with the exception of M. sexualis, as was reported by Stchigel et al. (2000), and 

was characterized by holoblastic, spherical or nearly so, hyaline to pale yellow conidia 

with an ornamented cell wall, except for M. novoguineensis, which produced smooth-

walled conidia, sessile or on short protrusions, sometimes also on swollen, sometimes 

catenate, conidiogenous cells (FIG. 5). These species were mesophilic with an optimal 

growth at 25–40 C. The type strains of M. sepedonium and M. similis grouped together 

in the same clade with a nucleotide identity over 99%. Morphologically both species 
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were distinguished only by the shape of the ascospores and the position of the germ 

pores (i.e. irregularly shaped ascospores with two subapical germ pores in M. similis) 

and broadly fusiform ascospores with two apical germ pores in M. sepedonium. 

The other species of Myceliophthora (i.e. M. fergusii, M. guttulata, M. heterothallica, 

M. hinnulea, M. thermophile) were located in two distinct, well-supported sister clades, 

each of them representing a new genus. The first contains the type strains of M. 

guttulata, M. heterothallica, M. hinnulea and M. thermophila (98% bs/1 pp), and the 

other includes M. fergusii (100% bs/1 pp). The members of both clades were 

thermophilic, with an optimal growth at 40–45 C. The species in the first clade 

produced holoblastic, subglobose or obovoid to ellipsoidal conidia truncate at the base, 

brown, thick-walled and ornamented, with the exception of M. guttulata that produces 

hyaline, smooth-walled and guttulate conidia on terminally and laterally on hyphae 

(sessile), or on ampulliform to clavate polyblastic conidiogenous cells, sometimes with 

a short or long basal pedicel (FIG. 2). Only M. heterothallica was capable of producing 

sexual morphs in culture after mating sexually compatible strains. They were dark 

cleistothecial ascomata with an ascomatal wall of textura epidermoidea, producing 

ellipsoid to ovoid ascospores with a terminal germ pore. The strains of M. fergusii 

produced holoblastic, hyaline to yellow in mass, thick- and smooth-walled conidia, 

sessile or in swollen conidiogenous cells, arising singly or in chains of up to five 

conidia (FIG. 2). This fungus was also heterothallic, producing cleistothecial ascomata 

with a thick-walled ascomatal wall of textura angularis and ellipsoidal ascospores, 

pinkish when young but becoming dark brown, with a germ pore at each end. 

The nucleotide identities in the combined dataset among the type strains of M. fergusii, 

M. lutea, M. sepedonium and M. thermophila were � 93%. 

TAXONOMY 
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Based on the molecular and phenotypic results mentioned above, we propose the 

revalidation of Corynascus as a genus distinct from Myceliophthora, and the new 

genera Thermothelomyces and Crassicarpon. To accommodate the isolate CBS 137294, 

we propose the new species C. fumimontanus. 

KEY TO THE GENERA CORYNASCUS, CRASSICARPON, MYCELIOPHTHORA AND 

THERMOTHELOMYCES 

1. No growth at 50 C.………….………………………………………………………...2 

1. Growth at 50 C.....…………………………………………………………………….3 

2. Sexual morph present in culture.........……….…………………………..Corynascus 

2. Sexual morph absent in culture.…………………….…………….…Myceliophthora 

3. Conidia hyaline, spherical to cuneiform, smooth-walled………………..Crassicarpon 

3. Conidia brown, subglobose or obovoid to ellipsoidal; ornamentated or, rarely, 

smooth……………………..…………………………………..…..… Thermothelomyces 

Corynascus Arx, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 76: 295. 1973. FIGS. 

3, 4, 5 

Type species: Corynascus sepedonium (C.W. Emmons) Arx, Proc. K. Ned. Akad. Wet., 

Ser. C, Biol. Med. Sci. 76: 292. 1973. 

Notes. Corynascus is characterized by its mesophilic habit, having an ascomata 

wall of textura epidermoidea composed of reticulate or verrucose cells, ascospores with 

a germ pore at each end and yellowish conidia usually verrucose or echinulate to 

tuberculate, rarely smooth. 

Corynascus fumimontanus Y. Marín, Stchigel, Cano & A.N. Mill., sp. nov. FIGS. 3; 4a, 

f; 5a–d 

MycoBank MB809486 

Typification. USA. TENNESSEE: Great Smoky Mountains National Park, Cosby Creek 

trail, 35.78, í83.22, from forest soil, 01-VIII-2008, A.N. Miller, M. Calduch, A.M. 
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Stchigel. (holotype CBS H-21594). Isotypes FMR 12372, ILLS 71950. Ex-type 

cultures FMR 12372, CBS 137294. 

Etymology: From the Latin fumi-, smoky, and -montanus, mountains, referring 

to the name of the national park where the fungus was isolated. 

Diagnosis: This species is characterized by verrucose ascomata wall cells, 

mostly irregularly shaped ascospores, greenish brown when young, and conidia sessile, 

intercalary or on swollen conidiogenous cells. 

