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Abstract 

 

Deltas such as the Ebro are highly dynamic ecosystems of great ecological and economic 

importance. The Ebro Delta (NW Mediterranean) has been the focus of many ecological studies 

since the 70s but little is known about its recent and historical environmental changes. The 

present PhD thesis investigates, first, the utility of benthic diatoms and foraminifera as 

ecological indicators of modern Ebro Delta habitats, where the species–environment 

relationships have been evaluated qualitatively (through Indicator Species Analysis) and 

quantitatively (through transfer functions). Second, environmental change has been examined, 

in which the modern ecology of the benthic assemblages is applied in reconstructing past deltaic 

habitats at two different temporal scales: millennial (Holocene epoch) and decadal–centennial 

(human impacts). And third, the potential distribution of the natural habitats in the Delta has 

been modelled using multivariate Generalized Additive Models (GAM) coupled with 

Geographic Information Systems (GIS). 

The results showed that, in the Ebro Delta, the distribution of benthic diatoms and foraminifera 

is mostly related to environmental gradients of conductivity (as a proxy of salinity), water depth 

(shallowness), and sediment characteristics (including the proportions of sand and organic 

matter). From these results, conductivity and water depth were identified as the single 

environmental variables most structuring diatom and foraminiferal assemblages respectively, 

and therefore, realistic diatom-based conductivity and foraminifera-based water depth transfer 

functions could be derived. On the other hand, GAM-based models showed that potential 

habitat distributions could be predicted by ecogeographical variables (elevation and ‘distances’ 

predictors). Then, habitat maps were constructed, illustrating where coastal and inland habitats 

could potentially exist across the whole deltaic plain, to inform future environmental restoration 

as a function of scenarios of sea level rise and coastal retreat. 

Different habitats within the whole range of the Delta environments (i.e. from the deltaic plain 

to the adjacent marine area) were characterized using diatoms and foraminiferal assemblages. 

Benthic diatoms identified a total of five habitat types, namely salt marshes, brackish marshes, 

brackish coastal lagoons and bays, coastal lagoons with fresher conditions, and nearshore open 

sea. Benthic foraminifera (living and dead assemblages) identified four habitat types: salt and 

brackish marshes, coastal lagoons and inner bays, nearshore and outer bays, and offshore. For 

each of the habitat types identified, diatom and foraminiferal indicator species were recognised, 

which complemented pretty well habitat characterisation obtained using transfer functions (i.e. 

conductivity and water depth). Dead foraminiferal assemblages which integrate seasonal and 

post-depositional (taphonomic) effects on the modern assemblages, were found to be similar 
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enough to the living ones to allow the modern assemblages to be used for the interpretation of 

buried foraminiferal assemblages. Concerning diatoms, unfortunately no well-preserved valves 

were found in sediments below ca 10 cm depth, so that it was impossible to infer past 

environmental conditions based on this indicator. Thus, for past reconstructions, the thesis 

focused on foraminiferal assemblages, which were well preserved (including both agglutinated 

and calcareous tests) and therefore allowed us to reconstruct palaeoenvironmental changes 

registered in the Ebro Delta sediments. 

A total of seven sedimentary sequences from the Ebro Delta were analysed on the basis of 

foraminiferal content and sediment proxies (sand content and organic matter): these were 

obtained from two boreholes and five short cores. The two boreholes (Carlet and Sant Jaume, ca 

20 m depth both) were radiocarbon-dated and provided a fine-grained habitat reconstruction. 

First, it was shown that the Ebro Delta had already undergone a major development in the early 

Holocene (7500 yr BP), since the Carlet borehole already recorded close modern analogues of 

deltaic plain habitats (i.e. coastal lagoons) at this time. These findings rejected hypotheses that 

the Ebro Delta was an estuary prior to the Roman period, as previously suggested by some 

authors. Second, the Sant Jaume borehole (younger and located nearer the present coastline than 

Carlet) allowed identification for the first time of a differential progradation of the last three 

Ebro Delta lobes (Riet Vell, Riet de Zaida and Mijorn), using micropalaeontological evidences, 

and also placed such lobes in a more accurate chronological framework. 

The five shorter sediment cores (ca 80 cm depth) were also dated via a 210Pb-based chronology. 

The down-core foraminiferal assemblages revealed clear habitat shifts during the last 150 years, 

as a result of the introduction of intensive rice cultivation in the Ebro Delta. The foraminiferal 

record showed a replacement of calcareous-dominated assemblages by agglutinated-dominated 

ones, this change being significantly correlated with the increase of sediment organic matter due 

to inputs of agricultural runoff. Overall, the identification of these habitat changes provides a 

management tool not only for assessing baseline environmental conditions but also for habitat 

restoration in the context of ongoing climate change impacts in the Ebro Delta (i.e. sea level 

rise, sediment deficit). 
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Resum 
 

Els deltes com el del riu Ebre són ecosistemes molt dinàmics d’una gran importància ecològica i 

econòmica. Tot i que el Delta de l’Ebre (Mediterrani occidental) ha estat objecte de nombrosos 
estudis ecològics des de els anys 70, es coneixen poc els canvis ambientals ocorreguts en el 

passat. En primer lloc, aquesta tesi doctoral investiga la utilitat de les comunitats de diatomees i 

foraminífers bentònics com a indicadors ecològics dels hàbitats del Delta de l’Ebre, a través de 

tècniques qualitatives (espècies indicadores) i quantitatives (funcions de transferència). En 
segon lloc, s’han estudiat els canvis ambientals registrats als sediments del Delta de l’Ebre, on 

l’ecologia moderna de les comunitats bentòniques s’ha aplicat en la reconstrucció dels hàbitats 

deltaics passats a dues escales de temps diferents: milenis (Holocè) i decades-segles (impactes 

humans). I en tercer lloc, s’ha modelitzat la distribució potencial dels hàbitats naturals al Delta 

utilitzant Models Aditius Generalitzables (GAM) conjuntament amb Sistems d’Informació 
Geogràfica (SIG). 

Els resultats van mostrar que, al Delta de l'Ebre, la distribució de les diatomees i foraminífers 

bentònics es troba majoritàriament determinada per gradients ambientals de conductivitat (com 

a indicador de salinitat), de profunditat de l’aigua (superficialitat) i de les característiques del 

sediment (incloent-hi les proporcions de arena i matèria orgànica). A partir d'aquests resultats, 
es van identificar la conductivitat i la profunditat de l’aigua com les variables ambientals que de 

forma estadísticament significativa i individual són més importants per estructurar les 

comunitats de diatomees i foraminífers, respectivament. Per tant, es van desenvolupar funcions 

de transferència realistes per les variables de conductivitat (mitjançant diatomees) i profunditat 
de l’aigua (mitjançant foraminífers). D’altra banda, els models GAM van mostrar que la 

distribució potencial dels hàbitats es podria predir a partir de variables ecogeogràfiques 

(elevació i un conjunt de 'distàncies'). Aleshores es van construir mapes d’hàbitat potencial, els 

quals van il·lustrar on existirien els hàbitats costaners i els hàbitats terrestres al llarg de tota la 

plana deltaica per tal d’informar futurs plans de restauració ambiental en funció dels escenaris 
d’augment del nivell del mar i retrocés de la costa. 

Mitjançant les comunitats de diatomees i foraminífers es van caracteritzar diferent tipus 

d’hàbitats dins de tot el rang d’ambients del Delta (és a dir, des de la plana deltaica fins els 

ambients marins adjacents). Així, les diatomees bentòniques van identificar un total de cinc 

hàbitats: aiguamolls salins, aiguamolls salobres, llacunes costaneres i badies salobres, llacunes 
costaneres més dolçes, i mar obert costaner. Els foraminífers bentònics (ambdues comunitats 

vives i mortes) van identificar quatre tipus d’hàbitats: aiguamolls salins i salobres, llacunes 

costaneres i badies interiors, mar obert costaner i badies externes, i mar obert lluny de la costa. 

Per cadascun d’aquests tipus d’hàbitat, es van identificar diferent grups d’espècies indicadores 
de diatomees i foraminífers, les quals van complementar força bé la caracterització ambiental 
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dels hàbitats obtinguda amb les funcions de transferència (és a dir, conductivitat i profunditat de 

l’aigua). Les comunitats de foraminífers morts, els quals combinen els efectes estacionals i post-
mortem (tafonòmics) de les associacions modernes, van resultar ser suficientment similar a les 

associacions vives en quan a la composició d’espècies i abundància, i per tant, l'ús de les 

comunitats actuals es pot aplicar per la interpretació de les comunitats de foraminífers enterrats 
en el sediment. Pel que fa a les diatomees, desafortunadament, no es van trobar valves ben 

conservades als sediments per sota de 10 cm aprox. de profunditat, i per tant, no va ser possible 

reconstruir les condicions ambientals del passat a partir d’aquest indicador. En el seu lloc, la tesi 

es va centrar en les comunitats de foraminífers com a indicadors paleoambientals, els quals 
estaven ben conservats, tant espècies amb paret de tipus aglutinant com calcària, permetent així 

reconstruir l’evolució dels hàbitats del Delta de l'Ebre. 

A partir del registre de foraminífers bentònics i característiques del sediment (contingut de arena 

i matèria orgànica), es van analitzar un total de set seqüències sedimentàries del Delta de l'Ebre, 

incloent-hi dos testimonis profunds (20 metres aprox. de profunditat) i cinc testimonis més curts 
(80 cm aprox. de profunditat). Els resultats dels dos testimonis profunds datats amb la tècnica 

del carboni 14 (Carlet i Sant Jaume) van proporcionar una reconstrucció paleoambiental precisa 

dels hàbitats deltaics. En primer lloc, van indicar que el Delta de l’Ebre ja tenia un 

desenvolupament important en l’Holocè primerenc (fa 7500 anys), tal i com el testimoni de 

Carlet va demostrar amb la presència d’anàlegs moderns d’hàbitats de plana deltaica (llacuna 
costanera) durant aquell temps. Aquests resultats han permés rebutjar la hipòtesi sobre l’origen i 

evolució del Delta de l'Ebre, en la qual diversos autors afirmen que el Delta era un estuari abans 

de l'època romana (és a dir fa uns 2000 anys). En segon lloc, l’anàlisi del testimoni de Sant 

Jaume (més jove i en una posició més pròxima a l’actual línia de costa que Carlet) va permetre 
identificar per primera vegada la progradació diferencial dels últims tres lòbuls del Delta de 

l'Ebre (Riet Vell, Riet de Zaida i Mijorn) utilitzant evidències micropaleontològiques. A la 

vegada, aquest resultats van permetre contextualitzar aquests tres lòbuls en un marc cronològic 

més precís, ja que estudis previs suggerien un desenvolupament més actual. 

Els cinc testimonis més curts van ser datats mitjançant l’isòtop 210Pb. Els foraminífers enterrats 
van indicar canvis d’hàbitat des de els últims 150 anys, moment en que el cultiu d’arròs va 

començar de forma intensiva al Delta de l’Ebre. Els resultats mostren un canvi de comunitats de 

foraminífers dominades per especìes calcàries amb una elevada diversitat cap a comunitats 

dominades per espècies aglutinants amb una baixa diversitat. A més, aquest canvi es va 

correlacionar significativament amb l’increment de materia orgànica al sediment, degut a les 
aportacions d’aigua procedents dels arrossars. En general, la identificació d’aquests canvis 

d’hàbitat no només proporcionen una eina de gestió per l’avaluació de les condicions de 

referència als aiguamolls estudiats, sinó també per a la restauració de l'hàbitat en el context dels 

impactes actuals i futurs del canvi climàtic al Delta de l'Ebre (és a dir, augment del nivell del 
mar amb dèficit de sediments).	
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General introduction 

 

Mediterranean deltas: definition, structure and dynamics 

Deltas are considered to be the largest coastal landforms in the world. They are assemblies of 

environments such as rivers, bays, lagoons, marshes, and nearshore open sea (Goodbred 2009). 

Deltas are the result of strong interactions between river and sea forces. Rivers deliver sediment 

into the coast, and the sea molds the resulting deposits (Coleman and Wright 1975). In most 

cases, especially in microtidal settings such as the Mediterranean Sea or Gulf of Mexico, deltas 

protrude well into the sea, where the river forms distributaries that each construct their own 

deltaic lobes. Mediterranean deltas are usually classified as river- or wave-dominated systems 

according to the dominant processes (i.e. sediment delivery and dispersal or wave influence 

respectively) (Galloway 1975) (Fig. 1). The largest wetland areas in the Mediterranean and 

Black Sea are concentrated in deltas such as Ebro (Spain), Rhône (France), Po (Italy), Nile 

(Egypt) and Danube (Romania).  

 

Figure 1 Diagram showing the traditional delta’s classification as a function of fluvial inputs 

and wave and tides energy (adapted from Galloway 1975). 
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Mediterranean deltas, as other world deltas, comprise three main environments. These 

(progressing from deeper to shallower areas) are the prodelta, the delta front and the deltaic 

plain (Bhattacharya 2003). The prodelta comprises widespread subaqueous muddy deltaic 

sediments, grading into sand toward nearshore and into clay offshore (> 10 m depth) 

(Maldonado and Murray 1975). The delta front is situated nearshore and it is a high-energy 

sandy environment that includes the ‘delta coastal fringe’. Beaches and spits occupy the outer 

edge of the delta plain, and they are usually built by sand derived from the delta front due to 

longshore currents or erosion of the abandoned deltaic lobes (Maldonado and Murray 1975). 

Within the deltaic plain, fluvial levées have the highest elevation above mean sea level (> 3 m). 

Most of the deltaic plain however, is located near mean sea level (< 0.5 m) and will, in its 

natural state, contain large areas of marshes and lagoons. The marine area (prodelta and delta 

front) is a highly dynamic environment due to riverine discharges and bottom currents, but the 

deltaic plain environments are spatially and temporally even more dynamic, basically because 

they are influenced by many factors (winds, marine and river influences, rainfall, etc.). This 

dynamism is the result of the fluctuation and interaction of environmental parameters with 

broad ranges (salinity, nutrients, oxygen, substrates, water level, etc). Mediterranean deltas and 

associated wetlands are therefore clear examples of fluctuating systems with a patchy 

distribution (Ibáñez et al. 2000, Trobajo et al. 2004). 

Mediterranean deltas are in constant change. Their dynamics depend mainly on the fluxes of 

water and sediments delivered by rivers and sea and are driven by different pulsing events 

(Table 1) (Day et al. 1995). Among these is river switching, which affects large parts of the 

deltaic plain by cycles of delta lobe extension and abandonment with a periodicity of about 

1000 yr (Edmonds et al. 2009). Over shorter periods of a few centuries, the most powerful river 

floods lead to major episodes of deposition and result in large-scale habitat changes (i.e. 

formation of new wetlands). As the time scale decreases, the frequency of pulsing events 

increases, but the spatial scale of impact decreases (Table 1).  

Over longer periods and affecting the whole deltaic system, sea level changes occur as a result 

of eustatic (global) sea level rise and local subsidence. These control the overall morphological 

evolution of the delta. Natural subsidence (land sinking due to compaction of sediments) can 

cause relative sea level rise (RSLR) to be much greater than eustatic rate (Day et al. 2011). 

However, RSLR can be compensated for by vertical accretion in the deltaic plain (Jerolmack 

2009). In turn, accretion rates depend on fluvial sediment inputs and sea level rise through 

complex feed-back mechanisms (Ibáñez et al. 2014). In that context, short-term pulsing events 

can also play an important role by enhancing sediment and hydrologic exchanges between 

wetlands and adjacent water bodies (Table 1) (Day et al. 1995, Kirwan and Temmerman 2009).  
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Table 1 Temporal scale and impact of pulsing events in deltas (adapted from Day et al. 1995) 

Event Time scale Impact 

River switching 1000 yr Deltaic lobe formation 

Net advance of deltaic land masses 

Major habitat changes 

    Major river floods 100 yr Channel switching 

Formation of new wetlands  

    Major storms 10–20 yr Major deposition 

Enhanced production 

    Average river floods Annual Sediment and nutriens inputs 

Freshening (lower salinity) 

    Normal storms (low 

pressure events) 

Annual Enhanced deposition 

Net transport 

 

Sea level changes along last glacial cycles have special relevance due to its strong link with 

formation and growth of world deltas in general, and Mediterranean deltas in particular 

(Pirazzoli et al. 2005, Anthony et al. 2014). Since the Last Glacial Maximum (LGM, i.e. around 

21 kyrs BP), the Mediterranean Sea level has experienced a succession of rises and periods of 

relative stability following the retreat of the ice sheets, from a low of ca –130 m during the 

glacial maximum to its present level (Zazo et al. 2008). For the northwestern Mediterranean 

area, Lambeck and Purcell (2005) have indicated a rapid sea-level rise until 6000 yr BP, 

followed by a gradual increase in sea level with a slight deceleration during the last 1500 yrs, 

and stabilization for the last 500 yrs. Existing bibliography shows that modern deltas were 

initiated during the early-middle Holocene, i.e. 8000 and 6000 yr ago, when sea level stabilized 

near the current level and inputs of fluvial sediment began to accumulate along the coast 

(Stanley and Warne 1994). Since then, Mediterranean deltas have undergone river switching to 

create successive delta lobes, later abandoned and partially eroded by wave action (present high-

stand deltas, Ibáñez et al. 2014). 

 

Human impacts on Mediterranean deltas 

Mediterranean deltas, including their watersheds, have been severely impacted by human 

activities (Anthony et al. 2014). Perhaps one of the most studied impacts is the significant 

reduction of water and sediments along watersheds due to dam constructions intended for 
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intensive agriculture and water consumption purposes (Ibáñez et al. 1997, Walling 2006, 

Syvitski and Kettner 2011). In most Mediterranean deltas, drastic sediment load reductions (> 

80%) have been reported following the building of dams (Anthony et al. 2014). Moreover, the 

transformation of the original landscape of a river basin can either increase or reduce the 

sediment load, through land clearing or reforestation respectively, and will ultimately determine 

delta morphology (Mikhailova 2003). Nevertheless, the connection between sediment dynamics 

at the basin scale and delivery at the river mouth (i.e. progradation) is not always strong or 

direct (Walling 2006). It is also to be expected that river discharges will vary with climate (e.g. 

rainfall), especially in the Mediterranean region (Moreno et al. 2012, Xing et al. 2014, Benito et 

al. 2015), further hampering efforts to distinguish human impacts on river sediment supply from 

of the effects of background climate changes.  

Despite the high variety of Mediterranean deltas and associated wetlands, these systems have 

suffered similar trajectories of change since the last centuries (Halpern et al. 2008). Human 

impacts in deltaic plains range from land use changes to hydromorphological and ecological 

disruptions. Besides the obvious destruction of natural wetland surface through agriculture and 

urbanization (Cardoch et al. 2002), human impacts on delta wetlands include, among others, 

hydrological alterations (i.e. salinity reduction, water levels: Marco-Barba et al. 2013, Prado et 

al. 2014), nutrient and pollutant enrichment (Pérez-Ruzafa et al. 2005), habitat degradation 

(Soria 2006), and suppression of hydrological connectivity (i.e. dikes, canals) (Day et al. 1995).  

At the same time, Mediterranean deltas are highly sensitive to increasing risks arising from 

climate change (Ibáñez 2009). For instance, coastal retreat, salt intrusion and sea level rise, 

coupled with sediment retention, threaten the sustainability of deltas (Day et al. 2011, Giosan et 

al. 2013). Worldwide, average sea-level rise is currently (1993-2010) ca. 3.0 mm/year (Hay et 

al. 2015) and this is projected to increase over the next 100 years (IPCC 2014). Deltas will be 

especially badly affected because of land subsidence (Ibáñez et al. 2010) and there is therefore 

especial concern among scientists and managers to address and if possible mitigate the worst 

effects of change. Therefore, a strategy to further develop scientifically-based methods for 

sustainable management of deltas is of paramount importance and such a strategy can only be 

achieved by understanding the natural and anthropogenic processes that have moulded these 

ecosystems on a range of time scales.  
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Palaeoecology in deltaic environments 

Palaeoecology is broadly defined as the ecology of the past (Birks and Birks 1980) and it is 

based on the principle of “uniformitarianism”. This means that natural processes operating 

nowadays are assumed to be basically the same as those that have operated in the past, although 

intensity and rates can change through time (Delcourt and Delcourt 1991). Importantly, 

palaeoecological techniques allow ecological and geological approaches to be combined across 

space and time. Analysing deltaic sedimentary environments has value from a geological point 

of view because it can provide information about the position of the palaeocoastline under 

natural conditions associated with Holocene sea-level changes (e.g. Stanley and Warne 1994). It 

is also valuable from an ecological point of view because represent marine-to-continental water 

transition, providing a background to study species’ responses to different types of natural and 

anthropogenic stressors (e.g. Debenay and Guillou 2002). 

Reconstructing deltaic environments has proven to be complex, basically because of their 

multiple environmental controls (Goodbred 2009, Ibáñez et al. 2014). Nevertheless, the 

sediments beneath deltaic plains represent a potential record of environmental changes driven 

by continental and marine processes, climate change or human impacts (Phillips and Slattery 

2006, Sarti et al. 2015). At scales of thousands of years, palaeoenvironmental reconstructions of 

deltas have been usually approached using geological methods (e.g. stratigraphy, 

sedimentology, geochemistry)(Somoza et al. 1998, Amorosi et al. 2003, Amorosi et al. 2005, 

Boyer et al. 2005, Vella et al. 2005, Stefani et al. 2005). However, application of 

palaeoecological techniques using biological proxies is becoming more frequent, and can be 

adapted to address different environmental issues at a range of temporal scales (Saunders and 

Taffs 2009). Table 2 summarizes the common biological proxies used in coastal and estuarine 

palaeoecological studies. 

The study of modern analogues has been an important tool in the interpretation of past 

environments (Jackson and Williams 2004). The rationale of the method is to infer past 

conditions by identifying the modern assemblages that are most similar to the fossil ones, based 

on a similarity measure (e.g. squared chord distance, Overpeck et al. 1985) (Birks 2003). The 

reliability of such reconstruction is highly dependent on the variety of environments studied 

(Rull and Vegas-Vilarrúbia 1999). This aspect is specially significant when past inferences do 

not cover the whole range of environments that modern Mediterranean deltas harbour, since 

most palaeoenvironmental studies carried out in these systems have only used modern 

analogues from the open marine environments, i.e. prodelta and delta front (Amorosi et al. 

2008, Rossi and Horton 2009, Dinelli et al. 2012, Amorosi et al. 2013). Despite some promising 

attempts in deltas from the Mediterranean (Scrutton 1969 in the Ebro Delta, Spain, and 
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Vangerow 1974 in the Rhône Delta, France), Asian (Lambert 2003 in the Mahakam Delta, 

Indonesia, and Melis and Violanti 2006 in Mae Khlong Delta, Thailand) and Gulf of Mexico 

(Lankford 1959 in the Mississippi Delta, USA) modern analogues from the deltaic plain 

environments have not been studied in detail. To our knowledge, this thesis is the first 

palaeoenvironmental reconstruction of a Mediterranean delta using modern analogues of delta 

plain habitats, giving therefore the possibility for a new and sounder interpretation of deltaic 

sedimentary sequences. 

Table 2 Common biological proxies used in coastal palaeoecological studies. The 

environmental topics and temporal scales are also shown, together with some references of 

examples. 

Proxy Environmental topic Temporal scale Examples 

Chironomids Eutrophication 10s–100s Luoto and Ojala 2014 

    Chrysophytes Sea-level 1000s García-Rodríguez et al. 2010 

    Diatoms Water physico-

chemistry, sea-level 

10s–1000s Gaiser et al. 2001, Ryves et al. 

2004, Weckström 2006, 

Saunders et al. 2007, Hassan et 

al. 2009, Wachnicka et al. 

2013, Ferreira 2013 

    Foraminifera Salinity, sea-level 10s–1000s Brewster-Wingard and Ishman 

1999, Horton and Edwards 

2005, Leorri et al. 2008, Rossi 

and Horton 2009, Milker et al. 

2011, Amorosi et al. 2013 

    Ostracods Water physico-

chemistry 

10s–100s Marco-Barba et al. 2013, 

Mischke et al. 2014 

    Pollen Landscape 1000s Byrne et al. 2001, Hofmann 

2002, Watson et al. 2011 

    Testate amoebae Sea-level 1000s Charman et al. 2010 

 

Foraminifera and diatoms as biological proxies 

Foraminifera (unicellular protists) and diatoms (unicellular algae) have been widely used as 

indicators of present and past environmental conditions due to their highly sensitive and quick 

responses to numerous environmental factors. Foraminifera are distributed among marine and 

coastal environments (lagoons, marshes, bays) (Scott et al. 2001), whereas diatoms are present 
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in continental, coastal and marine waters and often represent a major component of primary 

producer communities (Smol and Stoermer 2010). These micro-organisms live in the plankton 

and the benthos, but benthic communities dominate in coastal wetlands in terms of abundance 

and diversity (Patterson et al. 2005). All benthic diatoms and many foraminifera form a resistant 

cell wall, which are made of silica (diatoms) and calcium carbonate (“calcareous” foraminifera, 

i.e. hyaline and porcellaneous, though not the “agglutinated” foraminifera, which their wall is 

made of cemented detrital material). Their remains can be preserved in the sediments as fossils 

or subfossils, giving extraordinary potential as palaeoenvironmental indicators. In this sense, 

perhaps no other fossilizable groups of benthic microorganisms are so well documented in terms 

of environmental requirements of their present-day assemblages (Murray 1991, Battarbee et al. 

2001). 

Many works have studied the ecology and distribution of contemporary diatoms and 

foraminiferal assemblages to reconstruct past environmental conditions from fossil assemblages 

(e.g. Cooper et al. 2001, Murray 2006). One of the most widely used palaeoecological 

techniques is statistical calibration between selected environmental variables and modern 

species distributions to infer quantitatively past environmental variables (i.e. the use of transfer 

functions) (Birks 2003). However, while quantitative reconstructions have been successfully 

applied in several coastal ecosystems using diatoms (Australian estuaries: Saunders et al. 2007, 

Logan and Taffs 2011; Argentinean estuaries: Hassan et al. 2009; Sub-tropical bays: Wachnicka 

et al. 2013) and foraminifera (Atlantic marshes and estuaries: Leorri and Cearreta 2009, Kemp 

et al. 2013, García-Artola et al. 2015; Australian embayments: Horton et al. 2007, Woodroffe 

2009), reconstructions in Mediterranean coastal wetlands have been mainly qualitative and 

always using autoecological data from other areas (Usera et al. 2002, Flower et al. 2001, Zalat 

and Vildary 2007). Although the ecological meaning of diatoms and foraminifera can be 

obtained from the literature (e.g. Vos and de Holf 1993, Murray 1991), it is of paramount 

importance for palaeoenvironmental reconstructions to investigate post-depositional changes 

(i.e. living and dead assemblages), which only species data in their source communities can 

provide (Juggins 1992, Duchemin et al. 2005). 

The detail and accuracy of palaeoenvironmnental reconstructions will inevitably increase with 

strong correlations between the species or assemblage and the target environmental factor(s) 

(Murray 2001). However, most diatoms and foraminiferal species inhabiting estuarine 

ecosystems (marshes, lagoons) have been documented as having a broad range of tolerance for a 

high number of factors; hence they are able to occupy different environments (eurytopic 

species) (Battarbee et al. 2001, Scott et al. 2001). In this case, the identification of groups of 

indicator species rather than their individual abundances, could better reflect the specific habitat 
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conditions (Wachnicka et al. 2010, Rovira et al. 2012a). Besides the use of diatoms and 

foraminifera as individual indicators, multiproxy approaches can provide multifaceted insights 

into modern environments (Birks and Birks 2006). In Mediterranean deltas and associated 

wetlands, however, these two indicators have been used so far independently, without matching 

results obtained by each of them (foraminifera: Zaninetti 1984, Albani et al. 2007, Coccioni et 

al. 2009; diatoms: Flower et al. 2001, Trobajo et al. 2004, Zalat and Vildary 2005, Della Bella et 

al. 2007). The reliability of palaeoenvironmental reconstructions can be improved by identifying 

weakness and enhancing the strengths of the proxies used (Gehrels et al. 2005, Kemp et al., 

2009, Hassan et al. 2012) 

Studies of benthic foraminifera and diatoms can also make significant contributions to 

monitoring coastal ecosystems and can therefore assist management decisions in the context of 

future restoration projects. However, before trying to implement realistic management 

strategies, it is essential also to achieve a good understanding of how environmental conditions 

have varied through time and what the background conditions were (Smol 2010). One of the 

greatest challenges in assessing the onset, causes and magnitude of environmental changes in 

coastal ecosystems is the lack of long-term monitoring data (>20 years), and the high influence 

of human activities. Hence, it is not possible to identify baseline conditions (i.e. with no or 

minor human disturbance); consequently, the most reliable approach to objectively determine 

pre-impact conditions is analysis of the sediment record (Andersen et al. 2004). 

Palaeoecological approaches are currently being used to address water quality and ecosystem 

condition issues in order to be integrated into environmental assessments such as the Water 

Framework Directive (WFD) (e.g. Bennion and Battarbee 2007). For example, the WFD 

requires the degree of deviation from undisturbed conditions to be documented using 

hydrological, physicochemical, and biological quality elements. Although the use of diatoms 

and foraminifera is not required by the WFD (Annex V) as biological quality elements for 

monitoring coastal and transitional waters, their fossil remains in estuarine and marine 

sediments have been used to assess deviations from pre-impacted conditions (diatoms: 

Weckström 2006, Saunders et al. 2008, Logan and Taffs 2011; foraminifera: Alve et al. 2009, 

Bouchet et al. 2012, Dolven et al. 2013, Dijkstra et al. 2013). To date, similar use of diatoms 

and foraminifera has not been made in Mediterranean coastal wetlands. 
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Study context: the Ebro Delta  

The Ebro Delta is situated on the NE Iberian Peninsula (Fig. 3) and is one of the largest coastal 

wetlands in the Western Mediterranean, extending over an area of about 330 km2. The Delta is 

irrigated by the Ebro River, which is the longest river in Spain (928 km) and has the largest 

water discharge (ca. 400 m3 s-1). The drainage of the Ebro River is 85,550 km2, representing 

15% of the total area of Spain (Maldonado and Murray 1975). Within the Delta, natural wetland 

habitats occupy about 25% of the total surface. All of them are included in and protected by the 

Ebro Delta Natural Park and Natura 2000 network (EU). These natural areas support important 

economic activities associated with agriculture (mainly rice), aquaculture, hunting and tourism, 

with a total annual economic value of about €120 million (SEO/BirdLife 1997). Although rice 

cultivation has transformed and removed most of original wetland surface of the Delta (65% of 

the deltaic plain) (Cardoch et al. 2002), rice fields provide significant ecosystem services, such 

as habitat for migratory birds, prevention of saline intrusion or nutrient removal (Martínez-

Vilalta 1995).  

Despite the ecological, economic and geologic importance of the Ebro Delta, its origin remains 

controversial. The pioneering work of Maldonado (1972) suggested that the present Delta 

initiated its progradation about 8000 yr BP as a consequence of slowing of postglacial sea-level 

rise. Later, in 1998, the comprehensive stratigraphical study by Somoza et al. (based on peat 

material radiocarbon dated by Arasa, 1994) indicated that the main progradation of the Delta 

began at around 6900 yr BP. Furthermore, Canicio and Ibáñez (1999) showed through 

radiocarbon dated palaeoshorelines that the present Delta had an important development ca. 

6000 yr ago, and that the river mouth was then already located around the present fluvial island 

of Gracia (see Fig. 3 for the location of the Gracia Island). In contrast, wrong interpretations of 

documentary records and the lack of scientific data led some authors to state that the present 

Ebro Delta initiated during the Roman period (ca. 2000 yr ago) following an intense 

deforestation period within the Ebro’s watershed (Guillén and Palanques 1997, Serra 1997, 

Palanques and Guillén 1998, Maselli and Trincardi 2013, Somoza and Rodríguez-Santalla 

2014). All these studies have also stated that the late Holocene sea level rise led the Delta to 

become an estuary with the coastline located as far inland as the town of Amposta (see Fig. 3 

for the location of Amposta). This erroneous idea began with a personal interpretation of Roman 

texts by Bayerri (1934), who considered the presence of a “sea port” in Roman times to be proof 

for the existence of an estuary up to the town of Tortosa (12 km upstream from Amposta). The 

concept of “sea port”, however, could also refer to fluvial ports that harbour marine vessels. 
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Figure 3 Geographical location of the Ebro Delta. The distribution of the natural habitats and 

land uses (modified from Catalonia Habitats Map 1:50,000) is also shown.  

 

Figure 4 Examples of natural habitats of the Ebro Delta: A) Salicornia marshes, B) Phragmites 

marshes (reed beds), C) Coastal lagoons, D) shallow inner bay, E) Juncus marshes, F) Cladium 

marshes, G) Salt meadows, H) Microbial mats, I) Sandy environments. 
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The recent history of the Ebro Delta can be summarized as consisting of three periods, which 

reflect variation in human impacts on the Delta itself and the lower Ebro River (100 km from 

the mouth) (Ibáñez et al. 1997, SEO/BirdLife 1997): 

i. The first period lasting until the first half of 19th century, prior to rice cultivation in the 

Delta, when the transformation was minor and its natural features preserved; was 

characterized by large floods with high sediment inputs. This produced high accretion 

rates (> 0.5 cm/ yr, Ibáñez et al. 1997), and large areas of saline wetlands were 

preserved.  

ii. The second period began in 1860, with the construction of the south irrigation canal 

derived from the river, and later in 1912, with the construction of the north irrigation 

canal. These two canals allowed the rice cultivation in the southern and northern 

hemideltas, respectively. Intensive rice agriculture was further developed between 1910 

and 1960 to the detriment of natural habitats, which reduced from 88% to 33% (Mañosa 

et al. 2001). The irrigation and drainage system was progressively expanded to bring 

freshwater into the rice paddies. Remaining natural habitats received persistently 

variable amounts of agricultural runoff, becoming fresher and eutrophicated (Comín et 

al. 1991).  

iii. In the third period, beginning in the 1960s and lasting until the present, the fluvial 

regime of the lower Ebro River has been altered due to dam constructions. The 

Mequinença-Ribaroja-Flix dam system has caused drastic reductions of mean annual 

flow (28%) and sediment load (99%) (Ibáñez et al. 1996, Batalla et al. 2004, Vericat 

and Batalla 2006). Consequently, large river floods have been prevented and accretion 

rates have decreased dramatically. Transformation of wetlands to rice fields and 

eutrophication increased markedly since 1960, stopping only in the 1990s, when the 

Ebro Delta Natural Park was created (1983). Figure 5 summarises the general 

chronology of the main human activites in the Delta and the lower Ebro River since the 

second half of the 19th century and their main effects on deltaic ecosystems.  
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Figure 5 Chronology of main human activites impacting on the lower Ebro River and its Delta since the middle of 19th century and their main effects on 

deltaic ecosystems. 
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Since the beginning of the 80’s, limnological and biological research has been performed in the 

Ebro Delta and its salt-wedge estuary (i.e. the last 40 km of the river occupying the Delta). 

These studies describe the main ecological processes and assess the human impacts on their 

functioning (Comín et al. 1987, Delgado 1987, Comín et al. 1991, Capítulo et al. 1994, Curcó et 

al. 1995, Ibáñez et al. 1996, Mañosa et al. 2001, Suarez-Serrano et al. 2010, Prado et al. 2012, 

Calvo-Cubero et al. 2013, Rodríguez-Climent et al. 2013). However, few studies investigated 

the benthic communities and to date, none were based on palaeoenvironmental reconstructions. 

For instance, Prado et al. (2014) studied the macrobenthos of some Ebro Delta coastal lagoons, 

and Rovira et al. (2012a,b) and Nebra et al. (2011, 2014) described the benthic communities of 

diatoms and macroinvertebrates inhabiting the Ebro estuary, respectively; only the pioneering 

work by Scrutton (1969) analyzed quantitatively the benthic foraminiferal assemblages living 

off the Ebro Delta, but the study of deltaic plain habitats was very limited. Moreover, all of 

these studies were carried out once intensive rice agriculture was already operating in the Delta 

(from 1960’ to present), so it is not possible to discern how deviated the present conditions are 

when compared to pre-rice period.  

The Ebro Delta is a very dynamic coastal system, where geological processes occur at human 

scale and where the interaction between biotic and abiotic elements is intense and complex. 

With all this in mind, the whole range of habitats of the Ebro Delta, i.e. from the deltaic plain to 

the adjacent marine area (Fig. 4) are integrated in the present thesis, which uses benthic 

assemblages of diatoms and foraminifera as indicators of present and past environmental 

change. 
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Objectives 

 

The main aims of the present PhD thesis are twofold: i) To investigate the applicability of 

benthic diatoms and foraminifera as ecological indicators to identify and characterise modern 

habitats in a Mediterranean delta, and ii) To develop palaeoenvironmental reconstructions in the 

Ebro Delta using one of these indicators (foraminifera).  

To achieve these aims, the following specific objectives were formulated: 

1. To identify the main environmental factors that structure the distributions of benthic 

diatoms (Chapter 1) and benthic foraminifera (Chapter 2) in the Ebro Delta  

2. To compare the performance of benthic diatoms and foraminifera as indicators of 

coastal wetland habitats in the Ebro Delta (Chapter 2) 

3. To investigate the role of benthic diatoms and foraminifera as (paleo)indicators of 

habitats using qualitative and quantitative approaches (Chapter 1 and 2) 

4. To reconstruct the Holocene evolution of the Ebro Delta using fossil foraminiferal 

assemblages (Chapter 3)  

5. To document habitat changes that intensive human transformation had on the Ebro 

Delta wetlands during the last 150 years (Chapter 4) 

6. To determine the potential distribution of the different wetland habitats under a scenario 

of no human disturbance (Chapter 5) 
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Chapter 1 

 

Benthic diatoms in a Mediterranean delta: ecological 

indicators and a conductivity transfer function for 

paleoenvironmental studies 

Benito, X., Trobajo, R. and Ibáñez, C. 2015 

Journal of Paleolimnology 54: 171-188 
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Abstract The contemporary distribution of benthic

diatoms and their use as ecological indicators were

examined in a coastal wetland, the Ebro Delta, as a

representative of environmental conditions in

Mediterranean coastal wetlands. A total of 424

diatom taxa were identified across 24 sites encom-

passing a wide range of wetland habitat types (coastal

lagoons, salt and brackish marshes, shallow bays,

microbial mats and nearshore marine waters) and

conductivities. Canonical correspondence analysis

showed that water conductivity and water depth were

the main factors structuring the diatom assemblages.

Cluster analysis identified five habitat types according

to the similarity in diatom species composition: salt

marshes, brackish marshes, brackish coastal lagoons

and bays, coastal lagoons with fresher conditions, and

nearshore open sea. For each wetland habitat, diatom

indicator species were identified. Partial canonical

correspondence analysis showed that water conduc-

tivity, a proxy for salinity, was the most statistically

significant and independent variable for explaining

the distribution of benthic diatoms in the study area.

A transfer function, using a weighted average

regression model, was developed for conductivity

and displayed reasonable performance (r2 = 0.64;

RMSEP = 0.302 log10 mS/cm). Our study in the

Ebro Delta provides a basis for using diatom

assemblages to make quantitative conductivity infer-

ences, and for using diatom indicator species to

identify wetland habitats. These approaches are

complementary and may be valuable for paleoenvi-

ronmental studies of (1) effects of large-scale, natural

changes in the Delta (e.g. sea-level fluctuations), and

(2) impacts of short-term anthropogenic changes,

such as the introduction and development of rice

agriculture.

Keywords Coastal wetlands �Diatoms � Ebro Delta �
Habitats � Indicator species � Paleoecology

Introduction

Diatoms are used extensively to study present and past

environmental conditions in aquatic ecosystems
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worldwide because (1) their species react in a rapid

and sensitive way to environmental changes and (2)

they preserve in sediments for a long time because of

their resistant cell wall, which is made of silica (Smol

and Stoermer 2010). Knowledge of the modern

ecology of diatoms is needed to interpret what

conditions were like when past assemblages existed.

In contemporary freshwater systems such information

is abundant, but by no means complete. Studies of the

ecological preferences of diatoms in transitional

waters (e.g. estuaries, coastal wetlands, deltas), how-

ever, are scarce, despite the fact that these systems are

ecologically and economically very important

(Costanza et al. 1997), by virtue of the many

ecosystem goods and services they provide, e.g.

nutrient cycling, productivity, pollutant binding, etc.

In the Mediterranean Sea region, deltas and coastal

wetlands have been greatly affected by environmental

changes, both natural and anthropogenic. At a local

scale, for instance, hydrological impacts caused by

intensive agriculture have in some cases led to a

decline in water salinity and an increase in nutrient

concentrations (Comı́n et al. 1991), as well as a loss of

habitats via human settlement (Hollis 1992). At the

same time, deltas have been modified by a broad range

of natural factors, such as sea-level fluctuations

(Ibáñez et al. 2014) or changes in fluvial sediment

discharge (Xing et al. 2014). Given the lack of

historical records of past environmental conditions

and poor knowledge of their natural variability, a

comprehensive understanding of how historical pro-

cesses have structured deltaic habitats is important to

support better management of these vulnerable sys-

tems. Such knowledge can be acquired through

paleoecological methods (Smol 2002).

Quantitative assessments of diatom-environment

relationships (i.e. transfer functions) are frequently

used to reconstruct past environmental changes in

aquatic environments, particularly changes in salinity

(Hassan et al. 2009), pH (Battarbee et al. 2005), and

total phosphorus (Cooper et al. 1999). Of these

variables, salinity (or its proxy, conductivity) seems

to be especially relevant for tracking environmental

changes at the land–sea interface in coastal wetlands,

where freshwater and marine interactions are inher-

ently dynamic and intense. If there is good preserva-

tion of diatom valves in dated sediment cores, the

diatom fossil record can be used to reconstruct salinity

changes, for instance, during Holocene sea-level

fluctuations (Castro et al. 2013). Such processes are

essential for delta evolution (Giosan and Goodbred

2007; Ibáñez et al. 2014).

Another useful approach is the one pioneered by

Wachnicka et al. (2010, 2011) in Florida Bay and the

Everglades, who used diatoms as indicators of coastal

wetland habitats, to complement use of transfer

functions. To our knowledge, no work of this kind

has been done outside Florida coastal environments,

and certainly not in Mediterranean coastal wetlands,

where several distinct wetland habitats (e.g. marshes,

lagoons, sandflats, bays) occur in a patchy distribution

over a relatively small area, as in the Ebro Delta

(Ibáñez et al. 2000).

Our study had three main aims: (1) to determine the

main ecological factors that affect the distribution of

benthic diatom assemblages in the Ebro Delta, NE

Iberian Peninsula, (2) to identify indicator species for

the main habitat types, and (3) to develop a diatom-

based conductivity transfer function for the Ebro

Delta. With results from the present study (conduc-

tivity transfer function and indicator species for the

main habitat types), we should be able to improve

predictions made in an earlier study (Benito et al.

2014), in which we used a GIS approach to model

actual and potential habitat distributions, under sce-

narios of no human disturbance, in the Ebro Delta. It is

our hope that this approach will help establish

benchmark or reference conditions for deltaic habitats

to support environmental policies (e.g. Water Frame-

work Directive) and better define restoration targets.

Study area

The study was performed in the Ebro Delta (330 km2,

Fig. 1), which is one of the largest coastal wetlands in

the NW Mediterranean. The deltaic plain contains

diverse ecosystems, is extremely important for biodi-

versity (e.g. it is the second most important ‘‘Special

Protection Area’’ for birds in Spain), and has consid-

erable economic value (e.g. agricultural, fisheries,

aquaculture and tourism activities provide about €120
million annually) (SEO/BirdLife 1997). The Delta is a

micro-tidal system with an astronomical tidal range of

about 20–30 cm, though meteorological tides can

exceed 1 m. In the last ca. 150 years, large parts of the

Ebro Delta have been transformed for agricultural

purposes (Cardoch et al. 2002). Despite intensive use

of the Delta for agriculture, it still contains a high
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diversity of natural aquatic ecosystems, such as coastal

lagoons, marshes, mudflats and shallow bays, which

are included in the Ebro Delta Natural Park (EDNP)

and in the Natura 2000 Network, and all represent

good examples of Mediterranean wetland habitats.

Materials and methods

Sampling

Twenty-four sites were selected in nine different

regions within the EDNP [Fig. 1; Table 1 and Elec-

tronic Supplementary Material (ESM) Table 2] to

encompass the main environmental gradients (e.g.

salinity, nutrients) and habitat types in the study area.

Specifically, the coastal habitats selected for this study

were: coastal lagoons, salt marshes (i.e. Salicornia and

Juncus marshes), brackish marshes (i.e. Phragmites

marshes), microbial mats, semi-enclosed shallow

bays, and nearshore marine waters.

Sampling of sediment and overlying water, and

in situ measurement of selected environmental vari-

ables, were performed in November 2012, April 2013

and August 2013 to evaluate the contribution (if any) of

seasonal variation in the time-averaged diatom

communities sampled. The surface sediment layer,

which provides a spatially and temporally integrated

sample at each site, was collected using a 5.7-cm-

diameter corer (Beeker-type sampler), except at the

nearshore open-sea site, where a grab sampler was

needed because of the depth of the overlying water. The

corer was pressed into the sediment to*30 cmdepth to

ensure the top layer was collected. The sediment was

then carefully extruded to expose the top 0.5 cm of the

core, which was transferred to a vial. This process was

repeated three times at each site to cover spatial

variability of diatom assemblages and the three samples

were merged in a single vial and preserved with 4 %

formalin. Samples were taken near the edges of coastal

lagoons and bays, whereas in marshes samples were

collected within the marsh, far from nearby lagoons or

bays. In a few cases sampling was not possible because

the site had dried. Thus, we obtained a total dataset of

61 samples. Simultaneous with sediment sampling, and

taking care to avoid sediment resuspension, we col-

lected water samples by hand from near the bottom of

the water column and stored them on ice for transport to

the laboratory. Inorganic dissolved nutrients (NO3
-–N,

NO2
-–N, NH4

?–N, PO4
3-–P and SiO4

4-–Si) were

measured in filtered samples, following Grasshoff et al.

(1983). Seston chlorophyll a and pheophytin a were

Fig. 1 Regions within the Ebro Delta (a–g) and the locations of the 24 sampling sites (1–24). a Olles; b Fangar; c Garxal; d Aufacada;

e Tancada–Alfacs; f Encanyissada–Clot; g Banya. For detailed information about the 24 sampling sites see ESM Table 2
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extracted with 90 % acetone after filtration, measured

with a fluorometer, and calculated using the Lorenzen

formula (Lorenzen 1966). Additionally, electrical con-

ductivity EC25 (mS/cm), hereafter referred to as

conductivity, temperature (�C), dissolved oxygen

(DO, %), water level (cm) and pH were measured

in situ with a YSI 556 multiprobe. Furthermore, in one

sample campaign (April 2013), two additional sediment

samples (top 1 cm of the sediment layer) were taken

from each site to estimate the following sediment

properties: (1) the sediment fraction [0.063 mm

referred to here as percent sand, determined by the

wet sieving method (Facca and Sfriso 2007) and, (2)

organic matter content, as loss on ignition (LOI at

450 �C for 4 h) (Dean 1974).

Diatom processing and identification

For diatom analysis, sediment subsamples (*10 mL

of slurry) were cleaned using 30 % H2O2 and 37 %

HCl to remove organic material and carbonates,

respectively, and then rinsed several times with

deionised water (Renberg 1990). After complete

homogenization, *0.5 mL of cleaned material was

air dried on cover slips and permanently mounted in

Naphrax (refractive index 1.74). Diatom slides were

examined at 10009, using a Zeiss Axio A.1 light

microscope equipped with differential interference

contrast. Light micrographs were taken using a Canon

digital camera. At least 400 diatom valves were

counted per sample along transects. All identifications

were made to species level when possible, mainly

using diatom floras by Krammer and Lange-Bertalot

(1986a, b) and Witkowski et al. (2000), but also many

other taxonomic and floristic works, including Tomàs

(1988) and Álvarez-Blanco and Blanco (2014).

Multivariate ordinations

Diatom abundances, expressed as relative abundances,

were square root transformed to stabilize their vari-

ance. To reduce the effect of rare species in the

multivariate space, only taxa with a relative abundance

[3 % in at least one sample and occurring in [2

samples, were included in the analyses. Environmen-

tal variables, including water physico-chemical data

and sediment properties, were checked for skewness

and transformed (log10 ? 1) to improve linearity and

homoscedasticity.T
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Diatom data were analysed by means of cluster and

ordination analyses. First, to group samples according

to their species composition similarity, we performed

a hierarchical cluster analysis based on Bray–Curtis

similarity, with flexible beta as the linkage method

(Dufrêne and Legendre 1997). Diatom data were also

analysed with detrended correspondence analysis

(DCA). As an indirect ordination method, DCA allows

the major patterns of variation in the diatom data to be

determined without incorporating environmental vari-

ables. Both methods (i.e. cluster analysis and DCA)

are complementary and helped identify groups of

diatom samples having similar species (cluster

analysis) and provided information about the pattern

of variation within and between groups in ordination

space (DCA).

DCA ordination was also used to estimate the

length of the gradient. Axis lengths [2 standard

deviation (SD) units mean a complete turnover of

species (Legendre and Legendre 1998) and therefore a

unimodal species response can be assumed for the

species data. DCA with downweighting for rare

species was applied to the diatom data and a gradient

length of 3.88 SD was obtained, indicating that

unimodal models were adequate for our data. Conse-

quently, canonical correspondence analysis (CCA)

was used to relate the structure of the diatom

assemblages to measured environmental variables.

A preliminary CCA, including all measured envi-

ronmental variables, was performed to identify

collinear variables, based on the inspection of variance

inflation factors (VIF). All environmental variables

with VIFs[20 were removed for subsequent CCAs.

Next, a series of CCAs was performed using a single

environmental variable at a time. This was done to

quantify the explanatory power of each environmental

variable on the diatom data set (i.e. marginal effects),

as well as to obtain a full suite of individually

significant variables, including the most powerful

environmental predictors. The variables that did not

explain a significant contribution based on 999 Monte

Carlo permutation tests were excluded from the

following analyses. Then, a series of partial CCAs

was applied using the previously selected variables

individually, with the remaining ones as covariables.

This was employed to determine which variable made

independent contributions to explaining the total

variation in the diatom species data (i.e. unique

effects), as well as the contribution of interactions

between variables. The statistical significance of

environmental variables was assessed by 999 Monte

Carlo permutation tests at p\ 0.05.

Indicator species analyses

Indicator species analyses (IV) (Dufrêne and Legendre

1997) were used to identify diatom species that are

indicators of the diatom assemblages derived from

cluster analyses and CCA. The rationale of the method

is that the indicator value of a given species will be

maximal (IndVal varies between 0 and 100) if all the

individuals are found in a single group (high speci-

ficity) and they are present in all samples of that group

(high fidelity). The statistical significance of the

indicator taxa was assessed using a randomization

method involving 999 permutations.

Diatom-based inference model

The ratio of the first eigenvalue from the CCA-

constrained axis (k1) to the first eigenvalue from the

unconstrained axis (k2) was used to choose which

environmental variable was most suitable for mod-

elling species’ response to the selected variable.

Ideally, the ratio k1/k2 should be[1 (Juggins 2013)

or at least not lower than 0.5 (Kingston et al. 1992), as

this will ensure that the variable of interest explains a

significant and independent portion of the variation in

the biological data. Additionally, detrended canonical

correspondence analysis (DCCA) was used to check

whether a linear or unimodal response model is most

appropriate for building the diatom inference model

(Birks 1998).

Weighted averaging (WA) with classical and

inverse deshrinking (also known as simple WA), and

with/without tolerance downweighting, was used as a

transfer function statistical technique. Weighted aver-

aging partial least squares (WA-PLS) was also used to

determine if this method led to a substantial improve-

ment over WA when long environmental gradients

and low noise affect the dataset (Juggins and Birks

2012). All models were built using log10 transformed

conductivity and square-root transformed species

data. Leave-one-out (LOO, also termed jack-knifing)

and leave-one-site-out (LOSO) were chosen as cross-

validation methods (Birks 1998). The latter takes into

account the effect of potential spatial autocorrelation

on model performance, and is considered more
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appropriate for clustered data sets (Payne et al. 2012).

The performance (predictive ability) of each model

was determined by evaluating different parameters:

correlation between observed and inferred conduc-

tivities (r2LOO=LOSO), root mean square error of predic-

tion (RMSEPLOO/LOSO), and maximum biasLOO/LOSO.

The criteria to choose the preferred model were high

r2, low RMSEP and low maximum bias, following

Birks (1998). To correct the possible bias in RMSEP

estimation caused by uneven sampling along the

environmental gradient of interest, we applied the

segment-wise RMSEP approach (Telford and Birks

2011). All models were initially built using a screened

diatom data set (137 diatom taxa). However, effects of

(1) including all diatom taxa (424) and (2) removing

outlier samples, following Reed (1998), were also

assessed to see if there was any improvement in the

transfer functions.

Most multivariate analyses were performed using R

version 3.0.1 (R Development Core Team 2010). C2

version 1.6.8 (Juggins 2003) was used to calculate all

transfer functions. Finally, CANOCO version 4.5 (Ter

Braak and Smilauer 2002) was used to carry out

DCCA.

Results

Environmental gradients

A summary of the environmental variables measured

for each of the 24 study sites is in ESM Table 2. The

sites covered a wide range of conductivity

(1.13–107.67 mS/cm), NO3
-–N (0.6–1233.7 lg/L),

PO4
3-–N (2.5–201.4 lg/L), NH4

?–N (2.5–358.1 lg/
L), sand proportion (0–93.3 %) and organic matter

content (0.9–97.0 %). According to the sediment

properties, a clear pattern was observed. Sites with

low sand proportion had high organic matter content,

whereas those with higher sand proportions had lower

organic matter content.

Diatom assemblages and relationships

with environmental variables

A total of 424 diatom taxa, representing 85 genera,

were identified in the study sites (ESMTable 1), out of

which 137 taxa occurred in more than two samples and

had a relative abundance [3 %, and were the ones

principally used in the statistical analyses. Species

richness ranged from 9 to 58, with an average of 36.

Most of the species identified were benthic (96.4 %).

Twenty-seven species were abundant (relative abun-

dance C20 % in at least one sample) across the study

sites (Fig. 2). Among these, Achnanthes submarina,

Pseudostaurosiropsis geocollegarum and Navicula

salinicola were also widespread (i.e. occurring in

C50 % of the samples), together with Nitzschia

constricta and Cocconeis placentula var. placentula.

The relationship between some of these abundant

diatoms and conductivity showed a clear trend of

species turnover along the conductivity gradient

(Fig. 2).

Cluster analyses identified five diatom groups

according to the similarity in species composition

(ESM Fig. 1). The environmental characteristics of

each cluster group are shown in Fig. 3. Cluster 1 (17

samples) comprised salt marsh samples (i.e. Salicor-

nia and Juncus marshes: Fig. 1, sampling sites 2, 4, 7,

15, 24) and the two microbial mat samples (sampling

site 8). All samples of this group had high sand

proportion (C*60 %) and either medium (*21 mS/

cm) or high (up to*75 mS/cm) conductivity. Cluster

2 (13 samples) mainly comprised samples from

brackish marshes (i.e. Phragmites marshes: Fig. 1,

sampling sites 6, 10, 12, 13, 21, 23), with the exception

of four salt marsh samples from the Encanyissada

region (Fig. 1, sampling sites 10, 13), which had

especially high organic matter content in their

sediment. This group, 2, clustered samples with a

wide range of water conductivity, from freshwater to

as much as *42 mS/cm. There was also a wide

variation in sediment sand proportion, but the overall

average was lower than any other cluster except

cluster 5 (nearshore open sea). Cluster 3 (15 samples)

was composed of brackish coastal lagoon samples,

with medium or high conductivities averaging

*44 mS/cm (i.e. from Encanyissada and Tancada

lagoons: Fig. 1, sampling sites 11 and 22), and the bay

samples (i.e. from Alfacs and Fangar Bays: Fig. 1,

sampling sites 1 and 14). In contrast, cluster 4 (14

samples) comprised samples from coastal lagoons

with fresher conditions, i.e. with conductivities aver-

aging *10 mS/cm and never exceeding 20 mS/cm

(from Aufacada, Garxal, Olles and Clot Lagoons:

Fig. 1, sampling sites 5, 9, 17, 20), together with

brackish marsh samples from a coastal lagoon that is
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directly connected to the Ebro River mouth (Garxal

Lagoon: Fig. 1, sampling site 18). Samples of this

cluster displayed a wide range of NO3
-–N and NO2

-–

N content, as well as sediment sand and organic matter

percentages. Finally, cluster 5 consisted only of the

two samples from the nearshore open sea, with high

conductivity, the greatest water depth and rather low

sand proportion; indeed visual inspection revealed a

muddy sediment (Fig. 1, sampling site 3).

The gradient lengths (3.88 and 5.04 SD) revealed

by the DCA confirmed the suitability of unimodal

constrained ordination methods (CCA) to explore the

relationship between diatom assemblages and the

main environmental variables. The first two axes of an

initial CCA performed with all 14 measured environ-

mental variables and 137 taxa (those with a relative

abundance[3 % in at least one sample and occurring

in[2 samples), explained 12.3 % of the variance in

the diatom data. The CCA eigenvalues

(k1CCA = 0.42; k2CCA = 0.36) were similar to those

of the DCA (k1DCA = 0.53; k2DCA = 0.44), thus

indicating that the measured environmental variables

have a significant influence on the diatom species

distribution. There was no significant collinearity

between environmental variables because all variance

inflation factors were\10 and therefore all environ-

mental variables were subsequently retained. Among

the 14 environmental variables measured, 10 account-

ed for significant portions of the total variance

(p\ 0.05) in the diatom species data and were

selected for further analyses. These variables were

(from higher to lower explained marginal variance):

conductivity (5.57 %), water depth (5.34 %), organic

matter content (4.40 %), sand proportion (3.42 %),
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Fig. 2 Relative abundances of the most abundant diatom

species (C20 % in at least one sample) in the Ebro Delta

dataset along the log10 conductivity gradient. Species are

ordered according to their log10 conductivity optimum

(estimated using weighted average regression). Samples are

arranged by increasing log10 conductivity (mS/cm), from low

(top) to high conductivities (bottom)
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NO3
-–N (2.78 %), NO2

-–N (2.61 %), pH (2.61 %),

SiO4
4-–Si (2.59 %), seston chlorophyll a (2.53 %)

and PO4
3-–P (2.37 %). Partial CCAs determined that

conductivity, water depth, organic matter content,

sand proportion, NO2
-–N and NO3

-–N independently

explained significant portions of the variance in the

diatom data (ESM Table 3). Interestingly, water depth

was also selected as significant even after the two

nearshore open sea samples were removed, these two

being anomalous in our data set because they were

collected at depths[7 m.

The first two axes of the CCA, with the reduced set

of environmental variables, explained 11.5 % of the

diatom variance, with conductivity explaining the

greatest variance (4.6 %) once the effect of the other

variables had been taken into account (ESM Table 3).

The CCA ordination performed with conductivity,

water depth, organic matter content, sand proportion,

NO2
-–N and NO3

-–N (the six variables selected by

the reduced environmental data set that accounted for

independent and significant unique effects) and with

137 diatom species, supported the cluster division of

samples according to diatom composition (Fig. 4).

CCA axis 1 (6.3 % of the explained variance) arranged

samples from predominantly brackish/marine habitats

(salt marshes; brackish coastal lagoons and bays; and

nearshore open sea, i.e. clusters 1, 3 and 5, respec-

tively) to fresher habitats (Phragmites marshes and

those coastal lagoons with lower conductivity, i.e.

clusters 2 and 4, respectively). Thus, this axis is

principally a conductivity gradient. CCA axis 2 (5.2 %

of the explained variance) separated the marshes that

Fig. 3 Ranges of the measured environmental variables (box

plots) for the diatom groups defined by cluster analysis. 1, salt

marshes; 2, brackish marshes; 3, brackish coastal lagoons and

bays; 4, coastal lagoons with fresher conditions; 5, nearshore

open sea. T temperature, pH, DO dissolved oxygen saturation,

conductivity conductivity, PO4
3-–P orthophosphate–

phosphorus, NH4
?–N ammonium–nitrogen, NO2

-–N nitrite–

nitrogen, NO3
-–N nitrate–nitrogen, SiO4

4-–Si orthosilicate–

silicon, Chl-a seston chlorophyll a, Pheo-a pheophytin a, OM

organic matter content, Sand sand proportion. The boxes

represent the 25th and 75th percentiles, and the median (middle

line inside each box)
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have very shallow waters (i.e. Salicornia, Juncus and

Phragmites marshes, and microbial mats), from the

coastal lagoons, bays and nearshore open sea habitats.

Therefore, CCA axis 2 can be considered a shallow-

ness (water depth) gradient.

Indicator species

Indicator species for the five diatom groups identified

in the Ebro Delta were recognised through indicator

species analysis (IV). Thirty-nine species (Fig. 5)

showed statistically significant (p\ 0.05) indicator

values (IV) and had high IV ([50 %) and could

therefore be considered good indicator species

(Table 2). Interestingly, for clusters 1–3, the indicator

species showing full specificity (100 %) are also the

ones showing the lowest fidelity values (B40 %),

indicating they are only present in particular samples

within the group. Thus, within the salt marshes group,

Mastogloia aquilegiae and Amphora cf. roettgeri

occurred only in Juncus marshes and in microbial

mats, respectively. In the group of brackish coastal

lagoons and bays, Navicula viminoides and Navicula

cf. hansenii were recorded only in Encanyissada

Lagoon, whereas Ardissonea crystallina and Navicula

sp. 7 were found only in Tancada Lagoon.

Diatom-based conductivity model

Results of partial CCAs confirmed that conductivity

explained the largest and most significant amount of

variability in the diatom species data. DCCA axis-1

indicated a gradient length of 3.2 SD units, supporting

the use of unimodal methods (WA and WA-PLS).

Conductivity showed the highest ratio of the first

(constrained) CCA axis (k1) to the first unconstrained
axis (k2) (k1/k2 = 0.80) (ESM Table 3), indicating

that conductivity is an ecologically important deter-

minant of the distribution of diatoms in the Ebro Delta,

and therefore we proceeded on the basis that a realistic

diatom-based conductivity transfer function could be

developed.

Simple WA with classical deshrinking, performed

with all diatom species (424 taxa) and samples (61),

resulted in the best-performing diatom-conductivity

model,with the highest r2LOO (0.64), lowest RMSEPLOO
(0.241 log10 mS/cm) and lowest maximum bias (0.305

log10 mS/cm) (ESM Table 4). The performance

parameters based on WA-PLS methods did not show

a significant improvement over simple WA in terms of

r2 and RMSEP (results not presented). Segment-wise

RMSEP under the two cross validation methods

(LOO/LOSO) was higher (0.302 log10 mS/cm) than

model RMSEPLOO, indicating that RMSEP values

were biased because of (1) uneven sampling of the

conductivity gradient and, (2) clustered samples (ESM

Table 4). Following Reed (1998), outliers can be

identified as those samples that have a jack-knifed

residual [25 % of the conductivity range (conduc-

tivity range = 1.71 log10 mS/cm; 25 % of the con-

ductivity range = 0.427 log10 mS/cm). Applying

such a criterion, two potential outliers were identified:

a Phragmites marsh sample from the Encanyissada

region collected in November 2012 (jack-knifed

residual = 0.658 log10 mS/cm) and a sample of Olles

Lagoon from April 2013 (jack-knifed resi-

dual = 0.545 log10 mS/cm). The deletion of these

outliers resulted in an improvement of the WA model

performance in terms of r2 (r2LOO = 0.70). Regardless

of this improvement, segment-wise RMSEPLOSO
revealed a decrease in the model performance, and

therefore, we decided to keep these two potential

outliers in the WA model.

The preferred WA-based model had an

r2LOSO = 0.64 and a RMSEP LOSO = 0.27 log10 mS/

cm (Fig. 6a, b). Note that the simple WA-based model

performed better (in terms of all performance pa-

rameters: r2LOO=LOSO, RMSEPLOO/LOSO and maximum

biasLOO/LOSO) when all diatom taxa (n = 424) were

used for the calibration of the transfer function than

when only the screened diatom data (n = 137 taxa)

were used (ESM Table 4).

Discussion

Diatom–environment relationships

The environmental variables identified as important

for structuring the diatom distributions explained

*12 % of the total variance, which is low when

compared with the total variance explained in many

freshwater systems (Schönfelder et al. 2002; Leira and

Sabater 2005), but is not dissimilar to the total

variance explained in previous works dealing with

the ecology of diatoms in coastal habitats (*7–25 %:
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Sullivan 1978; Trobajo et al. 2004). Such relatively

low values are not surprising because of the par-

ticularly dynamic nature of these coastal environments

(wetlands and lagoons, deltas, estuaries, etc.), which

exacerbates the problem of ‘‘potential mismatches

between time-integrated sedimentary assemblages

compared to ‘spot’ measurements of environmental

variables’’ (Saunders 2011), especially when environ-

mental measures are taken from the water column.

There is also the problem, shared with freshwater

ecosystems, that large biological datasets often con-

tain many species and many zero values (Weckström

and Juggins 2005).

Conductivity and shallowness (water depth)

emerged as the main environmental gradients affect-

ing the benthic diatom community in the Ebro Delta.

