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RESUMO

A extingdo de grandes mamiferos terrestres no final do Pleistoceno (entre 50 e 11 mil
anos atrds) é um dos temas mais debatidos em ecologia. A maioria dos estudos sobre as
causas das extingdes do Pleistoceno tem como foco o papel de fatores externos como
mudangas climdticas e a chegada do homem. Entretanto, a forma como uma
comunidade ecolégica responde a perturbagdes depende de suas propriedades, como o
niimero e composicdo de espécies e a forma como essas espécies interagem. O objetivo
final dos estudos reunidos nessa tese foi entender como estavam organizadas as
interagdes ecoldgicas entre os mamiferos do Pleistoceno e o possivel papel dessas
interagdes no episédio de extingdo da megafauna. Em primeiro lugar adaptei modelos
de teias tréficas para reproduzir redes formadas por diferentes tipos de intera¢bes entre
consumidores e recursos. Em seguida, utilizei esses modelos para reconstruir redes de
interagdo entre predadores e presas da megafauna do Pleistoceno e examinei as
propriedades estruturais e dindmicas dessas redes. Por fim, investiguei uma das
possiveis consequéncias da extingdo da megafauna: a perda de servigos de dispersdo de
sementes. Os resultados aqui apresentados mostram que (i) diferentes tipos de redes de
interagdo entre consumidores e recursos compartilham caracteristicas estruturais e
podem ser reproduzidas por modelos de teias tréficas; (ii) redes de interacdo entre
grandes mamiferos do Pleistoceno estavam, provavelmente, estruturadas de forma
similar aos sistemas atuais na Africa. Entretanto, as comunidades do Pleistoceno seriam
especialmente vulnerdveis as mudangas estruturais e na dindmica causadas pela
chegada de um predador como o homem; (iii) entre as consequéncias da extin¢do do
Pleistoceno estd a reorganizagdo de outros tipos de rede de interagdo como as redes de
dispersdo de sementes. Em conjunto os resultados apresentados aqui enfatizam a
importancia de considerarmos o possivel papel das interacdes ecolégicas em modular os

efeitos de perturbagdes ao estudarmos eventos de extingao.
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ABSTRACT

The extinction of large terrestrial mammals during the late Pleistocene (between 50 and
11 kyrs ago) is one of the most debated topics in ecology. Most studies on the causes of
Pleistocene extinctions focus on the role of external factors such as climate changes and
the arrival of humans. Nevertheless, the way an ecological community responds to
perturbations depends on its properties, such as its number of species, species
composition and the way these species interact. This thesis encloses studies with the
final objective of understanding how ecological interactions between Pleistocene large
mammals were organized and the potential role of such interactions in the Pleistocene
extinction episode. First, I adapted food-web models to reproduce networks depicting
different types of ecological interactions between consumers and resources. Then, I used
these models to reconstruct predator-prey interaction networks between Pleistocene
large mammals and examined the structural and dynamic properties of these systems.
Finally, as an overview of the ecological impacts of Pleistocene extinctions, I discuss one
of the possible consequences of the demise of Pleistocene large mammals: the loss of
seed-dispersal services. The results presented here show that (i) different types of
interaction networks between consumers and resources share structural properties and
can be reproduced by food-web models; (ii) interactions between Pleistocene large
mammals were most likely structured in a similar way to modern large-mammals
assemblages in Africa, but the former were especially vulnerable to the changes in
structure and dynamics caused by a newly arriving predator such as humans; (iii)
among the consequences of Pleistocene extinctions is the reconfiguration of other types
of interaction networks such as seed-dispersal networks. Taken together these findings
emphasize how important it is to consider the role of ecological interactions in

modulating the effects of perturbations when studying extinctions events.
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INTRODUCAO

Com excecdo do continente africano, a maior parte dos mamiferos de grande
porte se extinguiu antes do limite entre o fim do Pleistoceno e inicio do Holoceno, hd
aproximadamente 11,5 mil anos (Martin & Klein 1984; Koch & Barnosky 2006). O
numero de espécies extintas foi particularmente grande nas Américas e na Austrdlia,
onde se estima que entre 70 e 90% dos géneros de mamiferos classificados como
megafauna (animais com mais de 44kg) foram extintos (Koch et al. 2006). O fendmeno
destaca-se ndo somente pela sua magnitude, uma vez que o nimero de espécies
extintas foi sem precedentes no Cenozdico (Alroy 1999), mas por sua seletividade em
relagdo ao tamanho corpéreo (Koch et al. 2006). Ainda que espécies menores também
tenham sido extintas (Brook & Bowman 2004), a extingéo foi total para os mamiferos
com mais de 320 kg na América do Sul e mais de 1000 kg na América do Norte
(Owen-Smith 1987).

Em geral, as hipéteses propostas para explicar a extingdo da megafauna do
Pleistoceno sdo baseadas nos efeitos de fatores externos, como mudancas climaéticas e
a colonizac¢do dos continentes pelo homem (Barnosky et al. 2004). As hipéteses que
sugerem a influéncia de mudangas climdticas como principal fator responsavel pela
extingdo da megafauna do Pleistoceno baseiam-se no fato de o periodo estimado para
as extingdes coincidir com o periodo de transicdo entre a dltima era glacial e a era
inter-glacial atual (Koch et al. 2006). As mudangas climdticas nesse periodo teriam
causado mudangas na vegetacdo, finalmente levando a fragmentagdo e redugdo de
habitat e disponibilidade de recursos (Barnosky 1986; Ficarelli et al. 2003). Essas
mudangas no habitat teriam reduzido e isolado populag¢des naturais, tendo um efeito
profundo sobre as populagdes de grandes mamiferos, que possuem baixa taxa
reprodutiva e, portanto, levam mais tempo para se recuperar (Johnson 2002). O
ponto mais fragil dessas hipdteses é que estudos paleocliméticos sugerem que essa

transicdo ndo foi mais abrupta que outros periodos transitérios que ndo sdo
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caracterizados por grandes extingdes (Barnosky et al. 2004, Robinson et al. 2005) e
pelos quais os grandes mamiferos hoje extintos teriam sobrevivido (Koch et al. 2006).

Um segundo conjunto de hipdteses baseia-se na sincronia, em diferentes
continentes, entre as extingdes e a colonizac¢do pelo homem. A modificagdo do habitat
causada pelo homem, a sobre-caga, a introducdo de espécies invasoras, ou doencas
letais que teriam o homem como hospedeiro, foram propostos como possiveis
impactos antrépicos responsdveis pela extingdo da megafauna (Martin 1973;
Edwards & Macdonald 1991; Koch et al. 2006). Estudos tedricos que modelam as
extingdes considerando efeitos antrépicos sugerem que, mesmo em baixas
densidades, humanos podem ter tido um papel importante no colapso das
comunidades do Pleistoceno (Alroy 2001; Brook and Bowman 2004; Zuo et al. 2013).
Criticas a hipéteses sobre o papel do homem nas extingdes do Pleistoceno enfatizam
o baixo ntiimero de evidéncias empiricas, especialmente indicios arqueolégicos da
interagdo entre 0 homem e as espécies atualmente extintas (Koch & Barnosky 2006,
Hubbe et al. 2013; mas veja Surovell & Waguespack 2008). Além disso, a sincronia
entre as extingdes e a colonizagdo dos continentes pelo homem tem sido contestada
(Lima-Ribeiro et al. 2013). Atualmente, sugere-se que uma combinacdo entre
atividades humanas e mudangas climdticas explicaria as extingdes: 0 homem teria
contribuido para a extingdo da megafauna em varios locais e as mudangas climaticas
teriam exacerbado esses efeitos em escalas espaciais maiores (Koch et al. 2006;
Prescott et al. 2012).

Todavia, grandes eventos de extingdo tem dois componentes importantes: a
perturbagdo que desencadeou o fendmeno, como, por exemplo, mudangas climéticas
ou atividade humana, e as caracteristicas inerentes do sistema, que modulam os
efeitos dessas perturba¢des (Newman & Palmer 2003; Haynes 2009). Esse segundo
componente recebeu até o presente atencdo desproporcionalmente menor quando

comparado ao primeiro (Roopnarine et al. 2007). Nesse sentido, o préximo passo para
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entendermos a extingdo da megafauna do Pleistoceno é investigar se as comunidades
do Pleistoceno poderiam ter colapsado, em parte, devido as suas propriedades
estruturais, isto é, a forma com que as interagfes entre espécies estavam organizadas
(Forster et al. 2003).

A organizacdo das intera¢Oes ecoldgicas e suas consequéncias dindmicas em um
dado local sdo objeto de interesse da teoria de redes ecolégicas (Dunne 2006). Desde
o debate sobre a relagdo entre estabilidade e diversidade desencadeado pelos estudos
de Robert May demonstrou-se que a dindmica de comunidades ecolégicas, mais
especificamente a resposta a perturbagdes, pode ser modulada pela forma como as
interagOes entre as espécies estdo organizadas (May 1971; Pimm 2003; Allesina &
Tang 2012; Rooney & McCann 2012). Dessa forma, compreender a estrutura gerada
pelas interagdes em uma comunidade ecoldgica e o papel dessa estrutura na
dindmica do sistema é fundamental para entendermos episdédios de extingdo
biolégica e, de maneira geral, os mecanismos que organizam a diversidade.

Reconstruir redes de interagdo do passado e avaliar as hipéteses sobre grandes
extingdes representa um grande desafio, uma vez que € impossivel realizar
observacgdes e experimentagdo nesses sistemas. A reconstrucdo das redes de interagao
depende de inferéncias sobre as possiveis interacdes a partir de dados
paleontolégicos, baseando-se, por exemplo, nas relagdes biométricas entre as espécies
(Farifia 1996; Prevosti & Vizcaino 2006), estudos de is6topos estdveis (Coltrain ef al.
2004, Yeakel et al. 2013) e estudos de espécies atuais supostamente andlogas em seu
modo de vida (Corlett et al. 2013). Informagdes sobre a ecologia da mastofauna
africana atual, por exemplo, sdo comumente utilizadas para inferéncias sobre a
paleoecologia da megafauna pleistocénica de outros continentes (Owen-Smith 1987;
Guimaraes et al. 2008). De fato, sob a premissa de que comunidades formadas por
espécies similares obedecem a regras similares, se formos capazes de compreender os

mecanismos responsaveis pela estrutura de redes de interagbes entre espécies atuais
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seremos capazes de inferéncias mais acuradas sobre as interagdes entre espécies
extintas.

Informagdes sobre os mecanismos responsaveis pela organizacdo das intera¢des
em comunidades atuais tem sido obtidas por meio do uso de modelos de teias
alimentares (Stouffer 2010). Modelos de teias alimentares sdo conjuntos de regras
capazes de gerar redes tedricas de interagdo (Williams & Martinez 2000). Diferentes
modelos de teias alimentares baseados em regras simples de interagdes entre espécies
sdo capazes de reproduzir a estrutura de redes de interagdes reais e, portanto, devem
capturar parte dos mecanismos fundamentais que organizam essas redes (Williams
& Martinez 2000, 2008; Cattin et al. 2004; Allesina et al. 2008).

Modelos de teias alimentares sdo particularmente tteis na reconstrucdo redes de
interagdes entre espécies extintas. Por mais que as caracteristicas biomecanicas e
indicios fdsseis sugiram a interagdo entre duas dadas espécies extintas, hd sempre
um alto grau de incerteza quando comparado a sistemas atuais, uma vez que o
registro empirico das interagdes ndo é possivel (Roopnarine et al. 2007; Dunne et al.
2008). Além disso, interagdes ecoldgicas podem ocorrer devido a caracteristicas locais
especificas ou devido a um conjunto de condi¢des tempordrias (Thompson 2005). O
uso de modelos permite a simulagdo de diversos cendrios possiveis com um mesmo
conjunto de espécies, mantendo as caracteristicas fundamentais da rede de
interages, o que evita que as propriedades dessas redes estejam relacionadas a
idiossincrasias de uma configuracdo arbitrdria.

Os modelos de teias alimentares foram originalmente propostos para teias
alimentares completas que contemplam vérios niveis tréficos desde produtores até
decompositores (Dunne 2006). Todavia, teias alimentares completas podem ser
subdivididas em subredes que representam as interagdes entre espécies em dois
niveis tréficos contiguos (Kondoh 2010). Nessas subredes hd dois conjuntos de

espécies, um representando consumidores e outro recursos ndo havendo interagées



Mathias M. Pires Introducéo

entre os componentes do mesmo conjunto. Redes como essas, representadas por dois
conjuntos bem definidos de elementos, sdo chamadas de redes bipartidas. Tais
recortes de redes maiores levam algumas vantagens sobre teias alimentares
completas: (i) em geral redes bipartidas possuem boa resolucdo taxonémica evitando
problemas da incongruéncia na resolugdo entre os grupos (Polis 1991; De Visser et al.
2009); (ii) em redes bipartidas todas as conexdes referem-se ao mesmo tipo de
interacdo ecoldgica e estdo presumivelmente sujeitas aos mesmos processos
ecoldgicos e evolutivos (Lewinsohn et al. 2006). Essa subdivisdo é evidente em
comunidades compostas por grandes mamiferos uma vez que tais comunidades se
comportam como compartimentos bem definidos das teias alimentares, com uma
estrutura e dindmica caracteristica (Holt ef al. 2008; Terborgh & Estes 2010). Pelos
motivos acima focamos aqui em intera¢des consumidor-recurso entre dois niveis
tréficos. Entretanto, um primeiro passo para a reconstru¢do das redes do passado
usando modelos de teias alimentares foi a adaptacdo dos modelos tradicionais ao
cardter bipartido das redes consumidor-recurso.

Uma caracteristica compartilhada pela maioria dos modelos de teias alimentares
é a existéncia de uma hierarquia alimentar. Desde que os primeiros modelos de teias
alimentares foram propostos (Cohen et al. 1990) o tamanho corpéreo tem sido
considerado um forte candidato para explicar as regras de hierarquia alimentar e
ordenacdo das espécies em que se baseiam os modelos (Warren & Lawton 1987;
Allesina et al. 2008). De fato, diversas linhas de evidéncia sugerem que a massa
corpdrea seja uma caracteristica adequada para a parametrizagdo dos modelos, uma
vez que, em geral, o tamanho dos organismos limita suas possibilidades de interagdo
(Woodward et al. 2005; Brose 2010; Stouffer et al. 2011). Portanto, a parametrizagdo
dos modelos usando dados de tamanho corpéreo deve ser um caminho para

modelos capazes de gerar redes tedricas mais realistas.
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Uma vez que redes com estrutura realista possam ser reconstruidas é possivel
descrever a estrutura do sistema e utilizar diversas abordagens para compreender a
sua dindmica. Uma questdo relevante do ponto de vista da dindmica de um sistema
ecoldgico é como esse sistema responde a perturbagdes. A andlise qualitativa de
estabilidade é uma abordagem que permite avaliar a resposta de sistemas dindmicos
a perturbagoes (May 1971; Allesina & Tang 2012). Apesar de restrita ao efeito de
pequenas perturbagdes, a andlise de estabilidade permite uma primeira avaliagdo do
comportamento dindmico do sistema (Pimm 2003; McCann 2011). Contudo,
perturbagdes podem ter efeitos que se propagam por toda a rede de interagdes, por
meio de interagfes diretas e indiretas entre as espécies, e levam a reestruturacdo da
rede devido a extingdes. Uma forma adicional para entender como comunidades
respondem a perturbag¢des de diferentes naturezas é simular a dindmica do sistema
por meio de modelos de dindmica populacional (e.g., Alroy 2001). Simulacdes
permitem avaliar as possiveis trajetérias das populagdes apds a perturbagdo e
identificar aquelas espécies que se extinguem e aquelas que persistem. Nesse sentido,
a andlise de estabilidade e simulagdes de dindmica sdo duas abordagens
complementares que permitem caracterizar a dindmica do sistema de interesse e
testar hipdteses sobre como o sistema responderia a diferentes fatores.

Os capitulos da presente tese representam os componentes de um esforgo cujo
objetivo final foi entender o papel da estrutura e dinamica das comunidades do
Pleistoceno no seu colapso. A tese estd dividida em trés se¢des: a primeira secdo é
composta por 2 capitulos que compartilham como motivagdo a adaptagdo de
modelos de teias tréficas para redes bipartidas. Uma vez que os modelos de teias
tréficas foram generalizados para reproduzir redes bipartidas, como as redes de
interagdo predador-presa, foi possivel utilizar os modelos para gerar redes de
interacdo realistas entre os mamiferos do Pleistoceno, investigar como essas

comunidades estariam organizadas e a dindmica desses sistemas (segdo II; Capitulos
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3-5). Especificamente, busquei entender se particularidades da estrutura das redes do
Pleistoceno podem explicar porque essas comunidades colapsaram, ao passo que as
comunidades de grandes mamiferos da Africa persistiram. Por fim (segio III;
Capitulo 6), apresento resultados relacionados as possiveis consequéncias da perda
dos grandes mamiferos na América do Sul. Nessa tltima sec¢do foco, especificamente,
nos provaveis impactos das extingdes sobre a dispersdao de sementes, um servigo
ecossistémico com amplas implicagdes para a organizacdo e funcionamento de

sistemas naturais.

REFERENCIAS

Allesina S., Alonso D. & Pascual M. (2008). A general model for food web structure.
Science, 320, 658-661.

Allesina S. & Tang S. (2012). Stability criteria for complex ecosystems. Nature, 483,
205-208.

Alroy J. (1999). Putting North America’s end-Pleistocene megafaunal extinction in
context: large-scale analyses of spatial patterns, extinction rates, and size
distributions. In: Extinctions in Near Time: Causes, Contexts, and Consequences. (ed.
MacPhee R.D.E.). Kluwer Acad./Plenum. pp. 105-43.

Alroy J. (2001). A multispecies overkill simulation of the End-Pleistocene megafaunal
mass extinction. Science, 292, 1893-1896.

Barnosky A.D., Koch P.L., Feranec R.S., Wing S.L., & Shabel A.B. (2004). Assessing
the causes of late Pleistocene extinctions on the continents. Science, 306, 70-75.
Brose U. (2010). Body-mass constraints on foraging behaviour determine population

and food-web dynamics. Funct. Ecol., 24, 28-34.

Brook B.W. & Bowman D.M.J.S. (2004). The uncertain blitzkrieg of Pleistocene
megafauna. J. Biogeogr., 31, 517-523.

Cattin M.-F., Bersier L.-F. & Banasek-Richter C., Baltensperger R. & Gabriel J.-P.
(2004). Phylogenetic constraints and adaptation explain food-web structure.
Nature, 427, 835-839.

Cohen J.E., Briand F. & Newman C.M. (1990). Community Food Webs: Data and Theory.
Springer.

Coltrain J.B., Harris ].M., Cerling T.E., Ehleringer J.R., Dearing M.D., Ward J. & Allen

J. (2004). Rancho La Brea stable isotope biogeochemistry and its implications for



Mathias M. Pires Introducéo

the palaeoecology of late Pleistocene, coastal southern California. Palaeogeogr.
Palaeoclimatol. Palaeoecol., 205, 199-219.

Corlett R.T. (2013). The shifted baseline: Prehistoric defaunation in the tropics and its
consequences for biodiversity conservation. Biol. Cons, 163, 13-21.

De Visser S.N., Freymann B.P. & Olff H. (2010). The Serengeti food web: empirical
quantification and analysis of topological changes under increasing human
impact. J. Anim. Ecol., 80, 484-494.

Donatti C.I., Guimardes P.R., Galetti M., Pizo M.A., Marquitti FM.D. & Dirzo R.
(2011). Analysis of a hyper-diverse seed dispersal network: modularity and
underlying mechanisms. Ecol. Lett., 14, 773-781.

Dunne J.A. (2006). The network structure of food webs. In: Ecological Networks:
Linking Structure to Dynamics in Food Webs. (eds. Pascual M. & Dunne, J.A.).
Oxford University Press, pp. 27-86.

Dunne J.A., Williams R.J., Martinez N.D., Wood R.A. & Erwin D.H. (2008).
Compilation and network analyses of Cambrian food webs. PLoS Biol., 6, 693-708.

Edwards K.J., & MacDonald G.M. (1991). Holocene palynology. II. Human influence
and vegetation change. Prog. Phys. Geog., 15, 364-391.

Farifia R.A. (1996). Trophic relationship among Lujanian mammals. Evol. Theory, 11,
125-134.

Ficcarelli G., Coltorti M., Moreno-Espinosa M., Pieruccini P.L., Rook L., & Torre D.
(2003). A model for the Holocene extinction of the mammal megafauna in
Ecuador. |. S. Am. Earth Sci., 15, 835-845.

Fontaine C., Guimaraes P.R., Kefi S., Loeuille N., Memmott J., van der Putten W.H.,,
van Veen FJF. & Thébault E. (2011). The ecological and evolutionary
implications of merging different types of networks. Ecol. Lett., 14, 1170-1181.

Forster M.A. (2003). Self-organized instability and megafaunal extinctions in
Australia. Oikos, 103, 235-239.

Guimardes P.R., Rico-Gray V., Oliveira P., 1zzo T., dos Reis S.F. & Thompson J.N.
(2007). Interaction intimacy affects structure and coevolutionary dynamics in
mutualistic networks. Curr. Biol., 17, 1-7.

Guimardes P.R., Galetti M. & Jordano P. (2008). Seed dispersal anachronisms:
rethinking the fruits extinct megafauna ate. PLoS One, 3, e1745.

Haynes G. (2009). American Megafaunal Extinctions at the End of the Pleistocene.
Springer.

Holt R.D., Abrams P.A., Fryxell ].M. & Krimbell T. (2008). Reticulate food webs in

space and time: messages from the Serengeti. In: Serengeti III: Human Impacts on



Mathias M. Pires Introducéo

Ecosystem Dynamics (eds. Sinclair A.R.E. et al.). The University of Chicago Press,
pp- 241-276.

Hubbe A., Hubbe M., Karmann 1., Cruz F.W. & Neves W.A. (2013). Insights into
Holocene megafauna survival and extinction in southeastern Brazil from new
AMS C-14 dates. Quatern. Res., 79, 152-157.

Janzen D.H. & Martin P.S. (1982). Neotropical anachronisms - the fruits the
gomphotheres ate. Science, 215, 19-27.

Johnson C.N. (2002). Determinants of loss of mammal species during the late
Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size.
Proc. R. Soc. Biol. B, 269, 2221-2227.

Jordano P. (2000). Fruits and frugivory. In Seed: the Ecology of Regeneration in Plant
Communities (ed. Fenner M.). CABI Pub, pp. 125-166.

Koch P.L. & Barnosky A.D. (2006). Late Quaternary extinctions: State of the debate.
Annu. Rev. Ecol. Evol. Syst., 37, 215-250.

Kondoh M., Kato S. & Sakato Y. (2010). Food webs are built up with nested subwebs.
Ecology, 91, 3123-3130.

Lewinsohn T.M., Prado P.I, Jordano P. & Bascompte, J. (2006). Structure in plant-—
animal interaction assemblages. Oikos, 113, 174-184.

Lima-Ribeiro M.S. & Diniz-Filho J.A.F. (2013). American megafaunal extinctions and
human arrival: Improved evaluation using a meta-analytical approach. Quatern.
Int., 299, 38-52.

Martin P.S. (1973). The discovery of America. Science, 179, 969-974.

Martin P.S., & Klein R.G. (1984). Quaternary Extinctions: a Prehistoric Revolution. The
University of Arizona Press.

May M. (1971). Stability in multispecies community models. Mathematical Biosciences,
12, 59-79.

McCann K.S. (2011). Food Webs. Princeton University Press.

Newman M.E]. & Palmer, R.G. (2003). Modeling Extinction. Oxford University Press.

Owen-Smith N. (1987). Pleistocene extinctions: the pivotal role of megaherbivores.
Paleobiology, 13, 351-362.

Pimm S.L. (2003). Food Webs. University of Chicago Press.

Prescott G.W., Williams D.R., Balmford A. Green R.E. & Manica A. (2012).
Quantitative global analysis of the role of climate and people in explaining late
Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. USA, 109, 4527-4531.

Prevosti F.J.,, & Vizcaino S.F. (2006). Paleoecology of the large carnivore guild from
the late Pleistocene of Argentina. Acta Palaeontol. Pol., 51, 407-422.