Mycelium composed of hyaline to pale yellow, branched, anastomosing, septate, 

smooth-walled hyphae of 1–2 µm diam. Colonies on PCA attaining 72–75 mm diam in 

14 d at 35 C, light yellow with olive patches, olive gray at center, flattened, powdery to 

granular due to the production of conidia and ascomata, margins fimbriate; reverse pale 

yellow to light yellow, with olive patches. Ascomata superficial, globose, cleistothecial, 

brown to dark brown, 50–110 µm diam, ascomata wall of textura epidermoidea, 

composed of 1–3 layers of irregularly shaped, verrucose, golden brown to brown cells, 

covered by hyphae anastomosing with the ascomata wall cells. Paraphyses absent. Asci 

eight-spored, subglobose to broadly ellipsoidal, 24–31 × 15×22 µm, thin-walled, short-

stipitate, evanescent. Ascospores one-celled, broadly fusiform to irregularly shaped, 13–

17 × 7–9 µm, hyaline to greenish brown when young becoming brown, thick- and 

smooth-walled, with a conspicuous subterminal to terminal germ pore at each end. 

Conidiophores micronematous, 1–2.5 µm wide and up to 26 µm long, or 

semimacronematous, flask-shaped, 5–10 × 3–8 µm. Conidia holoblastic, globose to 

subglobose, 6–10 µm diam, subhyaline to pale yellow, thick-walled, verrucose, sessile 

or on swollen conidiogenous cells, and holothallic when intercalary, morphologically 

similar to the holoblastic ones. 
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Colonies on PDA attaining 73–75 mm diam in 14 d at 35 C, yellowish white to 

pale yellow, velvety to powdery, radially folded, umbilicate, lobulate, margins regular; 

reverse pale yellow to light yellow. Ascomata absent. The minimum and maximum 

temperature of growth are 15 and 45 C respectively. Optimal temperature 35–40 C. 

Corynascus novoguineensis (Udagawa & Y. Horie) Arx, Proc. K. Ned. Akad. Wet., Ser. 

C, Biol. Med. Sci. 76: 295. 1973. Figs. 4b, g, h; 5eҟh 

Basionym: Thielavia novoguineensis Udagawa & Y. Horie, Bull. natn. Sci. Mus., Tokyo 15: 191. 1972.  

Ł Myceliophthora novoguineensis (Udagawa & Y. Horie) van de Brink & Samson, in Brink, Samson, 

Hagen, Boekhout & Vries, Fungal Divers. 52: 206. 2012. 

Notes. Corynascus novoguineensis is characterized by slightly verrucose 

ascomata wall cells, pinkish ascospores when young, and smooth-walled conidia. In the 

original description the immature ascospores were described as greenish brown 

(Udagawa and Horie 1972). 

Corynascus sepedonium (C.W. Emmons) Arx, Proc. K. Ned. Akad. Wet., Ser. C, Biol. 

Med. Sci. 76: 292. 1973. Figs. 4c, i; 5iҟl 

Basionym: Thielavia sepedonium C.W. Emmons, Bull. Torrey bot. Club 59: 417. 1932 

Ł Chaetomidium sepedonium (C.W. Emmons) Lodha, in Subramanian (Ed.), Taxonomy of Fungi 

(Proc. int. Symp. Madras, 1973), Pt 1: 248. 1978. 

Ł Myceliophthora sepedonium (C.W. Emmons) van den Brink & Samson, in Brink, Samson, Hagen, 

Boekhout & Vries, Fungal Divers. 52: 206. 2012. 

= Thielavia sepedonium var. minor B.S. Mehrotra & Bhattacharjee, Antonie van Leeuwenhoek 32: 391. 

1966. 

= Myceliophthora similis (Stchigel, Cano & Guarro) van de Brink & Samson, in Brink, Samson, 

Hagen, Boekhout & Vries, Fungal Divers. 52: 206. 2012. 

Ascomata superficial, globose, cleistothecial, brown to dark brown, 50–110 µm diam, 

glabrous, ascomata wall of textura epidermoidea, composed of 1–3 layers of irregularly 

shaped, reticulate, golden-brown to brown cells. Paraphyses absent. Asci eight-spored, 

250

UNIVERSITAT ROVIRA I VIRGILI 
SOIL ASCOMYCETES FROM DIFFERENT GEOGRAPHICAL REGIONS. 
Yasmina Marín Félix 
Dipòsit Legal: T 996-2015



 

subglobose to broadly ellipsoidal, 26–40 × 20–31 µm, thin-walled, short-stipitate, 

evanescent. Ascospores one-celled, ellipsoidal to broadly fusiform or navicular in lateral 

view, 11–23 × 6.5–13 µm, hyaline becoming brown when mature, thick- and smooth-

walled, with a conspicuous subterminal to terminal germ pore at each end. 

Conidiophores micronematous or semimacronematous. Conidia holoblastic, globose to 

subglobose, 6–12 µm diam, subhyaline to pale yellow, thick-walled, finely echinulate to 

tuberculate, sessile or on swollen conidiogenous cells. 