Of course, conductivity itself does not affect the

physiology of diatoms. Rather, it is a proxy for the

overall amounts of salts present in water (salinity),

which have long been known to have a major effect on

diatom distributions. Thus, although there have not

been many works similar to ours in Mediterranean

deltas, Zalat and Vildary (2005) being one of the few

exceptions, in other Mediterranean coastal environ-

ments salinity has, not surprisingly, been shown to be

of paramount importance for the diatom assemblages

(Tomàs 1988; Trobajo et al. 2004 in Spanish Mediter-

ranean coastal wetlands). However, it is also known

that in these types of systems, i.e. estuaries, salt

marshes, coastal lagoons, etc., conductivity usually

co-varies with other environmental variables that also

influence diatom distribution, such as nutrients

(Thornton et al. 2002), and therefore the role of

conductivity (as a proxy for salinity) may be overes-

timated unless its real effect, attributable solely to

conductivity, is actually distinguished. Partial cano-

nical correspondence analyses shows that, of all the

measured variables, conductivity (representing sali-

nity) has the highest unique effect on the diatom

distribution. Moreover, single-variable CCA (con-

strained to conductivity) revealed that conductivity

also explains a statistically significant amount of the
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Fig. 4 Canonical correspondence analysis (CCA) diagram

showing the relationships of a samples and b species with the

selected environmental variables. Species reaching C10 %

maximum relative abundance in at least one sample are shown.

Only the six environmental variables that accounted for

statistically significant unique effects are shown (Cond

conductivity, depth water depth, OM organic matter content,

sand sand proportion, NO2 nitrite–nitrogen, NO3 nitrate–

nitrogen). The sample symbols correspond to the diatom groups

defined by cluster analysis (see text). For full species names see

ESM Table 1. Species scores located at the centre of the

diagram are shown separately in the bottom part of b
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total species variance (k1/k2 for conduc-

tivity = 0.80). Therefore, we are confident that

salinity, as a single factor, is very likely the overriding

environmental variable that influences diatom assem-

blages in the Ebro Delta.

Partial CCAs also revealed significant unique

effects of water depth on diatom assemblage distribu-

tion, even when the two samples from open sea

habitats were removed, these effects being only

slightly lower than those accounted for by conduc-

tivity (ESMTable 3). Water depth has also been found

to be an important variable affecting diatom distribu-

tions in other coastal habitats (Ryves et al. 2004). The

way water depth affects the diatom communities of the

Ebro Delta, however, is probably much more complex

than salinity. For instance, greater water depth

provides the opportunity for planktonic communities

to develop, as has been pointed out by several authors

(Weckström and Juggins 2005). In the Ebro Delta, this

effect can only make a limited contribution because

benthic diatom species dominate the samples at all

depths, even at the two nearshore, open sea sites

Fig. 5 Diatom indicator species under LM. Light micropho-

tographs were taken under differential inference contrast (DIC),

all at the same magnification. Scale bar represents 10 lm. 1,

Cocconeis scutellum (raphe valve); 2, Cocconeis scutellum

(rapheless valve); 3, Cocconeis peltoides (rapheless valve); 4,

Navicymbula pusilla m1; 5, Navicula microcari; 6, Nitzschia

coarctata; 7, Achnanthes fogedii (rapheless valve); 8, Achnan-

thes fogedii (raphe valve); 9, Ardissonea crystallina; 10,

Nitzschia pararostrata; 11, Achnanthes sp.1 (rapheless valve);

12, Achnanthes sp.1; 13, Cocconeis cf. neothumensis var.

marina (rapheless valve); 14, Amphora sp. 1; 15, Amphora cf.

roettgeri; 16, Navicula vimineoides; 17, Navicula perminuta;

18, Amphora sp.5; 19, Navicula sp.7; 20, Delphineis surirella;

21, Mastogloia braunii; 22, Mastogloia aquilegiae; 23, Semi-

navis robusta; 24, Achnanthes amoena (rapheless valve); 25,

Achnanthes amoena (raphe valve); 26, Achnanthes brevipes var.

intermedia; 27, Navicula gregaria; 28, Seminavis strigosa; 29,

30, Planothidium deperditum (frustule); 31, 32, Nitzschia

inconspicua; 33, Nitzschia constricta; 34, Navicula cf. hansenii;

35, Nitzschia liebetruthii; 36, Diploneis smithii; 37, Fragilaria

cf. neoelliptica; 38, Pseudostaurosiropsis cf. geocollegarum;

39, Pseudostaurosiropsis geocollegarum; 40, cf. Fragilaria sp.1

(frustule); 41, cf. Fragilaria sp.1; 42, Fragilaria gedanensis; 43,

Fragilaria cf. sopotensis; 44, cf. Fragilaria sp.2; 45, Fragilaria

atomus; 46, Fragilaria atomus (frustule); 47, cf. Opephora sp.1
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Table 2 Indicator values

(IV) of diatom indicator

species of each habitat

group identified by cluster

analysis (see text)

p value denotes the

statistical significance of IV

based on Monte Carlo tests

(999 permutations). Values

of specificity (S) and

fidelity (F) are also shown

Diatom species Code S F IV p value

Salt marshes (cluster 1: Salicornia, Juncus marshes, and microbial mats)

Navicymbula pusilla m1 NVPU1 89.1 64.7 75.9 0.024

Amphora sp.1 AMSP1 82.5 58.8 69.7 0.013

Mastogloia braunii MABRA 92.8 41.2 61.8 0.044

Mastogloia aquilegiae MAAQU 100 35.3 59.4 0.037

Amphora cf. roettgeri cAMROE 100 29.4 54.2 0.028

Brackish marshes (cluster 2: Phragmites marshes)

Achnanthes brevipes AHBRE 81.0 84.6 82.8 0.018

Navicula perminuta NAPER 90.0 61.5 74.4 0.009

Diploneis smithii DISMI 88.2 61.5 73.7 0.015

Navicula microcari NAMIC 91.1 53.8 70.1 0.018

Nitzschia inconspicua NIINC 77.6 69.2 73.3 0.040

Fragilaria cf. neoelliptica cFRNEO 87.2 46.2 63.4 0.046

Brackish coastal lagoons and bays (cluster 3)

Cocconeis scutellum COSCU 93.2 80.0 86.4 0.011

Achnanthes sp.1 AHSP1 99.2 73.3 85.3 0.014

Seminavis strigosa SESTR 81.9 80.0 80.9 0.017

Cocconeis cf. neothumensis var. marina cCONEM 95.1 66.7 79.6 0.019

Nitzschia pararostrata NIPAR 91.1 60.0 73.9 0.019

Achnanthes amoena AHAMO 76.1 66.7 71.3 0.019

Amphora sp.5 AMSP5 67.8 73.3 70.5 0.033

Nitzschia constricta NICON 59.8 80.0 69.2 0.048

Seminavis robusta SEROB 99.4 46.7 68.1 0.012

Nitzschia liebetruthii NILIE 85.6 53.3 67.6 0.017

Planothidium deperditum PLDEP 95.4 46.7 66.7 0.023

Cocconeis peltoides COPEL 82.1 53.3 66.2 0.012

Navicula vimineoides NAVIM 100 40.0 63.2 0.018

Navicula cf. hansenii cNAHAN 100 40.0 63.2 0.018

Ardissonea crystallina ARCRY 97.4 33.3 57.0 0.045

Navicula sp.7 NASP7 94.9 33.3 56.3 0.043

Coastal lagoons with fresher conditions (cluster 4)

Cf. Fragilaria sp.1 FRSP1 96.2 78.6 86.9 0.007

Fragilaria atomus FRATO 93.5 78.6 85.7 0.005

Pseudostaurosiropsis geocollegarum FRGEO 67.2 100 82.0 0.002

Pseudostaurosiropsis cf. geocollegarum cFRGEO 98.7 64.3 79.7 0.008

Fragilaria cf. sopotensis cFRSOP 84.4 71.4 77.6 0.029

Navicula gregaria NAGRE 61.4 92.9 75.5 0.027

Fragilaria gedanensis FRGED 87.9 64.3 75.2 0.034

Cf. Fragilaria sp.2 FRSP2 96.9 57.1 74.4 0.015

Cf. Opephora sp.1 OPSP1 89.1 50.0 66.8 0.025

Achnanthes fogedii AHFOG 76.1 57.1 66.0 0.043

Nearshore open sea (cluster 5)

Delphineis surirella DESUR 99.2 100 100 0.001

Nitzschia coarctata NICOA 57.3 100 75.7 0.019
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([7 m depth). Water depth can also affect diatom

communities through light availability and how it

buffers the effect of wind-induced turbulence and

wave action; the recurrent dominant NW winds in the

study area can exceed 100 km/h (Curcó et al. 2002).

Hence CCA axis 2 is defined as a shallowness

gradient—an integrative factor, including water depth,

but also other unmeasured variables like light avail-

ability, physical habitat instability, etc.—and could be

regarded as the expression of how energy enters into

the system and is dissipated through it.

Diatom assemblages as ecological indicators

of the Ebro Delta habitats

Results of this study illustrate that the five wetland

habitats identified in the Ebro Delta can be character-

ized using diatom indicator species. Most diatom

indicator species (p\ 0.05 and IV[ 50) showed high

specificity and high fidelity to their habitat; however,

interestingly, a few exhibited a combination of full

specificity (100 %) and relatively low fidelity

(B40 %), very likely indicating a preference for

particular conditions or sites within the habitat type.

For instance, in the salt marsh group (cluster 1),

Mastogloia aquilegiae and Amphora cf. roettgeriwere

exclusively found in Juncus marsh samples and

microbial mat samples, respectively, and may there-

fore be indicators of these two environments. Again,

within brackish coastal lagoons and bays (cluster 3),

Navicula viminoides and Navicula cf. hansenii, which

are small motile diatoms considered to be epipsam-

mic, brackish-marine species (Witkowski et al. 2000),

were only found in Encanyissada Lagoon (in all

samples), whereas Ardissonea crystallina and Nav-

icula sp. 7 were restricted to Tancada Lagoon (some

samples), and this could reflect the different salinity

regimes present in these two lagoons. Both lagoons

receive freshwater from surrounding rice fields during

the rice-flooding season (April–December), but En-

canyissada (mesohaline) shows more freshwater in-

fluence than Tancada Lagoon (polyhaline) (Prado

et al. 2012). Our results highlight the usefulness of

considering not only the overall indicator value, but

also the combination of specificity and fidelity values,

to understand what the presence of a particular

indicator species means (Rovira et al. 2012).

Distributions of some abundant diatom taxa along

the conductivity gradient (Fig. 2) can serve to identify

potential indicators of conductivity (as a proxy for

salinity) in the Delta habitats. For instance, Navicula

stundlii and Nitzschia thermaloides are only present at

Fig. 6 a Scatter plot showing the observed log10 conductivity

(mS/cm) against the diatom-inferred log10 conductivity (mS/

cm) for weighted averaging with classical deshrinking model

(WA-CLA) and b comparison of overall RMSEP and segment-

wise RMSEP under LOSO cross validation method. Grey bars

are the number of samples within the ten equal groups of log 10

conductivity values
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the upper end of the conductivity gradient and might

be indicators of saline environments. Similarly,

species only present at the lower end of the gradient,

such as Navicula antonii and Navicula cari, could be

used as indicators of freshwater conditions.

Diatom-conductivity model

Performance of the model looks reasonable (r2LOSO =

0.64) when compared with other salinity/conductivity

models developed for similar environments, such as

South American estuaries (Hassan et al. 2009: r2jack =

0.75), Australian coastal waters (Saunders et al. 2008:

r2jack = 0.54) and South Florida coastal wetlands

(Wachnicka et al. 2011: r2jack = 0.85). However,

application of the transfer function presented here to

similar environments elsewhere might need to be done

with caution, because the sampled sites come from

only one Mediterranean wetland region, the Ebro

Delta, and might therefore be biased by particular site-

specific natural or human-driven processes. To over-

come this potential problem, future research should

span a wider range of Mediterranean coastal wetlands,

such as the Nile Delta and salt marshes and lagoons

along the African coast of the Mediterranean (Gasse

et al. 1995; Flower et al. 2001), or geographically

adjacent areas such as Spanish coastal wetlands

(Trobajo et al. 2004) and endorheic salt lake basins

(Reed 1998), to develop a combined diatom-conduc-

tivity training set.

Application to paleoenvironmental reconstruction

Most Mediterranean deltas and other coastal wetlands

have been severely influenced by intensive agricul-

ture, upstream catchment water use and sediment

retention, eutrophication, etc., and in the future will

likely be affected by sea-level rise associated with

global climate change (Day et al. 2011). For example,

global average sea-level rise is currently (1993–2010)

*3.0 mm/year (Hay et al. 2015) and projected to

increase (IPCC 2013), which is greater than the current

sediment accretion rate in some coastal habitats of the

Ebro Delta (Ibáñez et al. 2010). However, the

economic and ecological value of estuaries and coastal

wetlands is among the highest of any biome (on an

area basis) according to the global analysis of

Costanza et al. (1997). Therefore, a strategy for

sustainable management of deltas is of paramount

importance and such a strategy can only be achieved

by understanding the natural and anthropogenic pro-

cesses that have moulded these ecosystems on a range

of time scales. In the absence of long-term environ-

mental and historical records (certainly poor for many

Mediterranean coastal wetlands), paleoecological ap-

proaches are perhaps the only way to investigate how

these dynamic ecosystems have been structured as a

result of natural processes, together with human

impacts.

Results of our study show that present-day delta

diatom assemblages can be used to determine past

conductivity and habitat conditions because (1) there

is a significant quantifiable relationship between

diatoms and present-day water conductivity, as shown

by the transfer function and, (2) the most representa-

tive Delta habitat types have been successfully clas-

sified via diatom indicator species. As noted in the

Introduction, whereas reconstruction of salinity has

often been undertaken using changes in diatom

communities, the use of diatoms as indicators of the

presence of particular coastal wetland habitats is

unusual, with the exception of e.g. Wachnicka et al.

(2010, 2011). This aspect adds a valuable extra

dimension to the study, because conductivity (as a

proxy for salinity) is not the only factor structuring

Ebro Delta habitats. Thus, even if the exact conduc-

tivity could be inferred for a particular site at some

time in the past, we would not necessarily know which

habitat was present. For instance, for a conductivity

*40 mS/cm, both Salicornia marsh and coastal

lagoon could be possible. The diatom indicator species

approach allows the main coastal wetland habitats to

be characterized and identified in adequately pre-

served fossil assemblages, assuming of course that

sufficiently similar habitat types were present in the

past, i.e. assuming uniformitarianism (Birks 2003). In

the shorter term (100–150 years) this assumption

seems safe for the greater part of the Ebro Delta,

because the major factor involved in creating the

modern appearance of the Delta, intensive rice culti-

vation, has operated since ca. 1860 (Comı́n et al.

1991). The main consequence of rice cultivation for

the remaining Delta ecosystems has been alteration of

the natural hydrological regime, making the period

spring–summer (April–September) fresher than be-

fore, because of the rice-growing season (Prado et al.

2012). We therefore think our dataset not only covers
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the most representative habitat types, but is suitable

for detecting changes caused by human activities

during the last 150 years. Furthermore, lagoons, salt

marshes, bays and nearshore marine environments

have always existed in the Delta and so both the

conductivity transfer function and our indicator

approach should also be useful over a longer period

for tracing the evolution of the Delta and how it has

been affected by historical (Iberian, Roman, mediae-

val) events, taking appropriate caution because some

habitats and communities may have no modern

analogues. Although dense human settlement of the

Delta is comparatively recent and accompanied

development of intensive rice agriculture during the

last 150 years, the Delta has long been used for

ranching and exploited for its rich resources of wild

game, fish and salt, soda manufacture, etc. (SEO/

BirdLife 1997).

Conclusions

This study presents the first dataset from a Mediter-

ranean delta that provides a basis for inferring past

habitat changes from diatom communities. Not sur-

prisingly, the conductivity (salinity) gradient explains

a significant proportion of differences among diatom

assemblages and a transfer function for reconstructing

water conductivity can therefore be developed. In

addition, our indicator species analysis provides a

basis for identifying the major wetland habitat types in

the Delta from the diatoms. These tools are important

given the lack of data about environmental change in

the Delta, including the hydrological alterations that

accompanied intensive rice cultivation and earlier

changes that may have been caused by more subtle

exploitation. Diatoms, together with other biological

proxies (e.g. benthic foraminifera), may allow the

reconstruction of changes in habitat condition across

space and time in the Ebro Delta wetlands.
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Supplementary material 

Supplementary Figure 1. Dendrogram of the Ebro Delta samples showing the five habitat types (OS: nearshore open 

sea) identified according to similarity in diatom species composition (number of samples per group in brackets). 

Sample provenances: O = nearshore open sea; M = microbial mat; B = semi-enclosed bays; C = coastal lagoons; S = 

Salicornia marshes; J = Juncus marshes; P = Phragmites marshes 

 

Supplementary Table 1 List of diatom taxa found in the Ebro Delta samples with their corresponding codes (see 

Appendix I) 
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Supplementary Table 2 Mean and standard deviation (in italics) of the measured environmental variables from the 24 studied sites in the Ebro Delta. Abbreviations: n = 

number of samples for each site. T = temperature; DO = dissolved oxygen saturation; Cond = conductivity (EC25); Sand = sand proportion; OM = organic matter content; Chl-

a = Seston chlorophyll a; Pheo = Pheophytin a  

 

Site Delta region Habitats n T pH DO  Cond Sand  OM  Depth  PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a  Pheo-a 

        ºC   %  mS/cm % % cm µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

1 Alfacs Bay 3 18.5 8.09 92.4 43.97 69.3 1.1 42 14.6 43.4 7.6 27.4 628 3 2 

    5.4 0.15 12.4 5.81 0 0 4 9.6 51.0 5.9 13.1 197 2 1 

2 Alfacs Salicornia 3 18.8 7.97 122.3 44.71 5.0 5.9 8 16.2 40.2 5.6 20.7 488 5 2 

    5.1 0.13 29.64 8.88 0 0 4 9.2 48.2 4.2 19.6 126 4 1 

3 Banya Sea 2 20.3 7.99 89.4 51.84 18.5 4.9 720 5.9 16.9 2.5 17.8 107 3 1 

    6.9 0.04 11.46 7.93 0 0 28 1.2 17.2 1.3 2.2 81 2 0 

4 Aufacada Juncus 3 18.3 7.45 60.93 20.16 77.5 3.8 12 12.3 19.4 2.9 15.7 2,083 7 5 

    5.3 0.4 30.06 2.59 0 0 3 8.5 14.0 2.0 11.7 2,346 6 3 

5 Aufacada Lagoon 3 19.8 8.12 93.47 15.06 89.8 3.7 52 13.3 12.1 7.4 42.6 1,865 7 3 

    5.2 0.48 16.82 7.47 0 0 5 10.2 9.2 8.3 42.9 135 4 1 

6 Aufacada Phragmites 2 15.2 7.2 44.35 17.11 25 36.7 20 22.1 8.7 7.8 63.6 2,122 21 5 

    0.9 0.1 5.02 4.21 0 0 14 7.0 5.3 5.6 63.7 956 26 4 

7 Aufacada Salicornia 3 18.7 7.46 37.8 29.27 58.8 2.8 11 16.5 37.0 1.7 25.5 3,517 9 3 

    5.1 0.19 17.41 1.96 0 0 8 9.5 11.5 1.1 28.1 2,650 12 2 

8 Banya Microbial mat 2 21.4 8.02 99.6 73.18 76.3 5.8 3 37.0 32.0 3.6 20.6 461 6 2 

 
 

  8.9 0.03 20.22 48.76 0 0 3 14.0 1.6 0.6 25.6 224 5 1 

9 Clot Lagoon 1 16.9 7.82 75.2 2.9 0 26.6 55 48.2 150.0 15.1 642.7 1,613 5 4 

    - - - - - - - - - - - - - - 

10 Encanyissada Juncus 3 22.1 7.55 117.77 36.4 73.9 66.3 19 40.0 22.8 6.1 34.6 2,027 25 3 

    6.6 0.52 99.53 28.37 0 0 18 40.5 7.3 5.4 19.1 495 17 3 

11 Encanyissada Lagoon 4 20.3 8.01 91.1 28.74 76.8 0.9 56 25.6 37.0 2.2 54.2 1,107 16 -1 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 1: Benthic diatom assemblages 

 

Site Delta region Habitats n T pH DO  Cond Sand  OM  Depth  PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a  Pheo-a 

        ºC   %  mS/cm % % cm µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

    5.4 0.35 17.93 16.15 2.8 0 17 20.0 18.3 2.3 87.4 689 26 4 

12 Encanyissada Phragmites 3 22.7 7.88 100.03 25.89 7.2 96.9 16 35.2 23.5 5.2 227.7 5,573 22 10 

    5.6 0.2 63.27 19.68 0 0 6 9.2 4.9 3.8 373.7 6,610 24 11 

13 Encanyissada Salicornia 3 21.4 7.73 92.07 24.83 61.2 56.6 19 51.8 56.5 2.8 36.3 2,370 32 5 

    7.5 0.64 69.73 14.22 0 0 11 47.0 45.9 0.5 31.4 2,356 26 1 

14 Fangar Bay 2 19.5 8.47 109.5 22.12 92.3 1.8 30 16.6 20.0 19.5 23.4 310 4 4 

    3.4 0.63 14.57 7.98 0 0 14 8.5 8.0 25.1 20.9 232 2 2 

15 Fangar Salicornia 2 25.5 7.68 53.6 56.93 80.5 46.8 17 48.8 229.4 9.1 8.1 1,318 4 3 

 
 

  3.4 0.23 48.22 6.75 0 0 1 55.4 182.0 3.5 3.7 922 1 2 

16 Garxal Juncus 2 21.7 7.33 62.25 18.8 93.4 3.9 11 55.6 18.5 2.7 7.1 2,471 14 2 

    6.7 0.09 5.16 2.27 0 0 1 61.9 0.2 1.0 5.6 306 3 0 

17 Garxal Lagoon 3 19.1 8.22 82.73 8.88 92.1 2.3 27 11.2 26.1 1.7 16.8 1,461 7 2 

    6.7 0.59 43.84 6.03 0 0 3 1.1 17.4 1.4 13.8 1,470 6 2 

18 Garxal Phragmites 3 20.1 8.39 102.7 8.37 65.8 39.8 8 13.2 32.8 1.3 47.9 1,949 7 4 

    6.3 0.46 37.39 5.83 0 0 5 2.2 28.6 1.0 39.2 2,382 5 3 

19 Garxal Salicornia 1 23.9 8.5 106.8 17.27 92.3 3.2 10 11.7 24.8 2.4 2.6 293 10 3 

    - - - - - - - - - - - - - - 

20 Olles Lagoon 3 19.9 7.88 96.97 3.39 26.8 5.6 56 28.0 91.2 32.6 963.5 2,091 24 5 

    5.5 0.23 18.96 3.63 0 0 15 14.3 27.7 19.4 403.9 858 23 3 

21 Olles Phragmites 2 17.6 7.62 51.3 1.98 0 40.6 18 34.2 46.7 11.4 570.8 2,009 9 3 

    5.4 0.09 32.39 1.18 0 0 11 13.8 55.1 13.3 770.2 518 5 0 

22 Tancada Lagoon 4 18.1 7.79 80.88 39.55 55.2 3.3 46 19.5 100.5 11.2 21.8 758 5 3 

    5.22 0.24 15.88 9.73 31.0 0 13 17.1 54.9 6.1 15.2 409 4 2 

23 Tancada Phragmites 3 18.4 7.24 44.97 27.94 31.9 27.2 9 75.1 66.6 3.5 15.2 1,033 28 15 

    4.4 0.28 4.43 12.99 0 0 5 91.9 85.0 1.8 24.4 143 14 12 
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Site Delta region Habitats n T pH DO  Cond Sand  OM  Depth  PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a  Pheo-a 

        ºC   %  mS/cm % % cm µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

24 Tancada Salicornia 1 13.4 7.33 62.1 26.52 63.7 17.8 14 201.4 3.3 3.2 113.4 1,286 46 13 
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Supplementary Table 3 Results of Canonical Correspondence Analysis (CCA) of diatom-environment relationships 

for the Ebro Delta samples. a) Marginal effects indicate the variance explained by each variable considered alone. b) 

Unique effects indicate percentage of variance explained by each environmental variable, with the remaining variables 

treated as covariables. λ1: eigenvalue of the constrained axis 1; λ1/λ2 : ratio of the constrained axis 1 to the 

unconstrained axis 1. In bold are those variables initially selected by the CCAs. In bold and highlighted in gray colour 

are the final variables selected by the partial CCAs. T: temperature (ºC); pH; DO: dissolved oxygen saturation (%); 

Sand = sand proportion; OM = organic matter content; PO4
3–-P: orthophosphate-phosphorus (µg/L); NH4

+-N: 

ammonium-nitrogen (µg/L); NO2
–-N: nitrite-nitrogen (µg/L); NO3

–-N: nitrate-nitrogen (µg/L); SiO4
4–-Si: orthosilicate-

silicon (µg/L); Chl-a: seston chlorophyll a (µg/L); Pheo-a: pheophytin a (µg/L) 

 

 
a) CCAs (marginal effects) 

Variable % variance explained p value    

Conductivity 5.47 0.005   
 

Depth 5.34 0.005    

OM 4.40 0.005    

Sand 3.42 0.005    

NO3
–
-N 2.78 0.01    

NO2
–
-N 2.61 0.01    

pH 2.61 0.01    

SiO4
4–

-Si 2.59 0.01    

Chl-a 2.53 0.01    

PO4
3–

-P 2.37 0.01    

Pheo-a 2.09 0.14    

NH4
+-N 1.89 0.12    

DO 1.57 0.43    

T 1.33 0.77    

b) Partial CCAs (unique effects)  

Variable % variance explained p value λ1 λ1/λ2  

Conductivity 4.58 0.005 0.294 0.80  

Depth 4.08 0.005 0.262 0.70  

OM 2.56 0.005 0.164 0.44  

Sand 2.28 0.005 0.147 0.39  

NO2
–
-N 2.16 0.015 0.138 0.37  

NO3
–
-N 1.82 0.05 0.113 0.31  

pH 1.82 0.07 0.110 0.30  

PO4
3–-P 1.74 0.13 0.111 0.29  
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SiO4
4–-Si 1.21 0.71 0.077 0.21  

Chl-a 1.11 0.91 0.069 0.18  

Sum unique effects 23.3     

Intercorrelations 4.1     

Total variance explained 27.4     

 

 

Supplementary Table 4 Model performances for the diatom-based conductivity transfer functions (WA-INV, WA-

CLA, WATOL-INV, WATOL-CLA). All models were cross-validated using the leave-one-out method (LOO, also 

called jack-knifing) and leave-one-site-out (LOSO), and were built on square root transformed species data and log10 

transformed conductivity. Abbreviations: WA = Weighted-Averaging; INV = Inverse deshrinking; CLA = Classical 

deshrinking; WATOL = Weighted-Averaging with tolerance downweighted. The model preferred is highlighted in 

bold and gray colour 

 
Model   r

2
  RMSEP 

(log10 

mS/cm) 

Max Bias 

(log10 mS/cm) 

Mean segment 

RMSEP (log10 

mS/cm) 

Diatom dataset: n samples = 61, n taxa = 424  

LOO (leave-one-out) 

  WA-INV   0.63 0.24 0.38 0.32 

  WA-CLA   0.64 0.24 0.30 0.30 

  WATOL-INV   0.48 0.29 0.72 - 

  WATOL-CLA   0.48 0.29 0.70 - 

  

LOSO (leave-one-site-out) 

  WA-INV   0.62 0.26 0.39 0.33 

  WA-CLA   0.64 0.27 0.32 0.30 

  WATOL-INV   0.43 0.31 0.74 - 

  WATOL-CLA   0.43 0.31 0.72 - 

       

Diatom dataset: n samples = 61, n taxa = 137  

LOO (leave-one-out) 

  WA-INV   0.58 0.25 0.42 0.33 

  WA-CLA   0.59 0.28 0.33 0.31 

  WATOL-INV   0.53 0.27 0.46 - 

  WATOL-CLA   0.54 0.29 0.36 - 

       

LOSO (leave-one-site-out) 
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Model   r
2
  RMSEP 

(log10 

mS/cm) 

Max Bias 

(log10 mS/cm) 

Mean segment 

RMSEP (log10 

mS/cm) 

  WA-INV   0.59 0.25 0.43 0.34 

  WA-CLA   0.60 0.27 0.33 0.32 

  WATOL-INV   0.48 0.29 0.47 - 

  WATOL-CLA   0.49 0.30 0.45 - 

       

Diatom dataset: n samples = 59, n taxa = 413  

LOO (leave-one-out) 

  WA-INV   0.69 0.28 0.39 0.34 

  WA-CLA   0.70 0.21 0.33 0.32 

  WATOL-INV   0.53 0.27 0.64  

  WATOL-CLA   0.53 0.27 0.61  

 

LOSO (leave-one-site-out) 

  WA-INV   0.70 0.21 0.38 0.35 

  WA-CLA   0.70 0.29 0.32 0.32 

  WATOL-INV   0.53 0.27 0.65 - 

  WATOL-CLA   0.53 0.27 0.61 - 

       

Diatom dataset: n samples = 59, n taxa = 137  

LOO (leave-one-out) 

  WA-INV   0.64 0.23 0.38 0.36 

  WA-CLA   0.65 0.25 0.29 0.36 

  WATOL-INV   0.62 0.24 0.40 - 

  WATOL-CLA   0.63 0.25 0.37 - 

 

LOSO (leave-one-site-out) 

  WA-INV   0.65 0.23 0.36 0.36 

  WA-CLA   0.66 0.24 0.27 0.35 

  WATOL-INV   0.63 0.24 0.38 - 

  WATOL-CLA   0.63 0.25 0.38 - 
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Abstract 

The modern ecology of benthic foraminiferal assemblages and their use as ecological indicators 

were analyzed in the Ebro Delta (NW Mediterranean Sea). Foraminiferal distributions were 

based upon our own data and those in an unpublished PhD dissertation, altogether comprising 

191 sediment surface samples covering a wide range of deltaic habitats and adjacent open sea 

areas. According to similarity in species composition, cluster analysis identified four habitat 

types: (1) offshore, (2) nearshore and outer bays, (3) coastal lagoons and inner bays, and (4) salt 

and brackish marshes. Canonical Correspondence Analysis showed that water depth, salinity 

and sand content were the main environmental factors structuring living foraminiferal 

assemblages. As revealed by partial Canonical Correspondence Analysis, water depth emerged 

as the most statistically significant variable affecting the distribution of modern foraminifera in 

the Ebro Delta. Thus, a transfer function for water depth using Weighted Average Partial Least 

Squares regression was developed. The resulting model (r2 = 0.89; RMSEP = 0.32 log10 m) 

assessed by cross validation (leave-one-site-out, LOSO) has provided a potentially useful tool 

for water-depth reconstructions in the Ebro Delta. In addition, a multiproxy approach 

(foraminifera plus diatoms) was used for the Delta plain habitats, showing that the relationship 

between salinity and species was strong, but not better than using diatom assemblage alone. The 

results of this work indicated the potential role of modern foraminifera as quantitative indicators 

of water depth and habitat types in the Ebro Delta. This integrated approach (transfer function 

and indicator species) will allow reconstruction of the palaeoenvironmental changes that have 

occurred in the Ebro Delta, based on Holocene foraminiferal analysis. 

Keywords: Ebro Delta; Coastal wetlands; Multiproxy; Palaeoecology; Diatoms; Indicator 

Species 
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1. Introduction 

Among benthic micro-organisms, foraminifera and diatoms are of great importance in aquatic 

ecosystems worldwide because i) their species react in a rapid and sensitive way to 

environmental changes in water bodies, and ii) they preserve in sediments for a long time due to 

their shells, which are made mainly of calcium carbonate (i.e. hyaline and porcellaneous 

foraminifera) or silica (diatoms) (Scott et al. 2001; Smol and Stoermer 2010). If the modern 

ecology of these organisms is known, then the composition of fossil assemblages can be used 

for palaeoenvironmental reconstructions and palaeoecological indication (Debenay et al. 2000; 

Birks 2003), including studies of transitional ecosystems (e.g. estuaries, coastal lagoons, deltas). 

These kind of environments are of paramount importance because provide more goods and 

services than other biomes for the same unit area (e.g. productivity, nutrient removal, sediment 

retention, etc.) (Costanza et al. 1997; Bouchet et al. 2012; Schönfeld et al. 2012). 

In Mediterranean coastal wetlands, present-day habitat distributions have been determined by 

both natural and anthropogenic-driven changes. Human impacts include, among others, 

alteration of hydrological cycles and loss of habitats, caused mostly by intensive agriculture 

(Comín et al. 1991; Hollis 1992). Key natural factors affecting Mediterranean deltas include 

sea-level fluctuations (Ibáñez et al. 2014), changes in fluvial sediment discharge (Xing et al. 

2014) and, at the marine interface, wave action (Jiménez et al. 1995). In the context of the high 

complexity of coastal ecosystems and poor knowledge of their intrinsic variability, and given 

that there is a lack of written historical records in many cases, palaeoecological approaches can 

play a crucial role in providing enough temporal scale to disentangle natural from human-

related changes (Smol 2002). 

In shallow coastal marine environments, benthic foraminiferal assemblages are controlled by a 

wide range of environmental conditions (Murray 2001). If a statistical significant relationship 

exists between species and the variable of interest, quantitative assessment of foraminifera–

environment relationships can provide useful tools for reconstructing changes in these 

ecosystems. Foraminifera transfer functions have been published for various physical and 

chemical parameters, such as sea surface temperature (Sejrup et al. 2004), salinity (Leorri and 

Cearreta 2009), surface elevation (Horton and Edwards 2006; Callard et al. 2010; Leorri et al. 

2010; Kemp et al. 2013) and water depth (Hayward 2004; Horton et al. 2007; Rossi and Horton 

2009; Milker et al. 2011). Water depth and elevation would be useful parameters to estimate 

from fossil assemblages in deltas, giving valuable information about the evolution of the delta 

and past sea-level changes. Although the depth-related niche of a species may vary depending 

on local physiographic conditions (Herkat and Ladjal 2013), correlations between water depth 

and foraminiferal assemblages have already been shown to reflect both the direct effects of this 

variable (from hydrostatic pressure, in the deeper parts of the continental shelf: Gooday 2003) 
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and also the indirect effects on benthic foraminiferal distributions in the Mediterranean Sea (e.g. 

from organic matter and oxygen concentrations in the surface sediments: Mojtahid et al. 2010; 

Goineau et al. 2011; López-Belzunce et al. 2014). Specifically, a pioneering study by Scrutton 

(1969) in the shallow marine area off the Ebro Delta revealed that foraminiferal distributions are 

closely related with bathymetry. 

Another method used by palaeoecologists to reconstruct past environments is the indicator 

species approach (Birks 2003). Although the use of diatoms as indicators of coastal ecosystems 

is relatively common (Wachnicka et al. 2011; Rovira et al. 2012; Nodine and Gaiser 2014; 

Benito et al. 2015), only two studies have previously applied such an approach together with 

foraminifera. One of these cases is Goineau et al. (2011), who studied the offshore foraminiferal 

assemblages in the Rhone prodelta (NW Mediterranean), and the other one is Baldi and 

Hohenegger (2008), who applied an indicator approach to a sedimentary sequence from Austria. 

To our knowledge, however, no study of this kind has been done in coastal wetlands, where 

different habitats (e.g. marshes, lagoons, sandflats, bays) are present in small patches due to the 

micro-tidal setting (as in the case of the Ebro Delta: Ibáñez et al. 2000). 

The principal aims of our study are (1) to identify the main environmental factors structuring 

living foraminiferal assemblages of the Ebro Delta (NE Iberian Peninsula), (2) to identify 

indicator species for the main habitat types, and (3) to develop a water-depth transfer function 

based on modern distribution of foraminifera in the Delta plain and its surrounding marine 

areas. An additional aim was to compare a multiproxy analysis (foraminifera plus diatoms) with 

the results obtained in a previous study, in which diatom assemblages were used as indicators of 

the Ebro Delta habitat types (Benito et al. 2015). The tools developed here were designed for 

use in analysing the fossil foraminiferal content in dated sediment cores collected at different 

sites on the Delta plain. The objetive is to provide reliable evidence to assess the 

palaeoenvironments and evolution of the Delta during the Holocene, and to document 

environmental changes since the beginning of intensive human settlement in the Ebro Delta (i.e. 

in the last c. 200 years). It is hoped that this study will help to provide data for supporting 

environmental policies in the context of future restoration projects. 

 

2. Study area 

The Ebro Delta is located on the Mediterranean coast of the Iberian Peninsula (Fig. 1). The 

Delta is one of the largest coastal wetlands in the NW Mediterranean and is irrigated by the 

Ebro River, which has the highest mean annual flow of any Spanish river and drains 15% of the 

area of Spain (85,550 km2) (Romaní et al. 2010). Nowadays, however, the Delta receives only a 

small fraction of the water and sediments it would have carried naturally, because of the dam 
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constructions (started mid 1960s) and intensive use of water for agriculture. Before intensive 

human activities, xerophytic Mediterranean woodlands were the most dominant land use in the 

basin. Nowadays, irrigated cropland and pasture with fragmented vegetation patches dominate 

the landscape of the Ebro Basin. However, though these land cover changes increased the 

suspended sediment load at the river mouth, the final result is still considerably lower than the 

sediment load naturally transported by the river (Xing et al. 2014).  

 

 

Fig. 1 Location of Scrutton's transects (1–11 and 36, back dots) and our sampling sites (12–35, 

filled circles) within the Delta plain regions (A–G). Transects shown in detail: 1: South bay, 2: 

Las Casas, 3: Vinaroz, 4: South faro, 5: Salinas, 6: South platform, 7: South channel, 8: Cabo 

Tortosa, 9: River mouth, 10: North platform, 11: North faro, 36: Encanyissada lagoon. Different 

areas within the Delta shown in detail: A: Olles; B: Fangar; C: Garxal; D: Aufacada; E: 

Tancada–Alfacs; F: Encanyissada–Clot; G: Banya.  

The deltaic plain has a subaerial surface of 330 km2 while its submerged area (pro-delta) has an 

estimated surface of 2,2 km2 (Rodríguez et al. 2010). The plain is extremely flat, reaching a 

maximum altitude of 3–4 m above sea level only near the inner border of the Delta. The Ebro 

Delta is a micro-tidal system, with an astronomical tidal range of around 20–30 cm. However, 

meteorological tides resulting from changes in atmospheric pressure can sometimes exceed 1 m. 

Coastal processes operating in the Delta include longshore currents towards the south and wave 
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action. These affect the deltaic fringe generating sediment erosion and transportation. Fine 

sediment is transported by offshore (i.e. prodelta, >10 m water depth) and longshore currents to 

form spits at the north and south of the Delta (see Fig. 1). These sandy spits constitute two semi-

enclosed shallow bays with marine salinities and sandy-mud substrates. The freshwater river 

discharge forms a surface layer ca. 3 m thick on the denser seawater and does not influence 

depths greater than 10 m (Maldonado and Murray 1975). Within deltaic plain, salinity can vary 

from almost freshwater (< 3 ppt) to brackish-marine (16–30 ppt) or hypersaline (~70 ppt) 

depending on factors such as elevation, inputs of upland runoff, marine influence or soil 

drainage.  

A typical Mediterranean littoral climate characterises the Ebro Delta, with mean temperatures 

ranging from 26ºC during July and August to 10ºC in January. Maximum precipitation is 

recorded mainly during autumm (37% of the total) with annual mean of 525 mm (Curcó 2006).  

As with deltas in other parts of the world, the formation of the Ebro Delta has been complex, as 

a result of changes in river flow and sea level, together with coastal reshaping by the sea. The 

evolution of the Ebro Delta during the late Holocene (i.e. in the last few millennia) has been 

recognized by avulsions in the course of the main river channel, which have in turn caused the 

development of successive delta lobes, later abandoned and partially eroded (Maldonado and 

Riba 1971; Canicio and Ibáñez 1999; Somoza and Rodríguez-Santalla 2014). In the last 

millennium the Ebro Delta prograded significantly due to the development of three main deltaic 

lobes: the Riet Vell, Riet Zaida and Migjorn lobes (Ibáñez et al. 1997). This last active lobe is 

the result of a new river switching event that took place around the year 1666 close to the Gracia 

Island as a consequence of a man-made excavation in the outer levee of a pronounced meander 

(Ribas 1996). At present, relative sea-level rise and coastal erosion by wave action cannot be 

compensated by river sediment input (Ibáñez et al. 1997). A series of dams were built along the 

Ebro River during the 1960s to support a variety of intensive water uses. These dams are 

responsible of a 30% decrease in the water discharge and retain approximately 99% of the 

sediment input that partially should be deposited in the Ebro Delta, creating a severe sediment 

deficit (Ibáñez et al. 1996). As a result, the Delta has ceased to grow, erosive processes have 

become dominant and the area has changed from a progradational to a storm wave-dominated 

coast that is being morphologically reshaped. 

The Ebro Delta is a diverse area in terms of wetland habitat types and has high ecological (e.g. it 

is the second most important “Special Protection Area” for birds in Spain) and economic value 

(e.g. third largest producer of rice in Europe) (Fatoric and Chelleri 2012). In the last 150 years, 

the Delta has been largely transformed into rice fields, which now cover 70% of the total area 

(Cardoch et al. 2002) and have both direct and indirect effects on the ecology of the area. The 

main impact is obviously the destruction of natural habitats, but even the remaining deltaic 
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ecosystems have been affected by rice production, through alteration of the natural hydrological 

cycle as a result of freshwater inputs during the rice growing season (April to September). In 

addition, large amounts of nutrients and pesticides are delivered for the fertilization and care of 

the rice paddies (Forés 1992). Nevertheless, the remaining natural habitats represent good 

examples of Mediterranean coastal wetlands.  

 

3. Material and methods 

3.1 Sampling 

A total of 70 surface sediment samples from 24 different sites within the Delta plain were 

collected in order to encompass environmental gradients and habitat types present in the study 

area (sites 12–35D, Fig. 1 and Table 1). Specifically, the natural habitats selected were: coastal 

lagoons, salt marshes (i.e. Salicornia and Juncus marshes), brackish marshes (i.e. Phragmites 

marshes), microbial mats, semi-enclosed shallow bays, and nearshore marine waters. In order to 

cover the possible seasonal variability of foraminiferal assemblages, samplings were performed 

in November 2012, April 2013 and August 2013, except for site 32D (Olles), 14D (Alfacs), 20D 

(Clot) and 28D (Garxal) that could not be sampled three times due to technical problems and 

because during some campaigns they were dried (Table 1). We collected the top surface of the 

sediment at each sampling site using a 5.7 cm diameter corer (Beeker–type sampler), except at 

the nearshore open-sea site, where a grab sampler was needed due to the water depth. The corer 

was pressed down into the sediment to c. 10 cm depth and the top 1 cm of sediment contained in 

it was then carefully placed in a bottle containing an equal volume of ethanol. This process was 

repeated three times at each site to cover spatial variability of the patchy foraminiferal 

distribution (very common in marginal marine environments like deltas or estuaries as a result 

of different reproduction pulses among successive years: Buzas et al. 2002), and the three 

samples were merged and placed in the same bottle, resulting in a single sample representing c. 

78 cm3. Samples were taken near the edges of coastal lagoons and bays, while marsh samples 

were collected well within the marsh, away from any nearby lagoon or bay. At each sampling 

site, water samples were collected by hand near the bottom, taking care to avoid sediment 

resuspension, and stored on ice until transported to the laboratory for analysis. In the laboratory, 

inorganic dissolved nutrients (NO3
–-N, NO2

–-N, NH4
+-N, PO4

3–-P and SiO4
4–-Si) were measured 

from filtered samples following Grasshoff et al. (1983). Seston chlorophyll a was extracted with 

90% acetone after filtration and measured with a fluorimeter using the Lorenzen formula 

(Lorenzen 1966). Salinity (ppt: parts per thousand), temperature (ºC), dissolved oxygen (DO, 

mg/L), water depth (cm) and pH were measured in situ with a YSI 556 multiprobe. Depths at 

each sample are referred to Spanish national ordenance datum (mean sea level at Alicante 
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recorded between 1870-1882 CE). Furthermore, in one campaign (April 2013), two additional 

sediment samples (top 1 cm of the sediment layer) were taken from each site to estimate: i) the 

sediment fraction >0.063mm determined by the wet sieving method (Facca and Sfriso 2007), 

which is referred to here as the percentage of sand; and ii) the organic matter content, as loss on 

ignition (LOI) (Dean 1974). 

We also used the foraminiferal dataset created for the Ebro Delta by Scrutton (1969), who 

focused mainly on marine areas (sites 1–11M, Fig. 1 and Table 1), though he also sampled the 

Encanyissada lagoon (site 36D, Fig. 1 and Table 1). Scrutton's dataset consists of 121 sediment 

samples collected along transects off and perpendicular to the Delta coast, which covered the 

outer bay, delta front and prodelta areas (Fig. 1 and Table S1). At most of the twelve different 

transects performed by Scrutton (1969), samples were collected in three different periods: April 

1967, August 1967 and July 1968 (Tables 1 and S1). Transects 2M (Las Casas) and 8M (Cabo 

Tortosa) were only sampled once (April 1967 and August 1967, respectively) due to technical 

problems with the boat (Scrutton 1969 and Table 1). Samples of ~50 cm3 were obtained with a 

small grab by slicing off the top 1–2 cm of surface sediment. Each sediment sample was 

transferred into a bottle and preserved in 98% alcohol. At most sampling sites, water depth (m), 

salinity (ppt), sediment sand proportion (>0.076 mm) and water temperature (ºC) were 

measured. Water depth was recorded at each site by means of an echo-sounder, and it was 

referred to mean sea level in Alicante datum (MSLA). Salinity was determined indirectly by 

first measuring the chlorinity with the standard silver nitrate method and then applying the 

Salinity formula of Sverdrup et al. (1942). The sediment sand proportion was obtained by 

washing through a >0.076 mm mesh sieve. 
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Table 1 Detail of the sampling sites with descriptive statistics (mean, with the standard deviation in italics) of some of the environmental variables. Each N 

samples corresponded to the three subsamples mixed together at any sampling site. D = deltaic plain; M = marine adjacent area. 1M-11M = data from Scrutton 

(1969), 12D-35D = data obtained in this study. 36D = Encanyissada lagoon transect from Scrutton (1969). Sampling campaigns performed in each sampling 

site are also detailed. 

M/D Site Habitat n samples Season Water depth (m) Sand (%) Salinity (ppt) Assemblage available 

1M South bay marine 25 April67’, 

August67’, July68’ 

5.1 26.92 38.10 Foraminifera 

     1.2 24.49 0.63  

2M Las Casas marine 8 April67’ 8.0 12.75 39.00 Foraminifera 

     1.8 18.95 0.14  

3M Vinaroz marine 11 April67’, August67’ 11.2 32.09 38.70 Foraminifera 

     3.3 37.34 0.68  

4M South faro marine 14 April67’, 

August67’, July68’ 

22.3 28.85 38.53 Foraminifera 

     12.7 39.55 0.48  

5M Salinas marine 14 April67’, 

August67’, July68’ 

15.7 51.50 38.89 Foraminifera 

     11.7 37.72 0.75  

6M South platform marine 12 April67’, August67’ 12.4 43.36 38.12 Foraminifera 

     3.9 37.04 0.73  

7M South channel marine 7 April67’, August67’ 18.3 55.57 38.03 Foraminifera 

     15.9 45.95 0.75  

8M Cabo Tortosa marine 3 August67’ 8.5 44.67 38.30 Foraminifera 

     3.8 46.11   

9M River mouth marine 10 April67’, August67’ 25.9 3.20 38.64 Foraminifera 

     14.8 2.30 0.15  

10M North platform marine 7 April67’, 

August67’, July68’ 

14.4 56.57 38.27 Foraminifera 

     9.8 43.99 0.21  
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M/D Site Habitat n samples Season Water depth (m) Sand (%) Salinity (ppt) Assemblage available 

11M North faro marine 4 August67’, July68’ 8.6 57.00 38.70 Foraminifera 

     5.1 36.94   

12D Alfacs Inner bay 3 November12’, 

April13’, August13’ 

0.4 69.28 32.92 Foraminifera plus diatoms 

     0.3 0.00 2.77  

13D Alfacs Salicornia 3 November12’, 

April13’, August13’ 

0.9 4.96 33.13 Foraminifera plus diatoms 

     0.4 0.00 4.04  

14D Alfacs Nearshore 2 April13’, August13’ 7.2 18.51 37.93 Foraminifera plus diatoms 

     0.3 0.00 0.25  

15D Aufacada Coastal lagoon 3 November12’, 

April13’, August13’ 

0.5 89.77 10.37 Foraminifera plus diatoms 

     0.3 0.00 2.77  

16D Aufacada Salicornia 3 November12’, 

April13’, August13’ 

0.1 58.77 20.93 Foraminifera plus diatoms 

     0.3 0.00 4.04  

17D Aufacada Juncus 3 November12’, 

April13’, August13’ 

0.1 77.45 14.24 Foraminifera plus diatoms 

     0.2 0.00 0.18  

18D Aufacada Phragmites 3 November12’, 

April13’, August13’ 

0.2 25.00 11.98 Foraminifera plus diatoms 

     0.4 0.00 3.49  

19D Banya Microbial mat 3 November12’, 

April13’, August13’ 

0.3 76.30 52.42 Foraminifera plus diatoms 

     0.6 0.00 0.47  

20D Clot Coastal lagoon 1 November12’ 0.6 45.63 1.81 Foraminifera plus diatoms 

     0.0 0.00 0.00  

21D Encanyissada Coastal lagoon 4 November12’, 

April13’, August13’ 

0.6 76.81 20.07 Foraminifera plus diatoms 

     0.2 2.81 12.31  

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 2: Benthic foraminiferal assemblages 

83 

M/D Site Habitat n samples Season Water depth (m) Sand (%) Salinity (ppt) Assemblage available 

22D Encanyissada Salicornia 3 November12’, 

April13’, August13’ 

0.2 61.21 16.24 Foraminifera plus diatoms 

     0.1 0.00 9.91  

23D Encanyissada Juncus 3 November12’, 

April13’, August13’ 

0.2 73.88 23.51 Foraminifera plus diatoms 

     0.2 0.00 17.47  

24D Encanyissada Phragmites 3 November12’, 

April13’, August13’ 

0.2 7.17 16.18 Foraminifera plus diatoms 

     0.6 0.00 12.44  

25D Fangar Inner bay 3 November12’, 

April13’, August13’ 

0.3 92.25 23.01 Foraminifera plus diatoms 

     0.1 0.00 14.39  

26D Fangar Salicornia 3 November12’, 

April13’, August13’ 

0.2 80.50 31.16 Foraminifera plus diatoms 

     0.01 0.00 10.90  

27D Garxal Coastal lagoon 3 November12’, 

April13’, August13’ 

0.4 92.12 5.51 Foraminifera plus diatoms 

     0.1 0.00 3.26  

28D Garxal Salicornia 2 November12’, 

April13’ 

0.1 92.34 13.82 Foraminifera plus diatoms 

     0.01 0.00 4.84  

29D Garxal Juncus 3 November12’, 

April13’, August13’ 

0.1 93.96 10.20 Foraminifera plus diatoms 

     0.02 0.00 3.13  

30D Garxal Phragmites 3 November12’, 

April13’, August13’ 

0.1 65.80 5.14 Foraminifera plus diatoms 

     0.04 0.00 3.28  

31D Olles Coastal lagoon 3 November12’, 

April13’, August13’ 

0.6 26.75 1.93 Foraminifera plus diatoms 

     0.1 0.00 2.02  

32D Olles Phragmites 2 November12’, 

August13’ 

0.2 37.58 1.2 Foraminifera plus diatoms 
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M/D Site Habitat n samples Season Water depth (m) Sand (%) Salinity (ppt) Assemblage available 

     0.1 0.00 0.6  

33D Tancada Coastal lagoon 4 November12’, 

April13’, August13’ 

0.5 55.18 29.45 Foraminifera plus diatoms 

     0.1 31.03 7.00  

34D Tancada Salicornia 4 November12’, 

April13’, August13’ 

0.3 61.23 25.26 Foraminifera plus diatoms 

     0.2 2.82 3.59  

35D Tancada Phragmites 3 November12’, 

April13’, August13’ 

0.1 31.89 20.32 Foraminifera plus d diatoms 

     0.6 0.00 10.26  

36D Encanyissada Coastal lagoon 6 July68’ 1.29 1.25 20.33 Foraminifera 

     0.46 0.90 20.20  
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3.2 Foraminiferal analysis 

The methodology used for the analysis of the foraminiferal samples collected for this study was 

the same as that used by Scrutton (1969), including rose Bengal staining and flotation technique 

with trichloroethylene. The unique exception was the sieve mesh size: we used a 0.063 mm 

sieve and Scrutton (1969) a 0.076 mm sieve. 

Each sediment sample was wet sieved through 1 mm and 0.063 mm sieves (to remove first large 

organic fragments, then silt and clay). The washed sand fraction retained in the sieve was 

transferred into a ceramic bowl and an equal volume of rose Bengal stain was added (1 g rose 

Bengal/L deionised water) following Walton's protocol (1952). After one hour, samples were 

then wet sieved again in order to remove the excess of stain and dried overnight at 50ºC. Rose 

Bengal stains protoplasm bright red, allowing to identify foraminifera considered to be alive at 

the time of sampling (i.e. stained forms). Only tests with the last few chambers completely red 

stained were considered living at the time of collection (Murray and Alve 2000; Horton and 

Edwards 2006; Milker et al. 2015). Foraminiferal tests were concentrated using a flotation 

technique with trichloroethylene (Alve and Murray 1999). Each sample was then gently brushed 

off into a container. For each sample, separate dead and living specimens were picked from 

representative splits containing approximately 300 tests (dead and alive specimens), or at least 

100 if it was impossible to find 300 (Fatela and Taborda 2002). Foraminifera were examined 

under a Leica M165C binocular stereomicroscope using reflected light. Photographs were taken 

using a digital camera. Identifications were made to species level when possible, using mainly 

Murray (1971), Colom (1974), Cimerman and Langer (1991), Guillem (2007) and Milker and 

Schmiedl (2012). 

Use of staining to reveal which foraminifera had been alive in each sample allowed us to 

distinguish between autochthonous and allochthonous species. Following Leorri and Cearreta 

(2009), we considered as autochthonous those species with relative abundances >1% and 

regularly found among the living assemblages. On the other hand, dead species absent in the 

living assemblages or with relative abundances <0.3% and occurring only occasionally in the 

live component were considered as allochthonous. 

In order to preserve taxonomic consistency between Scrutton’s identifications and those made 

in the present study, several varieties and species of Ammonia were grouped into “Ammonia 

beccarii agg”. In the deltaic plain sites, Ammonia tepida was the principal taxon of the A. 

beccarii group, while other forms different from A. tepida were abundant in the marine sites 

(e.g. A. beccarii beccarii, A. beccarii var. batavus, A. beccarii var. 1, A. beccarii var. 2 and A. 

beccarii var. 3). 
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Fisher’s α index was calculated for foraminiferal samples with >100 tests (Murray 2006), in 

order to explore the diversity of living assemblages. Based on the α values, a clear boundary can 

be drawn between normal marine environments (α > 5) and restricted marginal marine 

environments (α < 5) (Debenay 1987). 

The similarity index of Rogers (1976), which ranges from 0 to 100%, was used to compare 

living and dead assemblages for each sample in order to assess what percentage of microfauna 

is common to both assemblages. For each species common to both assemblages, the lower of 

the two percentage values is taken. Then, the percentage of similarity corresponds to the sum of 

the lowest percentage of each species occurring in both assemblages. In addition, to assess 

seasonal changes in the assemblages, the spring (April) and summer (August) foraminiferal 

contents were also compared for both living and dead assemblages. Similarity values >70% are 

usually considered to indicate that a given pair of samples are very similar (Cearreta 1988; 

Rodríguez-Lázaro et al. 2013). 

Living foraminiferal data were used to relate the assemblage composition to measured 

environmental variables, whereas dead assemblages were used to develop the transfer function 

model. This is based on the assumption that dead assemblages are time-averaged assemblages, 

which directly derive from production and post-mortem changes (e.g. transport, destruction of 

tests) of the living ones. Therefore, dead assemblages are considered to give better analogues 

(than living) of fossil samples in a particular area for palaeoenvironmental reconstructions 

(Murray 1991; Horton et al. 1999). 

3.3 Multivariate ordinations 

Foraminiferal relative abundances were square root transformed to stabilize their variance. 

Environmental variables were checked for skewness and transformed (log 10 +1) to improve 

linearity and homoscedasticity. 

The 121 foraminiferal samples of Scrutton (1969) were combined with the 70 samples collected 

for the present study to produce an enlarged dataset of 191 samples (Table S1). After removing 

samples with less than 100 tests, living (stained) foraminifera assemblages were represented by 

155 samples, and dead (unstained) assemblages by 115 samples. The six foraminiferal samples 

collected by Scrutton from the Encanyissada lagoon collected in July 1968 (samples from 36M-

116 to 36M-121: Table S1) were considered to be extreme outliers (because at that time the 

lagoon was managed as a freshwater body) and they were therefore excluded from the combined 

dataset prior to statistical analyses. Fifty of the remaining 149 samples did not contain full 

environmental data (water depth, salinity, sand content) and were excluded from the 

multivariate analysis. Thus, a total of 99 samples with full environmental data were used to 
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explore the structure of living foraminiferal assemblages (Table S1). Only those species with a 

relative abundance >2% in at least one sample were included in the analysis. 

Living foraminiferal assemblages were analyzed by cluster and ordination analyses. 

Hierarchical cluster analysis was first used to group samples according to their similarity in 

species composition using Bray–Curtis distance and flexible beta as the linkage method 

(Dufrêne and Legendre 1997). Second, DCA ordination was performed to determine whether 

unimodal or linear species responses should be assumed. By estimating the length of the 

gradient, a unimodal species response can be assumed if lengths are greater than 2 standard 

deviation (SD) units. In our case, DCA with downweighting for rare species revealed a gradient 

length of 5.82 SD, indicating that unimodal models were adequate in this case. Consequently, 

Canonical Correspondence Analysis (CCA) was used to relate the structure of the living 

foraminiferal assemblages to measured environmental variables. 

A preliminary CCA was performed using all measured environmental variables in order to 

identify collinear variables, based on the inspection of Variance Inflation Factors (VIF). All 

collinear variables with VIFs > 20 were removed for the subsequent CCAs. Next, a series of 

CCAs were performed using a single environmental variable at a time. Here, the purpose was to 

quantify the marginal effects (i.e. explanatory power of each environmental variable on the 

foraminiferal data set), as well as to obtain a full suite of individually significant variables, 

including the most powerful environmental predictors. The variables that did not explain a 

significant contribution based on 999 Monte Carlo permutation tests were excluded for the 

subsequent analyses. Then, a series of partial CCAs were applied using the previously selected 

variables individually and the remaining ones as covariables. This was done to determine which 

environmental variable made independent and statistically significant contributions to explain 

the total variation in the foraminiferal species data (i.e. unique effects), and to quantify the 

interactions between variables. Monte Carlo permutation test (999 permutations) was carried 

out to estimate the statistical significance of environmental variables at p < 0.05. 

3.4 Indicator species 

Indicator Species Analysis (Dufrêne and Legendre 1997) was used to identify species that are 

indicators of the foraminiferal groups derived from cluster analysis. The rationale of the 

technique is that the indicator value (IV) of a given species will be maximal (IV varies between 

0 and 100) if all the individuals are found in a single group (high specificity) and they are 

present in all the samples of that group (high fidelity). The statistical significance of the 

indicator taxa was assessed using a randomization method involving 999 permutations. 
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3.5 Multiproxy analysis (foraminifera plus diatoms)  

A multiproxy analysis combining foraminiferal and diatom data was performed. The 

foraminiferal data were based upon the dead assemblages obtained in this study. Diatom data 

were obtained from the same 24 sites as the foraminifera and consisted of 61 surface sediment 

samples (Benito et al. 2015) (Fig. 1 and Table 1). The multiproxy dataset comprised 70 samples, 

all with full environmental data (water physicochemical data and sediment properties). It 

contained 140 diatom species and 29 foraminiferal species with a relative abundance >2% in at 

least one sample, and occurring in > 3 samples (169 species in total). First, DCA was used to 

show whether unimodal ordination models were more appropriate for the multivariate analysis. 

Then, a series of partial CCA’s, using 14 environmental variables, one at time (salinity, water 

depth, organic matter, sand content, pH, temperature, dissolved oxygen, NO3
–-N, NO2

–-N, 

NH4
+-N, PO4

3–-P, SiO4
4–-Si, seston chlorophyll a and pheophytin a) were applied to determine 

the unique contribution of individual environmental variables to microorganism distributions. 

3.6 Transfer function development 

The ratio of the first eigenvalue from the CCA constrained axis (λ1) to the first eigenvalue from 

the unconstrained axis (λ2) was used to choose which environmental variable was most suitable 

for modelling species’ response to the selected variable. According to Juggins (2013), the ratio 

λ1/λ2 should be >1, although a ratio λ1/λ2 not lower than 0.5 could be sufficient (Kingston et al. 

1992; Dixit et al. 1993), since this will ensure that the variable of interest explains a significant 

and independent portion of the variation in the biological data. Additionally, Detrended 

Canonical Correspondence Analysis (DCCA) was used to check whether a linear or unimodal 

response model was the most appropriate for building the transfer function (Birks, 1998). 

We used Weighted Averaging (WA) and Weighted Averaging Partial Least Square (WA-PLS) 

as transfer function models. WA-PLS is an extension of the unimodal-based WA, which 

represents a substantial improvement when long environment gradients and low noise are 

affecting the dataset (Juggins and Birks 2012). A WA-PLS model results in five components. 

The selection of a “useful” component depends upon the principle of parsimony, i.e. choosing 

the component that gives a reduction of the root mean squared error of prediction (RMSEP) of 

≥5% of the previous component (Birks 2003). All models were built using square-root 

transformed species data. We used the leave-one-site-out (LOSO) as a cross validation method 

(Payne et al. 2012). This method is considered adequate when the effects of spatial 

autocorrelation (i.e. clustered samples) may introduce bias in model performance. Each model 

was evaluated on the basis of its predictive ability by calculating three different parameters: 

correlation between observed and predicted values (r2), root mean squared error of prediction 

(RMSEP), and maximum bias. Following Birks (1998), the criteria to choose the preferred 
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model were to have high r2, low RMSEP and low maximum bias, assessed by LOSO cross 

validation. However, root mean squared error of prediction (RMSEP) values can be biased if 

some parts of the environmental gradient are not evenly sampled. To correct this, we applied the 

segment-wise RMSEP approach (Telford and Birks 2011). We did not screen any species from 

the dataset and so all species were used in the transfer functions. Following Reed’s (1998) 

criteria, we removed outlier samples based on their jack-knifed residuals to check any 

improvement in the transfer functions. Analyses were run for the foraminiferal dataset (dead 

assemblages) and for the multiproxy dataset separately. 

Most multivariate analyses were performed using R version 3.0.1 (R Development Core Team 

2010), including the packages vegan (Oksanen et al. 2013) and rioja (Juggins 2014). Finally, 

CANOCO version 4.5 (Ter Braak and Smilauer 2002) was used to carry out DCCA. 

 

4. Results 

4.1 Environmental gradients 

A summary of the measured environmental variables for the study sites (deltaic plain and 

adjacent marine area) are shown in Tables 1 and S1. The measured water depth ranges from 

0.13 to 51.50 m, water salinity from 0.74 to 74.63 ppt, and sand content from 1.0 to 100%. Sites 

with the highest water depths were recorded off the Delta (marine sites) and showed low 

variability in environmental parameters, while sites sampled in the deltaic plain covered a wide 

range of sediment organic matter (ranged from 0.89 to 96.99%), NO3
–-N (0.59–1233.69 μg/L), 

PO4
3–-P (2.48–201.39 μg/L) and pH (6.96–9.07). 
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Fig. 2 Dendrogram of the Ebro Delta (D) and marine adjacent areas (M) samples showing the 

four habitat groups identified according to similarity in species composition. 

Fig. 3 Box plots of measured environmental variables and wall type for the foraminiferal groups 

defined by cluster analysis. 1: Offshore; 2: Nearshore and outer bays; 3: Salt and brackish 

marshes; 4: Coastal lagoons and inner bays. Boxes represent the 25th and 75th percentiles, and 

the median (middle line inside each box).  
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4.2 Foraminiferal assemblages and environmental relationships 

Altogether, 138 living foraminiferal species were identified in the study area, including the 

Delta plain and marine sites. A total of 87 living foraminiferal species had relative abundances 

higher than 2% in at least one sample, and therefore these were the species selected for 

statistical analyses. Living species richness (S) and diversity (Fisher’s α) increased from the 

Delta plain sites (mean S = 7; mean α = 1.50) to marine sites (mean S = 25; mean α = 7.05). The 

living foraminiferal assemblages of the deltaic plain sites were dominated by the hyaline species 

A. beccarii agg. (36 ± 33%; mean ± SD), Haynesina germanica (10 ± 18%) and Trichohyalus 

aguayoi (8 ± 18%), and the agglutinated species Trochammina inflata (15 ± 25%) and 

Jadammina macrescens (8 ± 17%). On the other hand, the living foraminiferal assemblages of 

the marine sites were mostly represented by the hyaline species A. beccarii agg (15 ± 19%), 

Nonionoides scaphus (11 ± 13%), Bolivinellina pseudopunctata (9 ± 7%), and Nonion 

laevigatum (5 ± 8%), together with the porcellaneous Quinqueloculina stelligera (7 ± 11%). 