Mathias M. Pires Introducéo

Polis G.A. (1991). Trophic interactions in deserts: An empirical critique of food-web
theory. Am. Nat., 138, 123-155.

Poulin R. (2007). Evolutionary Ecology of Parasites. Priceton University Press.

Robinson G.S., Burney L.P. & Burney D.A. (2005). Landscape paleoecology and
megafaunal extinction in southeastern New York State. Ecol. Monogr., 75, 295-315.

Rooney N. & McCann K.S. (2012). Integrating food web diversity, structure and
stability. Trends Ecol. Evol., 27, 40-46.

Roopnarine P.D., Angielczyk K.D., Wang S.C. & Hertog R. (2007). Trophic network
models explain instability of Early Triassic terrestrial communities. Proc. R. Soc.
Biol. B, 274, 2077-2086.

Rule S., Brook B.W., Haberle S.G., Turney C.S.M., Kershaw A.P. & Johnson C.N.
(2012). The aftermath of megafaunal extinction: ecosystem transformation in
Pleistocene Australia. Science, 335, 1483-1486.

Sinclair A.R.E., Mduma S. & Brashares J.S. (2003). Patterns of predation in a diverse
predator — prey system. Nature, 425, 288-290.

Stouffer D.B. (2010). Scaling from individuals to networks in food webs. Funct. Ecol.,
24, 44-51.

Stouffer D.B., Rezende E.L. & Amaral L.A.N. (2011). The role of body mass in diet
contiguity and food-web structure. J. Anim. Ecol., 80, 632-639.

Surovell T.A. & Waguespack N.M. (2008). How many elephant kills are 14? Clovis
mammoth and mastodon kills in context. Quatern. Int., 191, 82-97.

Terborgh J. & Estes J.A. (2010). Trophic Cascades: Predators, Prey, and the Changing
Dynamics of Nature. Island Press.

Thompson J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago
Press.

Warren P.H. & Lawton J.H. (1987). Invertebrate predator-prey body size
relationships: an explanation for upper triangular food webs and patterns in food
web structure. Oecologia, 74, 231-235.

Williams R.J. & Martinez N.D. (2000). Simple rules yield complex food webs. Nature,
404, 180-183.

Williams R.J., Martinez N.D. & Lake B.B. (2008). Success and its limits among
structural models of complex food webs. J. Anim. Ecol., 77, 512-519.

Williams R.J., Anandanadesan A. & Purves D. (2010). The probabilistic niche model
reveals the niche structure and role of body size in a complex food web. PLoS
Omne, 5, 1-9.

10



Mathias M. Pires Introducéo

Williams R.J. & Purves D. (2011). The probabilistic niche model reveals substantial
variation in the niche structure of empirical food webs. Ecology, 92, 1849-1857.
Woodward G., Ebenman B., Emmerson M., Montoya J.M., Olesen ].M., Valido A. &
Warren P.H. (2005). Body size in ecological networks. Trends Ecol. Evol., 20, 402-

409.

Yeakel ].D., Guimaréaes P.R., Bocherens H. & Koch P.L. (2013). The impact of climate
change on the structure of Pleistocene food webs across the mammoth steppe.
Proc. R. Soc. Biol. B, 280, €20130239.

Zuo W., Smith F.A. & Charnov E.L. (2013). A life-history approach to the Late
Pleistocene megafaunal extinction. Am. Nat., 182, 524-531.

11






SECAO1

Adaptando modelos de redes ecoldgicas

13






CAriTULO 1

15






’ PLoS @ne

OPEN 8 ACCESS Freely available online

Do Food Web Models Reproduce the Structure of
Mutualistic Networks?

Mathias M. Pires’, Paulo I. Prado?, Paulo R. Guimaraes Jr.2*

1 Programa de Pds-graduacdo em Ecologia, Instituto de Biociéncias, Universidade de Sao Paulo, Sdo Paulo, Brazil, 2 Departamento de Ecologia, Instituto de Biociéncias,
Universidade de Sao Paulo, Sao Paulo, Brazil

Abstract

Background: Simple models inspired by processes shaping consumer-resource interactions have helped to establish the
primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other
ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in
consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic
relationships as well.

Methodology/Principal Findings: We used a likelihood-based model selection approach to compare the performance of
food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting
mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the
mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall
structural properties of real mutualistic networks.

Conclusions/Significance: Based on our results we hypothesize that processes leading to feeding hierarchy, which is a
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Introduction

A major challenge in ecology is to understand how ecological
networks are assembled. Network assembly ultimately reflects how
interactions between individuals of different species scale up to
organize ecological communities [1,2]. The study of food webs,
which are networks of trophic interactions among species, has
benefited from the proposal of probabilistic, topological models
that are able to reproduce the structure of trophic interactions by
incorporating simple ecological processes (reviewed by Stouffer
[3]). These models offer a way to build realistic food webs using a
few parameters such as the number of interacting species and the
number of interactions that can be estimated in the field [4,5,6,7].
By connecting the structure of real food webs with candidate
underlying processes, such models provide a basis for investigating
the implications of food web organization for ecological dynamics
[8], species persistence [9,10], and ecosystem services [l1].
Moreover, differences in how closely each model fits the structure
of empirical food webs provide insight into the fundamental rules
organizing trophic interactions in ecological systems [7,12,13].

The majority of studies on how such models reproduce
ecological networks have focused on food webs, but there is an
increasing body of theory that relies on probabilistic models to
understand the structure of networks formed by other kinds of
ecological interactions such as mutualisms [2,14,15,16]. The
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theoretical background for devising specific models for mutualistic
networks stems from the fact that antagonisms and mutualisms
differ in their fundamental ecological and evolutionary implica-
tions [17,18]. Additionally, mutualistic networks share some
marked structural regularities that differ from antagonistic
networks such as food webs [18,19,20]. For instance, mutualistic
networks are best described as two-mode networks in which there
are two sets of nodes (e.g., animals and plants) and there are no
interactions among species within the same set [21]; in contrast,
food webs are organized into several loosely defined trophic levels
[12]. Moreover, mutualistic networks tend to be highly nested, that
is, a given species interacts with a subset of the partners of species
that have more interactions whereas antagonistic networks have
lower degrees of nestedness [18,19](but see [22]). An additional
feature of mutualistic networks is that they exhibit right-skewed
distributions of the number of interactions per species [21],
whereas in food webs, this skewness is, in general, less pronounced
[23].

The well-established differences between food webs and
mutualistic networks (e.g., [18,24]) have been counterbalanced
by increasing evidence that ecological networks share some basic
similarities. For instance, modularity, which was previously
predominantly related to antagonistic networks [25,26], was
reported in a large set of mutualistic networks [27]. Along the
same lines, although nestedness is often higher in mutualistic than
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in antagonistic two-mode networks [18], a recent study [22]
showed that food webs are actually composed of interconnected,
nested, two-mode sub-webs.

Another way in which mutualistic networks and food webs
converge 1Is that most mutualistic relationships are, in fact, rooted
in consumer-resource relationships [28,29]. For example, pollina-
tion is a type of mutualism that often involves animals foraging for
resources provided by flowering plants [30]. Similarly, the
frugivores that disperse seeds away from parental trees are usually
foraging on fruit pulp [31]. Therefore, even though food webs and
mutualistic networks differ in some key aspects of their structure,
we should expect that ecological processes related to resource use
partially shape these interactions in similar ways. In fact, all of the
models proposed for food webs are inspired by processes shaping
the consumer-resource interactions in a given locality. These
consumer-resource interaction rules are quite general and may
also apply to other types of interactions. In this sense, we
hypothesize that food web models are able to reproduce the
structure of mutualistic networks. To test this hypothesis we
adapted food web models to reproduce two-mode networks and
compared their performance, and that of a model designed for
mutualisms, in reproducing real mutualistic networks. We first
calculated summary statistics that described the structural
properties of real food webs and used a likelithood-based model
selection approach [32] in which we computed the likelihood of
obtaining the observed values under a set of candidate network
models. Finally, we explored whether simple topological features
of mutualistic networks explain the performance of network
models.

Methods

The models

To test the performance of food web models in reproducing the
structure of mutualistic networks, we compiled a set of 10
pollination and 15 frugivory networks totaling 25 mutualistic
networks (see Table S1 in supporting information). These
networks ranged from networks with small species richness (animal
species richness, 4= 14; plant species richness, P=11) to species-
rich networks (A=64; P=43) and from loosely connected
networks (connectance, (C=0.07) to highly connected networks
(€=0.47). For each of those networks, we generated an ensemble
of 1000 matrices using four different models to test model
performance. Whenever a model generated a network with
disconnected species or with a C value 3% larger or smaller than
the real one, we discarded that network before running the model
again [5,33].

In most mutualistic relationships, interactions can only occur
between species in two well-defined sets (e.g., animals and plants),
but food webs do not have this two-mode structure. In this sense,
in food web models, all species but producers can be both predator
and prey; in contrast, animals in the mutualistic networks studied
here (pollination and seed dispersal) act as foragers by feeding on
fruits and nectar provided by plants. Therefore, we adapted all
food web models used to the two-mode nature of mutualistic
networks. Our objective was to make as few changes as possible in
the original models. We used the same set of simple rules of food
web models, but interactions only occurred among species of
different sets. As a result, all of the models used the input
parameters 4 and P as well as the connectance, which is defined as
C=E/AP where E is the number of recorded interactions. Below,
we first describe each model in detail and then the adaptations we
made to deal with the two-mode nature of mutualistic networks.
We recognize that the models used in this study only represent a
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subset of the available food web models (e.g., [6,13,34,35]), but we
consider this to be a representative set of models that encompass a
wide range of candidate rules for how food webs are built up.
Moreover, several models were proposed to explain the structure
of mutualistic networks (e.g., [2,14,36]). However, because our
focus is to build a bridge between models describing antagonistic
and mutualistic relationships, we chose to compare food web
model performance with that of a recent proposed model that was
directly inspired by food web models and has been shown to
successfully reproduce the structure of mutualistic networks [15].

The cascade model. The cascade model was the first of a
series of static models that were capable of reproducing some of
the structural properties of real food webs [4]. The cascade model
1s based on the assumption of hierarchical feeding, assigning each
of the § species in the community a random value that is uniformly
drawn from the interval [0,1], which represents species position
along a one-dimensional feeding hierarchy (Fig. 1A). Each species
has a probability ¢ =2CS/(S — 1) of consuming those species whose
values are smaller than its own [5]. In our effort to adapt the
cascade model to the two-mode nature of mutualistic networks, the
position of species are assigned independently for animals and
plants so that instead of ordering all species along an axis there are
two axes: one for animals and the other for plants (Fig. 1B).
Animals can potentially interact with plants whose values are
smaller than their own but can never interact with other animals.
The probability ¢ of the original model was not valid for the two-
mode version; we defined it as ¢ =E/7, in which T is the number
of possible interactions after species positions are defined. This
approach ensures that the model creates networks with
connectance that closely resembles the connectance of the
empirical food web.

The niche model. The niche model addresses some of the
limitations of the cascade model; in particular, it addresses the lack

A C
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Figure 1. Diagrams comparing original food web models and
their two-mode version. (A) the cascade model: each species
(represented as an inverted triangle) is assigned a random value being
placed along an axis. A given species i (gray) potentially interacts with
those species whose values are less than the value assigned to i (as
indicated by arrows); (B) the cascade model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are
randomly placed along two separate axes. The upper axis represents
the axis of consumers. Therefore a given species i in the upper axis
potentially interacts with those species in the lower axis whose values
are lower than the value assigned to i. (C) The niche model: Each
species is assigned a random value n; and consume all species within a
range of niche values r;. (D) The niche model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are placed
along two separate axes according to their n;. Each species in the upper
axis consume all species in the lower axis that fall within a range of
niche values r;.

doi:10.1371/journal.pone.0027280.g001
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of feeding cycles and cannibalism. However, the niche model
retains much of the simplicity and tractability embodied by the
earlier model [5,12]. As in the cascade model, the original niche
model [3] assigns a position (n,) taken from a uniform distribution
on the interval [0,1] for all § species and places each of them along
a gradient (Fig. 1C). For each consumer ¢, a niche range 7= xn;
where 0 = x = 1 is a random variable with a beta-distributed
probability density function p(x) = (1 — x)( f — 1) with f=(1/2C) —
1 is then defined. This causes species with higher 7, to tend to eat
more species and ensures that the average of all species’ r equals ¢
[33]. The range center (¢;) is a uniformly random number between
7i/2 and min (n;, 1=7/2). A consumer ¢ eats all species j whose #;
fall within its range (Fig. 1C). Hence, a diet interval /(D)) = [¢,—7;/2,
¢+1;/2] is defined for all species. As in the cascade model, to adapt
the niche model to mutualistic networks, we defined 7 for plants and
animals within two separate axes and diet ranges were defined only
for animals and projected in the plants axis, such that animals
always behaved as consumers and plants always behaved as food
resources (Fig. 1D). Although we recognize that in many cases plant
traits are responsible for selecting their interaction partners and thus
network assembly could occur from the perspective of plants (e.g.,
[36]) we opted for an approach that is similar to the original models
in which basal species have no defined ranges [5]. To obtain /(D) for
animals, we used functions that are identical to those used in the
original model (see Text S1 for reasoning).

In addition to having a more complex set of rules, the niche
model differs from the cascade model because it imposes
intervality in how links to resource species are assigned. Intervality
means that all of the species in a food web can be placed in a fixed
order on a line such that each consumer’s set of resources forms a
single contiguous segment of that line. Therefore, intervality
suggests that trophic niche space can be represented by a single
dimension [12,37].

The minimum potential model. Even though the niche
model seemed to perform fairly well in reproducing most of the
features of empirical food webs, food webs often do not show
intervality for all species [34]. The minimum potential niche
model [7] is a niche-based model that relaxes the interval feeding
constraint of the niche model in a similar way to the relaxed niche
model [33]. In the minimum potential niche model (hereafter
MPN), forbidden interactions lead to gaps in consumers’ diets [7].
The MPN model can be seen as a way of embedding
multidimensional niches into a one-dimensional context [7]. The
MPN model is similar to the niche model in that at first, the
positions along the niche axis and diet interval [(D,) of each species
are defined. However a consumer eats species that fall within its
diet interval with probability 1 — f, where fis the probability of
having forbidden links in the diet (see Text S2). To adapt the MPN
model to mutualisms two axes are defined and only animals posses
I(D) as in the niche model.

Model of bipartite cooperation networks. The model of
bipartite cooperation (hereafter the BC model) was conceived for
two-mode cooperation networks such as mutualistic networks and
was directly inspired by food web models [15]. Here, we used a
slightly different version of the model described by Saavedra et al.
[15], following the authors’ suggestion. In this model, plants are
treated as members of class P and animals as members of class A.
The model consists of two mechanisms: specialization and
interaction. The specialization rule determines the number of
interaction partners, /,; of each species p € P. This number is
determined by the interaction among two values: the reward trait,
trp, @ number randomly drawn from an uniform distribution [0,1],
which is attenuated or amplified by an external factor 4, that is
randomly drawn from an exponential distribution, which accounts

@ PLoS ONE | www.plosone.org

Food Web Models Reproduce Mutualistic Networks

for effects such as population density. The higher the reward value
of plant p;, the higher is the number of potential interactions
established by p;. The interaction rule determines which species a €
A interacts with each species p € P. Interactions are limited by the
complementarity between the reward traits, #g,, for p € P and
foraging traits, ¢, for a € A. The foraging trait ¢z, which are also
uniformly drawn from [0,1], limits the range of possible partners
for each member of class 4, but again, interactions are affected by
external factors 4;, which could represent, for instance, temporal
variation and population density that are randomly drawn from an
exponential distribution for each interaction.

Interactions are distributed to plants sequentially, in ascending
order, according to their foraging traits tg,. Whenever fg,;> 4,
each link /,; is connected to the first node a’ € A’, where 4" is the
subset of nodes in 4 that have not already been linked to by
another node p # p;. Conversely, if ¢g,; = ;,; interactions of p; are
distributed using a mechanism similar to that proposed by Cattin
et al. [6], i.e., a plant p € P with lower trait value is randomly
selected, and an interaction is established with an animal
randomly chosen among its partners a” € A” where 4” is the
subset of nodes in 4 that have been linked in a previous time step.
If the supply of nodes in either A" or A4” is exhausted before all /,;
links have been allocated, then nodes in the other subset are linked
to instead. For additional detailed information on the model we
refer readers to Saavedra et al. [15].

Performance analysis

For each empirical network and their theoretical counterparts,
we calculated four structural properties often used to describe the
structure of mutualistic networks: the degree of nestedness [19],
degree of modularity [27] and the cumulative degree distributions
for both animals and plants [21]. We then used two procedures,
model fit and model likelihood, to evaluate the model perfor-
mances in reproducing these structural properties. Below, we
describe each structural property and both procedures to test
model performances.

Nestedness. Nestedness is a property of networks in which
the interacting assemblage of a species is a subset of the interacting
assemblage of species with more interactions [19]. The index
NODF (an acronym for nestedness metric based on overlap and
decreasing fill [38]) was used to compute the degree of nestedness
of both empirical networks and those generated by the models.
NODF ranges from 0, when the matrix shows other nonrandom
patterns of resource use, to 100, when the matrix is perfectly
nested (additional information on NODF at [38]).

Modularity. Modules within a network are subsets of species
that are more densely connected to each other than to species in
other modules [39]. To find the best partition of a given network
into modules, we used the simulated annealing algorithm to
maximize and index of modularity, A, that accounts for the
number of interactions between species belonging to the same
module and the number of interactions between species belonging
to different modules [39]. M equals O if nodes are placed at
random into modules or if all nodes are in the same module and
approaches 1 if modules have well-delimited boundaries (i.e., few
between-module interactions). Although M does not take into
account the fact that mutualistic networks are two-mode networks,
any potential effect of the two-mode structure on modularity is
controlled since all networks analyzed have two sets of species.
Thus, any difference in M among real and theoretical networks
cannot be related to the two-mode structure.

Degree distributions. The degree, £, of a species ¢ in a
mutualistic network can be defined as the number of species with
which species ¢ interacts. Therefore, the cumulative degree
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distribution of a mutualistic network describes the proportion of
species with & or more interaction partners [21]. It can therefore be
considered a description of the pattern of ecological specialization
in the community [40]. Because we dealt with two-mode networks,
degree distributions were calculated separately for animals and
plants.

Model fit. To test whether the models were capable of
reproducing empirical network properties, we used different
procedures depending on the topological property analyzed. For
nestedness and modularity, we calculated the normalized model
error (NMFE) between the empirical values and the values obtained
from the numerical simulations of each model. The NME can be
defined as the difference between the model’s median property
value and the empirical value divided by the difference between
the model’s median property value and the property value at the
2.5% or 97.5% quantiles, depending on whether the empirical
value is lower or larger than the model’s median [33]. A value of
NME greater than 1 means that the empirical value is significantly
different from the degrees of nestedness or modularity of networks
generated by a given model [33]. By doing this, we did not make
particular assumptions about the distribution of property values
generated by the food web model [33]. Here, we used a slightly
modified version of NME in which we use the absolute value of the
difference between the median and the quantile to normalize the
index so that the direction of the deviation is maintained.
Therefore, a positive NME indicates overestimation of a
property value by the model, and a negative NME indicates
underestimation. To test whether the models were capable of
reproducing degree distributions, we used the Kolmogorov-
Smirnov test [13].

Model likelihood. The procedures described above allow us
to distinguish among situations in which a network property is
reproduced or not. However one model could be regarded as the
one with larger fit when in fact it just produces a larger variance of
metric values. Therefore, to perform comparisons among models,
we opted to use the likelihood approach, which is a statistical
framework specifically designed to allow direct comparisons
among many competing models [32]. Recent studies (e.g.,
[41,42]) aiming to describe how mutualistic networks change
over time have shown that species pairwise-interactions are highly
variable whereas the overall network structure often remains
unmodified. Therefore, we opted for a likelihood approach that
differs from recent proposed likelihood frameworks, which focused
on finding the model that was most likely to reproduce all pair-
wise interactions observed in real networks [7,43]. Because we
were interested in the distinct overall structural properties of each
network, the objective of our likelihood approach is to determine
which model was most likely to reproduce the observed value for
each property separately, gauged by a summary statistic (see [44]).
If the difference between the negative log-likelihood of the best
model and another given model was less than 2, they were
considered equally plausible [32]. For additional information on
how we computed model likelihood using simulations see Text S3.

Correlates of model performance. To develop a better
understanding on which characteristics of the real network affects
the performance of each model, we used a general linear model to
test whether features such as connectance (C), animal species
richness (4), plant species richness (P), and the nestedness and
modularity values themselves affected the normalized errors of
each model, NME (i.c., a proxy for the degree of fit of a given
model for each real network). We used relative nestedness (N*;
[19]) and relative modularity (M*), in which the observed value is
corrected using the average value of 1000 random networks with
the same size and connectance as the original network. The results
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still held if we assumed other theoretical benchmark that kept
heterogeneity in the number of interactions across species (“null
model 27, [19], Table S2). There was no correlation among N*
and M* (r=—0.39, n=25, P>0.05), which allowed both to be
included in the analysis as explanatory variables. Then, for each of
the four models, we used multiple regression models of the
following form:

NME = By+ CXf;+ AXPo + PXP3+ N*Xf, + M*X[; + ¢
where NME is the normalized error, f8; are the coefficients of the
multiple regression and ¢ is the usual Gaussian error. All
regressions assumptions, such as the normality of residuals, were
met. Then we used the Akaike criterion to select the best set of
variables in predicting NME [45]. The tests were performed for
NMEs in reproducing NODF and M separately.

Results

All models performed remarkably well in reproducing both the
nestedness and modularity of the mutualistic networks. The
percentage of networks whose metrics were reproduced by each
model varied between nearly 50% and 95% (Table 1). The models
that reproduced the properties in the largest proportion of
networks were the two-mode cascade model and the BC model
(Table 1). When we directly compared the models as competing
hypotheses using the likelihood approach, the outcome of the
model comparison depended on the property being analyzed
(Table 1). The cascade and niche models were among the most
likely models for 84% of the networks considering nestedness. This
result held when using a different nestedness metric, the matrix
temperature, which indicates that these results are not affected by
metric choice (Text S4). Similarly, when considering modularity,
the cascade model was among the most likely models for 84% of
the networks. However, the BC model instead of the niche model
was the second best model in terms of reproducing modularity
(Table 1). Regarding degree distributions, the results are less
straightforward. All four models reproduced degree distributions
for nearly all analyzed networks according to the Kolmogorov-
Smirnov test results (Table 1). Nonetheless, the model comparison
suggested that the cascade model was usually among the best
models in reproducing plants degree distributions, whereas the
niche and BC models outperformed the others more often in
reproducing the degree distribution of animals (Table 1).

The sign of NME indicates whether the model overestimates or
underestimates a property value for a given network. Therefore,
an excess of negative values of NME indicates that a model often

Table 1. Proportion of mutualistic networks (N=25) whose
properties were reproduced by each model (NME<T;
Pys<<0.05)/proportion of networks in which each model was
among the most likely.

NODF M Pk, Pkp
Cascade  0.84/0.84 0.88/0.84 0.96/0.52 1.00/0.76
Niche 0.80/0.84 0.52/0.44 1.00/0.88 0.96/0.60
MPN 0.60/0.68 0.56/0.60 0.84/0.64 1.00/0.64
BC 0.72/0.80 0.80/0.72 0.96/0.84 0.92/0.60

Columns represent the network properties analyzed: NODF = nestedness, M =
modularity, Pk, = cumulative degree distribution of animals, Pk, = cumulative
degree distribution of plants. Because more than one model could reproduce or
be among the most likely models in reproducing the property of a given
network the sum of the proportions in each column is larger than 1.
doi:10.1371/journal.pone.0027280.t001
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Figure 2. Normalized error (NME) of each model in reproducing nestedness (A) and modularity (B) for each of the 25 analyzed
networks. In (A) networks are sorted in increasing order of relative nestedness. Notice nestedness tend to be underestimated for networks with
large nestedness degrees as suggested by partial regression coefficients (Table 2). In (B) networks are sorted in increasing order of relative modularity.

doi:10.1371/journal.pone.0027280.9g002

underestimates a given property, whereas positive values suggest
that the model has a tendency to overestimate it. The niche and
MPN models tended to generate networks with lower degrees of
nestedness and higher degrees of modularity than real networks
(Fig. 2). The cascade and BC models were more balanced and
showed fewer signs of systematic biases in one direction or another
(Fig. 2). However, the degree of fit of models was associated with
basic topological features of networks (see Table 2). Noteworthy
network basic features explained between 70 and 95% of variation

in model fit regarding nestedness and modularity. All models
tended to underestimate nestedness as the degree of relative
nestedness observed increased (P<0.01; Table 2, Fig. 2A). The
degree of relative nestedness also affected the ability of the
cascade, niche and MPN models to reproduce modularity. These
models tended to overestimate network modularity for networks
that had a high degree of relative nestedness (T'able 2). The degree
of relative modularity had the opposite effect for the cascade,
MPN and BC models. When reproducing networks with high

Table 2. Effects of basic real network features in model degree of fit as expressed by the NME.