Notes. Corynascus sepedonium is characterized by reticulate ascomata wall cells 

and echinulate to tuberculate conidia. The description is from the protolog with slight 

modifications based on the study of the type strain of C. similis (IMI 378521). 

Corynascus sexualis Stchigel, Cano & Guarro, in Stchigel, Sagués, Cano & Guarro, 

Mycol. Res. 104: 880. 2000. Fig. 4d, j 

Ł Myceliophthora sexualis (Stchigel, Cano & Guarro) van de Brink & Samson, in Brink, Samson, 

Hagen, Boekhout & Vries, Fungal Divers. 52: 206. 2012. 

Notes. Corynascus sexualis differs from the other species of the genus by the lack of 

asexual morph and its lemon-shaped ascospores. 

Corynascus verrucosus Stchigel, Cano & Guarro, in Stchigel, Sagués, Cano & Guarro, 

Mycol. Res. 104: 884. 2000. Figs.; 4e, k; 5m–p 

Ł Myceliophthora verrucosa (Stchigel, Cano & Guarro) van de Brink & Samson, in Brink, Samson, 

Hagen, Boekhout & Vries, Fungal Divers. 52: 206. 2012. 

Notes. Corynascus verrucosus is characterized by verruciform dark brown 

projections from the ascomata wall, and broadly fusiform ascospores with a subterminal 

germ pore at each end. 

KEY TO THE SPECIES OF CORYNASCUS 

1. Asexual morph absent; ascospores limoniform…………………………….C. sexualis 

1. Asexual morph present; ascospores irregularly shaped, ellipsoidal or fusiform...……2 
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2. Conidia smooth-walled, or nearly so; ascospores pinkish when 

young………………………………………...…………..…………..C. novoguineensis 

2. Conidia verrucose or tuberculate; ascospores greenish or brownish when 

young.…………………………………………………………………………………3 

3. Ascomata wall cells with verrucose projections; ascospores irregularly 

shaped………………………………………...…………………………C. fumimontanus 

3. Ascomata wall cells reticulated………………………………………………...…….4 

4. Ascomata glabrous; ascospores ellipsoidal to broadly fusiform...…...C. sepedonium 

4. Ascomata with short, brown verruciform projections on entire ascomata wall; ascospores broadly 

fusiform..….…………..……………..………………C. verrucosus 

Crassicarpon Y. Marín, Stchigel, Guarro & Cano, gen. nov. FIG. 2a–g 

MycoBank MB809487 

Type species: Crassicarpon thermophilum (Fergus & Sinden) Y. Marín, Stchigel, 

Guarro & Cano. 

Etymology: From the Greek Crassum- and -karpos, referring to the thick 

ascomatal wall. 

Diagnosis: Characterized by its thermophilic habit, blackish ascomata with a 

thick wall of textura angularis, broadly ellipsoidal ascospores with a germ pore at each 

end, and hyaline, smooth-walled conidia, yellow in mass. 

Ascomata superficial or immersed, globose, cleistothecial, dark brown to black, 

glabrous, ascomatal wall thick, of textura angularis, composed of an outer layer of 

thick-walled swollen cells, and an inner layer of flattened cells. Asci 4–6-spored, 

broadly clavate, thin-walled, stalked, evanescent. Paraphyses absent. Ascospores one-

celled, broadly ellipsoidal, first hyaline, becoming pink and finally dark brown, smooth- 

and thick-walled, with a germ pore at each end. Conidiophores micronematous or 

semimacronematous. Conidia holoblastic, hyaline to yellow in mass with the age, 

spherical to cuneiform, variable in size, thick- and smooth-walled, sessile or produced 
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in swollen conidiogenous cells, sometimes with short pedicels; secondary apical conidia 

may be produced. Heterothallic. Thermophilic. 

Crassicarpon thermophilum (Fergus & Sinden) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov. FIG. 2a–g 

MycoBank MB809488 

Basionym: Thielavia thermophila Fergus & Sinden, Can. J. Bot. 47: 1635. 1969. 

Ł Corynascus thermophilus (Fergus & Sinden) Klopotek, Arch. Mikrobiol. 98: 366. 1974. 

Ł Chaetomidium thermophilum (Fergus & Sinden) Lodha, in Subramanian (Ed.), Taxonomy of Fungi 

(Proc. int. Symp. Madras, 1973), Pt 1: 248. 1978. 

= Myceliophthora fergusii (Klopotek) Oorschot, Persoonia 9: 406. 1977. 

Ł Chrysosporium fergusii Klopotek, Arch. Mikrobiol. 98: 366. 1974. 

Notes. We decided to use the epithet thermophilum instead fergusii, which had been 

chosen by van den Brink et al. (2012) for this taxon because Thielavia thermophila was 

the first morph described.  

Myceliophthora Costantin, C. r. hebd. Séanc. Acad. Sci., Paris 114: 849. 1892. FIG. 2h–

k 

Type species. Myceliophthora lutea Costantin, C. r. hebd. Séanc. Acad. Sci., Paris 114: 2. 1892. Fig. 2h ҟk 

Notes. Myceliophthora is characterized by its mesophilic habit, hyaline and 

smooth-walled conidia and the lack of sexual morph. 