In general, the dead assemblages of the deltaic plain sites were composed of the same dominant 

species as the living assemblages, namely A. beccarii agg (37 ± 33%), T. inflata (15 ± 23%), H. 

germanica (10 ± 19%), T. aguayoi (9 ± 16%) and J. macrescens (7 ± 15%). In contrast, the 

composition of the dead assemblages from the marine sites off the Delta was slightly different 

from that found in the living assemblages. Thus, unidentified miliolids (15 ± 10%), A. beccarii 

agg (14 ± 13%) and Q. stelligera (11 ± 14%) dominated the dead assemblages, with 

Eggerelloides scaber (5 ± 6%) and Asterigerinata sp.1 (4 ± 6%) as secondary species. 

In agreement with the frequencies of the dominant species, similarity indices (Rogers index, %) 

indicated a relatively high resemblance between the living and dead foraminiferal assemblages 

of the deltaic plain sites (mean similarity = 72.9%), but much lower similarities at the marine 

sites off the Delta (mean similarity = 35.1 %) (Table 2). Comparison of the sampled sites 

between spring and summer campaigns (April 2013/August 2013 and April 1967/ July1967 for 

the present study and for Scrutton’s dataset, respectively) revealed higher average similarity 

values for the dead assemblages (65.1%) than for the living assemblages (52.9 %), indicating 

that the dead foraminifera assemblages showed less seasonal variation (Table 2). 
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Table 2 Roger’s similarity index for the marine sites (1M-11M from Scrutton 1969) and for the 

deltaic sites (12D-35D, own data) between spring and summer foraminiferal assemblages and 

living and dead foraminiferal assemblages. n.d. = no data. 

M/D Site Habitat Living/Dead 

(Spring) 

Spring/Summer: 

living 

Spring/Summer: 

dead 

1M South bay marine 26.6 63.8 68.3 

2M Las Casas marine 23.9 49.7 33.6 

3M Vinaroz marine 36.4 47.8 22.8 

4M South faro marine 44.3 20.5 62.4 

5M Salinas marine 28.9 43.2 70.5 

6M South platform marine n.d. 57.2 70.5 

7M South channel marine 29.8 45.5 88 

8M Cabo Tortosa marine n.d. 38.2 70.8 

9M River mouth marine 34.6 38.1 40 

10M North platform marine 49.9 23.6 92.3 

11M North faro marine n.d. 17.1 91.8 

12D Alfacs Inner bay 77.8 76.1 89.3 

13D Alfacs Salicornia 63.1 48.1 n.d. 

14D Alfacs Nearshore 61.1 52.8 74.1 

15D Aufacada Coastal lagoon 76.8 89.2 89.3 

16D Aufacada Salicornia 65.8 21.8 24.5 

17D Aufacada Juncus 87.8 77.4 89.4 

18D Aufacada Phragmites 87 n.d. 2.6 

19D Banya Microbial mat 54.2 56.6 68.6 

20D Clot Coastal lagoon n.d. n.d. n.d. 

21D Encanyissada Coastal lagoon 90.3 n.d. 95.6 

22D Encanyissada Salicornia 95.4 91.3 64.1 

23D Encanyissada Juncus 47.3 37.7 33.9 

24D Encanyissada Phragmites 85.5 52.8 47.6 

25D Fangar Inner bay 95.5 92.2 90.4 

26D Fangar Salicornia 67 n.d. 78.4 

27D Garxal Coastal lagoon 69.4 n.d. 70.1 

28D Garxal Salicornia 45 n.d. n.d. 

29D Garxal Juncus 80.2 n.d. 67.6 

30D Garxal Phragmites 57.5 n.d. 13.9 

31D Olles Coastal lagoon 65 n.d. 98.6 

32D Olles Phragmites n.d. n.d. n.d. 

33D Tancada Coastal lagoon 75.7 39.8 85.4 

34D Tancada Salicornia 82.3  n.d. 

35D Tancada Phragmites 62.8 90.1 58.2 

     

 Mean marine sites 35.1 41.5 65.4 

 Mean deltaic sites 72.9 64.4 64.9 

 Mean all sites 62.2 52.9 65.1 
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Table 3 Indicator values (IV) of foraminiferal indicator species of each habitat group identified by cluster analysis (see text). p value denotes the statistical 

significance of IV based on Monte Carlo tests (999 permutations). Values of Specificity (S) and Fidelity (F) are also shown. Ecological requirements of the 

main foraminiferal indicator species marked in bold (i.e. those having >10% relative abundance in at least one sample) and the references where this 

information was obtained are also indicated. 

 
Foraminifera species Code S F IV p value Ecological requirements References 

Offshore (cluster 1)          

Bulimina aculeata BUACU 89.5 100 94.6 0.001 Infaunal, inner shelf marine species with preferences for 

clayey silt sediments 

Blázquez 2001 

Nonionoides scaphus NOSCA 79.2 100 89.0 0.001 Infaunal, shelf marine species. Affinities for muddy sediments 

close to river mouths areas 

Avnaim-Katav et al. 

2015; Mojtahid et al. 

2010 

Ammosphaeroidina sphaeroidiniforme AMMSPH 85.7 81.5 83.6 0.001     

Bulimina gibba BUGIB 87.8 77.8 82.6 0.001     

Textularia calva TECAL 100 66.7 81.6 0.001     

Elphidium matagordanum ELMAT 85.2 77.8 81.4 0.001 Infaunal, shallow marine species (<10 m). Affinities for sandy 

sediments 

Murray 1991 

Elphidium incertum ELINC 87.7 74.1 81.4 0.001 Infaunal, shallow marine species linked to deltaic-marine 

transitions with preferences for a wide range of substrates 

(clay, silt, sand) 

Mojtahid et al. 2010 

Valvulineria bradyana VABRA 100 63.0 79.3 0.001 Epifaunal, outer shelf marine species (>20 m) linked to river 

mouth areas with fine sediments 

Colom 1974; 

Mojtahid et al. 2010 

Bolivinellina pseudopunctata BLPSE 62.8 100 79.2 0.001 Infaunal, inner shelf marine species commonly found in water 

depths <15 m and muddy substrates 

 

Blázquez 2001 
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Foraminifera species Code S F IV p value Ecological requirements References 

Haplophragmoides canariensis HACAN 91.5 66.7 78.1 0.001     

Uvigerina sp. 1 UVSP1 99.3 59.3 76.7 0.001     

Reussella aculeata REACU 97.3 59.3 75.9 0.001     

Cribroelphidium selseyensis ELSEL 57.1 92.6 72.7 0.001 Infaunal, marine species with very narrow water depth range 

(10-15 m). Affinities for sandy mud sediments. Usually 

reported as a ecophenotype of C. excavatum  

Murray 1991; Usera 

et al. 2002 

Gavelinopsis praegeri GAPRA 90.6 55.6 70.9 0.001     

Elphidium cf. flexuosum cELFLE 73.2 59.3 65.9 0.001     

Eggerelloides scaber EGSCA 60.6 70.4 65.3 0.001     

Cassidulina laevigata CALAE 95.1 44.4 65.0 0.001 Infaunal, shelf marine species with preferences for sandy mud 

sediments and sea grass beds. Observed in water depths 

between 25 and 800 m 

Mojtahid et al. 2010 

Elphidium advenum ELADV 56.6 74.1 64.8 0.001     

Reophax subfusiformis RESUB 100 40.7 63.8 0.001     

Elphidium sp. 2 ELSP2 97.6 40.7 63.1 0.001     

Planorbulina mediterranensis PLMED 94.4 40.7 62.0 0.001     

Elphidium crispum ELCRI 98.6 37.0 60.4 0.001 Epifaunal, innermost shelf species (0–25 m) with preferences 

for a wide range of substrates: seagrass beds, muds and sands 

Avnaim-Katav et al. 

2015 

Nearshore and outer bays (cluster 2)          

Quinqueloculina stelligera QUSTE 91.5 84.0 87.7 0.001 Epifaunal, shallow marine species (<10 m). Typical from 

marine to hypersaline lagoonal environments. High affinities 

for sandy substrates and linked to turbulent zones off deltaic 

fringes. 

Blázquez 2001 
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Foraminifera species Code S F IV p value Ecological requirements References 

Triloculina sp. 1 TRSP1 87.8 68.0 77.3 0.001 Epifaunal, shallow marine species (<10 m) with preferences 

for marine and hypersaline marginal environments. Affinities 

for sandy sediments 

Avnaim-Katav et al. 

2015 

Miliolid undeterminated MIUND 57.6 92.0 72.8 0.001     

Nonionella atlantica NOATL 85.0 60.0 71.4 0.001 Infaunal, open marine species. Affinities for muddy sediments 

linked to pro-delta areas 

Mojtahid et al. 2010 

(referred as N. 

turgida) 

Epistominella vitrea EPVIT 97.0 52.0 71.0 0.001 Epifaunal, shelf marine species (10–40 m). Common in muddy 

sediments  

Milker et al. 2009 

Asterigerinata sp. 1 ASSP1 81.0 60.0 69.7 0.001 Epifaunal, innermost shelf species. Abundant in nearshore 

sandy environments, from 4 to 11 m  

Milker et al. 2009 

Buliminella elegantissima BUELE 70.8 68.0 69.4 0.001     

Nonion laevigatum NOLAE 69.3 68.0 68.6 0.001 Infaunal, shelf marine species. Frequent in sandy sediments 

from shallow waters of deltaic front  

Avnaim-Katav et al. 

2015 

Brizalina striatula BRSTR 70.9 60.0 65.2 0.001 Infaunal, open marine species commonly found in sandy and 

muddy substrates. From shallow to nearshore environments 

Blázquez 2001 

Salt and brackish marshes (cluster 3: Salicornia, Juncus marshes, and Phragmites 

marshes) 

    

Trochammina inflata TRINF 94.8 95.0 94.9 0.001 Epifaunal or infaunal, euryhaline marsh species with 

preferences for muddy substrates 

Usera et al. 2002 

Jadammina macrescens JAMAC 97.1 85.0 90.8 0.001 Epifaunal, euryhaline marsh species. High affinities for muddy 

and sandy substrates rich in organic matter 

Blázquez 2001; 

Usera et al. 2002 

Trichohyalus aguayoi TRAGU 94.5 70.0 81.3 0.001 Infaunal, euryhaline species inhabiting marsh and coastal 

lagoons. High affinities for muddy sediments 

Blázquez 2001; 

Usera et al. 2002 
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Foraminifera species Code S F IV p value Ecological requirements References 

Haplophragmoides wilberti HAWIL 99.7 45.0 67.0 0.001 Infaunal, low-salinity marsh species with high tolerance to 

organic-rich sediments 

Debenay and 

Guillou 2002 

          

Coastal lagoons and inner bays (cluster 4)       

Haynesina germanica HAGER 84.7 85.2 84.9 0.001 Infaunal, brackish species very common in coastal lagoons and 

estuaries, although it can live in hypersaline environments. 

Preferences for muddy sand substrates 

Blázquez 2001; 

Usera et al. 2002 

Ammonia beccarii agg AMBEagg 62.3 100 78.9 0.001 Epifaunal, cosmopolitan eurhyhaline species inhabiting 

marshes and coastal lagoons (A. tepida), although it can live in 

open sea (A. beccarii). Affinities for sandy substrates 

Usera et al. 2002 

Quinqueloculina jugosa QUJUG 99.3 40.7 63.6 0.001 Epifaunal, shallow marine species inhabiting coastal lagoons 

and estuaries. Preferences for sandy substrates  

Murray 1991 

Cribroelphidium oceanensis CROCE 96.0 40.7 62.5 0.001 Infaunal, brackish specie inhabiting shallow coastal lagoons 

with muddy sand substrates 

Usera et al. 2002 

Quinqueloculina seminula QUSEM 81.1 40.7 62.5 0.001 Epifaunal, shallow marine species. Preferences for coastal 

lagoons and estuaries with normal salinities, although it can 

also live in nearshore environments. High affinities for sandy 

substrates 

Blázquez 2001 
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Cluster analyses identified four living foraminiferal groups according to similarities in species 

composition (Fig. 2). For each cluster, the main environmental characteristics and the relative 

abundances of the three wall types of foraminifera (agglutinated, porcellaneous, hyaline) are 

shown by boxplots in Figure 2. Cluster 1 (27 samples) and cluster 2 (25 samples) comprised 

samples from the marine sites off the Ebro Delta, which had the greatest water depths (cluster 1: 

21.85 ± 9.8 m; cluster 2: 7.01 ± 3.02 m) and normal marine salinities (cluster 1: 38.58 ± 0.63; 

cluster 2: 38.26 ± 0.58). Most of the samples from cluster 1 were from offshore sites and had a 

very low sand content (12.07 ± 18.12 %). Cluster 2 grouped the nearshore and outer bay 

samples and had a higher sand content than cluster 1 (52.3 ± 24.8 %); it also contained the 

highest proportion of porcellaneous species of any of the four clusters. Cluster 3 (20 samples) 

and cluster 4 (27 samples) were composed of deltaic plain samples. In both groups, samples 

exhibited a wide variation in salinity, from near fresh-brackish (2.23 ppt) to hypersaline 

conditions (74.63 ppt). Samples of clusters 3 and 4 were also alike in coming from very low 

water depths (cluster 3: 0.14 ± 0.09 m; cluster 4: 0.40 ± 0.19 m), and in exhibiting a wide range 

of sediment sand content (cluster 3: 49.57 ± 29.74 %; cluster 4: 69.91 ± 24.93 %). Cluster 3 was 

mainly composed of samples from salt- (i.e. Salicornia and Juncus marshes) and brackish 

marshes (i.e. Phragmites marshes), and here relative abundance of agglutinated foraminifera 

was particularly high (70.0 ± 31.7 %). All samples of this group had high organic matter content 

(39.08 ± 30.1%) compared to samples from cluster 4. Cluster 4 comprised coastal lagoon, inner 

bay and microbial mat samples, which had a particularly high sand content (70.0 ± 23.9%) and a 

high proportion of hyaline species (89.0 ± 15.2 %). 

Gradient lengths of the first DCA axis (5.82 SD) revealed a high species turnover, confirming 

the use of unimodal constrained ordination techniques for exploring the relationship between 

foraminiferal assemblages and measured environmental variables (salinity, water depth, sand 

content and temperature). An initial CCA with 87 foraminiferal species (>2% relative 

abundance in at least one sample) revealed that salinity, water depth and sand content explained 

23.1 % of the variance within the species data. Temperature was excluded from the subsequent 

CCAs (p = 0.35). The very similar eigenvalues of this initial CCA (λ1CCA = 0.704; λ2 CCA = 

0.240) and those of the DCA (λ1DCA = 0.758; λ2 DCA = 0.279) suggested that the measured 

environmental variables capture a significant proportion of the variance of the foraminiferal 

distribution. Partial CCAs showed that water depth, sand content and salinity independently 

explained significant portions (p < 0.05) of the variance in the species distribution (Table S2).  

The first two CCA axes of the reduced set of environmental variables explained 20.9% of the 

foraminiferal variance, with water depth explaining the greatest proportion (8.7%) once the 

effect of the other variables had been taken into account (Table S2). The CCA ordination with 

the three variables that accounted for independent and significant unique effects (i.e. water 
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depth, sand content and salinity), and with 87 foraminiferal species, separated groups of 

samples that were in agreement with those from the cluster analysis (Fig. 4). CCA axis 1 (16.1% 

of the explained variance) grouped samples from the Delta plain sites (clusters 3 and 4) together 

and clearly separated them from the marine samples (clusters 1 and 2). CCA axis 2 (4.8% of the 

explained variance) arranged samples following sediment characteristics (% sand content).  

 

Fig. 4 Canonical Correspondence Analysis (CCA) diagram showing the relationships of a 

samples and b species with the selected environmental variables. The species plotted have 

≥10% maximum relative abundance in at least one sample. Environmental variables accounting 

statistically significant unique effects are shown (depth: water depth; salinity; sand: sand 

content). The sample symbols correspond to the foraminiferal groups defined by cluster analysis 

(see text). For full species names see Appendix A. 

4.3 Indicator species 

Indicator species were recognised through Indicator Species Analysis for the four foraminiferal 

groups obtained with cluster analysis. A total of 41 foraminiferal species showed statistically 

significant and high indicator values (IV, >60%) and therefore could be considered as good 

indicator species (Table 3) (Fig. S1). In general, the specificity of all indicator species was high 

(>65%), and indeed some of them showed very high specificity values (>96%). Among these 

highly specific foraminifera were Cribroelphidium oceanensis and Quinqueloculina jugosa for 
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the coastal lagoons and inner bays group (cluster 4), and Haplophragmoides wilberti for the 

salt- and brackish marshes group (cluster 3). Interestingly, these three species with highest 

specificity also showed low fidelity values (≤40%) (Table 3). 

4.4 Foraminifera-based water depth transfer function 

Results of partial CCAs showed that water depth explained the largest and independent 

proportion of variance in the foraminiferal species data. DCCA of the dataset with water depth 

as the only constraining variable indicated a gradient length of 2.49; it therefore confirmed the 

unimodal response of foraminiferal species with respect to water depth and also supported the 

use of WA and WA-PLS methods. Water depth showed a ratio of 0.75 between the first 

constrained CCA axis and the first unconstrained axis (λ1/λ2), indicating that this variable is an 

ecologically important factor determining the distribution of foraminiferal assemblages in the 

Ebro Delta. 

The two-component WA-PLS model (WA-PLS-2) performed with dead foraminiferal 

assemblages (n samples = 115, n species = 155 species, Table S6) resulted in the best 

performing foraminifera–water depth inference model, since it showed the highest r2 LOSO (0.82), 

lowest RMSEP LOSO (0.41 log10 m), and lowest maximum bias LOSO (1.06 log10 m) (Table S3). 

Segment-wise RMSEP LOSO showed a decrease in the model performance (0.50 log10 m), 

indicating uneven sampling along the water depth gradient (Fig. 5). A total of seven samples 

had residuals exceeding 25% of the water depth range (0.84 log10 m) and were considered as 

potential outliers. The deletion of these seven samples (4M–47, 5M–64, 5M–65, 7M–86, 9M–

95, 13D–125, 18D–141) resulted in an improvement of WA-PLS component 2. Thus, the 

preferred transfer function with this screened data set (108 samples and 151 species) had a 

higher r2 LOSO of 0.89 and a lower segment-wise RMSEP LOSO of 0.40 log10 m (Fig. 5 and Table 

S3).  

4.5 Multiproxy analysis (foraminifera plus diatoms) 

DCA axis 1 (3.124 SD) from the multiproxy dataset supported the use of unimodal constrained 

ordination techniques to examine species-environment relationships. Partial CCAs revealed that 

salinity (4.22%), water depth (3.47%), organic matter (2.38%), pH (2.40%), NO2
–-N (2.03%) 

and sand content (1.86%) accounted for independent and significant portions (p < 0.05) of the 

variance in the species data (Table S4). The first two axes of the CCA with these six 

environmental variables explained 13.19% of the variance, with salinity identified as the most 

important variable (explaining 4.22% of the variance within the species data). 
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The CCA ordination plot from the multiproxy dataset showed that Ebro Delta habitat samples 

were arranged very similarly to the ordination obtained when diatoms alone were analysed (Fig. 

S2 and Benito et al. 2015). Thus, shallowness and salinity appeared as the main gradients 

affecting species distribution. CCA axis 1 from the multiproxy data set predominantly separated 

samples from brackish and salt marshes with very shallow water and organic-rich sediments 

(i.e. Phragmites, Salicornia and Juncus marshes, and microbial mat), from the coastal lagoons, 

inner bays and nearshore open sea habitats. CCA axis 2 the multiproxy analysis distinguished 

habitats with fresher conditions (i.e. coastal lagoons and associated Phragmites marshes with 

lower salinities) from habitats characterized by brackish/marine conditions (Salicornia and 

Juncus marshes; brackish coastal lagoons and inner bays; nearshore open sea). 

 

Fig. 5 a Scatter plot showing the observed log10 water depth (m) against the foraminifera-

inferred log10 water depth (m) for the two-component Weighted Averaging Partial Least 

Squares model (WA-PLS-2) and b comparison of the overall RMSEP and segment-wise 

RMSEP under LOSO cross validation method. Grey bars are the number of samples within the 

ten equal groups of log 10 water depth values. 

 

4.6 Multiproxy salinity-based transfer function 

Salinity made the highest unique contribution (4.22%) to explaining the variance of the 

multiproxy dataset (foraminifera plus diatoms). Salinity also had the highest λ1/λ2 ratio (0.70) 

(Table S5), indicating the ecological importance of this variable in explaining species 

distributions. Therefore, a transfer function was developed for salinity using the multiproxy 

dataset. All species (dead foraminifera and diatoms, n = 511) were included in the initial 

transfer function. The results showed that WA with classical deshrinking resulted in the best 

performing salinity model, with the highest r2 LOSO (0.63), lowest RMSEP (0.28 log10 ppt) and 

lowest maximum bias (0.45 log10 ppt). However, the multiproxy salinity transfer function was 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 2: Benthic foraminiferal assemblages 

101 

only slightly better in terms of statistical performance than a conductivity (a proxy of salinity) 

model using diatoms alone (r2 LOSO = 0.64; RMSEP = log10 0.27 mS/cm; maximum bias = log10 

0.32 mS/cm) (Table S5). 

 

5. Discussion 

5.1 Living foraminiferal assemblages  

The living assemblages of the two areas studied in the Ebro Delta (i.e. deltaic plain and adjacent 

marine areas) can be characterized by means of different biocenotic parameters. Firstly, a clear 

distinction can be made between the low-diversity habitats (α range =0.32–6.96) of the deltaic 

plain (i.e. coastal lagoons and marshes) and the high-diversity habitats (α range = 2.04–16.97) 

of the open sea (i.e. nearshore and offshore habitats). A very similar difference has been 

observed between tidal estuaries and the neighbouring shelf area in the Gulf of Cadiz, Southern 

Iberian Peninsula (Mendes et al. 2012), while Cearreta (1988) showed that the diversity of 

living foraminiferal assemblages increased from the upper (α range = 1–3.5) to the lower parts 

(α range = 1–4.5) of the Santoña estuary in northern Spain. Secondly, the deltaic plain and 

marine adjacent areas can also be distinguished by the proportions of different foraminiferal 

wall types. The agglutinated species are more abundant in shallow marsh habitats (i.e. cluster 

3), and the hyaline and porcellaneous species in subtidal environments (i.e. clusters 1, 2 and 4) 

(Fig. 3). This agrees with the general trend found in estuaries (e.g. Weiss 1976; Debenay and 

Guillou 2002), where a gradual change has been observed from agglutinated-dominated 

assemblages upstream to calcareous-dominated assemblages (hyaline + porcellaneous) 

downstream. 

Within the Delta plain habitats, the living and dead foraminiferal assemblages show high 

similarity, well above the critical value of 70% identified by Cearreta (1988) and Rodríguez-

Lázaro et al. (2013), indicating very restricted marine conditions and limited post-mortem 

changes (Murray 1991). Also, the low proportion of allochthonous foraminifera found in the 

Delta plain samples (average 25.1%) supported the hypothesis that the dead foraminiferal 

assemblages are derived basically from the living ones. However, major differences between the 

living and dead assemblages were evident in the adjacent marine habitats (average similarity 

35.1%). These may reflect accidental bias due to the limited number of dead samples processed 

by Scrutton (1969), but they could also be explained by i) post-mortem changes such as 

transport by wave action and currents, and ii) living population dynamics, which include 

species-specific reproduction rates and population densities in response to environmental 

fluctuations (Mendes et al. 2012). A better example of differences between living and dead 

assemblages is provided in outer bay samples from the Scrutton's transects of Vinaroz and Las 
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Casas (Fig. 1). Relatively high percentages of Asterigerinata sp.1 and E. scaber were found as 

dead forms, which could have been redistributed by currents to sheltered areas at the ends of 

and behind the sand spits, since these two species were very abundant in the living assemblages 

of the vicinity sites. But they might be also reflecting a change in the environmental conditions 

that was detrimental for the growth of these two species, because in the specific case of E. 

scaber, it may be too large to be transported as living form. Therefore, dead populations are a 

reflection of the living population as it used to be. 

In relation to seasonality, the similarity index showed that the living foraminiferal assemblages 

of spring and summer are different. This is because living communities are strongly dependent 

on environmental conditions at the moment of sampling (Duchemin et al. 2005), and are also 

subject to different reproduction rates for each species (Jorissen and Wittling 1999). Dead 

assemblages, however, represent the successive accumulation of living assemblages over time, 

and their seasonal (and spatial) variations tend to be integrated into the dead assemblages 

(Murray 1991). Evidence of this was also found in our study, where the comparison of dead 

assemblages between spring and summer seasons indicates higher similarities than those 

obtained for the living assemblages. Thus, dead assemblages were more homogenous from a 

seasonality point of view, and may be more useful for the interpretation of palaeoenvironments 

in the Ebro Delta. 

5.2 The relation of foraminifera to water depth 

Water depth emerged as the main environmental gradient structuring living foraminiferal 

assemblages in the study area. In the microtidal Mediterranean Sea, other studies have also 

shown water depth zonation of foraminifera near river deltas (for instance, Frezza and Carboni 

(2009), Rossi and Horton (2009) in the Po Delta; or Goineau et al. (2011) in the Rhône Delta). 

Water depth per se probably never affects foraminiferal distributions directly. However, many 

abiotic (e.g. oxygen, food availability, substrate) and biotic (e.g. competition) factors covary 

with depth that do determine foraminiferal distributions, especially in nearshore marine waters 

(<20 m depth) (Jorissen et al. 1992; De Rijt et al. 2000; Morigi et al. 2005) thus producing a 

bathymetric zonation and allowing estimation of palaeodepth from fossil assemblages (Rossi 

and Horton 2009; Milker et al. 2011; Avnaim-Katav et al. 2015). A better example is provided 

in the Ebro Delta. Substrate type (sand content) is a significant factor affecting species 

composition, suggesting the direct influence of bottom currents in sorting sand fractions in 

shallower nearshore areas, and mud fractions in deeper, prodelta environments. This may 

indicate the indirect effect of water depth, which resulted in a bathymetric zonation of the 

benthic foraminifera in the Ebro Delta.  

5.3 Foraminifera–water depth model 
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The transfer function performance looks reasonable (r2 LOSO = 0.89) when compared with 

previously published water depth models, for instance in Mediterranean deltas (Rossi and 

Horton 2009: r2 jack = 0.95), in the westernmost Mediterranean (Alboran) Sea (Milker et al. 

2011: r2 jack = 0.83), or in Australian embayments (Horton et al. 2007: r2 jack = 0.90). Although 

the transfer function appears to be statistically robust for palaeowater depth estimations in the 

Ebro Delta, its application should be done cautiously since the water depth gradient has been 

unevenly covered, with a small number of samples from intermediate depths (Fig. 5a, b). 

Therefore, future research should focus on more intermediate depths as well as to span a wider 

range of Mediterranean deltas in order to develop an enlarged foraminifera-water depth training 

set for palaeo-sea level reconstructions in similar deltas.  

5.4 Foraminiferal assemblages as ecological indicators 

In general, most of the indicator species (IV >60; p <0.05) for each habitat group (i.e. offshore; 

nearshore and outer bays; coastal lagoons and inner bays; salt and brackish marshes) showed 

high specificity and fidelity values to the group. However, some indicator species require 

special attention, due to their particular combination of very high specificity (>96%) and low 

fidelity (≤40%), suggesting a preference for particular conditions or sites within the habitat 

group. This is the case for C. oceanensis and Q. jugosa which, although they emerge as 

indicator species of the coastal lagoons and inner bays environments (cluster 4), are restricted to 

the Garxal and Tancada coastal lagoons (C. oceanensis) and the inner Alfacs bay (Q. jugosa). It 

may be, therefore, that C. oceanensis is an indicator of a particular subset of brackish lagoonal 

conditions, while the miliolid Q. jugosa probably indicates shallow environments with normal 

marine salinities. Similarly, within the salt and brackish marsh habitats (cluster 3), H. wilberti is 

only found in Phragmites marshes, likely indicating the lower salinity conditions of these 

marshes compared to Salicornia and Juncus marshes (Hayward et al. 1999). The same type of 

ecological indication was also found for these three species in studies of similar Mediterranean 

coastal lagoons and marshes (e.g. in the Rhône Delta: Vangerow et al. 1974, and Venice lagoon: 

Serandrei-Barbero et al. 2011). Likewise, most the indicator species of our marine habitat 

groups (see Table 3) were also found to be characteristic of inner shelf environments elsewhere 

in the Mediterranean Sea: off other parts of the Spanish coast (Blázquez 2001; Colom 1974; 

Milker et al. 2009; Usera et al. 2002), in the Gulf of Lyon (Mojtahid et al. 2010) and off the 

coast of Israel (Avnaim-Katav et al. 2015). 

On the other hand, within the offshore habitat group (Table 3) there are species with very high 

fidelities but relatively low specificity (i.e. they are also found along other habitat groups). 

These species include Cribroelphidium selseyensis and B. pseudopunctata which, according to 

Murray (1991) and Blázquez (2001), are associated with muddy sand substrates and shallow 

environments. However, our results suggest wider ecological ranges, since these species are 
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characteristic of offshore habitats (i.e. deeper and muddy), but also thrive in the nearshore and 

outer bays habitat (i.e. shallower and sandier). Therefore, our findings highlight the usefulness 

of considering not only the overall indicator value but also the combination of specificity and 

fidelity values in order to explain what the presence of a particular foraminiferal indicator 

species means. Previous studies dealing with diatom indicator species have yielded similar 

conclusions (Rovira et al. 2012; Benito et al. 2015). 

5.5 Implications of multiproxy analysis (foraminifera plus diatoms)  

The multiproxy approach reinforces the environmental characterization of the Ebro Delta 

habitats (CCA) and the salinity prediction (transfer function) obtained using benthic diatoms 

solely (Benito et al. 2015). Some previous studies of transitional environments have also 

investigated whether a combination of different benthic micro-organism groups can improve the 

environmental information provided by each of them individually (e.g. for foraminifera, 

diatoms and testate amoebae by Gehrels et al. 2001; for foraminifera, diatoms and macrophytes 

by Patterson et al. 2005; and for foraminifera and testate amoebae by Vázquez Riveiros et al. 

2007). The conclusion of those works combining foraminifera and diatoms are very similar to 

ours: i.e. that combining datasets offers minimal statistical improvement. This may be because 

foraminiferal microfaunas are less diverse and exhibit lesser compositional changes of their 

assemblages between sites. Diatoms, on the other hand, have more diverse assemblages than 

foraminifera and tend to be more compositionally different between sites (Kemp et al. 2009). 

Thus, in the Delta plain, habitats with distinctly different salinities (e.g. salt/brackish vs. 

freshwater) were clearly identified and defined using the diatom assemblages (Fig. S2) but not 

using foraminifera. This could be explained by the dominance of a few euryhaline foraminiferal 

species in most of the salt/brackish habitats of the Delta, as has been shown in marginal marine 

environments elsewhere (Scott et al. 2001; Murray, 2006).  

The usefulness of one type of indicator or the other (e.g. benthic foraminifera, benthic diatoms), 

or a combination of both microorganisms, should be assessed not only by the amount of 

environmental information gained but also the time needed to obtain it. From the regression 

analyses, it is clear that foraminifera and diatoms, considered separately, are good indicators of 

water depth and salinity of the Ebro Delta respectively, and therefore complementary when 

analysed individually. However, there is no information gained about salinity when foraminifera 

and diatoms are analysed together. On the other hand, for the identification and description of 

the Delta plain habitats, diatoms alone discriminated up to five habitat types (i.e. salt marshes, 

brackish marshes, brackish coastal lagoons and bays, coastal lagoons with fresher conditions, 

nearshore open sea: see Benito et al. 2015), while foraminifera detected three (i.e. salt and 

brackish marshes, coastal lagoons and bays, nearshore open sea, in this study); and four habitat 

types when Scrutton’s data (1969) are included in the analyses (this study). The habitat types 
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recognised when diatom and foraminifera are analysed together are the same as with diatoms 

alone. Therefore, since the analysis of benthic foraminifera is more cost-effective (e.g. easier 

taxonomy and less diverse communities), this group seems to be the most suitable when a 

coarse grained habitat reconstruction is all that is required. However, if a more detailed habitat 

reconstruction is needed then diatoms should be the proxy to use. Concerning quantitative 

reconstructions, the choice of the indicator group depends entirely on the parameter one wants 

to predict (i.e. foraminifera for water depth and diatoms for salinity). 

5.6 Implications for palaeoenvironmental reconstructions 

In Mediterranean deltas, the severe impact caused by humans (e.g. through intensive agriculture, 

upstream catchment water use, sediment retention) is a major environmental concern (Giosan et 

al. 2013; Anthony et al. 2014). Moreover, the consequences of increased relative sea-level rise 

associated with global warming put deltas and their coastal wetlands at risk (e.g. from 

submergence, coastal retreat, salinization: Day et al. 2011; Ibáñez et al. 2014). In order to plan 

for this and take effective measures for mitigation and/or adaptation, it is crucial to obtain 

reliable quantitative estimates of the pristine and current status of deltaic ecosystems, and to 

determine how and why changes have occurred. In the absence of long-term monitoring data, 

palaeoecological approaches are irreplaceable for evaluating how natural and human-driven 

processes have affected the functioning and development of deltas at different temporal scales. 

In the specific case of the Ebro Delta, both natural changes (i.e. shifts of the river mouth) and 

human-made changes (resulting mainly from extensive rice cultivation and sediment and water 

retention by upstream dams) have determined the evolution of the Delta during the last centuries 

(Canicio and Ibáñez 1999; Somoza and Rodriguez-Santalla 2014). It is clear from previous 

studies that the Ebro Delta has experienced major human impacts, such as wetland surface 

reduction and degradation (Mañosa et al. 2001; Cardoch et al. 2002), nutrient enrichment 

(Comín et al. 1991), salinity modification (Prado et al. 2012) and changes in catchment land use 

(Xing et al. 2014), together with the regional impacts of climate change (Ibáñez 2009). 

However, the extent to which these impacts have affected natural habitats and their timescale of 

change are largely unknown. Application of the approaches developed in this paper should 

provide valuable insights in this respect. Furthermore, over a longer time scale, our 

foraminiferal dataset will be useful for tracking the natural evolution of the Ebro Delta during 

the Holocene (Cearreta et al. under review), and therefore for determining the intrinsic 

variability of the system, which is essential for being able to disentangle natural from 

anthropogenic-related changes. 

The use of benthic foraminifera as ecological indicators requires a good knowledge of modern 

assemblages (live and dead) and their relationships with present-day environmental conditions. 

Our study has shown that modern foraminiferal assemblages can be used to predict past water 
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depths and habitat conditions because i) foraminifera show a significant quantifiable 

relationship to water depth (i.e. transfer function), ii) the most representative habitat types of the 

deltaic plain and its adjacent marine areas have been successfully characterized using 

foraminiferal indicator species. Interestingly, the indicator species approach has proved to be a 

complementary improvement for quantitative palaeoreconstructions, as also found with diatoms 

(Benito et al. 2015). For instance, in the Ebro Delta, for a water depth (inferred from the fossil 

foraminifera) around c. 3 m (± 1.5 m), two distinct subtidal habitats could be possible (i.e. 

coastal lagoon, and nearshore/ outer bay habitats). Because coastal lagoon, bays, nearshore and 

offshore habitats have always existed in the Delta, this complementary approach allows main 

habitats to be characterized and identified in adequately preserved fossil assemblages. 

 

6. Conclusions 

Modern (living and dead) foraminiferal assemblages have been characterized along 

environmental gradients of the Ebro Delta, resulting in the definition of four distinct habitat 

groups. Although the spatial and seasonal distributions of living assemblages fluctuate, the 

occurrence of distinct indicator species for each habitat type provides useful information about 

the Delta ecosystem. An integrative approach via quantitative water-depth estimates and 

indicator species will improve the resolution of palaeoenvironmental interpretations. 

In the Ebro Delta, tests of a multiproxy approach (foraminifera plus diatoms) have reinforced 

environmental characterization of the habitats. Furthermore, each indicator individually has 

value, foraminifera for quantitative predictions of water depth and diatoms for prediction of 

salinity. 

These results are currently being used to interpret fossil foraminifera assemblages in order to i) 

establish reference conditions in these coastal wetland habitats before significant human 

intervention had place, and ii) reconstruct the evolution of the Delta over the Holocene epoch 

(last 11,700 years). 
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Appendix A Taxonomic list of all foraminiferal species identified in this study. Legend: SD = 

Samples Deltaic plain, SM = Samples Marine area; L = living, D = dead.  

Code Specie 

ADLAE Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny, 1939 

(SD;SM;L;D) 

AMBAL Ammobaculites balkwilli Haynes, 1973 (SD;L;D) 

cAMARE Ammobaculites cf. arenaria Natland, 1938 (SM;L;D) 

AMSP1 Ammobaculites sp.1 (SD;L;D) 

AMBEagg Ammonia beccarii agg (Linné) = Nautilus beccarii Linné, 1758 (Variants 

included in this taxon) (SD;SM;L;D) 

AMMSP1 Ammosphaeroidina sp.1 (SD;L;D) 

AMSPH Ammosphaeroidina sphaeroidiniforme (Brady) = Haplophragmium 

sphaeroidiniforme Brady, 1884 (SM;L;D) 

cATSAL Ammotium cf. salsum (Cushman and Brönniman) = Ammobaculites salsum 

Cushman and Brönniman, 1948 (SD;SM;L;D) 

AMSCA Amphicoryna scalaris (Batsch) = Nautilus scalaris Batsch, 1791 (SM;L;D) 

ARMEX Arenoparella mexicana (Kornfeld) = Trochammina inflata var. mexicana 

Kornfeld, 1931 (SD;L) 

ASMAM Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson, 1858 

(SD;SM;L;D) 

ASSP1 Asterigerinata sp.1 (SM;L;D) 

AUPER Aubignyna perlucida (Heron-Allen and Earland) = Rotalia perlucida Heron-

Allen and Earland, 1913 (SD;SM;L;D) 

BODIL Bolivina dilatata Reuss, 1850 (SD;L) 

BOPSE Bolivina pseudoplicata Heron-Allen and Earland, 1930 (SD;SM;L;D) 

BOSTR Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922 

(SD;SM;L;D) 

BOSUB Bolivina subaenariensis (Cushman) = Brizalina subaenariensis Cushman, 

1922 (SD;L) 

BLPSE Bolivinellina pseudopunctata (Höglund) = Bolivina pseudopunctata Höglund, 

1947 (SD;SM;L;D) 

cBRAEN Brizalina cf. aenariensis (Costa) = Bolivina cf. aenariensis Costa, 1856 

(SM;L;D) 

BRSPA Brizalina spathulata (Williamson) = Textularia variabilis Williamson var. 

spathulata Williamson, 1858 (SD;SM;L;D) 

BRVAR Brizalina variabils (Williamson) = Textularia variabilis Williamson, 1859 

(SD;L;D) 

BCGRA Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus di 

Napoli Alliata, 1952 (SD;SM;L;D) 

BUACU Bulimina aculeata d'Orbigny, 1926 (SM;L;D) 

BUELO Bulimina elongata d'Orbigny, 1926 (SD;SM;L;D) 

BUGIB Bulimina gibba Fornasini, 1902 (SD;SM;L;D) 

BUMAR Bulimina marginata d'Orbigny, 1826 (SM;L;D) 

BUSP1 Bulimina sp. 1 (SM;L;D) 

BMELE Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima d'Orbigny, 

1939 (SD;SM;L;D) 

CAAUR Cancris auricula (Fichtel and Moll) = Nautilus auricula Fichtel and Moll, 

1798 (SD;D) 

cCACRA Cassidulina cf. crassa d'Orbigny, 1939(SM;L;D) 

CALAE Cassidulina laevigata d'Orbigny, 1826 (SM;L;D) 
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Code Specie 

CIBRA Cibicidoides bradyi (Trauth) = Truncatulina bradyi Trauth, 1918 (SM;L;D) 

CILOB Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and 

Jacob, 1798 (SM;D) 

CLOBS Clavulina obscura Chaster, 1982 (SM;L;D) 

COINC Cornuspira incerta (d'Orbigny) = Cyclogyra incerta d'Orbigny, 1939 

(SM;L;D) 

CYINV Cornuspira involvens (Reuss) = Operculina involvens Reus, 1850 (SD;L) 

CREXC Cribrolphidium excavatum (Terquem) = Polystomella excavatum Terquem, 

1875 (SD;SM;L;D) 

CRMAG Cribroelphidium magellanicum (Heron-Allen and Earland) = Elphidium 

magellanicum Heron-Allen and Earland, 1932 (SD;D) 

CROCE Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis d'Orbigny, 

1826 (SD;SM;L;D) 

CRSEL Cribroelphidium selseyensis (Heron-Allen and Earland) = Elphidium 

selseyensis Heron-Allen and Earland, 1911 (SD;SM;L;D) 

CRSP1 Cribroelphidium sp.1 (SD;L;D) 

CRWIL Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes, 1973 

(SD;L;D) 

DECOM Delosina complexa (Sidebottom) = Polymorphina complexa Sidebottom, 1907 

(SM;L;D) 

EGADV Eggerella advena (Cushman) = Verneuilina advena Cushman, 

1921(SD;SM;L;D) 

EGSCA Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858 

(SD;SM;L;D) 

ELADV Elphidium advenum (Cushman) = Polystomella advenum Cushman, 1922 

(SD;SM;L;D) 

cELERL Elphidium cf. earlandi Cushman, 1936 (SD;L;D) 

cCRPOE Cribroelphidium cf. poeyanum (d'Orbigny) = Polystomella poeyana d'Orbigny, 

1839 (SD;D) 

cELFLE Elphidium cf. flexuosum (d'Orbigny) = Polystomella flexuosa d'Orbigny, 1936 

(SM;L;D) 

cELSMI Elphidium cf. schmitti Cushman and Wickenden, 1929 (SM;L;D) 

ELCRI Elphidium crispum (Linné) = Nautilis crispus Linné, 1758 (SD;SM;L;D) 

ELINC Elphidium incertum (Williamson) = Polystomella umbilicatula var. incerta 

Williamson, 1858 (SD;SM;L;D) 

ELLID Elphidium lidoense Cushman, 1936 (SM;L;D) 

ELMAR Elphidium margaritaceum (Cushman) = Elphidium advenum var. 

margaritaceum Cushman, 1930 (SD;D) 

ELMAT Elphidium matagordanum (Kornfeld) = Nonion depressula (Walker and Jabob) 

var. matagordana Kornfeld, 1931 (SM;L;D) 

ELSP1 Elphidium sp.1 (SM;L;D) 

ELSP2 Elphidium sp.2 (SM;L;D) 

EPVIT Epistominella vitrea Parker, 1953 (SM;L;D) 

FILUC Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida 

Williamson, 1848 (SD;SM;L;D) 

FISP1 Fissurina sp.1 (SM;L;D) 

cFUFUS Fursenkoina cf. fusiformis (Williamson) = Bulimina pupoides d'Orbigny var. 

fusiformis Williamson, 1858 (SD;L;D) 

cFUCOM Fursenkoina cf. complanata (Egger) = Virgulina schreibersiana Czjzek var. 

complanata Egger, 1893 (SM;L;D) 

FUSCH Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana Czjzek, 1848 
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Code Specie 

(SM;L;D) 

FSP1 Fursenkoina sp.1 (SM;L;D) 

cGARUD Gaudryina cf. rudis Wright, 1900 (SD;L) 

GAPRA Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri 

Heron-Allen and Earland, 1913 (SD;SM;L;D) 

HASP1 Haplophragmoides sp.1 (SD;L;D) 

HACAN Haplophragmoides canariensis (d'Orbigny) = Nonionina canariensis 

d'Orbigny, 1839 (SM;L;D) 

HAWIL Haplophragmoides wilberti Anderson, 1953 (SD;L;D) 

cHAGER Haynesina cf. germanica (Ehrenberg) = Nonionina cf. germanica Ehrenberg, 

1840 (SM;L;D) 

HADEP Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker and 

Jacob, 1798 (SD;SM;L;D) 

HAGER Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg, 1840 

(SD;SM;L;D) 

HOPAC Hopkinsina pacifica Cushman, 1933 (SD;SM;L;D) 

JAMAC Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. 

macrescens Brady, 1870 (SD;SM;L;D) 

cLASEM Lagena cf. semistriata (Williamson) = Lagena striata Walker var. semistriata 

Williamson, 1848 (SM;L;D) 

LASUB Lagena substriata Williamson, 1848 (SM;L;D) 

LASUL Lagena sulcata (Walter and Jacob) = Serpula sulcata Walter and Jacob, 1798 

(SD;SM;L;D) 

LATEN Lagena tenuis (Börneman) = Ovulina tenius Börneman, 1855 (SM;L;D) 

LAVUL Lagena vulgaris Williamson, 1858 (SM;L;D) 

LADIF Lagenammina difflugiformis (Brady) = Reophax difflugiformis Brady, 1879 

(SM;L;D) 

LALAG Lagenammina laguncula Rhumbler, 1911 (SM;L;D) 

LESCO Leptohalysis scottii (Chaster) = Reophax scotti Chaster, 1892 (SM;L;D) 

MASEC Massilina secans (d'Orbigny) = Quinqueloculina secans d'Orbigny, 1826 

(SM;L;D) 

MEPOM Melonis pompilioides (Fitchel and Moll) = Nautilis pompiloides Fitchel and 

Moll, 1798 (SM;L;D) 

MUFUS Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870 (SD;SM;L;D) 

MIUND Miliolid undeterminated (SD;SM;L;D) 

NODEN Nodulina dentaliniformis (Brady) = Reophax dentiliniformis Brady, 1844 

(SM;SD;L;D) 

NOAST Nonion asterizans (Fichtel and Moll) = Riminopsis asterizans Fichtel and Moll, 

1798 (SM;L;D) 

NOLAE Nonion laevigatum (d'Orbigny) = Nonionina laevigata d'Orbigny, 1826 

(SM;L;D) 

NOATL Nonionella atlantica Cushman, 1947 (SD;SM;L;D) 

NOOPI Nonionella opima Cushman, 1947 (SD;SM;L;D) 

cNOJAP Nonionoides cf. japonicum (Asano) = Florilus cf. japonicum Asano, 1938 

(SM;L;D) 

NOSCA Nonionoides scaphus (Fitchel and Moll) = Florilus scaphus Fitchel and Moll, 

1798 (SM;L;D) 

NOPOL Nouria polymorphides Heron-Allen and Earland, 1914 (SM;L;D) 

PACOR Patellina corrugata Williamson, 1858 (SM;L;D) 

PLMED Planorbulina mediterranensis d'Orbigny, 1826 (SM;L;D) 
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Code Specie 

POLAT Poroeponides lateralis (Terquem) = Rosalina lateralis Terquem, 1878 

(SM;L;D) 

PRCLA Procerolagena clavata (d'Orbigny) = Lagena clavata d'Orbigny, 1826 

(SM;L;D) 

PSBOW Psammosphaera bowmani Heron-Allen and Earland, 1912 (SM;L) 

PYINO Pyrgo inornata (d'Orbigny) = Biloculina inornata d'Orbigny, 1846 (SM;L;D) 

QUDEP Quinqueloculina depressa d'Orbigny, 1852 (SM;L;D) 

QUJUG Quinqueloculina jugosa (Cushman) = Quinqueloculina seminula var. jugosa 

Cushman, 1944 (SD;L;D) 

QULAT Quinqueloculina lata Terquem, 1876 (SD;L;D) 

QULON Quinqueloculina longirostra d'Orbigny, 1826 (SM;L;D) 

QUOBL Quinqueloculina oblonga (Montagu) = Vermiculum oblongum Montagu, 1893 

(SD;L;D) 

QURUG Quinqueloculina rugosa d'Orbigny, 1839 (SM;L;D) 

QUSEM Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758 

(SD;SM;L;D) 

QUSP1 Quinqueloculina sp.1 (SM;L;D) 

QUSTE Quinqueloculina stelligera Schlumberger, 1893 (SD;SM;L;D) 

cRECOM Rectuvigerina cf. compressa (Cushman) = Uvigerina compressa Cushman, 

1925 (SM;L;D) 

cREFUS Reophax cf. fusiformis (Williamson) = Proteonina fusiformis Williamsoni, 

1858 (SM;L;D) 

RECYL Reophax cylindrica Brady, 1884 (SM;L;D) 

REMON Reophax moniliformis Siddall, 1886 (SD;SM;L;D) 

RENAN Reophax nana Rhumbler, 1913 (SM;L;D) 

RESCO Reophax scorpiurus Montfort, 1808 (SM;L;D) 

RESUB Reophax subfusiformis Earland, 1933 (SM;L;D) 

REACU Reussella aculeata Cushman, 1945 (SM;L;D) 

ROARC Robertina arctica d'Orbigny, 1846 (SM;L;D) 

ROANO Rosalina anomala Terquem, 1875 (SD;L;D) 

ROBUL Rosalina bulbosa (Parker) = Discorbis bulbosa Parker, 1954 (SM;L;D) 

cROMED Rosalina cf. mediterranensis Brady, 1826 (SM;L;D) 

cROVAL Rosalina cf. valvulata d'Orbigny, 1826 (SM;L;D) 

ROGLO Rosalina globularis d'Orbigny, 1826 (SD;SM;L) 

ROIRR Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler, 1906 

(SD;L;D) 

SAATL Saccammina atlantica (Cushman) = Proteonina atlantica Cushman, 1944 

(SM;L;D) 

SVSP1 Svratkina sp.1 (SD;D) 

TEBOC Textularia bocki Höglund, 1947 (SD;L;D) 

TECAL Textularia calva Lalicker, 1935 (SM;L;D) 

TETEN Textularia tenuissima Earland, 1933 (SM;L;D) 

TESP1 Textularia sp.1 (SM;L;D) 

TEXUN Texturalid undetermined (SD;L;D) 

TRCON Tretomphalus concinnus (Brady) = Discorbina concinna Brady, 1884 

(SM;L;D) 

TRAGU Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez, 1935 

(SD;L;D) 

TRANG Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 2: Benthic foraminiferal assemblages 

112 

Code Specie 

(SM;L;D) 

TRDUB Triloculina dubia d'Orbigny, 1826 (SM;L;D) 

TRMAR Triloculina marioni Schlumberger, 1893 (SM;L;D) 

TRROT Triloculina rotunda d'Orbigny, 1939 (SM;L;D) 

TRSP1 Triloculina sp.1 (SD;SM;L;D) 

TRINF Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808 (SD;L;D) 

cTRADV Trochammina cf. advena Cushman, 1922 (SM;L;D) 

TRLOB Trochammina lobata Cushman, 1944 (SM;L;D) 

UVSP1 Uvigerina sp.1 (SM;L;D) 

VABRA Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini, 1899 

(SD;SM;L;D) 

INDET Unidentified forms (SD;SM;L;D) 
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Supplementary material 

 

Supplementary Fig. S1 Foraminiferal indicator species of the Ebro Delta under binocular 

stereomicroscope. Scale bar represents 100 μm, except when specified. Legend: L = living 

(stained) test, D = dead (unstained) test. 1-4: Ammonia tepida (in text referred as Ammonia 
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beccarii agg). 1: spiral view, L. 2: umbilical view, L. 3: spiral view, D. 4: umbilical view, D; 5: 

Bolivina striatula, general view, D; 6-7: Haynesina germanica. 6: general view, L. 7: general 

view, D; 8-10: Jadammina macrescens, 8: spiral view, D. 9: umbilical view, D. 10: spiral view, 

L; 11-12: Trochammina inflata, 11: spiral view, L. 12: umbilical view, L; 13-14: 

Haplophragmoides wilberti, 13: general view, L. 14: general view, D; 15: Elphidium advenum, 

general view, D; 16: Quinqueloculina stelligera, general view, D; 17: Quinqueloculina jugosa, 

general view, L; 18-19: Quinqueloculina seminula, general view, D; 20-21: Trichoyalus 

aguayoi (scale bar = 500 μm), 20: spiral view, D. 21: umbilical view, D; 22: Cribroelphidium 

excavatum general view, D: 23-24: Cribroelphidium oceanensis, 23: general view, D. 24: 

general view, L; 25: Cribroelphidium selseyensis general view, D; 26-27: Nonionella atlantica, 

26: umbilical view, L. 27: spiral view, L.  

 

Supplementary Fig. S2 Canonical Correspondence Analysis (CCA) diagram showing the 

relationships of samples with selected environmental variables for (a) multiproxy (foraminifera 

plus diatom) dataset and (b) diatom dataset. 
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Supplementary Table S1 

Dataset of 191 samples (1M-11M = data from Scrutton (1969), 12D-35D = data obtained in this study). D = deltaic dataset, M = marine dataset. 36D = Encanyissada lagoon 

transect from Scrutton (1969). T = temperature; DO = dissolved oxygen; Sand = sand proportion; OM = organic matter content; Chl-a = Seston chlorophyll a; NA: No data 

obtained from marine dataset. Samples in bold (n = 99) contained >100 living (stained) foraminiferal tests and full environmental data (water depth, sand and salinity) and 

therefore were included in the statistical analysis. All measured environmental variables in the deltaic dataset (D) were used as potential predictors for multiproxy-

environment relationships (foraminifera plus diatoms). 

Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–-P NH4

+-N NO2
–-N NO3

–-N SiO4
4–-Si Chl-a PO4

3–-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

1M-1 South bay marine APR67' 6.0 20.00 38.90 NA 16.00 NA NA NA NA NA NA NA NA NA 

1M-2 South bay marine JUL68' 6.0 25.00 NA NA 16.50 NA NA NA NA NA NA NA NA NA 

1M-3 South bay marine JUL68' 8.0 8.00 37.60 NA NA NA NA NA NA NA NA NA NA NA 

1M-4 South bay marine JUL68' 3.5 94.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-5 South bay marine AUG67' 4.5 49.00 NA NA 23.00 NA NA NA NA NA NA NA NA NA 

1M-6 South bay marine AUG67' 5.0 47.00 38.50 NA NA NA NA NA NA NA NA NA NA NA 

1M-7 South bay marine AUG67' 5.0 21.00 NA NA 13.50 NA NA NA NA NA NA NA NA NA 

1M-8 South bay marine AUG67' 6.0 19.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-9 South bay marine APR67' 6.0 11.00 37.80 NA NA NA NA NA NA NA NA NA NA NA 

1M-10 South bay marine AUG67' 6.0 16.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-11 South bay marine APR67' 6.0 11.00 NA NA 14.00 NA NA NA NA NA NA NA NA NA 

1M-12 South bay marine APR67' 6.0 3.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-13 South bay marine APR67' 6.0 11.00 38.30 NA NA NA NA NA NA NA NA NA NA NA 

1M-14 South bay marine AUG67' 4.5 43.00 38.20 NA NA NA NA NA NA NA NA NA NA NA 

1M-15 South bay marine AUG67' 5.0 8.00 NA NA 13.50 NA NA NA NA NA NA NA NA NA 

1M-16 South bay marine AUG67' 5.0 8.00 38.40 NA 27.00 NA NA NA NA NA NA NA NA NA 

1M-17 South bay marine AUG67' 6.0 9.00 38.40 NA NA NA NA NA NA NA NA NA NA NA 

1M-18 South bay marine APR67' 5.0 5.00 38.40 NA 26.00 NA NA NA NA NA NA NA NA NA 

1M-19 South bay marine AUG67' 5.5 9.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-20 South bay marine APR67' 5.0 10.00 NA NA 26.00 NA NA NA NA NA NA NA NA NA 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

1M-21 South bay marine JUL68' 2.5 59.00 36.50 NA NA NA NA NA NA NA NA NA NA NA 

1M-22 South bay marine JUL68' 3.0 62.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-23 South bay marine JUL68' 3.0 39.00 NA NA 24.50 NA NA NA NA NA NA NA NA NA 

1M-24 South bay marine JUL68' 3.5 44.00 NA NA NA NA NA NA NA NA NA NA NA NA 

1M-25 South bay marine JUL68' 3.5 70.00 38.10 NA NA NA NA NA NA NA NA NA NA NA 

2M-26 Las Casas marine APR67' 11.0 5.00 39.10 NA NA NA NA NA NA NA NA NA NA NA 

2M-27 Las Casas marine APR67' 9.0 4.00 NA NA NA NA NA NA NA NA NA NA NA NA 

2M-28 Las Casas marine APR67' 8.0 7.00 NA NA 16.00 NA NA NA NA NA NA NA NA NA 

2M-29 Las Casas marine APR67' 6.0 2.00 NA NA NA NA NA NA NA NA NA NA NA NA 

2M-30 Las Casas marine APR67' 5.0 58.00 NA NA NA NA NA NA NA NA NA NA NA NA 

2M-31 Las Casas marine APR67' 9.0 4.00 NA NA 27.00 NA NA NA NA NA NA NA NA NA 

2M-32 Las Casas marine APR67' 8.5 4.00 38.90 NA 26.00 NA NA NA NA NA NA NA NA NA 

2M-33 Las Casas marine APR67' 7.0 18.00 NA NA NA NA NA NA NA NA NA NA NA NA 

3M-34 Vinaroz marine AUG67' 8.0 69.00 39.30 NA 15.00 NA NA NA NA NA NA NA NA NA 

3M-35 Vinaroz marine APR67' 5.0 89.00 NA NA NA NA NA NA NA NA NA NA NA NA 

3M-36 Vinaroz marine APR67' 8.0 16.00 39.40 NA 14.50 NA NA NA NA NA NA NA NA NA 

3M-37 Vinaroz marine AUG67' 9.0 100.00 NA NA NA NA NA NA NA NA NA NA NA NA 

3M-38 Vinaroz marine APR67' 15.0 2.00 38.80 NA NA NA NA NA NA NA NA NA NA NA 

3M-39 Vinaroz marine APR67' 14.0 6.00 NA NA 15.50 NA NA NA NA NA NA NA NA NA 

3M-40 Vinaroz marine APR67' 14.6 6.00 NA NA NA NA NA NA NA NA NA NA NA NA 

3M-41 Vinaroz marine AUG67' 14.0 4.00 38.10 NA NA NA NA NA NA NA NA NA NA NA 

3M-42 Vinaroz marine AUG67' 13.5 5.00 NA NA 26.00 NA NA NA NA NA NA NA NA NA 

3M-43 Vinaroz marine AUG67' 11.5 10.00 NA NA NA NA NA NA NA NA NA NA NA NA 

3M-44 Vinaroz marine APR67' 11.0 46.00 37.90 NA 26.00 NA NA NA NA NA NA NA NA NA 

4M-45 South faro marine APR67' 4.5 96.00 38.40 NA 15.00 NA NA NA NA NA NA NA NA NA 

4M-46 South faro marine APR67' 10.0 33.00 NA NA NA NA NA NA NA NA NA NA NA NA 

4M-47 South faro marine AUG67' 10.5 96.00 37.90 NA 26.00 NA NA NA NA NA NA NA NA NA 

4M-48 South faro marine AUG67' 5.0 97.00 NA NA NA NA NA NA NA NA NA NA NA NA 

4M-49 South faro marine JUL68' 5.0 96.00 NA NA NA NA NA NA NA NA NA NA NA NA 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

4M-50 South faro marine APR67' 18.0 13.00 39.20 NA 15.00 NA NA NA NA NA NA NA NA NA 

4M-51 South faro marine APR67' 27.0 4.00 NA NA 16.00 NA NA NA NA NA NA NA NA NA 

4M-52 South faro marine APR67' 33.0 1.00 38.90 NA NA NA NA NA NA NA NA NA NA NA 

4M-53 South faro marine APR67' 38.0 2.00 NA NA 15.50 NA NA NA NA NA NA NA NA NA 

4M-54 South faro marine APR67' 43.0 1.00 38.80 NA 15.00 NA NA NA NA NA NA NA NA NA 

4M-55 South faro marine JUL68' 34.5 2.00 38.50 NA NA NA NA NA NA NA NA NA NA NA 

4M-56 South faro marine APR67' 28.0 3.00 NA NA NA NA NA NA NA NA NA NA NA NA 

4M-57 South faro marine AUG67' 22.0 7.00 38.00 NA NA NA NA NA NA NA NA NA NA NA 

4M-58 South faro marine AUG67' 17.0 20.00 NA NA 25.50 NA NA NA NA NA NA NA NA NA 

5M-59 Salinas marine APR67' 14.0 43.00 NA NA 15.00 NA NA NA NA NA NA NA NA NA 

5M-60 Salinas marine APR67' 14.0 90.00 39.10 NA NA NA NA NA NA NA NA NA NA NA 

5M-61 Salinas marine APR67' 10.0 40.00 NA NA NA NA NA NA NA NA NA NA NA NA 

5M-62 Salinas marine AUG67' 14.5 77.00 38.80 NA 25.50 NA NA NA NA NA NA NA NA NA 

5M-63 Salinas marine AUG67' 8.0 96.00 37.50 NA 26.00 NA NA NA NA NA NA NA NA NA 

5M-64 Salinas marine AUG67' 6.0 30.00 38.60 NA 26.50 NA NA NA NA NA NA NA NA NA 

5M-65 Salinas marine JUL68' 12.0 97.00 NA NA NA NA NA NA NA NA NA NA NA NA 

5M-66 Salinas marine AUG67' 10.5 88.00 NA NA NA NA NA NA NA NA NA NA NA NA 

5M-67 Salinas marine JUL68' 5.0 96.00 38.80 NA 21.00 NA NA NA NA NA NA NA NA NA 

5M-68 Salinas marine APR67' 39.5 2.00 39.70 NA NA NA NA NA NA NA NA NA NA NA 

5M-69 Salinas marine APR67' 33.5 2.00 NA NA NA NA NA NA NA NA NA NA NA NA 

5M-70 Salinas marine AUG67' 28.0 3.00 39.70 NA 15.00 NA NA NA NA NA NA NA NA NA 

5M-71 Salinas marine AUG67' 19.0 32.00 NA NA NA NA NA NA NA NA NA NA NA NA 

5M-72 Salinas marine JUL68' 10.0 19.00 NA NA NA NA NA NA NA NA NA NA NA NA 

6M-73 South platform marine AUG67' 4.5 99.00 NA NA NA NA NA NA NA NA NA NA NA NA 

6M-74 South platform marine AUG67' 8.0 76.00 NA NA 26.00 NA NA NA NA NA NA NA NA NA 

6M-75 South platform marine APR67' 10.0 82.00 37.70 NA 21.50 NA NA NA NA NA NA NA NA NA 

6M-76 South platform marine APR67' 17.5 68.00 38.90 NA 13.50 NA NA NA NA NA NA NA NA NA 

6M-77 South platform marine APR67' 12.0 6.00 37.20 NA NA NA NA NA NA NA NA NA NA NA 

6M-78 South platform marine AUG67' 12.0 22.00 NA NA 15.50 NA NA NA NA NA NA NA NA NA 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

6M-79 South platform marine APR67' 34.5 2.00 NA NA 25.00 NA NA NA NA NA NA NA NA NA 

6M-80 South platform marine AUG67' 12.0 79.00 NA NA NA NA NA NA NA NA NA NA NA NA 

6M-81 South platform marine AUG67' 13.0 18.00 38.80 NA NA NA NA NA NA NA NA NA NA NA 

6M-82 South platform marine APR67' 17.5 5.00 38.00 NA 20.00 NA NA NA NA NA NA NA NA NA 

6M-83 South platform marine AUG67' 16.0 3.00 NA NA 21.00 NA NA NA NA NA NA NA NA NA 

6M-84 South platform marine APR67' 14.0 19.00 NA NA NA NA NA NA NA NA NA NA NA NA 

7M-85 South channel marine AUG67' 5.0 95.00 NA NA NA NA NA NA NA NA NA NA NA NA 

7M-86 South channel marine AUG67' 8.0 91.00 38.00 NA 26.00 NA NA NA NA NA NA NA NA NA 

7M-87 South channel marine APR67' 11.5 94.00 NA NA NA NA NA NA NA NA NA NA NA NA 

7M-88 South channel marine AUG67' 8.0 89.00 NA NA NA NA NA NA NA NA NA NA NA NA 

7M-89 South channel marine APR67' 27.0 5.00 38.80 NA NA NA NA NA NA NA NA NA NA NA 

7M-90 South channel marine APR67' 18.5 14.00 37.30 NA 13.50 NA NA NA NA NA NA NA NA NA 

7M-91 South channel marine AUG67' 50.0 1.00 NA NA NA NA NA NA NA NA NA NA NA NA 

8M-92 Cabo Tortosa marine AUG67' 5.0 97.00 NA NA NA NA NA NA NA NA NA NA NA NA 

8M-93 Cabo Tortosa marine AUG67' 8.0 27.00 NA NA 35.00 NA NA NA NA NA NA NA NA NA 

8M-94 Cabo Tortosa marine AUG67' 12.5 10.00 38.30 NA 25.50 NA NA NA NA NA NA NA NA NA 

9M-95 River Mouth marine APR67' 51.5 2.00 NA NA NA NA NA NA NA NA NA NA NA NA 

9M-96 River Mouth marine APR67' 33.5 4.00 38.80 NA 13.50 NA NA NA NA NA NA NA NA NA 