F df I A P Cc N* m#*

Cascade 266.4%* 23,1 0.92 - - - —2.01%** =

Niche 67.1%%+ 213 0.89 —0.01* - - —1.05%%* 2.07*
MPN 241 5%x* 22,2 0.95 —0.01%** - - —1.84%%¢ -

BC 19.11%%* 213 0.70 - - 3.15%* —0.6%** 412%
Cascade 31.54%* 20,4 0.83 0.01* - 1.6% 0.60%** —6.15%%*
Niche 40.5%%* 213 0.83 0.01%* - —1.59% 0.76%** -

MPN 86.84*** 22,2 0.87 0.01%** - - 1.00%%* =

BC 31.89%%* 222 0.72 - - 2.53%* - —8.34%%*

*<0.05;
**<0.01;

doi:10.1371/journal.pone.0027280.t002

@ PLoS ONE | www.plosone.org

Multiple regression analyses results reporting the F-statistics (F), degrees of freedom (df), determination coefficient (%) and the partial regression coefficients of each of
the following factors: animal species richness (A), plant species richness (P), connectance (C), relative nestedness (N*) and relative modularity (M*). Traces mean that the
factor was not included in the best regression. The significance of each factor and the model as a whole is represented as follows:

***¥<0.001. The first 4 rows correspond to the NME for nestedness and the last for modularity.
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relative modularity, these models were more prone to underesti-
mate modularity (Table 2). Connectance also affected model fit.
Networks with larger connectance tended to have their degrees of
modularity and nestedness overestimated by the cascade (only for
nestedness) and BC models, whereas modularity NME decreased
with increasing connectance for the niche model (Table 2).

Discussion

Our results show that all four models performed fairly well in
reproducing the properties of empirical mutualistic networks.
However, the cascade and BC models more often generated
theoretical networks that were in agreement with the structure of
real mutualistic networks. Moreover, the cascade model was
frequently among the most likely candidate models in reproducing
the structure of mutualistic networks. Although the performance of
the cascade and BC models was similar, the cascade model is
much simpler than the BC model. In addition to attributing a
value to each species as done in the cascade model, the BC model
has many other free parameters that act as external factors that
affect interactions. Therefore, the good performance of the
cascade model appears even better when model complexity is
taken into account.

In food webs, the cascade model also reproduced some aspects
of the structure of interactions between consumers and resources
[5]. Nevertheless, other models such as the niche and MPN
models often outperformed the cascade model in reproducing food
web structure [35,7,33]. The niche model was mainly proposed as a
solution that included the possibilities of feeding loops and
cannibalism, which were not allowed by the minimal rules of the
cascade model [12]. In plant-animal mutualisms, on the other
hand, interactions only occur between species in different trophic
levels (plants and animals that forage in plant resources).
Therefore, as we dealt with this two-mode structure of mutualisms,
feeding loops were not a problem. This may partially explain the
success of the cascade model for mutualisms in spite of being
outperformed by niche model derivatives in the context of food
webs [5,7,33]. In addition to the two-mode structure, other
biological aspects of mutualisms might explain why the strict
feeding hierarchy generated by the cascade model suffices to
reproduce much of the structure of mutualistic networks.

Hierarchy is also an essential component in the BC model,
which was directly inspired by the set of rules of food web models
[15]. The success of the BC model in reproducing network
structural patterns in a previous work [15] already suggested that
such hierarchical processes should play a crucial role in organizing
mutualistic networks. Because all models considered here
encompass hierarchical processes our results reinforce their
relevance in mutualisms. Moreover, the similar success in
reproducing the structure of real networks of both BC and the
much simpler food web models suggest that the feeding hierarchy
by itself is enough to capture much of the structure of mutualistic
networks. Although multiple processes may generate similar
patterns in ecological systems, our results at least indicate possible
mechanisms shaping the organization of mutualistic interactions in
networks of interacting species.

The most compelling biological basis proposed for the ordering
dimension that induces a feeding hierarchy in food web models is
body size [12,37,43,46]. In this sense, in the context of food webs,
the hierarchical ordering in the cascade model would lead to
larger species interacting with smaller species. Similarly, in niche
models, larger species would tend to have wider trophic niches
[43]. In the case of pollination and frugivory networks, such
hierarchy could refer to any measurable traits related to the
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feeding interaction among fruiting/nectar-producing plants and
fruit/nectar consumers such as bill diameter, bill or mouthparts
length, and fruit size or corolla depth. Such traits would be
represented in the adapted models as the two independent axes in
which animals and plants are ordered. Indeed in a series of studies,
Stang et al. [47,48] showed that structural patterns of pollination
networks such as nestedness could be reproduced by incorporating
size thresholds imposed by floral morphology on nectar-feeding
animals. Moreover, body size was found to predict the number of
interactions of ants in ant-plant mutualisms [49]. Finally, larger
frugivores are often able to eat a large variation in fruit sizes than
smaller frugivores, leading to hierarchical ordering in frugivory
[31]. From an evolutionary perspective trait based feeding
hierarchies can emerge as a consequence of natural selection
favoring particular high profitable resource combinations [17].

The way each model encompass feeding hierarchies may also
partially explain differences in model performance. Species-rich
mutualisms often form networks modules of interacting species
based on shared phenotypic traits such as fruit color, flower shape,
animal body mass [27,50]. Nevertheless, modularity in mutualisms
such as pollination and seed dispersal is often smaller than
observed in antagonistic interactions [l18] or in symbiotic
mutualisms [2]. The strict feeding hierarchy imposed by the
cascade model causes high overlap in the set of interaction
partners among consumer species, leading to low modularity.
Conversely the set of rules in other food web models, such as niche
and MPN models, that partially relax the cascade hierarchy [9]
might favor higher modularity. In niche and MPN model, species
whose feeding ranges overlap may form network modules that
differ from modules formed by species whose feeding ranges
overlap farther in the niche axis. In fact, both niche and MPN
models were outperformed by the cascade and BC models in
reproducing the low degree of modularity in mutualistic networks,
especially because they usually generated networks that were more
modular than the empirical ones. This may also partially explain
the superior performance of both the niche and MPN models in
comparison with the cascade model in generating the more
modular structure of food webs [5,33].

The degree of relative nestedness and relative modularity of the
real network were the main features of real networks affecting
model fit; for networks with higher relative nestedness, the
cascade, niche and MPN models tended to underestimate
nestedness and overestimate the modularity of real networks.
Conversely for networks with higher relative modularity, real
modularity was usually underestimated. The sensitivity of the
models accuracy to the degree of nestedness and modularity in the
real networks indicates that the high degrees of nestedness or
modularity observed in some mutualistic networks are not
completely explained by the processes incorporated in food web
models analyzed here. Stouffer et al. [13] showed analytically that
a food web model should satisfy two criteria in order to reproduce
most empirical food web properties: niche values should form a
totally ordered set, and each species has a specific, exponentially
decaying probability of preying on a fraction of the species with
lower niche-values. In the context of mutualisms, it seems that a
model’s ability to reproduce empirical networks is not only a
matter of reproducing the functional forms for the distributions of
numbers of prey, predators and links per species, but also of
reproducing the relationship between nestedness and modularity.
Many mechanisms have been proposed for the occurrence of the
nested pattern, namely, differences in abundance among species
[26,51], low interaction intimacy [2], trait complementarity and/
or exploitation barriers coupled with coevolutionary convergence
[14,17,48] and frequent extinctions of specialist-specialist interac-
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tions [52]. Along the same lines, trait matching along with
phylogenetic constraints [20] and high interaction intimacy [2] are
regarded as the main mechanisms that could lead to a modular
structure in mutualistic networks [27]. The rules of the cascade,
niche and MPN models can be interpreted as a form of
encompassing trait complementarity and exploitation barriers
among interacting species. Similarly, the BC model is based on the
complementarity among plants reward traits and animals foraging
traits. Although they do incorporate complementarity, they do not
explicitly consider other mechanisms shaping network structure
such as interaction intimacy, differential extinction and phyloge-
netic constraints. Evolving network models, models in which the
number of species and interactions change over time, have also
been shown to partially explain the structure of mutualistic
networks [2,36]. Future studies combining the mechanisms present
in these two different classes of models might provide additional
insights in the organization of mutualistic networks.

To sum up, food web minimal models were capable of
reproducing most of the mutualistic networks analyzed. Notewor-
thy, even the cascade model, the simplest among the models
considered here, reproduced the structure of nearly the whole set
of networks. Such results open the possibility that the assembly of
networks that describe mutualisms and antagonisms obey a similar
simple set of rules and reinforce that feeding hierarchy might be a
fundamental piece in this puzzle. Therefore, despite the differences
in ecology and evolution of mutualisms and antagonisms [17,18],
they seem to share some key aspects. Our knowledge of the
assembly of natural communities would benefit from future studies
that scrutinize those commonalities and differences and attempt to
sort out the evolutionary and ecological mechanisms that are
responsible for each.
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Interaction intimacy, the degree of biological integration between interacting
individuals, shapes the ecology and evolution of species interactions.
A major question in ecology is whether interaction intimacy also shapes
the way interactions are organized within communities. We combined ana-
lyses of network structure and food web models to test the role of interaction
intimacy in determining patterns of antagonistic interactions, such as host—
parasite, predator—prey and plant—herbivore interactions. Networks
describing interactions with low intimacy were more connected, more
nested and less modular than high-intimacy networks. Moreover, the per-
formance of the models differed across networks with different levels of
intimacy. All models reproduced well low-intimacy networks, whereas the
more elaborate models were also capable of reproducing networks depicting
interactions with higher levels of intimacy. Our results indicate the key role
of interaction intimacy in organizing antagonisms, suggesting that greater
interaction intimacy might be associated with greater complexity in the
assembly rules shaping ecological networks.

1. Introduction

The ways in which species interactions are organized within biological systems
affect different aspects of ecological and evolutionary dynamics, from commu-
nity stability [1,2] to ecosystem functioning [3] and coevolution [4]. Ecologists
have made substantial efforts to describe the structure and understand the
assembly of ecological communities. Through these efforts, studies focusing
on the biological attributes shaping species interactions have distinguished
the key role of a few species traits in shaping patterns of interaction within eco-
logical networks. These traits include abundance [5,6], interaction type [7] and
interaction intimacy, the degree of biological integration among interacting
individuals of different species [8—10].

There is compelling evidence that the degree of interaction intimacy shapes
the ecology and evolution of species interactions [11]. High-interaction intimacy
is often associated with the propensity of an individual to interact with few indi-
viduals of other species during most of its lifetime [8,11]. For example, in
interactions established by symbiotic organisms, e.g. parasites and gall-forming
insects, each individual spends a substantial part of its life within or attached
to a single host. These interactions often involve a high degree of physiological
integration associated with trophic and physical dependence. High intimacy at
the individual level does not necessarily imply in high specialization at species
level, as is well known for some generalist parasites [12]. Nevertheless, owing
to the high level of biological integration between individual consumers and
their hosts, extreme patterns of specialization, such as monophagy [13], are a
common feature of some high-intimacy interactions. In contrast, interactions
with lower levels of intimacy, such as those between predators and prey [14],
often imply an absence of physiological integration or trophic and physical
dependence on any single individual interaction partner. For mutualisms, the
analysis of networks describing species interactions with different levels of

© 2012 The Author(s) Published by the Royal Society. Al rights reserved.
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interaction intimacy shows that these networks possess distinct
structural properties that might be a result of distinct ecological
and evolutionary dynamics [9,15]. Recent analyses also suggest
that interaction intimacy is particularly important in shaping
mutualisms, whereas the effects of interaction intimacy on
the network structure of antagonisms are less clear [10].

A fundamental question is how the underlying processes
moulding ecological networks differ between interactions vary-
ing in their degree of intimacy. Food web theory provides a
useful approach to explore the potential differences between
the assembly rules of antagonisms showing low- and high-
intimacy interactions. The development of models capable of
reproducing the structure of food webs [16] has yielded insights
into the formative processes underlying ecological interactions
[17-20]. Despite the simplicity of such models, the fit of a par-
ticular model to data suggests that it captures at least the most
essential mechanisms of network assembly. Such food web
models were originally developed to reproduce food webs that
describe interactions across different trophic levels. However,
recent work adapted these models to explore the mechanisms
shaping two-mode ecological networks, such as plant—animal
interactions [21,22].

This paper investigates the differences in the assembly rules
of ecological networks related to interaction intimacy. We
divided our analysis into two parts. First, we investigated the
role of interaction intimacy in shaping patterns of interaction
in antagonisms, such as parasitism, predation and variable
types of plant—herbivore interactions. We expected that highly
intimate interactions would have higher modularity due to
different factors associated with the phenotypic integration
among partners, including strong phylogenetic constraints
and coevolution favouring specialization [9,23]. In contrast,
high nestedness and low modularity are expected for inter-
actions with low intimacy, in which differences in abundance
[6] and body size [14] are hypothesized to play a key role.
Second, the approach based on food web models allowed us
to investigate whether the assembly of two-mode antagonistic
networks varies across distinct levels of interaction intimacy.
We tested the hypothesis that models with more complex
rules would be required to reproduce networks with high
levels of interaction intimacy.

2. Methods

2.1. The dataset and the characterization of
interaction intimacy

To test if antagonistic networks with varying levels of interaction
intimacy show different structural patterns related to different
assembly rules, we used 26 two-mode antagonistic networks
available online from the Interaction Web Database and compiled
from the literature (see the electronic supplementary material,
appendix A). This dataset encompass a broad range of antagon-
isms, including parasitism, predation, grazing and different
types of plant—herbivore interactions, with networks ranging
from small networks with no more than 16 species and 15 inter-
actions to large networks with more than 300 species and
700 interactions (see the electronic supplementary material,
appendix A). As in any dataset of ecological networks, certain
types of interactions are under-represented (e.g. few aquatic
antagonisms). However, we attempted to minimize the over-
representation of particular types of interactions, such as
parasite—host interactions, opting for a smaller dataset

encompassing representatives of a variety of antagonisms. n

We did not use entire food webs because they often include differ-
ent types of interactions varying in their degree of intimacy [16].
Conversely in two-mode networks all links represent the same
kind of ecological interaction and thus are presumably subjected
to similar ecological and evolutionary processes [23]. Moreover,
we did not analyse networks in which a considerable proportion
of nodes (‘species’) are actually sets of species that are assumed
to be ecologically similar because two species sharing similar
resources or consumers may differ strongly in their degree of inti-
macy. Although the preponderance of plant-herbivore networks
in our dataset can be viewed as a potential bias, it is important
to note that insects represent much of the animal diversity
worldwide as well as most of the lifestyles found in nature [24].
Interaction intimacy can be viewed as a function of the degrees
of physiological integration, trophic and physical dependence of
interacting individuals of different species [8]. We opted to use a
conservative approach [10], classifying each interaction according
to three levels (low, intermediate and high) of interaction intimacy.
Interactions with low intimacy (1 = eight networks) are character-
ized by an absence of physiological integration and physical
dependence and by highly mobile consumers that are able to
feed upon many different individual prey throughout their life-
times. Examples include predation, grazing by mammalian
herbivores and interactions between plants and leaf-chewing
insects, such as grasshoppers. Interactions with intermediate inti-
macy (n = eight networks) are characterized by an absence of
physiological integration and a certain degree of physical and
trophic dependence. Examples include the interactions between
plants and insect herbivores whose individuals feed mainly in
one or a few individual hosts for long periods of time, such as
the larvae of lepidopterans, coleopterans and dacine fruit flies.
Finally, interactions with high intimacy (1n =10 networks) are
characterized by extreme physiological integration and the physical
and trophic dependence of consumers on single hosts for at least
part of the consumer’s life cycle, such as fish parasites, gall-forming
insects, leaf-mining insects and endophagous flower parasites.

2.2. Structural analysis of antagonistic networks

We used six metrics to characterize the structure of antagonistic
networks: (i) connectance, the proportion of all possible inter-
actions that are actually recorded; (ii) variance in the number of
interactions among consumers, ¢ (iii) and among prey (hosts),
a; (iv) nestedness; (v) modularity; and (vi) the number of mod-
ules. We used the metric NODF (nestedness metric based
on overlap and decreasing fill) to characterize nestedness [25]
and M to characterize modularity and compute the number of
modules in the network [26]. We used general linear models
(GLMs) to investigate if interaction intimacy (coded as an ordinal
explanatory variable) explains differences in each of the structural
metrics. Because species richness varies widely across networks
potentially affecting network structure, we used the total species
richness, S, as a covariate. Network metrics are often correlated,
for that reason, we performed two complementary analyses.
First, we used a principal component analysis (PCA) to test
whether the combined information on the metrics provides a
clear partition among interactions with different levels of intimacy
(electronic supplementary material, appendix B). Second, we used
null model analysis to determine if the differences in nestedness
and modularity are consistent after controlling for other network
properties (see the electronic supplementary material, appendix B).

2.3. Food web models and assembly rules of
antagonistic networks

To test whether networks with different degrees of intimacy are
better reproduced by different assembly rules, we compared the
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ability of three probabilistic food web models, namely the cascade
model [17], and the one-dimensional and two-dimensional prob-
abilistic niche models (PNMs), respectively [27], to predict
interactions within networks. Each model represents distinct can-
didate assembly rules with increasing degree of complexity that
may reproduce antagonistic networks.

The first model is a probabilistic version of the cascade model
[17]. In the original cascade model, each species is given a position
(n) along an axis that represents a feeding hierarchy, and a given
species i can only use species j as a resource if species j occupies
a lower rank in the feeding hierarchy, ie. if n; > n;. Because
likelihood-based methods require that any interaction must have
a non-zero probability of occurrence, we adapted the cascade
model as a logit regression

P(a,- = l) B
tog {m} = a+ Bdij, 2.1)

in which g;; is a cell in the matrix A that depicts species inter-
actions, @ and B are parameters to be estimated, and ¢;; equals
1if n; > n; and 0 otherwise. Thus, the probability of an interaction
between consumer i and resource j given a particular parameter
set 0= {ny,ny...ns, a, B} is

e B

P(i,j|6) = [T

(2.2)
To maintain consistency with the original rules of the cascade
model, we constrain « to be <1 and B>1 such that the
probability of interaction is larger if n; > n;.
In the probabilistic niche model (PNM) [27,28], the consumer
may use a set of resources within a determined diet range. The

probability of an interaction between consumer i and resource j
is a continuous function:

P(i,j|6) = Uﬁexp{—(m)y}, (2.3)

where 1, represents the position in the niche dimension d for
resource j, c4; represents the diet optimum of consumer i
for dimension d, r,; is the diet range for consumer i within
dimension d, y controls the cutoff rate of the probability function
and v is the maximum probability that i consumes any given
prey, here set to 1 following Williams & Purves [27]. Because
species in two-mode networks will only be consumers or
resources, species positions (1) are defined only for the R species
that are used as resources, whereas diet positions and ranges
(c and r) are defined only for the C consumer species. Thus,
the parameter set can be defined as 6= {n41, n42,...14r, Ca1,
Cazs---Cac, Va1, Vap, ---Tac, y}. We restrict our analyses to
the one-dimensional (D =1) and two-dimensional (D =2)
niche models.

For each two-mode network represented by a matrix A, we
computed the probability of reproducing each link under each
model (cascade, one- and two-dimensional PNMs) for a given set
of parameters. Therefore, we define the log-likelihood for a given
parameter set as

z]\o ifa; =1
L(6lA) = ZZI { P(i,j|6) ifa;=0f" (2:4)

The maximum-likelihood parameter set is that which maxi-
mizes the likelihood. All models have a large number of
parameters. Therefore, to obtain maximum-likelihood estimates
(MLEs) is an optimization problem. We used simulated anneal-
ing [29], an optimization procedure that is less prone to
become trapped in suboptimal values, and the Latin hypercube,
a sampling technique that allows to explore large parameter
space [30]. We repeated the procedure 30 times for each combi-
nation of networks and models, starting from different points
in parameter space to improve the reliability of the estimates.

To compare model performance, we used the corrected
Akaike information criterion for finite sample sizes, AICc [31].
The model with the lowest relative value of AICc is that
showing the best fit to the data. We also computed the expected
fraction of correct links for each network under each model, an
additional measure of model performance [32]. The expected
number of correctly predicted links can be computed as
Nc(A[0) =3, >>;a;P(i,j|6). Therefore, the expected fraction of
links predicted correctly, f., is obtained by dividing N, by the
number of interactions in the actual network. This approach is
possible because MLEs for parameters imply that all models
would tend to generate networks with connectances similar to
the connectances of the real networks. We then tested whether
the f. differed between networks with high, intermediate and
low intimacy. To control for the possible effect of network size
on f., we used a GLM in which total species richness and level
of interaction intimacy were factors. We performed the test
separately for each food web model.

3. Results

After controlling for species richness, all aspects of antagonistic
network structure but the variance in the number of interactions
per consumers (F; 3 = 1.36, p = 0.28) varied across the gradient
of intimacy in predictable ways: low-interaction intimacy was
associated with higher connectance (F,.3=>5.74, p=0.01),
higher nestedness (Fpo3 = 9.89, p=0.0009), a higher variance
in the number of interactions per resource (Fpp3=17.36, p <
0.0001), lower modularity (F5.3 =5.79, p = 0.01) and a smaller
number of modules (Fpo3=3.56, p=0.04; figure 1). In all
cases, only networks with low intimacy differed signifi-
cantly from networks with intermediate and high intimacy
(figure 1). PCA analysis corroborates these results; by showing
low-intimacy interactions structurally differ from networks
formed by interactions with average and high levels of inti-
macy. Along of the same lines, null model analysis used to
evaluate nestedness and modularity significance led to similar
results, in which low intimacy is associated with significant
nestedness and high and intermediate intimacy with significant
modularity. For additional details on the analyses using the
GLM, PCA and null model analysis, see the electronic
supplementary material, appendix B.

The disparate structural patterns between antagonisms with
low intimacy and higher degrees of intimacy produced differ-
ences in the model fit for networks depicting interactions
with different levels of intimacy. The fraction of links correctly
predicted by the cascade model (figure 2) was significantly
higher for the low-intimacy networks (on average 76 + 21%)
than for the intermediate- (36 + 20%) and high-intimacy
networks (41 + 26%, F32 = 6.27, p < 0.01). There were no sig-
nificant differences in the performance of the one-dimensional
PNM (low: 78 + 20%,; intermediate: 70 + 23%,; high: 78 + 19%;
F32, =039, p=0.67) and the two-dimensional PNM (low:
81 + 20%; intermediate: 86 + 10%; high: 88 + 11%; F3., =
0.41, p = 0.31) models across networks depicting interactions
with different levels of intimacy. The model selection procedure
favoured different models for networks with different degrees
of intimacy. The goodness of fit of the cascade model was the lar-
gest for six of the eight low-intimacy networks (figure 2). For
intermediate and high levels of intimacy, the performance of
the one-dimensional PNM was superior, showing the highest
fit to the data for six of the eight intermediate-intimacy networks
and six out of 10 of the high-intimacy networks (figure 2).
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Figure 1. Boxplots for each structural metric of networks with different levels of interaction intimacy. The metrics are connectance; variance in the number of
interactions among consumers, alc; variance in the number of interactions among resources, alr; nestedness, NODF; modularity, M; and the number of modules per
network. The upper and lower limits of the box are the quartiles, the black band within a box represents the median and the error bars equal + 1.5 times the

interquartile range.