Thermothelomyces Y. Marín, Stchigel, Guarro & Cano, gen. nov. FIGS. 2l–o 

MycoBank MB809489 

Type species: Thermothelomyces thermophila (Apinis) Y. Marín, Stchigel, Guarro & 

Cano. 

Etymology. From the Greek thermos-, hot, thelo-, love, and -myces, fungi, 

referring to the thermophilic habit of the fungus. 
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Diagnosis: Characterized by its thermophilic habit, ascomata with a wall of 

textura epidermoidea, ellipsoidal ascospores with a single apical germ pore, and hyaline 

or pale brown conidia, mostly ornamented. 

Ascomata immersed to sub-immersed, globose, cleistothecial, black, glabrous, 

ascomata wall thin, of textura epidermoidea. Asci eight-spored, ellipsoidal, thin-walled, 

stalked, evanescent. Paraphyses absent. Ascospores ellipsoidal, occasionally irregularly 

shaped, first hyaline, dark brown to black, thick- and smooth-walled, with one germ 

pore. Conidiophores micronematous or semimacronematous. Conidia holoblastic, 

hyaline or pale brown, subglobose, ellipsoidal or obovoid to pyriform, thick-walled, 

conspicuously verrucose-spinulose or tuberculate, rarely smooth-walled and guttulate, 

producing terminally or laterally on hyphae, sometimes with short or long pedicels, or 

on swollen conidiogenous cells in a number of 1–4; occasionally a secondary apical 

conidium is produced. Heterothallic. Thermophilic. 

Thermothelomyces guttulata (Y. Zhang & L. Cai) Y. Marín, Stchigel, Guarro & 

Cano, comb. nov. 

MycoBank MB 809490 

Basionym: Myceliophthora guttulata Y. Zhan & L. Cai, Mycol Progress 13: 165. 2014. 

Notes. Thermothelomyces guttulata is distinguished from the other species by its 

hyaline, smooth-walled and guttulate conidia. 

Thermothelomyces heterothallica (von Klopotek) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov. FIGS. 2l–o 

MycoBank MB809491 

Basionym: Thielavia heterothallica von Klopotek, Arch. Mikrobiol. 107: 223. 1976.  

Ł Corynascus heterothallicus (von Klopotek) von Arx, Dreyfuss & Müller, Persoonia 12: 174. 1984. 

Ł Myceliophthora heterothallica (von Klopotek) van den Brink & Samson, in Brink, Samson, Hagen, 

Boekhout & Vries, Fungal Divers. 52: 206. 2012. 
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Notes. This species is characterized by pale orange-brown, long ellipsoidal, tuberculate 

conidia and the production of ascomata after mating. The conidia previously were 

described as hyaline (Klopotek 1974, 1976; van Oorschot 1977). 

Thermothelomyces hinnulea (Awao & Udagawa) Y. Marín, Stchigel, Guarro & Cano, 

comb. nov. 

MycoBank MB809492 

Basionym: Myceliophthora hinnulea Awao & Udagawa, Mycotaxon 16: 436. 1983.  

Notes. This species is characterized by yellowish brown to brown, subglobose to ovate, 

conspicuously verrucose-spinulose conidia. 

 

Thermothelomyces thermophila (Apinis) Y. Marín, Stchigel, Guarro & Cano, comb. 

nov.  

MycoBank MB809493 

Basionym: Sporotrichum thermophilum Apinis, Nova Hedwigia 5: 74. 1963. 

Ł Chrysosporium thermophilum (Apinis) Klopotek, Arch. Mikrobiol. 98: 366. 1974. 

Ł Myceliophthora thermophila (Apinis) Oorschot, Persoonia 9: 403. 1977. 

Notes. The asexual morph of this species is similar to those of T. heterothallica but T. 

thermophila does not produce a sexual morph after mating. 

KEY TO THE SPECIES OF THERMOTHELOMYCES 

1. Conidia smooth-walled and guttulate, (3.8–)4.8–7.2 × 3–5 µm…......…….T. guttulata 

1. Conidia with an ornamented surface.…………………………………………………2 

2. Conidia 7–12 × 5–10 µm…...……………..…………………….……….T. hinnulea 

2. Conidia 4.5–11 × 3–4.5 µm.....………..…...……...T. heterothallica/T. thermophila* 

* Thermothelomyces heterothallica produces ascomata after mating. 

DISCUSSION 

Based on recent molecular studies that demonstrated that M. lutea, the type species of 

Myceliophthora, clustered with some members of the family Chaetomiaceae, that genus 
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was restricted to the species of such family (van den Brink et al. 2012, Zhang et al. 

2014); consequently M. vellerea (now renamed Ctenomyces vellereus [Sacc. & Speg.] 