9M-97 River Mouth marine APR67' 22.0 6.00 38.80 NA 13.50 NA NA NA NA NA NA NA NA NA 

9M-98 River Mouth marine AUG67' 46.0 1.00 38.60 NA 25.00 NA NA NA NA NA NA NA NA NA 

9M-99 River Mouth marine AUG67' 31.5 1.00 NA NA NA NA NA NA NA NA NA NA NA NA 

9M-100 River Mouth marine AUG67' 20.0 2.00 38.50 NA 26.00 NA NA NA NA NA NA NA NA NA 

9M-101 River Mouth marine AUG67' 14.0 4.00 NA NA NA NA NA NA NA NA NA NA NA NA 

9M-102 River Mouth marine AUG67' 10.0 2.00 38.50 NA 26.00 NA NA NA NA NA NA NA NA NA 

9M-103 River Mouth marine AUG67' 7.0 2.00 NA NA NA NA NA NA NA NA NA NA NA NA 

9M-104 River Mouth marine AUG67' 23.0 8.00 NA NA NA NA NA NA NA NA NA NA NA NA 

10M-105 North platform marine JUL68' 13.5 4.00 NA NA NA NA NA NA NA NA NA NA NA NA 

10M-106 North platform marine APR67' 5.5 26.00 38.10 NA 13.50 NA NA NA NA NA NA NA NA NA 

10M-107 North platform marine JUL68' 11.0 99.00 NA NA NA NA NA NA NA NA NA NA NA NA 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

10M-108 North platform marine AUG67' 5.5 100.00 NA NA NA NA NA NA NA NA NA NA NA NA 

10M-109 North platform marine JUL68' 11.5 92.00 38.20 NA 22.00 NA NA NA NA NA NA NA NA NA 

10M-110 North platform marine JUL68' 33.5 4.00 NA NA 25.50 NA NA NA NA NA NA NA NA NA 

10M-111 North platform marine JUL68' 20.0 71.00 38.50 NA NA NA NA NA NA NA NA NA NA NA 

11M-112 North faro marine JUL68' 11.0 28.00 NA NA NA NA NA NA NA NA NA NA NA NA 

11M-113 North faro marine JUL68' 6.0 23.00 38.70 NA 13.50 NA NA NA NA NA NA NA NA NA 

11M-114 North faro marine JUL68' 3.0 96.00 NA NA NA NA NA NA NA NA NA NA NA NA 

11M-115 North faro marine AUG67' 14.5 81.00 NA NA 13.50 NA NA NA NA NA NA NA NA NA 

36D-116 Encanyissada  Lagoon JUL68' 1.0 22.00 2.60 NA NA NA NA NA NA NA NA NA NA NA 

36D-117 Encanyissada  Lagoon JUL68' 1.5 60.00 NA NA 24.00 NA NA NA NA NA NA NA NA NA 

36D-118 Encanyissada  Lagoon JUL68' 2.0 7.00 0.80 NA NA NA NA NA NA NA NA NA NA NA 

36D-119 Encanyissada  Lagoon JUL68' 1.5 7.00 NA NA NA NA NA NA NA NA NA NA NA NA 

36D-120 Encanyissada  Lagoon JUL68' 1.0 13.00 0.90 NA NA NA NA NA NA NA NA NA NA NA 

36D-121 Encanyissada  Lagoon JUL68' 0.8 13.00 0.70 NA NA NA NA NA NA NA NA NA NA NA 

12D-122 Alfacs Inner bay NOV12' 0.46 69.28 31.30 1.10 13.23 7.97 8.12 24.41 5.29 6.37 38.36 525.48 1.13 1.12 

12D-123 Alfacs Inner bay APR13' 0.40 69.28 36.11 1.10 18.37 8.04 7.86 5.23 101.31 14.03 31.02 502.51 1.99 1.35 

12D-124 Alfacs Inner bay AUG13' 0.40 69.28 31.34 1.10 23.93 8.26 5.58 14.12 23.45 2.52 12.90 854.50 4.97 2.40 

13D-125 Alfacs Salicornia NOV12' 0.14 4.96 28.95 5.95 13.00 7.86 7.78 24.90 10.70 7.98 43.08 482.26 1.14 1.62 

13D-126 Alfacs Salicornia APR13' 0.10 4.96 37.01 5.95 20.57 7.94 10.37 6.50 95.75 8.03 12.89 365.08 6.53 2.84 

13D-127 Alfacs Salicornia AUG13' 0.06 4.96 33.43 5.95 22.67 8.12 9.62 17.13 14.12 0.77 6.23 617.60 8.34 1.52 

14D-128 Alfacs Nearshore APR13' 7.40 18.51 37.75 4.94 15.31 8.01 7.76 5.02 4.75 3.36 16.26 49.46 3.98 1.40 

14D-129 Alfacs Nearshore AUG13' 7.00 18.51 38.11 4.94 25.19 7.96 5.39 6.72 29.09 1.58 19.37 164.36 1.62 0.83 

15D-130 Aufacada Lagoon NOV12' 0.56 89.77 16.63 3.70 16.73 7.75 8.66 24.22 2.51 16.88 91.83 1783.37 9.70 3.27 

15D-131 Aufacada Lagoon APR13' 0.54 89.77 10.23 3.70 16.82 7.94 6.81 4.03 13.04 3.96 13.40 1791.57 8.20 2.74 

15D-132 Aufacada Lagoon AUG13' 0.47 89.77 4.26 3.70 25.70 8.66 8.53 11.68 20.77 1.48 22.69 2020.47 2.76 1.64 

16D-133 Aufacada Salicornia NOV12' 0.04 58.77 22.46 2.84 13.20 7.37 1.9 17.56 26.54 0.48 57.93 2415.77 2.24 1.41 

16D-134 Aufacada Salicornia APR13' 0.08 58.77 20.00 2.84 19.79 7.34 3 6.47 49.33 2.49 10.18 1595.14 3.02 2.02 

16D-135 Aufacada Salicornia AUG13' 0.20 58.77 20.34 2.84 23.18 7.68 4.23 25.37 35.04 2.12 8.28 6540.55 23.12 5.64 

17D-136 Aufacada Juncus NOV12' 0.10 77.45 18.09 3.84 12.70 7.07 2.51 16.82 3.36 1.60 23.77 1334.03 5.21 5.69 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

17D-137 Aufacada Juncus APR13' 0.15 77.45 11.71 3.84 18.89 7.41 6.46 17.44 25.56 5.22 2.31 202.72 13.97 7.85 

17D-138 Aufacada Juncus AUG13' 0.10 77.45 12.91 3.84 23.27 7.87 6.49 2.48 29.27 1.79 21.11 4712.35 1.62 1.18 

18D-139 Aufacada Phragmites NOV12' 0.30 25.00 14.85 36.70 15.79 7.27 4.34 27.04 4.99 11.82 108.62 1445.90 3.11 1.68 

18D-140 Aufacada Phragmites APR13' 0.10 25.00 10.46 36.70 14.59 7.13 3.89 17.19 12.49 3.85 18.56 2797.60 39.43 7.52 

18D-141 Aufacada Phragmites AUG13' 0.15 25.00 10.62 36.70 25.81 7.95 0.71 5.45 67.11 6.47 16.02 4429.28 37.79 -0.10 

19D-142 Banya Microbial mat NOV12' 0.01 76.30 31.14 5.80 15.06 8 7.1 27.13 30.83 3.18 38.70 619.45 9.18 2.01 

19D-143 Banya Microbial mat APR13' 0.05 76.30 74.63 5.80 27.71 8.04 5.91 46.89 33.08 3.99 2.47 302.20 2.70 1.19 

19D-144 Banya Microbial mat AUG13' 0.02 76.30 51.48 5.80 24.71 9.07 13.57 14.43 30.39 1.47 7.49 626.05 0.94 0.49 

20D-145 Clot Lagoon NOV12' 0.55 45.63 1.81 26.62 16.87 7.82 7.21 48.20 149.98 15.09 642.73 1613.01 4.92 4.42 

21D-146 Encanyissada Lagoon NOV12' 0.77 78.21 8.48 0.89 14.15 8.35 11.36 40.20 59.33 0.64 184.52 1368.16 55.12 -7.05 

21D-147 Encanyissada Lagoon APR13' 0.60 78.21 29.45 0.89 19.49 7.58 6.54 9.91 42.40 5.63 24.26 686.86 2.76 1.93 

21D-148 Encanyissada Lagoon APR13' 0.40 72.59 31.88 0.89 20.21 7.88 5.6 6.94 29.82 1.01 7.56 421.48 0.82 1.50 

21D-149 Encanyissada Lagoon AUG13' 0.45 78.21 10.45 0.89 27.24 8.23 6.63 45.41 16.47 1.61 0.59 1949.98 3.57 1.48 

22D-150 Encanyissada Salicornia NOV12' 0.31 61.21 7.35 56.63 14.22 7.16 1.81 106.02 108.43 2.16 67.57 1965.54 20.57 6.03 

22D-151 Encanyissada Salicornia APR13' 0.10 61.21 26.92 56.63 20.76 7.61 7.69 26.51 21.49 3.07 4.80 242.52 14.20 3.31 

22D-152 Encanyissada Salicornia AUG13' 0.15 61.21 14.45 56.63 29.26 8.43 11.11 22.95 39.70 3.07 36.64 4901.76 61.26 4.29 

23D-153 Encanyissada Juncus NOV12' 0.40 73.88 7.80 66.29 15.18 6.96 0.67 84.87 17.37 2.61 34.09 1468.82 24.42 0.46 

23D-154 Encanyissada Juncus APR13' 0.10 73.88 20.41 66.29 22.81 7.78 11.22 6.35 31.08 12.37 53.93 2200.22 9.31 2.87 

23D-155 Encanyissada Juncus AUG13' 0.08 73.88 42.32 66.29 28.40 7.92 12.27 28.65 20.04 3.33 15.66 2411.93 42.44 6.28 

24D-156 Encanyissada Phragmites NOV12' 0.19 7.17 2.22 96.99 16.41 7.9 8.08 45.56 18.38 9.44 659.21 2046.03 5.73 5.05 

24D-157 Encanyissada Phragmites APR13' 0.10 7.17 26.08 96.99 24.49 7.67 12.22 32.15 28.21 2.10 5.64 1474.43 10.10 2.30 

24D-158 Encanyissada Phragmites AUG13' 0.20 7.17 20.23 96.99 27.18 8.07 3.31 27.88 23.91 4.16 18.28 13198.19 49.64 21.81 

25D-159 Fangar Inner bay NOV12' 0.20 92.25 11.59 1.83 17.09 8.02 8.93 22.61 25.69 37.22 38.15 474.25 2.37 5.17 

25D-160 Fangar Inner bay APR13' 0.20 92.25 39.17 1.83 25.67 8.3 7.21 6.10 21.08 1.54 9.36 187.25 2.38 1.15 

25D-161 Fangar Inner bay AUG13' 0.40 92.25 18.27 1.83 21.93 8.91 9.44 10.62 14.31 1.68 8.67 146.16 4.76 2.38 

26D-162 Fangar Salicornia NOV12' 0.16 80.50 18.71 46.79 17.11 7.24 0.63 224.40 2.96 2.68 87.95 671.72 2.38 4.14 

26D-163 Fangar Salicornia APR13' 0.16 80.50 38.98 46.79 27.87 7.84 5.53 9.66 100.71 6.56 10.73 666.08 4.84 4.19 

26D-164 Fangar Salicornia AUG13' 0.17 80.50 35.80 46.79 23.13 7.52 1.35 87.97 358.08 11.54 5.48 1969.58 3.05 1.37 

27D-165 Garxal Lagoon NOV12' 0.25 92.12 5.25 2.26 12.74 7.8 5.68 11.34 7.79 0.34 32.41 749.46 0.91 0.88 
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Sample Site Habitat Period Water depth Sand Salinity OM T pH DO PO4
3–

-P NH4
+
-N NO2

–
-N NO3

–
-N SiO4

4–
-Si Chl-a PO4

3–
-P 

    m % ppt % ºC  % µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

27D-166 Garxal Lagoon APR13' 0.25 92.12 2.39 2.26 18.69 7.97 5.47 12.11 42.30 3.18 12.02 481.36 6.30 1.67 

27D-167 Garxal Lagoon AUG13' 0.30 92.12 8.90 2.26 26.00 8.9 10.29 10.04 28.17 1.48 5.99 3151.19 13.79 3.95 

28D-168 Garxal Salicornia NOV12' 0.08 92.34 17.24 3.15 15.40 8.4 7.64 21.93 11.57 0.69 84.64 990.52 8.88 0.91 

28D-169 Garxal Salicornia APR13' 0.10 92.34 10.39 3.15 23.98 8.5 8.48 11.65 24.79 2.40 2.55 293.21 10.03 3.05 

29D-170 Garxal Juncus NOV12' 0.07 93.96 6.59 3.86 13.83 7.68 7.64 43.95 85.65 20.76 1115.36 1642.72 5.77 2.76 

29D-171 Garxal Juncus APR13' 0.10 93.96 12.18 3.86 16.97 7.39 5.27 11.83 18.38 3.40 11.07 2254.42 15.80 2.21 

29D-172 Garxal Juncus AUG13' 0.11 93.96 11.83 3.86 26.36 7.26 4.97 99.43 18.60 1.96 3.21 2687.78 11.88 2.00 

30D-173 Garxal Phragmites NOV12' 0.14 65.80 4.93 39.81 13.09 8.09 6.41 14.56 65.64 0.29 57.93 871.46 2.30 2.07 

30D-174 Garxal Phragmites APR13' 0.15 65.80 1.97 39.81 21.70 8.16 9.4 14.40 19.29 2.21 81.11 297.43 7.70 2.39 

30D-175 Garxal Phragmites AUG13' 0.07 65.80 8.52 39.81 25.46 8.92 10.71 10.62 13.46 1.29 4.59 4679.33 12.03 7.99 

31D-176 Olles Lagoon NOV12' 0.72 26.75 0.73 5.61 13.65 7.77 8.3 32.18 122.76 25.90 1157.49 1108.68 2.57 2.24 

31D-177 Olles Lagoon APR13' 0.50 26.75 4.26 5.61 24.08 8.14 9.65 12.14 80.15 54.49 1233.69 2687.78 20.66 3.94 

31D-178 Olles Lagoon AUG13' 0.45 26.75 0.79 5.61 21.97 7.73 8.1 39.77 70.75 17.42 499.17 2477.70 47.78 7.94 

32D-179 Olles Phragmites NOV12 0.25 37.58 0.74 40.55 13.03 7.41 6.02 20.32 12.70 0.90 25.87 1496.11 3.24 2.30 

32D-180 Olles Phragmites AUG13' 0.10 37.58 1.58 40.55 21.42 7.55 2.49 24.50 7.69 1.93 26.21 2375.75 12.19 2.84 

33D-181 Tancada Lagoon NOV12' 0.50 70.69 20.77 3.28 12.40 7.99 9.77 44.76 98.66 17.24 39.40 1058.80 6.37 1.04 

33D-182 Tancada Lagoon APR13' 0.60 70.69 35.03 3.28 17.66 7.65 5.97 8.73 147.66 14.52 27.47 356.77 1.36 3.82 

33D-183 Tancada Lagoon APR13' 0.30 8.64 35.22 3.28 17.44 7.53 5.38 9.14 131.61 9.48 16.32 457.37 10.18 4.43 

33D-184 Tancada Lagoon AUG13' 0.45 70.69 26.77 3.28 25.07 8 5.14 15.21 23.97 3.39 3.99 1158.53 3.87 2.09 

34D-185 Tancada Salicornia NOV12' 0.32 58.78 23.69 59.27 13.03 7.34 5.95 200.46 131.90 5.88 21.46 1532.43 30.90 13.76 

34D-186 Tancada Salicornia NOV12' 0.14 63.67 21.43 17.82 13.35 7.33 5.68 201.39 3.25 3.18 113.40 1285.53 46.20 12.61 

34D-187 Tancada Salicornia APR13' 0.14 63.67 29.81 17.82 12.37 7.69 3.35 18.55 13.05 1.34 7.13 159.67 18.00 6.08 

34D-188 Tancada Salicornia APR13' 0.50 58.78 26.12 59.27 15.83 8 6.82 119.34 9.66 5.17 1.43 522.95 6.53 2.84 

35D-189 Tancada Phragmites NOV12' 0.08 31.89 17.50 27.19 13.74 7.15 3.72 179.15 14.24 1.62 43.38 1177.12 22.86 28.77 

35D-190 Tancada Phragmites APR13' 0.05 31.89 31.69 27.19 18.88 7.02 3.74 40.76 20.87 5.31 1.06 891.60 17.81 9.50 

35D-191 Tancada Phragmites AUG13' 0.15 31.89 11.76 27.19 22.53 7.55 3.76 5.23 164.64 3.42 1.05 1029.53 44.51 7.88 

 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 2: Benthic foraminiferal assemblages 

128 

Supplementary Table S2 

Results of Canonical Correspondence Analysis (CCA) of foraminifera-environment relationships. a) Marginal effects 

indicate the variance explained by each variable considered alone. b) Unique effects indicate percentage variance 

explained by each environmental variable with the remaining treated as covariables. λ1: eigenvalue of the constrained 

axis 1; λ1/λ2: ratio of the constrained axis 1 to the unconstrained axis 1. Those variables selected by initial series of 

CCA including all individual variables are emboldened, while variables finally selected by partial CCAs are 

emboldened and highlighted in gray color. 

 

a) CCAs (marginal effects) 

Variable % variance explained p value    

Water depth 15.51 0.005    

Salinity 8.86 0.005    

Sand proportion 6.44 0.005    

Temperature 1.72 0.35    

      

b) Partial CCAs (unique effects)  

Variable % variance explained p value λ1 λ1/λ2  

Water depth 8.66 0.005 0.380 0.75  

Sand proportion 4.33 0.005 0.191 0.37  

Salinity 3.12 0.005 0.137 0.26  

      

Sum unique effects 16.11     

Intercorrelations 6.74     

Total variance explained 22.85     
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Supplementary Table S3 

Model performances for the foraminifera-based water depth transfer functions (WA-INV, WA-CLA, WA-PLS). All 

models were cross-validated using leave-one-site-out method (LOSO), and were built on square root transformed 

species data and log10 transformed water depth (m). Abbreviations: WA = Weighted-Averaging; INV = Inverse 

deshrinking; CLA = Classical deshrinking; WA-PLS = Weighted-Averaging Partial Least Squares. The model 

preferred is highlighted in bold and gray colour. 

 

Model   r
2
 LOSO RMSEP 

LOSO (log10 

m)  

Max Bias 

LOSO 

(log10 m)  

% improvement 

in RMSEP 

Mean segment 

RMSEP LOSO 

(log10 m)  

Foraminiferal dataset: n samples = 115, n taxa = 155   

WA-INV   0.76 0.46 1.68  0.72 

WA-CLA   0.76 0.51 0.62  0.74 

WA-PLS-1   0.76 0.46 1.62  0.70 

WA-PLS-2   0.82 0.41 1.06 9.91 0.50 

WA-PLS-3   0.80 0.42 0.99 -0.83 0.49 

   

Foraminiferal dataset: n samples = 108, n taxa = 151   

WA-INV   0.84 0.36 1.41  0.61 

WA-CLA   0.84 0.39 1.36  0.61 

WA-PLS-1   0.84 0.37 1.43  0.61 

WA-PLS-2   0.89 0.31 0.77 12.23 0.40 

WA-PLS-3   0.88 0.32 0.74 -0.93 0.35 
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Supplementary Table S4 

Results of Canonical Correspondence Analysis (CCA) of combined foraminifera-diatom dataset and relationships with 

the measured environmental variables for the Ebro Delta samples. a) Marginal effects indicate the variance explained 

by each variable considered alone. b) Unique effects indicate percentage variance explained by each environmental 

variable with the remaining treated as covariables. λ1: eigenvalue of the constrained axis 1; λ1/λ2: ratio of the 

constrained axis 1 to the unconstrained axis 1. Those variables selected by initial series of CCA including all 

individual variables are emboldened, while variables finally selected by partial CCAs are emboldened and highlighted 

in gray color. 

 

a) CCAs (marginal effects) 

Variable % variance explained p value    

OM 5.49 0.005    

Salinity 5.46 0.005    

Water depth 5.35 0.005    

pH 3.57 0.005    

SiO4 3.57 0.005    

Chl-a 3.35 0.005    

Sand  3.03 0.005    

Feopig-a 2.55 0.01    

NO2
–
-N 2.32 0.015    

NO3
–
-N 2.23 0.03    

PO4
3–-P 2.16 0.032    

NH4
+-N 1.62 0.34    

DO 1.48 0.43    

T 1.33 0.61    

      

b) Partial CCAs (unique effects)  

Variable % variance explained p value λ1 λ1/λ2  

Salinity 4.22 0.005 0.176 0.70  

Water depth 3.47 0.005 0.145 0.57  

OM 2.38 0.005 0.099 0.40  

pH 2.40 0.005 0.099 0.39  

NO2
–
-N 2.03 0.005 0.085 0.34  

Sand 1.86 0.019 0.078 0.31  

SiO4
4–-Si 1.71 0.06 0.071 0.28  

PO4
3–-P 1.56 0.07 0.065 0.26  
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NO3
–-N 1.49 0.11 0.062 0.25  

Chl-a 1.09 0.63 0.046 0.18  

Feopig-a 1.07 0.75 0.045 0.18  

      

Sum unique effects 16.36     

Intercorrelations 5.06     

Total variance explained 21.42     

 

Supplementary Table S5 

Performance statistics for multiproxy-salinity and diatom-conductivity transfer functions (WA-INV, WA-CLA, 

WATOL-INV, WATOL-CLA). Multiproxy model was based on dead foraminifera and diatom assemblages. All 

models were cross-validated using leave-one-site-out (LOSO), and were built on square root transformed species data 

and log10 transformed salinity (ppt), and log 10 transformed conductivity (mS/cm). Abbreviations: WA = Weighted-

Averaging; INV = Inverse deshrinking; CLA = Classical deshrinking; WATOL = Weighted-Averaging with tolerance 

downweighted. The models preferred are highlighted in bold and gray colour. 

 

Variable Model r
2
 LOSO RMSEP LOSO  Max Bias LOSO 

 

Mean segment 

RMSEP LOSO  

Salinity (log10 ppt) Multiproxy dataset: n samples = 70, n taxa = 511 

 WA-INV 0.62 0.28 0.0.53 0.36 

 WA-CLA 0.63 0.28 0.0.45 0.32 

 WATOL-INV 0.51 0.27 0.75  

 WATOL-CLA 0.51 0.28 0.78  

      

Conductivity (log10 

mS/cm) 

Diatom dataset: n samples = 61, n taxa = 424 

 WA-INV 0.62 0.26 0.39 0.33 

 WA-CLA 0.64 0.27 0.32 0.30 

 WATOL-INV 0.43 0.31 0.74 - 

 WATOL-CLA 0.43 0.31 0.72 - 

 

Supplementary Table S6 Relative abundances of living and dead foraminifera. 

The data table can be found online at the XXX website http://XXX. 
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Abstract 

Major Mediterranean deltas began to develop within a period between 8000 and 6000 yr BP as the 

rate of fluvial sediment input overtook the declining rate of sea-level rise. However, different authors 

have considered that the Ebro Delta formed mostly during the Late Middle Ages as a consequence of 

increased anthropogenic pressure on its river basin and supported by the scarcity of previous 

geological studies and available radiocarbon dates. In order to reconstruct the environmental evolution 

of the Ebro Delta during the Holocene, we used micropalaeontological analysis of continuous 

boreholes drilled in two different locations of the central delta plain (Carlet and Sant Jaume). 

Different lithofacies distributions and associated environments of deposition were defined based on 

diagnostic foraminiferal assemblages and the application of a palaeowater-depth transfer function. 

The more landward Carlet sequence shows an older and more proximal progradational delta with a 

sedimentary record composed of inner bay, lagoonal, and beach materials deposited after 7600 yr BP 

until >2000 yr BP under sea-level rising and highstand conditions. This phase was followed by a 

series of delta-plain environments reflected in part by the Carlet deposits before 2000 yr BP. The Sant 

Jaume borehole is located nearer the present coastline and contains a much younger sequence 

accumulated in the last 2.0 ka during the development of three different deltaic lobes under highstand 

sea-level conditions. Results of the present study reinforce the idea that the Ebro Delta dates back to 

the early Holocene as other large Mediterranean deltas. 

 

Keywords 

Ebro Delta, sedimentary sequences, benthic foraminifera, environmental evolution, 

Mediterranean Sea, Holocene 
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Introduction 

Deltas are the largest coastal landforms in the world (Evans, 2012). They are coastal depositional 

environments resulting from the interaction between river and marine forces. The strength of both 

elements determines the dominant processes governing the evolution of the deltaic systems through 

time (Jiménez et al., 1997). The morphology and sedimentary architecture of deltas depend on the 

relative magnitude of tides, waves and currents (Wright and Coleman, 1973; Galloway, 1975). The 

morphological evolution of a delta is also controlled by relative sea-level changes depending, in turn, 

on the eustatic sea-level rise and local subsidence or uplift (Galloway, 1975). Subsidence results 

naturally from compaction of deltaic sediments, degassing of peats and growth faults developed at the 

base of deltaic sediments, but can be additionally increased by human activities such as extraction of 

groundwater. However, relative sea-level rise (RSLR) can be compensated by vertical accretion 

processes taking place in the delta plain and in turn accretion rates depend on fluvial sediment inputs 

and sea-level rise itself through feedback mechanisms (Day et al., 2011; Ibáñez et al., 2014). 

Deltas are considered to be highly vulnerable to even minor changes in relative sea level, 

particularly because most modern deltas are actively subsiding and their sediment supply has been 

curtailed (Giosan et al., 2014; IPCC, 2014). Moreover, global warming is accelerating sea-level rise, 

which intensifies coastal erosion and land loss due to marine inundation (Fatorić and Chelleri, 2012). 

In order to implement science-based coastal protection measures in these sensitive areas, a precise 

definition of the relation between sea-level change and delta evolution is critical, and consequently it 

is essential to understand the relation between delta development and sea-level change during the 

Holocene (Stanley and Warne, 1994). Under natural conditions, deltas have mechanisms to enhance 

vertical accretion and land gain as a response to RSLR, specially the increased river avulsion and 

delta lobe formation in shallow areas, and increased accretion in coastal marshes and beaches 

connected to marine environments (Ibáñez et al., 2014). This suggests that river-dominated deltas can 

be resilient to changes in sea level. 

Previous analysis of major modern deltas in the Mediterranean Sea showed that these 

environments started to build between 8000 and 6000 yr BP. Overlapping fluvial upper Pleistocene 

gravels, Holocene deltaic deposits consist of variable aggradational and progradational lithologies 

(Stanley and Warne, 1994, 1997; Vella et al., 2005; Anthony et al., 2014). These previous works 

showed that the deceleration in sea-level rise was the key to initiation of deltas and that Holocene 

deltaic sequences began to accumulate as the rate of fluvial sediment input overtook the declining rate 

of sea-level rise along coasts. For the northwestern Mediterranean area, Lambeck and Purcell (2005) 

and Pirazzoli (2005) indicated a rapid sea-level rise until 6.0 ka, followed by a more gradual increase 

in sea level with a slight deceleration during the last 1.5 ka, and stabilization for the last 0.5 ka.  
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Recently, Maselli and Trincardi (2013) supported the idea that the onset of the northern 

Mediterranean deltas followed an ancestral phase dominated by estuary fill and relatively slow delta 

growth, around 6000 yr BP. Furthermore they suggested that these deltas formed almost 

synchronously during two short intervals of enhanced anthropogenic pressure on landscapes, 

respectively during the Roman Empire and the Little Ice Age.  

Mediterranean deltas contain a widespread and generally consistent Holocene stratigraphic 

succession composed of peat, lagoonal, and other organic-rich facies that accumulated as delta plain 

deposits at or near sea level (Stanley and Warne, 1994). These resource-rich ecosystems were used by 

humans soon after their development. Documented archaeological sites dated to 7000 yr BP or earlier 

are positioned on or adjacent to deltas as the Rhône and the Nile (Stanley and Warne, 1997). 

Benthic foraminifera have been long and widely used as indicators of past environmental 

conditions (i.e., salinity, temperature, oxygen content, etc.) of open marine and coastal areas (Murray, 

2006), and are a valuable tool, in combination with the stratigraphical sequence and other 

palaeontological and geochemical proxies, for palaeoenvironmental reconstruction. However, the use 

of foraminifera for an accurate reconstruction of coastal habitats is not straightforward due to the 

enormous complexity and variability of these ecosystems. This is of paramount importance in the case 

of deltas, since a small delta plain such as the Ebro (320 km2) contains at least four different habitats 

with their particular foraminiferal assemblages (Benito et al. (2006) and Tables 1 and 2). Moreover, 

the existing literature shows that previous palaeoenvironmental reconstructions of Mediterranean 

deltaic sequences have used modern analogues from the open marine environments only (Amorosi et 

al., 1999, 2013; Rossi and Horton, 2009; Curzi et al., 2006; Carboni et al., 2010; Dinelli et al. 2012; 

Milli et al., 2013) but not from the delta plain habitats (coastal lagoons, inner bays, salt marshes, etc.). 

Thus, the present study represents the first palaeoreconstruction based on both open marine and delta 

plain assemblages, giving therefore the possibility for a new and sounder interpretation of the fossil 

record in deltaic sedimentary sequences.  

 

Previous work 

Earlier geological studies of the Ebro Delta and its Holocene sedimentary archives and evolution are 

scarce and most of them based on just a few radiocarbon dates, especially initial works carried out in 

1960s and 1970s (e.g., Solé et al., 1961; Macau, 1961; Maldonado and Riba, 1971; Maldonado, 

1972). According to Maldonado and Murray (1975), and based on sedimentological and 

palaeontological comparison between borehole depositional sequences and recent environments, after 

a temporary stabilization of sea level at ca. -10 m extensive deltaic progradation started and delta 

plain formed over the last 8.0 ka (based on peat material radiocarbon dated by Solé et al. (1965) at 

7680 yr BP). Fluvial supply of sediments was sufficient to prevent extensive transgression of the delta 
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plain during this time interval concurrent with the slowing of the sea-level rise. Maldonado and 

Murray (1975) concluded that the entire development of the Ebro Delta was governed mainly by the 

interaction between the rate of sea-level rise and the rate of sediment delivery by the river. Other 

factors, such as river floods and coastal processes caused the diversion of the distributaries as well as 

changes in the delta morphology, with river avulsions being responsible of an evolution based on the 

sequential progradation and abandonment of different deltaic lobes subsequently being modified by 

rapid subsidence. Thus, the geometry of Ebro Delta was created by the advance of successive deltaic 

lobes that prograded radially seawards from an avulsion point usually located close to the Gracia 

Island (Maldonado and Riba, 1971). These processes were studied by Maldonado (1977) who found 

evidence for five different major avulsions during the last centuries (Díaz et al., 1990).  

 

Figure 1. Geographical location of 

the Ebro Delta in the western 

Mediterranean Sea, boreholes and 

places referred to in the text. Dashed 

line represents the approximate 

morphology and position of the two 

ancient deltaic lobes (from 

Maldonado, 1972). Images taken 

from Google Earth. 

 

 

 

 

The Holocene deposits of the delta present a thickness ranging from 20 m at the landward side 

to 52 m at the delta front (Maldonado, 1972; Maestro et al., 2002). Radiocarbon ages indicate that 

deposition of the prodelta on the shelf began at about 11,000-10,000 yr BP (Díaz et al., 1990). After 

the pioneering work of Maldonado (1972), Somoza et al. (1998) published the most comprehensive 

study of the Holocene depositional units of the Ebro Delta based on high-resolution seismic profiles 

and analysis of 11 existing boreholes (20-60 m long) drilled on the modern delta (3 in the alluvial 

valley, 7 in the delta plain and 1 in the prodelta). The Holocene deposits of the delta were interpreted 

as a depositional sequence being composed of a transgressive systems tract (TST), formed mainly of a 

basal mollusc-shell lag and marine gray or black clays overlapping the upper Pleistocene gravels, and 

a highstand systems tract (HST). The top of the maximum flooding surface (MFS) separating the TST 
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from the HST was dated at 6900 yr BP based on peat material from the inner delta area published 

previously by Arasa (1994), as they did not obtain any direct dates from their sedimentary sequences. 

The HST, which overlies the MFS, is reported to include a total of five progradational units made of 

prodelta clays, sandy delta fronts and silty sands of delta-plain deposits depending on location within 

the deltaic three-dimensional architecture. Only their ITGE-6 borehole was drilled in the central area 

of the delta plain near the Gracia Island (Figure 1). The ITGE-6 borehole was around 30 m long, of 

which about 27 m were of Holocene age. The Holocene stack was interpreted to be composed of five 

progradational units (with assigned ages in Somoza and Rodríguez-Santalla, 2014): basal unit d0 

made of bioclastic coarse sand containing marine mollusks and deposited during the TST before 7000 

yr BP; units d1 and d2 composed of coarse and medium sands, accumulated above the MFS and dated 

between 6150 and 3600 yr BP. These three lower units are considered as delta-front and nearshore 

deposits; and finally, units d3 and d4 characterized by sands with scattered pebbles and silty sands are 

defined as delta-plain deposits younger than 2700 yr BP. These progradational units were interpreted 

to have been deposited as a succession of prograding delta lobes with frequencies of thousand-year 

magnitude. 

Canicio and Ibáñez (1999) identified several coastal barriers separating thick peat bodies in the 

landward limit of the present delta plain dated 3050±45 radiocarbon years old in the northern 

hemidelta and 5745±50 radiocarbon years old in the southern hemidelta, and concluded that the 

orientation of the barriers suggests that about 6000 yr BP the mouth of the delta was around the 

present fluvial island of Gracia (Figure 1). 

Recently, in contrast to the above mentioned studies, Maselli and Trincardi (2013) supported 

the idea that Amposta, a town now located at the inland margin of the delta, had a marine harbour 

during Roman times. This erroneous idea began with a personal interpretation of Roman texts by 

Bayerri (1934) who considered the mention of a “sea port” in Tortosa (12 km upstream of Amposta; 

Figure 1) to be proof for the existence of an estuary. The concept of “sea port”, however, could also 

refer to fluvial ports that harbour marine vessels. As pointed out by Canicio and Ibáñez (1999), the 

same misinterpretation led some other authors to consider that the Ebro Delta formed very recently 

(mostly during the Islamic Period, 14th and 15th centuries) and that during Roman times it was an 

estuary. For example, Guillén and Palanques (1997) and Palanques and Guillén (1998) considered that 

the Holocene sea-level rise caused the flooding of the river mouth, which became an estuary that 

evolved into a delta only during the last 2.0 ka. Some publications even concluded that the delta plain 

began to form during the 12th century downstream from the town of Amposta (Serra, 1997; Somoza 

and Rodríguez-Santalla, 2014). 

Differential delta lobe progradation has been identified during the last millennium in the Ebro 

Delta through the recognition of three main lobes: the Riet Vell, Riet de Zaida and Migjorn lobes 

(Ibáñez et al., 1997) (Figure 1). The oldest map showing a relatively detailed and reliable 
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configuration of the Ebro Delta is the Mercator-Hondius Atlas, which dates from 1580 CE (Ibáñez et 

al., 1997). The southeastern Riet Vell lobe was the main active mouth of the delta in 1149 CE and was 

probably abandoned in 1362 CE (Somoza and Rodríguez-Santalla, 2014). Modern bathymetric 

configuration suggests that marine partial destruction of this abandoned lobe provoked an 8 km retreat 

of the old headland and the subsequent growth of the southern La Banya spit (Canicio and Ibáñez, 

1999). After this period, the main mouth of the Ebro Delta moved northward to the Riet de Zaida lobe 

that was already active in 1575 CE (Somoza and Rodríguez-Santalla, 2014). This lobe was separated 

from the old Riet Vell lobe by a large palaeobay (Port Fangós), and it developed from the proximal 

zone of the delta, suggesting that it was built by the switching of the river near the Gracia Island 

(Figure 1). This new channel, shorter and with more hydraulic gradient to the sea, provoked a quick 

decay of the old Riet Vell main channel. The next detailed maps include a navigation chart of the 

Ebro Delta coast (Plan Des Rades de Sausa, 1733 CE) and the map of Miguel Marín (1749 CE) 

(Canicio and Ibáñez, 1999). The main differences with the previous situation at the end of the 16th 

century were the complete filling of the palaeobay that separated the two previous deltaic lobes and 

the rapid progradation of a new and central Migjorn lobe. This last active lobe is the result of a new 

river switching event that took place around the year 1666 CE at a location called La Cava close to the 

Gracia Island area (Figure 1) as a consequence of a reported anthropogenic excavation in the outer 

levee of a pronounced meander (Ribas, 1996). The retreat of the Riet de Zaida lobe by marine erosion 

conducted to the subsequent development of the Fangar spit that started to form around 1739 CE, as 

indicated on the Miguel Marín map (Canicio and Ibáñez, 1999). Modern maps show a rapid 

progradation of the central Migjorn lobe until 1880 CE due to the infill of the shallow inner palaeobay 

of Port Fangós, followed by a relative stabilisation of the delta mouth during the first half of the 20th 

century and a quick retreat during the last decades due to sediment retention in the various dams 

located along the Ebro River watercourse (Ibáñez et al., 1997). 

Another controversial issue related to the hypothesis of a recent and rapid growth of the Ebro 

Delta is the impact of land use changes in the river basin on the progradation rates. The 13th century 

is considered to be the beginning of an intense deforestation of the Ebro basin caused by the change in 

land use, from forest to agricultural activities. These changes favoured sediment erosion and may 

have caused an important progradation of the Ebro River mouth (Palanques and Guillén, 1998; 

Maselli and Trincardi, 2013; Somoza and Rodríguez-Santalla, 2014). However, a recent study 

modelling sediment transport in the Ebro River during the last 4.0 ka (Xing et al., 2014) shows that 

sediment load was already high (30.5 Mt yr-1) before any human significant intervention and that the 

increase in sediment load due to land use change was up to a maximum of 47.2 Mt yr-1. 

Modern foraminifera (live and dead assemblages) off the Ebro Delta were studied extensively 

by Scrutton (1969), who defined quantitatively the different species that characterized mainly the 

open marine environments; in contrast, the study of delta plain habitats was very limited (only 6 
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samples from a coastal lagoon). Afterwards, Maldonado (1972) published qualitative results on the 

presence of benthic foraminifera in several surface (total assemblages) and borehole samples from the 

Ebro Delta (from both delta plain and open marine environments). More recently, an exhaustive 

analysis of delta plain and nearshore foraminiferal assemblages of the Ebro Deltawas carried out by 

the authors (see Tables 1 and 2), which complements very well the study by Scrutton (1969). Data 

from both studies are the base for the palaeoreconstruction carried out in the present paper, in 

combination with the interpretation of stratigraphic sequences and radiocarbon dates. Geological 

analysis of continuous borings in deltas and their lateral correlation can define the associated 

environments of deposition. Such analyses provide a context for interpreting both regional 

palaeogeography and site-specific environmental settings.  

 

Objectives 

The present work is focused on the methodological contribution of the foraminiferal assemblages to 

reconstructing the sequence of palaeoenvironments that characterize the Holocene evolution of the 

central Ebro Delta plain. We supply new data to pinpoint the age of the delta as it has been questioned 

during recent years (Maselli and Trincardi, 2013). We contribute substantial new environmental and 

chronological information to complete and improve previous interpretations (e.g., Somoza et al., 

1998).  

The main aim of the current work is to provide new insights into the Holocene evolution of the 

Ebro Delta using micropalaeontological proxies (benthic foraminifera) based on modern analogues 

covering the whole range of deltaic environments (from the inner delta plain to the outer prodelta).  

The combination of the fossil foraminiferal data obtained from two new boreholes with the 

available geological knowledge (mainly published by Somoza et al, 1998) and the existing data of 

modern foraminifera allowed a more precise reconstruction of deltaic environments and their 

evolution through time in the central delta-plain area. From this knowledge, a new understanding on 

some controversial points regarding the origin and evolution of the delta has been obtained. In 

addition, numerous radiocarbon dates allowed a detailed chronology of the deltaic succession at the 

two boreholes to be made. 

 

Materials and methods 

Study area 

The Ebro Delta is one of the largest modern deltas in the Mediterranean after those of the Nile, Rhône 

and Po (Barnolas et al., 1996). It is located on the western Mediterranean coast, about 200 km 

southwest of Barcelona, and it extends over an area of 320 km2, has an outer sandy shoreline of 50 
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km length and an estimated sedimentary volume of 28 km3 (Figure 1). The maximum tidal amplitude 

is 0.25 m (astronomical) and 1 m (meteorological) (Sánchez-Arcilla et al., 1996; Somoza and 

Rodríguez-Santalla, 2014).  

The main morphological features of this microtidal delta are two spits, Fangar and La Banya, 

which partially close two adjacent bays, Fangar and Alfacs (Figure 1). Most of the surface area of the 

modern Ebro Delta is devoted to agriculture since the construction in 1860 CE of the first irrigation 

canal which transformed most wetlands and some lagoons into rice fields which occupy 65% of the 

delta plain (Cardoch et al., 2002; Ibáñez et al., 2010; Roca and Villares, 2012). Delta natural habitats 

account for only 20% of the surface area and include freshwater, brackish and saline lagoons, salt 

marshes and coastal and sandy dune systems (Valdemoro et al., 2007). Several national and 

international designations (RAMSAR, Natura 2000 and Natural Park) currently protect the natural 

delta habitats. 

At present, RSLR and coastal erosion by wave action cannot be compensated by river sediment 

input (Ibáñez et al., 1997; Jiménez et al., 1997). A series of dams were built along the Ebro River 

watercourse mainly in the 1960s to support a variety of intensive water uses (Ibáñez and Prat, 2003). 

Irrigation and damming are responsible of a 30% decrease in the water discharge and reservoirs retain 

approximately 99% of the sediment input that partially should be deposited in the Ebro Delta, creating 

a severe sediment deficit (Ibáñez et al., 1996). As a result, the delta has ceased to grow, erosive 

processes are dominant and it has changed from progradational to a storm wave-dominated coast that 

is being morphological reshaped (Guillén and Palanques, 1992; Jiménez and Sánchez-Arcilla, 1993; 

Jiménez et al., 1997).  

At different temporal scales, Somoza et al. (1998) estimated subsidence rates of approximately 

1.75 mm/yr for the Ebro Delta during the last 7.0 ka, and Ibáñez et al. (1997) considered a subsidence 

of 2 mm/yr for the last 0.3 ka and recent subsidence rates to be 1-3.2 mm/yr. Recent research 

combining subsidence and sea-level rise data on the Ebro Delta coast estimate a variable RSLR 

ranging between 2 and 6 mm/yr (Jiménez et al., 1997), and from 4 to 6 mm/yr (Ibáñez et al., 1997). 

Sampling 

Carlet and Sant Jaume boreholes were drilled in 2011 in reclaimed areas of the central modern delta 

plain (Figure 1): X 303479/Y 4508218, about 18 km from the modern delta mouth, Z 2.33 m above 

national ordnance datum, 19.27 m long; and X 310438/Y 4508070, about 10.5 km from the modern 

delta mouth, Z 1.02 m above national ordnance datum, 21.95 m long respectively. Depths are referred 

always to the Spanish national ordnance datum (mean sea level at Alicante recorded between 1870-

1882 CE). The boreholes did not reach the basal Pleistocene gravels, although some gravels were 

recovered in Carlet suggesting their proximity. They were drilled using a percussion/rotary drill that 

produced a core approximately 8 cm in diameter. The cores comprise alternating sands, sandy muds, 
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muddy sands and muds with plant remains and mollusk-shell fragments in the muddy and sandy 

intervals.  

Table 3. Radiocarbon dates from the Carlet and Sant Jaume boreholes (Ebro Delta). 

 

Sample Publication 

code 

Altitude 

(cm) 

Material Method Conventional 

C-14 age BP 

δ13C 

(%o) 

Calendar 

calibrated 

age BP 

2σ 

calibrated 

BP 

Carlet-250 Beta-380015 -17 shells AMS 2340±30 -8.7 2350 2360-2330 

Carlet-261 Beta-380016 -28 shells AMS 2230±30 -7.8 2305 

2225 

2205 

2335-2150 

Carlet-282 Beta-348511 -49 shells AMS 3680±30 -9.2 4060 

4050 

3990 

4140-4130 

4090-3960 

3950-3920 

Carlet-284 Beta-380017 -51 shells AMS 2130±30 -8.9 2120 2295-2270 

2155-2035 

2025-2005 

Carlet-291 Beta-380018 -58 shells AMS 3540±30 -7.7 3835 3895-3815 

3800-3720 

Carlet-307 Beta-348512 -74 shells AMS 1560±30 -9.1 1410 1530-1380 

Carlet-350 Beta-348513 -117 shells AMS 2150±30 -9.6 2140 2300-2240 

2180-2170 

2160-2060 

Carlet-377 Beta-380019 -144 shells AMS 1600±30 -9.0 1525 1555-1410 

Carlet-406 Beta-380020 -173 shells AMS 1630±30 -8.6 1535 1570-1515 

1490-1485 

1460-1415 

Carlet-416 Beta-348514 -183 shells AMS 1700±30 -8.5 1600 

1580 

1570 

1700-1540 

Carlet-423 Beta-348515 -190 shells AMS 1770±30 -8.4 1700 1770-1760 

1740-1610 

Carlet-440 Beta-380021 -207 shells AMS 2540±30 -7.3 2720 2745-2695 

2635-2615 

2595-2500 

Carlet-448 Beta-348516 -215 shells AMS 2490±30 -7.5 2700 

2640 

2620 

2590 

2540 

2530 

2520 

2720-2460 

Carlet-611 Beta-348517 -378 wood AMS 2000±30 -

25.5 

1950 2000-1880 

Carlet-1251 Beta-380023 -1018 shells AMS 370±30 -9.4 465 505-420 

405-315 

Carlet-1256 Beta-348518 -1023 wood AMS 106.3±0.3 

pMC* 

-

26.1 

- - 

Carlet-1261 Beta-380024 -1028 shells AMS 2670±30 -8.3 2765 2840-2825 

2795-2750 

Carlet-1274 Beta-354495 -1041 wood AMS 2980±30 -

26.5 

3200 

3190 

3160 

3260-3070 

Carlet-1368 Beta-380025 -1135 shells AMS 4032±42** -2.5 4065 4155-3930 

Carlet-1405 Beta-380026 -1172 shells AMS 4252±42** -0.7 4385 4445-4240 
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Sample Publication 

code 

Altitude 

(cm) 

Material Method Conventional 

C-14 age BP 

δ13C 

(%o) 

Calendar 

calibrated 

age BP 

2σ 

calibrated 

BP 

Carlet-1411 Beta-380027 -1178 shells AMS 4062±42** +0.2 4085 4220-3970 

Carlet-1435 Beta-380028 -1202 shells AMS 4162±42** NA 4230 4375-4125 

Carlet-1596 Beta-380030 -1363 shells AMS 6262±50** NA 6715 6835-6615 

Carlet-1706 Beta-354496 -1473 shells AMS 7270±50** -1.6 7720 7830-7630 

Carlet-1731 Beta-354497 -1498 shells AMS 1710±40** +2.1 1260 1320-1200 

Carlet-1741 Beta-380031 -1508 shells AMS 7432±42** -1.4 7915 7965-7815 

Carlet-1751 Beta-380032 -1518 shells AMS 7402±42** -1.3 7865 7945-7785 

Carlet-1798 Beta-380033 -1565 shells AMS 7422±50** +1.3 7905 7970-7785 

Carlet-1843 Beta-380034 -1610 shells AMS 7502±42** -4.0 7955 8020-7900 

Carlet-1910 OS-90972 -1677 shells AMS 7620±35** -

2.82 

7955 8043-7866 

StJaume-528 Beta-354498 -426 shells AMS 560±40** -0.7 240 280-80 

post-1950 

CE 

StJaume-626 Beta-354499 -524 shells AMS 680±40** -2.6 300 420-260 

StJaume-651 Beta-354500 -549 shells AMS 870±40** -2.7 490 530-440 

StJaume-

1128 

Beta-373725 -1026 shells AMS 890±40** +0.4 500 545-460 

StJaume-

1261 

Beta-373726 -1159 shells AMS 1120±40** 0.0 665 730-630 

StJaume-

1517 

Beta-373727 -1415 shells AMS 1250±40** +2.8 780 895-700 

StJaume-

1527 

Beta-373728 -1425 shells AMS 1360±40** +0.9 910 970-820 

StJaume-

1584 

Beta-373729 -1482 shells AMS 1310±40** -3.0 880 925-765 

StJaume-

1654 

Beta-373730 -1552 shells AMS 1870±40** +0.6 1400 1515-1325 

StJaume-

1847 

Beta-373731 -1745 shells AMS 1240±40** +1.8 775 890-690 

StJaume-

1853 

Beta-354501 -1751 shells AMS 1730±40** +2.9 1280 1340-1220 

StJaume-

1949 

Beta-373732 -1847 shells AMS 1760±40** +0.3 1295 1370-1255 

 

* pMC: percent modern carbon; the material was living about the last 60 years or so. 

** adjusted for marine reservoir with a local deltaR correction of 120 years. 

NA: sample too small to provide a 13C/12C ratio on the original material. 

 

Analyses 

Foraminifera. Samples for micropalaeontological analysis were taken along the boreholes at 

approximately 25 cm (Carlet) and 20 cm (Sant Jaume) intervals. They were dried in an oven at 50°C 

and then weighed. The target weight was 70 g per sample. Samples were wet sieved through 63-

microns and 2-mm meshes in order to retain sands and gravels respectively, dried, and weighed again 

to determine the proportion of sand. The foraminifera were concentrated using trichloroethylene. 

Samples were split into fractions using a splitter and tests were picked until a representative amount 

of more than 300 individuals for each assemblage was obtained. Otherwise, all the available tests 

were picked and studied under a stereoscopic binocular microscope using reflected light. Only 

assemblages with more than 100 tests were used for calculations. Altogether, 143 samples were 

studied (Table S1), and more than 21,850 foraminifera grouped in 113 different species were 

identified (Appendix A). 

The species were divided into deltaic and marine forms based on modern distribution and 

abundance of living foraminiferal assemblages in the Ebro Delta environments studied quantitatively 

by Scrutton (1969) and our own data (Table 1). Dead foraminiferal assemblages were also 
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characterised from modern samples and their results used as modern analogues for the interpretation 

of the fossil foraminiferal record (Table 2). 

Radiocarbon dating. Thirty nine samples of shell fragments and three of wood were radiocarbon 

dated. Radiometric analyses were carried out by Beta Analytic Inc. (Miami, USA) and NOSAMS 

(Woods Hole, USA) using Accelerator Mass Spectrometry (AMS). The radiocarbon ages of shells 

were adjusted for the marine reservoir with a local deltaR correction, and conversion of all dates into 

calendar years was also performed using 2013 calibration databases (Reimer et al., 2013) (Table 3). 

Statistical analyses. Fisher’s alpha index was calculated for foraminiferal assemblages with >100 tests 

(Murray, 2006) in order to explore their diversity. Based on the alpha values, a clear boundary can be 

drawn between normal marine environments (alpha >5) and restricted marginal marine environments 

(alpha <5). 

A Detrended Correspondence Analysis (DCA) was used to determine whether fossil 

foraminiferal assemblages were represented by the modern Ebro Delta habitats. This was done by 

passively plotting onto the same unconstrained ordination space modern (dead) foraminiferal samples 

along with borehole samples. Analyses were performed using the ‘vegan’ package of R (Oksanen et 

al., 2013). 

Linear Discriminant Function (LDF) was used to statistically assign each fossil sample to the 

most likely modern habitat group. A total of four modern habitat groups based on cluster analyses of 

dead foraminiferal samples were identified in the Ebro Delta: 1) offshore, 2) nearshore and outer bays, 

3) coastal lagoons and inner bays, and 4) salt and brackish marshes. LFDs estimated the probability 

(0–1) that borehole samples should be classified to each of the four modern habitat groups by means 

of discriminant functions. Relative abundances of foraminiferal data were square root transformed 

prior analyses to stabilize their variance. Following Kemp et al. (2012), samples with probability 

>0.95 are considered exclusive of one habitat group, whereas with probability <0.95 samples can be 

assigned to more than one group. LDFs analyses were carried out using the ‘MASS’ package of R 

(Venable and Ripley, 2002). 

The Modern Analogue Technique (MAT) was used to test the reliability of the palaeowater 

depth reconstructions based on the transfer function developed by the authors. This technique 

evaluates the degree of similarity (or disimilarity) in the foraminiferal assemblages between each 

fossil sample and the modern ones. The squared chord distance (SCD) was used as dissimilarity 

coefficient. By using the largest dissimilarity coefficient among all modern foraminiferal samples as a 

critical threshold (Woodroffe, 2009) we identified fossil samples with close modern analogues. 

Samples with SCD ≤0.271 were considered similar. MAT analyses were calculated using the 

‘analogue’ package of R (Simpson and Oksanen, 2014). 
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Results 

Based on general sedimentological features (sand content), foraminiferal test abundance, and species 

diversity and dominance, the microfossil assemblages present in the two boreholes can be divided into 

different depth intervals (DIs). Table 4 and Figures 2 and 3 summarize the main borehole and 

microfaunal data. Interpretation of these DIs in terms of different habitats or subenvironments that 

evolved through time in this central area of the Ebro Delta is based on a palaeowater-depth transfer 

function developed by the authors which compares these buried Holocene assemblages with dead 

foraminiferal-assemblages composition in various settings of the modern delta obtained previously by 

Scrutton (1969) and our own data (Table 2 and Figure 4).  
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Table 1. Living foraminiferal species found in and off the Ebro Delta. Above: Quantitative summary of living foraminiferal assemblages composition in different 

environmental settings of the modern Ebro Delta. Figures represent relative abundance (%) unless otherwise indicated. The single value represents the average and those in 

parentheses give the range; Below: Reference list of marine species found in the modern foraminiferal assemblages of the Ebro Delta. 

Living assemblages (own data) 

Phragmites marsh Juncus marsh Salicornia marsh Lagoon Inner bay Nearshore 

9 samples 7 samples 10 samples 12 samples 6 samples 2 samples 

141 (65-197) standing crop  

(10 cm3) 

150 (65-197) standing crop  

(10 cm3) 

117 (71-201) standing crop  

(10 cm3) 

133 (69-222) standing crop  

(10 cm3) 

217 (197-236) standing crop  

(10 cm3) 

196 (186-205) standing crop  

(10 cm3) 

5 (2-9) species 6 (4-7) species 5 (2-7) species 7 (4-12) species 9 (5-14) species 23 (20-26) species 

1 (0.3-0.9) Fisher alpha index 1 (0.7-1.3) Fisher alpha index 1 (0.3-1.5) Fisher alpha index 1.5 (0.7-2.4) Fisher alpha index 1.8 (0.9-3) Fisher alpha index 5.9 (4.8-7) Fisher alpha index 

86.2 (48-100) agglutinated 25.6 (7-91) agglutinated 51 (0.9-100) agglutinated 1.7 (0-8.6) agglutinated 0.2 (0-1.5) agglutinated 0.8 (0.4-1.3) agglutinated 

0.4 (0-2) porcellaneous 1.3 (0-5.4) porcellaneous 1.6 (0-5.2) porcellaneous 1.7 (0-12.4) porcellaneous 9.2 (0.3-17.6) porcellaneous 14.8 (12.8-16.8) porcellaneous 

13.4 (0-50.1) hyaline  73.1 (9-93) hyaline 47.4 (0-99.1) hyaline 96.6 (87.4-100) hyaline 90.5 (82.4-99.7) hyaline 84.4 (82.8-86) hyaline 

T. inflata 43.3 (0-88) T. aguayoi 39.9 (4-79.3) A. beccarii 30.8 (0-90.6) A. beccarii 56 (10.8-87.4) A. beccarii 68.7 (33.2-96.4) A. beccarii 27.8 (19.7-36) 

H. wilberti 23.3 (8.1-60.4) A. beccarii 33 (2.3-86.2) J. macrescens 28.3 (0-61.4) H. germanica 21.7 (3.6-66.2) H. germanica 12.6 (0.6-24.9) Q. stelligera 12.6 (10.8-14.4) 

M. fusca 11.9 (0-87.0) T. inflata 18.4 (2.2-68) T. inflata 22.5 (0.9-57.9) C. oceanensis 9.5 (0-48.6) Q. jugosa 4.4 (0-10.8) B. striatula 10.1 (1.4-18.8) 

T. aguayoi 10.1 (0-36) J. macrescens 4.2 (0-18.4) H. germanica 13.5 (0-84.6) C. excavatum 4 (0-22.4) Q. seminula 3.7 (0-7.5) B. pseudopunctata 9.4 (5.7-13) 

J. macrescens 4.9 (0-18.4) M. fusca 2.3 (0-12) T. aguayoi 2.9 (0-14.5) C. selseyense 3 (0-14.8) 79.3 (57.3-95.5) similarity L/D N. opima 8.7 (5.1-12.3) 

A. beccarii 3.4 (0-29.1) 73.8 (36.4-95.5) similarity L/D 73.3 (53-94.4) similarity L/D 75.7 (52.6-91) similarity L/D  H. depressula 6.5 (3.5-9.5) 

69.2 (31.8-87) similarity L/D     A. mamilla 1.3 (0.7-1.9) 

     R. irregularis 0.9 (0.3-1.4) 

     59.1 (57.1-61.1) similarity L/D 

List of marine species (Scrutton (1969) and own data) 

Adelosina laevigata Cassidulina laevigata  Fursenkoina cf fusiformis Massilina secans  Quinqueloculina longirostra  Textularia bocki  

Ammobaculites cf arenaria Cibicidoides bradyi  Fursenkoina cf complanata  Melonis pompilioides Quinqueloculina rugosa  Textularia calva  

Ammosphaeroidina sphaeroidiniforme Clavulina obscura  Fursenkoina schreibersiana Nodulina dentaliniformis  Quinqueloculina sp.1 Textularia tenuissima  

Amphicoryna scalaris Cornuspira incerta  Fursenkoina sp.1 Nonion asterizans  Rectuvigerina cf compressa  Textularia sp.1 

Asterigerinata sp.1  Delosina complexa  Gaudryina cf rudis  Nonion laevigatum  Reophax cf fusiformis  Tretomphalus concinnus  

Aubignyina perlucida Eggerella advena  Gavelinopsis praegeri Nonionella atlantica  Reophax cylindrica  Trifarina angulosa  

Brizalina cf aenariensis Elphidium advenum  Haplophragmoides canariensis Nonionoides cf japonicum  Reophax nana  Triloculina dubia  

Brizalina spathulata Elphidium cf flexuosum  Haynesina depressula  Nonionoides scaphus  Reophax scorpiurus  Triloculina marioni  

Brizalina variabilis Elphidium cf schmittir  Hopkinsina pacifica  Nouria polymorphides  Reophax subfusiformis  Triloculina rotunda  

Buccella granulata Elphidium crispum  Lagena cf semistriata  Patellina corrugata  Reussella aculeata  Triloculina sp.1 

Bulimina aculeata  Elphidium incertum  Lagena substriata  Planorbulina mediterranensis  Robertina arctica  Trochammina cf advena  

Bulimina elongata  Elphidium lidoense  Lagena sulcata  Poroeponides lateralis  Rosalina anomala  Trochammina lobata  

Bulimina gibba  Elphidium matagordanum  Lagena tenuis  Procerolagena clavata  Rosalina bulbosa  Uvigerina sp.1 

Bulimina marginata Elphidium sp.1 Lagena vulgaris  Psammosphaera bowmani  Rosalina cf mediterranensis  Valvulineria bradyana 

Bulimina sp. 1 Elphidium sp.2 Lagenammina difflugiformis  Pyrgo inornata  Rosalina cf valvulata   

Buliminella elegantissima  Epistominella vitrea Lagenammina laguncula  Quinqueloculina depressa  Saccammina atlantica   

Cassidulina cf crassa  Fissurina sp.1 Leptohalysis scottii  Quinqueloculina lata  Svratkina sp.1  
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Table 2. Dead foraminiferal species found in and off the Ebro Delta. Quantitative summary of dead foraminiferal assemblages composition in different environmental settings 

of the modern Ebro Delta. Figures represent relative abundance (%) unless otherwise indicated. The single value represents the average and those in parentheses give the 

range. 

Dead assemblages (own data) 

Phragmites marsh Juncus marsh Salicornia marsh Lagoon Inner bay Nearshore 

13 samples 9 samples 18 samples 18 samples 6 samples 2 samples 

Water depth 0.1 (0.05-0.2) m Water depth 0.1 (0.07-0.4) m Water depth 0.2 (0.04-0.5) m Water depth 0.5 (0.3-0.8) m Water depth 0.3 (0.2-0.5) m Water depth 7 (7-7.4) m 

Sand 33 (7-66) Sand 82 (74-94) Sand 58 (5-81) Sand 67 (9-92) Sand 81 (69-92) Sand 19 (19) 

      

8 (5-10) species 8 (5-16) species 9 (5-15) species 7 (2-11) species 11 (8-16) species 34 (30-38) species 

Fisher alpha index 1.8 (0.8-3.6) Fisher alpha index 1.6 (0.8-3.5) Fisher alpha index 1.9 (0.8-4.6) Fisher alpha index 1.2 (0.3-2.1) Fisher alpha index 2.2 (1.5-3.3) Fisher alpha index 9 (7.4-10.7) 

7 (0–50) marine tests 1 (0–7) marine tests 3 (0–13) marine tests 1 (0–6) marine tests 3 (1–6) marine tests 60 (57–62) marine tests 

58 (1-99.5) agglutinated 30 (2-93) agglutinated 29 (0-94) agglutinated 0.6 (0-3) agglutinated 0.4 (0-0.9) agglutinated 4 (2-6) agglutinated 

0.1 (0-0.8) porcellaneous 1 (0-5) porcellaneous 4 (0-28) porcellaneous 0.4 (0-3) porcellaneous 12 (3-22) porcellaneous 22 (22) porcellaneous 

42 (0.5-99) hyaline 69 (8-98) hyaline 67 (6-99) hyaline 99 (97-100) hyaline 88 (78-97) hyaline 74 (72-77) hyaline 

A. beccarii 27.1 (0-92.5) A. beccarii 34.6 (2.2-84.6) A. beccarii 45 (2-92.2) A. beccarii 51.5 (16.9-85.7) A. beccarii 77.8 (62.2-92.9) A. beccarii 32.1 (26.9-37.4) 

H. wilberti 23.5 (1-78.5) T. aguayoi 32.8 (2.6-75.5) J. macrescens 20.7 (0-70.9) H. germanica 27.9 (5.3-59.3) Q. jugosa 6 (0.9-12.7) Q. stelligera 15.1 (14.8-15.4) 

T. inflata 19.3 (0-60.1) T. inflata 21.2 (0.6-70.3) H. germanica 15.8 (0.3-62.8) C. oceanensis 10.7 (0-32.9) H. germanica 5.1 (2.8-7.4) H. depressula 12.7 (11.8-13.7) 

M. fusca 7.5 (0-80.8) J. macrescens 4 (0-17.2) T. inflata 7 (0-23.9) C. excavatum 6.1 (0-28.7) Q. seminula 5 (0.9-11.4) A. mamilla 4.7 (3.4-6) 

H. germanica 5.4 (0-36.5) H. wilberti 3.8 (0-17.8) T. aguayoi 3.1 (0-28.7)   A. perlucida 3.6 (2.5-4.8) 

J. macrescens 4 (0-11.9)  Q. seminula 2.7 (0-20.9)   B. pseudopunctata 3.6 (2.5-4.8) 

T. aguayoi 3.4 (0-15.8)     Q. seminula 3.6 (3.6) 

     R. irregularis 2.8 (1.7-3.8) 

Dead assemblages (Scrutton, 1969) 

Lagoon Lake (“Bay”) Transition Deltaic marine Inner shelf Outer shelf 

2 samples 9 samples 3 samples 5 samples 15 samples 17 samples 

Water depth 1 (1-1.5) m Water depth 5.5 (2.5-9) m Water depth 8 (6-11) m Water depth 29 (7-51) m Water depth 9 (3-17) m Water depth 23 (5-50) m 

Sand 37 (13-60) Sand 23 (4-59) Sand 12 (5-25) Sand 4 (1-6) Sand 59 (4-100) Sand 15 (1-97) 

      

3 (3-4) species 27 (16-41) species 29 (27-30) species 31 (19-40) species 32 (20-49) species 41 (22-56) species 

42 (33-50) marine tests 72 (56-82) marine tests 58 (52-63) marine tests 74 (68-81) marine tests 68 (60-78) marine tests 67 (59-73) marine tests 

15 (5-24) agglutinated 6 (1-13) agglutinated 9 (5-12) agglutinated 16 (3-21) agglutinated 8 (2-15) agglutinated 15 (5-24) agglutinated 

20 (5-53) porcellaneous 43 (10-69) porcellaneous 29 (5-58) porcellaneous 12 (5-25) porcellaneous 42 (16-42) porcellaneous 20 (5-53) porcellaneous 

65 (37-83) hyaline 51 (28-79) hyaline 62 (37-83) hyaline 72 (54-84) hyaline 50 (35-73) hyaline 65 (37-83) hyaline 

A. beccarii 48 (36-60) A. beccarii 21.9 (0-46) Q. stelligera 10.5 (0.7-28.2) A. beccarii 16.5 (0.7-64.4) Q. stelligera 23.8 (1.1-62.5) A. beccarii 8.5 (1.7-25.2) 

H. germanica 43.5 (30.4-56.6) Q. stelligera 9.7 (0-24.9) A. beccarii 9.7 (6.9-11.1) E. scaber 6.7 (2.7-11.5) A. beccarii 15.1 (6.3-26.8) Q. stelligera 6.1 (0-36.4) 

 T. rotunda 5.7 (0-22.8) Asterigerinata sp.1 9.1 (1.4-22) V. complanata 6 (0.7-21.9) Asterigerinata sp.1 8.2 (1.6-30) N. opima 5.3 (0-13.3) 

 E. scaber 5.4 (0-12) E. advenum 8.3 (5.3-13.2) B. aculeata 5.5 (0-10.8) N. depressulus 5.6 (1.5-10.2) Miliolid 13 (3.4-34) 

 Miliolid 23.2 (0.8-40.2) Elphidium sp.1 5.9 (1.4-11.1) N. opima 5.3 (0-10.5) E. scaber 5.2 (0-17.5)  

  Miliolid 15.3 (1.0-24.4) Miliolid 8.3 (2.4-18.5) E. lidoense 5.1 (0-14.4)  

    Miliolid 21.8 (13.6-38.5)  
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Figure 2. Sedimentary sequence, sand content, general micropalaeontological data, distribution and 

relative abundance of the main foraminiferal species (1: A. beccarii; 2: C. selseyense; 3: Q. seminula; 

4: R. anomala; 5: T. marioni; 6: C. lobatulus), and porcellaneous wall type content with depth (m) in 

the borehole Carlet (Ebro Delta). Foraminiferal depth intervals (DIs), radiocarbon dates (conventional 

years BP) and sample levels are also indicated. Black dots indicate presence of the species in 

assemblages with less than 100 foraminiferal tests.  
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In the Carlet borehole, DI5 at the base with at least 7.5 m of muds is characterized by an assemblage 

highly dominated by Ammonia beccarii (average 74%) and Cribroelphidium selseyense (13%) with 

minor Quinqueloculina seminula (4%). The number of species is moderate (average 10), and the 

contents of marine and porcellaneous tests are low (average 7% and 8% respectively). Comparison 

with modern assemblages suggests a lagoonal or shallow inner bay environment (0.5-1.5 m depth) for 

this interval that developed during a long time lapse from 7600 to 2600 yr BP. Above, DI4 is made of 

3.5 m of sands with irregular abundance of foraminifera, and a high number of species (21), marine 

tests (34%) and porcellaneous forms (35%). Assemblages are composed mainly by A. beccarii (36%), 

Q. seminula (18%) and C. selseyense (13%) with secondary Rosalina anomala (6%), Triloculina 

marioni (6%) and Cibicides lobatulus (4%). All these features indicate a sandy environment with a 

mixture of deltaic (inshore) and marine (offshore) species similar to a beach or back-barrier setting 

around the deltaic fringe. The transfer function did not find a close modern analogue for the 

assemblages in this interval although indicated very shallow palaeowater depths (c. 0–1 m). No date 

has been obtained in this DI4 but comparison with radiocarbon dates from the below and above 

intervals suggests its development after 2600 and before 2000 yr BP, and the consequent presence of 

the coastline close to this location around that time. The following 3.7 m of muddy sands (DI3) 

contain very scarce foraminiferal tests and could indicate the shift to a higher elevation and less 

flooded habitat (alluvial environment closer to the river levee) in the area of Carlet around 2000 yr 

BP. These new conditions suggest the presence of a fresh to brackish marsh environment (less than 

0.5 m depth) at about 1700 yr BP that deposited 1 m of muddy sediments (DI2) characterized 

exclusively by an abundant A. beccarii assemblage. The presence of terrestrial gastropods and 

oogonia of characeae algae is indicative of very low salinity conditions in this area. Finally, DI1 with 

2.7 m of muds presents also terrestrial gastropods and characeae oogonia but the foraminiferal content 

is very scarce (only few tests of A. beccarii) suggesting a lacustrine environment. Radiocarbon dates 

show a great variety of ages and inverted dates. This reinforces the idea that during the last 2.0 ka 

(DI2-1) this area was a fresh to brackish aquatic environment located close to the river and thus with a 

relatively high elevation and occasional marine flooding conditions.  