The goodness of fit of the two-dimensional PNM was only
larger for the largest intermediate-intimacy network and for
one of the largest high-intimacy networks (figure 2). However,
for large networks the differences in the AICc between the
two-dimensional PNM and the other two models were gener-
ally smaller and the disparity in the fraction of links correctly
predicted was generally larger (figure 2).

4. Discussion

Our results showed clear differences between the structural
properties of networks depicting low-intimacy antagonistic
interactions and those of networks that depict antagonis-
tic interactions with intermediate and high levels of
intimacy. A long-lasting notion is that high modularity and
low nestedness characterize antagonistic ecological networks
[7,23]. Here, we show antagonisms can give rise to nested
networks when interactions have a low degree of intimacy.
At the community level, the presence of generalist lifestyles
in interactions with low intimacy produced not only lower
specialization (higher connectance), but also higher nested-
ness. In contrast, the higher-intimacy interactions are
associated with high specialization (lower connectance) and
also to higher modularity in antagonisms. Similar patterns
were reported for mutualisms, in which intimate mutualisms
are highly modular, whereas low-intimacy mutualisms are
often highly nested [9]. Taken together, these results suggest
the ecological and/or coevolutionary processes that shape
interaction patterns might be similar for systems with similar

levels of intimacy despite these systems representing antag-
onisms or mutualisms. Nestedness partially emerges due
to differences in population abundances among potential
partners [6], probably a key component shaping both mutu-
alisms and antagonisms with low intimacy. In addition, it
has been proposed that grazing and free-living mutualisms
might be much alike in the evolutionary processes shaping
specialization [11], whereas symbiotic mutualisms might be
similar to symbiotic antagonisms in the evolutionary pro-
cesses shaping their patterns of interaction [33]. Moreover,
our results suggest that interaction intimacy might have
strong implications for the stability of species interactions.
Nested patterns of resource use may have a destabilizing
effect on antagonisms, as suggested by numerical simulations
[7] and qualitative stability analysis [2], whereas the lower
connectance and higher modularity of intimate antagonisms
are associated with higher stability at the community level
[2,7]. Future studies should investigate if antagonisms with
low-interaction intimacy in fact tend to be more unstable to
ecological perturbations than intimate antagonisms. Overall,
our analyses using food web models contribute in three prin-
cipal ways to our understanding of the organization of
antagonisms involving multiple interacting species.

First, our results show that simple models are capable of
reproducing different types of antagonistic, two-mode net-
works. Therefore, large differences in network structure can
be reproduced by a set of simple models assuming that antag-
onistic interactions are determined by a few dimensions in
the niche space. Because two-mode networks are the build-
ing blocks of more complex ecological networks [34], a
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promising avenue for research is to explore how ecological net-
works formed by different types of interactions [10] can be
reproduced by merging assembly rules in different ways.
Second, model performance differed among two-mode net-
works with different levels of interaction intimacy. The
mechanisms underlying intimate interactions can be very com-
plex. Organisms, such as leaf-mining and gall-forming insects
and parasites need very specific host-recognition systems and
mechanisms to avoid the mechanical and chemical defences
of the hosts, in addition to specific morphology and physiology
that allow these organisms to live within their hosts in such a
close relationship [13,33,35]. Similar trends are observed in
interactions with intermediate levels of intimacy, such as
those formed by caterpillars and their host plants, in which
complex defence/counter defence complementarities play a
key role [36,37]. Thus, the assembly mechanisms of intimate
interactions are in general much more complex than the mech-
anisms structuring low-intimacy trophic interactions, such as
body size [14,32], feeding apparatus constraints [38] or phenolo-
gical matching and abundance effects [39]. These differences
were mirrored by differences in model performance. The
cascade model, the simplest in the set of models we tested in
this study, can reproduce a great percentage of the interactions
in low-intimacy networks, but it performs poorly in repro-
ducing networks depicting interactions with intermediate
and high levels of intimacy. These results generalize recent

findings [22] that the cascade model shows good performance
in reproducing low-intimacy mutualistic networks, pointing
out for general mechanisms shaping low-intimacy mutualisms
and antagonisms.

The cascade model tends to generate networks that are
more nested than modular [22] and was thus unable to repro-
duce the highly modular structure of networks of interactions
with higher intimacy. Conversely, the two versions of the
PNM were much more successful in reproducing the high-
intimacy networks. The addition of one dimension to the
niche space was only advantageous for the largest networks
analysed. This finding agrees with previous results for
whole food webs [27]. Therefore, the simple assumptions of
the niche model appear to successfully capture the essential
assembly rules of networks representing intimate inter-
actions. The versatility of the rules of the niche model
facilitates the reproduction of the patterns of interaction of
consumers with very narrow diet ranges, allowing each con-
sumer to explore a small portion of the feeding axis such that
niche overlap is minimal. These results corroborate the view
[40] that one-dimensional niche generalization may be a
useful simplification in models used to reproduce the struc-
ture of food webs. Although this property certainly does
not mean that only one characteristic of consumers and
resources is important in determining who interacts with
whom in a given locality [16], it does suggest that the core
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of the network of interactions is well represented by consid-
ering one dimension that can, in turn, represent a
combination of traits. The current challenge is to find an
approach allowing the different traits shaping high-intimacy
interactions to be combined in estimates of the parameters. A
next step in this analysis would be to parametrize these
minimal two-mode models with biological information on
species traits, as in the recently introduced body size-based
models for entire food webs [28,32].

Third, in addition to the insights that they yield into the
assembly processes of ecological communities, food web
models furnish the possibility of building ensembles of net-
works that share the same realistic structural backbone but
encompass the uncertainty of the occurrence of each pairwise
interaction. For this reason, food web models have been used
to build ensembles of food webs with a similar realistic struc-
ture. This approach allowed tests of the general properties of

the structure and dynamics of study systems [2,41]. In this
paper, we expanded the range of the types of ecological net-
works that can be reproduced by food web models. One key
problem that still requires a solution is the extent of the appli-
cability of the one-dimensional niche simplification results to
all species and all their interactions. By probing into each net-
work, future studies could provide an assessment of the
species whose interactions are well predicted by food web
models and the species for which food web models often
fail. This assessment will allow us to improve our under-
standing of the generality of simple assembly rules and the
complementary mechanisms generating the diversity of pat-
terns of interaction in nature.
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Mathias M. Pires Capitulo 3
THE DISRUPTION OF PREDATOR-PREY INTERACTION NETWORKS AFTER

MEGAFAUNAL EXTINCTIONS

Mathias M. Pires, Paul L. Koch & Paulo R. Guimaraies Jr.

Abstract. The megafaunal extinction by the end of the Pleistocene drastically reduced
the diversity of large mammals worldwide especially in the Americas. Considering
the great chances in the composition of mammalian assemblages, it is expected this
large extinction episode would have caused a major re-organization of species
interactions, with implications to ecosystem function. However, we know little about
how the communities these animals were part of were organized. We combine
paleontological data and network models to reconstruct networks of predator-prey
interactions between Pleistocene mammals in the Americas and investigate their
structural properties. Although species composition were remarkably different
between Pleistocene networks in America and modern large-mammal assemblages in
Africa their network structure were likely similar. The Pleistocene extinction
disrupted the structure of such networks so that large-mammal assemblages in the
Americas are now simplified and more dependent on a few central species. Our
results suggest that considering only the structure of Pleistocene assemblages there is
no sign that they should be more prone to collapse them the assemblages we find
today in Africa. Yet, we show Pleistocene extinctions in the America generated
species-poor assemblages with structural properties that made them highly vulnerable

to species loss.
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INTRODUCTION

The extinction event known as the megafauna extinction, by the end of the
Pleistocene (~50 — 11 kyr BP), drastically reduced the diversity of large mammals
worldwide (Martin & Klein 1984). Australia and the Americas suffered the greatest
impact with more than 70% of the mammalian genera extinct (Koch & Barnosky
2006). Although several hypotheses on the causes for the megafauna extinction have
been debated (Koch & Barnosky 2006) we know little about how the communities
that perished were organized, i.e., the structure formed by species interactions. The
organization of ecological communities has implications for system dynamics and
consequently for the systems properties such as robustness (Dunne 2006). Therefore
understanding how ecological communities were organized may provide insights on
the causes why a given system collapsed (Roopnarine et al. 2007). Nonetheless, to
understand how paleocommunities were organized we need to find ways to
reconstruct the patterns of interactions of extinct species, which is often challenging
(Roopnarine 2009).

Evidences of paleoecological interactions such as marks of predators’ teeth on the
bones of prey (Marean & Ehrhardt 1995) or remains of food resources on the teeth of
consumers (Akersten et al. 1988) are occasionally found. It is unfeasible tough to
reconstruct the whole diet of a given species relying upon this type of evidence. When
fossils are well preserved, stable isotopes can be used to estimate probabilities of
interactions between pairs of species, allowing interaction patterns to be reconstructed
from the isotopic profiles (Yeakel er al. 2013). Additionally, it is possible to make
paleoecological inferences based on species biological traits. Dunne et al. (2008), for
instance, compiled information on the possible trophic role of Cambrian taxa and
aggregated taxa into trophic species to study the structure of networks describing the

possible trophic interactions between Cambrian species.
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An alternative for reconstructing paleoecological networks are modeling
approaches (e.g., Roopnarine 2009). In studies with modern communities, food web
models have been shown to reproduce several structural properties of real food webs
(Williams & Martinez 2000; Stouffer 2010). Food web models are often used to build
ensemble of food webs with a realistic structure, allowing network properties to be
investigated (e.g., Brose ef al. 2008; Dunne & Williams 2009). Here we combined
this widely used approach in the study of modern food webs and paleontological data
to investigate how Pleistocene mammal assemblages were organized. Understanding
the structural properties of communities that collapsed is key to understand whether
these communities had intrinsic properties that played a part in their collapse.

We first show network models can reproduce interaction patterns between large
mammals that are currently observed in African ecosystems. Then, we use these
models to reconstruct possible predator-prey networks between Pleistocene large
mammals and investigate what would be the most likely structure of such
paleoecological networks. To understand whether the organization of Pleistocene
assemblages was as particular as their faunal composition we then compare the
structure of Pleistocene networks with networks depicting interactions between the

large mammals in Africa and the surviving large mammals in the Americas.

METHODS
Pleistocene Data

To build the Pleistocene predator-prey networks we gathered information on the
composition of Pleistocene assemblages from the literature and the Paleobiology

Database (http://paleodb.org/; Table 1 and Appendix S1). We searched for

Pleistocene fossil assemblages for which the composition, chronology and taphonomy

suggest an actual community of interacting species. Because we are interested in the
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interaction patterns of large Pleistocene mammals we considered only large predators,
leaving out predators that were more likely to consume mostly small prey such as
rodents and invertebrates. As prey we considered only mammalian herbivores
weighing > 5 kg, which are more likely to be preyed upon by large carnivores
(Carbone et al. 1999). We obtained data on the estimated body mass of extinct
mammalian species from Smith et al. (2003b). When no body mass estimate was
available for a given species, we used the average body mass of species within the

Same genus.

Reconstructing networks

Assuming similar large-mammal assemblages are organized by similar processes
(Owen-Smith 1987), if a model is able to reproduce interaction patterns between
African large mammals it should be appropriate to reconstruct Pleistocene networks
with a realistic structure. Therefore, prior to the reconstruction of Pleistocene
networks, we used data on the interactions between large mammals in three locations
in Africa (Table 1) to test the performance of two different models in reproducing
large-mammal predator-prey interaction patterns.

Although food-web models are often used in studies with whole food webs
comprised of several trophic levels (Dunne 2006), food-web models can be adapted to
reproduce networks of interactions between consumers and resources such as
predator-prey interactions (Pires & Guimardes 2013). The first model is a
parameterized version of the probabilistic niche model (PNM; Williams et al. 2010).
Because body mass is often considered a key trait in determining species interactions
(Brose et al. 2006), including predator-prey interactions between terrestrial mammals
(Carbone et al. 1999), we parameterized network models using species body mass. In

the PNM species are ordered along an axis representing a niche dimension and a
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predator preys upon species within a determined diet range along this axis. The
probability of an interaction between consumer i and resource j is a continuous

function:
2
n.-— Ci
P(i,j16) = vexp{—( : ) } (D
}"i

where n; represents the position in the niche dimension for prey j, ¢; represents

the diet optimum of predator i, ; is the diet range for predator 7, and v is the maximum
probability that i consumes any given prey, here set as 1 following Williams et al.
(2010). Because we are not considering intra-guild predation, species can be only
predators or prey. Thus, species positions (n) are defined only for the prey species,
whereas diet center and ranges (¢ and r) are defined only for the predators (Pires &
Guimardes 2013). To parameterize the model using body mass information we
followed Williams et al. (2010) and set n = (log m; - logmuin)/(10gMmax - 108Mumin),
where m; is the body mass of prey species j and m;, and my,q are the minimum and
maximum values for prey body mass. The parameters r; and ¢; are free parameters.
Thus, the free parameter set can be defined as 6 = {c,, ¢z, ... ¢cp, 71, ¥2,...7p}.

The second model, herein LRM (log ratio model), is a statistical model that uses
the log ratio of the body mass of predator and prey species as the explanatory variable

(Rohr et al. 2010). The probability of interactions can be modeled as a logit

regression:
P(a. =1 , .
log Pla, =) — o+ flog 2|+ ylog?| &
P(a; =0) m; m;

2

in which a;; is a cell in the binary matrix A that depicts species interactions. a;; equals

1 if there is an interaction between predator i and prey j and 0 otherwise, and a, S and
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y are parameters to be estimated. Thus, the probability of an interaction between

predator i and prey j given a particular parameter set 0 = {a, B, v} is:

m; 2| M;
a+f log| — [+ylog”| —
m; m;

m; 2| My
a+plogl — [+ylog™| —
}’H/- m

J

P@i,j10) =

I+e 3)
For both models different parameter sets result in different probabilities of
interaction. The maximum likelihood parameter set is that which maximizes the log-

likelihood:

LOIA) - EEm{l i(;(j |]'6|)9) Z:Z’ :(1)}
E | / @

We combined the simulated annealing optimization (Kirkpatrick et al. 1983) and
the Latin hypercube sampling technique (Mckay et al. 1979) to find the parameter set
that maximizes the likelihood of each model (see Pires & Guimaraes 2013 for a
similar approach). To compare model performance, we used the Akaike information
criterion, AIC (Burnham & Anderson 2002). The model with the lowest relative value
of AIC is the one showing the best fit to the data. To provide a straightforward
characterization of the performance of the models in reproducing each predator-prey
network between African large mammals, we also computed the fraction of presences
and absences of pairwise interactions (1’s and 0’s in matrix A) each model correctly

predicts when parameterized with the maximum likelihood estimates:

gzaﬁP(i,j I9)+22(1—aif)(1—P(i,j|0))
f.(A10) = 22% )
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By considering the ability of the model in predicting both the 1’s and 0’s in the
interaction matrix we avoid overestimating the performance of a model that predicts,
for example, that all interactions occur.

We also tested whether the models failed in any characteristic way for the three
African predator-prey networks. A model parameterized with body mass could
perform better in predicting the interactions of larger or smaller species or perform
poorly in predicting the interaction of social hunters, for instance, which are more
likely to take down larger prey then would be expected based on their body mass
(Macdonald 1983). Thus, we computed an analogue of f. for each species by fixing i
(orj) in eq. 5 and dividing the numerator by number of interactions of i (or j).

Because both models performed similarly (see Results) we chose to use the LRM
to reconstruct the Pleistocene networks. Even though the PNM has parameters that are
easier to interpret biologically, such as preferred prey size and diet range, the LRM
has far less free parameters than the PNM. As our main purpose here is not related to
understanding the processes organizing interaction networks but to reconstruct
networks with a realistic structure the LRM is, thus more appropriate. For each
Pleistocene assemblage we generated 100 potential networks using the number of
predators and prey and average body masses of each species as input parameters for
the model. In each model run, we sampled the model parameters (a, B, y) from the
range defined by the maximum likelihood parameter set found for the three African
networks. These parameters only determine how the probability of interactions are
linked to body-mass ratios. As a consequence, variation in species richness and body
mass distributions can lead to very distinct network structures even with the same

parameter values.
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Structural analyses
To describe network structure we focused on two structural properties:
nestedness (Almeida-Neto et al 2008) and modularity (Olesen et al. 2007).
Nestedness and modularity are often found in two-mode networks including predator-
prey networks (Pires & Guimardes 2013) and are important network patterns related
to community dynamics (Bascompte 2010). Nestedness is high when the interactions
of species with few interaction partners form a subset of the interactions of more
connected species (Bascompte et al. 2003). We used the metric NODF (Almeida-Neto
et al. 2008), to compute the degree of nestedness, herein N, of each predator-prey
network. N tends to 100 for highly nested networks and to zero when species show
other non-random patterns of interaction (Almeida-Neto et al. 2008). Network
modularity is high when the network has groups (modules) of highly connected
species that are loosely connected to other species in the network (Olesen et al. 2007).
To find the partition of a given network into modules that maximizes within-module
interactions relative to between-module interactions, we used an optimization
algorithm to maximize an index of modularity, M (Guimera & Amaral 2005). M tends
to 0 when between-module interactions largely exceed within-module interaction, and
equals 1-N,;' when the network contains Ny, isolated modules. We used the program
MODULAR (Marquitti et al. 2014) to compute M. Because each assemblage differs
in the number of predators and prey and the number of species affect both nestedness
(Almeida-Neto et al. 2008) and the number of modules (Olesen et al. 2007) we
computed the relative nestedness and modularity to allow comparisons (Bascompte et
al. 2003):
{ N*=(N -N,)/N,

M*=(M-M,)/M, ©).
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where N and M are the nestedness and modularity degrees of each network generated
by the model and N, and M, are the average nestedness and modularity of random
networks with the same number of species and same average number of interactions,
where all interactions are equiprobable. With this null model approach we are not
aiming to test the significance of structural patterns, but to control for the statistical
effects of connectance and networks size on these metrics so we are able compare

different systems.

Modern large-mammal assemblages in the Americas

A straightforward consequence of the Pleistocene extinctions was the reduction
in the mammalian diversity. Yet, how these losses translated into changes in the
structural properties, and ultimately dynamics, of mammalian assemblages is less
clear. Thus, we used information on the interactions of extant large mammals in North
and South America to explore the effects of the LQE over the network structure of
large-mammal assemblages. Because in both North and South America there is not
much variation in the composition of the few locations that still bear representative
large-mammal faunas, we chose two locations to represent the surviving assemblages.
We chose the Yellowstone Park, which bears one of the richest mammalian
assemblages in North America (Van Valkenburgh 2001), and the Central region of
South America, where the two extant large South American predators, the jaguar
(Panthera onca) and the cougar (Puma concolor), can still be found in sympatry
(Crawshaw & Quigley 2002). Using information on the diet of each carnivore (Taber
et al. 1997; Crawshaw & Quigley 2002; Husseman et al. 2003; Smith et al. 2003a) we
built the networks describing predator-prey interactions in each system. We excluded

the coyote (Canis latrans), which was not considered in the Pleistocene assemblages
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as well, from the network representing North America, because it is known to include
less live prey in its diets behaving more often as a scavenger (Smith ez al. 2003a).
Network metrics that quantify the number of paths connecting species and how
centralized are networks help us assessing how likely are the effects of perturbations
to spread and how vulnerable is an ecological network to species loss. We used the
average shortest path length and central point dominance, to measure the differences
between the potential structure of Pleistocene and recent predator-prey networks. The
number of connections between any two given nodes in a network is termed path
length. The average shortest path, D, can be computed as the mean shortest distance
between all pairs of nodes in the network (Williams et al. 2002). In ecological
networks with smaller D species are tightly connected to each other and thus the
effects of perturbations are more likely to spread (Williams et al. 2002). The central

point dominance (CPD) is computed as:

cPD=—— (B

S_l i maX_Bi) (7)

L, (i ) L
where B, = E L() is the betweenness centrality of species i (/i is the number of
Jrizk  Jk

shortest paths from node j to node k and /(i) is the number of paths between j and &k
that pass through 7); B is the largest value of betweenness centrality in the network
and § is the total number of species (Costa et al. 2007). CPD is 0 if the network is
totally connected and 1 when there is a central node (species) that participates in all
interactions (Costa et al. 2007). Thus, CPD describes how dependent is the structure
of an ecological network on a small subset of species. Because we are considering
two-mode networks where only interactions between predators and prey are depicted,
CPD will never reach zero, but will tend to zero if there are several nodes that are

equally central.
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RESULTS

Both network models performed well in reproducing the interaction patterns
between African large mammals. Using only the number of predators and prey and
their average body mass as input parameters, the models were able to predict on
average more than 70% of the interactions correctly (Table 2). For two of the three
networks the LRM had a better fit considering the number of parameters (Table 2).
The LRM tended to perform slightly better in predicting the interactions of larger
predators than smaller predators (Linear regression: F; ;, = 4.78, R* = 0.22, p < 0.05).
The performance of the LRM was similar for social hunters, such as lions and wild
dogs and solitary hunters, such as leopards and cheetahs. Regarding prey species, we
found no trend related to body size (F; 54 = 2.07, R* = 0.02, p = 0.15) and although the
model performed poorly (less than 50% of the interactions correctly predicted) in
reproducing the interaction patterns of a few prey species (see Fig. S1 in Appendices)

it did not seem to fail in any characteristic way.
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Table 1. Sites included in the analyses, number of predators (Npreq) and prey (Nprey)
and the average (+ SD) degree of nestedness and modularity considering 100 potential
networks reconstructed using the LRM. The values for African assemblages represent

the actual values for the real interaction networks.

Site Location Nped Nprey  Nestedness ~ Modularity
American Falls (Amf) Idaho, USA 7 15 79.82+4.09 0.13+0.03
Page-Ladson site -Aucilla Florida, USA 5 15 75.48+4.87 0.13+0.03
River (Pls)
La Brea Tar Pits - Pit 91 (Bre) California, USA 8 12 78.62+6.20 0.16+0.03
Friesenhahn Cave (Fri) Texas, USA 6 9 80.53+6.62 0.14+0.03
Ingleside (Ing) Texas, USA 5 17 72.15+5.47 0.15+0.03
Guerrero Member — Lujan Buenos Aires, 5 23 73.34+3.65 0.17+0.04
(Lyj) Argentina
Talara Tar seeps (Peru) Talara Region, Peru 3 9 61.92+8.99 0.11+0.04
Sdo Raimundo Nonato (Srn) Piaui, Brazil 3 13 53.33+10.83 0.09+0.04
Tarija Basin (Ttj) Tarija, Bolivia 6 28 77.30+4.92 0.17+0.04
Serengeti (Ser) N Tanzania 5 16 73.84 0.10
Kruger Park (Kru) NE South Africa 5 22 61.99 0.07
Mala Mala Reserve (Mal) NE South Africa 4 18 74.07 0.16
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Table 2. Goodness of fit (as measured by the 4/C) and the expected fraction of

predator-prey interactions correctly predicted by each model (f;)

large mammals in three sites. Name codes in Table 1.

between African

PNM LRM
AIC 1. AIC Je
Ser 71.4 0.77 72.3 0.74
Kru 90.88 0.76 68.82 0.83
Mal 85.74 0.70 76.32 0.68

Despite the differences in the composition and body size distribution of each

Pleistocene community (Fig. 1) their structure was most likely

networks showed a large absolute degree of nestedness and

very similar: All

small degree of

modularity (see Table 1). Comparing the relative degrees of nestedness and

modularity across assemblages we found the degree of nestedness and modularity of

African assemblages are a subset within the range defined by the Pleistocene

networks (Fig. 2).
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Figure 1. Body size distribution of predators (green) and prey (yellow) for each

assemblage. Name codes in Table 1.
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Figure 2. Average relative nestedness (N*) and modularity (M*) of Pleistocene
predator-prey networks. The shaded area represents the range of N* and M* for the

three modern African communities. Error bars depict = SD.