P.M. Kirk) and Myceliopthora anamorph of Arthroderma tuberculatum were transferred 

to the family Arthrodermataceae, where they were phylogenetically located (van den 

Brink et al. 2012, Kirk 2014).   

In previous phylogenies (van den Brink et al. 2012, 2013) the species of 

Myceliophthora spp. grouped with a confidence value of below 50%, being divided into 

two main clades (each one composed of one or two terminal clades depending on the 

nuclear loci employed in the phylogenetic inference) according to their mesophilic and 

thermophilic habit. However in our study, in agreement with Zhang et al. (2014), 

Myceliophthora spp. formed a well-supported clade, but the genetic distances among 

the terminal clades (below of 93% similarity) are such that they should be treated as 

separate genera. Consequently we proposed to split Myceliophthora into four genera, 

revalidating Corynascus and erecting two new genera: Crassicarpon and 

Thermothelomyces. Our proposal is also supported by phenotypic data (e.g. 

Crassicarpon thermophilum presents dark, thick-walled ascomata with a wall of textura 

angularis composed of nonornamented ascomata wall cells, while the Corynascus spp. 

and Thermothelomyces spp. are characterized by the production of many pale, thin-

walled ascomata with a wall of textura epidermoidea composed of ornamented 

ascomata wall cells. The type of ascomata wall previously had been used successfully in 

the delimitation of genera in Lasiosphaeriaceae (Miller and Huhndorf 2004, 2005; Cai 

et al. 2005). The number of germ pores in the ascospores is also a distinctive feature 

because Corynascus spp. and Crassicarpon thermophilum have one at each end, 

whereas Thermothelomyces heterothallica presents only one. The conidia are produced 

by similar ontogenetic processes in all four genera but also show morphological 
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differences: both Myceliophthora lutea and Crassicarpon thermophilum produce 

hyaline, smooth-walled conidia, but while in the first taxon they are pyriform to globose 

and produced singly (or rarely in chains up to two conidia), in the second one they are 

spherical to cuneiform and in chains of up to five conidia. Corynascus spp. and 

Thermothelomyces spp. produce mostly ornamented, yellowish conidia, even though 

Thermothelomyces spp. present more complex conidiophores, with ovoid to clavate 

conidia with a truncate base, whereas in Corynascus spp. they are spherical. 

Corynascus fumimontanus sp. nov. is easy to distinguish morphologically from 

the rest of the species of the genus Corynascus by its verrucose ascomata wall cells 

(reticulate in the other species) and its irregularly shaped ascospores. Finally the 

synonymy of C. similis with C. sepedonium was proposed due to the high nucleotide 

identity and the minor morphological differences among them. 
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LEGENDS 

FIG. 1. Maximum-likelihood (ML) tree obtained from the combined DNA sequence data from three loci 

(ITS, EF1 and RPB2) of our isolates, selected strains previously included in the genus Myceliophthora, 

the type strain of Corynascella inaequalis and one strain of Thielavia terricola, Chaetomidium arxii and 

Chaetomium globosum. The type strain of Hypocrea aurantefussa and a reference strain of Nectria 

pseudotrichia were used as outgroup. Bootstrap support values � 70/Bayesian posterior probability scores 

� 0.95 are indicated along branches. Branch lengths are proportional to distance. Type strains of the 

different species are indicated with T. 

FIG. 2. Asexual morph of the genera Crassicarpon, Myceliophthora and Thermothelomyces. a–g. 

Crassicarpon thermophilum CBS 406.69. a, b. Conidiophores; c–g. conidia. h–k. Myceliophthora lutea 
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MUCL 10070. h–k. Conidiophores bearing conidia. l–o. Thermothelomyces heterothallica CBS 137789; 

l–n. Conidiophores bearing terminal and lateral conidia; o. conidium (SEM). Bars: a, l = 10 ȝm; b, c, h–k, 

m, n = 5 ȝm; d–g, o = 2.5 ȝm. 

FIG. 3. Corynascus fumimontanus CBS 137294. a. Ascomata. b. Irregular network of distorted hyphae on 

the ascomatal wall. c. Detail of the ascomatal wall. d. Asci. e, f. Ascospores. g. Sessile conidia. h. Conidia 

on short inflated protusion. i. Intercalary conidia. j. Conidia (SEM). Bars: a = 50 ȝm; b, c, f–j = 5 ȝm; d = 

15 ȝm; e = 10 ȝm. 

FIG. 4. Sexual morphs of the species of Corynascus. Corynascus fumimontanus CBS 137294. a. Detail of 

ascomata wall. f. Ascospores. Corynascus novoguineensis NBRC 9556. b. Detail of ascomata wall; g. 

Ascus and immature pinkish ascospores; h. Ascospores. Corynascus sepedonium IMI 378521. c. Detail of 

ascomata wall; i. Ascospores. Corynascus sexualis IMI 378520. d. Detail of ascomata wall. j. Ascospores. 

Corynascus verrucosus CBS 137791. e. Detail of ascomata wall. k. Ascospores. Bars: a–k = 5 ȝm. 