On the other hand, the Sant Jaume borehole shows much more recent and deeper materials than 

the Carlet borehole. The lower part of the sequence initiates with DI5 and more than 3 m of muds 

containing an irregular abundance of foraminifera characterized by a high number of species (22), 

marine tests (43%) and porcellaneous forms (24%). The assemblage is composed mainly by C. 

selseyense (18%), A. beccarii (13%) and Q. seminula (11%), together with Cribroelphidium 

poeyanum (6%), Brizalina variabilis (5%), Bulimina gibba (4%), Valvulineria bradyana (3%) and 

Rosalina irregularis (3%). A radiocarbon date of 1760 yr BP for the upper part of this interval 

indicates that in this period the sediment was accumulated in the nearshore environment (around 7 m 

depth). The following unit (DI4) is represented by 6.3 m of muddy sediment deposited in an inshore  
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Figure 3. Sedimentary sequence, sand content, general micropalaeontological data, distribution and 

relative abundance of the main foraminiferal species (1: A. beccarii; 2: C. selseyense; 3: Q. seminula; 

4: C. oceanensis; 5: H. germanica; 6: A. mamilla; 7: Q. oblonga; 8: B. variabilis; 9: B. gibba; 10: C. 

poeyanum; 11: V. bradyiana; 12: R. irregularis), and porcellaneous wall type content with depth (m) 

in the borehole Sant Jaume (Ebro Delta). Foraminiferal depth intervals (DIs), radiocarbon dates 

(conventional years BP) and sample levels are also indicated. Black dots indicate presence of the 

species in assemblages with less than 100 foraminiferal tests.  
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more proximal setting (lagoon or shallow inner bay environment; 0.5-1.5 m depth) dominated by A. 

beccarii (65%) and C. selseyense (19%) with Q. seminula (3%) and C. poeyanum (3%). The number 

of species is moderate (13) and the marine tests (8%) and porcellaneous content (5%) are low. This 

interval developed between 1700 and 1100 yr BP. Above, 3.4 m of sandy muds with an irregular 

abundance of foraminiferal tests exhibit an increase in the number of species (18), and marine (34%) 

and porcellaneous (16%) tests (DI3). An assemblage made of A. beccarii (38%), C. selseyense (18%) 

and Asterigerinata mamilla (11%) with minor Quinqueloculina oblonga (3%), Q. seminula (3%) and 

Haynesina germanica (3%) suggests a sandier nearshore habitat (about 7 m depth) developed around 

1.0 ka ago. The following interval DI2 (4 m of muds) shows a decrease in the open marine influence 

(15% marine tests and 5% porcellaneous forms), a moderate number of species (14) and the 

dominance of more deltaic (inshore) forms as A. beccarii (52%), H. germanica (11%), 

Cribroelphidium oceanensis (11%) and C. selseyense (8%) with B. variabilis (6%). These features are 

indicative of a lagoonal or shallow inner bay environment (0.5-1.5 m depth) developed in this area 

between 900-600 yr BP. The final 3.3 m of sandy muds (DI1) are younger than 0.5 ka, contain few 

foraminiferal tests (A. beccarii, H. germanica and C. selseyense) and could represent an emerged 

fresh-water environment with occasional marine flooding located in a delta plain. 

 

Table 4. Summary of core and microfaunal data from the Carlet and Sant Jaume boreholes (Ebro 

Delta). Figures represent relative abundance (%) unless otherwise indicated. The single value 

represents the average and those in parentheses give the range. 

Carlet Sant Jaume 

DI 1  

Elevational range +1.44-1.29 m  

Thickness 2.73 m  

Sand 9 (0.9-16.8) 

Radiocarbon age 1560±30, 2130±30, 2150±30, 

2230±30, 2340±30, 3540±30, 3680±30 BP  

Few tests of A. beccarii 

Terrestrial gastropods 

Oogonia of Characeae algae 

 

DI 1  

Elevational range 0.73-4.04 m  

Thickness 3.31 m  

Sand 17.3 (0.1-98.2) 

Age < 500 BP  

Few foraminifera 

 

DI 2  

Elevational range 1.29-2.27 m  

Thickness 0.98 m  

Sand 3 (0.4-10.6) 

Radiocarbon age 1600±30, 1630±30, 1700±30, 

1770±30, 2490±30, 2540±30 BP  

Very abundant tests 

1 (1-2) species 

Fisher alpha index 0.2 (0.1-0.3) 

0 (0-0) marine tests 

0 (0-0) agglutinated 

0 (0-0) porcellaneous 

DI 2  

Elevational range 4.04-8.16 m  

Thickness 4.12 m  

Sand 1 (0.1-5.3) 

Radiocarbon age 560±40, 680±40, 870±40 BP 

Very abundant tests 

14 (6-28) species 

Fisher alpha index 3 (1.2-6.8) 

15 (0.6-52.5) marine tests 

0.1 (0-0.9) agglutinated 

5 (0.5-20.9) porcellaneous 

95 (78.7-99.5) hyaline 
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Carlet Sant Jaume 

100 (100-100) hyaline 

A. beccarii 99 (94.9-100) 

Terrestrial gastropods 

Oogonia of Characeae algae 

 

A. beccarii 52 (27.3-67.7) 

H. germanica 11 (0.4-40) 

C. oceanensis 11 (0-48.1) 

C. selseyense 8 (0-21) 

B. variabilis 6 (0-20.7) 

 

DI 3  

Elevational range 2.27-5.94 m  

Thickness 3.67 m  

Sand 67 (28.1-98.2) 

Radiocarbon age 2000±30 BP  

Few foraminifera 

 

DI 3  

Elevational range 8.16-11.56 m  

Thickness 3.4 m  

Sand 10 (0.1-80.1) 

Radiocarbon age 890±40 BP 

Irregular abundance of tests  

18 (10-28) species 

Fisher alpha index 4.6 (1.4-7.9) 

34 (3.8-60.1) marine tests 

0.5 (0-2.3) agglutinated 

16 (1.2-32.6) porcellaneous 

84 (65.1-98.8) hyaline 

A. beccarii 38 (11.6-74.9) 

C. selseyense 18 (3.1-72.4) 

A. mamilla 11 (0-36.7) 

Q. oblonga 3 (0-11.9) 

Q. seminula 3 (0-10.7) 

H. germanica 3 (0.4-7.8) 

 

DI 4  

Elevational range 5.94-9.48 m  

Thickness 3.54 m  

Sand 86 (47.7-95.6) 

Irregular abundance of tests  

21 (17-24) species 

Fisher alpha index 6.1 (5.6-7.7) 

34 (32-37.1) marine tests 

0.7 (0-1.4) agglutinated 

35 (18.7-41.6) porcellaneous 

65 (58-79.9) hyaline 

A. beccarii 36 (31.5-41.5) 

Q. seminula 18 (9.5-21.1) 

C. selseyense 13 (10-16) 

R. anomala 6 (1.6-9.2) 

T. marioni 6 (2-11.9) 

C. lobatulus 4 (3.1-5.6) 

 

DI 4  

Elevational range 11.56-17.81 m  

Thickness 6.25 m  

Sand 1 (0.3-2.5) 

Radiocarbon age 1120±40, 1240±40, 1250±40, 

1310±40, 1360±40, 1730±40 1870±40 BP 

Irregular abundance in the upper 2.7 m  

13 (4-22) species 

Fisher alpha index 3.3 (1-5.8) 

8 (0-17.7) marine tests 

0.3 (0-1.8) agglutinated 

5 (1-10.7) porcellaneous 

95 (89.3-99) hyaline 

A. beccarii 65 (40.2-92.4) 

C. selseyense 19 (2.3-35.9) 

Q. seminula 3 (0-9.2) 

C. poeyanum 3 (0-7.7) 

 

DI 5  

Elevational range 9.48-16.94 m  

Thickness 7.54 m  

Sand 7 (0.4-52.2) 

Radiocarbon age 370±30, 1710±40, 2670±30, 

2980±30, 4032±42, 4062±42, 4162±42, 

4252±42, 6262±50, 7270±50, 7402±42, 

7422±50, 7432±42, 7502±42, 7620±35 BP 

Irregular abundance in the upper 2.7 m  

10 (4-17) species 

Fisher alpha index 2.4 (0.8-5.8) 

DI 5  

Elevational range 17.81-20.93 m  

Thickness 3.12 m  

Sand 5 (0.2-19.1) 

Radiocarbon age 1760±40 BP 

Irregular abundance of tests  

22 (10-35) species 

Fisher alpha index 7.6 (2.4-12.4) 

43 (26.5-69.5) marine tests 

1 (0-6.5) agglutinated 

24 (3.4-38.9) porcellaneous 
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Carlet Sant Jaume 

7 (0.3-37.5) marine tests 

0.1 (0-1.2) agglutinated 

8 (0-36.5) porcellaneous 

92 (63.5-100) hyaline 

A. beccarii 74 (29.9-97.3) 

C. selseyense 13 (0.3-35.4) 

Q. seminula 4 (0-14.6) 

75 (61.1-96.6) hyaline 

C. selseyense 18 (0-47.4) 

A. beccarii 13 (4.5-22.2) 

Q. seminula 11 (2-25.2) 

C. poeyanum 6 (0-22.1) 

B. variabilis 5 (0-13.4) 

B. gibba 4 (0-10.7) 

V. bradyana 3 (0-17.3) 

R. irregularis 3 (0-13.4) 

 

Discussion 

Palaeoenvironmental evolution of the Ebro Delta 

Comparison of materials, microfossil assemblages, radiocarbon ages and palaeoenvironmental 

evolution between both boreholes clearly indicates that sandier, older and more continental conditions 

are characteristic of the more landward Carlet sedimentary sequence, whereas the Sant Jaume 

geological record exhibits muddier, younger and more marine environmental conditions characteristic 

of a more seaward setting within the Holocene architecture of the Ebro Delta. These distinctive 

stratigraphic and foraminiferal sequences with an older and more proximal progradational record on 

one side and a younger and more distal progradational record on the other side is also found in other 

Mediterranean deltas such as the Rhône (France) and Po (Italy) (Amorosi et al., 2005, 2013; Boyer et 

al., 2005; Rossi and Vaiani, 2008; Dinelli et al., 2012). However, the interpretation of the 

environments in some cases is different when compared to the present study due to the fact that here a 

wider range of foraminiferal assemblages, including open marine and delta plain environments, is 

considered (see discussion on this topic in the following section).  

The palaeoenvironmental interpretation of the sedimentary sequences in the Carlet and Sant 

Jaume boreholes based on diagnostic foraminiferal assemblages is shown in Figure 5. At Carlet, apart 

of the lowermost part of DI5 deposited before 7.0 ka during TST under sea-level rise conditions, the 

muddy interval DI5 at the base and sandy DI4 are interpreted mainly as part of a sequence made of 

inner bay-lagoonal-beach deposits in this central area under sea-level highstand conditions between 

7000 and ~2000 yr BP. Then, further sediment accumulation led to the formation of a series of non-

marine deposits represented during the last 2.0 ka initially represented by continental sands in DI3. It 

was followed by an occasionally marine flooded and very-low-salinity marsh environment at about 

1700 yr BP (DI2) that was finally replaced by a fresh-water muddy environment (higher elevation, 

closer to the river levee) containing a mixture of materials with variable radiocarbon ages (DI1).  

Comparison of the Carlet results with the previous ITGE-6 borehole sequence of Somoza et al. 

(1998) indicates in our record the partial absence of the most basal terms of the Holocene sequence 

deposited under rapid sea-level rise conditions (TST) (Figure 5). There are similarities but also 
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Figure 4. Reconstruction of 

palaeowater-depth (associated 

errors as grey envelope) and 

different environmental 

settings through time in the 

Carlet and Sant Jaume 

boreholes (Ebro Delta) based 

on the transfer function 

developed by the authors. 

Habitat assignments using 

Linear Discriminant 

Functions (LDFs) are also 

shown. The foraminiferal 

depth intervals (DIs), number 

of tests and radiocarbon dates 

(conventional years BP) are 

also indicated. On the right, 

core trajectories projected 

onto DCA along with modern 

(dead) foraminiferal 

assemblages are shown. 

Dashed lines in DCA plots 

encompass modern habitat 

samples of each habitat type 

identified in the Ebro Delta: 

A) offshore; B) nearshore and 

outer bays, C) coastal lagoons 

and inner bays; and D) salt 

and brackish marshes. Water 

depth (m) intervals are 

marked for each DCA plot. 
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important quantitative and qualitative differences between both records in terms of 

palaeoenvironmental reconstruction and temporal control of events. The lower part of our muddy DI5 

interval (deposited between 7.6 and 7.0 ka) could be assimilated to the muddy aggradational (a1) unit 

of ITGE-6 (deposited as the transgressive wedge h1 before 7.0 ka) and represents the final record of 

the TST. After the MFS suggested by Somoza and Rodríguez-Santalla (2014) to occur around 6900 yr 

BP, the rest of muddy DI5 and sandy DI4 intervals (deposited between 6.9 and 2.5 ka) could be 

assimilated to the sandy units d1 and d2 (delta front/nearhore) of ITGE-6 (deposited between 6.1 and 

3.6 ka under sea-level highstand conditions). Then, the identification of a series of delta-plain deposits 

(sandy and muddy intervals DI3-DI1) during the last 2.5 ka in Carlet very likely correspond to the 

sandy and silty d3 and d4 delta-plain units considered younger than 2.7 ka in the ITGE-6 sequence. 

However, the information given by the foraminiferal assemblages in our study (absent in the work by 

Somoza et al., 1998) suggests that the maximum of the Holocene marine transgression did not reach 

the inner part of the Ebro Delta as open sea but rather via lagoon and/or shallow bay development. 

This is an important difference with the interpretation provided by Somoza et al. (1998) in relation to 

the existence of a transgressive wedge (h1) with marine clayey sediments corresponding to the 

maximum flooding surface (MFS). Our results clearly show the existence of restricted and brackish 

environments, which is more compatible with the presence of fresh-water peat deposits in the 

innermost part of the delta during that time (Solé et al., 1961; Arasa, 1994), since fresh-water peat 

cannot form during high-salinity conditions. This reasoning also applies to the other highstand sea-

level events (h2, h3, h4) postulated by Somoza et al. (1998) in the innermost part of the delta 

(upstream the city of Amposta, in the alluvial valley) and next to the Ebro River, in which each period 

of fresh-water peat accumulation would coincide with the presence of the salt-water conditions. We 

do not find any evidence for this interpretation and an alternative explanation is a succession of fresh-

water peat deposits and alluvial or lagoonal deposits as a function of the changing distance of the 

borehole location to the Ebro River through time (due to migration of the river course), as well as 

changes in the frequency and magnitude of river floods.  

This alternance of peat and alluvial or lagoonal clay deposits is also found in the innermost part 

of other large Mediterranean deltas. In the Po delta plain, Amorosi et al. (2005) describe a similar 

sequence in the innermost boreholes (204-S17, 204-S5, 204-S6) with the presence of peat layers in the 

middle of fresh-water (swamp) clays or brackish-water (lagoonal) clays, whereas the marine (bay) 

clays are only found in the outermost boreholes (204-S7, 205-S5) and never coinciding with peat 

layers. This study also included the analysis of microfossils (foraminifera and ostracoda) and similar 

foraminiferal assemblages (Ba-Bd) with few species that were interpreted as low-energy brackish-

water back-barrier environments. In the Rhône Delta, Boyer et al. (2005) also describe the presence of 

clay (including layers of alluvial sand) with brackish to fresh-water fauna in the innermost boreholes 
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(109, 108, 126), whereas clays with marine fauna are only found in the outermost boreholes (125 to 

106).  

The Sant Jaume borehole is located in a more seaward position than Carlet and contains a 

longer, deeper and much younger sequence accumulated during the last 2.0 ka. Thanks to available 

historical data mentioned above, it is possible to interpret its sedimentary record as deposited during 

the formation and development of three different deltaic lobes under highstand sea-level conditions. 

Muddy intervals DI5 and DI4 represent a partial record of the formation and development of the Riet 

Vell lobe that prograded towards the southeast and deposited progressively shallower (from nearshore 

to more proximal inner bay) materials in this area between 2000 and 1100 yr BP. Then deposition of a 

new muddy progradational shallowing-upward succession between 1100 and 500 yr BP, represented 

by DI3 and DI2, characterizes the development of a new deltaic lobe (Riet de Zaida) that developed 

towards the northeast and deposited in this area nearshore-inner bay-lagoonal sediments. A new 

switch in the river course due to human intervention made possible the newest delta lobe (Migjorn) 

represented by lacustrine (fresh-water) deposition (DI1) in this area during the last 0.5 ka. 

Two external boreholes (ITGE-1 and ITGE-2; Figure 1) were studied by Somoza et al. (1998) 

although their descriptions are less detailed than central ITGE-6 borehole. Both sedimentary 

successions reached the Pleistocene gravels and were about 50 m thick including TST and HST 

deposits. The HST was composed of four progradational units (dl, d2, d3 and d4) and three 

aggradational units (a2, a3 and a4). The boreholes were located at the apices of two main delta lobes 

identified in historical records: ITGE-l over the Riet Vell lobe, and ITGE-2 over the most recent 

Migjorn lobe. Their final progradational unit (d4) corresponds to the formation of their respective 

deltaic lobes but no information on the origin, sedimentary characteristics and chronology of the other 

preceding progradational units is presented. Our Sant Jaume borehole is located in the central delta 

plain at the confluence area of the last three delta lobes: Riet Vell, Riet de Zaida and Migjorn (Figure 

1). Distinct marine and delta plain habitat successions have characterized the formation and 

development of those three lobes that in turn were associated to particular foraminiferal 

palaeoassemblages. Firstly, Riet Vell lobe progradation (2.0-1.1 ky) that shows progressively 

shallower muddy environments from nearshore (DI5) to more proximal inner bay (DI4). Then, Riet de 

Zaida lobe (1.1-0.5 ky) that exhibits a similar environmental succession with nearshore (D3) and inner 

bay-lagoonal sediments (DI2). Finally, the most recent Migjorn lobe (0.5 ka) represented here by a 

fresh-water environment (DI1) in a delta plain setting. 
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Figure 5. A. General location of the analyzed boreholes in the framework of the Ebro Delta 

architecture proposed by Somoza et al (1998) for the Late Quaternary; B. Palaeoenvironmental 

interpretation of the Carlet and Sant Jaume boreholes based on foraminiferal assemblages. 

Foraminiferal depth intervals (DIs), lithology and radiocarbon dates (conventional years BP) are also 

indicated. Interpretation of the ITGE-6 borehole is from Somoza et al (1998) with indication of the 

aggradational marine (a units) and progradational deltaic (d units) deposits. Dates in parentheses were 

assigned by Somoza and Rodríguez-Santalla (2014) but were not obtained from materials of this 

borehole. 
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As we have seen, there is an important difference on resolution scale between the Carlet and 

Sant Jaume boreholes. Carlet provides information at a geological scale of resolution of thousands of 

years, while San Jaume is providing data at historical scale. Almost the same thickness of sediments 

represents 7.6 ka in Carlet against circa 2 ka in San Jaume. Carlet borehole correlates with the 

progradational d1, d2, d3 and d4 of Somoza et al. (1998) which correspond to four different 5th-order 

cycles. On the other side, the entire record of the San Jaume borehole can be assimilated to the 

prograding portion of one complete cycle of higher rank, corresponding to the last d4 unit of the 

historical lobes Riet Vell, Riet de Zaida and partially d5 of Migjorn. Beyond the processes of 

compaction, preservation and possible time-averaging experienced by the older Carlet sedimentary 

sequence, the shorter time interval and deeper environments represented by the longer Sant Jaume 

sedimentary sequence can be understood as a consequence of the greater accommodation space 

available in the delta from the Gracia Island in a seaward direction. As it is shown in Figure 5A, the 

geometry of the Holocene materials has a thickness ranging from 20 m at the landward side 

(Amposta) to 52 m at the delta front. The erosional unconformity between the late Pleistocene gravels 

and the Holocene deposits exhibits a more pronounced slope in the external delta just after the Gracia 

Island, and formed initially by marine erosion during rapid sea-level rise at the first stages of the 

Holocene transgression (Maestro et al., 2002). These authors also indicated the presence of 

extensional tectonics that affects the Quaternary deltaic deposits with formation of large-scale faulting 

that generates differential subsidence beneath the Ebro Delta and increases the slope angle. The 

principal process involved in fault development is considered to be differential compaction resulting 

from the prograding deltaic lobes that overlie aggradational clay deposits. Growth faults increase 

subsidence, which in turn generates accommodation space for subsequent prograding deltaic 

sediment. This arc-shaped topographic depression acted as a trap for distributary channels meandering 

over the delta plain, like the abandoned Riet Vell and Riet de Zaida (Maestro et al., 2002). 

Implications for the Holocene evolution of Mediterranean deltas 

In terms of their palaeoenvironmental significance, when modern foraminiferal assemblages from the 

delta plain habitats are included in the analysis, the interpretation is more robust compared with other 

studies only considering open marine (offshore) assemblages. Existing literature shows that 

foraminiferal assemblages living in coastal marginal environments, such as coastal lagoons, bays or 

salt marshes, differ greatly from those in adjacent offshore habitats (Murray, 2006); and this also 

applies in the case of some world and Mediterranean deltas such as the Mississippi, USA (Lankford, 

1959), Mahakam, Indonesia (Lambert, 2003), Rhône, France (Vangerow, 1974; Fanget et al., 2012), 

Nile, Egypt (Arbouille and Staney, 1991) or Ebro, Spain (Scrutton, 1969). Previous studies often 

interpreted the occurrence of shallow brackish-marine species, such as Ammonia spp. (A. tepida, A. 

beccarii, A. parkinsoniana), Cribroelphidium spp. and/or H. germanica, as indicators of past offshore 

habitats within Holocene deltaic sequences (Amorosi et al., 2008, 2013; Rossi and Vaiani, 2008; Milli 
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et al., 2013). However it is well known that these species are mainly indicative of particular marginal 

coastal habitats, unless other ecological requirements based on the study of their living populations 

are actually identified (Usera et al., 2002; Guillem, 2007). Otherwise, the lack of close modern 

analogues may lead to weaker interpretations of the foraminiferal fossil record.  

The present study has demonstrated the similarity between most of modern and fossil samples 

in the Ebro Delta by applying the modern analogue technique (MAT) and Linear Discriminant 

Functions (LDFs); hence, a finer-grained habitat reconstruction can be done. The interpretation of 

results would have been different if foraminifera from deltaic (inshore) environments would have not 

been included, especially for the Carlet sequence that shows the presence of shallower habitats typical 

from delta plain environments, in comparison with the Sant Jaume sequence showing deeper 

environments typical from the prodelta and delta front. To our knowledge, this is the first approach in 

including modern samples from both delta plain (coastal lagoons, marshes and inner bays) and open 

marine (prodelta and delta front) habitats of a Mediterranean delta to provide adequate analogues for 

all borehole samples. Thus, the Ebro Delta data set could be used in other Mediterranean deltas with 

the aim to provide new interpretations of their depositional environments since all of them share a 

similar Holocene evolution (Stanley and Warne, 1994). 

The application of a water depth transfer function to fossil foraminiferal assemblages has 

complemented the palaeoenvironmental reconstruction of the Ebro Delta. The only comparable work 

is by Rossi and Horton (2009), who applied the Northern Adriatic Transfer Function (NATF) to 

reconstruct the evolution of the Holocene palaeobathymetry of the Po Delta. These authors concluded 

the existence of a shallowing upward trend following the progradational succession of this delta 

during the last 5.5 ka. In turn, palaeowater depths were considered reliable according to MAT results. 

For the Ebro Delta, very similar results were found in the Sant Jaume sequence, where two deeper-to-

shallower successions were detected (DI5-4 and DI3-2) with inferred water depths from 7 to 1 m 

(Figure 5). These findings suggest the progradation of delta lobes in this distal part of the delta during 

the last centuries, although some samples did not contain close modern analogues. On the other hand, 

the palaeowater depths of the Carlet sequence revealed very shallow conditions throughout all 

depositional environments recorded, ranging between 1–2 m of water depth. The validity of these 

reconstructions is supported by MAT and LDFs results, although palaeowater depths must be taken 

with caution because of the complex relationship between water depth and foraminiferal distribution, 

particularly in highly dynamic systems like deltas. Further research on modern foraminiferal 

assemblages of inshore habitats of other Mediterranean deltas could allow a more reliable 

interpretation of their Holocene evolution.  
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Conclusions 

The scarcity of previous geological studies and the few available radiocarbon dates from its Holocene 

sedimentary archives, together with misinterpretations of historical documents, have permitted the 

idea that the present Ebro Delta plain formed mostly during the 14th-15th centuries and that during 

Roman times it was an estuary. Our results support an early Holocene start for the Ebro Delta proving 

a deltaic depositional system was present all through the Holocene, and thus the Ebro Valley never 

became an estuary. This brings the Ebro evolution story in line with other major deltas of the 

Mediterranean Sea and worldwide, which were initiated 8.0-6.0 ka ago when the rate of fluvial 

sediment input overtook the decreasing rate of sea-level rise. 

The palaeonvironmental evolution of the central plain of the Ebro Delta during the Holocene 

was reconstructed using micropalaeontological analysis of two continuous boreholes (Carlet and Sant 

Jaume). Diagnostic foraminiferal assemblages and the application of a palaeowater-depth transfer 

function allowed the definition of various lithofacies and associated environments of deposition. The 

geometry of the Ebro Delta was created by the advance of successive deltaic lobes, which prograded 

radially across the inner shelf up to 25 km seaward during the Holocene time. Avulsion and channel 

abandonment processes are considered to be the main delta constructional processes with the resulting 

deposits subsequently being modified by rapid subsidence. 

Similarity between most of modern and fossil samples in the Ebro Delta has been demonstrated 

by applying the modern analogue technique (MAT) and Linear Discriminant Functions (LDFs), 

allowing a much better habitat reconstruction to be done. The importance of extensive 

characterization of modern foraminiferal assemblages from both deltaic inshore and offshore 

environments in order to provide adequate analogues for the interpretation of borehole samples is 

demonstrated particularly by the more landward Carlet sequence which only contains shallow and 

inshore deltaic habitats. The palaeowater depths revealed very shallow conditions throughout all 

depositional environments, ranging between 1–2 m during the last 7.6 ka under salty, brackish and 

fresh-water conditions. 
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Appendix A. Foraminiferal reference list. 

Agglutinated forms 

Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858  

Haplophragmoides wilberti Anderson, 1953  

Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens 

Brady, 1870  

Textularia agglutinans d'Orbigny, 1839 

Textularia bocki Höglund, 1947  

Textularia calva Lalicker, 1935  

Textularia sp.  

Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808  

 

Porcellaneous forms 

Adelosina bicornis (Walker and Jacob) = Serpula bicornis Walker and Jacob, 1798 

Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny, 1939  

Adelosina mediterranensis (Le Calvez and Le Calvez) = Quinqueloculina 

mediterranensis Le Calvez and Le Calvez, 1958 

Adelosina striata d'Orbigny, 1826 

Adelosina sp. 

Cornuloculina sp. 

Cornuspira incerta (d'Orbigny) = Operculina incerta d'Orbigny, 1839 

Cornuspira involvens (Reuss) = Operculina involvens Reus, 1850  

Lachlanella undulata (d'Orbigny) = Quinqueloculina undulata d'Orbigny, 1852 

Massilina secans (d'Orbigny) = Quinqueloculina secans d'Orbigny, 1826  

Miliolinella subrotunda (Montagu) = Vermiculum subrotundum Montagu, 1803 

Miliolinella webbiana (d'Orbigny) = Triloculina webbiana d'Orbigny, 1839 

Pyrgo inornata (d'Orbigny) = Biloculina inornata d'Orbigny, 1846  

Pyrgo sp. 

Quinqueloculina berthelotiana d'Orbigny, 1839  

Quinqueloculina depressa d'Orbigny, 1852  

Quinqueloculina lata Terquem, 1876  

Quinqueloculina longirostra d'Orbigny, 1826  

Quinqueloculina oblonga (Montagu) = Vermiculum oblongum Montagu, 1893  

Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758  

Quinqueloculina stelligera Schlumberger, 1893 
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Quinqueloculina vulgaris d'Orbigny, 1826 

Quinqueloculina sp.1 

Quinqueloculina sp.2 

Siphonaperta quadrata (Nørvang) = Quinqueloculina quadrata Nørvang, 1945 

Triloculina dubia d'Orbigny, 1826  

Triloculina marioni Schlumberger, 1893  

Triloculina rotunda d'Orbigny, 1939  

Triloculina trigonula (Lamarck) = Miliolites trigonula Lamarck, 1804 

 

Hyaline forms 

Acervulina inhaerens Schulze, 1854 

Ammonia beccarii (Linné) = Nautilus beccarii Linné, 1758 (Variants included in this 

taxon)  

Astacolus crepidulus (Fichtel and Moll) = Nautilus crepidula Fichtel and Moll, 1798 

Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson, 1858  

Aubignyna hamblensis Murray, Whittaker and Alve, 2000 

Aubignyna perlucida (Heron-Allen and Earland) = Rotalia perlucida Heron-Allen and 

Earland, 1913 

Bolivina difformis (Williamson) = Textularia variabilis var. difformis Williamson, 1858 

Bolivina dilatata Reuss, 1850  

Bolivina pseudoplicata Heron-Allen and Earland, 1930  

Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922  

Bolivinellina pseudopunctata (Höglund) = Bolivina pseudopunctata Höglund, 1947  

Brizalina spathulata (Williamson) = Textularia variabilis Williamson var. spathulata 

Williamson, 1858  

Brizalina variabilis (Williamson) = Textularia variabilis Williamson, 1859  

Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus di Napoli 

Alliata, 1952  

Bulimina aculeata d'Orbigny, 1926  

Bulimina elongata d'Orbigny, 1926  

Bulimina gibba Fornasini, 1902  

Bulimina marginata d'Orbigny, 1826  

Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima d'Orbigny, 1939  

Cassidulina carinata Silvestri, 1896  

Cassidulina obtusa Williamson, 1858  

Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 1798 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 3: Holocene Ebro Delta evolution 

172 

Cibicides sp. 

Cribroelphidium excavatum (Terquem) = Polystomella excavatum Terquem, 1875  

Cribroelphidium magellanicum (Heron-Allen and Earland) = Elphidium magellanicum 

Heron-Allen and Earland, 1932 

Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis d'Orbigny, 1826  

Cribroelphidium poeyanum (d'Orbigny, 1826) = Polystomella poeyana d'Orbigny, 1826 

Cribroelphidium selseyense (Heron-Allen and Earland) = Elphidium selseyensis Heron-

Allen and Earland, 1911  

Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes, 1973  

Discorbis sp.  

Elphidium advenum (Cushman) = Polystomella advenum Cushman, 1922  

Elphidium crispum (Linné) = Nautilis crispus Linné, 1758 

Elphidium erlandi Cushman, 1936  

Elphidium flexuosum (d'Orbigny) = Polystomella flexuosa d'Orbigny, 1936  

Elphidium gerthi Van Voorthuysen, 1957  

Elphidium incertum (Williamson) = Polystomella umbilicatula var. incerta Williamson, 

1858 

Elphidium macellum (Fichtel and Moll) = Nautilus macellus Fichtel and Moll, 1798 

Elphidium margaritaceum Cushman, 1930 

Elphidium sp.  

Epistominella vitrea Parker, 1953  

Favulina melo (d'Orbigny) = Oolina melo d'Orbigny, 1839 

Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida 

Williamson, 1848  

Fissurina marginata (Montagu) = Vermiculum marginatum Montagu, 1803 

Fissurina sp. 

Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana Czjzek, 1848  

Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri Heron-Allen 

and Earland, 1913  

Globobulimina sp. 

Gyroidina sp. 

Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker and Jacob, 

1798  

Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg, 1840  

Lagena semistriata (Williamson) = Lagena striata Walker var. semistriata Williamson, 

1848  
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Lagena sulcata (Walter and Jacob) = Serpula sulcata Walter and Jacob, 1798  

Lagena vulgaris Williamson, 1858  

Nonionella atlantica Cushman, 1947  

Nonionella opima Cushman, 1947  

Nonionoides boueanum (d'Orbigny) = Nonionina boueana d'Orbigny, 1846 

Nonionoides turgida (Williamson) = Nonionina turgida Williamson, 1858 

Patellina corrugata Williamson, 1858  

Planorbulina mediterranensis d'Orbigny, 1826  

Rectuvigerina compressa (Cushman) = Uvigerina compressa Cushman, 1925  

Reussella aculeata Cushman, 1945  

Reussoolina laevis (Montagu) = Vermiculum laeve Montagu, 1803 

Rosalina anomala Terquem, 1875  

Rosalina globularis d'Orbigny, 1826 

Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler, 1906 

Rosalina valvulata d'Orbigny, 1826 

Rosalina williamsoni (Chapman and Parr) = Discorbis williamsoni Chapman and Parr, 

1932 

Rosalina sp. 1 

Rosalina sp. 2 

Spirillina vivipara Ehrenberg, 1843 

Svratkina sp. 

Tretomphaloides concinnus (Brady) = Discorbina concinna Brady, 1884  

Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez, 1935  

Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858  

Uvigerina peregrina Cushman, 1923 

Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini, 1899  
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Supplementary material 

Table S1. Foraminiferal census data from the Carlet and Sant Jaume boreholes (Ebro 

Delta). The data table can be found online at the XXX website http://XXX. 
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Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence
of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal
palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habi-
tats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The
timing of environmental changeswas compared to known natural and anthropogenic events in order to identify
their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in
species diversity and calcareous-dominated assemblages, and a significant positive correlation between micro-
faunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation
of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change
in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present
and future conditions in Mediterranean deltas.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Coastal ecosystems (e.g. deltas, wetlands, estuaries) are both natu-
rally and artificially subject to many and varied environmental changes
(Elliott and Quintino, 2007). Due to their location at the land–sea inter-
face, these transitional waters have a strong intrinsic dynamism and
pronounced environmental gradients (e.g. salinity, nutrients, sediment
types, oxygen levels) (LePage, 2011). Some of these natural gradients,
however, are often drasticallymodified by human activities, particularly
in deltas, which are often densely populated and heavily farmed
(Syvitski et al., 2009). Among human impacts in Mediterranean coastal
wetlands, changes in land and water uses and demand for agricultural
purposes have caused the largest serious modifications of their natural
ecological functioning. These changes have altered wetland habitat
structure across a variety of spatial and temporal scales, mainly by arti-
ficial freshwater inputs and eutrophication (Margalef and Mir, 1973;
Pérez-Ruzafa et al., 1991; Marco-Barba et al., 2013; Prado et al., 2014).
Furthermore, intensive agricultural and human settlements have
lture and Food Research and
oble Nou km 5.5, E-43540 St.
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eliminated most of the original distribution of coastal wetland habitats
(Benito et al., 2014; Halpern et al., 2008).

Given the accepted ecological and economic importance of coastal
wetlands (Costanza et al., 1997), well-informed and climate-resilient
management is essential to maintain the proper functioning of the re-
maining natural ecosystems,while allowing exploitation for agriculture,
tourism and/or industry. Unfortunately, due to the lack of long-term
monitoring data, palaeoecological information is the only archive to
document past environmental changes (Smol, 2002; Willis and Birks,
2006).

Existing literature shows that benthic foraminifera (unicellular pro-
tists) are widely used to study both present and past environmental
conditions in many coastal ecosystems around the world (Horton
et al., 2007; Pruitt et al., 2010; Cheng et al., 2012; Takata et al., 2014).
Their fossil remains are commonly used in climate reconstruction but
they also allow tracking environmental changes due to human impacts
over last hundreds years (Cearreta et al., 2002; Debenay and Fernandez,
2009). Numerous ecological studies have employed different multi-
variate statistical techniques for interpreting modern foraminifera–
environment relationships, and then for applying those into dated sedi-
ment cores (Vance et al., 2006; Kemp et al., 2012, 2013; Narayan et al.,
2015). Benthic foraminifera living in coastal marshes respond to a
broad range of biotic and abiotic factors that result in complex interac-
tions in space and time (Debenay and Guillou, 2002). Moreover,
palaeoenvironmental reconstructions should demonstrate the similarity
s of habitat change in anthropogenically impacted coastal wetlands of
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between modern and buried microfaunas to provide accurate infer-
ences (Guilbault et al., 1996). In this context, combined approaches
are required, using modern foraminiferal analyses coupled with
palaeoecological information and independent sediment proxies
(e.g. organic matter).

The proportion of transitional waters that can be considered to have
“high ecological status” (i.e. reference conditions) is very limited but im-
portant for management purposes. Successful management requires
good understanding of ecosystem structure and functioning under
pre-impacted conditions in order to set realistic restoration goals.
The Water Framework Directive (WFD) requires the degree of devi-
ation from these reference conditions to be documented using
hydromorphological, physicochemical, and biological quality ele-
ments (European Communities, 2003). As other authors have
highlighted, reference conditions should preferably be assessed in
situ, rather than comparing the area in question with similar systems
elsewhere (if any) that have not been altered by human activities
(Blanchet et al., 2008; Alve et al., 2009). This is particularly relevant
in the case of transitional ecosystems, due to the great heterogeneity
of ecological conditions within them (Alve, 1995; Bald et al., 2005).
Palaeoecological approaches can allow objective assessment of local
“reference conditions” for any type of water body (river, lake, coastal
waters) (Andersen et al., 2004).

Down-core benthic foraminiferal assemblages have recently been
used to determine whether human activities have changed “baseline”
conditions in marginal marine environments (Tsujimoto et al.,
2008; Martínez-Colón et al., 2009; Alve et al., 2009; Bouchet et al.,
2012; Dolven et al., 2013).Benthic foraminifera are not required by
the WFD (Annex V) as biological quality elements for monitoring
transitional waters and have rarely been used as ecological indica-
tors of anthropogenic disturbances in Mediterranean coastal envi-
ronments (Carboni et al., 2009), with the exception of the Venice
lagoon (Donnici et al., 1997; Serandrei-Barbero et al., 1999, 2011;
Albani et al., 2007; Coccioni et al., 2009). Another group of unicellu-
lar benthic eukaryotes, the diatoms, are widely used in biomonitor-
ing (indeed, their use is required by the WFD for assessing some
water bodies, e.g. rivers, though not transitional waters) and proved
Fig. 1. Location of the Ebro Delta. The positions of the cores (white triangles) are shown in bo
b) Garxal; c) Clot, Alfacs and Tancada. Scale bar represents 1 km. Historical photographs were
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valuable as ecological indicators in an earlier study of the Ebro Delta
(Benito et al., 2015). However, the lack of well-preserved diatom re-
mains in some Delta sediments led us to focus instead on foraminif-
era in the present study.

The present paper represents thefirst study using benthic foraminif-
eral palaeoecology within a Mediterranean delta. The main objective
was to examine the effects that intensive human settlement has had
on the habitats of the Ebro Delta during the last two centuries. We
aimed to document the effects of rice field expansion and hydrological
changes by studying the buried foraminiferal assemblages preserved
in five short sediment cores. An additional aim was to compare the re-
cent evolution of two contrasted wetland types within the Delta repre-
sented by four sites under altered hydrological conditions, and one site
under a natural brackish hydrological regime.

2. Material and methods

2.1. Study area

The Ebro Delta is one of the largest coastal wetlands in the Western
Mediterranean, extending over an area of about 330 km2, and is situated
in the NE Iberian Peninsula (Fig. 1). The Delta is irrigated by the Ebro
River, which is the largest river in Spain in terms of mean annual flow
(c. 400 m3 s‐1). The drainage area of the Ebro River is 85,550 km2,
representing 15% of the total area of Spain (Maldonado and Murray,
1975). Nowadays a large amount of the water that the river would
have carried under natural conditions is extracted for irrigation and
other purposes. Consequently, the amount of water and sediment
reaching the Delta has been drastically reduced, particularly between
1940 and 1970, when nearly 200 dams were built (Ibáñez et al., 1996).

From an ecological point of view, the Ebro Delta is important due to
its high diversity of Mediterranean coastal wetlands concentrated in a
small area (Ibáñez et al., 2000). This is in part due to themicro-tidal na-
ture of the Delta (with an astronomical range of only 20–30 cm), which
allows high spatial heterogeneity of wetland habitats structured in
small patches (Ibáñez et al., 2000). The Ebro Delta is also economically
important, with two thirds of the area devoted to rice crop, but also
th historical (1927, left side) and modern (2015, right side) aerial photographs; a) Olles;
obtained from the Ebro Water Authority (www.chebro.es).

s of habitat change in anthropogenically impacted coastal wetlands of
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with other activities such as tourism, aquaculture or hunting that
contribute to the total annual economic value of about €120 million
(Fatoric and Chelleri, 2012).

During the last two centuries, most of the deltaic plain has been
reclaimed for rice cultivation. Agriculture was poorly developed in the
Delta until the 19th century, when intense landscape transformation
began (in the 1860s) with the construction of the south irrigation
channel derived from the Ebro River, and rose drastically from
1912, when the construction of the north irrigation channel was
completed (Rovira and Ibáñez, 2007). Even so, at the beginning of
the 20th century, natural habitats still covered 80% of the total delta-
ic area (Mañosa et al., 2001). Outside the area of rice cultivation,
human activities were based on subsistence economy (farming, salt
production, fishing and hunting), which did not cause widespread
transformation of the area. The period between 1910 and 1960 saw
rapid development of rice farming in the Delta, which resulted in a
drastic loss of fresh, brackish and salt marshes, and lagoons as they
were converted to paddy fields (Cardoch et al., 2002). Transforma-
tion for rice cultivation started from the inner part of the Delta and
areas adjacent to river levees (which were naturally more elevated
and had less saline soils) and advanced progressively seaward. Alto-
gether, the surface area occupied by natural habitats reduced from
80% to 33% between 1910 and 1960 (Mañosa et al., 2001). Transfor-
mation continued during the next two decades (1960–1980), stop-
ping only in the 1980s, when the Ebro Delta Natural Park was
created (1983). The area still covered by marshes and coastal la-
goons amounts to just 25% of the deltaic plain, but this contains
good examples of a diversity of Mediterranean coastal wetlands, in-
cluding salt and brackish marshes, coastal lagoons, sand dunes,
freshwater marshes, ponds and bays. Most of these habitats are
protected by European Directives (e.g. the Habitat Directive and
Bird Directive) and regional environmental laws (for the Ebro Delta
Natural Park).

Rice field cultivation necessitates large-scale control of water inputs
and outputs and so an extensive system of irrigation and drainage
canals has been constructed in the Delta. From the 1860s to the late
1980s, runoff from the rice paddies was drained directly into the re-
maining lagoons during the rice growing season (i.e. from April to
September), and then from these systems into the sea (in the Alfacs
and Fangar bays: Fig. 1). The main consequence has been the alter-
ation of the natural hydrological cycles of the coastal lagoons and
surrounding marshes (Prado et al., 2012, 2014; Rodríguez-Climent
et al., 2013) and the bays (Llebot et al., 2011). These freshwater in-
puts also carry nutrients and pesticides, altering further the ecology
of the habitats. Moreover, the construction of infrastructures such as
canals, dikes and roads has contributed to the isolation of the re-
maining natural habitats from the Ebro River and Mediterranean
Sea (Ibáñez et al., 1997), with the exception of the Garxal wetland lo-
cated at the river mouth area and the marshes located along the out-
ermost edges of the Delta.
Table 1
Summary of the five cored sites in the Ebro Delta: surface elevation, average sedimentation ra
habitat evolution for each site is also indicated according to the present study.

Site Elevation
(cm)

210Pb sedimentation
rate (cm/yr)

Habitat Historical hu

Olles 6.2 0.24 Phragmites marsh Freshwater
rice field dra

Tancada 13.6 0.17 Salicornia marsh Drainage wa
decrease of

Alfacs 1.1 0.37 Salicornia marsh Freshwater
a decrease i

Clot 1.3 0.70 Phragmites marsh Persistent fr
channels lea

Garxal 9.9 0.21 Phragmites marsh Natural brac
Ebro river si
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2.2. Core sampling and chronology

Five short sediment cores, two placed in the northern hemidelta
(Olles and Garxal, Fig. 1) and three in the southern one (Tancada, Alfacs
and Clot, Fig. 1), were retrieved from sites well within marshes in April
2014. The locations were chosen to cover a range of different environ-
ments affected historically by natural and human factors (Table 1 and
Appendix B). Each corewas collected to a depth of 65–106 cm (depend-
ing onmarsh soil thickness) using a hand-operated Beeker-type corer of
5.7-cm diameter, which allows recovery of undisturbed sediments.

The five cores collected in 2014 were taken at exactly the same loca-
tions as some short cores (50 cm length) collected in 2009, which were
dated with 210Pb (Table 1). 210Pb is a natural radionuclide with a half-
life of 22.3 years, and is continuously introduced into the aquatic systems
by atmospheric deposition, after radioactive decay of 222Rn. Core samples
for determining 210Pb activities were sliced into 4 cm sections. Each sam-
plewasfirst homogenized in amortar and thendried at 60 °C. Dried sam-
pleswere placed in 65 cm3 Petri dishes, and then counted for 20 to 90h in
the CRII-RAD laboratory (France). Determination of 210Pb activities was
carried out using a gamma hyperpure germanium “N” type detector
(EGG/ORTEC, Type GMX) coupled to a multichannel analyser (type NU-
CLEUS) and calibrated by a pitchblende gamma multiray source.

The chronology was tentatively inferred on average sediment ac-
cumulation rate (cm/year) using the exponential-type decline of
210Pbexcess with depth (Fig. S1 and Table S1). The model applied
(Constant Initial Concentration, CIC) assumes that the initial 210Pbexcess
concentration into the accumulated sediment is the same regardless of
changes in the sediment accumulation rate in depth (Appleby, 2001).
Note that the 210Pb methods do not provide absolute ages but rather
gives sedimentation rates that can be indirectly used to determine
how much time has elapsed between samples at different depths
(Augustinus et al., 2006). We assume that the estimated chronology
from these dated cores is also applicable to the five cores studied in
the present study.

2.3. Foraminiferal analysis

Cores were sliced at 5-cm intervals in the field, and part of each, cor-
responding to a target weight of about 120 g of wet sediment was
retained for foraminiferal analysis. The remaining material from each
segment was used to estimate the organic matter content, as loss on ig-
nition (LOI at 450 °C for 4 h) (Dean, 1974). The foraminiferal samples
were wet washed through 1 mm and 0.063 mm sieves (to remove
first large organic fragments, then silt and clay), and dried at 50 °C for
12 h. Foraminifera were concentrated by flotation in trichloroethylene
(Alve and Murray, 1999). For each sample, foraminiferal tests were
picked on representative splits containing at least 300 tests under a
Leica M165C stereomicroscope, using reflected light. Otherwise, all the
tests present in the sample were picked. Only those samples with at
least 100 tests were used for numerical analyses (Fatela and Taborda,
tes using the 210Pb method, main habitat, and brief description of historical impacts. The

man impacts Habitat evolution

inputs and high nutrient levels coming from
inage channels and urban waste water

From coastal lagoon/inner
bay to brackish marsh

ters coming from rice fields caused a strong
salinity and high nutrient loads

From coastal lagoon/inner
bay to salt marsh

inputs from rice field drainage waters provoked
n salinity and high nutrient loads

From inner bay to salt marsh
(backshore)

eshwater inputs from the Ebro river and irrigation
d to low salinity

From coastal lagoon/inner
bay to brackish marsh

kish conditions due to its direct connection to the
nce the last recent mouth change (60 years ago)

From coastal lagoon/inner
bay to coastal lagoon

s of habitat change in anthropogenically impacted coastal wetlands of
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2002). Altogether, 82 samples and around 25,400 foraminiferawere ex-
amined for thefive cores. Taxonomic identificationswere based on fora-
miniferal works from the W Mediterranean, including Murray (1971),
Colom (1974), Cimerman and Langer (1991) and Milker and Schmiedl
(2012).

The palaeoenvironmental interpretation of the foraminiferal record
was based on the modern (living and dead) distributions of species in
the Ebro Delta. Benito et al. (under review) recognized four habitat
types based on species composition. These habitats cover a wide range
of modern analogues from both the deltaic plain and the adjacent ma-
rine area and comprise: 1) offshore, 2) nearshore and outer bays,
3) coastal lagoons and inner bays, and 4) salt and brackish marshes. In
addition, foraminiferal species regularly found in living assemblages
(i.e. those foraminifera that got stained after treated with rose Bengal,
see Walton (1952) for method details) of the modern samples of Ebro
Delta habitats were considered as autochthonous (living and reproduc-
ing within the delta plain), whereas those found only as dead tests (i.e.
unstained) were considered to be allochthonous species transported
from the adjacent marine area (Murray, 2006; Cearreta et al., 2013;
Rodriguez-Lazaro et al., 2013, Benito et al., under review).

2.4. Data analysis

We calculated the relative abundance (RA) of foraminiferal species
for each core sample. Foraminiferal relative abundances were square
root transformed prior to statistical analyses in order to stabilize their
variances. Only those species with N2% of relative abundance in at
least one sample were used in the analyses.

To analyse changes in the foraminiferal assemblages throughout
the cores, depth intervals (DIs) were defined by stratigraphically
constrained cluster analyses (CONISS) and the squared chord dis-
tance to the species data. Clusters were constrained by stratigraphic
order, and the statistical significance of each cluster was determined
using the “broken stick” method (Bennett, 1996).

A Detrended Correspondence Analysis (DCA) was used to visualize
the trajectory of change of each core through unconstrained ordination
space inwhichmodern (dead) foraminiferal sampleswere also passive-
ly plotted (Benito et al., under review). The same multivariate ordina-
tion was used further to determine whether buried foraminiferal
samples were represented by the modern Ebro Delta habitats. In order
to aid interpretation of DCA ordination axes, environmental variables
(water depth, salinity and sand content) from modern dataset (Benito
et al., under review) were fitted using the ‘envfit’ function within R's
vegan packagewith 999 permutations. The ‘envfit’ function provides in-
formation about the statistical relationship of the environmental vectors
to the DCA axes. Thus, the length of each vector is proportional to the
correlation between the ordination axes and environmental variables.
Finally, for each sediment core, we calculated statistical correlations be-
tween DCA axis scores and organic matter content using Pearson r
coefficient.

To check the degree of dissimilarity (or similarity) in the foraminif-
eral assemblages between each buried sample and the modern ones,
we calculated the squared chord distance (SCD) as a dissimilarity coef-
ficient (Overpeck et al., 1985).We chose the largest dissimilarity coeffi-
cient among all modern foraminiferal samples as a critical threshold to
determine whether the buried samples had “close” modern analogues
(Woodroffe, 2009). Samples with SDC b 0.271 were considered similar.

All the numerical analyses were performed using R version 3.0.1
(R Development Core Team, 2010), including the packages vegan
(Oksanen et al., 2013), rioja (Juggins, 2014) and analogue (Simpson
and Oksanen, 2014).

3. Results

A total of 81 benthic foraminiferal species (range 4–24 species per
sample) were identified from 82 samples derived from the five cores
Please cite this article as: Benito, X., et al., Benthic foraminifera as indicator
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analysed in this study (Appendix A and Table S1). Of these species, 31
had a relative abundance N2% in at least one sample and were retained
for statistical analysis. The sediment cores were mainly composed of
grey muddy sand (10–80% sand content) with sandier layers (N90%
sand content) generally increasing downwards in the cores.

3.1. Olles

Two distinct depth intervals (DI) were identified within the Olles
core (Fig. 2 and Table 2). The basal D2 (32–70 cmdepth)was character-
ized by the dominance of hyaline foraminifera, with Ammonia beccarii
(average relative abundance [RA] 54%) and Haynesina germanica
(average RA 39%) as the dominant species. The allochthonous hya-
line Brizalina variabilis, Cribroelphidium selseyensis and Asterigerinata
mamilla appeared in this zone as secondary species, with average RA
of 1–5%. DI2 was also characterized by a gradual decrease of organic
matter content with depth. The following DI1 (0–32 cm depth) was
characterized by a shift to an agglutinated-dominated assemblage,
with Haplophragmoides wilberti as the most abundant form (average
RA 82%). This DI1 showed a reduction of species richness and rela-
tively high organic matter content (average 31%).

3.2. Tancada

Three distinct DI were identified within the Tancada core (Fig. 2 and
Table 2). The basal DI3 (67–106 cm depth) was characterized by a
mixture of hyaline (average RA 91%) and porcellaneous foraminifera
(average RA 9%). A. beccarii andH. germanicawere the dominant species
within DI3. Overlying DI3, the second depth interval (DI2, 12–67 cm
depth) showed a very similar species composition, with A. beccarii and
H. germanica as the dominant species, and Cribroelphidium oceanensis
and Cribroelphidium sp.1 as secondary species. This DI2was also charac-
terized by the presence of Quinqueloculina seminula and other miliolids,
with a peak of abundance around 40–45 cm depth. The topmost DI1
(0–12 cm depth) showed an abrupt shift in the foraminiferal assem-
blages: the calcareous species disappeared, and the foraminiferal as-
semblages were entirely dominated by the agglutinated Jadammina
macrescens and Trochammina inflata (Fig. 2). Species richness was low
(average 6) and organic matter content was high (average 49%, range
37–59%).

3.3. Alfacs

Three distinct DI were distinguished within the Alfacs core (Fig. 2
and Table 2). The basal DI3 (37–65 cm depth) was characterized by
the presence of the hyalinemarine species Buccella granulata, Aubygnina
cf. perlucida, A. mamilla and Tretomphalus cf. concinnus. The overlying
DI2 (12–37 cm depth) was marked by an increase of porcellaneous fo-
raminifera (average RA 49%). Therewas also an increase of othermarine
species such asHaynesina depressula and Cribroelphidium sp.1, and sand
content in relation with underlying DI3. The topmost DI1 (0–12 cm
depth) was dominated by agglutinated species J. macrescens and
T. inflata (average RA 54%), with a minor contribution of A. beccarii
and miliolids. DI1 also showed the highest organic matter content
of the core (Fig. 2). The species richness was slightly lower than in
DI2 and D3.

3.4. Clot

The Clot core was divided into two distinct DIs (Fig. 2 and Table 2).
The basal DI2 (42–90 cm depth) had high relative abundances of
A. beccarii (average 74%). This interval showed also an average of 13 al-
lochthonous species, in particular Q. seminula, Cribroelphidium sp.1 and
miliolids appeared at 60 cm depth. The sand content was very high
throughout this DI2 (average 92.7%). The overlying DI1 (0–42 cm
depth) was characterized by a mixture of hyaline and agglutinated
s of habitat change in anthropogenically impacted coastal wetlands of
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Fig. 2. Stratigraphic diagrams of the five studied cores in the Ebro Delta: sand content (%), organicmatter content (%), main foraminiferal species (N2% RA at least in one sample), DCA axis
1, CONISS cluster analysis, and core trajectories projected onto the DCA along with modern samples. Dashed lines in DCA plots encompass modern habitat samples of each habitat type
identified in the Ebro Delta according to Benito et al. (under review): A) offshore; B) nearshore and outer bays, C) coastal lagoons and inner bays, and D) salt and brackish marshes. En-
vironmental vectors are fitted on top of each DCA plot. Notice that the DCA axis 1 scale differs among each diagram.
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Table 2
Summary of estimated periods and foraminiferal assemblages from the Ebro Delta studied cores. The single value represents themean and the range is represented between parentheses.

OLLES TANCADA ALFACS CLOT GARXAL

Depth core (cm) 70 106 65 90 70

DI1 DI1 DI1 DI1 DI1

Elevational range (cm) 1.2 to -23.8 8.6 to -1.4 -3.9 to -13.9 -3.7 to -43.7 4.9 to -25.1
Tests 285 (144–344) 234 (163–304) 333 (325–341) 335 (304–379) 317 (178–421)
Species 4 (4–5) 6 (6–6) 13 (7–18) 11 (7–15) 13 (9–16)
Estimated period 1930s–present 1970s–present 1980s–present 1960s–present 1900s–present

Allochthonous % 0.06 (0–0) 0.8 (0–1) 16.8 (3–30) 5.1 (0–10) 25.9 (9–41)
Agglutinated % 99.5 (99–100) 94.5 (94–95) 72.4 (48–96) 12.1 (0–46) 1.0 (0–3)
Porcellaneous % 0 0.3 (0–1) 6.52 (3–10) 0.3 (0–2) 0.1 (0–0)
Hyaline % 0.5 (0–1) 5.2 (5–6) 21.1 (1–41) 87.6 (54–100) 98.9 (97–99)

DI2 DI2 DI2 DI2 DI2

Elevational range (cm) -23.8 to -63.8 -1.4 to -61.4 -13.9 to -38.9 -43.7 to -88.7 -25.1 to -60.1
Tests 322 (199–415) 362 (323–406) 393 (350–440) 357 (316–386) 256 (100–344)
Species 10 (4–21) 9 (7–13) 19 (18–20) 8 (5–12) 18 (17–20)
Estimated period Before 1900s Middle 1800s–1970s 1900s–1980s Before 1960s Before 1900s

Allochthonous % 3.9 (0–16) 10.4 (2–27) 61.0 (49–73) 12.8 (1–24) 23.1 (9–48)
Agglutinated % 1.4 (0–7) 1.5 (0–16) 4.6 (1–19) 0.1 (0–1) 0.7 (0–1)
Porcellaneous % 0.1 (0–1) 8.1 (0–26) 49.0 (44–55) 8.5 (3–16) 10.6 (3–34)
Hyaline % 99.5 (93–100) 90.4 (74–100) 46.5 (36–55) 91.4 (84–97) 88.6 (65–97)

DI3 DI3

Elevational range (cm) -61.4 to -92.4 -38.9 to -63.9
Tests 340 (314–379) 237 (150–355)
Species 10 (7–15) 19 (16–24)
Estimated period Before 1800s Before 1900s

Allochthonous % 8.2 (2–13) 51.4 (44–60)
Agglutinated % 0.1 (0–1) 11.5 (2–21)
Porcellaneous % 9.1 (1–16) 31.0 (27–34)
Hyaline % 90.8 (84–99) 57.6 (48–64)
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foraminifera, with A. beccarii (average RA 63%), H. germanica (18%) and
J. macrescens (11%). This DI2 showed a gradual decrease of the alloch-
thonous component and an increase of the organic matter content to-
wards the top.

3.5. Garxal

Two distinct DIs were recognized in the Garxal core (Fig. 2 and
Table 2). The basal DI2 (32–70 cm depth) was characterized by a
mixture of hyaline (average 89%) and porcellaneous (average 11%)
foraminifera. Themean allochthonous content through this DI2 interval
was 23%, with the appearance of different marine foraminifera, such as
H. depressula, B. granulata and Cibicides lobulatus. The top DI1 (0–32 cm
depth) showed an increase of hyaline foraminifera (average 99%), with
A. beccarii, H. germanica, and several Cribroelphidium species (e.g.
C. excavatum, C. oceanensis and C. poeyanum) as dominant species. The
proportion of allochthonous foraminifera was slightly higher than in
DI2, where the average was 26%.

3.6. Core trajectories and analogue matching

Core trajectories, illustrated in Fig. 2, showed that Olles, Tancada and
Clot indicated a clear habitat shift from coastal lagoons and inner bays to
salt and brackish marshes. Alfacs showed a trajectory from nearshore
habitats to salt and brackish marshes (Fig. 2). On the other hand, the
core trajectory of Garxal showed that this site did not experience signif-
icant habitat change, since its whole trajectory lay within the coastal
lagoon and inner bay habitat (Fig. 2).

The buried foraminiferal samples, when plotted passively onto DCA
ordination with the modern samples, also showed that Olles, Clot and
Alfacs cores were arranged along DCA axis 1, but Tancada and Garxal
cores mainly along axis 2 (Fig. 2). Salinity was significantly correlated
with both ordination axes (r2 = 0.57, p b 0.001). There was also
Please cite this article as: Benito, X., et al., Benthic foraminifera as indicator
the Ebro Delta (NE Iberian ..., Marine Pollution Bulletin (2015), http://dx.d
significant relationship between the first two DCA axes and water
depth (r2 = 0.31, p b 0.001) and sand content (r2 = 0.10, p b

0.001). Organic matter content was significantly and positively cor-
related with DCA axis 1 scores (Pearson r N 0.80, p b 0.01), except for
the Garxal core.

Most of the core samples from Olles, Clot, Tancada and Garxal
showed low dissimilarity distances from the modern data set (SCD b

0.271), implying that they have “close” modern analogues (Fig. 3).
High dissimilarity distances (SCD N 0.39) were observed in two samples
of the Alfacs core, one in DI3 and the other in DI1, where relatively high
average RAs (i.e. 10–30%) ofmarine specieswere found. Very similar re-
sults were found in one sample of Garxal core (DI2) (Fig. 3).

4. Discussion

Detailed knowledge of modern foraminiferal distributions and
ecology in the Ebro Delta (Benito et al., under review) was used
to reconstruct environmental changes in the five studied cores. As
in similar microtidal systems elsewhere (Alve and Murray, 1999;
Serandrei-Barbero et al., 2011), the dead foraminiferal assemblages
of the Ebro Delta have proved to be a good reflection of the living ones,
with a mean similarity of 72.9% based on Rogers index (Benito et al.,
under review). Although calcareous and agglutinated foraminifera can
be prone to dissolution once buried in the sediments (Boltovskoy and
Wright, 1976;Murray and Alve, 1999), in the present study foraminiferal
tests were abundant in almost all samples and very well preserved.
Therefore, because of the positive performance of these two factors (i.e.
similarity between living and dead assemblages, and good test preserva-
tion)modern and buried assemblages can be properly compared in order
to interpret the palaeoenvironmental changes recorded in the Ebro Delta
cores.