Current large-mammal assemblages in North and South America are largely
depauperate in comparison to Pleistocene large-mammal assemblages (Fig. 3). The
networks comprising only surviving species are more tightly packed (smaller average
shortest path, D; Fig. 3) and their structure is more dependent on a small subset of

species, mainly predators (larger central point dominance, CPD; Fig. 3).
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D=1.86+0.04
CPD=0.21+0.07
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Figure 3. Predator-prey interactions between large mammals in the Pleistocene (left)
and at present (right) in North and South America. Pleistocene networks are
represented by one potential network reconstructed using the LRM. The large-
mammal faunas from La Brea and Yellowstone represent North America. The large-
mammal faunas from Lujan and the Pantanal region represent South America. Values
denote the average shortest path, D, and central point dominance, CPD, for
Pleistocene (average £ SD for 100 potential networks) and modern networks. We

aggregated a few species in Pleistocene networks to ease visualization.
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DISCUSSION

We showed here network models parameterized with body mass information are
able to reproduce much of the interaction patterns among large mammals. Using such
network models we reconstructed potential networks of interaction between late
Pleistocene mammals in the Americas and showed their structure would have been
similar to modern mammal assemblages in Africa, but networks suffered major
structural changes after the extinctions.

Previous studies using network models parameterized with body mass information
showed body size alone is unable to predict interaction patterns of several species in
food webs (Rohr ef al. 2010; Williams et al. 2010). Here we show that when focusing
on smaller “subnetworks”, with only two trophic levels and fewer groups, the
performance of such models is greatly improved. A good fit of models parameterized
only with body mass to a whole food web would indicate body size translates into
interaction patterns in a similar way for different groups and different trophic levels,
which seems unlikely. In contrast, our dataset includes only large mammalian
predators, all carnivorans, and prey, mostly ungulates. It is reasonable to assume that
this smaller set of species obey similar rules regarding how interaction patterns are
mapped into body size relationships. Network models have also been used to test
whether ancient networks reconstructed using paleocological inferences share
similarities with modern communities (Dunne et al. 2008). We feel using network
models to reconstruct networks of interaction representing ancient systems is
promising and might bring insights on the structure and dynamics of other
paleocological systems. In this study, the combination of food web models and
paleontological data allowed us to infer the organization of Pleistocene networks and

to discuss consequences of this organization for system dynamics.
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Modern Africa bears the largest extant terrestrial mammals, but the body-mass
distribution of Pleistocene mammals in the Americas was even more skewed towards
larger species (Koch & Barnosky 2006). Because the model we used assumes body-
mass ratios determine the probability of interactions, such differences in species
composition and body-size structure could have resulted in assemblages with different
structural patterns. However, we showed here that the overall structure of Pleistocene
predator-prey networks in the Americas was most likely similar to what we find today
in the African savannas. Pleistocene predator-prey networks were likely highly nested
and non-modular, similar to the extant large-mammal communities (Sinclair et al.
2003) and contrasting with other types of antagonistic networks (Pires & Guimaraes
2013).

Although the overall structure of whole food webs, comprising several trophic
levels, often show a high degree of modularity (Baskerville et al. 2011), food webs
are formed by connected subnetworks that are often nested (Kondoh ef al. 2010). In
fact when the degree of biological association between interaction partners is low
antagonistic interactions are expected to form nested networks (Pires & Guimaraes
2013). Nestedness means the resource use patterns of consumers overlap
asymmetrically, what should have implications for competition and, thus, coexistence
(Kondoh et al. 2010). Moreover, nestedness is frequently associated with lower
stability for networks depicting antagonistic interactions (Thébault & Fontaine 2010;
Allesina & Tang 2012). The intrinsic instability of nested networks can be
counterweighted by patterns of interaction strength (Staniczenko et al. 2013). An
open avenue for future work on the structure of Pleistocene systems is to estimate the
strength of interactions and evaluate whether different patterns emerge. Based on
recent results using isotope analyses (Yeakel et al. 2013) we expect that by

considering the strength of interactions modularity should increase, what is often
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related to higher stability, and could help explaining the co-occurrence of so many
large species with overlapping interaction patterns.

We showed the interactions of Pleistocene large mammals and modern African
large mammals were most likely organized in a similar way. Still, Pleistocene large-
mammal assemblages collapsed in the Americas, whereas large-mammal assemblages
still persist in Africa. This differential survival may be related to other aspects of the
community organization. For example, the larger number of interacting species in
Americas provides several potential pathways by which species indirectly affect each
other (Forster 2003; Ripple & Van Valkenburgh 2010). Moreover, the large number
of slow-breeding animals in Pleistocene assemblages could have made the
populations less likely to recover after perturbations (Johnson 2002; Koch &
Barnosky 2006). In addition to the climate changes and anthropogenic impacts that
might have triggered the extinctions (Koch & Barnosky 2006), the interplay between
the nested structure, high species richness and slow breeding might have contributed
to the collapse of Pleistocene large-mammal assemblages. The relative contribution of
each of these factors remains an open question.

By now we show the Pleistocene extinction not only eroded the diversity of
mammalian assemblages but also disrupted the organization of interactions between
large mammals. The current large-mammal interaction networks in the Americas are
more compact, with all species a few links apart from each other. This arrangement
has implications for dynamics as the effects of perturbations are much more likely to
spread in smaller networks where all species are closely connected (Williams et al.
2002). In addition, current large-mammal assemblages are more dependent on a few
species central to network structure. Species rich-systems will often have high levels
of functional redundancy and thus the loss of one or a few species may be

compensated by the remaining ones. In contrast, species-poor systems such as current
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large-mammal assemblages, lack functional redundancy and are thus more vulnerable
to species loss, which is likely to result in trophic cascades (Terborgh & Estes 2010).
A classic example is the sea otter/kelp forest system in which the loss of one single
species, the sea otter (Enhydra lutris), leads to great changes in the landscape (Estes
& Duggins 1995). However, unlike in the sea otter case, the lack of functional
redundancy and dependence on a few central predators in terrestrial large-mammal
communities (Ripple & Beschta 2003; Estes ef al. 2011) is most certainly linked to
the Pleistocene extinctions. We showed here that large-mammal assemblages were
not as centralized and tightly packed in the Pleistocene as they are today. We
hypothesize the disruption of large-mammal networks led to the omnipresence of
systems that hinge upon a few species central to network structure and dynamics and

are thus highly vulnerable to species loss.
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Serengeti

Kruger

Mala Mala

Species

Fig S1. Fraction of presences and absences of pairwise interactions (f;) correctly predicted by

the LRM for each species in each network representing African assemblages. Green bars

represent predators and yellow bars prey species.

66



CAriTULO 4

67






Mathias M. Pires Capitulo 4

THE NETWORK ORGANIZATION OF MEGAFAUNA ASSEMBLAGES MADE

THEN VULNERABLE TO HUMAN ARRIVAL

Mathias M. Pires, Paul L. Koch, Richard A. Farifia, Marcus A. M. de Aguiar,

Sérgio F. dos Reis & Paulo R. Guimaraes Jr.

Abstract. The end of the Pleistocene was marked by the extinction of almost all large
land mammals (the megafauna) everywhere except in Africa. The debate on the
megafaunal extinction has focused on possible external triggers for the event, such as
climate change and direct and indirect effects of humans. However, the impact of
such triggers depends on the organization of species interactions, which modulates
how perturbations propagate. We combined network models, extinction simulations,
and data on extinct and extant megafaunal assemblages to investigate if differences in
the organization of Pleistocene and modern communities explain why the megafauna
died out in the Americas while persisting in Africa. We show that Pleistocene
communities should not have been more responsive to small perturbations than extant
African communities, but differences in the features that determine the organization
of species interactions, such as species richness and body-size distributions, made
Pleistocene communities remarkably more vulnerable to the arrival of new predators
such as humans. Our findings show that extinction events have to be addressed taking
into account not only the effects of external processes but also information on the
network organization of species assemblages, which can contribute to our

understanding of past and future large extinction events.
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INTRODUCTION

The end of the Pleistocene was marked by an extinction event (the Late
Quaternary Extinction, LQE) that led to the demise of large vertebrates, profoundly
affecting the organization of ecosystems worldwide (Martin & Klein 1984; Koch &
Barnosky 2006). The greatest impact was on the mammalian megafauna (body mass >
44 kg) with the extinction of more than 100 genera (Koch & Barnosky 2006;
Barnosky 2008). The LQE was particularly severe in Australia and the Americas
where more than 70% of the megafauna genera perished (Koch & Barnosky 2006).
Africa retains the remnants of these once widespread megafauna assemblages
(including species weighing > 1,000 kg; Owen-Smith 1987). Studies on the causes of
the LQE focus mostly on potential external triggers for the extinctions (Scott 2010),
such as direct (Martin & Klein 1984; Alroy 2001) and indirect (Barnosky et al. 2004;
Koch & Barnosky 2006) impacts of humans, climate change (Guthrie 1984), and
combinations of these factors (Barnosky 2008; Prescott et al. 2012). However,
extinctions result not only from external factors that disturb ecosystems (Newman &
Palmer 2002). Community organization, as determined by species interactions,
dictates how perturbations affect the community (Forster 2003; Roopnarine 2006).
Therefore, the answer for why large mammals died out almost everywhere except
Africa could reside not only in the perturbations themselves, but, at least in part, in
the interactions within megafauna assemblages.

Theory shows that basic features of ecological systems have large effects on the
way perturbations propagate (Rooney & McCann 2012). Specifically, species
richness, the number and strength of interactions, and the way such interactions are
organized determine the probability that population densities within a community will

reestablish (stability) or diverge (instability) after a perturbation (May 1972; Neutel et
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al. 2007; Allesina & Tang 2012). If communities are unstable or populations take too
long to reestablish, fluctuations may reduce populations to low densities, making
them vulnerable to demographic stochasticity and ultimately local extinction.

Here we combine paleontological and ecological data, extinctions simulations,
and network theory, which deals with the organization and dynamics of interactive
systems, to explore the role of species interactions in shaping the dynamics of past
and present assemblages of large mammals. First, we investigate whether differences
in the organization of Pleistocene and surviving African large-mammal communities
offer insights on why the former collapsed while the later persisted. Then we evaluate
if the basic characteristics of large-mammals communities can explain extinction
patterns in the Late Pleistocene in Americas. Finally, to understand possible effects of
the arrival of humans to the Americas, we test how the invasion by a new predator

would impact the dynamics in different locations by altering community organization.

METHODS
Large-mammal assemblages

We searched the literature and the Paleobiology Database (http://paleodb.org/)
for Pleistocene fossil assemblages for which the composition, chronology, and
taphonomy suggest an actual community of interacting species. We avoided sites with
a mammalian fauna that seemed incomplete based on our general knowledge of
Pleistocene faunas or those with dates that were too unconstrained, which might have
yielded time-averaged assemblages. We ended up with five Late Pleistocene sites in
North America and four sites in South America (Table S1 in Appendices). For the
comparison with modern systems we used mammalian assemblages from three

localities in Africa (see Table S1 in Appendices). We considered only the large-
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mammal assemblages within communities, which form compartments loosely
connected, both structurally and dynamically, with the rest of the food web (Terborgh
& Estes 2010). Because we are interested in interactions among large mammals, we
established systematic criteria to determine which species to consider. We considered
only mammalian herbivores larger than 5 kg, which are more likely to be preyed upon
by the carnivores that make up the large mode of the body-size distribution (Carbone
et al. 1999; Owen-Smith & Mills 2008). Accordingly, we only included carnivore
species with body mass greater than 20 kg that had evidence of hypercarnivory. In
this way we avoided including carnivores such as small felids, which rely mainly on
rodents or other small prey, or large omnivores, such as some bears (Carbone et al.
1999; Figueirido & Soibelzon 2010), both of which probably played a minor role in
the predator-prey dynamics of large-mammal assemblages. We obtained data on the
body mass of Pleistocene mammals from compiled data available in the literature
(Smith et al. 2003). When no body mass estimate was available for a given species,

we used the average body mass of species within the same genus.

Reconstructing predator-prey interaction networks

Despite the insights brought by indirect evidence of interactions (Marean &
Ehrhardt 1995) and isotope analysis (Yeakel et al. 2013), determining who interacted
with whom in paleocological systems is challenging (Roopnarine 2006; Dunne et al.
2008). To account for the uncertainty inherent to any characterization of ecological
networks we used a probabilistic model (Rohr ez al. 2010) to generate ensembles of
possible Pleistocene networks with a realistic structure. Because body size has a
central role in structuring African large-mammal communities (Sinclair et al. 2003;

Owen-Smith & Mills 2008), and ecological networks in general (Woodward et al.
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2005), we parameterized the model using the body mass of herbivores and predators

(Fig. 1).
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Figure 1. Reconstructing predator-prey interactions. A) Conceptual

representation of the model used to reconstruct predator-prey interaction networks.
The model assumes body-mass relationships determine the probability of interactions
between predators and prey, as depicted by the probability curves corresponding to
each predator. B) Example of a probability matrix produced by a model run
parameterized with the information for a system from Africa. The color heat
illustrates the probability of each interaction between predators (rows) and prey
(columns). This model correctly reproduced on average 75% of the interactions

within the three predator-prey systems from modern Africa'.

1 Capitulo 3 - The disruption of predator-prey interaction networks after megafaunal extinctions
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In this model the probability of an interaction between predator i and prey j is a
function of the log ratio of the body mass (m) of i over the body mass of j (Brose et al.

2006) and can be represented as a logit regression of the form:

Pla, =D =a+ flo M) 4 ylog?] 22
P(a; =0) - gm. Vo8 m;

J

log

(1

in which a;; is a cell in the binary matrix A that depicts species interactions and a,
p, and y are parameters to be estimated. The model has a quadratic polynomial term
and, hence, the interaction probabilities form a Gaussian-like curve reflecting the idea
of an optimal range for the predator. This formulation is consistent with other food-
web models based on the niche concept (Williams & Purves 2011). Thus, the
probability of an interaction between predator i and prey j given a particular

parameter set 0 = {a, B, v} is:
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To test the performance of the model in reproducing predator-prey interactions
among large mammals we used the three sites in Africa for which we had actual data
on predator-prey interactions (Table S1). First, we used a logit regression to find the
maximum likelihood estimates (MLE) of parameters a, f, and y for each location.
Then, we used the MLE and equation 2 to generate a matrix P in which each cell, p;;,
described the probability of interaction between predator i and prey j. The probability
matrix P allows computing the expected number of cells a; in matrix A correctly

predicted by the model:

N.(A16) = EEaUP(i,j 16) + 22(1 ~a,)(1-P(i.j10)) G
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The expected fraction of cells predicted correctly, f., is obtained by dividing N,
by the number of cells in A (Williams & Purves 2011). The model performed well in
reproducing the three networks representing large-mammal interactions in Africa® (f.
= 83%, 68% and 74%; Ser, Mal, and Kru, respectively; see Table 1 for acronyms),
indicating that it is able to generate realistic structures of predator-prey interactions.

Given this result, we used the same model to generate predator-prey networks
among the Pleistocene mammals at each site. To do so, we first defined the range of
the three parameters o, f, and y. The extremes of the range of each parameter were the
smallest and largest values found as MLEs for the three African sites. By doing so, we
adopt the assumption that the constraints imposed on diet by the body-mass
relationship between predator and prey were similar in Pleistocene and modern
African large-mammal communities (Prevosti & Vizcaino 2006). Although we used
the parameters estimated for the African networks, the parameters only determine
how the probability of interactions are linked to body mass relationships. The number
of predator and prey species and body mass distribution in each assemblage are the
factors that determine the network organization.

To generate a predator-prey network we then sampled values of o, £, and y within
the defined range and computed all p;; to obtain a matrix P. The matrix P was then
used to generate a potential binary matrix, A, depicting interactions among predator
and prey species in each assemblage. Because this procedure envisages incorporating
the uncertainty inherent to inferring interactions among extinct species, we generated

1000 possible interaction networks for each site.

Capitulo 3 - The disruption of predator-prey interaction networks after megafaunal extinctions
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The community matrix

To analyze the dynamical behavior of these potential interacting assemblages
each binary matrix A was transformed in an adjacency matrix Q of size SxS§, being S
the total number of species, in which a cell, g;;, represents the effect of species i on
species j (interaction strength) around a feasible equilibrium (Allesina & Tang 2012).
Thus Q can be viewed as an approximation to the Jacobian matrix (Allesina & Tang
2012). To build Q all diagonal elements, representing the effect of intraspecific
interactions, were assigned -1. Off-diagonal elements g; were only # 0 if a;; = 1.

We used different methods to assign values to off-diagonal coefficients. The first
method is similar to previous work on the stability of food webs (Allesina & Tang
2012). Each cell g;; # 0 was assigned a value x;; drawn from a normal distribution with
parameters 4 = 1 and o = 1. Because prey have positive effects on the demography of
predators, but predators have negative effects on prey populations, we used -|x;;| when
q;; represented the effect of predator i on prey j and |x;;| for the effect of prey j on
predator i. Note that g; # g;;. We chose a Gaussian distribution centered around 1
because it guarantees that most of the values representing interaction strengths will be
small while only a few will be large, a pattern that is often found in nature (Wootton
& Emmerson 2005). Moreover, the parameters used avoid situations such as matrices
with very low interaction strengths, in which the effect of intraspecific competition
(set to 1) is much larger than that of interspecific interactions. Although assuming
strong intraspecific competition leads to stable dynamics (Allesina & Tang 2012), a
higher role of intraspecific competition for all species in the predator-prey assemblage
is very unlikely (Owen-Smith & Mills 2008). Conversely, if the mean interaction
strength were too large the effects of intraspecific interactions become negligible for

all species, inducing unstable behavior in all matrices. Again this is an unlikely
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scenario in predator-prey assemblages (Owen-Smith & Mills 2008). Therefore, by
choosing an intermediate value, we simulate a more plausible scenario. Similar to the
results of Allesina and Tang (2012) on the consequences of using different
distributions for interaction strengths, exploratory analyses where we varied the
distribution of interaction strengths showed that different distributions yield results
that are qualitatively similar (results not shown). To compute confidence intervals we
repeated analyses 100 times for each site.

The dynamics of the potential communities under a small perturbation are given
by the real part of the leading eigenvalue, Rel, of Q (May 1972; Allesina & Tang
2012). We computed the proportion of matrices with stable behavior, Rel < 0, as a
measure of the probability that communities are stable, Py. For matrices presenting
stable behavior we also computed the average time to return to equilibrium, 7 ~ 1/|Re/

(Loeuille 2010).

Asymmetry in the distribution of interaction strengths

The efficiency of predators in converting prey into actual population growth is
unlikely to be close to maximum. Thus the per capita effect of the prey on the
predator may be smaller than the converse. Several studies on food web dynamics
have considered this asymmetry in interaction strengths (Pimm & Lawton 1978;
Emmerson & Yearsley 2004). To test the effect of breaking the symmetry between
the distributions of interaction strengths we reran all tests assuming the average per
capita effects of predators upon their prey are twice as large as the effect of prey on
predators. We did this by drawing interaction strengths from different distributions (x;
= 1o/2). Breaking the symmetry in interaction strength distributions did not alter the

results qualitatively (Tables S2 to S5 in Appendices).
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Interaction strength as a function of body mass

If we assume the body-size relationship between predator and prey determines
the probability of interactions, it may affect the demographic effect of interactions as
well (Woodward et al. 2005; Brose et al. 2008). Therefore we tested the effects of
assigning interaction strengths in matrix Q as a function of body-size relationships by

defining the off-diagonal elements as:

—(m‘.-mj)z

1y = 4ye (4),
where the term y is a random value drawn from a normal distribution with parameters
u=1and ¢ = 1. This formulation was adapted from studies on coevolution that model
the outcome of species interactions taking into account phenotype matching (Nuismer
et al. 2010; Yoder & Nuismer 2010). Such a formulation implies smaller interaction
effects for species that differ in size by a great amount. The random variable adds
noise to the relationship and portrays the uncertainty about how exactly body-mass
relationships translate into interaction strengths. By considering the uncertainty of the
relationship between body mass and interaction effects, we loosen the constraints
imposed by body size. In this way we allow, for instance, that large prey eventually
benefits relatively smaller predators, as would be expected for species that also feed
on carcasses (Houston 1979) or social predators, such as lions and wolves, which are
able to prey upon larger prey (Macdonald 1983).

Assigning interactions effects as a function of body-mass relationships
reproduces structural patterns that are more realistic for large-mammal assemblages:
large-sized predators will have a stronger impact on populations of medium-sized
prey, smaller predators will have larger effects on small prey, and the largest prey are

controlled mainly by bottom-up effects (Owen-Smith & Mills 2008). It also increases
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compartmentalization since predators will tend to interact more heavily with prey
within a certain size range (Yeakel ef al. 2012). Although changing the way we assign
interaction strength influences the magnitude of Py and z, it does not alter the results

qualitatively (Tables S2 to S5 in Appendices).

General linear models

To evaluate which components determining community structure are the most
important in determining the dynamic behavior of the predator-prey systems we used
regression models of the form:

Py=Po+ B1 X Rorea + 2 % Rprea T3 X Mprea + P X Mprey (5),

where R,.q and R, are the richness of predator and prey species and M, and
M,,., are the average body mass of predators and prey species. We also used a similar
model to test how each factor affected z. All models passed diagnostic tests,
performed using R, to check whether the assumptions of general linear tests such as
homogeneity of variances and normality of errors applied for each model. We used
the Akaike information criterion to select among models including different
combinations of explanatory variables. In Tables S4 and S5 (Appendices), for the
models with best relative goodness of fit (lowest AIC value), we report the results of
the regression analyses for Py and 7 for each different method used to assign

interaction strengths.

Testing the reliability of Py estimates
It is unlikely that dynamical systems like assemblages of interacting species have
only one feasible equilibrium point (Allesina & Tang 2012). Because we built one

community matrix Q from each interaction matrix A generated using the body-mass
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parameterized model, in the baseline simulations we are analyzing only one of the
possible equilibrium points of each system. To test whether this approach would
impact the patterns we found, we generated 100 possible matrices Q using each of
100 matrices A as a template in a total of 10,000 Q matrices. We then looked at the
real part of the leading eigenvalue of each of the 100 Q matrices generated from A to
determine the probability of stability, Py, of A. By doing this we explored distinct
possible equilibrium points for each possible structure. We then checked whether the
averaged P over the 100 A matrices differed from the Py, computed by considering
only one equilibrium point for each matrix A. As seen in Table S6, these two

approaches yield very similar results.

Removal simulations

Unstable communities are not necessarily destined to collapse. A system may
reach other equilibrium points with different stability properties after rearranging. To
find how changes in the species composition of a given site would impact community
dynamics we performed simulations removing species and recalculating the
eigenvalues for the resulting community matrices. Starting from 100 community
matrices per site we removed species combined in groups of size k£ (1 <k <S- 1) and
registered the change in Reld. When the number of combinations for a given k
exceeded 10° we tested 10° random combinations, otherwise we tested all possible
combinations of species. We then registered the smallest change in species richness
that resulted in the largest reduction in Re/ relative to the original matrix. By doing
this we searched for assemblages that were stable, highly resilient, but retained a large

number of species. We also registered the species composition that yielded the
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smallest Rel possible. The results of both analyses are reported in Figs S1 and S2

(Appendices).

The effect of humans

The arrival of humans can be seen as the invasion of a new predator that changes
community structure. We tested the relative impact of humans by measuring how the
addition of a new predator would affect P,. Because in our approach body mass
determines interaction patterns, we simulated humans assuming their interaction
patterns would be similar to those of large-sized predators (350 kg in our dataset). The
effects of humans may be due to their ability to feed on prey of different sizes or just
because the networks are vulnerable to the addition of any predator. Because we
know adding a predator should, by itself, affect the probability of stability, we
estimated the destabilizing effects of humans as the difference in Py after adding
humans when compared to the sole effect of adding a predator. To control for the
effect adding a predator could have on stability, we measured the effect of adding a
small-sized predator (30 kg). We computed the effects of humans on stability as:
(P st humans = Ps))/P st = (P st control - P'st)/P’,, Wwhere P, and P’y are the probabilities of

stability after and before the additions.