FIG. 5. Asexual morphs of the species of Corynascus. a–d. Corynascus fumimontanus CBS 137294. a. 

Sessile conidium; b. Conidia on short inflated protrusion; c. sessile and intercalary conidia; d. conida 

(SEM). e–h. Corynascus novoguineensis NBRC 9556. e. Sessile conidia; f. conidia on short inflated 

protrusion; g. conidiophores; h. conidium (SEM). i–l. Corynascus sepedonium IMI 378521. i. Sessile 

conidia; j. conidia on short inflated protrusion; k. conidiophore bearing terminal conidium (SEM); l. 

conidia (SEM). m–p. Corynascus verrucosus FMR 12369 (= CBS 137791). m. Sessile conidia; n. conidia 

on short inflated protrusion; o. conidiophores bearing terminal conidia; p. conida (SEM). Bars: a–c, e–g, 

i–k, m–o = 5 ȝm; d, h, l, p = 2.5 ȝm. 

 

FOOTNOTES 

Submitted 28 Aug 2014; accepted for publication 18 Jan 2015. 
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4.5. OTHER TAXA 

Figure 28 shows the tree based on ITS and D1D3 sequences of the taxa belonging 

to the class Leotiomycetes. The lengths of the individual alignments used in the 

combined data set were 395 bp and 785 bp, respectively. The total alignment length was 

1180 bp, of which 172 bp were parsimony informative. 

 

Fig. 28 Maximum-likelihood (ML) tree obtained from the ITS and D1D3 sequence data of our 

isolates and selected strains of the Leotiomycetes. An isolate of Preussia flaganni was used as 

outgroup. Bootstrap support values ≥70/Bayesian posterior probability scores ≥0.95 are indicated 

along branches. Branch lengths are proportional to distance. Type strains of the different species 

are indicated with 
T
. 

 

Our isolates belonging to the class Leotiomycetes (indicated in bold) were located in 

the clades that represented the families Thelebolaceae (100% bs / 1 pp), 

Myxotrichaceae (93% bs / 1 pp) and Pseudeurotiaceae.  

We isolated a few fungi morphologically identified as Myxotrichum (sexual morph) / 

Oidodendron (asexual morph). The family Myxotrichaceae has traditionally been 

classified in the order Onygenales because of its gymnothecial ascomata, unicellular 

ascospores and arthroconidial anamorph (Currah, 1985). However, it has always been 

regarded as atypical because of its more elaborate dendritic arthroconidia and fusoid to 

navicular, striated ascospores (oblate, globose or allantoid and smooth or pitted in the 

families of the Onygenales). Subsequently, morphological and molecular studies 

demonstrated that this family belonged to the class Leotiomycetes, being related to the 

inoperculate discomycetes (Currah, 1994; Sugiyama et al., 1999; Wang et al., 2006a). 

Another family recently included in the class Leotiomycetes is the Pseudeurotiaceae, 

and, like the Myxotrichaceae, is also placed as incertae sedis (Wang et al., 2006b). 
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However, further studies are required to clarify the assignment of both families to the 

correct order.  

The genus Pseudogymnoascus had been located in Myxotrichaceae but was 

transferred to Pseudeurotiaceae based on morphology and phylogeny (Sogonov et al., 

2005; Wang et al., 2006b). However, we did not obtain a well-supported clade 

corresponding to this family that corroborate the location of this genus in 

Pseudeurotiaceae. 

The family Thelebolaceae is also located in the Leotiomycetes. We isolated a 

fungus belonging to this family which represented a new species of the genus 

Thelebolus (Thelebolus microcarpus; section 4.5.1). 
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4.5.1. Thelebolus microcarpus 

Stchigel AM, Marin-Felix Y, Guarro J, Cano-Lira JF 

Accepted for publication in Fungal Planet 
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Fungal Planet xxx – 1 June 2015 

 

Thelebolus microcarpus Stchigel, Y. Marín, Guarro & Cano, sp. nov. 

 

Etymology. Due to the small (μικρo-; Greek) size of the sexual body (-καρπoς; Greek). 

 

Mycelium composed of hyaline to pale yellow, branched, septate, smooth-walled, irregularly swollen hyphae, 

1–7 μm wide. Ascomata globose to subglobose, non-ostiolate and not becoming apothecioid with age, 18–70 

μm diam, superficial to immersed, scattered to grouped, in clusters up to 5 ascomata, each arising on a single 

hypha of 2–4 μm diam, colourless to pale amber, glabrous. Hymenium absent or inconspicuous. Peridium of 

textura angularis up to 5 μm thick, composed of 2–3 layers of hyaline to pale yellow, thick-walled cells of 3–

10 μm diam. Paraphyses absent. Asci 8-spored, 1–5 per ascoma, subglobose to broadly ellipsoidal, thin-walled, 

evanescent, 12–17 × 10–15 μm. Ascospores irregularly disposed inside the ascus, one-celled, subhyaline to 

pale yellow, thick- and smooth-walled, ellipsoid, 5–9 × 3–4 μm. 