The core assemblages show that present-day environmental condi-
tions in the Ebro Delta wetlands differ greatly from those at the end of
s of habitat change in anthropogenically impacted coastal wetlands of
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Fig. 3. Barplots of square chord distance (SCD) between buried and modern (dead) foraminiferal samples for each of the five studies cores. The vertical dashed line indicates the largest
dissimilarity coefficient (SCD= 0.271). Depth intervals (DIs) defined by CONISS analyses and analogue habitat types are also shown for each core.
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the 1800s and in the early 1900s. The assemblages at the base of the
Olles core (DI2, i.e. before the 1900s) were characterized by relatively
few allochthonous components and a hyaline dominated assemblage,
suggesting shallow subtidal lagoonal conditions (Murray, 2006). The
habitat shift recorded in DI1, when agglutinated H. wilberti became
dominant, correlates well with the wetland transformation for rice cul-
tivation that began in the northern hemidelta in 1912, with the con-
struction of the north irrigation channel derived from the Ebro River.
Olles wetland was then largely isolated from the Mediterranean Sea
(Fangar Bay, see Fig. 1), and began to receive enhanced inputs of drain-
age and sewage waters. A comparable assemblage occurs nowadays in
the Phragmites marshes of the Ebro Delta (Benito et al., under review),
which occupy the littoral zones around fresh-brackish coastal lagoons.
These marshes are rich in nutrients and organic matter and are fresher
than they were originally, due to freshwater inputs coming from rice
field drainage. Debenay and Guillou (2002) also indicate the preference
of H. wilberti for organic-rich sediments in Mediterranean coastal
wetlands.

The different locations of the Alfacs and Tancada cores may explain
the differences in habitat conditions recorded before the 1970s–
1980s: DI3 and DI2 of Alfacs are interpreted as inner bay with high
marine influence due to its near connection with the bay through
a backshore marsh, whereas DI3 and DI2 of Tancada are interpreted
as coastal lagoon/inner bay environment with much less hydrologic
connectivity with the sea (i.e. further away from the bay, see Fig. 1).
This interpretation is supported by the dominance of allochthonous
foraminifera in DI3 and DI2 of Alfacs, and autochthonous foraminif-
era in both DI3 and D2 of Tancada (Table 2). A higher marine influ-
ence in Alfacs is further supported by the very high dissimilarity
distances in DI3 compared to those in DI3 of the Tancada core. However,
although originally rather different, the Tancada and Alfacs biotopes
Please cite this article as: Benito, X., et al., Benthic foraminifera as indicator
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evolved towards a similar end-point (i.e. Salicornia marsh). This habitat
transition was accompanied by an abrupt microfaunal change, revealed
byDCA axis 1 (Fig. 2), and by the clear dominance of agglutinated species
in both DI1 intervals (Table 2). These results could be related to agricul-
tural runoff that these two areas began to receive recently (1970s–
1980s) due to water management practises: input of freshwater from
rice drainage to the corner of Alfacs bay (near Alfacs site, see Fig. 1)
and to the eastern side of the Tancada lagoon (near Tancada site, see
Fig. 1). Environmental changes will have not only decreased salinity
but also lowered pH, since rice-field runoff is generally acid (Comoretto
et al., 2008). More acidic conditions are known to be favourable for ag-
glutinated foraminifera (Alve, 1995; Scott et al., 2005; Tsujimoto et al.,
2006). The dominance of agglutinated foraminifera in surface sediments
at Tancada and Alfacs is comparable to that observed in the salt marshes
in theMekongDelta, where T. inflata and J. macrescens became dominant
due to artificial freshwater inflows for shrimpand rice farming (Luan and
Debenay, 2005).

The foraminiferal assemblages revealed that habitat changes were
smaller in the Clot core than in the cores from Olles, Tancada and Alfacs,
with a lesser decline in the calcareous assemblage in DI1, even though
rice cultivation has developed similarly in all four areas. The reason for
this may be the recent restoration of Clot lagoon that took place in 1991
(Comín et al., 1991). Since then, the freshwater inputs to Clot havemainly
been direct from the river (via the irrigation canals, and therefore of bet-
ter quality; Ibáñez et al., 2012), rather than from rice-field drainage.
Lower pH, associated with the high organic content of the rice field run-
off, decreases the availability of CaCO3 and it is known to affect calcareous
foraminifera (Greiner, 1969). Interestingly, Clot is also set apart from the
other three sites (Olles, Tancada and Alfacs) by the fact that it has recov-
ered its natural macrophyte vegetation during the last 20 years, since the
change to riverine water supply (Forés et al., 2002).
s of habitat change in anthropogenically impacted coastal wetlands of
oi.org/10.1016/j.marpolbul.2015.11.003
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Although two distinct foraminiferal assemblages were found in the
Garxal core, the habitat shift observed here was much less pronounced
than those observed in the four other study sites, comprising only a
slight decline in marine influence within the same habitat type (i.e.
coastal lagoon/inner bay). This decline is very likely related to the natu-
ral change in the river mouth that took place at the beginning of 20th
century. Between 1907 and 1937 exceptional river floods (up to
23,000 m3 s−1; Somoza and Rodríguez-Santalla, 2014) opened several
crevasses in the northern bank three kilometres upstream from the for-
mer active mouth, offering a shorter distance to the sea (see Fig. 1;
Maldonado and Riba, 1971). Then, the flow through the breach created
a new shallower embayment (nowadays known as Garxal lagoon) that
since 1950 has gradually become isolated from the Mediterranean
Sea due to formation of sandy barriers (Maldonado and Riba, 1971).
The slight increase in Garxal DI1 of C. selseyensis, C. poeyanum and
C. excavatum, which are characteristic of living assemblages in marine
habitats adjacent to the Delta (Scrutton, 1969), suggests a certain ma-
rine influence in this site.

Besides the Ebro Delta, a number of other Mediterranean coastal
wetlands are fresher nowadays than they originally were, mainly due
to the effects of hydrologic alterations caused by rice cultivation.
This is the case, for instance, in the Albufera de Valencia (Soria, 2006;
Marco-Barba et al., 2013) and Mar Menor lagoon (Pérez-Ruzafa et al.,
1991) in Spain, and the Rhône Delta wetlands in France (Pont et al.,
2002). Not surprisingly, therefore, studies dealing with benthic forami-
nifera as palaeoenvironmental proxies have focused on human-induced
salinity variations as the sole predictor of coastal wetland impacts
(Brewster-Wingard and Ishman, 1999; Cheng et al., 2012; Sousa et al.,
2014). However, we observed that not only salinity but also water
depth and sand content play a significant role in explaining the variation
of the buried species composition. This suggests that foraminiferal as-
semblages did not change only as a result of salinity modifications, but
were due instead to a combination of factors that represent a change
in habitat-type. In natural systems such as deltas where most environ-
mental factors show high spatial and temporal variability, identification
of the single main factor determining foraminiferal distribution is a dif-
ficult or impossible task (Murray, 2001). This is because the foraminif-
era living there have a wide ecological tolerance for a high number of
factors (i.e. they are eurytopic species). Thus, explanations of changes
observed in the foraminiferal assemblages of the Ebro Delta and similar
systems should take into account not only salinity modifications but
also water depth and its fluctuations (e.g. subtidal/supratidal condi-
tions), substrate characteristics, eutrophication, hydrological isolation
(impoundment), etc.

The pattern of changes in organic matter content in our cores is con-
sistent with the idea of habitat alteration accompanying the extensive
development of rice cultivation. Seasonal inputs of rice drainage water
(in April–September, i.e. during the rice growing season), with high
levels of organic matter and nutrients, promote the accumulation of
organic-rich sediments due to low salinities (Ibáñez et al., 2010). The
general upcore increase of organic matter at Olles, Tancada, Alfacs and
Clot is statistically related to changes in species composition, with a
clear shift from calcareous to agglutinated foraminifera. A very similar
pattern (i.e. increase of agglutinated and decrease of calcareous taxa)
has been recorded in cores from Mobile Bay, Gulf of Mexico (USA),
and Bedford Bay, Nova Scotia (USA) as a response to high organic load-
ing (Osterman and Smith, 2012; Scott et al., 2005). Therefore, this core
gradientmay be tentatively associated to an indirect measure of habitat
modification.

Human-induced changes also provoked reduction of species rich-
ness towards the top of the cores, likely reflecting deteriorating of eco-
logical status through time (Alve et al., 2009). The very low diversity
assemblages of agglutinated species observed in DI1 (of Olles, Tancada
and Alfacs, and to a lesser extent in Clot), might be related to increasing
abundance of a few opportunistic species, at the expense of species
more sensitive to unfavourable conditions, e.g. low oxygen, more acidic
Please cite this article as: Benito, X., et al., Benthic foraminifera as indicator
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conditions (Alve, 1995; Osterman and Smith, 2012). However, many
naturally stressed habitats can also possess low diversity assemblages
dominated by agglutinated forms (e.g. Murray, 2006).

The long-term results obtained give insights into the ecological con-
ditions present in the Ebro Delta before intensive rice cultivation began
at the end of 1800s and early 1900s. By characterizing present-day
conditions via living foraminiferal assemblages (Benito et al., under
review), the degree of deviation from natural conditions can there-
fore be assessed. Studies in northern Europe (Bouchet et al., 2013;
Schönfeld et al., 2012) have also shown the potential of benthic fora-
minifera for monitoring coastal ecosystems and in fact, the Ecological
Quality Status of Norwegian fjords is classified as “unacceptable” or
“acceptable” using benthic foraminifera (Dolven et al., 2013). Our
study indicates that this approach could usefully be extended to
Mediterranean coastal wetlands to better define restoration goals and
support environmental policies (e.g. Water Framework Directive).

5. Conclusions

The Ebro Delta wetland habitats have undergone clear shifts since
the beginning of intensive human colonization started approximately
150 years ago. Foraminiferal assemblages track both natural- (Garxal)
and anthropogenic (Olles, Tancada, Alfacs and Clot) environmental
changes. At the beginning of 1900s, a significant decrease occurred in
both calcareous and allochthonous foraminifera, which can be related
to the transformation ofmost of the Deltawetlands to extensive rice ag-
riculture. A further upcore trend is a significant loss of diversity and
dominance of agglutinated foraminifera,which seems to have been a re-
sponse to the increased organic matter in the sediment due to inputs of
agricultural runoff.

The paleoenvironmental data obtained in this study provide a his-
torical perspective on the Ebro Delta wetlands, which are in many
ways representative of other anthropogenically impacted Mediterra-
nean coastal wetlands. Long-term studies that combine indicators of
land alterations (e.g. organic matter) and downcore changes linked to
foraminifera ecology, will help to provide baselines for future monitor-
ing and restoration strategies in Mediterranean deltas. This should be
especially relevant for the Ebro Delta, which is at risk due to global
change consequences such as sea-level rise and sediment deficit
(Ibáñez et al., 2014).
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Appendix A

Taxonomic reference list. Each species is classified as autochthonous
(AU) or allochthonous (AL) according to their components (living vs
dead) in the modern assemblages of the Ebro Delta samples (see
Material and methods for our definition of autochthonous and alloch-
thonous foraminifera).
s of habitat change in anthropogenically impacted coastal wetlands of
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Agglutinated forms
Ammobaculites balkwilli Haynes, 1973: AL
Ammobaculites sp.1: AL
Eggerella advena (Cushman) = Verneuilina advena Cushman, 1921: AL
Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858:
AL
Haplophragmoides wilberti Anderson, 1953: AU
Haplophragmoides sp.1: AL
Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var.
macrescens Brady, 1870: AU
Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870: AU
Scherochorella moniliformis (Siddall) = Reophax moniliformis Siddall,
1886: AL
Textularia bocki Höglund, 1947: AL
Textularia cf. calva Lalicker, 1935: AL
Trochammina inflata (Montagu) = Nautilus inflatusMontagu, 1808: AU
Trochammina sp.1: AL
Texturalid undetermined: AL

Porcellaneous forms
Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny,
1939: AL
Cornuspira involvens (Reuss) = Operculina involvens Reus, 1850: AL
Massilina secans (d'Orbigny)= Quinqueloculina secans d'Orbigny, 1826:
AL
Milionella subrotunda (Montagu)= Vermiculum subrotundumMontagu,
1803: AL
Quinqueloculina jugosa (Cushman) = Quinqueloculina seminula var.
jugosa Cushman, 1944: AU
Quinqueloculina longirostra d'Orbigny, 1826: AL
Quinqueloculina oblonga (Montagu) = Vermiculum oblongumMontagu,
1893: AL
Quinqueloculina quadrata Nörvang 1945: AL
Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758: AU
Quinqueloculina stelligera Schlumberger, 1893: AL
Quinqueloculina vulgaris d'Orbigny, 1826: AL
Triloculina dubia d'Orbigny, 1826: AL
Triloculina marioni Schlumberger, 1893: AL
Triloculina rotunda d'Orbigny, 1939: AL
Triloculina trigonula (Lamarck) = Miliolites trigonula Lamarck, 1804:
AL
Triloculina sp1: AL
Miliolid undetermined: AL

Hyaline forms
Ammonia beccarii (Linné) = Nautilus beccarii Linné, 1758: AU
Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson,
1858: AL
Aubygnina cf. perlucida (Heron-Allen and Earland) = Rotalia perlucida
Heron-Allen and Earland, 1913: AL
Bolivina pseudoplicata Heron-Allen and Earland, 1930: AL
Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922: AL
Bolivinellina pseudopunctata (Höglund) = Bolivina pseudopunctata
Höglund, 1947: AL
Brizalina spathulata (Williamson)= Textularia variabilisWilliamson var.
spathulata Williamson, 1858: AL
Brizalina variabilis (Williamson) = Textularia variabilis Williamson,
1859: AL
Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus
di Napoli Alliata, 1952: AL
Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima
d'Orbigny, 1939: AL
Bulimina elongata d'Orbigny, 1926: AL
Bulimina gibba Fornasini, 1902: AL
Bulimina marginata d'Orbigny, 1826: AL
Cassidulina laevigata d'Orbigny, 1826: AL
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Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulusWalker and
Jacob, 1798: AL
Cribroelphidium excavatum (Terquem) = Polystomella excavatum
Terquem, 1875: AU
Cribroelphidium magellanicum (Heron-Allen and Earland) = Elphidium
magellanicum Heron-Allen and Earland, 1932: AL
Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis
d'Orbigny, 1826: AU
Cribroelphidium selseyensis (Heron-Allen and Earland) = Elphidium
selseyensis Heron-Allen and Earland, 1911: AU
Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes,
1973: AL
Cribroelphidium sp1: AL
Elphidium cf. earlandi Cushman, 1936: AL
Elphidium advenum (Cushman) = Polystomella advenum Cushman,
1922: AL
Elphidium crispum (Linné) = Nautilis crispus Linné, 1758: AL
Elphidium gerthi Van Voorthuysen, 1957: AL
Elphidium incertum (Williamson) = Polystomella umbilicatula var.
incertaWilliamson, 1858: AL
Elphidium margaritaceum (Cushman) = Elphidium advenum var.
margaritaceum Cushman, 1930: AL
Elphidium undetermined: AL
Fissurina marginata (Montagu) = Vermiculum marginatum Montagu,
1803: AL
Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var.
lucidaWilliamson, 1848: AL
Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri
Heron-Allen and Earland, 1913: AL
Gyroidina sp.1: AL
Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker
and Jacob, 1798: AL
Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg,
1840: AU
Melonis pompilioides (Fitchel and Moll) = Nautilis pompiloides Fitchel
and Moll, 1798: AL
Nonionella atlantica Cushman, 1947: AL
Nonionella opima Cushman, 1947: AL
Planorbulina mediterranensis d'Orbigny, 1826: AL
Pyrgo inornata (d'Orbigny) = Biloculina inornata d'Orbigny, 1846: AL
Reussella aculeata Cushman, 1945: AL
Riminopsis cf. asterizans (Fichtel and Moll) = Nonion cf. asterizans
Fichtel and Moll, 1798: AL
Rosalina anomala Terquem, 1875: AL
Rosalina globularis d'Orbigny, 1826: AL
Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler,
1906: AL
Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez,
1935: AU
Tretomphalus cf. concinnus (Brady) = Discorbina concinna Brady, 1884:
AL
Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini,
1899: AL
Unidentified forms: AL

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the
online version, at http://dx.doi.org/10.1016/j.marpolbul.2015.11.003.
These data include the Google map of the most important areas de-
scribed in this article.
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Supplementary material  

Figure S1 Down-core profile of excess 210Pb in the Ebro Delta cores. Left figures: excess 210Pb activity (Bq/kg). Right figures: natural logarithm of 210Pb activity. The solid 

regression line provides the average sedimentation rate. 

 

  
Olles   

  

210Pb sedimentation rate = 0.24 cm/yr 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 4: Recent human impacts 

 

 

  

Tancada  

  

210Pb sedimentation rate = 0.17 cm/yr 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 4: Recent human impacts 

 

 

  

Alfacs  

  

210Pb sedimentation rate = 0.37 cm/yr 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 4: Recent human impacts 

 

 

 

 

  

Clot  

  

210Pb sedimentation rate = 0.70 cm/yr 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 4: Recent human impacts 

 

Garxal  

  

 

 

210Pb sedimentation rate = 0.21 cm/yr 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 4: Recent human impacts 

 

Table S1 Summary of foraminifera and core data. Excel sheet 1: Foraminiferal abundances 

(relative abundance [RA] expressed as percentage). In green: dominant species (RA >= 10%). 

In yellow: secondary species (RA = 1–10%); Excel sheet 2: Microfaunal parameters; Excel 

sheet 3: 210Pb-based chronology. Uncoloured: estimated chronology directly from 210Pb excess. 

In grey: extrapolated chronology (depths below the level of 210Pb detection).  

The table can be found in the online version at the Marine Pollution Bulletin website 

http://dx.doi.org/10.1016/j.marpolbul.2015.11.003. 
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Abstract Present-day altered distribution of the natural hab-
itats in the Ebro Delta is consequence of intensive human
settlement in the last two centuries. We developed spatial
predictive models of potential natural wetland habitats of the
Ebro Delta based on ecogeographical predictors and presence/
pseudo-absence data for each habitat. The independent vari-
ables (i.e. elevation, distance from the coast, distance from the
river and distance from the inner border) were analysed using
Generalized Additive Models (GAMs). Elevation and the
distance from the coast appeared as key predictors in most
of the coastal habitats (coastal lagoons, sandy environments,
Salicornia-type marshes and reed beds), whereas distances
from the river and from the inner border were relevant in the
most terrestrial or inland habitats (salt meadows, Cladium-
type marshes and riparian vegetation). Our findings suggest
that the most inland habitats (i.e. Cladium-type marshes, salt
meadows and riparian vegetation) would have undergone a
severe reduction (higher than 90 %), whereas in the most
coastal habitats (coastal lagoons, sandy environments,
Salicornia-type marshes) the reduction in relation to their
potential distribution would be around 70 %. This modelling
approach can be applied to other deltaic areas, since all them
share a similar topography.

Keywords Predictivemodelling .Mediterranean wetlands .

Deltas .Generalizedadditivemodels .Geographic information
system

Introduction

Deltas play an important ecological and economic role, and
host different kinds of coastal habitats. The Ebro Delta (NE
Iberian Peninsula) contains some of the most important wet-
land areas in the westernMediterranean and is a good example
of coastal wetland with a wide variation of habitats influenced
by many environmental factors (topography, hydrology and
climate) (Ibáñez et al. 2000). Consequently, many ecological
studies have been carried out in the Ebro Delta and its estuary
(Rodrigues-Capítulo et al. 1994; Mañosa et al. 2001;Martínez-
Alonso et al. 2004; Ibáñez et al. 2011; Nebra et al. 2011; Prado
et al. 2012; Rovira et al. 2012a, b) but the original distribution
of wetland habitats is not well known (Curcó et al. 1995).
Unfortunately, the natural habitats of the Delta have been
drastically reduced from their original distribution in the delta
plain during the last century up to 70 % due to human settle-
ment for rice farming (Cardoch et al. 2002). Significant chang-
es in habitat distribution have been also observed in Mediter-
ranean and other world deltas (Coleman et al. 2008). To assess
changes in wetland habitat, research on habitat-environment
relationship has become increasingly important since the un-
derstanding of such relations might be a useful conservation
tool in the context of future restoration projects.

Habitat distributionmodels and species distributionmodels
are among those tools that statistically relate species distribu-
tions to environmental conditions; however, these statistical
models are able to project the distribution of species into the
geographical space but are not able to provide a description of
species niches (Jiménez-Valverde et al. 2008). Such predictive
models have been used in a wide range of studies within
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terrestrial and aquatic ecosystems (Guisan and Zimmermann
2000). Commonly used methods include regression techniques
such as Generalized LinearModels (GLMs, Shoutis et al. 2010)
and Generalized Additive Models (GAMs, Joye et al. 2006;
Peters et al. 2008). Some of these studies, however, lack of
spatial predictions which could be solved combining them with
Geographic Information Systems (GIS) (Franklin 1995).

Field research into vegetation-environment relationships
has been carried out in some Mediterranean coastal marshes
and has taken into account abiotic factors such as soil eleva-
tion (Curcó et al. 2002; Silvestri et al. 2005), groundwater
(Pont et al. 2002) or mineral inputs (Ibáñez et al. 2010). These
data are required as the basis for predictive habitat modelling,
since they relate species occurrence to specific measured
variables. However, direct measurement is often impractical,
because of cost and time constraints (Austin 2002). Instead,
GIS methods can be used to extrapolate from the available
field data, by using ecogeographical variables (i.e. predictors)
derived from a Digital Elevation Model (DEM) and aerial
photographs. In this way, models can be developed to predict
the actual or potential distribution of habitats across large
areas that have not been surveyed in detail (Heinanen et al.
2012). To our knowledge, no study has previously been made
using such techniques to predict the distribution of natural
habitats in Mediterranean wetlands.

The main objective of this study was to predict the distri-
bution of natural habitats of the Ebro Delta assuming a sce-
nario of no human disturbance; the focus is on the exploration
of habitat occurrences in relation with ecogeographical vari-
ables that are typically related to topographic and ecologic
gradients of wetland areas. We used Generalized Additive
Models (GAMs) to predict and map the potential distribution
of habitats across the whole of the Delta, including the areas
presently occupied by farmland or devoted to other uses (e.g.
urban settlements). The models were evaluated on their
goodness-of-fit. An additional goal was to assess the percent-
age of change accounted for each type of habitat in order to
provide information that could aid landmanagers in managing
or restoring natural habitats.

Methods

Study Area

The study was performed in the Ebro Delta (330 km2), which
is one of the largest deltas in the northwestern Mediterranean.
Rice fields occupy most of the delta plain (65 % of the total
surface), while natural habitats cover only about 25 %
(80 km2) (Fig. 1). These remaining natural habitats are of
great environmental value and represent excellent examples
of Mediterranean wetland habitats such as riparian vegetation,
salt, brackish and fresh water marshes, coastal lagoons, bays,

sand dunes and mudflats. The present spatial distribution of
Ebro Delta habitats is also shown in Supplementary Fig S1.

There were various reasons for choosing this study area.
Firstly, there is good available information, both biological
(habitat maps) and physical data (surface elevation). Secondly,
there is a substantial spatial heterogeneity in this area,
favouring the existence of diverse environments, and allowing
a wide range of ecological gradients to be assessed with the
actual deltaic plain configuration. And thirdly, there is a wide
set of aerial and topographic maps for carrying the GIS
analysis.

Habitat Occurrence Data

The natural habitats in the Ebro Delta (Table 1) were classified
following the Catalonian Habitats Map (CHM) at 1.50.000
scale (Vigo and Carreras 2003) which is an adaptation of the
Corine Land Cover Mapping (CLC, a map of the European
environmental landscape based on interpretation of satellite
images, Bossard et al. 2000). For each of the natural habitats,
present-day surface cover was determined according to their
polygon area mapped in the CHM. Because binary models
require presence/absence data, circa 300 presence points for
each habitat were randomly obtained with the “Random point
generator” extension of ArcGis 9.3. Due to the fact that the
Ebro Delta salt meadows are the habitats that have been
reduced the most (Curcó et al. 1995) 40 extra points were
used for this habitat, obtained from field work in March 2012.

Ecogeographical Variables

Variables derived from topography and landscape position
were used as potential predictors. The following variables
were considered in this study: surface elevation, distance from
the coast, distance from the river and distance from the inner
border of the deltaic plain. This set of distances and land
elevation are strongly correlated with deltaic soil salinity and
they indirectly reflect hydrological conditions (Ibáñez et al.
2000; Casanova et al. 2002). The variables “distance from the
coast”, “distance from the river” and “distance from the inner
border” were obtained from GIS using the “Euclidean dis-
tance” tool of the Spatial Analyst extension at 1 m of pixel
resolution. For the deltaic plain topography, a Digital Eleva-
tion Model (DEM) with a spatial resolution of 1 m and a
height accuracy of 15 cm built with LIDAR data by the
Cartographic Institute of Catalonia was used. Topographic
data are referred to mean sea level in Alicante datum (MSLA).

Habitat Model

Generalized Additive Models (GAMs, Hastie and Tibshirani
1990) were used to model the relationship between natural
habitat distribution and the ecogeographical predictors.
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GAMs are a non-parametric extension of the Generalized
Linear Models and are often used when there is a no priori
reason for choosing a particular response function (i.e. linear,
quadratic, etc.).

Because the impossibility of working with true absence data
due to human-induced reduction and alteration of the habitats
(i.e. impossibility to know whether the habitat absence is a
result of environmental factors or of human activities), only
pseudo-absence data were considered for building the models,
as other authors have already recommended and applied
(Chefaoui and Lobo 2008; Jiménez-Valverde et al. 2008).

Pseudo-absences for each habitat were generated randomly
over the total area of concern (i.e. the Ebro Delta) but exclud-
ing the two spits (i.e. sandy barriers placed on both northern
and southern hemideltas, see Fig. 1 and Supplementary
Fig. S1). The morphology of these structures contributed to
a large distortion of the variable “distance from the coast”.
These pseudo-absence points were created at least 400 m apart
from the presence points and were weighted according to the
number of presence points in order to perform an equal
number of presences and pseudo-absences (Ferrier et al.
2002; Phillips et al. 2009).

Because the response variable of habitat distribution to
independent variables is a binary value (presence or pseudo-
absence of the habitat), a binomial distribution of error was
assumed and the probability of habitats occurrencewas related
to the ecogeographical variables via a logit link function.

The models were built including all the predictors, and
step.gam function of GAM 1.06.2 package (Hastie 2012) of
R software was used to select both relevant explanatory var-
iables and the level of complexity of the response shapes to
each variable. Then a series of models was fitted based on a
bidirectional step by step process. The lowest Akaike Infor-
mation Criterion (AIC) was used to select the subset of vari-
ables among the AIC resulting from those fitted variables with
up 3 degrees of freedom for the smoothing cubic spline
function (i.e. linear, non-linear or non-existent terms) (Wood
and Augustin 2002).

Furthermore visual inspection of fitted response shapes
was used in order to evaluate the ecological meaning of the
final selected models. Such response shapes, based on GAM’s
partial residuals, show the relative effect of the
ecogeographical predictors on the probability of occurrence.

Model Validation

The predictive capability of the models was validated using a
k-fold cross-validation test (See for instance Bekkby and Moy
2011 and Martínez et al. 2012). For each habitat, we per-
formed 5 iterations of a 80–20 % splitting procedure. The
training set (80 %) was used in the modelling phase referred
above, whereas test set (20 %) was used to validate the
models. The validation measures were averaged from the 5-
generated datasets and two different parameters were
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Fig. 1 Location of the study area,
the Ebro Delta
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calculated. First the Cohen’s Kappa index was calculated,
which estimates the rate of correct classification after remov-
ing the probability of chance agreement. Kappa index ranges
from 0 (indicating poor model performance) to 1 (almost
perfect) (Seoane et al. 2003). Second, the area under the
receiver operating characteristic (ROC) curve, known as
AUC, was calculated, where AUC≤0.5 indicates prediction
no better than random and AUC=1.0 indicates perfect dis-
crimination (Fielding and Bell 1997). For the analysis, we
used dismo 0.8 library (Hijmans et al. 2011) for R software
and own scripts.

Mapping Model Habitat Predictions

Based on fitted models, we calculated spatial predictions at
10 m grid-cell resolution using predict.gam function from
GAM 1.06.2 package, and results were transferred to maps
using ArcGIS 9.3. Because the response variable of habitat
occurrences is a continuous variable (i.e. probability of occur-
rence), a threshold value was set to convert model predictions
of probability of occurrence in presence/absence classifica-
tions. Since the reliability of the predictive models is affected
by the frequency of presences (i.e. prevalence, Manel et al.
2001; Jiménez-Valverde and Lobo 2007) datasets with equal
number of presences and pseudo-absences were created for
each habitat in order to obtain datasets with prevalence of
almost 50 % to build models. The prevalence of each habitat
model was taken as threshold to classify predictions in terms of
presence and absence following Liu et al. (2005) and Zucchetta
et al. (2010). In case of spatial overlap between habitats, the
models were ranked on the basis of explained deviance (0–
100 %; the higher the better) (Planque et al. 2007).

Results

A summary of the ecogeographic predictors for each of the
studied Ebro Delta habitats is shown in Table 2. The actual
distribution of these environments mostly varies according to
the elevation and the distance from the inner border. The
habitats can be classified into 2 main groups: i) habitats
located at higher elevation and closer to inner border (com-
prising Cladium-type marshes, salt meadows and riparian
vegetation habitats) and thus representing the most terrestrial
or inland habitats, and ii) those located at lower elevations,
closer to the sea, which include coastal lagoons, sandy envi-
ronments, Salicornia-type marshes and reed beds.

The accuracy of the fitted models in predicting habitat
distributions (probability of occurrence) was rather high
(Table 3). The models explained 97.9 %, 84.9 % and 81.5 %
of the deviance in predicting distribution for sandy environ-
ments, riparian vegetation and Cladium-type marshes; and
76.4 %, 67.6 % and 63.1 % for predicting the distribution of
salt meadows, Salicornia-type marshes and coastal lagoons
respectively. The lowest deviance explained, 59.5 %, was
found in the reed bed habitat.

Though the combination of significant predictors in the
fitted models differed, distance from the inner border of the
Delta was selected for all models except for sandy environ-
ments. Furthermore, models of all inland habitats (i.e.
Cladium-type marshes, salt meadows and riparian vegetation)
also selected distance from the river, whereas elevation and
distance from the coast were selected for the coastal habitats
except for the reed beds.

The shapes of the effect of each ecogeographical predictor
on the models’ response are shown in Fig. 2 and 3. In partic-
ular, the models' responses (y-axes) indicate the relative

Table 1 Brief description of Ebro Delta habitats considered in this work
(urban areas, crops and spits are excluded) with actual area (obtained after
the Catalonian Habitats Map), predicted area (obtained in this work after
model spatial predictions) and % of change of the habitat area in relation

to the original distribution. Total surface area of the Delta=330 km2

(Ibáñez et al. 2010). Habitats are arranged according to their mean surface
elevation (from lower to higher elevations)

Habitat Description Actual area
(km2)

Predicted area
(km2)

% change

Coastal lagoons Shallow coastal water bodies. Salinity may vary from brackish
to marine.
Usually with submerged macrophytes

14.08 60.97 –76.9

Reed beds Marshes dominated by Phragmites australis growing in fresh
or brackish water rich in nutrients

8.62 7.59 +13.5

Salicornia-type marshes Marshes composed of succulent shrubby species of Chenopodiaceae
which occur in areas with high soil salinity and periodic flooding events

7.89 14.18 –44.4

Cladium-type marshes Marshes composed of dense helophytic communities dominated by
Cladium mariscus affected by significant inputs of underground freshwater

3.35 32.65 –89.7

Sandy environments Sandy beaches and dunes of the Delta front with or without vegetation.
Wave action and winds are continually modelling this habitat

3.85 17.37 –77.8

Salt meadows Meadows dominated by rushes (e.g. J.maritimus and J.acutus) in salty
soils. Adapted to occasional flooding

0.52 125.41 –99.6

Riparian vegetation Habitat growing along river levees composed by trees 0.02 32.29 –99.1
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influence of the ecogeographical predictors (x-axes) on the
prediction and therefore these responses supply a direct com-
parison with the probability of occurrence under binomial
models (Zuur 2012). For the coastal habitat models, a very
similar pattern of response was found for elevation and dis-
tance from the coast, except for the sandy environments,
where elevation showed a distinct response (Fig. 2). The
probability of the occurrence of any of the coastal habitats
increased towards the coastline (Fig. 2b and c). The probabil-
ity of occurrence of coastal lagoons was higher near sea level
whereas the probability of occurrence of Salicornia-type
marshes is high at around 0.5 m of elevation (Fig. 2a). Re-
garding the sandy environments their probability of occur-
rence increased linearly with elevation (Fig. 2a).

In the most terrestrial habitats, the partial effects of both
distances from the river and the inner border varied among the

habitats. Thus, the probability of Cladium-type marshes oc-
currence was high near the inner border of the Delta (Fig. 3b)
and at ca. 7 km of distance from the river Fig. 3a. The
probability of salt meadow occurrence was high up to ca
5 km from the river and underwent a strong decrease after
this distance (Fig. 3a), but it increased again towards the inner
border and the coast (Fig. 3b). Finally, the probability of
presence of riparian vegetation was high in areas close to the
river and close to the inner border (Fig. 3c).

Altogether, mean AUC values from k-fold cross-validation
showed good agreement for the natural habitats distribution
(AUC>0.94), except for the reed beds model, which had
lower performance (AUC=0.83). Results of the kappa index
showed that most of the models (i.e. coastal lagoons, sandy
environments, Salicornia-type marshes, Cladium-type
marshes and riparian vegetation) had moderate agreement

Table 2 Mean value and range (minimum–maximum) of the ecogeographic predictors for each of the Ebro Delta habitats studied. Habitats are arranged
according to their mean surface elevation (from lower to higher elevations)

Elevation (m) Distances (m)

from the coast from the river from the inner border

Coastal 0.02 1567.3 4540. 11140.1

lagoons (–0.59–0.11) (168.5–3107.1) 0 (0–7935.3) (1467.1–18018.2)

Reed beds 0.39 1727. 4425. 11015.6

(0.00–1.71) 1 (85.47–3385.1) 1 (0.0–8279.0) (1005.1–18285.0)

Salicornia-type 0.59 582.0 3289.0 14392.3

marshes (0.00–2.39) (9.2–2522.2) (19.4–8890.7) (569.0–1811.6)

Cladium-type 0.62 2116. 7013.0 2572.1

marshes (0.00–1.42) 8 (878.2–6240.6) (3035.3–8292.4) (856.1–5587.0)

Sandy 0.83 141.1 3437.74 15361.1

environments (0.00–3.90) (1.2–1247.3) (63.5–7803.6) (841.7–18423.8)

Salt meadows 1.23 1556.1 3926.1 7792.2

(0.45–2.26) (57.6–8285.2) (4.3–7550.9) (531.6–16989.3)

Riparian vegetation 2.45 6818.1 145.5 5746.0

(0.31–4.56) (2454.0–10654.2) (0.0–1169.2) (141.3–15974.6)

Table 3 Generalized AdditiveModels (GAMs) built for each of the Ebro
Delta habitats, showing the degrees of freedom for the smoothing param-
eters (s) and the proportion of the explained deviance. Abbreviations: z =

elevation, sea = distance from the coast, river = distance from the river,
border = distance from the inner border. Habitats are arranged according
to their mean surface elevation (from lower to higher elevations)

Habitat Model Deviance explained (%)

Coastal lagoons s (z, 3) + s (sea, 3) + s (border, 3) 63.03

Reed beds s (sea, 3) + s (river, 3) + s (border, 3) 59.49

Salicornia-type marshes s (z, 2) + sea + border 67.64

Cladium-type marshes s (river, 3), s (border, 3) 81.53

Sandy environments z + s (sea, 3) + s (river, 3) 97.90

Salt meadows s (z, 3) + s (sea, 3) + s (river, 3) + s (border, 3) 76.64

Riparian vegetation s (z, 3) + s (river, 3) + s (border, 3) 84.93
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between predictions and observations (kappa>0.43). Salt
meadows and reed beds showed kappa values lower than 0.4
and thus would be considered poor according to Fielding and
Bell (1997).

Maps of the probability of occurrence of the habitats stud-
ied (Fig. 4) showed some overlaps between the distributions
of the different coastal habitat types (Fig. 4a, c), whereas there
was much less overlap between the predicted distributions of
the most terrestrial habitats (Fig. 4d, g).

After ranking habitat models based on their explained devi-
ance and using the prevalence of each habitat as threshold to
translate the probability of occurrence to a presence/absence
map, results revealed that the potential natural habitats are
unequally distributed across the Ebro Delta (Fig. 5 and Supple-
mentary Fig. S2). Results show that, with the present topo-
graphic and morphologic structure of the Delta, salt meadows
should potentially occupy the highest surface in the Delta
(125.4 km2, 43% of the study area, prevalence=0.51) followed
by coastal lagoons (60.7 km2, 20.9 %, prevalence=0.47),
Cladium-type marshes (32.6 km2, 11.3 %, prevalence=0.48),
riparian vegetation (32.3 km2, 11.1 %, prevalence=0.47), sandy
environments (17.37 km2, 5.9 %, prevalence=0.49),
Salicornia-type marshes (14.18 km2, 4.9 %, prevalence=
0.53) and reed beds (7.6 km2, 2.6 %, prevalence=0.52).

Results suggest that the most inland habitats (i.e. Cladium-
type marshes, salt meadows and riparian vegetation) would
have undergone a severe reduction (higher than 90 %),

whereas in the most coastal habitats (coastal lagoons, sandy
environments, Salicornia-type marshes) the reduction in rela-
tion to their potential distribution would be around 70 %
(Table 1).

Discussion

The Potential Distribution of Ebro Delta Habitats
Under Natural Conditions

By using predictive habitat models, we were able to draw
maps of potential distribution for the Ebro Delta wetland
habitats. Our models, including elevation and distances from
the coast, from the river and from the inner border of the Delta
as ecogeographical predictors, were capable to discriminate
between areas where coastal habitats (i.e. coastal lagoons,
sandy environments, Salicornia-type marshes) and inland
habitats (i.e. Cladium-type marshes, salt meadows and ripar-
ian vegetation) should potentially exist under natural condi-
tions across the whole of the Delta plain. Among all the habitat
models the one for reed beds showed the lowest discrimina-
tion power, but statistically it can still be considered a good
model. This low discrimination power suggests that the po-
tential distribution of reed beds under natural conditions
would be quite different than under altered conditions. This
is because, at present, the widespread distribution of reed beds

Fig. 2 Partial effects of the variables a. “elevation” and b. "distance from
the coast" on coastal lagoons, sandy environments, Salicornia-type
marshes and reed beds c in those GAMs where these variables were
retained. Dotted lines indicate 2 times the standard error. X-axes show the

location of observations along the variable. Y-axes represent the partial
residuals of the predictors in the response variable and indicate the
relative influence of the ecogeographical predictors (x-axes) on the
prediction
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in the Ebro Delta is mainly linked to the littoral zones around
brackish lagoons, which are fresher than originally due to the
fresh water inputs from the rice drainage channels (Sanmartí
and Menéndez 2007). Thus the predicted distribution by the
reed bed model might partially be attributed to a suboptimal
selection of the predictors used in this study. For the reasons
discussed before, predictors linked to hydrological alteration
should be considered in order to better estimate the potential
distribution of the reed bed habitat.

Model predictions showed more spatial overlap among
coastal habitats than in inland habitats, and this can be due
to the fact that Mediterranean coastal marshes are known to
display a patchy distribution (Ibáñez et al. 2000). The most
terrestrial or inland habitats are mainly predicted in higher
elevation areas and far from the coast, and are the ones that
accounted for most of the natural habitat reduction in relation
to their potential distribution. This is not surprising since in the
Ebro Delta these areas are the most altered by human activities
(e.g. farmland, urban settlement etc.), while areas occupied by

coastal habitats are more difficult to be transformed for human
purposes due to the strong marine influence.

Results on the potential distribution of Ebro Delta habitats
under natural conditions is in concordance with the work of
Curcó et al. (1995) who also found that the most terrestrial
habitats had been drastically reduced (>95 %) while coastal
lagoons, sandy environments and Salicornia-type marshes had
had less dramatic reduction (ca. 70 %). However, results ob-
tained by Curcó et al. (1995) predict a higher surface for the
Salicornia-type habitat, and this can be partially explained by
the fact that in our study part of the potential area of this habitat
corresponds to areas where the model does not predict any of
the considered habitats; this is the area of transition between the
salt meadows and the coastal lagoons and bays (see white spots
in Fig. 5 and in Supplementary Fig S2). An additional reason
could be that the present elevation of the delta plain is higher
than would be in natural conditions due to the inputs of fluvial
sediments deposited in the rice fields through the irrigation
system before the construction of dams (Ibáñez et al. 1997).
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Fig. 3 Partial effects of the variables a. “distance from the river” and b.
“distance from the inner border” onCladium-type marshes, salt meadows
and riparian vegetation in those GAMs where these predictors were
retained. Dotted lines indicate 2 times the standard error. X-axes show

the location of observations along the variable. Y-axes represent the
partial residuals of the predictors in the response variable and indicate
the relative influence of the ecogeographical predictors (x-axes) on the
prediction
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Habitat Responses to Ecogeographical Variables

Habitat response functions should be evaluated not only by
their fit, but also by their ecological meaning. Although the
variables chosen to study habitat distribution were relatively
simple, they might be ecologically relevant (i.e. they
accounted for more than 50 % of explained deviance for the
seven habitat models). While surface elevation in general and
micro-topography in particular has been already used as

indicator of wetland habitat distributions (Zedler et al. 1999;
Álvarez-Rogel et al. 2007), the rellevance of ‘distance’ vari-
ables had not been shown before. We found that distances
from the river and from the inner border appear to be signif-
icant for the most inland habitats (Cladium-type marshes, salt
meadows and riparian vegetation), since the models selected
both variables. Despite this, the responses of the habitat types
to distance (from the river and from the inner border) were
complex functions (i.e. requiring smoothing with 3 degrees of

Fig. 4 Probability of occurrence
for: a. costal lagoons, b. sandy
environments, c. Salicornia-type
marshes, d. salt meadows, e.
Cladium-type marshes, f. reed
beds, and g. riparian vegetation
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freedom; (Fig. 3), whichmay reflect other ecological processes
not modelled but influencing the shape of the responses (Bio
et al. 1998). Therefore, these variables may be used as good
proxies of a complex set of factors within the Delta, such as
freshwater influence around the edge of the deltaic inner border
and near the river; that influence is in part related to the
upwelling of freatic waters and river flood events respec-
tively (Rodrigues-Capítulo et al. 1994; Day et al. 1995).
The results pointing out the high probability to found
Cladium-type marshes in areas close to the inner border
is in some measure a result of the mentioned complex
factors. Interestingly, the probability of occurrence of the
salt meadows was high in areas both near and far from the
inner border. The partial effects of these predictors may
reveal differences within vegetal communities of Mediter-
ranean salt meadows adopted from Corine Land Cover
map, which are known for having difficulties in
separating overlapping classes (i.e. due to high heteroge-
neity of Mediterranean coastal marshes) (Felicísimo and
Sánchez-Gago 2002). In this study this habitat type actu-
ally represents a combination of exclusive halophytic
vegetation near the coast (i.e. salt marshes with presence
of Juncus maritimus) and areas of higher elevation usual-
ly more distant from the coast (i.e. rushes-marshes and
meadows with Juncus acutus).

In deltas the variability of topographic variables (ele-
vation, distance to the coast, etc.) is mostly related to two
spatial axis: the longitudinal one (along the river) and the

transversal one (across the river); both axis are related to
environmental variables such as salinity, flooding fre-
quency, soil moisture, type of soil, etc., but this relation
is often different in each axis (i.e. flooding from the river
or from the sea) and creates complex environmental
gradients.

Restoration and Management Implications

Our results may be particularly useful for management strat-
egies because we showed that: i) the potential distribution of
the natural habitats under a scenario of complete abandonment
of the human activity in the Delta can be predicted with good
accuracy, ii) information on the main ecogeographical vari-
ables influencing wetland habitat distribution is easy to obtain,
iii) there is a straightforward way to investigate the habitat
distribution by using GIS methods in combination with statis-
tical models and iv) predictive maps could be a useful tool for
identifying areas to be restored or to know the type of habitat
to be restored in a particular area. The methodology employed
can also be used to predict habitat distribution with past and
future deltaic configurations, as well as to other deltaic areas
since they share a similar topographic structure. For instance,
it can be used to predict the future habitat distribution as a
function of scenarios of relative sea-level rise and coastal
retreat due to climate change and sediment deficit, since the
model shows that habitats are highly sensitive to elevation and
distance to the coast. Existing bibliography shows that this is

Fig. 5 Map showing the
potential distribution (presence/
absence) of natural habitats in the
Ebro Delta predicted by the
models. The overlap of the
habitats have been made on the
basis of the explained deviance by
the GAM models
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one of the main threats to the future sustainability of deltaic
systems (Ibáñez et al. 2013).

Acknowledgment This research was supported by IRTA-URV-
Santander fellowship to Xavier Benito Granell through “BRDI Trainee
Research Personnel Programme funded by University of Rovira and
Virgili R + D + I projects”. The work described in this publication was
supported by the European Community’s Seventh Framework Pro-
gramme through the grant to the budget of the Collaborative Project
RISES-AM-, Contract FP7-ENV-2013-two-stage-603396. The Digital
Elevation Model is propriety of Cartographic Institute of Catalonia
(www.icc.cat). The authors would like to thank to the IRTA technicians
Lluís Jornet and David Mateu for field support. We thank also two
anonymous reviewers for their constructive comments on an earlier
version of the manuscript.

References

Álvarez-Rogel J, Carrasco L, Marín C, Martínez-Sánchez J (2007) Soils
of a dune coastal salt marsh system in relation to groundwater level,
micro-topography and vegetation under a semiarid Mediterranean
climate in SE Spain. Catena 69:111–121

Austin M (2002) Spatial prediction of species distribution: an interface
between ecological theory and statistical modelling. Ecol Model
157:101–118

Bekkby T, Moy FE (2011) Developing spatial models of sugar kelp
(Saccharina latissima) potential distribution under natural conditions
and areas of its disappearance in Skagerrak. Estuar Coast Shelf Sci
95:477–483

Bio A, Alkemade R, Barendregt A (1998) Determining alternative
models for vegetation response analysis: a non-parametric approach.
J Veg Sci 9:5–16

Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical
guide: Addendum 2000. European Environment Agency,
Copenhagen

Cardoch L, Day JW, Ibáñez C (2002) Net primary productivity as an
indicator of sustainability in the Ebro and Mississippi deltas. Ecol
Appl 12:1044–1055

Casanova D, Boixadera J, Llop J (2002) Development and Applications
of a Soil Geographic Database: A case study in a deltaic environ-
ment under rice cultivation. J Spat Hydrol 2

Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on
predictive distribution model performance. Ecol Model 210:478–486

Coleman JM, Huh OK, Braud D Jr (2008) Wetland loss in world deltas. J
Coast Res 24:1–14

CurcóA, Canicio C, Ibáñez C (1995)Mapa d'hàbitats potencials del Delta
de l'Ebre. Butll. Parc Natural Delta Ebre 9:4–12

Curcó A, Ibáñez C, Day JW, Prat N (2002) Net primary production and
decomposition of salt marshes of the Ebre Delta (Catalonia, Spain).
Estuar Coasts 25:309–324

Day JW, Pont D, Hensel P, Ibáñez C (1995) Impacts of sea level rise on
deltas in the Gulf of Mexico and the Mediterranean: the importance
of pulsing events to sustainability. Estuar Coasts 18:636–647

Felicísimo A, Sánchez-Gago L (2002) Thematic and spatial accuracy: a
comparison of the Corine Land Cover with the Forestry Map of
Spain. 5th AGILE Conference on Geographic Information Science,
Palma, Balearic Islands Spain, pp 109–118

Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical
approaches to modelling spatial pattern in biodiversity in northeast
New South Wales. I. Species-level modelling. Biodivers Conserv
11:2275–2307

Fielding AH, Bell JF (1997) A review of methods for the assessment of
prediction errors in conservation presence/absence models. Environ
Conserv 24:38–49

Franklin J (1995) Predictive vegetation mapping: geographic modelling
of biospatial patterns in relation to environmental gradients. Prog
Phys Geogr 19:474–499

Guisan A, ZimmermannNE (2000) Predictive habitat distributionmodels
in ecology. Ecol Model 135:147–186

Hastie T (2012) GAM: Generalized Additive Models. R package version
1.06.2. Available via. http://CRAN.R-project.org/package=gam

Hastie T, Tibshirani R (1990) Generalized additive models. Chapman &
Hall/CRC, London

Heinanen S, Erola J, von Numers M (2012) High resolution species
distribution models of two nesting water bird species: a study
of transferability and predictive performance. Landsc Ecol 27:
545–555

Hijmans R, Phillips J, Leathwick J, Elith J (2011) DISMO. Species
distribution modeling. R package version 0.8. Available via. http://
CRAN.R-project.org/package=dismo

Ibàñez C, Canicio A, Day JW, Curcó A (1997) Morphologic develop-
ment, relative sea level rise and sustainable management of water
and sediment in the Ebre Delta, Spain. Journal of Coastal
Conservation 3:191–202

Ibáñez C, Curcó A, Day JW, Prat N (2000) Structure and Productivity of
Microtidal Mediterranean Coastal Marshes. In M. Weinstein and D.
Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology.
Springer Netherlands, pp 107–136

Ibáñez C, Sharpe PJ, Day JW, Day JN, Prat N (2010) Vertical accretion
and relative sea level rise in the Ebro Delta Wetlands (Catalonia,
Spain). Wetlands 30:979–988

Ibáñez C, Alcaraz C, Caiola N, Rovira A, Trobajo R, Alonso M,
Duran C, Jiménez P, Munné A, Prat N (2011) Regime shift
from phytoplankton to macrophyte dominance in a large river:
Top-down versus bottom-up effects. Sci Total Environ 416:
314–322

Ibáñez C, Day JW, Reyes E (2013) The response of deltas to sea-level
rise: natural mechanisms and management options to adapt to high-
end scenarios. Ecological Engineering. Doi:http://dx.doi.org/10.
1016/j.ecoleng.2013.08.002.

Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem:
the importance of concepts in species distribution modelling. Divers
Distrib 14:885–890

Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion
of probability of species presence to either-or presence-absence.
Acta Oecol 31:361–369

Joye DA, Oertli B, Lehmann A, Juge R, Lachavanne JB (2006) The
prediction of macrophyte species occurrence in Swiss ponds. In J.
M. Caffrey, A. Dutartre, J. Haury, K. M. Murphy and P. M. Wade
(eds.), Macrophytes in Aquatic Ecosystems: From Biology to
Management. Hydrobiologia, pp 175–182

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of
occurrence in the prediction of species distributions. Ecography 28:
385–393

Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence
models in ecology: the need to account for prevalence. J Appl Ecol
38:921–931

Mañosa S, Mateo R, Guitart R (2001) A review of the effects of agricul-
tural and industrial contamination on the Ebro Delta biota and
wildlife. Environ Monit Assess 71:187–205

Martínez-Alonso M, Mir J, Caumette P, Gaju N, Guerrero R, Esteve I
(2004) Distribution of phototrophic populations and primary pro-
duction in a microbial mat from the Ebro Delta, Spain. Int Microbiol
7:19–26

Martínez B, Viejo RM, Carreño F, Aranda SC (2012) Habitat distribution
models for intertidal seaweeds: responses to climatic and non-
climatic drivers. J Biogeogr 39:1877–1890

784 Wetlands (2014) 34:775–785

Author's personal copyUNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 

http://www.icc.cat/
http://cran.r-project.org/package=gam
http://cran.r-project.org/package=dismo
http://cran.r-project.org/package=dismo
http://dx.doi.org/10.1016/j.ecoleng.2013.08.002
http://dx.doi.org/10.1016/j.ecoleng.2013.08.002


Nebra A, Caiola N, Ibáñez C (2011) Community structure of benthic
macro in vertebrates inhabiting a highly stratified Mediterranean
estuary. Sci Mar 75:577–584

Peters J, Verhoest NEC, Samson R, Boeckx P, De Baets B (2008)
Wetland vegetation distribution modelling for the identifica-
tion of constraining environmental variables. Landsc Ecol 23:
1049–1065

Phillips S, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J,
Ferrier S (2009) Sample selection bias and presence-only distribu-
tion models: implications for background and pseudo-absence data.
Ecol Appl 19:181–197

Planque B, Bellier E, Lazure P (2007) Modelling potential spawning
habitat of sardine (Sardina pilchardus) and anchovy (Engraulis
encrasicolus) in the Bay of Biscay. Fish Oceanogr 16:16–30

Pont D, Day JW, Hensel P, Franquet E, Torre F, Rioual P, Ibáñez C,
Coulet E (2002) Response scenarios for the deltaic plain of the
Rhône in the face of an acceleration in the rate of sea-level rise with
special attention to Salicornia-type environments. Estuar Coasts 25:
337–358

Prado P, Caiola N, Ibáñez C (2012) Spatio-temporal patterns of sub-
merged macrophytes in three hydrologically altered Mediterranean
coastal lagoons. Estuar Coasts 36:414–429

Rodrigues-Capítulo A, España A, Ibáñez C, Prat N (1994) Limnology of
natural wells in the Ebro Delta (NE Spain). In A. Sladeckova (ed.).
International Association of Theoretical and Applied Limnology,
Proceedings, pp 1430–1433

Rovira L, Trobajo R, Leira M, Ibáñez C (2012a) The effects of hydro-
logical dynamics on benthic diatom community structure in a highly
stratified estuary: The case of the Ebro Estuary (Catalonia, Spain).
Estuar Coast Shelf Sci 101:1–14

Rovira L, Trobajo R, Ibáñez C (2012b) The use of diatom assemblages as
ecological indicators in highly stratified estuaries and evaluation of
existing diatom indices. Mar Pollut Bull 64:500–511

Sanmartí N, Menéndez M (2007) Litter decomposition of Scirpus
maritimus L. in a Mediterranean coastal marsh: Importance of the
meiofauna during the initial phases of detached leaves decomposi-
tion. Int Rev Hydrobiol 92:211–226

Seoane J, Viñuela J, Díaz-Delgado R, Bustamante J (2003) The effects of
land use and climate on red kite distribution in the Iberian Peninsula.
Biol Conserv 111:401–414

Shoutis L, Patten DT,McGlynnB (2010) Terrain-based predictive model-
ing of riparian vegetation in a Northern RockyMountain watershed.
Wetlands 30:621–633

Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt
marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

Vigo J, Carreras J (2003) Los hábitats del proyecto CORINE en el ámbito
territorial catalán: delimitación y cartografía. Acta Botánica
Barcinonensia 49:401–420

Wood SN, Augustin NH (2002) GAMs with integrated model selection
using penalized regression splines and applications to environmental
modelling. Ecol Model 157:157–177

Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD,
Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt-
marsh vegetation: An improved model of spatial pattern.
Ecosystems 2:19–35

Zucchetta M, Franco A, Torricelli P, Franzoi P (2010) Habitat distribution
model for European flounder juveniles in the Venice lagoon. J Sea
Res 64:133–144

Zuur AF (2012) A beginner's guide to Generalized Additive Models with
R. Limited, Highland Statistics

Wetlands (2014) 34:775–785 785

Author's personal copyUNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Chapter 5: Potential habitat distribution 
 

 

Supplementary material 

Supplementary Fig. S1. Location of the study area, the Ebro Delta, and its present-day main 

habitats 
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Chapter 5: Potential habitat distribution 
 

 

Supplementary Fig. S2. Map showing the potential distribution (presence/absence) of natural 

habitats in the Ebri Delta predicted by the models. The overlap of the habitats have been made 

on the basis of the explained deviance by the GAM models. 
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General discussion 

 

The general discussion aims to provide an overview of the main results and to context them in 

the temporal framework: present, past and future (Figure 1). The present thesis showed that 

benthic diatoms and foraminifera can be useful indicators of the Ebro Delta habitats in different 

ways. According to a modern perspective, each group of indicators is sensitive to diverse 

environmental factors and typifies distinctively a wide range of Ebro Delta habitats (excluding 

the non-flooded ones). However, according to a palaeoecological perspective, only 

foraminiferal assemblages have proven to be useful to reconstruct past deltaic habitats, since no 

well-preserved diatoms were recorded in the Delta sediments. Moreover, the potential habitat 

distributions, and the use of the benthic assemblages as indicators of habitat change can be used 

to inform environmental restoration and monitoring schemes, as well as to assess future impacts 

of climate change in this highly sensitive area.  

 

Figure 1 Diagram of the main results derived from the present thesis (grey boxes) with their 

corresponding elements of analysis (diatoms, foraminifera and GIS). Blue colours indicate the 

temporal framework that comprise the thesis (past, present and future), and orange boxes 

indicate the main implications of the results.  
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Present: benthic indicators of modern habitats 

Benthic biota usually responds to a wide array of biological, chemical and physical factors 

(Adams 2005). However, in shallow fluctuating coastal wetlands, which exhibit high spatial and 

temporal variability, benthic assemblages seems to be more influenced by physical factors 

(Reizopoulou and Nicolaidou 2004, Gascón et al. 2007). According to this, the environmental 

gradients structuring benthic diatom and foraminiferal assemblages in the Ebro Delta habitats 

can be considered basically physical: shallowness (water depth), salinity and sediment 

characteristics (Chapters 1 and 2). Furthermore, both group of indicators (unicellular protists) 

are mostly influenced by the same environmental factors, despite being different organisms, i.e. 

algae (diatoms) and microfauna (foraminifera). In this context, salinity, shallowness and 

sediment characteristics have been already considered important gradients in explaining the 

distribution of these and other benthic communities in similar transitional environments (salt 

marshes: Trobajo et al. 2004, Roe et al. 2009, Leorri et al. 2010; estuaries: Cearreta 1988, 

Juggins 1992, Hassan et al. 2009, Nebra et al. 2011, Rovira et al. 2012a, Ribeiro et al. 2013; 

coastal lagoons: Gascón et al. 2007, Ferreira 2013, Prado et al. 2014).  

Environmental variability (natural and/or human-induced) of salinity, water depth, sediment 

type and nutrients are inherently intense and dynamic at the land-sea transitions in coastal 

wetlands (Debenay and Guillou 2002). Within this transition, the physicochemical co-variation 

and the influence of other unquantified processes that are difficult to identify in the field (e.g. 

light availability, physical inestability, competence, etc.) make it difficult to determine the effect 

of single environmental variables upon benthic biota (Van der Zwaan et al. 1999, Thronton et 

al. 2002, Juggins 2013). In this sense, it would be more meaningful to examine environmental 

gradients, which integrate combinations of ecological processes. In the Ebro Delta, salinity and 

shallowness can be considered surrogates of freshwater-to-marine and water-to-land transitions 

– integrative factors including conductivity and water depth but also other underlying gradients 

of habitat features like subaerial exposure, wave action, light, food availability, etc., – all of 

which influence diatoms and foraminiferal assemblages. This is consistent with the qualitative 

ecological zonation of benthic biota along a confinement gradient, which has been previously 

studied in the Mediterranean coastal ecosystems (Guélorget and Perthuisot 1983, Albani et al. 

1991, Debenay and Guillou 2002, Trobajo et al. 2004, Gascón et al. 2007, Pérez-Ruzafa et al. 

2008, Carboni et al. 2009, Sigala et al. 2012). Therefore, salinity and shallowness can be 

considered integrative factors to explain ecosystem processes in deltas. 

The importance of water depth as integrative factor is also shown at the adjacent marine area of 

the Ebro Delta. The increased physical stability from nearshore to offshore environments is 

reflected by small changes in benthic foraminiferal species composition and abundance. As a 
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result, open sea foraminiferal assemblages had wider depth ranges than those inhabiting the 

delta plain. Moreover, water depth may be also relevant due to its relationship with the 

availability of sandy substrates for both porcellaneous (foraminifera) and epipsammic (diatom) 

species in nearshore coastal areas (e.g. Vilbaste et al. 2000, Goineau et al. 2011). In deltas, 

water depth is normally strongly correlated with wave energy and bottom currents, therefore 

very likely having an indirect effect upon benthic assemblages by sorting sand fractions near the 

shallower delta front, and mud fractions in deeper, prodelta environments (Scrutton 1969, 

Maldonado 1972). Hence, local bathymetric zonations have proved to be meaningful for 

developing foraminifera-based water depth transfer function (e.g. Hayward 2004, Horton et al. 

2007, Rossi and Horton 2009, Chapter 2 of this thesis). Nevertheless, more research is needed 

to overcome the paucitiy of information on the autoecology of benthic foraminifera inhabiting 

near microtidal Mediterranean river deltas that intrinsically have high environmental variability 

due to riverine inputs (e.g. organic matter, oxygen layers) (Mojtahid et al. 2010). 

In the Ebro Delta habitats, diatoms form high-diversity assemblages and vary significantly 

among sites, whereas foraminifera had low-diversity assemblages with lesser compositional 

changes among sites. In this sense, the dominance of few ubiquitous foraminifera such as 

Ammonia tepida and Haynesina germanica in the Ebro Delta coastal lagoons may explain their 

failure to distinguish lagoons with different salinity regimes (salt/brackish vs. freshwater). 

Instead, these two habitats were clearly identified using diatoms, thus providing a finer-grained 

habitat characterization. Although the degree of accuracy of habitat characterization is higher 

using diatoms, it must be stressed that the higher number of species inhabiting the Ebro Delta 

together with their confusing and scattered taxonomy (e.g., Rovira, 2013 and references 

therein), required time-consuming analyses and added an extra level of difficulty to assign taxa 

to a known species. Indeed, a total of 424 diatoms were identified in the Ebro Delta of which 96 

remained as unknown or ascribed as “cf.” or “aff.”, therefore hampering the study of the ecology 

of the species. On the other hand, foraminifera taxonomy is relatively better resolved than 

diatoms (but by no means complete, e.g. Hayward et al. 2004), with coastal assemblages 

frequently composed by the same species distributed globally (Murray, 2006, Kemp et al. 

2009). Therefore, the most cost-effective analysis of benthic foraminifera (i.e. easier taxonomy, 

less number of species) can be suitable when a coarse grained habitat characterization is 

sufficient. 

The identification of groups of diatom and foraminifera indicator species in the Ebro Delta 

habitats has provided a complementary approach to the individual species’ response to single 

variables. That is, even if quantitative predictions of conductivity and water depth could be 

inferred using diatoms and foraminifera, respectively, the habitat type would not be necessarily 

the same. For instance, for the same range of conductivity (e.g. 30–40 mS/cm), both salt 
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marshes and coastal lagoons could be possible. Instead, groups of diatom indicator species were 

able to discriminate between them. Likewise, for the same range of water depth (e.g. 2–3 m), 

foraminifera indicator species can discriminate between two distinct subtidal habitats (i.e. 

coastal lagoon, and nearshore/ outer bay habitats). To our knowledge, only Goineau et al. 

(2011) used groups of indicator foraminiferal species in a Mediterranen delta (i.e. the Rhône 

prodelta although the analysis was not applied within the delta plain). Another exception is 

Wachnicka (2010, 2011) who used diatom indicator species as complement of transfer functions 

for water quality (nutrients and salinity) in Tropical bays of the Everglades (USA). The 

indicator species analysis using benthic diatoms and foraminifera has proven to be a potential 

new tool to distinguish different habitat types in Mediterranean deltas, in which heterogeneity, 

both spatial and temporally, is a fundamental feature (Ibáñez et al. 2000). 

Any palaeoenvironmental reconstruction, either quantitative or qualitative, must rely on the 

similarity between modern and fossil assemblages (Birks and Birks, 1980). For the Ebro Delta 

case, the combination of qualitative (through indicator species analysis) and quantitative 

(through transfer functions) approaches have provided an integrated view of modern habitats. 

Unfortunately, diatom-based palaeoenvironmental reconstructions were not possible in the 

Delta, since no well-preserved diatoms were recovered below ca 10 cm depth in any of the 

analysed sediment cores. Existing literature showed that diatom dissolution is often an 

important issue in brackish-saline sediments (Reed 1998, Flower et al. 2001, Ryves et al. 2004, 

Zalat and Vildary 2007, Lewis et al. 2013). In all of these cases, however, diatom dissolution 

was never strong enough to prevent palaeoenvironmental reconstructions by means of fossil 

diatom analyses. To date, no previous published work has reported the lack of well-preserved 

diatoms in all studied core samples, being Logan et al. (2010) the only exception in Australian 

marine bays. However, that seems to be an issue in coastal systems elsewhere (Atlantic Iberian 

coast: Manel Leira personal communication; Baltic Sea coast: Slawomir Dobosz personal 

communication). Therefore, careful selection of proxies is needed in deltaic systems, and future 

research should span different Mediterranean deltas and associated wetlands in order to compare 

diatom dissolution under different site-specific conditions. 
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Past: long-term natural evolution and human impacts 

The long-term paleoenvironmental reconstruction of deltaic habitats along the Holocene period 

has been carried out through the study of benthic foraminifera from two boreholes (Chapter 3). 