RESULTS

Pleistocene communities were as prone to be unstable as modern African
communities. The probability of a community being stable, Py, was not higher and
the average time required for stable communities to return to equilibrium, z, was not
lower for the three modern African communities when compared to Pleistocene

communities (Table 1). Multiple regression analyses showed both Py, (Fs.s = 65.43; R’
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=0.94; p < 0.001) and 7 (F35 = 95.76; R’ = 0.96; p < 0.001) were well predicted by

basic characteristics of each assemblage (Table S2). Lower Py (Fig. 2) and higher 7

were mainly associated with larger predator-richness and lower average prey mass

(Table S3). Results hold if matrices are built under different assumptions such as

random interaction strengths or body-mass driven interaction strength (Tables S2 to

35).

Table 1. Dynamics of mammalian communities. Probability of stability (P) and

average time (7) to return to equilibrium of community matrices built for each large-

mammal assemblage. Confidence intervals within parentheses. Acronyms are shown

after the name for each locality.

Py

N. America (Pleistocene)

La Brea Tar Pits (Bre)
American Falls Area (AmF)
Friesenhan Cave (Fri)
Ingleside (Ing)
Page-Ladson Site (PLS)

S. America (Pleistocene)
Guerrero Member — Lujan (Luj)
Tarija (Tar)

Sdo Raimundo Nonato (SRN)
Talara Tar Seeps (Tal)

Africa (Modern)

Serengeti National Park (Ser)
Kruger National Park (Kru)
Mala Mala Reserve (Mal)

0.32 (0.29-0.35)
0.30 (0.27-0.33)
0.56 (0.53-0.59)
0.65 (0.62-0.68)
0.56 (0.53-0.59)

0.71 (0.68-0.74)
0.53 (0.50-0.56)
0.85 (0.82-0.88)
0.85 (0.83-0.87)

0.41 (0.38-0.44)
0.47 (0.43-0.50)
0.60 (0.57-0.63)

4.18 (3.84-4.59)
3.87 (3.54-4.27)
2.86 (2.71-3.03)
2.06 (1.97-2.16)
2.29 (2.19-2.41)

1.91 (1.83-1.99)
2.56 (2.34-2.71)
1.25 (1.21-1.29)
1.30 (1.27-1.34)

2.56 (2.41-2.73)
2.37 (2.24-2.51)
1.79 (1.72-1.86)

82



Mathias M. Pires Capitulo 4

o}
S °
3 -
° ! 2
o
°
- [ ] 0
=] Q 4
< i :
g o S 1
g © °
5]
el 0
S - o |
& S o
=3
o S
S 4
' ©
el
) I
a
! T T T T T T T T T T T
-2 -1 0 1 2 3 -0.4 -0.2 0.0 0.2 0.4
Standardized predator richness Standardized average body mass of prey

Figure 2. The effect of community structure on stability. Partial regression plots
showing the probability of stability of communities, Py, as a function of predator
richness (A) and the average body mass of prey (B) after controlling for all other
variables. Different colors represent assemblages from different continents. Values for
the y and x axes were standardized by removing the effects of the other variables in

the regression model. Test statistics in Table S4.

Simulating extinctions and looking at the dynamics of the resulting communities,
we found that communities with fewer predators were more likely to be stable and
have smaller 7 (Fig. S1). Yet, for all sites (including Aftrican), stable communities
with the smallest 7 are simplified assemblages, with less than 10 large mammals,
similar to present-day large-mammal assemblages in the Americas (Fig. S2).

Simulations to test the potential effects of humans showed that the assemblages
with an additional large predator, capable of preying upon a wide range of prey, were
invariably more prone to instability and had longer return times than original

communities, as expected from our results on the destabilizing effects of predators.
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Yet, the arrival of humans would affect modern and past communities in distinct
ways. In the three modern communities, the effects of humans on the probability of
stability would not be greater than the expected effect of adding a smaller predator
(Fig. 3). Conversely, in Pleistocene communities, the destabilizing effect of humans

would considerably larger (Fig. 3).

0.4

0.3

Destabilizing effect of humans
0.1 0.2
|
O

Figure 3. The impact of human arrival on community stability. Each point shows the
average (£ SD; 100 simulations) destabilizing effect of humans in a given site.
Different colors represent assemblages from different continents. Values close to zero
mean the destabilizing effect of humans would not be greater than the expected effect

of an additional small-sized predator.
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DISCUSSION

Our results suggest Pleistocene large-mammal assemblages were not intrinsically
prone to be unstable when compared to modern African communities, but were
remarkably sensitive to the arrival of a large predator such as humans. Large
predators often have large dietary breadths and interact strongly with many species
(Sinclair et al. 2003; Owen-Smith & Mills 2008). In contrast, large herbivores escape
predation from most predators, interacting weakly only with the largest predators
(Sinclair et al. 2003), and are controlled mainly by bottom-up processes (Owen-Smith
& Mills 2008). As a consequence, large predators and large prey have opposite roles
in community structure — large predators contribute to increase the connectivity and
average interaction strength whereas large prey species contribute to a less connected
community with weak interactions. All else being equal, increased connectivity and
strong interactions reduce the stability of ecological communities (May 1972;
Allesina & Tang 2012; Rooney & McCann 2012). Therefore, the likelihood a
perturbation will spread throughout the community should be greater in a community
with several large predators, but smaller in communities with many large herbivores.

Indeed our results from extinction simulations suggest large-mammal
assemblages with fewer predators are more likely to be stable. However, simplified
communities with smaller richness of both predator and prey species were the most
stable scenarios. This result agrees with the general theoretical understanding that it is
much easier to attain stable dynamics in simpler systems (May 1972). On the other
hand such impoverished communities would be vulnerable to species loss, since there
is limited redundancy, and extinction cascades may follow the extinction of a given
species (Terborgh & Estes 2010). These findings suggest the composition of present-

day large-mammal assemblages in the Americas could be the consequence of
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sequential rearrangements that resulted in communities that are more resilient to small
perturbations but so species-poor that became highly vulnerable (Terborgh & Estes
2010).

In our dataset the average number of predator species is greater in North than
South American Pleistocene sites. Overall, Pleistocene faunas in North America
appear to have had richer predator assemblages, whereas South American faunas had
richer large-herbivore assemblages (Farifia 1996; Lyons et al. 2004). Although dates
for Pleistocene fossils from South America are still sparse compared to North
America, existing data indicate that the LQE took longer in South America than it did
in North America (Cione et al. 2009; Barnosky & Lindsey 2010). Based on our
findings on the effects of predators and large herbivores in the dynamics of large-
mammal assemblages, we hypothesize that the diversity of large herbivores and the
relative lack of predators might have favored stability in South American
communities. Thus, our results provide a potential explanation for a LQE pattern that
relies upon intrinsic characteristics of ecological communities rather than purely
external factors. These intrinsic differences in stability, in turn, could interact with
external factors such as differences in the timing of human arrival, to generate the
chronology of megafaunal extinctions in Americas.

Our simulations testing the effects of humans on the dynamics of large-mammal
assemblages suggest the effect of a large predator such as humans would be greater in
Pleistocene assemblages than in modern African assemblages. Pleistocene mammal
assemblages in the Americas had a greater diversity of large herbivores than the
modern African assemblages. The arrival of a predator capable of feeding on a broad
range of prey, including the many Pleistocene large herbivores, would increase

connectivity and the proportion of strong interactions, greatly changing the network
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structure and the dynamics of Pleistocene assemblages. There is compelling
archaeological evidence that humans hunted large Pleistocene herbivores (e.g.,
proboscideans, bison) in the Americas (Surovell & Waguespack 2008; Cione et al.
2009), but debate continues about whether human overhunting was the main driver of
megafaunal extinction (Alroy 2001; Koch & Barnosky 2006), or if other factors
(including habitat alteration driven by humans; Barnosky et al. 2004) contributed to
the LQE. Our results suggest humans, as predators that were able to exploit a variety
of large prey in Pleistocene communities, would promote structural changes in these
systems, reducing their ecological stability, which in turn may favor extinction
cascades and reduce species persistence. Taken together, our findings reveal that
knowledge of the network organization of species interactions may be critical to

understanding past and future large extinction events.
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APPENDICES

Table S1. Information on the Pleistocene and modern sites used.

Site Location Npred  Nprey Time range

N. America (Pleistocene)

La Brea Tar Pits (Pit 91; Friscia et

California, USA 8 12 0.1-0.01 Ma
al. 2008)
American Falls Area (Hopkins et al.
Idaho, USA 7 15 0.1-0.01 Ma
1969; Pinsof 1998)
Friesenhahn Cave (Graham 1976;
Texas, USA 6 9 0.02-0.01 Ma
Toomey 1994)
Ingleside (Lundelius Jr. 1972) Texas, USA 5 17 0.01-0.01 Ma
Page-Ladson Site (Aucilla River;
Florida, USA 5 15 0.01-0.01 Ma
Webb 2006)
S. America (Pleistocene)
Guerrero Member — Lujan (Tonni e? Buenos Aires,
. 5 23 0.8-0.01 Ma
al. 1985; Tonni et al. 2003) Argentina
Tarija Basin (Marshall & Sempere o
Tarija, Bolivia 6 23 0.04-0.02 Ma
1991; Coltorti et al. 2007)
Sdo Raimundo Nonato (Guerin
Piaui, Brazil 3 13 0.1-0.01 Ma
1991)
Talara Tar Seeps (Lemon & )
Talara Region, Peru 3 9 0.1-0.01 Ma
Churcher 1961)
Africa (modern)
Serengeti National Park (Baskerville
N Tanzania 5 16 Modern
etal 2011)
Kruger National Park (Owen-Smith
NE South Africa 5 22 Modern
& Mills 2008)
Mala Mala Reserve (Radloff & Du
NE South Africa 4 18 Modern
Toit 2004)
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Table S2. Probability of stability (Py;) for community matrices representing each site.
Columns represent different methods of assigning interaction strengths. Confidence

intervals within parentheses.

Py

Random

Asymmetric

Body mass

N. America
(Pleistocene)
La Brea Tar Pits
American Falls
Area
Friesenhan Cave
Ingleside
Page-Ladson Site
S. America
(Pleistocene)
Guerrero Member
- Lujan
Tarija Basin
Sao Raimundo
Nonato
Talara Tar Seeps
Africa (modern)
Serengeti National
Park
Kruger National
Park
Mala Mala

Reserve

0.32 (0.29-0.35)
0.30 (0.27-0.33)

0.56 (0.53-0.59)
0.65 (0.62-0.68)
0.56 (0.53-0.59)

0.71 (0.68-0.74)

0.53 (0.50-0.56)

0.85 (0.82-0.88)

0.85 (0.83-0.87)

0.41 (0.38-0.44)

0.47 (0.43-0.50)

0.60 (0.57-0.63)

0.68 (0.65-0.71)
0.64 (0.61-0.67)

0.83 (0.81-0.85)
0.85 (0.83-0.87)
0.80 (0.78-0.83)

0.88 (0.86-0.90)

0.78 (0.75-0.80)

0.93 (0.92-0.95)

0.95 (0.93-0.96)

0.68 (0.65-0.71)

0.72 (0.69-0.74)

0.79 (0.77-0.82)

0.53 (0.50-0.56)
0.48 (0.45-0.51)

0.73 (0.70-0.73
0.69 (0.66-0.68)
0.65 (0.62-0.67)

0.60 (0.58-0.61)

0.48 (0.45-0.51)

0.89 (0.87-0.91)

0.90 (0.89-0.91)

0.50 (0.48-0.52)

0.50 (0.47-0.53)

0.66 (0.63-0.69)
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Table S3. Average time to return to equilibrium (7) for community matrices
representing each site. Columns represent different methods of assigning interaction

strengths. Confidence intervals within parentheses.

T

Random Asymmetric Body mass
N. America
(Pleistocene)
La Brea Tar Pits 4.18 (3.84-4.59) 3.36(3.21-3.53)  3.58(3.38-3.78)

American Falls
Area

Friesenhan Cave
Ingleside
Page-Ladson Site

S. America

(Pleistocene)

Guerrero
Member - Lujan
Tarija Basin
Sao Raimundo
Nonato

Talara Tar Seeps

Africa (modern)

Serengeti
National Park
Kruger National
Park

Mala Mala

Reserve

3.87 (3.54-4.27)

2.86 (2.71-3.03)
2.06 (1.97-2.16)
2.29 (2.19-2.41)

1.91 (1.83-1.99)

2.56 (2.34-2.71)

1.25(1.21-1.29)

1.30 (1.27-1.34)

2.56 (2.41-2.73)

2.37 (2.24-2.51)

1.79 (1.72-1.86)

3.27 (3.08-3.46)

2.41 (2.31-2.50)
1.91 (1.84-1.98)
2.14 (2.07-2.22)

1.77 (1.71-1.82)

2.31(2.20-2.41)

1.26 (1.23-1.29)

1.30(1.27-1.33)

2.47 (2.34-2.60)

2.28 (2.18-2.38)

1.80 (1.73-1.87)

3.51(3.31-3.71)

2.56 (2.45-2.67)
2.12 (2.03-2.21)
2.30 (2.19-2.41)

2.41 (2.28-2.54)

2.95(2.78-3.12)

1.23 (1.20-1.26)

1.32 (1.28-1.36)

2.64 (2.47-2.81)

2.64 (2.50-2.78)

1.82(1.75-1.89)
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Table S4. Results of regression models for Py. Each column represents a different
method of assigning interaction strengths in the community matrix. Rows show the F-
statistic, the determination coefficient (R’), and estimates for each model parameter.

d.f. = 8 for all models. * p <0.05; ** p <0.001; *** p <0.001.

Random Asymmetric ~ Body mass
F 66.74%%* 33.94% % 41.16%**
R’ 0.92 0.85 0.91
Npred 11521 %% -64.13%%% =77 46%**
Norey _ _ -14.96%**

Mpred _ _ —
My 288.97*** 202.74** 173.081**

Table SS5. Results of regression models for z. Each column represents a different
method of assigning interaction effects in the community matrix. Rows show the F-
statistic, the determination coefficient (R’), and estimates for each model parameter.
d.f. = 8 except for the third model where d.f. =9 . * p <0.05; ** p < 0.001; *** p <

0.001.

Random  Asymmetric Body mass

F 135.20%**  63.69%** 130.00%**

R’ 0.97 0.91 0.92
Nprea  0.66%** 0.10%%** 0.48%%*
Nprey — — —
Myeq  1.06%* B B
My -0.92%* -0.16%* B
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Table S6. Comparison of Py, estimates derived using two different methods. Py, and averaged
Py, over 100 potential matrices (EI). Interaction strength assignment as a function of body

mass.

Py F_Z"t

N. America (Pleistocene)
La Brea tar pits 0.53(0.50-0.56)  0.52
American Falls Area 0.48 (0.45-0.51) 0.47
Friesenhan cave 0.73 (0.70-0.73 0.72
Ingleside 0.69 (0.66-0.68)  0.67
Page-Ladson site 0.65 (0.62-0.67) 0.67

S. America (Pleistocene)

Guerrero Member - Lujan 0.60 (0.58-0.61) 0.59

Tarija 0.48 (0.45-0.51)  0.51

Sao Raimundo Nonato 0.89 (0.87-0.91) 0.88

Talara tar seeps 0.90 (0.89-0.91) 0.91
Africa (modern)

Serengeti National Park 0.50 (0.48-0.52) 0.53

Kruger National Park 0.50 (0.47-0.53) 0.49

Mala Mala Reserve 0.66 (0.63-0.69) 0.66
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Figure S1.Changes in species composition resulting in the largest change in stability
properties for each site. Gray bars depict the original number of predators and prey in each
site. Colored bars show the average number of predators and prey after extinction simulations.

Error bars tied to the colored bars denote the standard deviation for 100 extinction

simulations.
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Figure S2. Changes in species composition resulting in the most resilient communities for
each site. Gray bars depict the original number of predators and prey in each site. Colored
bars show the average number of predators and prey after extinction simulations. Error bars

tied to the colored bars denote the standard deviation for 100 extinction simulations.
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MODELING THE RESPONSE OF A PLEISTOCENE MAMMAL ASSEMBLAGE

TO CLIMATE CHANGE AND HUMAN IMPACT

Mathias M. Pires & Paulo R. Guimaries Jr.

Abstract. Pleistocene extinctions depleted the fauna of large vertebrates worldwide.
The proposed underlying causes include the effects of climate change, anthropogenic
impacts and combinations of both. Despite the arguments in favor or against each set
of hypotheses, understanding how the dynamics of Pleistocene assemblages
responded to different impacts, and how these changes would affect their
composition, is a fundamental step to understand the Pleistocene extinctions. Here we
simulated the ecological dynamics of a North American large-mammal assemblage
from the Pleistocene, using an allometric predator-prey model, to unravel the potential
ways whereby climate change and the arrival of humans could have affected such
systems. Our results show species persistence would be impaired by increased
competition and reduced carrying capacities, due to climate change. Moreover, we
show the impact of a newly arriving predator with wide dietary breadth, such as
humans, could be devastating. Our results also point out indirect effects due to
interactions mediated by predators and producers may have had an important role in
Pleistocene extinctions, reducing populations that were not directly impacted by
climatic or anthropic factors. Moreover, our findings on the combined effects of
climate change give quantitative support to the most recent assessments on the causes
of the LQE, which suggest climate changes could have forced the populations to
lower densities whereas humans delivered the final blow determining extinction

patterns.
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INTRODUCTION

The worldwide extinction of large terrestrial vertebrates by the end of the
Pleistocene, between 50,000 and 11,000 years ago, was the Earth’s latest great
extinction event (Martin & Klein 1984; MacPhee 1999). This episode led to the
disappearance of more than 100 large-mammal genera and impacted primarily the
Americas and Australia, which lost more than 70% of their large mammalian fauna
(Koch & Barnosky 2006). Because extinctions happened at a time climate was
fluctuating and the human populations were expanding, the Pleistocene extinctions
provide not only the opportunity to better understand how large extinction episodes
take place, but to comprehend how the interplay between climactic and anthropogenic
impacts affects ecological communities.

All continents experienced climatic fluctuations during late Pleistocene. Climate
variability was strong especially during the transition between the Last Glacial
Maximum (26.5-19.0 ky BP) and the beginning of the Holocene (11.7 ky BP; Stuart
1991; Barnosky et al. 2004; Nogués-Bravo et al. 2010). Hypotheses evoking climate
changes as the main trigger of megafaunal extinctions suggest the ecological effects
of climate change, not the changes in climate per se, would have caused extinctions
(Graham & Lundelius 1984; Guthrie 1984; Koch & Barnosky 2006). Climatic
fluctuations would have reduced the availability of habitat and resources, thus
reducing the populations of large terrestrial vertebrates below a point at which they
were not able to recover (Koch & Barnosky 2006; Nogués-Bravo et al. 2010).
Roughly at the same time, humans were dispersing globally (Bowler et al. 2003;
Goebel et al. 2008).

The arrival and expansion of human populations predates most of the Pleistocene
extinctions, what has fueled several hypotheses on the role of anthropogenic impacts

on megafaunal extinctions (MacPhee 1999; Burney & Flannery 2005; Koch &
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Barnosky 2006; but see Wroe et al. 2013). Overkill hypotheses suggest prehistoric
humans hunted megafauna to extinction (Martin 1984), but it has been argued humans
could also have impacted megafauna indirectly, chiefly due to habitat alteration
(Miller et al. 2005; Robinson et al. 2005).

Most of the studies on the potential causes for the Pleistocene megafaunal
extinctions focused on examining the timing of extinctions in relation to the timing of
human arrival and climate changes (Martin & Klein 1984; Stuart et al. 2004; Guthrie
2006; Prescott et al. 2012). Current evidence on the timing of extinctions suggests
both climatic and anthropogenic impacts might have contributed (Lorenzen et al.
2011; Prescott et al. 2012; Lima-Ribeiro et al. 2013). Explicit quantitative models
testing the potential effects of climate changes on megafaunal extinctions are scant,
but several studies used simulations to explore whether the population growth and
hunting rates of humans would be able to generate the observed extinction patterns
(e.g., Belovski 1988; Alroy 2001; Brook & Bowman 2002, 2004). Collectively these
studies show there are different possible scenarios whereby humans could have driven
megafauna to extinction (but see Choquenot & Bowman 1998).

Despite the arguments in favor or against each set of hypotheses (see Koch &
Barnosky 2006), a fundamental step to understand the Pleistocene extinctions is to
investigate how should large-mammal assemblages respond to different types of
impact (Ripple & Van Valkenburgh 2010). Species within any assemblage are
connected through their interactions, and the effects of any perturbation have the
potential to propagate through the system via direct and indirect effects (Terborgh &
Estes 2010). Here we used a system of differential equations where life history and
ecological attributes are a function of body size to simulate predator-prey dynamics in
a North American large-mammal assemblage from late Pleistocene. We simulated

different scenarios, such as the arrival of humans as a new predator and increased
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competition driven by climate change, to understand how the potential triggers of the
extinction episode would have changed community dynamics, affecting species

persistence.

METHODS
Data

We used data on the species composition and estimated body mass of species
found within the La Brea tar pits (Akersten er al. 1983). We chose this fossil
assemblage as a model system because it bears several of the megafauna species
known to have occurred at the same time during late Pleistocene in North America.
We consider here only mammalian herbivores weighing more than 5 kg, which are
preyed mainly by large predators (Carbone et al. 1999), and carnivores with average
body mass greater than 20 kg. These cut-off values allow us to define a large-mammal
assemblage forming a compartment that is loosely connected, both structurally and

dynamically, with the rest of the food web (Terborgh & Estes 2010).

Simulating system dynamics

Biological traits of different organisms scale with body size obeying simple
allometric scaling relationships (Damuth 1981; Niklas 2007). Such empirical
allometric relationships have been formalized by the metabolic theory, which predicts
how metabolic rate, which varies with body size, affects biological processes by
constraining the rates of resource use and resource allocation (Peters 1986; Brown et
al. 2004; Savage et al. 2004). To simulate the dynamics of a Pleistocene large-
mammal assemblage we used a scaled version of the Rosenzweig-MacArthur
predator-prey model in which life history attributes, such as mortality rate and

population growth, and ecological attributes such as carrying capacity scale with body
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size (Weitz & Levin 2006). We generalized the model for S species and added

competition between primary consumers (equations 1 and 2). Allometric scaling

functions and the meaning of each parameter in equations 1 and 2 are presented in

Table 1. The reasoning behind each function can be found in Weitz and Levin (2006)

and Scheffer and van Nes (2006).
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an; _ 4 4
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Table 1. Model parameters and scaling functions. my is the body mass of prey and mp

the body mass of predators.
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& Conversion

) my / mp
efficiency
d Death rate m I;A

Body size controls not only resource use and allocation but also constrains
foraging behavior since it determines the size limits of potential prey of a given
predator, thus affecting the rate of biotic interactions (Emmerson & Raffaelli 2004;
Brose 2010). Empirical data suggest there is often a hump-shaped relationship
between attack rate and predator-prey body-mass ratios (Brose 2010). Moreover,
dietary breadth of carnivores is often positively related to body size (Sinclair et al.
2003). Thus, we used a statistical model based on body mass ratios (Rohr et al. 2010)
to parameterize the interaction probability between predators and prey, which is
embedded in the function ¢ in the differential equations 1 and 2 (Table 1). This
statistical model relating interaction probability and body mass ratios has been shown
to be effective in predicting predator-prey interactions between large mammals in the
African savannah’. Therefore by using such model we include a realistic structure for
predator-prey interaction patterns among mammalian species. We parameterized the
log ratio model using the range of values that maximize the model goodness of fit for
interactions between African large mammals®. Therefore, we assume that similar rules
govern how body-size relationships translate into interaction patterns in the
Pleistocene and modern large-mammal assemblages, as often assumed in
paleoecological studies with Pleistocene megafauna. By doing that, in our simulations

large predators will interact more frequently with medium- and large-sized prey than

3 Capitulo 3 — The disruption of predator-prey interaction networks after megafaunal extinctions
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with small prey. Accordingly, small-sized predators are more likely to interact with
smaller prey than with large prey.