 

Culture characteristics — Colonies on OA attaining 30–36 mm diam in 14 d at 15 ºC, velvety, margins 

fimbriate to arachnoid, colourless to yellowish white (M. 4A2; Kornerup & Wanscher 1984); reverse yellowish 

white to pale yellow (4A2 to 4A3). Colonies on PCA attaining 30–31 mm diam in 14 d at 15 ºC, velvety, 

margins fimbriate to arachnoid, white; reverse of the same colour than the surface. The fungus does not grow 

below 5 ºC, nor above 30 ºC. Optimal ascomata production at 15 ºC. 

 

Typus. ARGENTINA, Tucumán, Tafí el Valle, Abra del Infiernillo, from soil, 15 May 2000, coll. A.M. Stchigel, 

J.F. Cano-Lira & J. Guarro, isol. A.M. Stchigel (holotype CBS H-21625, cultures ex-type CBS 137501 = FMR 

7544; ITS and LSU sequences GenBank LN609269, BT2 sequence GenBank LN609270; MycoBank 

MB810286). 

 

Notes — The genus Thelebolus (Thelebolales) was introduced in 1790 by Tode to erect the new species T. 

stercoreus. Despite more species being included in the genus, de Hoog et al. (2005) carried out a phylogenetic 

study based on SSU, ITS and β-tubulin (BT2) sequences, accepting as valid only T. microsporus and T. 

stercoreus, and proposing T. ellipsoideus and T. globosus as new species. Based on a phylogenetic tree of ITS 

and BT2 sequences we have confirmed the isolate CBS 137501 as a new species of Thelebolus, namely T. 

microcarpus. The most morphologically related species are T. ellipsoideus and T. globosus, the main 

differences being the absence of an asexual morph (hyphozyma-like in T. ellipsoideus and in T. globosus) and 

the textura angularis of the ascomatal peridium of T. microcarpus (textura globulosa in T. ellipsoideus and T. 

globosus). The main difference between T. microcarpus and T. microsporus is that the later produces ascomata 

that open in the meso- or the telo-hymenial phase (often becoming apothecial), while in T. microcarpus the 

ascoma remains closed until its disintegration. Thelebolus microcarpus can easily be distinguished from T. 

stercoreus based on its smaller (18–70 μm diam) ascomata (40–220 µm diam in T. stercoreus) and the fewer 

(–8) ascospores per ascus (from 32 to over 2000 in T. stercoreus). 
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A maximum likelihood tree was obtained from the ITS and β-tubulin (BT2) sequences of our isolates and other 

sequences retrieved from the GenBank (de Hoog et al. 2005) (TreeBase Submission ID. 16400). In the tree, 

branch lengths are proportional to distance. Bootstrap support values ≥70/Bayesian posterior probability scores 

≥0.95 are indicated on the nodes. A strain derived from the neotype of Aureobasidium pullulans var. pullulans 

and a strain of Sclerotinia nivalis were used as outgroup. Ex-type and ex-neotype strains of the different species 

are indicated with T and NT, respectively. The new species proposed in this study is indicated in bold. 

 

Colour illustrations. Abra del Infiernillo, Tucumán, Argentina. Ascomata, ascus and ascospores. Scale bars = 5 

µm. 

 

 

 

Alberto M. Stchigel, Yasmina Marin-Felix, Josep Guarro & José F. Cano-Lira, Mycology Unit, Medical School 

and IISPV, University Rovira i Virgili, Reus, Spain; e-mail: albertomiguel.stchigel@urv.cat, 

yasmina.marin@urv.cat,  josep.guarro@urv.cat & jose.cano@urv.cat. 
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5. CONCLUSIONS 

1. During this doctoral thesis 140 soil samples from six different countries (Argentina, 

Chile, Colombia, Costa Rica, Spain and USA) have been processed, and a total of 171 

species of ascomycetes have been isolated and characterized. 

 

2. A total of 18 new taxa have been characterized and fully described. These comprise 

the new genera Aphanoascella, Medusitheca, Naviculispora, Emmonsiellopsis and 

Rinaldiella, and the following new species:  

 

Aphanoascella galapagosensis Leiothecium cristatum 

Aspergillus posadasensis Medusitheca citrispora 

Auxarthron longisporum Naviculispora terrestris 

Corynascus fumimontanus Pseudoneurospora canariensis 

Diplogelasinospora moalensis Rinaldiella pentagonospora 

Emmonsiellopsis coralliformis Thelebolus microcarpus 

Emmonsiellopsis terrestris  

 

3. A phylogenetic study of the genus Aphanoascus (order Onygenales), based on the 

analysis of the ITS and D1‒D2 rDNA sequences, showed that this taxon was composed 

of two separate, monophyletic groups. Therefore, the genus Keratinophyton has been re-

established, as well as Keratinophyton terreum and Keratinophyton durum. The following 

four combinations have been proposed:  

 

Keratinophyton hispanicum 

 (≡Aphanoascus hispanicus) 

Keratinophyton punsolae 

(≡Aphanoascus punsolae) 