Holocene sea level rise periods have been recorded as transgressive marine deposits in deltaic 

and lagoon-barrier systems along the Spanish Mediterranean coast (Goy et al. 2003, Zazo et al. 

2008, Marco-Barba et al. 2013). For the case of the Ebro Delta, maximum Holocene 

transgression was interpreted as marine deposits (clays) radiocarbon dated at 7860–6900 yr BP 

near Amposta city (in the inner border of the Delta) (Somoza et al. 1998). Moreover, the study 

of Maldonado (1972) also interpreted that transgressive marine sequences reached the inner 

border of the Delta around 7600 yr BP. Unfortunately, these seminal works lack of 

micropaleontological evidences to unveil whether the Delta was transgressed at the inner border 

via open sea or deltaic plain habitats. The foraminiferal record obtained from the Carlet 

borehole shown that there were no evidences of marine flooding through the entire sequence 

(last 7500 yr). The interpretation of these results would have been different if foraminifera from 

the deltaic plain environments would have not been included in the analyses, especially for the 

Carlet borehole in which only modern analogues of coastal lagoon habitats have been identified. 

Consequently, the modern Ebro Delta dates back to the early Holocene as other large 

Mediterranean deltas (Stanley and Warne 1994), and therefore the hypothesis that the Delta was 

an estuary prior to the Roman period is not tenable anymore (Guillén and Palanques 1997, Serra 

1997, Palanques and Guillén 1998, Maselli and Trincardi 2013, Somoza and Rodríguez-Santalla 

2014). An equally important implication is that the present thesis gave the possibility of a finer 

habitat reconstruction of deltas, since it is the first study based on the quantitative and 

qualitative analyses of modern (living and dead) foraminiferal assemblages from both the 

deltaic plain and the adjacent marine habitats, providing therefore adequate and sounder 

analogues for interpreting deltaic sedimentary sequences.  

Deltaic plain habitats recorded in the lower half of the Carlet borehole (ca. 7500–2000 yr BP) 

indicated distinct degree of marine influence (lagoon/ inner bay). Within deltaic sedimentary 

sequences, the existence of habitats with marine influence should be expected as a function of 

distance to the coast due to delta lobe evolution and/or periods of relative sea level rise (RSLR). 

These conditions, however, can be compatible with the maintenance of the deltas (Ibáñez et al. 

2014). For instance, modern deltas such as the Mississippi show active lobes growing while the 

abandoned ones are eroding, and both processes occur at the same time under RSLR rates of >1 

cm/yr (Roberts 1997). Despite the impossibility to reconstruct the extent of specific habitats 

from one single point (i.e. Carlet borehole), sufficient information has been obtained to 

distinguish deltaic plain and open marine environments based on their foraminiferal content. In 

addition, other non-faunal characteristics based on diversity and wall-structure has been used in 
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this thesis to further distinguish deltaic and adjacent marine habitats, thus providing a more 

integrated habitat description; foraminiferal assemblages from the deltaic plain habitats were 

invariably less diverse and marine habitats (nearshore and outer bays) contained more 

porcellaneous species (Scrutton 1969, Chapter 2 of this thesis).  

The Sant Jaume borehole showed a stronger marine influence and a more recent chronology 

than the Carlet borehole (Chapter 3). Distinct marine and deltaic plain habitat successions, 

caused by differential delta lobe progradation, characterized the evolution of the Ebro Delta 

during the last 2000 yr and these were associated to particular foraminiferal palaeoassemblages 

(Fig. 2). For instance, around 1700–1100 yr BP, and 1100–560 yr BP, shoreline progradations 

in the area of Sant Jaume borehole implied the development of progressively shallower habitats 

(coastal lagoons) through the advance of the Riet Vell and Riet de Zaida lobes, respectively. 

Very similar habitat successions have been recorded in the progradation of the Rotta di Ficarolo 

lobe in the Po Delta (Rossi and Vaiani 2008, Rossi and Horton 2009). Then, it can be proposed 

that the progradation of the Riet Vell and Riet de Zaida lobes at the location of Sant Jaume 

borehole occurred approximately 1700 and 1100 yr ago, respectively. These results have offered 

the opportunity to extend and improve the chronology regarding Ebro Delta evolution beyond 

the most recent few centuries (Table 1).  

 

Table 1 Approximate chronology (centuries) of the last three lobes of the Ebro Delta according 

to the existing bibliography and as reconstructed by benthic foraminiferal palaeoassemblages 

together with radiocarbon age estimation (this study). 

 Lobes 

Reference Riet Vell Riet de Zaida Migjorn 

Maldonado & Murray 1975 ?–XVIth  XVIIth–XVIIIth  XVIIIth–present 

    
Ibáñez et al. 1997 VIth –Xth  Xth–XVIth  XVIIth–present  

    Somoza et al. 1998 XIIth–XIVth  XIVth–XVIIIth  XVIIIth–present  

    Maselli & Trincardi 2013 IXth–XVth  XVth–XVIIth  XVIIth–present  

    

This study 
IIIth–Xth Xth–XVIth XVIth–present 

(1700–1100 yr BP) (1100–560 yr BP) (~500 yr BP –present) 
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Figure 2 Schematic 

reconstruction of the 

four main evolutive 

phases (A–D) of the 

Ebro Delta as 

reconstructed by 

benthic foraminifera 

from radiocarbon dated 

boreholes (Carlet and 

Sant Jaume). 

Approximate position 

of the last three deltaic 

lobes (B–D) is adapted 

from Maldonado 

(1972). The three most 

recent reliable maps 

with their 

corresponding dates 

are also shown: 1) the 

Mercator-Hondius 

Map, 2) the Miguel 

Marin Map and 3) “las 

Golas del Ebro” Map. 
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Natural processes that mostly moulded the Ebro Delta environments during the Holocene have 

been progressively altered (or replaced) by direct anthropogenic effects, especially in the last 

two centuries. At scale of 10s and 100s of years, benthic foraminiferal palaeoassemblages have 

revealed habitat shifts as response to land use changes, mostly due to the onset and expansion of 

rice farming after 1860’s (Chapter 4). Regardless of site location and dominant habitat type 

within the Delta, the foraminiferal record share a very similar pattern: shift from coastal lagoon 

habitats with varying degree of marine influence (highly diverse, calcareous-dominated 

foraminiferal assemblages) to very restricted marshes (lowly diverse, agglutinated-dominated 

foraminiferal assemblages). These results indicate that recent past habitats were mainly 

characterized by coastal lagoons with high marine influence, somewhat similar to coastal 

habitats that would potentially exist under a scenario of no human disturbance according to 

results obtained from GIS-based habitat models (Chapter 5). 

 

Future: potential habitat distribution 

Habitat distribution models applied to the Ebro Delta were highly sensitive to elevation and 

distance to the coast (Chapter 5). This methodology can be used together with the response of 

diatom communities to salinity gradients (Chapter 1) in order to assess the evolution of salt 

water intrusion and future habitat changes as a function of scenarios of relative sea level rise 

(RLSR) and coastal retreat due to climate change and subsidence. For instance, the conversion 

of Salicornia marshes into open water will likely come through gradual submergence in low-

lying areas of the Ebro Delta (e.g. at the two semi-enclosed bays in Alfacs and Fangar). 

Likewise, the conversion of rice fields and adjacent fresh-brackish marshes to higher salinity 

marshes could be result of enhanced subsurface salt intrusion (Genua-Olmedo et al. 2015). Both 

scenarios are rather inevitable in Mediterranean deltas, where progressive RSLR could already 

be implicated in the loss of coastal wetlands (Nicholls 2004) and where freshwater supply can 

be expected to decline due to water resource scarcity (Thompson and Flower 2009). 

Benthic diatoms and foraminifera are not currently recommended as biological quality elements 

for assessing the ecological status of transitional and coastal waters under the Water Framework 

Directive (WFD, Annex V). Chapters 1 and 2 of the thesis suggested that benthic foraminifera 

and diatoms could provide an additional and in fact a very useful tool to biomonitor the present 

and future status of Mediterranean coastal habitats. For instance, the foraminifera 

Haplophragmoides wilberti emerged as indicator species of Phragmites marshes in the Ebro 

Delta (high specificity, > 99%). This is considered a strongly altered habitat in the Delta (Curcó 

2006), characterized by fresh-brackish conditions and organic-rich sediments due to inputs of 

drainage waters coming from rice fields. Likewise, several small Fragilaria species (including 
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revised genera) were indicative of coastal lagoons with moderate eutrophication and freshwater 

conditions (e.g. Olles and Clot lagoons). Therefore, the appearance of these two groups of 

foraminifera and diatoms that apparently thrive well in fresher and nutrient enriched conditions, 

in brackish and marine influenced habitats, can be used in regular monitoring as early impacts 

of human-mediated freshwater inflows (i.e. rice field runoff).  

The assessment of environmental quality is based upon the extent of deviation from pre-

disturbance conditions. This degree of deviation can be determined by comparing pre-impacted 

conditions in sediment cores to the modern ones at the same location (Alve et al. 2009, Dolven 

et al. 2013). However, this comparison might be obscured by the natural background variability 

of coastal environments, which often share similar features with anthropogenically stressed 

areas in terms of low diversity assemblages of opportunistic species (Elliot and Quintino, 2007, 

Dijkstra et al. 2013, Barras et al. 2014). Therefore, long term data on natural variability is 

required to distinguish if present-day low diversity conditions are result of natural or 

anthropogenic stressed conditions (Alve et al. 2009). For the Ebro Delta habitats, down-core 

foraminiferal changes included, among others, a strong decrease of species diversity (at the 

expense of more stress-tolerant species such as agglutinated T. inflata) since the early 1900s. 

Most of the benthic foraminifera-based environmental assessments were based upon assemblage 

diversity, reflecting poorer ecological conditions as diversity decreases (Alve 1995, Bouchet et 

al. 2012, Dolven et al. 2013, Barras et al. 2014). On the basis of these results, realistic pre-

impacted conditions for monitoring and management purposes could be set at the late 1800s. 

The joint interpretation of all short cores in Chapter 4 allowed some inferences to be made 

regarding human impacts at both lower Ebro River and Delta in the context of future restoration 

projects. With the exception of the Garxal wetland which is directly connected to the river, the 

other analysed cores (Olles, Tancada, Alfacs and Clot), showed a strong reduction of 

allochthonous (marine) tests and sand content since the early 1900s. These results suggest a 

hydrologically-isolated nature of the modern wetlands due to the construction of extensive 

system of infrastructures accompanying the rice cultivation (e.g., canals, roads). This means that 

they will capture less re-suspended inorganic sediment from local sediment sources (river, 

lagoons, bays) than naturally. This situation together with the present and ongoing Ebro’s 

regulation due to land use changes (irrigated agriculture) will exacerbate the sediment deficit in 

the Ebro Delta. Existing literature shows that this is one of the main threats to the future 

sustainability of deltaic wetlands (Day et al. 1995, Pont et al. 2002, Calvo-Cubero et al. 2013, 

Ibáñez et al. 2014). The long-term perspective defined here can serve to support environmental 

management seeking to restore habitats supported by natural fluxes of water, sediments and 

nutrients with the aim to mitigate wetland loss due to the effects of RSLR.  
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Research prospects 

The research carried out in the present PhD thesis has been crucial for acquiring a present-day 

and long term vision of the Ebro Delta. Perhaps, the analysis of additional boreholes is the most 

necessary research task towards a more accurate reconstruction of the Ebro Delta in early 

Holocene times. In this sense, new sedimentary sequences are particularly encouraged at 

landward Delta locations with the aim to confirm the results obtained in Carlet borehole. 

Moreover, by combining with independent and complementary proxies such as shell 

geochemistry (isotopes), past environmental inferences could be more precise. The study of 

oxygen and carbon isotopes from biogenic carbonates and silicates can provide high-resolution 

salinity changes (e.g. Marco-Barba et al. 2013). Several studies proved the utility of benthic 

foraminifera and diatoms as palaeosalinity and palaeoclimatic proxies in marginal marine 

environments (Reinhardt et al. 2003, Leng and Barker 2006, Abu-Zied et al. 2011). For 

instance, high-resolution studies could be applied on foraminiferal species commonly found in 

both surface and core sediment samples of the Ebro Delta such as Ammonia beccarii (and A. 

tepida) and Cribroelphidium excavatum (and its morphotypes such as C. selseyensis) which 

have demonstrated its ability to record sensitively salinity changes (Peros et al. 2007, Lewis et 

al. 2013), but also temperature (Kristensen and Knudsen 2006). 

Another essential point is to improve the identification of some taxonomically difficult diatom 

taxa that are abundant in the Ebro Delta habitats. For instance, several small naviculoid and 

fragilarioid taxa (i.e. Fragilaria and its recently revised genera) are among indicator diatoms of 

the deltaic habitats, but many remained unidentified at species level due to few (or lack of) 

differential characters when using just light microscope. Because only when species taxonomy 

can be reliably determined that a sound ecology is possible and thus also a proper comparison 

with works of similar environments (Kociolek and Stoermer 2001). Improvement of this kind 

should be a very useful help to refine the use of these diatoms as ecological indicators of coastal 

wetlands and lagoons in the Mediterranean region, becoming as well an important source of 

information for other diatomists dealing in similar systems or in similar taxa.  

Palaeoenvironmental inferences in systems that exhibit high spatial variability like the Ebro 

Delta can benefit from enlarged modern data sets to fully capture relationships between benthic 

assemblages and key environmental variables (e.g., Lapointe, 2000). For the case of 

foraminifera-based water depth reconstructions, future research should span a wider range of 

Mediterranean coastal wetlands (e.g. Usera et al. 2002, Guillem 2007) and adjacent marine 

deltaic areas (Mojtahid et al. 2010, Goineau et al. 2011, López-Belzunce et al. 2014). If modern 

datasets could be improved, quantitative inferred conditions could be more precise, specially 

regarding the accuracy of water depth reconstructions (species optima and tolerances) in marine 
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environments, since foraminifera living there did not show clear lower and upper depth limits 

unlike species inhabiting the Delta plain habitats (coastal lagoons and marshes).  
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Conclusions 

 

1. In the Ebro Delta habitats, benthic diatom assemblages showed high diversity. A total 

of 424 species were identified, representing 85 genera. The most abundant and 

widespread species were Cocconeis placentula, Achnanthes submarina, Navicula 

salinicola and Pseudostaurosiropsis geocollegarum.  

2. Five habitat types were identified according to the similarity in diatom species 

composition and abundance, namely salt marshes (i.e. Salicornia and Juncus marshes 

and microbial mats), brackish marshes (i.e. Phragmites marshes), brackish coastal 

lagoons and bays, coastal lagoons with fresher conditions, and nearshore open sea. 

Although several environmental variables determined the distribution and composition 

of the assemblages (i.e. water depth, sand proportion, organic matter), conductivity (as 

proxy of salinity) was found to be the major control on benthic diatoms. 

3. Diatom indicator species of each habitat type were recognised (species are arranged 

according to their Indicator Value (IV), from higher to lower values): 

a. Navicymbula pusilla, Amphora sp. 1, Mastogloia braunii, Mastogloia aquilegiae 

and Amphora cf. roettgeri were indicative of salt marshes (i.e. Salicornia and 

Juncus marshes and microbial mats).  

b. Achnanthes brevipes var. intermedia, Navicula perminuta, Diploneis smithii, 

Navicula microcari, Nitzschia inconspicua and Fragilaria cf. neoelliptica were 

indicative of brackish marshes (i.e. Phragmites marshes).  

c. Cocconeis scutellum, Achnanthes sp.1, Seminavis strigosa, Cocconeis cf. 

neothumensis var. marina, Nitzschia pararostrata, Achnanthes amoena, Amphora 

sp.5, Nitzschia constricta, Seminavis robusta, Nitzschia liebetruthii, Planothidium 

deperditum, Cocconeis peltoides, Navicula vimineoides, Navicula cf. hansenii, 

Ardissonea crystallina and Navicula sp. 7 were indicative of brackish coastal 

lagoons and bays.  

d. cf. Fragilaria sp. 1, Fragilaria atomus, Pseudostaurosiropsis geocollegarum, 

Pseudostaurosiropsis cf. geocollegarum, Fragilaria cf. sopotensis, Navicula 

gregaria, Fragilaria gedanensis, cf. Fragilaria sp. 2, cf. Opephora sp. 1 were 

indicative of coastal lagoons with fresher conditions.  

e. Delphineis surirella and Nitzschia coarctata were indicative of nearshore open sea. 
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4. Unfortunately, no well preserved diatom valves were found in sediments below ca. 10 

cm depth, and therefore the past environmental conditions of the Ebro Delta could not 

be inferred using diatoms. 

5. Benthic foraminiferal assemblages of the Ebro Delta showed lower diversity than 

diatom assemblages. A total of 138 living (rose Bengal stained) and 150 dead species 

were identified, with the calcareous Ammonia beccarii group (including varieties and 

species such as A. tepida and A. beccarii var. batavus), Haynesina germanica and 

Quinqueloculina stelligera, and the agglutinated Jadammina macrescens, Trochammina 

inflata and Haplophragmoides wilberti as often very abundant and widespread species. 

In the sediment record, a total of 140 foraminiferal species were found and they were 

well represented by modern assemblages. 

6. Both the living and dead foraminiferal assemblages were used to characterise the whole 

range of deltaic environments (from deltaic plain to adjacent marine area), resulting in 

the identification of four distinct habitat types: salt and brackish marshes, coastal 

lagoons and inner bays, nearshore and outer bays, and offshore. Water depth proved to 

be the most important factor determining the distribution of foraminifera, although it 

probably integrates the effects of other abiotic (e.g., food availability, oxygen) and 

biotic (density, competition) variables.  

7. Foraminiferal indicator species of each habitat type were also recognised (species are 

arranged according to their Indicator Value (IV), from higher to lower values): 

a. Bulimina aculeata, Nonionoides scaphus, Ammosphaeroidina sphaeroidiniforme, 

Bulimina gibba, Textularia calva, Elphidium matagordanum, Elphidium incertum, 

Valvulineria bradyana, Bolivinellina pseudopunctata, Haplophragmoides 

canariensis, Uvigerina sp. 1, Reussella aculeata, Cribroelphidium selseyensis, 

Gavelinopsis praegeri, Elphidium cf. flexuosum, Eggerelloides scaber, Cassidulina 

laevigata, Elphidium advenum, Reophax subfusiformis, Elphidium sp. 2, 

Planorbulina mediterranensis and Elphidium crispum were indicative of offshore 

habitats.  

b. Quinqueloculina stelligera, Triloculina sp. 1, Miliolid undeterminated, Nonionella 

atlantica, Epistominella vitrea, Asterigerinata sp. 1, Buliminella elegantissima, 

Nonion laevigatum and Brizalina striatula were indicative of nearshore and outer 

bays habitats.  

c. Trochammina inflata, Jadammina macrescens, Trichohyalus aguayoi and 

Haplophragmoides wilberti were indicative of salt and brackish marshes.  
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d. Haynesina germanica, Ammonia beccarii agg, Quinqueloculina jugosa, 

Cribroelphidium oceanensis and Quinqueloculina seminula were indicative of 

coastal lagoons and inner bays.  

8. The recognition of indicator species of both diatoms and foraminifers proved to be a 

powerful tool to identify and characterise the Ebro Delta habitats. This tool was 

complementary to the quantitative transfer functions, since conductivity (in the case of 

diatoms) and water depth (for foraminifera), though very important, are not the only 

factors structuring the Ebro Delta habitats.  

9. Benthic diatom and foraminiferal assemblages can be used as early indicators of habitat 

change conditions, since altered habitats of the Ebro Delta were recognised through the 

presence of several indicator species of freshwater and organic-rich conditions (i.e. 

Phragmites marshes and coastal lagoons with fresher conditions). 

10. The multiproxy approach (foraminifera plus diatoms) reinforced the environmental 

characterisation of habitats (i.e. salt marshes, brackish marshes, brackish coastal 

lagoons and bays, coastal lagoons with fresher conditions and nearshore open sea) and 

salinity prediction (i.e. transfer function) obtained using benthic diatoms solely. 

Furthermore, each benthic indicator individually had strengths and weaknesses: diatoms 

gave a finer-grained habitat characterization (i.e. five different habitat types) but they do 

not preserve well in Ebro Delta sediments, while foraminifera provided a coarser-

grained habitat characterization (i.e. three or four different habitat types) but preserve 

well in sediment and are therefore available for palaeoenvironmental reconstruction. 

11. The high similarity found between living and dead foraminiferal assemblages indicated 

that dead foraminifera, which integrate seasonal and post-depositional variations on the 

modern assemblages, can be reliably used on a comparative basis for the interpretation 

of the well preserved buried assemblages of the Ebro Delta.  

12. The detailed environmental characterization of delta habitats using benthic foraminifera 

from both the deltaic plain and the adjacent marine area provided adequate modern 

analogues for palaeoenvironmental reconstruction. This is demonstrated particularly 

well by the more landward Carlet borehole, which only recorded shallow deltaic plain 

habitats (i.e. coastal lagoons), and the more seaward Sant Jaume borehole, which 

registered deeper habitats typical of the delta front (i.e. nearshore and outer bays 

habitats). 

13. The fossil foraminiferal assemblages from the two studied boreholes (Carlet and Sant 

Jaume) assisted in the validation and rejection of hypotheses advanced previously 

concerning the origin and evolution of the Ebro Delta during the Holocene:  
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a. the presence of coastal lagoon/ inner bay habitats throughout the entire Carlet 

borehole (last 7500 yr) refuted the assumption that the present Delta plain 

formed mostly during the last 2000 yr (in the post-Roman period), and hence it 

can be stated that the central plain of the Delta was never an estuary, as 

suggested before by some authors. 

b. the differential progradation of the two ancient lobes Riet Vell and Riet de 

Zaida lobes, around 1700 and 1000 yr BP respectively, at the location of Sant 

Jaume borehole, provided a more accurate chronological frame for these lobes 

in comparison with existing literature, which had indicated a younger 

development. 

14. Recent environmental changes (during the last ca 150 years) registered in short 

sediment cores of the Ebro Delta indicated a clear replacement of high-diversity 

calcareous by low-diversity agglutinated foraminiferal assemblages, together with 

significant correlation with organic matter increases. This shift can be explained by the 

effect of factors associated with rice cultivation (salinity, water depth, organic matter 

content, eutrophication). 

15. Down-core foraminiferal changes in the Ebro Delta habitats gave insights about their 

pre-impact conditions which could be set at the late 1800s. This knowledge contributes 

to the use of benthic foraminifera as bio-monitoring tool for Mediterranean coastal 

wetlands to better define restoration goals and support environmental policies (e.g. the 

Water Framework Directive). 

16. In the Ebro Delta, the potential distribution of coastal habitats (sandy environments, 

coastal lagoons, Salicornia marshes and Phragmites marshes) and inland habitats (salt 

meadows, Cladium marshes and riparian vegetation) would be different as a function of 

variables such as elevation and ‘distance to the coast’ under a scenario of no human 

disturbances. Inland habitats would naturally occupy the largest surface within the Delta 

(~56%), which is nowadays occupied by rice fields. The highest habitat loss 

corresponds to those habitats. 

17. Since habitat predictive models showed high sensitivity to elevation and distance to the 

coast, these habitat models can be used to predict future habitat distributions in the 

context of climate change and sediment deficit, and inform restoration and adaptation 

programs. It is suggested that the habitat models developed here can be used in other 

Mediterranean deltaic areas since they share similar eco-geographic features. 
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Appendix I: Benthic diatom assemblages of the Ebro Delta 

List of diatom taxa and relative abundances 

 

List of the 424 diatom taxa found in the Ebro Delta (arranged alphabetically) with their 

corresponding codes and their relative abundances (% RA) considering all samples. 

Plates are also indicated for those taxa illustrated here. Indicator species are highlighted 

in bold; for these taxa the habitat they characterize is also given.  
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Code Diatom taxa RA (%) Habitat  Plates 

AHAMO Achnanthes amoena Hustedt 0.798 Brackish coastal lagoons and bays 1 (LM) 

AHBRE Achnanthes brevipes var. intermedia (Kützing) Cleve 1.906 Brackish marshes 1 (LM) 

AHBRO Achnanthes brockmannii Simonsen 0.008   

AHDEL Achnanthes delicatissima Simonsen 0.044   

AHFOG Achnanthes fogedii Hakansson 0.760 Coastal lagoons with fresher conditions  

AHLON Achnanthes longipes C. Agardh 0.005   

AHSP1 Achnanthes sp.1  0.969 Brackish coastal lagoons and bays 1 (LM), 1 (EM) 

AHSUB Achnanthes submarina Hustedt 6.684  1 (LM), 1 (EM) 

AHMIN Achnanthidium minutissimum (Kützing) Czarnecki     0.031   

AHMIG Achnanthidium minutissimum var. gracillima (Meister) Lange-Bertalot 0.019   

ACSPL Actinoptychus splendens (Shadbolt) Ralfs    0.004   

AULSP1 Aulacoseira sp.1  0.014   

APANT Amphitetras antediluviana Ehrenberg 0.004   

AMACU Amphora acutiuscula Kützing 1.232  1 (LM) 

aAMATA Amphora aff. atacamana Patrick 0.010   

aAMHYA Amphora aff. hyalina Kützing 0.145   

AMANG Amphora angustissima Heiden 0.482   

AMARS Amphora arcus var. sulcata (A. Schmidt) Cleve    0.890  1 (LM) 

AMARE Amphora arenicola (Grunow) Cleve   0.033   

AMBOR Amphora borealis Kützing 0.029   

cAMANG Amphora cf. angusta Gregory 0.022   

cAMLUC Amphora cf. luciae Cholnoky sensu Archibald 0.574  1 (LM) 

cAMROE Amphora cf. roettgeri Lee & Reimer 0.370 Salt marshes  2 (LM) 

cAMSUB Amphora cf. subacutiuscula Schoeman 0.360   

cAMTEN Amphora cf. tenerrima Aleem & Hustedt 0.061   

AMCOF Amphora coffeaeformis (C. Agardh) Kützing 0.697  2 (LM) 

AMCOM Amphora commutata Grunow 0.090   

AMCOP Amphora copulata (Kützing) Schoeman & Archibald   0.139   

cAMCYM Amphora cf. cymbamphora Cholnoky 0.034   

AMEXI Amphora exilissima Giffen 0.025   
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Code Diatom taxa RA (%) Habitat  Plates 

AMHEL Amphora helenensis Giffen 0.021   

AMHOL Amphora holsatica Hustedt 0.260   

AMINA Amphora inariensis Krammer 0.014   

AMIND Amphora indistincta Levkov 0.053   

AMLAE Amphora laevissima Gregory 0.004   

AMLIN Amphora lineolata Ehrenberg 0.052   

AMLYB Amphora lybica Ehrenberg 0.011   

AMMAL Amphora margalefii X. Tomàs 0.061   

AMMAR Amphora marina W. Smith 0.004   

AMMER Amphora meridionalis Levkov 0.035   

AMMEX Amphora mexicana A.Schmidt  0.019   

AMMIC Amphora micrometra Giffen 0.136   

AMNOR Amphora normanii Rabenhorst 0.029   

AMOVA Amphora ovalis (Kützing) Kützing 0.042   

AMPED Amphora pediculus (Kützing) Grunow 0.172   

AMPRC Amphora proteus var. contigua (Gregory) Cleve 0.040   

AMPSE Amphora pseudoaequalis Levkov 0.012   

AMPSU Amphora pseudoholsatica Nagumo & Kobayasi        0.024   

AMPUS Amphora pusio Cleve 0.802  2 (LM) 

AMPS1 Amphora sp.1  0.660 Salt marshes 2 (LM) 

AMSP3 Amphora sp.3  0.021   

AMSP5 Amphora sp.5  0.806 Brackish coastal lagoons and bays 2 (LM) 

AMSP6 Amphora sp.6  0.011   

AMSTA Amphora staurophora Juhlin-Dannfelt  0.305   

AMSUB Amphora subacutiuscula Schoeman 0.975  2 (LM) 

AMSUH Amphora subholsatica Krammer 0.051   

AMSYD Amphora sydowii Cholnoky 0.029   

AMTUM Amphora tumida Hustedt 0.029   

AMTUR Amphora turgida Gregory 0.023   

AMVET Amphora vetula Levkov 0.008   
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cANTEN Anorthoneis cf. tenuis Hustedt 0.005   

ARCRY Ardissonea crystallina (C. Agardh) Grunow 0.429 Brackish coastal lagoons and bays  

ARFUL Ardissonea fulgens (Greville) Grunow   0.008   

ASBAH Astartiella bahusiensis (Grunow) Witkowski, Lange-Bertalot & Metzeltin 0.023   

cASBRE Astartiella cf. bremeyeri (Lange-Bertalot) Witkowski & Lange-Bertalot    0.004   

cASPUNC Astartiella cf. punctifera (Hustedt) Witkowski & Lange-Bertalot   0.095   

BAPAX Bacillaria paxillifera (O.F. Müller) Hendey 0.143   

BEFEN Berkeleya fennica Juhlin-Dannfelt  0.239  2 (LM) 

BERUT Berkeleya rutilans (Trentepohl ex Roth) Grunow 0.027   

BESCO Berkeleya scopulorum (Brébisson) E.J. Cox    0.022   

BESP1 Berkeleya sp.1  0.011   

BESP2 Berkeleya sp.2  0.021   

BILUC Biremis lucens Sabbe, Witkowski & Vyverman 0.264  2 (LM) 

BRAPO Brachysira aponina Kützing 0.041   

BREST Brachysira estoniarum Witkowski, Lange-Bertalot & Metzeltin  0.183   

aCABAC Caloneis aff. bacillum (Grunow) Cleve     0.009   

CAMOL Caloneis molaris (Grunow) Krammer  0.004   

CAORE Caloneis oregonica (Ehrenberg) Patrick   0.028   

CASP1 Caloneis sp.1  0.011   

CASUB Caloneis subsalina (Donkin) Hendey      0.019   

CMCLY Campylodiscus clypeus Ehrenberg      0.140   

CTADH Catenula adhaerens Mereschkowsky        0.047   

CESMI Cerataulus smithii Ralfs 0.004   

CHALE Chamaepinnularia alexandrowiczii Witkowski, Lange-Bertalot & Metzeltin        0.125  2 (LM) 

cCHMAR Chamaepinnularia cf. margaritiana (Witkowski) Witkowski    0.034   

CHSP1 Chamaepinnularia sp.1  0.057   

cCOBAR Cocconeis cf. bardawilensis Ehrlich nomen nudum 0.090   

cCONEM Cocconeis cf. neothumensis var. marina De Stefano, Marino & Mazzella 0.328 Brackish coastal lagoons and bays 2 (LM) 

cCOPEL Cocconeis cf. pelta A. Schmidt  0.011   

COHAU Cocconeis hauniensis Witkowski emend Witkowski   0.088   
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CONEO Cocconeis neodiminuta Krammer 0.041   

COPED Cocconeis pediculus Ehrenberg 0.287  2 (LM) 

COPEL Cocconeis peltoides Hustedt 0.654 Brackish coastal lagoons and bays 2 (LM) 

COPEU Cocconeis placentula var. euglypta (Ehrenberg) Grunow 1.203  3 (LM) 

COPEY Cocconeis placentula var. euglyptoides (Ehrengerg) Geitler 0.281   

COPPL Cocconeis placentula var. placentula Ehrenberg 1.236  3 (LM), 1 (EM) 

COPTR Cocconeis placentula var. trilineata (M. Peragallo & J. Héribaud) Cleve 0.303  3 (LM) 

COSCU Cocconeis scutellum Ehrenberg 0.590 Brackish coastal lagoons and bays 3 (LM) 

COSP1 Cocconeis sp.1  0.076   

CRHA1 Craticula halophila (Grunow ex Van Heurck) D.G. Mann    0.012   

CRHA2 Craticula halophila m2 (Grunow ex Van Heurck) D.G Mann    0.047   

CYATO Cyclotella atomus Hustedt 0.012   

CYHAK Cyclotella hakanssoniae Wendker 0.247  3 (LM) 

CYMEN Cyclotella meneghiniana Kützing 0.217   

CMSOL Cymatopleura solea (Brébisson) W. Smith 0.004   

CMSP1 Cymatosira sp.1  0.004   

DESUR Delphineis surirella (Ehrenberg) Andrews 1.772 Nearshore habitat 3 (LM) 

DNSUB Denticula subtilis Grunow 0.549  3 (LM) 

DITEN Diatoma tenuis C. Agardh 0.004   

DILEG Dickieia legleri (Hustedt) Clavero & Hernández-Mariné 0.113   

DISP1 Dickieia sp.1  0.290  3 (LM), 1 (EM) 

DMMIN Dimeregramma minor (Gregory) Ralfs 0.028   

DPCAF Diploneis caffra (Giffen) Witkowski, Lange-Bertalot & Metzeltin   0.031   

DPCAM Diploneis campylodiscus (Grunow) Cleve     0.038   

cDPBOL Diploneis cf. boldtiana Cleve 0.089   

DPDID Diploneis didyma (Ehrenberg) Cleve   0.368  4 (LM) 

DPELL Diploneis elliptica (Kützing) Cleve 0.051   

DPLIT Diploneis litoralis (Donkin) Cleve 0.035   

DPOBL Diploneis oblongella (Naegeli) Cleve      0.009   

DPSMI Diploneis smithii (Brébisson) Cleve 0.288 Brackish marshes  4 (LM) 
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DPSMD Diploneis smithii var. dilatata (M.Peragallo) Terry  0.004   

DPWEI Diploneis weissflogii (Schmidt) Cleve 0.018   

cENPSE Entomoneis cf. pseudoduplex Osada & Kobayasi  0.236  4 (LM), 1 (EM) 

ENPAL Entomoneis paludosa var. subsalina (Cleve) Krammer   0.090   

EOMIN Eolimna minima (Grunow) Lange-Bertalot  0.003   

EPADN Ephitemia adnata (Kütking) Brébisson 0.007   

EUDUB Eunotogramma dubius Hustedt 0.004   

FAAEQ Fallacia aequora (Hustedt) D.G. Mann 0.008   

cFAINS Fallacia cf. insociabilis (Krasske) D.G. Mann   0.013   

cFAPLA Fallacia cf. plathii (Brockmann) Snoeijs   0.005   

cFATEN Fallacia cf. teneroides (Hustedt) D.G. Mann 0.007   

FACLE Fallacia clepsidroides Witkowski 0.020   

FACRY Fallacia cryptolyra (Brockmann) Stickle & D.G. Mann 0.083   

FAFOR Fallacia forcipata (Greville) Stickle & D.G. Mann 0.031   

FALIT Fallacia litoricola (Hustedt) D.G. Mann  0.004   

FAOCU Fallacia oculiformis (Hustedt) D.G. Mann 0.008   

FAPYG Fallacia pygmaea (Kützing) Stickle & D.G.Mann 0.258  5 (LM) 

FASCH Fallacia schaeferae (Hustedt) D.G. Mann  0.023   

FATEN Fallacia tenera (Hustedt) D.G. Mann  0.081   

FAWUE Fallacia wuestii (Simonsen) Sabbe & Muylaert   0.029   

FRAMI Fragilaria amicorum Witkowski & Lange-Bertalot   0.176  5 (LM), 2 (EM) 

FRATO Fragilaria atomus Hustedt 0.866 Coastal lagoons with fresher conditions 5 (LM), 2 (EM) 

FRCAP Fragilaria capensis Grunow 0.013   

FRCAU Fragilaria capucina Desmazières 0.004   

FRCAS Fragilaria cassubica Witkowski & Lange-Bertalot  0.034   

cFRELL Fragilaria cf. elliptica Schumann 0.231  5 (LM) 

cFRHYA Fragilaria cf. hyalina (Kützing) Grunow 0.022   

cFRNEO Fragilaria cf. neoelliptica Witkowski 0.395 Brackish marshes  5 (LM) 

cFRSOP Fragilaria cf. sopotensis Witkowski & Lange-Bertalot  0.734 Coastal lagoons with fresher conditions 5 (LM) 

FRGED Fragilaria gedanensis Witkowski 1.009 Coastal lagoons with fresher conditions 5 (LM) 
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FRMAR Fragilaria martyi (Héribaud) Lange-Bertalot  0.980   

FRPUL Fragilaria pulchella (Ralfs ex Kützing) Lange-Bertalot 0.025   

FRSP1 cf. Fragilaria sp.1  2.793 Coastal lagoons with fresher conditions 5 (LM), 2 (EM) 

FRSP2 cf. Fragilaria sp.2  1.024 Coastal lagoons with fresher conditions 5 (LM) 

FRSP3 cf. Fragilaria sp.3  0.129   

FRCRE Frustulia creuzburgensis (Krasske) Hustedt  0.041   

GOACI Gomphonema acidoclinatum Lange-Bertalot & Reichardt  0.014   

cGOGRO Gomphonema cf. groveri var. lingulatum (Hustedt) Lange-Bertalot       0.007   

GOCLA Gomphonema clavatum Reichardt 0.010   

GOLAT Gomphonema lateripunctatum Reichardt & Lange-Bertalot    0.007   

GOMIN Gomphonema minutum (C. Agardh) C. Agardh 0.004   

GOOLI Gomphonema olivaceum (Hornemann) Brébisson 0.004   

GOPAR Gomphonema parvulum (Kützing) Kützing 0.014   

GORHO Gomphonema rhombicum Fricke 0.004   

GOOBS Gomphonemopsis obscurum (Krasske) Lange-Bertalot   0.449  5 (LM) 

GRMAR Grammatophora marina (Lyngbye) Kützing  0.111   

GYBAL Gyrosigma balticum (Ehrenberg) Rabenhorst  0.004   

GYFAS Gyrosigma fasciola (Ehrenberg) Griffith & Henfrey    0.291   

GYPEI Gyrosigma peisonis (Grunow) Hustedt  0.004   

GYWAN Gyrosigma wansbeckii (Donkin) Cleve  0.125   

GYWPE Gyrosigma wansbeckii var. peisonis (Grunow) Cleve 0.166  5 (LM) 

HADOM Halamphora dominici Acs & Levkov 0.004   

HAVIR Hantzschia virgata (Roper) Grunow 0.004   

HASP1 Haslea sp.1  0.009   

HASPI Haslea spicula (Hickie) Bukhtiyarova    0.025   

HICAO Hippodonta caotica Witkowski, Lange-Bertalot & Metzeltin     0.061   

HIHUN Hippodonta hungarica (Grunow) Lange-Bertalot, Metzeltin & Witkowski   0.029   

HYSCO Hyalodiscus scoticus (Kützing) Grunow  0.018   

HYSP1 Hyalosira sp.1  0.004   

cLUGOE Luticola cf. goeppertiana (Bleisch in Rabenhorst) D.G. Mann   0.030   
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LUMUT Luticola mutica (Kützing) D.G. Mann 0.080   

LUVEN Luticola ventricosa  (Kützing) D.G. Mann   0.007   

LYSPE Lyrella spectabilis (Gregory) D.G. Mann 0.021   

MAAFI Mastogloia affirmata (Leuduger-Fortmorel) Cleve  0.022   

MAAQU Mastogloia aquilegiae Grunow 1.009 Salt marshes  6 (LM) 

MABEL Mastogloia belaensis Voigt 0.033   

MABRA Mastogloia braunii Grunow 0.852 Salt marshes  6 (LM) 

MADES Mastogloia desertorum Voigt  0.022   

MAELL Mastogloia elliptica (C. Agardh) Cleve 0.008   

MAEXI Mastogloia exigua Lewis 0.007   

MAIGN Mastogloia ignorata Hustedt 0.004   

MAPUM Mastogloia pumila (Grunow) Cleve 0.427  6 (LM) 

MAPUS Mastogloia pusilla (Grunow) Cleve 0.030   

MAPUL Mastogloia pusilla var. linearis Østrup 0.008   

MASMI Mastogloia smithii Thwaites 0.076   

MASMA Mastogloia smithii var. amphicephala Grunow 0.007   

MYFOS Mayamaea fossalis (Krasske) Lange-Bertalot    0.004   

cMEMON Melosira cf. moniliformis (O.F.Muller) C. Agardh 0.009   

NOSHI Nanofrustulum shiloi (Lee, Reimer & McEnery) Round, Hallsteinsen & Paasche   0.197   

aNALUS Navicula aff. lusoria Giffen 0.030   

aNAMOL Navicula aff. mollis (W. Smith) Cleve 0.874  7 (LM) 

aNAPEM Navicula aff. perminuta Grunow 0.181   

aNARAM Navicula aff. ramosissima (C.Agardh) Cleve     0.061   

NAANT Navicula antonii Lange-Bertalot 1.597  7 (LM) 

NAARE Navicula arenaria Donkin 0.210   

NABIP Navicula bipustulata A. Mann 0.019   

NACAP Navicula capitoradiata Germain 0.015   

NACAR Navicula cari Ehrenberg 0.447   

NACRI Navicula cariocincta Lange-Bertalot 0.304  7 (LM) 

cNAALE Navicula cf. aleksandrae Lange-Bertalot, Bogaczewicz-Adamczak & Witkowski 0.073   
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cNAAPI Navicula cf. apiculata Brébisson 0.031   

cNAARE Navicula cf. arenaria Donkin 0.067   

cNACAR Navicula cf. cari Ehrenberg 0.100   

cNACRY Navicula cf. cryptocephaloides Hustedt 0.008   

cNACRP Navicula cf. cryptotenelloides Lange-Bertalot  0.034   

cNADIG Navicula cf. digitoradiata (Gregory) Ralfs         0.016   

cNAMIC Navicula cf. microcari Lange-Bertalot          0.104  7 (LM) 

cNAHAN Navicula cf. hansenii Möller 0.105 Brackish coastal lagoons and bays 7 (LM) 

cNANOR Navicula cf. normaloides Cholnoky 0.098   

cNAPHY Navicula cf. phylleptosoma Lange-Bertalot  0.239   

cNAPSE Navicula cf. pseudosalinarum Giffen 0.964   

cNAREC Navicula cf. recens (Lange-Bertalot) Lange-Bertalot   1.196  7 (LM) 

cNASAL Navicula cf. salinicola Hustedt 0.210   

cNAVEN Navicula cf. veneta Kützing 0.019   

NACIN Navicula cincta (Ehrenberg) Ralfs 0.014   

NACON Navicula consentanea Hustedt 0.103   

NACRP Navicula cryptocephala Kützing 0.030   

NACRT Navicula cryptotenella Lange-Bertalot 0.067   

NADIG Navicula digitoradiata (Gregory) Ralfs   0.148   

NADIL Navicula dilucida Hustedt 0.030   

NADIR Navicula directa (W. Smith) Ralfs 0.019   

NADIS Navicula cf. diserta Hustedt 0.178  7 (LM) 

NADUE Navicula duerrenbergiana Hustedt 0.036   

NAERI Navicula erifuga Lange-Bertalot   0.130   

NAFLA Navicula flagellifera Hustedt 0.038   

NAGER Navicula germanopolonica Witkowski & Lange-Bertalot  0.012   

NAGRE Navicula gregaria Donkin 0.375 Coastal lagoons with fresher conditions 7 (LM) 

NAGRO Navicula groschopfii Hustedt 0.041   

NAMEN Navicula menisculus Schumann 0.004   

NAMIC Navicula microcari Lange-Bertalot 0.232 Brackish marshes  7 (LM) 
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NAMCR Navicula microdigitoradiata Lange-Bertalot 0.043   

NANOR Navicula normaloides Cholnoky 0.266   

NAOES Navicula oestrupii Héribaud-Joseph 0.022   

NAPAR Navicula pargemina Underwood & Yallop 0.039   

NAPAV Navicula pavillardii Hustedt 0.406   

NAPER Navicula peregrina (Ehrenberg) Kützing    0.811  7 (LM) 

NAPEM Navicula perminuta Grunow 1.782 Brackish marshes  7 (LM), 2 (EM) 

NAPHL Navicula phyllepta Kützing 0.625  7 (LM) 

NAPSE Navicula pseudocrassirostris Hustedt 0.050   

NAPSU Navicula pseudosalinarum Giffen 0.055   

NAREC Navicula recens (Lange-Bertalot) Lange-Bertalot   0.050   

NAROS Navicula rostellata Kützing 0.003   

NASAL Navicula salinarum Grunow 0.316   

NASAI Navicula salinicola Hustedt 2.531  7 (LM) 

NASLE Navicula sleviscensis Grunow 0.008   

NASP1 Navicula sp.1  0.543  8 (LM) 

NASP2 Navicula sp.2  0.355  8 (LM) 

NASP3 Navicula sp.3  0.032   

NASP4 Navicula sp.4  0.186   

NASP5 Navicula sp.5  0.121  8 (LM) 

NASP6 Navicula sp.6  0.194  8 (LM) 

NASP7 Navicula sp.7  0.298 Brackish coastal lagoons and bays 8 (LM) 

NASP8 Navicula sp.8  0.715  8 (LM) 

NASTA Navicula stachurae Witkowski 0.093   

NASTR Navicula starmachioides (Witkowski & Lange-Bertalot)Witkowski & Lange-Bertalot  0.210   

NASTE Navicula streckerae Lange-Bertalot & Witkowski 0.084   

NASTU Navicula stundlii Hustedt 0.510  8 (LM) 

NASUB Navicula subrhynchocephala Hustedt 0.004   

NATEN Navicula tenelloides Hustedt 0.019   

NATRD Navicula transitans var. derasa fo.delicatula Heimdal 0.051   
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NATRI Navicula tripunctata (O.F. Müller) Bory 0.101   

NATRV Navicula trivialis Lange-Bertalot 0.004   

NAVAN Navicula vandamii Schoeman & Archibald 0.025   

NAVAE Navicula vaneei Lange-Bertalot 0.085   

NAVIM Navicula vimineoides Giffen 0.219 Brackish coastal lagoons and bays 8 (LM) 

NAVUL Navicula vulpina Kützing 0.004   

NVPU1 Navicymbula pusilla m1 (Grunow) Krammer 3.816 Salt marshes  9 (LM), 2 (EM) 

NVPU2 Navicymbula pusilla m2 (Grunow) Krammer 0.397  9 (LM) 

NIAEQ Nitzschia aequorea Hustedt 0.301  9 (LM) 

aNIPAL Nitzschia aff. paleaeformis Hustedt 0.008   

aNIROS Nitzschia aff. rosenstockii Lange-Bertalot 0.132   

NIAMP Nitzschia amphibia Grunow 0.007   

NIANG Nitzschia angularis W. Smith 0.022   

NIARE Nitzschia aremonica Archibald 0.004   

NIBAC Nitzschia bacillum Hustedt 0.219   

NICAL Nitzschia calida Grunow 0.004   

NICAP Nitzschia capitellata Hustedt 0.103   

cNIAGN Nitzschia cf. agnita Hustedt 0.008   

cNIARD Nitzschia cf. ardua Cholnoky 0.129   

cNICLAU Nitzschia cf. clausii Hantzsch  0.005   

cNIDIS Nitzschia cf. distans Gregory 0.085   

cNIFON Nitzschia cf. fonticola (Grunow) Grunow 0.003   

cNIHUN Nitzschia cf. hungarica Grunow 0.162   

cNIGRO Nitzschia cf. grossestriata Hustedt 0.007   

cNIINV Nitzschia cf. invisitata Hustedt 0.005   

cNILES Nitzschia cf. lesbia  Cholnoky 0.212  9 (LM) 

cNILIE Nitzschia cf. liebetruthii Rabenhorst 0.128   

cNIPAL Nitzschia cf. palea (Kützing) W.Smith 0.019   

cNIPER Nitzschia cf. perindistincta Cholnoky 1.410  9 (LM), 2 (EM) 

cNIPES Nitzschia cf. perspicua Cholnoky 0.036   
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cNIQUA Nitzschia cf. quadrangula (Kützing) Lange-Bertalot 0.103   

cNITUB Nitzschia cf. tubicola Grunow 0.353   

NICOA Nitzschia coarctata Grunow 0.670 Nearshore habitat 9 (LM) 

NICMN Nitzschia communis Rabenhorst 0.071   

NICOM Nitzschia commutata Grunow 0.004   

NICOP Nitzschia compressa (J.W.Bailey) Boyer   0.175   

NICON Nitzschia constricta (Kützing) Ralfs  1.448 Brackish coastal lagoons and bays 10 (LM) 

NIDES Nitzschia desertorum Hustedt 0.016   

NIDID Nitzschia didyma Hustedt 0.004   

NIDIP Nitzschia dippelii Grunow 0.009   

NIDIS Nitzschia dissipata (Kützing) Grunow 0.004   

NIELE Nitzschia elegantula Grunow 0.431  10 (LM) 

NIEPI Nitzschia epithemioides Lange-Bertalot 0.059   

NIFIL Nitzschia filiformis (W. Smith) Van Heurck  0.072   

NIFRU Nitzschia frustulum (Kützing) Grunow 0.008   

NIFU1 Nitzschia fusiformis m1 Grunow 0.020   

NIFU2 Nitzschia fusiformis m2 Grunow 1.244  10 (LM) 

NIGRA Nitzschia granulata Grunow  0.248   

NIHEU Nitzschia heufleriana Grunow 0.015   

NIINC Nitzschia inconspicua Grunow 2.493 Brackish marshes 10 (LM) 

NILAN Nitzschia lanceola Grunow 0.009   

NILEV Nitzschia levidensis  (W.Smith) Grunow 0.025   

NILSA Nitzschia levidensis var. salinarum Grunow 0.021   

NILIE Nitzschia liebetruthii Rabenhorst 0.423 Brackish coastal lagoons and bays 10 (LM) 

NILIT Nitzschia littoralis Grunow 0.007   

NILOR Nitzschia lorenziana Grunow 0.008   

NIMIC Nitzschia microcephala Grunow 0.204   

NIPAR Nitzschia pararostrata (Lange-Bertalot) Lange-Bertalot  0.312 Brackish coastal lagoons and bays 10 (LM) 

NIPEL Nitzschia pellucida Grunow 0.150   

NIPEM Nitzschia perminuta (Grunow) M.Peragallo  0.013   
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NIPUS Nitzschia pusilla (Kützing)Grunow    0.066   

NIREC Nitzschia recta Hantzsch 0.007   

NISCA Nitzschia scalaris (Ehrenberg) W. Smith  0.087   

NISCL Nitzschia scalpelliformis (Grunow) Grunow 1.291  11 (LM), 2 (EM) 

NISER Nitzschia serpenticola Cholnoky 0.049   

NISIG Nitzschia sigma (Kützing) W.Smith 0.379  11 (LM) 

NISP1 Nitzschia sp.1  0.021   

NISP2 Nitzschia sp.2  0.009   

NISUP Nitzschia supralitorea Lange-Bertalot      0.111   

NITHE Nitzschia thermaloides Hustedt 0.469  11 (LM) 

NITRY Nitzschia tryblionella Hantzsch 0.032   

NITUB Nitzschia tubicola Grunow 0.030   

NIVAL Nitzschia valdecostata Lange-Bertalot & Simonsen              0.004   

NIVID Nitzschia vidovichii (Grunow) Grunow      0.361   

NIVIT Nitzschia vitrea G.Norman 0.164  11 (LM) 

ODAUR Odontella aurita (Lyngbye) C. Agardh     0.037   

cOPBUR Opephora cf. burchardtiae Witkowski, Metzeltin & Lange-Bertalot 0.022  11 (LM) 

cOPKRU Opephora cf. krumbeinii Witkowski, Witak & Stachura    0.007   

OPGUE Opephora guenter-grassii (Witkowski & Lange-Bertalot) Sabbe & Vyverman    1.095  12 (LM) 

OPMIN Opephora minuta (Cleve)Witkowski, Lange-Bertalot & Metzeltin    0.004   

OPMUT Opephora mutabilis (Grunow) Sabbe & Vyverman  0.184  12 (LM) 

OPSP1 cf. Opephora sp.1  0.384 Coastal lagoons with fresher conditions 12 (LM) 

PASUL Paralia sulcata (Ehrenberg) Cleve   0.015   

PRCRU Parlibellus cruciculoides (Brockmann)Witkowski, Lange-Bertalot & Metzeltin    0.008   

PRHAG Parlibellus hagelsteinii E.J. Cox 0.288  12 (LM) 

PRSP1 Parlibellus sp.1  0.110  12 (LM) 

PRSP2 Parlibellus sp.2  0.004   

PEGEM Petrodictyon gemma (Ehrenberg) D.G. Mann    0.004   

PTMAR Petroneis marina (Ralfs) D.G. Mann 0.007   

PIELE Pinnuavis elegans (W. Smith) Okuno     0.003   
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PIBOR Pinnularia borealis var. rectangularis Carlson 0.004   

PIBRE Pinnularia brebissonii (Kützing) Rabenhorst 0.004   

PLPLA Placoneis placentula (Ehrengerg) Heinzerling  0.008   

PGMED Plagiogrammopsis mediaequatus Gardner & Crawford        0.013   

PGMIN Plagiogrammopsis minima Sabbe, Vaneslander, Witkowski, Ribeiro & Vyverman           0.004   

PILEP Plagiotropis cf. lepidoptera (Gregory) Kuntze     0.030   

cPNLEM Planothidium cf. lemmermannii (Hustedt) Morales      0.032   

PNDE1 Planothidium delicatulum m1 (Kützing) Round & Bukhtiyarova         0.921  12 (LM), 3 (EM) 

PNDE2 Planothidium delicatulum m2 (Kützing) Round & Bukhtiyarova         0.490  12 (LM) 

PNDE3 Planothidium delicatulum m3 (Kützing) Round & Bukhtiyarova         0.015   

PNDEP Planothidium deperditum (Giffen) Witkowski & Lange-Bertalot   0.166 Brackish coastal lagoons and bays 12 (LM) 

PNENG Planothidium engelbrechtii (Cholnoky) Round & Bukhtiyarova       0.070   

PNIBE Planothidium iberense Rovira & Witkowski 0.004   

PNLAN Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot  0.004   

PNLEM Planothidium lemmermannii (Hustedt) Morales     0.037   

PNSEP Planothidium septentrionalis (Østrup) Round & Bukhtiyarova 0.015   

PNSP1 Planothidium sp.1  0.066   

PEANG Pleurosigma angulatum (Queckett) W.Smith 0.041   

PEDEL Pleurosigma delicatulum W.Smith 0.022   

PEFOR Pleurosigma formosum W.Smith 0.024   

PULAE Pleurosira laevis (Ehrenberg) Compere 0.035   

PRCOM Proshkinia complanata (Grunow) D.G. Mann 0.003   

aPSAME Pseudostaurosira aff. americana E.A. Morales 0.018   

PSALV Pseudostaurosira alvareziae Cejudo-Figueiras, E.A. Morales & Ector 0.017  13 (LM) 

PSBRE Pseudostaurosira brevistriata (Grunow) Williams & Round 0.645  13 (LM) 

cPSBREV Pseudostaurosira cf. brevistriata (Grunow) Williams & Round 0.172  13 (LM) 

cPSPER Pseudostaurosira cf. perminuta (Grunow) Sabbe & Vyverman 0.032   

cPSSUB Pseudostaurosira cf. subsalina (Hustedt) E.A.Morales 0.264  13 (LM) 

PSSUB Pseudostaurosira subsalina (Hustedt) E.A.Morales 0.220  13 (LM) 

FRGEO Pseudostaurosiropsis cf. geocollegarum (Witkowski & Lange-Bertalot) E.A.Morales 3.383 Coastal lagoons with fresher conditions 13 (LM), 3 (EM) 
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Code Diatom taxa RA (%) Habitat  Plates 

cFRGEO Pseudostaurosiropsis geocollegarum (Witkowski & Lange-Bertalot) E.A.Morales 1.223 Coastal lagoons with fresher conditions 13 (LM) 

RHABR Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot  0.024   

RHLIN Rhoicosphenia linearis Østrup 0.026   

RHMAR Rhoicosphenia marina (Kützing) M.Schmidt    0.012   

ROACU Rhopalodia acuminata Krammer 0.028   

ROBRE Rhopalodia brebissonii Krammer 0.192   

ROCON Rhopalodia constricta (W.Smith) Krammer 0.885  13 (LM), 3 (EM) 

ROMUS Rhopalodia musculus  (Kützing) O.Muller  0.161  13 (LM) 

cSADEL Sarcophagodes cf. delicatula E.A. Morales 0.014  13 (LM) 

cSCTUM Scolioneis cf. tumida (Brebisson ex Kützing) D.G.Mann 0.094   

SEOST Seminavis ostenfeldii (Hustedt) Clavero & Hernández-Mariné 0.049   

SEROB Seminavis robusta Danielidis & Mann 0.534 Brackish coastal lagoons and bays 14 (LM) 

SESTR Seminavis strigosa (Hustedt) Danielidis & Economou-Amilli 2.414 Brackish coastal lagoons and bays  14 (LM) 

STAMP Stauroneis amphioxys Gregory 0.040   

SACOB Staurosira construens var. binodis (Ehrenberg) Hamilton     0.004   

SACOV Staurosira construens var. venter (Ehrenberg) Bukhtiyarova    0.177  14 (LM) 

SAPUN Staurosira punctiformis Witkowski, Metzeltin & Lange-Bertalot    0.037   

cSRPIN Staurosirella cf. pinnata (Ehrenberg) Williams & Round 0.024   

SRSP1 Staurosirella sp.1  0.058   

STUNI Striatella unipunctata (Lyngbye) C. Agardh  0.077  15 (LM) 

aSUSAL Surirella aff. salina W.Smith 0.004  15 (LM) 

SUBRE Surirella brebissonii Krammer & Lange-Bertalot 0.015  15 (LM) 

SUFAS Surirella fastuosa Ehrenberg 0.027  15 (LM) 

SUSTR Surirella striatula Turpin 0.011   

SUTNE Surirella tenera var. nervosa  A.Schmidt    0.005   

TAFAS Tabularia fasciculata (C. Agardh) Williams & Round 0.025   

TAGAI Tabularia gaillonii (Bory) Ehrenberg       0.005   

TATAB Tabularia tabulata (C. Agardh) Snoeijs 0.328  14 (LM) 

THNIT Thalassionema nitzschioides (Grunow) Mereschkowsky     0.013   

TLANG Thalassiosira angulata (Gregory) Hasle   0.049  14 (LM) 
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TLHYP Thalassiosira hyperborea (Grunow) Hasle 0.010   

TLSP1 Thalassiosira sp.1  0.015   

TOUND Toxarium undulatum J.W.Bailey  0.079   

TRDUB Triceratium dubium Brightwell 0.004   
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Light Microscope (LM) and Electron Microscope (EM) plates of diatom taxa 

LM pictures were taken under differential inference contrast (DIC), all at the same 

magnification (1000x). Scale bar represents 10 μm for LM and 1 μm for EM, except when 

specified. 
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Plate 1 LM 

 
Figs 1–2 Achnanthes amoena Hustedt 

 Fig. 1: Rapheless (SV) and raphe valves (RV) 

 Fig. 2: SV 

Figs. 3–4 Achnanthes brevipes var. intermedia (Kützing) Cleve 

 Fig. 3: RV 

 Fig. 4: SV 

Figs. 5–6 Achnanthes sp.1  

 Fig. 5: SV 

 Fig. 6: RV 

Figs. 7–11 Achnanthes submarina Hustedt 

 Figs. 7–8: RV 

 Fig. 9: SV 

 Fig. 10: RV 

 Fig. 11: SV 

Figs. 12–14 Amphora acutiuscula Kützing 

Figs. 15–16 Amphora arcus var. sulcata (A. Schmidt) Cleve    

Figs. 17–20 Amphora cf. luciae Cholnoky sensu Archibald 

 Figs. 17–19: valves 

 Fig. 20: frustule 
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Plate 2 LM 

 
Figs. 1–2 Amphora cf. roettgeri Lee & Reimer 

Figs. 3–4 Amphora coffeaeformis C. Agardh (Kützing) 

Figs. 5–8 Amphora pusio Cleve 

 Fig. 5: frustule 

 Figs. 6–8: valves 

Figs. 9–12 Amphora sp.1  

Figs. 13–18 Amphora sp.5  

Figs. 19–21 Amphora subacutiuscula Schoeman 

Figs. 22–24 Berkeleya fennica Juhlin-Dannfelt  

Figs. 25–26 Biremis lucens K.Sabbe, A.Witkowski & W.Vyverman 

Figs. 27–28 Chamaepinnularia alexandrowiczii Witkowski, Lange-Bertalot & Metzeltin 

Figs. 29–32 Cocconeis cf. neothumensis var. marina De Stefano, Marino & Mazzella, SV 

Fig. 33 Cocconeis pediculus Ehrenberg, SV 

Figs. 34–36 Cocconeis peltoides Hustedt, SV 
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Plate 3 LM 

 
Figs. 1–3 Cocconeis placentula var. euglypta (Ehrenberg) Grunow, SV 

Figs. 4–5 Cocconeis placentula var. placentula Ehrenberg, SV 

Figs. 6–8 Cocconeis placentula var. trilineata (M. Peragallo & J. Héribaud) Cleve, SV 

Figs. 9–10 Cocconeis scutellum Ehrenberg 

 Fig. 9: SV 

 Fig. 10: RV 

Figs. 11–14 Cyclotella hakanssoniae Wendker 

Figs. 15–17 Delphineis surirella (Ehrenberg) Andrews 

Figs. 18–19 Denticula subtilis Grunow 

Figs. 20–21 Dickieia sp.1, RV 
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Plate 4 LM 
 
Figs. 1–2 Diploneis didyma (Ehrenberg) Cleve   

Figs. 3–4 Diploneis smithii (Brébisson) Cleve 

Figs. 5–7 Entomoneis cf. pseudoduplex Osada & Kobayasi  
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Plate 5 LM 

 
Figs. 1–3 Fallacia pygmaea (Kützing) Stickle & D.G.Mann 

Figs. 4–5 Fragilaria amicorum Witkowski & Lange-Bertalot   

 Fig. 4: valve 

 Fig. 5: frustule 

Figs. 6–7 Fragilaria atomus Hustedt 

 Fig. 6: valve 

 Fig. 7: frustule 

Figs. 8–12 Fragilaria cf. elliptica Schumann 

Figs. 13–17 Fragilaria cf. neoelliptica Witkowski 

Figs. 18–19 Fragilaria cf. sopotensis Witkowski & Lange-Bertalot  

Figs. 20–25 Fragilaria gedanensis Witkowski 

Figs. 26–28 cf. Fragilaria sp.1  

Figs. 29–31 cf. Fragilaria sp.2  

Figs. 32–33 Gomphonemopsis obscurum (Krasske) Lange-Bertalot   

Figs. 34–35 Gyrosigma wansbeckii var. peisonis (Grunow) Cleve 
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Plate 6 LM 

 
Figs. 1–2 Mastogloia aquilegiae Grunow 

Figs. 3–6 Mastogloia braunii Grunow 

 Fig. 3: valve 

 Fig. 4: partecta 

 Fig. 5: valve 

 Fig. 6: partecta 

Figs. 7–10 Mastogloia pumila (Grunow) Cleve 

 Fig. 7: valve 

 Fig. 8: partecta 

 Fig. 9: valve 

 Fig. 10: partecta 
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Plate 7 LM 

 
Figs. 1–4 Navicula aff. mollis (W. Smith) Cleve 

Figs. 5–7 Navicula antonii Lange-Bertalot 

Figs. 8–9 Navicula cariocincta Lange-Bertalot 

Fig. 10 Navicula cf. hansenii Möller 

Figs. 11–15 Navicula cf. recens (Lange-Bertalot) Lange-Bertalot   

Figs. 16–17 Navicula cf. diserta Hustedt 

Fig. 18 Navicula gregaria Donkin 

Figs. 19–20 Navicula microcari Lange-Bertalot 

Fig. 21 Navicula peregrina (Ehrenberg) Kützing    

Figs. 22–23 Navicula perminuta Grunow 

Fig. 24 Navicula phyllepta Kützing 

Figs. 26–29 Navicula salinicola Hustedt 
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Plate 8 LM 

 
Figs. 1–4 Navicula sp.1  

Figs. 5–8 Navicula sp.2  

Figs. 9–12 Navicula sp.5  

Figs. 13–15 Navicula sp.6  

Figs. 16–20 Navicula sp.7  

Figs. 21–25 Navicula sp.8  

Figs. 26–28 Navicula stundlii Hustedt 

Figs. 29–31 Navicula vimineoides Giffen 
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Plate 9 LM 

 
Figs. 1–5 Navicymbula pusilla m1 (Grunow) Krammer 

Figs. 6–8 Navicymbula pusilla m2 (Grunow) Krammer 

Figs. 9–12 Nitzschia aequorea Hustedt 

Figs. 13–14 Nitzschia cf. lesbia  Cholnoky 

Figs. 15–19 Nitzschia cf. perindistincta Cholnoky 

Figs. 20–21 Nitzschia coarctata Grunow 
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Plate 10 LM 

 
Figs. 1–5 Nitzschia constricta (Kützing) Ralfs  

Figs. 12–13 Nitzschia elegantula Grunow 

Figs. 6–11 Nitzschia fusiformis m2 Grunow 

Figs. 14–19 Nitzschia inconspicua Grunow 

Figs. 20–22 Nitzschia liebetruthii Rabenhorst 

Figs. 23–24 Nitzschia pararostrata (Lange-Bertalot) Lange-Bertalot  
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Plate 11 LM 

 
Figs. 1–3 Nitzschia scalpelliformis (Grunow) Grunow 

Figs. 4–5 Nitzschia sigma (Kützing) W.Smith 

Figs. 7–9 Nitzschia thermaloides Hustedt 

Fig. 6 Nitzschia vitrea G.Norman 
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Plate 12 LM 

 
Figs. 1–9 Opephora guenter-grassii (Witkowski & Lange-Bertalot) Sabbe & Vyverman 

 Figs. 1–7: valves 

 Figs. 8–9: frustules 

Figs. 10–16 Opephora mutabilis (Grunow) Sabbe & Vyverman  

Figs. 17–20 Opephora cf. burchardtiae Witkowski, Metzeltin & Lange-Bertalot 

Figs. 21–26 cf. Opephora sp.1  

Figs. 27–28 Parlibellus hagelsteinii Cox 

Figs. 29–32 Parlibellus sp.1  

Figs. 33–38 Planothidium delicatulum m1 (Kützing) Round & Bukhtiyarova         

 Fig. 34–36:SV 

 Fig. 37–38: RV 

Fig. 39 Planothidium delicatulum m2 (Kützing) Round & Bukhtiyarova, SV 

Figs. 40–45 Planothidium deperditum (Giffen) Witkowski & Lange-Bertalot   

 Figs. 40–43: SV 

 Fig. 44: RV 

 Fig. 45: SV 
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Plate 13 LM 

 
Figs. 1–3 Pseudostaurosira alvareziae Cejudo-Figueiras, E.A. Morales & Ector 

Figs. 4–7 Pseudostaurosira brevistriata (Grunow) Williams & Round 

Figs. 8–12 Pseudostaurosira cf. brevistriata (Grunow) Williams & Round 

Figs. 13–15 Pseudostaurosira cf. subsalina (Hustedt) E.A.Morales 

Figs. 16–19 Pseudostaurosira subsalina (Hustedt) E.A.Morales 

Figs. 20–22 Pseudostaurosiropsis cf. geocollegarum (Witkowski & Lange-Bertalot) 

E.A.Morales 

Figs. 23–26 Pseudostaurosiropsis geocollegarum (Witkowski & Lange-Bertalot) 

E.A.Morales 

Figs. 27–28 Rhopalodia constricta (W.Smith) Krammer 

Figs. 29–30 Rhopalodia musculus  (Kützing) O.Muller  

Figs. 31–34 Sarcophagodes cf. delicatula E.A. Morales 
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Plate 14 LM 

 
Figs. 1–4 Seminavis robusta Danielidis & Mann 

Figs. 5–9 Seminavis strigosa (Hustedt) Danielidis & Economou-Amilli 

Figs. 10–12 Staurosira construens var. venter (Ehrenberg) Bukhtiyarova    

Figs. 13–14 Tabularia tabulata (C. Agardh) Snoeijs 

Figs. 15–17 Thalassiosira angulata (Gregory) Hasle   
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Plate 15 LM 

 
Fig. 1 Striatella unipunctata (Lyngbye) C. Agardh  

Fig. 2 Surirella aff. salina W. Smith 

Figs. 3–4 Surirella brebissonii Krammer & Lange-Bertalot 

Fig. 5 Surirella fastuosa Ehrenberg 
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Plate 1 EM 

 
Figs. 1–2 Achnanthes sp.1 

 Fig. 1: internal SV valve 

 Fig. 2: external SV valve 

Fig. 3 Achnanthes submarina Hustedt 

 Fig. 3: frustule  

Fig. 4 Cocconeis placentula Ehrenberg (sensu lato), scale bar = 5 μm 

Figs. 5–6 Dickieia sp.1, scale bar = 2 μm 

 Fig. 5: internal SV valve 

 Fig. 6: external SV valve 

Fig. 7 Entomoneis cf. pseudoduplex Osada & Kobayasi, scale bar = 5 μm 
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Plate 2 EM 

 
Figs. 1–2 Fragilaria amicorum Witkowski & Lange-Bertalot   

 Fig. 1: frustule ventral view 

 Fig. 2: external valve view 

Fig. 3 Fragilaria atomus Hustedt 

 Fig. 3: external valve view 

Fig. 4 cf. Fragilaria sp.1, external valve view 

Fig. 5 Navicula perminuta Grunow 

 Fig. 5: internal SV valve 

 Fig. 6: external SV valve 

Figs. 6–7 Navicymbula pusilla m1 (Grunow) Krammer, scale bar = 2 μm 

 Fig. 6: external valve view 

 Fig. 7: internal valve view 

Fig. 8 Nitzschia scalpelliformis (Grunow) Grunow, scale bar = 10 μm 

Fig. 9 Nitzschia cf. perindistincta Cholnoky, scale bar = 2 μm 
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Plate 3 EM 

 
Fig. 1 Planothidium delicatulum m1 (Kützing) Round & Bukhtiyarova, internal valve 

view  

Figs. 2–4 Pseudostaurosiropsis cf. geocollegarum (Witkowski & Lange-Bertalot) 

E.A.Morales 

 Fig. 2: frustule ventral view 

 Figs. 3-4: external valve view 

Figs. 5–6 Rhopalodia constricta (W.Smith) Krammer, scale bar = 5 μm 
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Appendix II: Benthic foraminiferal assemblages of the Ebro Delta 

List of living foraminifera taxa and relative abundances 

 

List of the 138 living foraminiferal species found in the Ebro Delta (arranged by wall 

structure and alphabetically) with their corresponding codes and their relative abundances (% 

RA) considering all the samples. Plates are also indicated for those taxa illustrated here. 