We also used body-mass relationships to estimate the competition coefficient, a,
between prey species. Assuming we can order species along an axis representing a
niche dimension, competition should be higher for species with higher niche overlap.
Thus, following Scheffer and Van Nes (2006) we first ordered prey species along an
axis according to body mass. The position of each species along the axis determines
the mean of a distribution depicting resource use. Therefore, we assumed species of
similar body size are more likely to share similar resources. Then, we sampled n
values from a normal distribution with parameters ¢ = 0.1 and ¢ = 0.1 and assigned
the absolute values as the niche widths of each of the n prey species. Niche widths
were assigned according to body mass, i.e., assuming larger species have more
diverse diets. Because there’s conflicting evidence for the relationship between body
mass and niche width of large terrestrial herbivores (Hansen et al. 1985; Dobson et al.
2009) we also tested the robustness of our results by assigning niche widths at
random. After assigning niche widths we used the framework proposed by Scheffer
and Van Nes (2006) to estimate competition coefficients from niche overlap along a

finite linear niche axis.

Baseline simulations

We performed all numerical simulations using an ordinary differential equation
solver in MATLAB® environment. We sampled initial population densities from
uniform distributions ranging from 0.7 to 1 for prey and 0.05 to 0.2 for predators so
that initial density of predator populations is smaller than that of prey. A system
modeled with that many parameters and several species is unlikely to have easily

identifiable equilibrium points. Moreover, evidence shows populations continuously
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fluctuate suggesting the transient dynamics are important in understanding how
natural systems behave (Hastings 2001). For this reason we opted to analyze the
dynamic behavior of the community for a fixed amount of timesteps (7'= 200).
Although most of the parameters of the dynamic model are fixed by the
allometric scaling relationships, some of them have more empirical support than
others. The mortality rates of mammals, for instance, seem to be consistently lower
than that of ectothermic organisms (Mccoy & Gillooly 2008), which are
overrepresented in the tests of the empirical scaling relationship. We also have limited
information on how resource use patterns translate into competition, especially for
large herbivores for which the relevance of interspecific competition has been subject
of debate (Sinclair & Norton-Griffiths 1982; Mcnaughton & Georgiadis 1986).
Therefore we included two additional parameters, Sy and f;, to rescale predator
mortality rate, d, and the competition coefficients a, respectively. We ran the
simulations varying these parameters between 0.1 and 1, by 0.05, (10° simulations for
each), and registered the number of extinct species at the end of 200 timesteps. We
then used in the subsequent simulations the values of fy and f; found to minimize the
average number of extinctions. By minimizing the number of extinctions in baseline
simulations we are more confident we are modeling a plausible scenario, since
assemblages like the one we model here seem to have existed for a long time before
the LQE. Moreover, we guarantee that most extinctions after simulating human

arrival or climate change are a consequence of these factors.

Persistence and coexistence
To summarize the dynamics of the community under different scenarios we
measured two main components of system stability: persistence and coexistence. To

evaluate persistence we registered the number of species that died out after each
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simulation under each scenario. As a measure of the probability of coexistence we
registered the proportion of time steps within each simulation in which all starting
species coexisted.

We also registered the frequency with which each species went extinct,
considering all simulations under each scenario (see below), to obtain an estimate of
the probability of extinction. To allow the comparison of extinction patterns generated
under the different simulated scenarios we used the extinction patterns of the LQE as
a benchmark. We developed an index that considers the odds that simulations under a

given scenario correctly predict the extinction or survival of each species:

| Ef,.E,. 2(1—]3)(1—@)
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where f; is the proportion of simulations, under a given scenario, in which species i
went extinct and E; equals 1 when 7 is extinct and 0 if i is extant. A C value equal to 1
would indicate that a given scenario correctly predicts extant and extinct species in all
simulations. We are aware this approach has limitations. Extinction in our model is a
local phenomenon and does not necessarily imply in regional or global extinction.
Our models do not include, dispersal or any spatially structured processes, which are
especially important if we are considering the extinction of a species in regional or
global scale. However, assuming species most likely to go extinct locally are those
most likely to go extinct globally is reasonable. Therefore, computing C allows us to
assess whether the mechanisms simulated here in local scale would be plausible

drivers of the LQE extinction patterns.

109



Mathias M. Pires Capitulo 5

The relevance of trophic structure

Species are connected to each other through their interactions and thus are likely
to directly or indirectly affect each other. In this sense the structure of trophic
interactions should be important to determine dynamics, and, more specifically, how
the system responds to different impacts (McCann 2011). To test the relevance of
trophic structure for system dynamics we ran 100 simulations and for each of those
we randomly redistributed the probabilities of interaction between predator and prey
species (100 randomizations each) in order to break the relationship between
interaction patterns and body mass ratios. We then compared the distributions of the

response variables with that of baseline simulations.

The effect of climate changes

Among the potential effects of climate changes are the loss of natural habitats and
vegetation shifts, which decrease resource availability (Guthrie 1984; Barnosky 1986;
Guthrie 2006). Therefore, we simulated two potential effects of climate change: (i)
increase in the niche overlap between herbivores; (ii) the reduction of carrying
capacities of prey populations. In such scenarios we did not model producers
explicitly, but simulated possible consequences of fluctuations in resource availability
for herbivores. Moreover, the effects of climate change over predators are solely
indirect, through changes in prey availability.

For simplicity we assume the increase in niche overlap and the reduction in
carrying capacities to be proportional across all prey species. Thus, to simulate
increases in niche overlap we incremented by 10% to 300% (increasing by 10%) the
mean of the distribution from which the values of niche widths were sampled. We

performed 10° simulations for each increment in the mean of the distribution. The
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effect of increasing niche overlap could be constrained because we rescaled
competition (using f;; see Baseline simulations) to reduce extinctions in the baseline
simulations. To test how the scaling of competition affected our overall results we
reran the simulations while considering the baseline competition is twice as large as
considered originally. To simulate the effect of decreasing carrying capacities of
herbivores we reduced a fraction (10% to 90% decreasing by 10%) of the carrying
capacity originally computed from the allometric scaling. Again, we performed 10’

simulations for each percent decline in carrying capacities.

Human impact

Previous studies on the overkill hypotheses tested the potential of humans to hunt
megafauna to extinction by simulating the population dynamics of megafauna
herbivores and humans while considering specific aspects of human ecology (e.g.,
Alroy 2001; Brook & Bowman 2004). Our focus here is not to test whether humans
would be able to hunt megafauna to extinction on a continental scale. Also, we are
aware the arrival of humans could have had different impacts over Pleistocene
populations, including indirect impacts through habitat alteration (Koch & Barnosky
2006). Here we aimed at understanding how humans, as a new predator joining a
Pleistocene large-mammal assemblage, would affect the ecological dynamics of the
system locally. Therefore, we tested the potential effects of humans by comparing the
dynamics of the large-mammal assemblage with and without humans. As done for the
other predators the population parameters of humans were a function of body mass,
set as 70 kg. To test the effects of different possible hunting behaviors we ran
simulations changing the interaction coefficient of humans with prey species. By
changing the body mass input for humans in function ¢, which represents predation

rates, we varied the optimum prey size (17.5, 35, 70, 140, 280, 560, 1120, 2240, and
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4480 kg) for humans while keeping the remaining parameters fixed as a function of
actual human body mass (70 kg). In each simulation we sampled the initial population
size of humans from the same distribution used for other predators. We ran 10’

simulations for each optimum prey size.

The combined effect of humans and climate

We tested the combined effect of humans and climate change by simulating each
climate effect scenario of increased interspecific competition under the different
scenarios that included humans. We then registered persistence, coexistence and
extinction patterns for each combination. We ran 10° simulations for each

combination.

RESULTS

Our simulations always resulted in a few species going extinct, even in the
baseline simulations (Fig. 1). In the baseline simulations species that went extinct
were the smallest predators, which probably fed upon alternative, smaller, prey that
are not included in our analysis. When compared to a theoretical scenario in which
allometric scaling of life history attributes is kept the same, but interaction patterns
are randomly determined, the scenario in which body size shapes interaction patterns
yields larger persistence (Fig 1), suggesting that size-based interactions favor

coexistence in networks formed by large mammals.
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Figure 1. Comparing the effect of realistic predator-prey interaction patterns
determined by body size (A) against randomized interaction patterns (B). A and B
show population densities over time. Gray solid lines represent predators and dashed
lines represent prey species. C) Number of extinctions under the two scenarios (10°

simulations with the same initial conditions).

Our simulations of climate-driven changes in resource availability, by increasing
niche overlap or reducing the carrying capacity of prey populations, reduced the
overall density of prey. As expected, simulations of climate change reduced
persistence and coexistence when compared to baseline simulations (Fig. 2A and 2B;
Table S1). For instance, when the average niche width of prey species was twice as
large as that in baseline simulations, the mean number of extinctions increased from 3
to 5 and the probability of coexistence reduced from 0.5 to 0.3. Although we
simulated climate change by altering the parameters of prey populations, the increase
in the probability of extinction of predators was much greater than the changes in the
probability of extinction of herbivores themselves (Fig. 3A). Under the scenarios of
increased competition between prey species, a two-fold increase in the average niche

width of herbivores was enough to drive all predators to extinction in all simulations
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(Fig. 3A). If the carrying capacities are halved, the effect is similar and all predators
die out (Fig. 3B). Additional analyses where we considered a greater baseline
competition or where niche widths were assigned independently from body mass
yielded qualitatively similar results (Table S2).

The addition of humans produced more variable results. Adding a new predator,
such as humans, to the system also reduced persistence and coexistence when
compared to the baseline simulations. However, different hunting behaviors resulted
in very different dynamics and extinction patterns. For instance, including humans
targeting preferably prey species weighting around 17 kg the mean number of
extinctions increased from 3 to 4.5, whereas humans targeting prey around 200 kg
increased the number of extinction to 18 and decreased the probability of coexistence
from 0.5 to 0.1 (Fig 2C and Table S1). Changing from humans more likely to prey on
smaller herbivores, to humans targeting large game - passing through more
generalized hunting patterns - persistence and coexistence followed a hump-shaped
relationship (Fig. 2C). Prey species and large predators were more likely to survive
and small predators more likely to die out when we simulated humans targeting
smaller prey. Simulating humans preying preferably on the largest prey species
increased the probability of extinction for preferred prey, but smaller predators and
prey species became less likely to go extinct (Fig 3). When humans targeted prey of

intermediate size nearly all species had a high probability of dying out.
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Figure 2. Number of extinctions under each simulated scenario. A and B
simulate possible effects of climate change. A shows the number of extinctions in
simulations where we increased the niche width of prey species. B depicts extinctions
after decreasing the carrying capacity, K, of herbivores. C shows how the number of
extinctions varies for simulations with humans targeting prey of different sizes.
Colors portray the density of points considering 10’ simulations under each scenario.
The gray dotted line shows the average number of extinctions in 10° baseline

simulations.
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Climate Climate Humans

Mammut americanum 1
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Equus occidentalis 1
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Figure 3. Probability of extinction of each species under each simulated scenario:
increasing niche widths of prey, reduced carrying capacity of prey, and arrival of

humans targeting prey of different sizes. T signals extinct species.

If we compare the results of our simulations on the effects of climate change and
introduction of humans, the later produced more abrupt changes in system dynamics
(Fig. 2). Even when we increased the magnitude of competition, by setting /3, twice as
large as the value found to minimize extinctions in baseline simulations (see climate
change effects under Materials and Methods), the effects of increasing niche widths,
relative to baseline simulations, were smaller than the effects of human arrival (Fig
S1). Some scenarios including humans as large-game hunters produced extinction
patterns more similar to the extinctions patterns of the LQE (C > 0.5) than scenarios
simulating climate change effects (C ~ 0.3) or those that included humans targeting
smaller prey species (C ~ 0.3; Table S1). Interestingly, the largest extinct herbivore in
our data set, the American mastodon (Mammutt americanum), had small probability

of extinction under all scenarios (Fig. 3).
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When we combined both the increase in niche width of prey and the addition of a

predator species, simulating the combined effects of climate change and human

arrival, we found increasing niche overlap decreased persistence when humans

targeted primarily smaller prey (Fig. 4). However, for humans targeting preferably

prey > 70 kg, the effects of increasing niche widths were negligible (Fig. 4). Thus, the

extinction patterns resulting from our simulations seem to be driven qualitatively by

humans, but may be quantitatively affected by the effects of climate change simulated

here (Fig. S2).
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Figure 4. Number of extinctions when combining the simulated effect of climate

change and human arrival. Each panel depicts how the number of extinctions varies

with increasing niche width under each scenario of human hunting behavior (optimum

prey size ranging from 17.5 kg to 4480 kg; above each panel).
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DISCUSSION

Our simulations allowed us to assess how important are interaction patterns to
understand the dynamics of large-mammal assemblages and to examine how
processes related to LQE hypotheses would have affected Pleistocene assemblages.
Randomizing the interaction patterns determined by body-size relationships between
predator and prey significantly impacted dynamics, reducing species persistence.
These results emphasize the value of considering the way interactions are organized
when studying system dynamics. Moreover, our findings suggest the constraints
imposed by body-mass relationships in foraging behavior favor persistence and may
promote coexistence in rich assemblages (Brose et al. 2006). Interactions modulate
how perturbations such as the effect of climate change and the arrival of a new
predator propagate through the system affecting species trough direct and indirect
effects.

By simulating some of the potential impacts of climate change and human arrival
in a model Pleistocene large-mammal assemblage we were able to examine the
plausibility the LQE hypotheses in a local context. As expected, our results show the
effects of climate change and the arrival of humans, as we modeled here, are likely to
reduce species persistence and the likelihood of coexistence over time. Yet, the
specific responses of the assemblage studied here to each scenario differed
substantially. The increase in the niche widths and decrease in carrying capacities of
prey populations reduced their final densities, and frequently led to the extinction of
predators. The response of predators to increased competition between prey species
underscores the importance of indirect effects in the dynamics of the assemblage
(Wootton 1994). Although we are not modeling producers explicitly, our climate
change scenarios simulate the reduction of resource availability for herbivores. Thus,

the resulting extinctions of predators can be interpreted as indirect bottom-up effects
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spreading across trophic levels (Terborgh & Estes 2010). The potential relevance of
competition and indirect effects in Pleistocene extinctions has been acknowledged
before (Guthrie 1984; Owen-Smith 1999). Here we modeled possible effects of
climate change and showed how competition and indirect effects could have
contributed to reduce the populations of predator and prey species in Pleistocene
assemblages.

Human arrival also impacted persistence, but produced more variable results.
Although considering humans that hunt preferably smaller (< 40 kg) prey species had
little effect on the overall patterns, a predator targeting larger prey markedly affected
the dynamics, and ultimately the composition, of the assemblage. The addition of a
predator targeting species between 100 and 1000 kg resulted in the extinction of
almost all species except for two or three herbivores. In simulations where humans
preferred prey species weighing more than 1,000 kg, however, the overall impact on
the assemblage was reduced. Large predators and medium-sized prey ended up
extinct, but smaller prey and predators were more likely to survive, a scenario more
similar to what happened with the North American large mammals (Martin & Klein
1984; Barnosky et al. 2004). The main pathway by which the added species impact
dynamics is, again, by decreasing prey densities. However, a predator that exploits
intermediate body sizes is less likely to decline even after reducing the density of
preferred prey, since there are several fallback prey species that prevent its density
from crashing (Ripple et al. 2010). As a result, the addition of a predator that targets
the medium-sized prey in our simulations creates a scenario of apparent competition
where prey populations are overexploited. Apparent competition mediated by
predators, occurs, when prey species negatively affect each other, by enhancing the
equilibrium density of shared predators (Chaneton & Bonsall 2000). Both theoretical

and empirical evidence suggest apparent competition increases the potential of
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overexploitation and, ultimately, extinction in modern systems (Holt 1977; Bonsall &
Hassell 1997). Additionally, by reducing the availability of prey, humans preying
upon medium-sized prey compete with other predators, increasing the likelihood they
go extinct in the simulations as well. A similar mechanism, whereby humans
preferring large prey would have triggered Pleistocene extinctions through indirect
effects, has been proposed by Ripple and Van Valkenburgh (2010). Here we showed
through our simulations this mechanism is plausible and we identified a set of
conditions in which extinctions are likely to occur and which would be the most
vulnerable species.

There is unequivocal evidence that paleoindians hunted large prey (Buchanan
2006; Surovell & Waguespack 2008), and foraging models suggest paleoindians
should pursue a wide range of potential prey (Byers & Ugan 2005). The extinctions
caused by predators invasions in historical times such as predatory fishes in lakes
(Pelicice & Agostinho 2009), foxes in Australia (Kinnear et al. 2002), and domestic
cats in islands (Donlan & Wilcox 2008) show how devastating can the arrival of an
allochthonous generalist predator be. Yet, one of the most debated topics related to
the hypotheses pointing humans as the cause of extinctions is how small populations
of hunters with primitive technologies could have led so may species to extinction
(Stuart 1991). We show here that regardless of the density of human populations,
Pleistocene large-mammal assemblages should be strongly impacted by the arrival of
a large predator, at least on a local scale. These findings agree with Alroy’s (2001) in
that there is no need to assume exceptionally high population growth rates or attack
rates to generate a scenario where several species go extinct: the arrival of a new
predator with wide dietary breadth in an established assemblage is enough to result in
many extinctions. Our findings cannot unambiguously point in the direction of

humans as the immediate cause of megafaunal extinctions. However, here we go one
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step further by showing how the arrival of a new predator could drastically impact
ecological dynamics affecting not only its prey species, but indirectly affect other
herbivores and predators.

Our results simulating the combined effects of climate change and anthropogenic
impacts, show the impact of an allochthonous predator in the assemblage may be
aggravated by bottom-up forcing driven by climate changes. Yet, extinction patterns
were determined chiefly by the addition of a predator. These results agree with the
most recent assessments on the causes of the LQE in North America, which suggest
climate changes could have forced the populations to lower densities and humans
delivered the final blow (Barnosky et al. 2004; Barnosky 2008; Prescott et al. 2012;
Lima-Ribeiro et al. 2013).

Even though some of the modeled scenarios accurately predict species that went
extinct and species that survived, we modeled here the dynamics of a local
assemblage and extinctions should not be interpreted as the regional or global
extinction of a given species. The next step in understanding the underlying
mechanisms of the LQE is to unravel how these local processes could have scaled
contributing to the extinction patterns in larger scales. A few species that did go
extinct in the LQE, such as the American mastodon and peccaries had low probability
of extinction under any of the simulated scenarios. Here we only included information
on the body mass of each species, which was used to parameterize the model. We did
not distinguish, for instance, among browsers and grazers, an important aspect of
herbivore ecology structuring competition (Mcnaughton & Georgiadis 1986) and
patterns of predation (Yeakel et al. 2012) that could have affected how species
experienced late Pleistocene impacts (Koch & Barnosky 2006). Moreover, the fact
that even in baseline simulations a few species may go extinct suggests some

processes that help to maintain viable populations may have been left out. Our
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modeling framework does not include, for example, processes related to spatial
heterogeneity and dispersal, which may increase the likelihood of coexistence and
persistence (Kareiva 1990). Incorporating other layers of biological realism and
examining how extinction patterns are impacted may reveal the relative importance of
diet variation, spatial heterogeneity and metapopulation dynamics in understanding
the role of the intrinsic dynamics of large-mammal assemblages in the LQE.

Taken together, our results allowed us to test the plausibility of some hypotheses
on the mechanisms underlying the LQE at the level of local assemblages.
Assessments like ours, aiming to understand how the intrinsic dynamics of local
assemblages in the past could have contributed to their collapse are crucial before
extrapolating to understand the mechanisms driving past and on-going extinctions at

larger scales.
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APPENDICES

Table S1. Dynamics of a Pleistocene large-mammal assemblage under different

scenarios. Average values (£ standard deviation) for the probability of coexistence

and number of extinct species in 10° simulations. C measures the accuracy in

predicting LQE extinction patterns under each scenario.

Climate effect on niche width

Proportional increase

in niche widths
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

1.2

Coexistence

0.47+0.16

0.48 +£0.19

0.44+0.17

0.43+0.17

0.41 +0.17

0.39+£0.17

0.36 £0.15

0.35+0.14

0.32+0.13

0.30+0.11

0.29+0.11

0.27 +£0.09

Extinctions

3.22+1.48

3.11+1.51

3.39+1.56

348+ 1.55

3.70 £ 1.67

3.92+1.82

434+1.84

4.53+£2.02

5.03 +£2.09

5.25+£2.06

5.70+2.10

6.06 +2.06

0.33

0.33

0.33

0.33

0.32

0.32

0.31

0.31

0.31

0.31

0.31

0.31
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1.3 0.26 +£0.07 6.56 +1.92 0.31
1.4 0.24 +0.05 6.87+1.77 0.31
1.5 0.24 + 0.06 7.22+1.61 0.31
1.6 0.23 £ 0.04 7.44 +1.42 0.31
1.7 0.23 +0.03 7.67+1.26 0.31
1.8 0.22 +0.03 7.81+1.16 0.31
1.9 0.22 +0.03 7.96 + 091 0.32
2 0.22 +0.03 8.12+£0.72 0.32
2.1 0.22+0.03 8.13+0.81 0.32
2.2 0.22+0.02 8.18 £ 0.66 0.32
2.3 0.21+0.02 8.25+0.65 0.32
2.4 0.21+0.02 8.32+£0.62 0.32
2.5 0.21+0.02 8.40 £ 0.64 0.32
2.6 0.21+0.02 8.45+0.70 0.32
2.7 0.21 £0.02 8.59+0.77 0.33
2.8 0.21 £0.02 8.69 +0.83 0.33
2.9 0.21 £0.02 8.87+0.95 0.34
3 0.21 £0.02 9.03 £ 1.06 0.33
Climate effect on carrying capacity (K)
Proportional decrease
in K Coexistence Extinctions C
0.1 0.43+0.15 343+1.51 0.32
0.2 0.37+0.12 4.02 £1.81 0.32
0.3 0.31+0.09 5.15+£2.17 0.31
0.4 0.26 +0.05 6.97 +1.77 0.31
0.5 0.24 £ 0.02 7.97 +0.53 0.31
0.6 0.23+0.02 8.18+£0.59 0.32
0.7 0.21 +£0.03 8.93+1.24 0.34
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0.8 0.18+0.01 1149+ 1.44 0.43
0.9 0.16 £ 0.01 14.71 £ 1.18 0.50
Effect of adding humans
Optimum body mass of
human prey (kg) Coexistence Extinctions C

17.5 0.32+0.09 4.63 +1.67 0.29
35 0.21+0.04 10.55+£3.47 0.31
70 0.16 £ 0.03 15.89 £3.55 0.37
140 0.14+0.01 18.59 £ 1.63 0.43
280 0.14+0.02 18.54 £ 1.67 0.44
560 0.14+0.02 17.15+£2.76 0.49
1120 0.17+0.07 14.03 £ 4.30 0.58
2240 0.26 £ 0.20 9.26 £5.26 0.61
4480 0.31+0.16 6.01 +£3.99 0.52
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Figure S1. Number of extinctions under different scenarios. A shows the number of
extinctions in simulations where we increased the niche width of prey species, but
competition was twice as large as that in baseline simulations. B shows how the number of
extinctions varies for simulations with humans targeting prey of different sizes. Colors
portray the density of points considering 10° simulations under each scenario. The gray dotted

line shows the average number of extinctions in 10’ baseline simulations.
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Figure S2. Probability of extinction of each species when combining the simulated effect of

climate change (increasing niche widths) and human arrival. Each panel depicts how the

probability of extinction varies with increasing niche width under each scenario of human

hunting behavior (optimum prey size ranging from 17.5 kg to 4480 kg; above each panel). f

signals extinct species.
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RECONSTRUCTING PAST ECOLOGICAL NETWORKS: THE
RECONFIGURATION OF SEED-DISPERSAL INTERACTIONS AFTER

MEGAFAUNAL EXTINCTION

Mathias M. Pires, Mauro Galetti, Camila I. Donatti, Marco A. Pizo, Rodolfo

Dirzo & Paulo R. Guimaries Jr.