Keratinophyton multiporum 

(≡Aphanoascus multiporus) 

Keratinophyton saturnoideum 

(≡Aphanoascus saturnoideus) 

 

4. Using a polyphasic approach with morphological, physiological and molecular data 

from ITS, EF1 and RPB2 nucleotide sequences, the genus Myceliophthora (order 

Sordariales) has been divided into four monophyletic clades, each one of which 

represents a different genus. Accordingly, the genus Corynascus has been re-

established, as have the species: 

 

Corynascus novoguineensis Corynascus sexualis 

Corynascus sepedonium Corynascus verrucosus 
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The new genera Crassicarpon and Thermothelomyces have been introduced, being 

proposed the following five new combinations:  

 

Crassicarpon thermophilum  

(≡Myceliophthora fergusii) 

Thermothelomyces hinnulea  

(≡Myceliophthora hinnulea)  

Thermothelomyces guttulata  

(≡Myceliophthora guttulata) 

Thermothelomyces thermophila  

(≡Myceliophthora thermophila) 

Thermothelomyces heterothallica  

(≡Myceliophthora heterothallica) 

 

 

Corynascus similis has been synonymized to Corynascus sepedonium, and the 

description of this species has been amended to incorporate novel morphological 

features. 

 

5. On the basis of morphological and molecular data of SSU, ITS, D1‒D3, Act and EF1 

nucleotide sequences of taxa belonging to the order Melanosporales, the genus 

Melanospora has been amended and Microthecium has been re-established, as well as 

all the following species:  

 

Microthecium beatonii Microthecium hypomyces 

Microthecium ciliatum Microthecium levitum 

Microthecium compressum Microthecium perplexum 

Microthecium episphaerium Microthecium retisporum 

Microthecium geoporae Microthecium zobelii 

 

The following new combinations have been proposed: 

 

Melanospora mycoparasitica  

(≡Sphaerodes mycoparasitica) 

Microthecium japonicum  

(≡ Pteridiosperma japonica) 

Microthecium africanum  

(≡Persiciospora africana) 

Microthecium lenticulare  

(≡ Pteridiosperma lenticulare) 

Microthecium brevirostratum  

(≡Melanospora brevirostrata) 

Microthecium marchicum  

(≡ Sphaeroderma marchicum) 

Microthecium brevirostre  

(≡Melanospora brevirostris) 

Microthecium masonii  

(≡ Persiciospora masonii) 

Microthecium fallax  

(≡ Melanospora fallax) 

Microthecium micropertusum  

(≡ Sphaerodes micropertusa) 
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Microthecium fayodii  

(≡ Melanospora fayodii) 

Microthecium moreaui  

(≡ Persiciospora moreaui) 

Microthecium fimbriatum  

(≡Melanospora fimbriata) 

Microthecium nectrioides  

(≡ Melanospora nectrioides) 

Microthecium fimicola  

(≡Melanospora fimicola) 

Microthecium pegleri  

(≡ Melanospora pegleri) 

Microthecium foveolatum  

(≡ Pteridiosperma foveolatum) 

Microthecium quadrangulatum  

(≡Sphaerodes quadrangularis), 

Microthecium fusisporum  

(≡Melanospora fusispora) 

Microthecium sepedonioides  

(≡Papulaspora sepedonioides) 

Microthecium internum  

(≡ Melanospora interna) 

Microthecium tenuissimum  

(≡ Sphaerodes tenuissima) 

 

The genera Annulispora and Pseudomicrothecium have also been proposed as new 

members of the order Melanosporales, as well as the new combinations: 

 

Annulispora ellipsospora (≡Sphaerodes ellipsospora) 

Annulispora singaporensis (≡Sphaerodes singaporensis) 

Pseudomicrothecium subterraneum (≡ Melanospora subterranea) 

 

6. Within the family Lasiosphaeriaceae (order Sordariales), the new genera Rhypophila 

have been proposed on the basis of morphological and molecular data derived from the 

analysis of D1‒D3, BT2 and RPB2 sequences, as well as the new combinations:  

 

Rhypophila cochleariformis  

(≡Cercophora cochleariformis) 

Rhypophila myriospora  

(≡Cercophora myriospora) 

Rhypophila decipiens  

(≡Cercophora decipiens) 

Rhypophila pleiospora 

(≡Cercophora pleiospora) 

 

The genera Bombardia and Jugulospora have been redefined, proposing the new 

combinations: 

 

Bombardia anartia  

(≡Bombardioidea anartia) 

Bombardia stercoris  

(≡Bombardioidea stercoris) 

Bombardia bombardioides  

(≡Bombardioidea bombardioides) 

Jugulospora carbonaria  

(≡Strattonia carbonaria) 

Bombardia serignanensis  

(≡Bombardioidea serignanensis) 
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The genus Rhexosporium has been synonymyzed with Jugulospora. Apiosordaria 

globosa, Apiosordaria hispanica and Rhexosporium terrestre have been considered 

synonym with Jugulospora rotula, and Apiosordaria antarctica with Jugulospora 

carbonaria. 
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