Indicator species are highlighted in bold; for these taxa the habitat they characterize is also 

given. The synonyms of all taxa are also given following Murray (1991).  
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Code Foraminifera taxa RA(%) Habitat Plate 

     

 Agglutinated forms    

AMBAL Ammobaculites balkwilli Haynes, 1973  0.086   

cAMARE Ammobaculites cf. arenaria Natland, 1938  0.013   

AMMSP1 Ammosphaeroidina sp.1  0.002   

AMMSPH Ammosphaeroidina sphaeroidiniforme (Brady) = Haplophragmium sphaeroidiniforme Brady, 

1884  

0.508 Offshore habitat  

cATSAL Ammotium cf. salsum (Cushman and Brönniman) = Ammobaculites salsum Cushman and Brönniman, 

1948  

0.037  1 

ARMEX Arenoparella mexicana (Kornfeld) = Trochammina inflata var. mexicana Kornfeld, 1931  0.029  1 

CLOBS Clavulina obscura Chaster, 1982  0.245   

EGADV Eggerella advena (Cushman) = Verneuilina advena Cushman, 1921 0.052   

EGSCA Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858  0.411 Offshore habitat 1 

HACAN Haplophragmoides canariensis (d'Orbigny) = Nonionina canariensis d'Orbigny, 1839  0.279 Offshore habitat  

HASP1 Haplophragmoides sp.1  0.097   

HAWIL Haplophragmoides wilberti Anderson, 1953  1.396 Salt and brackish marshes 1 

JAMAC Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens Brady, 1870  3.514 Salt and brackish marshes 1 

LADIF Lagenammina difflugiformis (Brady) = Reophax difflugiformis Brady, 1879  0.075   

LALAG Lagenammina laguncula Rhumbler, 1911  0.388   

LESCO Leptohalysis scottii (Chaster) = Reophax scotti Chaster, 1892  0.015   

MIFUS Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870  0.913  1 

NODEN Nodulina dentaliniformis (Brady) = Reophax dentiliniformis Brady, 1844  0.055  1 

NOPOL Nouria polymorphides Heron-Allen and Earland, 1914  0.036   

PSBOW Psammosphaera bowmani Heron-Allen and Earland, 1912  0.011   

RECYL Reophax cylindrica Brady, 1884  0.024   

cREFUS Reophax cf. fusiformis (Williamson) = Proteonina fusiformis Williamsoni, 1858  0.123   

REMON Reophax moniliformis Siddall, 1886  0.046  1 

RENAN Reophax nana Rhumbler, 1913  0.123   

RESCO Reophax scorpiurus Montfort, 1808  0.054   

RESUB Reophax subfusiformis Earland, 1933  0.212 Offshore habitat  

RESP1 Reophax sp.1 0.002   
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Code Foraminifera taxa RA(%) Habitat Plate 

SAATL Saccammina atlantica (Cushman) = Proteonina atlantica Cushman, 1944  0.055   

TEBOC Textularia bocki Höglund, 1947  0.002   

TECAL Textularia calva Lalicker, 1935  0.272 Offshore habitat  

TESP1 Textularia sp.1  0.003   

TETEN Textularia tenuissima Earland, 1933  0.183   

cTRADV Trochammina cf. advena Cushman, 1922  0.047   

TRINF Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808  5.222 Salt and brackish marshes 1 

TRLOB Trochammina lobata Cushman, 1944  0.188   

TEXUN Texturalid undetermined  0.002  1 

     

 Porcellaneous forms    

ADLAE Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny, 1939  0.093  2 

COINC Cornuspira incerta (d'Orbigny) = Cyclogyra incerta d'Orbigny, 1939  0.458  2 

MASEC Massilina secans (d'Orbigny) = Quinqueloculina secans d'Orbigny, 1826  0.006   

QUDEP Quinqueloculina depressa d'Orbigny, 1852  0.031   

QUJUG Quinqueloculina jugosa (Cushman) = Quinqueloculina seminula var. jugosa Cushman, 1944  0.283 Coastal lagoons and inner bays 2 

QULAT Quinqueloculina lata Terquem, 1876  0.059   

QULON Quinqueloculina longirostra d'Orbigny, 1826  0.056   

QUOBL Quinqueloculina oblonga (Montagu) = Vermiculum oblongum Montagu, 1893  0.136   

QURUG Quinqueloculina rugosa d'Orbigny, 1839  0.066   

QUSEM Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758  0.987 Coastal lagoons and inner bays 2 

QUSP1 Quinqueloculina sp.1  0.064   

QUSTE Quinqueloculina stelligera Schlumberger, 1893  4.745 Nearshore and outer bays  

TRDUB Triloculina dubia d'Orbigny, 1826  0.081   

TRMAR Triloculina marioni Schlumberger, 1893  0.047   

TRROT Triloculina rotunda d'Orbigny, 1939  0.111   

TRSP1 Triloculina sp.1  1.259 Nearshore and outer bays  

MIUND Miliolid undeterminated  2.265 Nearshore and outer bays 2 
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Code Foraminifera taxa RA(%) Habitat Plate 

 Hyaline forms    

AMBEagg Ammonia beccarii agg (Linné) = Nautilus beccarii Linné, 1758 (Variants included in this taxon)  21.991 Coastal lagoons and inner bays 3 

AMSCA Amphicoryna scalaris (Batsch) = Nautilus scalaris Batsch, 1791  0.004   

ASMAM Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson, 1858  0.387   

ASSP1 Asterigerinata sp.1  2.950 Nearshore and outer bays  

AUPER Aubignyna perlucida (Heron-Allen and Earland) = Rotalia perlucida Heron-Allen and Earland, 1913  0.501   

BLPSE Bolivinellina pseudopunctata (Höglund) = Bolivina pseudopunctata Höglund, 1947  5.340 Offshore habitat 3 

BODIL Bolivina dilatata Reuss, 1850  0.013   

BOPSE Bolivina pseudoplicata Heron-Allen and Earland, 1930  0.180   

BOSUB Bolivina subaenariensis (Cushman) = Brizalina subaenariensis Cushman, 1922  0.002  3 

cBRAEN Brizalina cf. aenariensis (Costa) = Bolivina cf. aenariensis Costa, 1856  0.036   

BRSPA Brizalina spathulata (Williamson) = Textularia variabilis Williamson var. spathulata Williamson, 

1858  

0.230  3 

BRSTR Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922  1.385 Nearshore and outer bays 3 

BRVAR Brizalina variabils (Williamson) = Textularia variabilis Williamson, 1859  0.104   

BUACU Bulimina aculeata d'Orbigny, 1926  2.752 Offshore habitat  

BUELE Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima d'Orbigny, 1939  0.430 Nearshore and outer bays  

BUELO Bulimina elongata d'Orbigny, 1926  0.143   

BUGIB Bulimina gibba Fornasini, 1902  0.588 Offshore habitat  

BCGRA Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus di Napoli Alliata, 1952  0.008   

BUMAR Bulimina marginata d'Orbigny, 1826  0.061   

BUSP1 Bulimina sp. 1  0.034   

CALAE Cassidulina laevigata d'Orbigny, 1826  0.215 Offshore habitat  

cCACRA Cassidulina cf. crassa d'Orbigny, 1939 0.015   

CIBRA Cibicidoides bradyi (Trauth) = Truncatulina bradyi Trauth, 1918  0.031   

CREXC Cribrolphidium excavatum (Terquem) = Polystomella excavatum Terquem, 1875  0.816  3 

CROCE Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis d'Orbigny, 1826  0.915 Coastal lagoons and inner bays 3 

CRSEL Cribroelphidium selseyensis (Heron-Allen and Earland) = Elphidium selseyensis Heron-Allen 

and Earland, 1911  

1.188 Offshore habitat 3 

CRSP1 Cribroelphidium sp.1  0.071  4 

CRWIL Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes, 1973  0.044  4 
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DECOM Delosina complexa (Sidebottom) = Polymorphina complexa Sidebottom, 1907  0.052   

ELADV Elphidium advenum (Cushman) = Polystomella advenum Cushman, 1922  0.872 Offshore habitat 4 

cELERL Elphidium cf. earlandi Cushman, 1936  0.076   

ELCRI Elphidium crispum (Linné) = Nautilis crispus Linné, 1758  0.319 Offshore habitat  

cELFLE Elphidium cf. flexuosum (d'Orbigny) = Polystomella flexuosa d'Orbigny, 1936  0.501 Offshore habitat  

ELINC Elphidium incertum (Williamson) = Polystomella umbilicatula var. incerta Williamson, 1858  1.039 Offshore habitat  

ELLID Elphidium lidoense Cushman, 1936  0.026   

ELMAT Elphidium matagordanum (Kornfeld) = Nonion depressula (Walker and Jabob) var. 

matagordana Kornfeld, 1931  

0.802 Offshore habitat  

cELSMI Elphidium cf. schmitti Cushman and Wickenden, 1929  0.199   

ELSP1 Elphidium sp.1  0.086   

ELSP2 Elphidium sp.2  0.439 Offshore habitat  

EPVIT Epistominella vitrea Parker, 1953  0.597 Nearshore and outer bays  

FILUC Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida Williamson, 1848  0.022   

FISP1 Fissurina sp.1  0.016   

FUSCH Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana Czjzek, 1848  0.423   

FUSP1 Fursenkoina sp.1  0.132   

cFUCOM Fursenkoina cf. complanata (Egger) = Virgulina schreibersiana Czjzek var. complanata Egger, 1893  0.102   

cFUFUS Fursenkoina cf. fusiformis (Williamson) = Bulimina pupoides d'Orbigny var. fusiformis Williamson, 

1858  

0.006  4 

GAPRA Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri Heron-Allen and 

Earland, 1913  

0.238 Offshore habitat  

HAGER Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg, 1840  6.823 Coastal lagoons and inner bays 4 

cHAGER Haynesina cf. germanica (Ehrenberg) = Nonionina cf. germanica Ehrenberg, 1840  0.489   

HADEP Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker and Jacob, 1798  0.686   

HOPAC Hopkinsina pacifica Cushman, 1933  0.653  4 

cLASEM Lagena cf. semistriata (Williamson) = Lagena striata Walker var. semistriata Williamson, 1848  0.039   

LASUB Lagena substriata Williamson, 1848  0.033   

LASUL Lagena sulcata (Walter and Jacob) = Serpula sulcata Walter and Jacob, 1798  0.014   

LATEN Lagena tenuis (Börneman) = Ovulina tenius Börneman, 1855  0.018   

LAVUL Lagena vulgaris Williamson, 1858  0.002   
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MEPOM Melonis pompilioides (Fitchel and Moll) = Nautilis pompiloides Fitchel and Moll, 1798  0.031   

NOAST Nonion asterizans (Fichtel and Moll) = Riminopsis asterizans Fichtel and Moll, 1798  0.024   

NOATL Nonionella atlantica Cushman, 1947  1.045 Nearshore and outer bays 4 

NOLAE Nonion laevigatum (d'Orbigny) = Nonionina laevigata d'Orbigny, 1826  3.211 Nearshore and outer bays  

NOOPI Nonionella opima Cushman, 1947  0.498  4 

cNOJAP Nonionoides cf. japonicum (Asano) = Florilus cf. japonicum Asano, 1938  0.043   

NOSCA Nonionoides scaphus (Fitchel and Moll) = Florilus scaphus Fitchel and Moll, 1798  7.258 Offshore habitat  

PACOR Patellina corrugata Williamson, 1858  0.072   

PLARI Planulina ariminensis d'Orbigny, 1826 0.108   

PLMED Planorbulina mediterranensis d'Orbigny, 1826  0.187 Offshore habitat  

POLAT Poroeponides lateralis (Terquem) = Rosalina lateralis Terquem, 1878  0.067   

PRCLA Procerolagena clavata (d'Orbigny) = Lagena clavata d'Orbigny, 1826  0.002   

REACU Reussella aculeata Cushman, 1945  0.477 Offshore habitat  

cRECOM Rectuvigerina cf. compressa (Cushman) = Uvigerina compressa Cushman, 1925  0.015   

ROANO Rosalina anomala Terquem, 1875  0.012   

ROARC Robertina arctica d'Orbigny, 1846  0.210   

ROBUL Rosalina bulbosa (Parker) = Discorbis bulbosa Parker, 1954  0.033   

ROGLO Rosalina globularis d'Orbigny, 1826 0.048  4 

ROIRR Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler, 1906  0.019   

cROMED Rosalina cf. mediterranensis Brady, 1826  0.050   

cROVAL Rosalina cf. valvulata d'Orbigny, 1826  0.010   

TRAGU Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez, 1935  2.998 Salt and brackish marshes 4 

TRANG Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858  0.008   

TRCON Tretomphaloides concinnus (Brady) = Discorbina concinna Brady, 1884  0.135   

UVSP1 Uvigerina sp.1  0.482 Offshore habitat  

VABRA Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini, 1899  1.611 Offshore habitat  

INDET Unidentified hyaline forms 0.449   
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List of dead foraminifera taxa and relative abundances 

 

List of the 150 dead foraminiferal species found in the Ebro Delta (arranged by wall 

structure and alphabetically) with their corresponding codes and their relative 

abundances (% RA) considering all the samples. Plates are also indicated for those taxa 

illustrated here. The synonyms of all taxa are also given following Murray (1991). 
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 Agglutinated forms   

AMBAL Ammobaculites balkwilli Haynes, 1973  0.025  

AMSP1 Ammobaculites sp.1  0.009  

AMMSP1 Ammosphaeroidina sp.1  0.328 5 

AMMSPH Ammosphaeroidina sphaeroidiniforme (Brady) = Haplophragmium sphaeroidiniforme Brady, 1884  0.348  

cAMARE Ammobaculites cf. arenaria Natland, 1938  0.012  

ARMEX Arenoparella mexicana (Kornfeld) = Trochammina inflata var. mexicana Kornfeld, 1931  0.025  

cATSAL Ammotium cf. salsum (Cushman and Brönniman) = Ammobaculites salsum Cushman and Brönniman, 1948  0.087 5 

CLOBS Clavulina obscura Chaster, 1982  0.219  

EGSCA Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858  1.705 5 

ELADV Eggerella advena (Cushman) = Verneuilina advena Cushman, 1921 1.083  

HACAN Haplophragmoides canariensis (d'Orbigny) = Nonionina canariensis d'Orbigny, 1839  0.228  

HASP1 Haplophragmoides sp.1  0.065  

HAWIL Haplophragmoides wilberti Anderson, 1953  3.041 5 

JAMAC Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens Brady, 1870  4.011 5 

LADIF Lagenammina difflugiformis (Brady) = Reophax difflugiformis Brady, 1879  0.316  

LALAG Lagenammina laguncula Rhumbler, 1911  0.080  

LESCO Leptohalysis scottii (Chaster) = Reophax scotti Chaster, 1892  0.029  

MIFUS Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870  1.006 5 

NODEN Nodulina dentaliniformis (Brady) = Reophax dentiliniformis Brady, 1844  0.017  

cPOSP1 Polysacammina sp. 1 0.004  

RECYL Reophax cylindrica Brady, 1884  0.006  

cREFUS Reophax cf. fusiformis (Williamson) = Proteonina fusiformis Williamsoni, 1858  0.018  

REMON Reophax moniliformis Siddall, 1886  0.010  

RENAN Reophax nana Rhumbler, 1913  0.012  

RESCO Reophax scorpiurus Montfort, 1808  0.038  

RESP1 Reophax sp.1 0.012  

RESUB Reophax subfusiformis Earland, 1933  0.003  

SAATL Saccammina atlantica (Cushman) = Proteonina atlantica Cushman, 1944  0.014  
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SASP1 Saccammina sp.1 0.017  

TEBOC Textularia bocki Höglund, 1947  0.003  

TECAL Textularia calva Lalicker, 1935  0.672  

cTECAL Textularia cf. calva Lalicker, 1935  0.007  

TESP1 Textularia sp.1  0.040  

TETEN Textularia tenuissima Earland, 1933  0.338  

cTRADV Trochammina cf. advena Cushman, 1922  0.058  

TRINF Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808  4.909 5 

TRLOB Trochammina lobata Cushman, 1944  0.003  

TEXUN Texturalid undetermined  0.011  

     

 Porcellaneous forms    

ADLAE Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny, 1939  0.063  

COINC Cornuspira incerta (d'Orbigny) = Cyclogyra incerta d'Orbigny, 1939  0.048 6 

MASEC Massilina secans (d'Orbigny) = Quinqueloculina secans d'Orbigny, 1826  0.019  

MISUB Miliolinella subrotunda (Montagu) = Vermiculum subrotundum Montagu, 1803 0.006  

PYINO Pyrgo inornata (d'Orbigny) = Biloculina inornata d'Orbigny, 1846  0.003  

QUDEP Quinqueloculina depressa d'Orbigny, 1852  0.011  

QUJUG Quinqueloculina jugosa (Cushman) = Quinqueloculina seminula var. jugosa Cushman, 1944  0.430  

QULAE Quinqueloculina lata Terquem, 1876  0.097  

QULAT Quinqueloculina longirostra d'Orbigny, 1826  0.112  

QUOBL Quinqueloculina oblonga (Montagu) = Vermiculum oblongum Montagu, 1893  0.167  

QURUG Quinqueloculina rugosa d'Orbigny, 1839  0.464  

QUSEM Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758  1.830 6 

QUSP1 Quinqueloculina sp.1  0.006  

QUSTE Quinqueloculina stelligera Schlumberger, 1893  4.424 6 

TRDUB Triloculina dubia d'Orbigny, 1826  0.015 6 

TRMAR Triloculina marioni Schlumberger, 1893  0.007  

TRROT Triloculina rotunda d'Orbigny, 1939  0.255  

TRSP1 Triloculina sp.1  0.565 6 

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Appendix II: Benthic foraminiferal assemblages of the Ebro Delta 

299 

Code Foraminifera taxa RA(%) Plate 

MIUND Miliolid undeterminated  6.427 6 

     

 Hyaline forms    

AMBEagg Ammonia beccarii agg (Linné) = Nautilus beccarii Linné, 1758 (Variants included in this taxon)  31.574 7 

AMSCA Amphicoryna scalaris (Batsch) = Nautilus scalaris Batsch, 1791 0.041  

ASMAM Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson, 1858  0.363  

ASSP1 Asterigerinata sp.1  1.640  

AUPER Aubignyna perlucida (Heron-Allen and Earland) = Rotalia perlucida Heron-Allen and Earland, 1913  0.449 7 

BCGRA Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus di Napoli Alliata, 1952  0.305  

BCHAN Buccella hannai (Phleger and Parker) = Eponides hannai Phleger and Parker, 1951 0.003  

BMELE Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima d'Orbigny, 1939  0.048  

BODIL Bolivina dilatata Reuss, 1850  0.004 7 

BOPSE Bolivina pseudoplicata Heron-Allen and Earland, 1930  0.109  

BOSTR Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922  0.158  

cBRAEN Brizalina cf. aenariensis (Costa) = Bolivina cf. aenariensis Costa, 1856  0.025  

BRSPA Brizalina spathulata (Williamson) = Textularia variabilis Williamson var. spathulata Williamson, 1858  0.175  

BRVAR Brizalina variabilis (Williamson) = Textularia variabilis Williamson, 1859  0.025 7 

BUACU Bulimina aculeata d'Orbigny, 1926  0.784  

BUELO Bulimina elongata d'Orbigny, 1926  0.051  

BUGIB Bulimina gibba Fornasini, 1902  0.923 7 

BUMAR Bulimina marginata d'Orbigny, 1826  0.041  

BUSP1 Bulimina sp. 1  0.041  

CAAUR Cancris auricula (Fichtel and Moll) = Nautilus auricula Fichtel and Moll, 1798  0.002 7 

CALAE Cassidulina laevigata d'Orbigny, 1826  0.340  

CAOBT Cassulina obtusa Williamson, 1858 0.002  

cCACRA Cassidulina cf. crassa d'Orbigny, 1939 0.024  

CIBRA Cibicidoides bradyi (Trauth) = Truncatulina bradyi Trauth, 1918  0.004  

CILOB Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 1798  0.048  

CREXC Cribrolphidium excavatum (Terquem) = Polystomella excavatum Terquem, 1875  1.343 7 

CRMAG Cribroelphidium magellanicum (Heron-Allen and Earland) = Elphidium magellanicum Heron-Allen and Earland, 

1932 

0.003  
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CROCE Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis d'Orbigny, 1826  2.100 7 

cCRPOE Cribroelphidium cf. poeyanum (d'Orbigny) = Polystomella poeyana d'Orbigny, 1839 0.017 7 

CRSEL Cribroelphidium selseyensis (Heron-Allen and Earland) = Elphidium selseyensis Heron-Allen and Earland, 1911  0.698 7 

CRSP1 Cribroelphidium sp.1  0.125 8 

CRWIL Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes, 1973  0.182 8 

EGADV Elphidium advenum (Cushman) = Polystomella advenum Cushman, 1922  0.098 8 

cELERL Elphidium cf. earlandi Cushman, 1936  0.230  

ELCRI Elphidium crispum (Linné) = Nautilis crispus Linné, 1758  0.308 8 

ELGER Elphidium gerthi Van Voorthuysen, 1957 0.020  

ELINC Elphidium incertum (Williamson) = Polystomella umbilicatula var. incerta Williamson, 1858  0.118  

ELLID Elphidium lidoense Cushman, 1936  1.329  

ELMAR Elphidium margaritaceum (Cushman) = Elphidium advenum var. margaritaceum Cushman, 1930  0.016  

ELMAT Elphidium matagordanum (Kornfeld) = Nonion depressula (Walker and Jabob) var. matagordana Kornfeld, 1931  0.009  

ELSP1 Elphidium sp.1  1.281  

ELSP2 Elphidium sp.2  0.165  

EPVIT Epistominella vitrea Parker, 1953  0.166  

cELFLE Elphidium cf. flexuosum (d'Orbigny) = Polystomella flexuosa d'Orbigny, 1936  0.194  

cELSMI Elphidium cf. schmitti Cushman and Wickenden, 1929  0.003  

DECOM Delosina complexa (Sidebottom) = Polymorphina complexa Sidebottom, 1907  0.003  

FILUC Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida Williamson, 1848  0.096 8 

FIMAR Fissurina marginata (Montagu) = Vermiculum marginatum Montagu, 1803 0.002  

FISP1 Fissurina sp.1  0.209  

cFUCOM Fursenkoina cf. complanata (Egger) = Virgulina schreibersiana Czjzek var. complanata Egger, 1893  0.221  

cFUFUS Fursenkoina cf. fusiformis (Williamson) = Bulimina pupoides d'Orbigny var. fusiformis Williamson, 1858  0.002  

FUSP1 Fursenkoina sp.1  0.009  

FUSCH Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana Czjzek, 1848  0.047  

GAPRA Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri Heron-Allen and Earland, 1913  0.180 8 

cGYUMB Gyroidina cf. umbonata (Silvestri, 1898) 0.025  

HADEP Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker and Jacob, 1798  1.738 8 

cHAGER Haynesina cf. germanica (Ehrenberg) = Nonionina cf. germanica Ehrenberg, 1840  0.029  
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HAGER Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg, 1840  8.778 8 

HOPAC Hopkinsina pacifica Cushman, 1933  0.103 8 

cLASEM Lagena cf. semistriata (Williamson) = Lagena striata Walker var. semistriata Williamson, 1848  0.011  

LASUB Lagena substriata Williamson, 1848  0.027  

LASUL Lagena sulcata (Walter and Jacob) = Serpula sulcata Walter and Jacob, 1798  0.181 8 

LATEN Lagena tenuis (Börneman) = Ovulina tenius Börneman, 1855  0.039  

MEPOM Melonis pompilioides (Fitchel and Moll) = Nautilis pompiloides Fitchel and Moll, 1798  0.018  

NOAST Nonion asterizans (Fichtel and Moll) = Riminopsis asterizans Fichtel and Moll, 1798  0.134  

NOATL Nonionella atlantica Cushman, 1947  0.062  

NOLAE Nonion laevigatum (d'Orbigny) = Nonionina laevigata d'Orbigny, 1826  0.283  

cNOJAP Nonionoides cf. japonicum (Asano) = Florilus cf. japonicum Asano, 1938  0.009  

NOOPI Nonionella opima Cushman, 1947  1.262  

NOPOL Nouria polymorphides Heron-Allen and Earland, 1914  0.006  

NOSCA Nonionoides scaphus (Fitchel and Moll) = Florilus scaphus Fitchel and Moll, 1798  0.012  

PACOR Patellina corrugata Williamson, 1858  0.015  

PLARI Planulina ariminensis d'Orbigny, 1826 0.013  

PLMED Planorbulina mediterranensis d'Orbigny, 1826  0.027  

POLAT Poroeponides lateralis (Terquem) = Rosalina lateralis Terquem, 1878  0.006  

PRCLA Procerolagena clavata (d'Orbigny) = Lagena clavata d'Orbigny, 1826  0.045  

REACU Reussella aculeata Cushman, 1945  0.188  

ROANO Rosalina anomala Terquem, 1875  0.040  

ROARC Robertina arctica d'Orbigny, 1846  0.020  

ROBUL Rosalina bulbosa (Parker) = Discorbis bulbosa Parker, 1954  0.022  

cRECOM Rectuvigerina cf. compressa (Cushman) = Uvigerina compressa Cushman, 1925  0.166  

ROGLO Rosalina globularis d'Orbigny, 1826  0.003 9 

cROMED Rosalina cf. mediterranensis Brady, 1826  0.003  

ROIRR Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler, 1906  0.111 9 

cROVAL Rosalina cf. valvulata d'Orbigny, 1826  0.012  

SVSP1 Svratkina sp.1  0.041  

TRAGU Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez, 1935  3.416 9 
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TRANG Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858  0.003  

TRCON Tretomphaloides concinnus (Brady) = Discorbina concinna Brady, 1884 0.037  

UVSP1 Uvigerina sp.1  0.064  

VABRA Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini, 1899  0.708 9 

PLANK Planktonic forms 0.884 9 

INDET Unidentified hyaline forms 0.189  
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List of fossil foraminifera taxa and relative abundances 

 

List of the 140 foraminifera taxa found in the Ebro Delta boreholes (Carlet and Sant 

Jaume) and short cores (Olles, Tancada, Alfacs, Clot and Garxal) with their 

corresponding codes and their relative abundances (% RA) considering all the samples. 

Taxa are arranged by wall structure and alphabetically. Plates are also indicated for 

those taxa illustrated here. The synonyms of all taxa are also given following Murray 

(1991). + indicates presence of the taxa in the assemblages with few tests. 
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Foraminifera taxa 
  

Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Agglutinated forms 
         

 

Ammobaculites balkwilli Haynes, 1973      0.000 0.013 0.000 0.000 0.000  

Ammobaculites sp.1      0.000 0.000 0.000 0.000 0.218  

Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858   0.026 0.000 0.000 0.000 0.000 0.020  

Eggerella advena (Cushman) = Verneuilina advena Cushman, 1921   0.021 0.000 0.000 0.000 0.000  

Haplophragmoides sp.1      0.000 0.000 0.000 0.015 0.000  

Haplophragmoides wilberti Anderson, 1953     0.011 35.772 0.016 0.000 0.325 0.120 10 

Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. 

macrescens Brady, 1870  

 0.032 0.476 9.175 14.882 4.498 0.165  

Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870    0.945 0.000 0.000 0.101 0.120  

Reophax moniliformis Siddall, 1886      0.062 0.000 0.000 0.000 0.000  

Textularia agglutinans d'Orbigny, 1839     0.237       

Textularia bocki Höglund, 1947    0.160 0.053 0.000 0.000 0.000 0.000 0.025  

Textularia calva Lalicker, 1935     0.038       

Textularia cf. calva Lalicker, 1935      0.000 0.000 0.000 0.000 0.071 10 

Textularia sp.1     0.088       

Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808  + 0.007 5.318 0.701 4.109 0.212 0.321  

Texturalid undetermined      0.000 0.000 0.026 0.000 0.050  

           

Porcellaneous forms           

Adelosina bicornis (Walker and Jacob) = Serpula bicornis Walker and Jacob, 

1798 

0.071 0.020       

Adelosina laevigata (d'Orbigny) = Quinqueloculina laevigata d'Orbigny, 1939  0.705 1.430 0.000 0.015 0.390 0.029 0.418 10 

Adelosina mediterranensis (Le Calvez and Le Calvez) = Quinqueloculina mediterranensis Le 

Calvez and Le Calvez, 1958 

0.006       

Adelosina striata d'Orbigny, 1826   0.212        

Adelosina sp. 1    0.050       

Cornuloculina sp.1    0.006       

Cornuspira incerta (d'Orbigny) = Cyclogyra incerta d'Orbigny, 1939   0.221      10 
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Foraminifera taxa 
  

Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Cornuspira involvens (Reuss) = Operculina involvens Reus, 1850  0.221 0.192 0.000 0.000 0.896 0.015 0.000  

Lachlanella undulata (d'Orbigny) = Quinqueloculina undulata d'Orbigny, 1852  0.059       

Massilina secans (d'Orbigny) = Quinqueloculina secans d'Orbigny, 1826  0.257 0.040 0.000 0.157 0.000 0.000 0.089  

Miliolinella subrotunda (Montagu) = Vermiculum subrotundum Montagu, 1803 0.212 0.383 0.000 0.061 0.122 0.000 0.000  

Miliolinella webbiana (d'Orbigny) = Triloculina webbiana d'Orbigny, 1839 0.048        

Pyrgo inornata (d'Orbigny) = Biloculina inornata d'Orbigny, 1846   0.056 0.000 0.000 0.536 0.000 0.000  

Pyrgo sp.    0.020       

Quinqueloculina berthelotiana d'Orbigny, 1839   0.029        

Quinqueloculina depressa d'Orbigny, 1852     0.136      10 

Quinqueloculina jugosa (Cushman) = Quinqueloculina seminula var. jugosa 

Cushman, 1944  

  0.020 0.087 0.285 0.000 0.074  

Quinqueloculina lata Terquem, 1876    0.269 0.317       

Quinqueloculina longirostra d'Orbigny, 1826     0.187 0.000 0.000 0.052 0.000 0.000 10 

Quinqueloculina oblonga (Montagu) = Vermiculum oblongum Montagu, 1893  0.305 0.592 0.000 0.182 0.926 0.189 0.000  

Quinqueloculina seminula (Linné) = Serpula seminulum Linné, 1758  5.307 4.217 0.000 2.204 5.853 2.047 2.060 10 

Quinqueloculina sp.1     1.029       

Quinqueloculina sp.2    0.020       

Quinqueloculina stelligera Schlumberger, 1893    0.655 0.000 0.504 4.025 0.000 0.025 10 

Quinqueloculina vulgaris d'Orbigny, 1826    + 0.000 0.000 0.000 0.000 0.143  

Siphonaperta quadrata (Nørvang) = Quinqueloculina quadrata Nørvang, 1945 0.045        

Triloculina dubia d'Orbigny, 1826     0.075 0.000 0.012 0.128 0.000 0.268 10 

Triloculina marioni Schlumberger, 1893    0.952 0.159 0.000 0.000 0.000 0.000 0.062  

Triloculina rotunda d'Orbigny, 1939     0.364 0.020 0.000 0.041 0.000 0.000  

Triloculina trigonula (Lamarck) = Miliolites trigonula Lamarck, 1804 1.122  0.000 0.014 0.000 0.000 1.096  

Triloculina sp.1      0.000 0.013 0.292 0.000 0.000  

Miliolid undeterminated     0.087 0.020 4.419 21.497 2.767 1.897 10 

           

Hyaline forms           

Acervulina inhaerens Schulze, 1854    0.143       
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Foraminifera taxa 
  

Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Ammonia beccarii agg (Linné) = Nautilus beccarii Linné, 1758 (Variants 

included in this taxon)  

72.339 47.044 31.376 40.790 20.765 69.623 43.555  

Asterigerinata mamilla (Williamson) = Rotalia mamilla Williamson, 1858  0.090 1.922 0.604 0.043 0.528 0.091 0.308 11 

Astacolus crepidulus (Fichtel and Moll) = Nautilus crepidula Fichtel and Moll, 

1798 

 0.005       

Aubignyna perlucida (Heron-Allen and Earland) = Rotalia perlucida Heron-Allen 

and Earland, 1913  

0.494 1.049 0.143 0.089 0.296 0.030 0.317 11 

Buccella granulata (di Napoli Alliata) = Eponides frigidus var. granulatus di 

Napoli Alliata, 1952  

 0.065 0.000 0.256 0.502 0.049 2.152 11 

Buliminella elegantissima (d'Orbigny) = Bulimina elegantissima d'Orbigny, 1939   0.055 0.043 0.000 0.000 0.000 0.000  

Bolivina difformis (Williamson) = Textularia variabilis var. difformis 

Williamson, 1858 

 0.169       

Bolivina dilatata Reuss, 1850 (SD;L)    0.268       

Bolivina pseudoplicata Heron-Allen and Earland, 1930   0.061 0.363 0.000 0.000 0.017 0.015 0.000 11  

Bolivinellina pseudopunctata (Höglund) = Bolivina pseudopunctata Höglund, 

1947  

 1.124 0.084 0.091 0.020 0.014 0.000  

Bolivina striatula (Cushman) = Brizalina striatula Cushman, 1922   0.033 0.169 0.087 0.020 0.000 0.000  

Brizalina spathulata (Williamson) = Textularia variabilis Williamson var. 

spathulata Williamson, 1858  

 0.296 0.020 0.000 0.000 0.000 0.000  

Brizalina variabilis (Williamson) = Textularia variabilis Williamson, 1859  0.208 3.222 0.292 0.245 0.026 0.031 0.000 11 

Bulimina aculeata d'Orbigny, 1926     0.065       

Bulimina elongata d'Orbigny, 1926    0.462 0.218 0.000 0.012 0.026 0.000 0.021  

Bulimina gibba Fornasini, 1902    0.192 1.361 0.021 0.000 0.016 0.000 0.087 11 

Bulimina marginata d'Orbigny, 1826     0.004 0.000 0.000 0.000 0.000 0.101  

Cassidulina carinata Silvestri, 1896    0.019 0.004       

Cassidulina laevigata d'Orbigny, 1826      0.000 0.000 0.000 0.000 0.025  

Cassulina obtusa Williamson, 1858    0.032      11 

Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 

1798  

0.629 0.152 0.021 0.015 0.100 0.000 0.928 11 

Cribrolphidium excavatum (Terquem) = Polystomella excavatum Terquem, 1875  1.161  0.042 0.605 0.026 0.795 12.284 11 

Cribroelphidium magellanicum (Heron-Allen and Earland) = Elphidium magellanicum Heron- 0.051 0.041 0.000 0.000 0.000 0.017  
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Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Allen and Earland, 1932 

Cribroelphidium oceanensis (d'Orbigny) = Polystomella oceanensis d'Orbigny, 

1826  

0.042 3.634 0.124 1.58 8 0.020 1.261 7.777  

Cribroelphidium cf. poeyanum (d'Orbigny) = Polystomella poeyana d'Orbigny, 

1839 

 2.523 0.000 0.014 0.000 0.000 2.657 12 

Cribroelphidium selseyensis (Heron-Allen and Earland) = Elphidium selseyensis 

Heron-Allen and Earland, 1911  

10.649 15.088 0.389 0.336 0.153 0.132 1.516 12 

Cribroelphidium sp.1      0.041 0.744 6.913 4.109 0.000 12 

Cribroelphidium williamsoni (Haynes) = Elphidium williamsoni Haynes, 1973   0.069 0.061 0.012 0.000 0.016 3.339  

Discorbis sp. 1   0.048        

Elphidium advenum (Cushman) = Polystomella advenum Cushman, 1922   0.013 0.073 0.026 0.000 0.000 0.130  

Elphidium cf. earlandi Cushman, 1936      0.000 0.000 0.000 0.016 0.000  

Elphidium crispum (Linné) = Nautilis crispus Linné, 1758   0.459 0.115 0.044 0.000 0.026 0.000 0.179 12 

Elphidium gerthi Van Voorthuysen, 1957    0.454 0.000 0.000 0.000 0.000 0.166  

Elphidium incertum (Williamson) = Polystomella umbilicatula var. incerta 

Williamson, 1858  

 0.283 0.000 0.000 0.167 0.000 0.071  

Elphidium margaritaceum (Cushman) = Elphidium advenum var. margaritaceum 

Cushman, 1930  

0.167 0.052 0.145 0.000 0.000 0.017 0.020  

Elphidium sp.1     0.165 0.000 0.056 0.000 0.190 0.020  

Epistominella vitrea Parker, 1953     +       

Elphidium cf. flexuosum (d'Orbigny) = Polystomella flexuosa d'Orbigny, 1936   0.051       

Favulina melo (d'Orbigny) = Oolina melo d'Orbigny, 1839   +       

Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida 

Williamson, 1848  

0.022 0.243 0.017 0.014 0.534 0.000 0.065  

Fissurina marginata (Montagu) = Vermiculum marginatum Montagu, 1803 0.013 0.171 0.017 0.000 0.000 0.000 0.025 12 

Fissurina sp.1     0.101       

Fursenkoina cf. fusiformis (Williamson) = Bulimina pupoides d'Orbigny var. 

fusiformis Williamson, 1858  

  0.000 0.000 0.000 0.000 0.166  

Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana Czjzek, 1848   0.046      12 

Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri Heron-

Allen and Earland, 1913  

0.055 0.060 0.000 0.000 0.208 0.397 0.021 12  
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Foraminifera taxa 
  

Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Gyroidina sp.1   0.026  0.000 0.000 0.000 0.014 0.000  

Globobulimina sp.1    0.023       

Haynesina depressula (Water and Jacob) = Nautilus depressulus Walker and 

Jacob, 1798  

0.151 0.229 0.103 0.000 8.979 0.000 0.514 12 

Haynesina germanica (Ehrenberg) = Nonionina germanica Ehrenberg, 1840  0.244 4.974 23.390 37.270 5.177 12.429 14.315 12 

Lagena cf. semistriata (Williamson) = Lagena striata var. semistriata 

Williamson, 1848  

 0.016      13 

Lagena sulcata (Walter and Jacob) = Serpula sulcata Walter and Jacob, 1798   0.038      13 

Lagena vulgaris Williamson, 1858     0.052       

Melonis pompilioides (Fitchel and Moll) = Nautilis pompiloides Fitchel and Moll, 

1798  

  0.000 0.000 0.086 0.000 0.000  

Nonion asterizans (Fichtel and Moll) = Riminopsis asterizans Fichtel and Moll, 

1798  

  0.000 0.000 0.000 0.000 0.071  

Nonionella atlantica Cushman, 1947    0.071  0.000 0.000 0.021 0.000 0.522  

Nonionoides boueanum (d'Orbigny) = Nonionina boueana d'Orbigny, 1846 0.038       13 

Nonionella opima Cushman, 1947     0.320 0.000 0.000 0.061 0.016 0.020 13 

Nonionoides turgida (Williamson) = Nonionina turgida Williamson, 1858  0.100       

Patellina corrugata Williamson, 1858     +      13 

Planorbulina mediterranensis d'Orbigny, 1826    0.170  0.000 0.000 0.000 0.000 0.021  

Rectuvigerina compressa (Cushman) = Uvigerina compressa Cushman, 1925   0.086      13 

Reussella aculeata Cushman, 1945     0.152 0.021 0.000 0.000 0.000 0.000  

Reussoolina laevis (Montagu) = Vermiculum laeve Montagu, 1803  0.057       

Rosalina anomala Terquem, 1875    0.827 0.074 0.063 0.000 0.000 0.000 0.423 13 

Rosalina globularis d'Orbigny, 1826      0.000 0.000 0.000 0.000 0.215  

Rosalina irregularis (Rhumbler) = Discorbina irregularis Rhumbler, 1906  1.100 0.620 0.000 0.000 0.084 0.000 0.280 13 

Rosalina cf. valvulata d'Orbigny, 1826     0.183       

Rosalina sp. 1    0.103       

Rosalina sp. 2    +       

Rosalina williamsoni (Chapman and Parr) = Discorbis williamsoni Chapman and 

Parr, 1932 

 0.011       

UNIVERSITAT ROVIRA I VIRGILI 
BENTHIC DIATOMS AND FORAMINIFERA AS INDICATORS OF COASTAL WETLAND HABITATS: APPLICATION TO PALAEOENVIRONMENTAL RECONSTRUCTION IN A MEDITERRANEAN DELTA 
Xavier Benito Granell 



Appendix II: Benthic foraminiferal assemblages of the Ebro Delta 

309 

Foraminifera taxa 
  

Cores (% RA) Plate 

   
Carlet 

Sant 

Jaume 
Olles Tancada Alfacs Clot Garxal 

 

Spirillina vivipara Ehrenberg, 1843   0.141 0.093       

Svratkina sp.1     0.200      13 

Trichohyalus aguayoi (Bermudez) = Discorinopsis aguayoi Bermudez, 1935  0.208  0.000 0.099 0.111 0.259 0.000  

Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858   0.021       

Tretomphaloides concinnus (Brady) = Discorbina concinna Brady, 1884   0.206 0.000 0.000 0.453 0.027 0.104  

Uvigerina sp.1            

Valvulineria bradyana (Fornasini) = Discorbina bradyana Fornasini, 1899   0.957 0.000 0.000 0.000 0.000 0.025 13 

Unidentified hyaline forms     0.000 0.000 0.286 0.272 0.302  
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Binocular stereomicroscope plates of foraminifera taxa 

Scale bar represents 100 μm. 
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Plate 1 Living foraminifera 

 

Figs. 1–2 Ammotium cf. salsum (Cushman and Brönniman) Cushman and 

Brönniman, 1948 

Figs. 3–4 Arenoparella mexicana (Kornfeld) Kornfeld, 1931 

 Fig. 3: spiral view 

 Fig. 4: umbilical view 

Fig. 5 Eggerelloides scaber (Williamson) Williamson, 1858 

Fig. 6 Haplophragmoides wilberti Anderson, 1953  

Figs. 7–8 Jadammina macrescens (Brady) Brady, 1980 

 Fig. 7: spiral view 

 Fig. 8: umbilical view 

Figs. 9–10 Miliammina fusca (Brady) Brady, 1980 

Fig. 11 Nodulina dentaliniformis (Brady) Brady 1844 

Fig. 12 Reophax moniliformis Siddall, 1886  

Figs. 13–14 Trochammina inflata (Montagu) Montagu, 1808 

 Fig. 13: umbilical view 

 Fig. 14: spiral view 

Figs. 15–16 Texturalid undetermined  
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Plate 2 Living foraminifera 

 

Fig. 1 Adelosina laevigata (d'Orbigny) d'Orbigny, 1939 

Fig. 2 Cornuspira incerta (d'Orbigny) d'Orbigny, 1939 

Figs. 3–5 Quinqueloculina jugosa (Cushman) Cushman 1944 

Fig. 6 Quinqueloculina seminula (Linné) Linné, 1758 

Figs. 7–8 Miliolid undeterminated  
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Plate 3 Living foraminifera 

 

Figs. 1–4 Ammonia beccarii agg (Linné) Linné, 1758 (Variants included in this taxon)  

 Fig. 1: Ammonia tepida spiral view 

 Fig. 2: Ammonia tepida umbilical view 

 Fig. 3: Ammonia tepida spiral view 

 Fig. 4: Ammonia tepida umbilical view 

Fig. 5 Bolivinellina pseudopunctata (Höglund) Höglund, 1947 

Figs. 6–7 Bolivina subaenariensis (Cushman) Cushman, 1922 

 Fig. 6: general view 

 Fig. 7: general view 

Fig. 8 Brizalina spathulata (Williamson) Williamson, 1858 

Fig. 9 Bolivina striatula (Cushman)  

Figs. 10–11 Cribroelphidium excavatum (Terquem) Terquem, 1875 

 Fig. 10: general view 

 Fig. 11: general view 

Fig. 12 Cribroelphidium oceanensis (d'Orbigny) d'Orbigny, 1826 

Figs. 13–15 Cribroelphidium selseyensis (Heron-Allen and Earland) Heron-Allen and Earland, 

1911 

 Fig. 13: general view (C. cf. selseyensis) 

 Fig. 14: general view 

 Fig. 15: general view 
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Plate 4 Living foraminifera 

 

Figs. 1–2 Cribroelphidium sp.1  

 Fig. 1: general view 

 Fig. 2: general view 

Fig. 3 Cribroelphidium williamsoni (Haynes) Haynes, 1973 

Figs. 4–5 Elphidium advenum (Cushman) Cushman, 1922 

 Fig. 4: general view 

 Fig. 5: general view 

Fig. 6 Fursenkoina cf. fusiformis (Williamson) Williamson, 1858  

Fig. 7 Haynesina germanica (Ehrenberg) Ehrenberg, 1840 

Fig. 8 Hopkinsina pacifica Cushman, 1933  

Figs. 9–10 Nonionella opima Cushman, 1947  

 Fig. 9: general view 

 Fig. 10: general view 

Figs. 11–12 Rosalina globularis d'Orbigny, 1826 

 Fig. 11: dorsal view 

 Fig. 12: ventral view 

Figs. 13–14 Trichohyalus aguayoi (Bermudez) Bermudez, 1935 

 Fig. 13: spiral view 

 Fig. 14: umbilical view 

Figs. 15–16 Nonionella atlantica Cushman, 1947  

 Fig. 15: general view 

 Fig. 16: general view 
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Plate 5 Dead foraminifera 

 

Figs. 1–2 Ammosphaeroidina sp.1  

 Fig. 1: general view 

 Fig. 2: general view 

Fig. 3 Ammotium cf. salsum (Cushman and Brönniman) Cushman and Brönniman, 

1948 

Fig. 4 Eggerelloides scaber (Williamson) Williamson, 1858 

Figs. 5–7 Haplophragmoides wilberti Anderson, 1953 

 Fig. 5: general view 

 Fig. 6: general view 

 Fig. 7: edge view 

Figs. 8–9 Jadammina macrescens (Brady) Brady, 1870 

 Fig. 8: umbilical view 

 Fig. 9: spiral view 

Fig. 10 Miliammina fusca (Brady) Brady, 1870 

Figs. 11–12 Trochammina inflata (Montagu) Montagu, 1808 

 Fig. 11: spiral view 

 Fig. 12: umbilical view 
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Plate 6 Dead foraminifera 

 

Fig. 1 Cornuspira incerta (d'Orbigny) d'Orbigny, 1939 

Figs. 3–4 Quinqueloculina seminula (Linné) Linné, 1758 

 Fig. 3: 

 Fig. 4: 

Figs. 4–5 Miliolid undeterminated 

Figs. 6–7 Quinqueloculina seminula (Linné) Linné, 1758 

 Fig. 6: general view, pyritized test  

 Fig. 7: general view, pyritized test 

Figs. 8–9 Quinqueloculina stelligera Schlumberger, 1893 

 Fig. 8: general view 

 Fig. 9: oblicue view 

Figs. 10–11 Triloculina dubia d'Orbigny, 1826 

 Fig. 10: general view 

 Fig. 11: general view 

Figs. 12–13 Triloculina sp. 1 

 Fig. 12: general view 

 Fig. 13: aperture 
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Plate 7 Dead foraminifera 

 

Figs. 1–6 Ammonia beccarii agg Linné, 1978 (Variants included in this taxon) 

 Fig. 1: Ammonia tepida, spiral view 

 Fig. 2: Ammonia tepida, umbilical view 

 Fig. 3: Ammonia tepida, spiral view 

 Fig. 4: Ammonia tepida, umbilical view 

 Fig. 5: Ammonia beccarii, spiral view 

 Fig. 6: Ammonia beccarii, umbilical view 

Figs. 7–8 Aubignyna perlucida (Heron-Allen and Earland) Heron-Allen and Earland, 1913 

 Fig. 7: spiral view 

 Fig. 8: umbilical view 

Fig. 9 Bolivina dilatata Reuss, 1850 

Fig. 10 Brizalina variabilis (Williamson) Williamson, 1859 

Fig. 11 Bulimina gibba Fornasini, 1902 

Figs. 12–13 Cancris auricula (Fichtel and Moll) Fichtel and Moll, 1798 

Fig. 14 Cribroelphidium excavatum (Terquem) Terquem, 1875 

Fig. 15 Cribroelphidium oceanensis (d'Orbigny) d'Orbigny, 1826 

Fig. 16 Cribroelphidium cf. poeyanum (d'Orbigny) d'Orbigny, 1839 

Fig. 17 Cribroelphidium selseyensis (Heron-Allen and Earland) Heron-Allen and Earland, 

1911 
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Plate 8 Dead foraminifera 

 

Figs. 1–2 Cribroelphidium sp.1 

Figs. 3–4 Cribroelphidium williamsoni (Haynes) Haynes, 1973 

 Fig. 3: general view, pyritized test 

 Fig. 4: general view 

Fig. 5 Elphidium advenum (Cushman) Cushman, 1922 

Fig. 6 Elphidium crispum (Linné) Linné, 1758 

Fig. 7 Fissurina lucida (Williamson) Williamson, 1858 

Figs. 8–9 Gavelinopsis praegeri (Heron-Allen and Earland) Heron-Allen and Earland, 

1913 

Figs. 10–11 Haynesina depressula (Water and Jacob) Walker and Jacob, 1798 

 Fig. 10: dorsal view 

 Fig. 11: edge view 

Figs. 12–13 Haynesina germanica (Ehrenberg) Ehrenberg, 1840 

 Fig. 12: dorsal view 

 Fig. 13: edge view 

Fig. 14 Hopkinsina pacifica Cushman, 1933 

Fig. 15 Lagena sulcata (Walter and Jacob) Walter and Jacob, 1798 
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Plate 9 Dead foraminifera 

 

Figs. 1–2 Rosalina globularis d'Orbigny, 1826 

 Fig. 1: spiral view 

 Fig. 2: umbilical view 

Figs. 3–5 Rosalina irregularis (Rhumbler) Rhumbler, 1906 

 Fig. 3: spiral view 

 Fig. 4: edge view 

 Fig. 5: umbilical view 

Figs. 6–7 Trichohyalus aguayoi (Bermudez) Bermudez, 1935 

 Fig. 6: spiral view 

 Fig. 7: umbilical view 

Figs. 8–9 Valvulineria bradyana (Fornasini) Fornasini, 1899 

 Fig. 8: spiral view 

 Fig. 9: umbilical view 

Fig. 10 Planktonic test (cf. Globigerina sp.) 
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Plate 10 Fossil foraminifera 

 

Figs. 1–3 Haplophragmoides wilberti Anderson, 1953 

 Fig. 1: dorsal view, Olles core (15–20 cm depth) 

 Fig. 2: dorsal view, Olles core (15–20 cm depth) 

 Fig. 3: dorsal view, Olles core (15–20 cm depth) 

Figs. 4–5 Textularia cf. calva Lalicker, 1935 

 Fig. 4: general view, Sant Jaume borehole (20.71 m depth) 

 Fig. 5: general view, Garxal core (50–55 cm depth) 

Fig. 6 Adelosina laevigata (d'Orbigny) Walker and Jacob, 1798 

 Sant Jaume borehole (18.33 m depth) 

Fig. 7 Cornuspira incerta (d'Orbigny) d'Orbigny, 1939 

 Sant Jaume borehole (10.72 m depth) 

Figs. 8–9 Quinqueloculina depressa d'Orbigny, 1852 

 Fig. 8: general view, Sant Jaume borehole (20.81 m depth) 

 Fig. 9: general view, Sant Jaume borehole (20.81 m depth) 

Figs. 10–11 Quinqueloculina longirostra d'Orbigny, 1826 

 Fig. 10: general view, Sant Jaume borehole (15.10 m depth) 

 Fig. 11: general view, Sant Jaume borehole (20.91 m depth) 

Figs. 12–13 Quinqueloculina seminula (Linné) Linné, 1758 

 Fig. 12: general view, Sant Jaume borehole (19.60 m depth) 

 Fig. 13: general view, Sant Jaume borehole (19.60 m depth) 

Fig. 14 Quinqueloculina stelligera Schlumberger, 1893 

 Sant Jaume borehole (18.53 m depth) 

Figs. 15–16 Triloculina dubia d'Orbigny, 1826 

 Fig. 15: general view, Alfacs core (35–40 cm depth) 

 Fig. 16: general view, Sant Jaume borehole (29.91 m depth) 

Figs. 17–20 Miliolid undeterminated 

 Fig. 17: general view, Sant Jaume borehole (13.80 m depth) 

 Fig. 18: general view, Sant Jaume borehole (13.80 m depth) 

 Fig. 19: general view, Sant Jaume borehole (20.42 m depth) 

 Fig. 20: general view, Sant Jaume borehole (20.42 m depth) 
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Plate 11 Fossil foraminifera 

 

Figs. 1–4 Asterigerinata mamilla (Williamson) Williamson, 1858 

 Fig. 1: dorsal view, Olles core (40–45 cm depth) 

 Fig. 2: ventral view, Olles core (40–45 cm depth) 

 Fig. 3: dorsal view, Sant Jaume borehole (12.45 m depth) 

 Fig. 4: ventral view, Sant Jaume borehole (12.45 m depth) 

Figs. 5–6 Aubignyna perlucida (Heron-Allen and Earland) Heron-Allen and Earland, 1913 

 Fig. 5: spiral view, Sant Jaume borehole (20.71 m depth) 

 Fig. 6: umbilical view, Sant Jaume borehole (20.71 m depth) 

Figs. 7–10 Buccella granulata (di Napoli Alliata) di Napoli Alliata, 1952 

 Fig. 7: spiral view, Sant Jaume borehole (12.45 m depth) 

 Fig. 8: umbilical view, Sant Jaume borehole (12.45 m depth) 

 Fig. 9: spiral view, Alfacs core (35–40 cm depth) 

 Fig. 10: umbilical view, Alfacs core (35–40 cm depth) 

Figs. 11–12 Bolivina pseudoplicata Heron-Allen and Earland, 1930 

 Fig. 11: general view, Sant Jaume borehole (10.32 m depth) 

 Fig. 12: general view, Sant Jaume borehole (14.70 m depth) 

Fig. 13 Brizalina variabilis (Williamson) Williamson, 1859 

 Sant Jaume borehole (14.40 m depth) 

Fig. 14 Bulimina gibba Fornasini, 1902 

 Sant Jaume borehole (18.33 m depth) 

Fig. 15 Cassulina obtusa Williamson, 1858 

 Sant Jaume borehole (19.40 m depth) 

Figs. 16–19 Cibicides lobatulus (Walker and Jacob) Walker and Jacob, 1798 

 Fig. 16: ventral view, Garxal core (20–25 m depth) 

 Fig. 17: ventral view, Garxal core (20–25 m depth) 

 Fig. 18: dorsal view, Garxal core (60–65 cm depth) 

 Fig. 19: ventral view, Garxal core (60–65 cm depth) 

Figs. 20–22 Cribroelphidium excavatum (Terquem) Terquem, 1875 

 Fig. 20: general view, Garxal core (25–30 cm depth) 

 Fig. 21: edge view, Garxal core (25–30 cm depth) 

 Fig. 22: general view, Garxal core (25–30 cm depth) 
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Plate 12 Fossil foraminifera 

 

Figs. 1–2 Cribroelphidium cf. poeyanum (d'Orbigny) d'Orbigny, 1839 

 Fig. 1: general view, Sant Jaume borehole (15.10 m depth) 

 Fig. 2: general view, Garxal core (60–65 cm depth) 

Figs. 3–10 Cribroelphidium selseyensis (Heron-Allen and Earland) Heron-Allen and Earland, 

1911 

 Fig. 3: general view, Sant Jaume borehole (15.10 m depth) 

 Fig. 4: edge view, Sant Jaume borehole (15.10 m depth) 

 Fig. 5: general view, Alfacs core (35–40 cm depth) 

 Fig. 6: general view, Alfacs core (35–40 cm depth) 

 Fig. 7: general view, Alfacs core (35–40 cm depth) 

 Fig. 8: general view, Alfacs core (35–40 cm depth) 

 Fig. 9: general view, Garxal core (55–60 cm depth) 

 Fig. 10: general view, Garxal core (55–60 cm depth) 

Figs. 11–12 Cribroelphidium sp.1 

 Fig. 11: general view, Alfacs core (32–35 cm depth) 

 Fig. 12: edge view, Alfacs core (32–35 cm depth) 

Fig. 13 Elphidium crispum (Linné) Linné, 1758 

 Fig. 13: oblique view, Sant Jaume borehole (18.53 m depth) 

Figs. 14–15 Fissurina marginata (Montagu) Montagu, 1803 

 Fig. 14: general view, Sant Jaume borehole (20.20 m depth) 

 Fig. 15: general view, Olles core (40–45 cm depth) 

Fig. 16 Fursenkoina schreibersiana (Czjzek) Czjzek, 1848 

 Fig. 16: general view, Sant Jaume borehole (9.88 m depth) 

Figs. 17–18 Gavelinopsis praegeri (Heron-Allen and Earland) Heron-Allen and Earland, 1913 

 Fig. 17: spiral view, Sant Jaume borehole (20.71 m depth) 

 Fig. 18: umbilical view, Sant Jaume borehole (20.71 m depth) 

Figs. 19–21 Haynesina depressula (Water and Jacob) Walker and Jacob, 1798 

 Fig. 19: general view, Alfacs core (32–35 cm depth) 

 Fig. 20: general view, Alfacs core (32–35 cm depth) 

 Fig. 21: edge view, Alfacs core (32–35 cm depth) 

Figs. 22–23 Haynesina germanica (Ehrenberg) Ehrenberg, 1840 

 Fig. 22: general view, Olles core (30–35 cm depth) 

 Fig. 23: edge view, Olles core (30–35 cm depth) 
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Plate 13 Fossil foraminifera 

 

Fig. 1 Lagena cf. semistriata (Williamson) Williamson, 1848 

 Sant Jaume borehole (20.40 m depth) 

Fig. 2 Lagena sulcata (Walter and Jacob) Walter and Jacob, 1798 

 Sant Jaume borehole (9.48 m depth) 

Figs. 3–5 Nonionoides boueanum (d'Orbigny) d'Orbigny, 1846 

 Fig. 3: general view, Carlet borehole (12.47 m depth) 

 Fig. 4: edge view, Carlet borehole (12.47 m depth) 

 Fig. 5: general view, Carlet borehole (12.47 m depth) 

Figs. 6–7 Nonionella opima Cushman, 1947 

 Fig. 6: general view, Sant Jaume borehole (17.11 m depth) 

 Fig. 7: general view, Sant Jaume borehole (19.40 m depth) 

Figs. 8–9 Patellina corrugata Williamson, 1858 

 Fig. 8: general view, Sant Jaume borehole (20.20 m depth) 

 Fig. 9: general view, Sant Jaume borehole (20.20 m depth) 

Figs. 10–11 Rectuvigerina compressa (Cushman) Cushman, 1925 

 Fig. 10: general view, Sant Jaume borehole (19.40 m depth) 

 Fig. 11: general view, Sant Jaume borehole (20.71 m depth) 

Figs. 12–15 Rosalina anomala Terquem, 1875 

 Fig. 12: ventral view, Sant Jaume borehole (19.80 m depth) 

 Fig. 13: dorsal view, Sant Jaume borehole (19.80 m depth) 

 Fig. 14: dorsal view, Sant Jaume borehole (20.40 m depth) 

 Fig. 15: ventral view, Sant Jaume borehole (20.40 m depth) 

Figs. 16–19 Rosalina irregularis (Rhumbler) Rhumbler, 1906 

 Fig. 16: dorsal view, Sant Jaume borehole (21.71 m depth) 

 Fig. 17: ventral view, Sant Jaume borehole (21.71 m depth) 

 Fig. 18: ventral view, Sant Jaume borehole (10.72 m depth) 

 Fig. 19: dorsal view, Sant Jaume borehole (21.91 m depth) 

Figs. 20–21 Svratkina sp.1 

 Fig. 20: dorsal view, Sant Jaume borehole (16.51 m depth) 

 Fig. 21: ventral view, Sant Jaume borehole (16.51 m depth) 

Figs. 22–25 Valvulineria bradyana (Fornasini) Fornasini, 1899 

 Fig. 22: dorsal view, Sant Jaume borehole (20.71 m depth) 

 Fig. 23: ventral view, Sant Jaume borehole (20.71 m depth) 

 Fig. 24: dorsal view, Sant Jaume borehole (20.91 m depth) 

 Fig. 25: ventral view, Sant Jaume borehole (20.91 m depth) 
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