Abstract. The worldwide extinction of Pleistocene megafauna impacted ecological
communities, affecting keystone ecological processes such as seed dispersal by
vertebrates. Seed-dispersal interactions form networks, the structures of which have
implications for community dynamics. Here, we combined ecological and
paleontological data and network analyses to investigate how the structure of a
species-rich seed-dispersal network in Central Brazil could have changed from the
Pleistocene to the present and examine the possible consequences of such changes.
Our results suggest the Pleistocene seed-dispersal network would be organized into
modules similarly to the modern network. The episode of megafaunal extinction and
the arrival of humans changed how seed dispersers were distributed among modules.
The introduction of livestock partially restored the original network organization, but
now introduced species and smaller native mammals are key components for the
structure of the modern seed-dispersal network. We hypothesize the ongoing
extinction of key large vertebrates will lead to the omnipresence of rearranged

ecological networks most certainly affecting ecological processes.
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INTRODUCTION

The species in a community form a network of interactions whose structure has
implications for the ecological and evolutionary dynamics of the populations (Dunne
2006). Although snapshots in time are required to assess the structure of the
community, ecological communities are constantly losing and gaining species through
extinctions and invasions, thus network structure is continuously changing (Petanidou
et al. 2008). Insight into how changes in species composition induce changes in the
structure of ecological networks has been provided by studies focusing on the
consequences of extinctions and the impact of species invasions (Memmott et al.
2004; Vila et al. 2009). Extinction simulations have shown that food webs and
mutualistic networks are highly robust to random extinctions (Dunne et al. 2002;
Memmott et al. 2004). Similarly, studies on the effects of species invasions and on the
temporal reconfigurations of ecological networks, in which species were both lost and
gained over time, agree that the overall structure of networks is robust to changes in
species composition (Petanidou et al. 2008; Vila et al. 2009). Nonetheless, when a
great number of species is lost, major changes in network structure and, consequently
in network dynamics are expected.

The disruption of ecological networks is the most likely outcome of large
extinction events in which many species are removed from the community within a
relatively short time. A representative example of a large extinction event affecting
community structure and function is the worldwide extinction of mammalian
megafauna (body mass > 44 kg) close to the Pleistocene-Holocene transition (the late
Quaternary extinction, LQE; Martin & Klein 1984). Only in South America
approximately 50 genera of large-bodied mammals went extinct (Koch & Barnosky

2006; Barnosky & Lindsey 2010). Although many studies have focused on the causes
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underlying the LQE (Koch & Barnosky 2006), the consequences of megafaunal
extinctions have received considerably less attention (Galetti 2004; Rule et al. 2012).

There is compelling evidence that the large mammals that died out in the LQE
were key species in the communities of which they were part (Martin & Klein 1984;
Janzen 1986; Gill et al. 2009; Johnson 2009). Evidence supporting this view is
represented by seed-dispersal anachronisms, whereby many extant plant species show
traits that are best explained as having been shaped by interactions with extinct
megafauna (Janzen & Martin 1982; Donatti et al. 2007; Guimardes et al. 2008).
Indeed, anachronistic seed-dispersal systems are thought to be the result of the
disruption of the seed-dispersal services formerly provided by megafauna due to the
LQE (Janzen & Martin 1982; Guimaraes et al. 2008). Those plant species probably
suffered some degree of seed dispersal limitation after the extinction of their large
seed dispersers (Janzen 1986), currently relying upon seed dispersal by scatter-
hoarding rodents, surrogate megafauna (e.g., livestock), runoff, flooding, gravity, and
human-mediated dispersal (Guimaraes et al. 2008; Jansen et al. 2012). The study of
how seed dispersal systems were affected by megafaunal extinction may allow us to
understand how on-going defaunation will affect ecological processes.

Here, we examine the potential changes caused by the extinction of megafauna
and following key historical events, such as the arrival of humans in the Americas and
the introduction of exotic species (livestock and feral pigs) on a seed-dispersal
network. We performed addition and removal simulations of extinct Pleistocene
mammals, humans, and livestock in one of the most diverse seed-dispersal networks
recorded to date, which includes species from major taxonomic groups of seed
dispersers — mammals, birds, fish and reptiles — and the plants they interact with in the

Pantanal (Donatti et al. 2011). First, we compiled from the literature a list of
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mammalian megafauna likely to occur in the Pantanal during the Pleistocene. Second,
we combined data on the feeding ecology of Pleistocene megafauna (e.g., MacFadden
& Shockey 1997; MacFadden 2000) and information on seed-dispersal anachronisms
(Guimaraes et al. 2008) to outline the putative interactions among the extinct
megafauna and fleshy-fruited plants. Finally, we built a potential network time series
from the end of the Pleistocene to the present day and used metrics that describe the
network organization to evaluate the changes in the patterns of interactions between
seed dispersers and plants over time. Because the LQE represented a major change in
the composition of mammalian assemblages (Martin & Klein 1984), we expected that
network organization in the Pleistocene would be substantially different and would
have suffered a great reconfiguration after most large-bodied mammals became
extinct. To our knowledge, this is the first attempt to reconstruct how a large

extinction event and human arrival reconfigures an ecological network.

METHODS
Study site

The seed-dispersal interactions were surveyed in two neighboring locations in the
Brazilian Pantanal: Rio Negro (19°34°15”° S 56°14°43*”> W) and Barranco Alto farms
(19°34°40° S 56°09°08°> W), covering 7500 ha and 11 000 ha, respectively (Donatti
et al. 2011). The vegetation in these locations is characterized by gallery forests,
savannas, and semi-deciduous forests. As in all the South America lowlands (Bush et
al. 2011), paleoclimatic studies suggest that the Pantanal experienced climatic
fluctuations during the Late Pleistocene and Holocene (Assine & Soares 2004) that
resulted in vegetation shifts (Whitney et al. 2011). Although such changes most

certainly affected plant communities, palynological data shows that by 19.5 kyr BP,
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when tropical forest communities began to expand following the Late Glacial
Maximum (LGM), most plant taxa represented in the modern pollen assemblages
were already present in the Pantanal region (Whitney et al. 2011). Therefore, even
considering that the relative plant abundances likely changed during the interval
considered here, changes in species occurrence in this particular region seem to have
been less pronounced. For this reason, in our baseline analysis, we assume the plant
taxa were the same throughout the time series. However, we also performed
simulations to explore the effects of changes in plant composition on the network

organization (see below).

Pleistocene mammals

Several sites containing fossils of Pleistocene mammals can be found within 200
km of the study sites (Scheffler et al. 2010). We assume that the species found in
those sites could also be found in the study sites due to the high mobility of
megafaunal species and the vegetational, climatic and topographic homogeneity of the
Pantanal floodplain. Fossil data for extinct megafaunal assemblages originate from
limestone caves of the Serra da Bodoquena (19°48°-22°16’S; 56°32°-57°24°W),
Brazil (Salles et al. 2006; Scheffler et al. 2010). Although dates for the fossils are
unavailable, fossils are from taxa that survived into late Pleistocene (Barnosky &
Lindsey 2010). The estimated body masses were obtained from literature (Smith et al.
2003; Table S1). Dietary data were compiled from feeding ecology studies of each
taxon (Table S1). When estimated body mass or diet of a given species was not
available, we used information on closely related taxa.

Archeological evidence suggests that fruits were also important in the diet of

paleoindians in the Neotropics (Roosevelt et al. 1996). In fact, seed dispersal by
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humans that live in traditional communities close to forested areas seems to be
important for several plant species in the tropical region (Guix 2009). To incorporate
the role of paleoindians as seed dispersers, we assigned interactions to humans while
assuming that the fruits used were the same as those used currently by the indigenous
people that inhabit the Pantanal region (Pott et al. 2011). This assumption is
supported by the fact that fruits of several species have evidence of long-term use by

indigenous people, such as some palm fruits.

The network time series

We used the seed-dispersal network sampled by Donatti et al. (2011). This
dataset contains only seed-dispersal interactions; fruit consumption by seed predators
or non-disperser pulp consumers was not included in the assembly of the network. We
included seed dispersal by introduced species, such as cattle and feral pigs, which
interact with several plant species in the area (Galetti, M. unp. data; Donatti et al.
2007).

To evaluate the possible structural differences in the Pantanal seed-dispersal
network over time, we built a potential network time series from the Pleistocene to the
present. We modeled four key periods in network reorganization: (i) the plant-
frugivore network in the late Pleistocene, after the expansion of tropical forest
communities that followed the LGM (Whitney et al. 2011); (ii) the early Holocene
network in which most megafaunal species died out and paleoindians already
inhabited the region; (iii) the Colonial period (1800’s), with the onset of livestock
production in the Pantanal region (Abreu et al. 2010), with cattle, pigs, and also
indigenous people acting as dispersers; and (iv) the modern period in which humans

are no longer relevant dispersers due to the demise of local human communities but
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cattle and pigs are part of the seed-disperser assemblage (Fig. 1). For simplicity, we
assume that the extant species interacted with the same plant species in the past, an
assumption supported by some degree of niche conservatism in the identity of
mutualistic partners observed in seed-dispersal networks (Rezende et al. 2007).
Although we included extant grazers (e.g., cattle) in some of the seed-dispersal
networks, to reconstruct the Pleistocene network, we opted for a conservative
approach and included only those mammals with browsing and mixed diets, i.e., those
taxa more likely to have fruits as an important component on their diets (MacFadden
& Shockey 1997; Table S1). By doing so we attempted to avoid overestimating the
role of Pleistocene megafauna. To define the interactions that megafaunal species
potentially established in seed-dispersal networks, we identified fruits showing
characteristics that fit the megafaunal syndrome, i.e., similar to fruits that are
dispersed by the extant megafauna in Asia and Africa (Guimardes et al. 2008).
Megafaunal fruits are characterized by a large size (diameter >4 cm) and contain
extremely large (diameter >2 cm) individual seeds (type I fruits), or by extremely
large fruits (diameter >10 cm) that contain a large number of moderate- or small-sized
seeds (type II fruits; Guimaraes et al. 2008). We assume that the extant plant species
with fruits that possess those characteristics interacted more frequently with the
megafauna in the past than did other extant plant taxa. Although megafauna may have
interacted with other types of fruits (Janzen & Martin 1982; Janzen 1984), by
restricting megafaunal interactions to those plants and fitting an operational and
conservative definition of megafaunal fruits (Guimaraes et al. 2008), we avoid
overestimating the structural effects of megafaunal extinction. However, as restricting
megafaunal interactions to a subset of plant species certainly affects the network

topology, we performed additional simulations to test how our results are affected if
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we consider the consumption of non-megafaunal fruits by the extinct megafauna (see

below).

Network structure

For each of the reconstructed networks, we analyzed the two most commonly
explored structural patterns of mutualistic networks: nestedness (Bascompte et al.
2003) and modularity (Olesen et al. 2007). Nestedness occurs if the interacting
assemblage of a species is a subset of the interacting assemblage of species with more
interactions (Bascompte et al. 2003). We used the index NODF (Almeida-Neto et al.
2008) to compute the degree of nestedness of each network. NODF ranges from 0,
when the matrix is non-nested, to 100, when the matrix is perfectly nested. The
modules within an ecological network are subsets of species that are more connected
to each other than to other species in the network (Olesen et al. 2007). We detected
modules using the simulated annealing algorithm to maximize the index of modularity
M (Guimera & Amaral 2005). M equals 0 if species are placed at random into
modules and approaches 1 if there are few between-module interactions. Although M
does not take into account the fact that seed-dispersal networks are two-mode
networks, it is also suited to estimate modularity of two-mode networks (Olesen et al.
2007). Moreover, because the theoretical model we used to test the significance of M
(see below) also yields two-mode networks, any difference in M among real and
theoretical networks cannot be related to the two-mode structure (Pires et al. 2011).

To verify the significance of the empirical degrees of nestedness and modularity
of each network, we used a null model approach. We generated 10° theoretical
networks in which the probability that an animal species, i, interacts with a plant

species, j, is
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1(k k;
il

in which 4; is the number of plants that interact with the animal species i, &; is the
number of animal species that interact with plant species j, P is the plant species
richness and 4 is the animal species richness (Bascompte et al. 2003). NODF and M
were then computed for each theoretical network to generate null distributions of
NODF and M values.

We also evaluated how the role of a species in the network structure would differ
between Pleistocene and modern networks. We assigned a role for each species in the
network based on the number of its interactions with species within its own module
(z) and on how evenly distributed its interactions are across species in different
modules (c; Guimera & Amaral 2005). Species with low z and low ¢ values are
peripheral species interacting with species within their own module. Species with
either a high z or ¢ were generalists and either (1) module hubs, i.e., highly connected
within their own module (high z and low c), or (2) connectors, those species that link

modules (low z and high c; Olesen et al. 2007).

Megafauna feeding on non-megafaunal fruits

In our baseline analysis we assumed that megafauna would interact with the same
subset of available fruits, which results in total overlap of interaction patterns. This
overlap may impact network structure in non-obvious ways. For instance, megafaunal
species could form an additional module with the megafaunal fruits, increasing
modularity. Alternatively, if megafaunal fruits are in different modules in the modern
network, adding several species with a similar interaction pattern could merge such

modules, reducing modularity. Nevertheless, it is unlikely that all megafaunal species
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fed on the exactly same set of species. Thus, we performed an analysis to test if the
degree of modularity and module assignment in the Pleistocene network (time period
I) would be different if megafaunal species varied in their fruit consumption. In this
second set of simulations we assume megafaunal species would feed, in addition to

megafaunal fruits, on a variable set of non-megafaunal fruit species (Appendix S1).

Effects of shifts in plant composition

Even though palynological data support our assumption that the floristic
composition in the region was reasonably similar between the Pleistocene and today
(see Study site), we performed an additional analysis to test whether our results were
robust when this assumption was relaxed (Appendix S2). We performed random
removals of the plants in the Pleistocene seed-dispersal network and computed
modularity for each network registering the module each seed disperser was assigned
to. If the modular organization were highly sensitive to changes in the plant
composition we should expect that removing any small proportion of plants would

result in a very different modular organization

RESULTS

We identified nine species of Pleistocene large herbivores that lived close to the
area assessed by Donatti ef al. (2011). Five of these nine species were mixed-feeders
or browsers (Table S1) and thus more likely to be relevant seed dispersers. Ten of the
48 plant species in the modern network (20.8%) are plants with fruits that fit the
megafaunal seed-dispersal syndrome (Table S2).

All the networks in the time series were both more nested and more modular than

expected by the null model (Table 1). However, the number and composition of the
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modules changed across networks (Table S2). The Pleistocene network was best
characterized by five modules (Fig. 1). Two modules are dominated by bird species,
with large birds, such as toucans and guans, being more frequent in the first bird-
dominated module (average body mass £ SD = 0.24 + 0.07 kg) and small birds,
mainly passerine birds, in the second (0.06 + 0.01 kg). Mammals also dominate two
modules: one of these mammal-dominated modules included mainly large mammals
(1.6x10°+ 2.2x10° kg), whereas small mammals dominated the second (35.19 + 69.09
kg). The module dominated by large mammals would include mainly the Pleistocene
megafauna and one small mammal, the agouti (genus Dasyprocta), scatter-hoarding
rodents that feed upon and disperse large seeds (Jansen et al. 2012). The second
mammal-dominated module would include mammals that are small-bodied compared
to the Pleistocene megafauna, such as peccaries (Pecari and Tayassu spp.) and the
coati (Nasua nasua). If we relax the assumption that megafauna only interacted with
megafauna-dependent fruits, the predicted degree of modularity of the Pleistocene
networks should be smaller (M = 0.368 £ 0.006). Nevertheless, the module
organization of the two mammal-dominated modules is consistent even when
considering that megafauna would have interacted with several other plant species
that do not fit the megafaunal dispersal syndrome (Appendix S1 and Table S3). The
two mammal-dominated modules and the module dominated by large birds were also
robust after relaxing the assumption that the Pleistocene and modern plant

assemblages were similar (Appendix S2 and Fig. S1).
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Table 1. Nestedness (NODF) and modularity (M) of the seed dispersal networks
representing each time period in the time series and the average nestedness (NODFY)

and modularity (Mpy), = standard deviation, for their randomized counterparts.

Time period

I [Megafauna] IT [Humans] III [Livestock] IV [Modern]
NODF 27.45 31.88 32.09 29.46
NODFg 19.73 £ 1.40 20.50 = 1.18 2534 +£1.21 20.59 +1.12
M 0.45 0.39 0.37 0.39
Mg 0.33+0.01 0.33+0.01 0.31+0.01 0.33£0.01

In the second major period, in the early Holocene, after the Pleistocene
megafaunal extinction, paleoindians, by interacting with a considerable proportion of
the plant species, would have changed the module organization of the network,
merging both mammal-dominated modules into a single module (Fig. 1). Conversely,
the arrival of livestock (pigs and cows) in the third period (Colonial period) would
have restored the large/small mammal modules. Finally, in the modern time period, a
time when humans are no longer relevant as dispersers, but cows and pigs still act as

seed dispersers, the network is, again, best characterized by the five modules (Fig. 1).
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Figure 1. Seed-dispersal networks representing each time period in the network time
series. Nodes represent animals (circles) and plants (diamonds) and the size of a node
is proportional to its number of interactions. Colors identify the modules each species
was assigned to. Green and blue modules are dominated by large and small birds,
respectively; red and yellow modules are dominated by large and small mammals; the
purple module is defined by a fish species (Piaractus mesopotamicus). In all networks
species occupy the same position defined for the modern network, even when
assigned to different modules, to allow comparisons. When the color of a given node
changes from one network to the other, that species was assigned to different modules
in different periods. Representative species within the module dominated by large
mammals are represented by illustrations to highlight the changes across time periods.

See Table S2 for the species composition of each module.
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The changes in mammal-dominated modules across the time series had
consequences for the interaction patterns of the plants in those modules. In the late
Pleistocene, the members of the large mammal module would be mainly the
Pleistocene megafaunal species weighing in the order of 10 kg. In contrast, most
extant mammals that comprise the module in the modern network, such as the tapir
(Tapirus terrestris), black howler (4louatta caraya), and coati (Nasua nasua), would
be, functionally, small mammals in the Pleistocene network (Fig. 1 and Table S2). As
a result, if we compare the two extremes of the time series, the Pleistocene and
modern networks, major differences with regard to the distribution of the body mass
of dispersers are noted. In the Pleistocene network, plants within the large mammal-
dominated module would have dispersers that are, on average, much larger than in the
modern network (Fig. 2). However, as the network diminished to its current size, so
did the dispersers, and the plants in both mammal-dominated modules now have seed

dispersers of a similar size (Fig. 2).
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Figure 2. Average body size of dispersers of each plant species in the Pleistocene and
modern seed dispersal networks. Colors indicate the module each plant species was
assigned: red = large mammal-dominated module, yellow = small mammal-
dominated module, green = large bird-dominated module, and blue = small bird-

dominated model.

Because of the modular organization, the effects of megafauna loss mainly
influenced the plant species within the mammal-dominated modules, whereas the
average size of dispersers of plants in the bird-dominated modules would be similar
across both periods (Fig. 2). This is also true for the functional roles of species. We
found that nearly all of the species that differ in their contribution to the connections
within and between modules were species assigned to the mammal-dominated
modules in the modern network (Fig. 3). Most of these species, such as the crab-
eating fox (Cerdocyon thous), the red brocket deer (Mazama americana), and the

tapir (Tapirus terrestris), have larger c-values in the modern network, indicating that
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they are now more relevant as module connectors and are thus more central in the

modern network, than in the Pleistocene network. Conversely, other mammal species,

such as the white-lipped peccary (Tayassu pecari), the collared peccary (Pecari

tajacu) and the agouti (Dasyprocta sp.), have larger z-values in the modern network,

indicating they are more central to their module in the modern period than they would

have been in the Pleistocene (Fig. 3).

Modern c-value

Figure 3. Network roles of extant species
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Points that fall outside the 1/1 line represent those species whose role changed from

the Pleistocene to the modern network.
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DISCUSSION

Many of the large mammals that became extinct in South America during the
Pleistocene were also potential seed dispersers of extant plant species (Janzen &
Martin 1982; Guimaraes et al. 2008). The approach we used here, albeit conservative,
suggests that the demise of the megafauna could have had important consequences for
the organization of the seed-dispersal network in the Pantanal region. The Pleistocene
network, which was most likely characterized by two modules of mammalian seed
dispersers, was reconfigured after the loss of most of the large-bodied mammals in the
LQE. Acting as generalist foragers, humans would have rearranged the seed-dispersal
network in a novel way, merging together the two modules dominated by mammals.
The organization of the Pleistocene network would have been partially restored after
the arrival of pigs and cattle, which consume the fruits, potentially dispersing the
seeds, of many of the plants presumably dispersed by Pleistocene megafauna (Janzen
& Martin 1982; Donatti ef al. 2011).

The introduction of surrogate seed dispersers, that is, extant species ecologically
equivalent to the extinct species ("rewilding"; Donlan et al. 2006), has been suggested
as a management tool to locally restore ecological and evolutionary processes in those
areas where large vertebrates died out (Donlan et al. 2006; Griffiths et al. 2011).
Although our results suggest livestock could have partially restored the structural
properties of the Pantanal seed-dispersal network, whether or not livestock is able to
compensate for the loss of extinct megafauna within the community remains to be
tested.

Pleistocene and modern networks with surrogate Pleistocene dispersers would
still be very dissimilar in at least one key feature: the body size range of the extant

seed dispersers is truncated at the large end of the size spectrum. This difference in
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the body sizes of seed dispersers has a number of implications for seed dispersal.
Large frugivores are the main seed dispersers of seeds that are too large for smaller
mammals and birds (Janzen & Martin 1982; Hansen & Galetti 2009), and are more
likely to promote long-distance dispersal, connecting plant populations across
fragmented landscapes (Nathan & Muller-Landau 2000; Fragoso et al. 2003). Also,
because large mammals ingest more seeds per feeding event, seeds are more likely to
be dispersed in clumps, potentially affecting seed germination success and the spatial
distribution of the adult plants (Fragoso et al. 2003). Therefore, the extinction of
megafauna is likely to have affected population dynamics, the patterns of spatial
distribution and the genetic structure of large-seeded plants in ways that livestock
may not compensate.

Our results also indicate how far-reaching the impacts of megafaunal extinction,
for other plants and seed dispersers, could have been. In a modular system, species are
tightly connected to other species in the same module but loosely connected to the
rest of the network. As a result, the direct effects of structural changes are often
localized, directly impacting the species within certain modules instead of spreading
to the entire network (Dunne 2006). As seed dispersal and the recruitment of plants
that relied on megafaunal species decreased, however, those plants that are dispersed
by other primary seed dispersers, such as birds, and by secondary dispersers, such as
rodents, would face lower competition and higher probabilities of recruitment, leading
to a positive indirect effect of the megafaunal extinction on plant species in other
modules of the network. Palynological data suggest some fruiting tree species
declined in abundance, whereas Cyperaceae and Poaceae increased, in the Pantanal
region during late Pleistocene (Whitney ef al. 2011). Although this vegetation shift is

likely related to changes in climate conditions, the loss of megafauna might have
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contributed. A similar phenomenon has been reported for modern-day communities in
South and Central America, where hunting has reduced the densities of large- and
medium-sized seed dispersers, leading to an increase in the richness and densities of
plants that are dispersed by small, non-game animals and by abiotic means (Wright et
al. 2007). As better data on the composition of the plant communities in the past is
obtained from the fossil record, future studies should be able to test whether a shift in
plant composition followed the Pleistocene megafaunal extinction, thus contributing
to our understanding of the large-scale consequences of defaunation both in the past
and in modern times.

A further consequence of the LQE was the increase in the importance of extant
species across time. The megafaunal plants now rely on dispersal by smaller species,
such as the agouti (Dasyprocta spp.; Jansen et al. 2012), and only on a few large
mammals, such as feral pigs and the tapir (Donatti et al. 2011). Our results suggest
species such as the tapir, brocket deer, and peccaries would have had a more
peripheral role in the seed-dispersal network during the Pleistocene when compared to
modern communities. The same seems to be taking place in modern communities. As
populations of Asian elephants and rhinos decline, large-seeded plants dispersed by
them have to rely on smaller species such as the Asian tapir, which seems to be far
less effective as seed disperser of large-seeded plants (Campos-Arceiz ef al. 2012).

Our knowledge of the ecology of modern communities is biased toward systems
that are already largely defaunated (Corlett 2013), but the roles that species play in the
community could have been different in the past. The few extant large vertebrates in
the tropical ecosystems are the last option for the seed dispersal of plant species that

have lost a significant proportion of their interaction partners. The ongoing or future
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consequences of local extinctions of such large-bodied seed dispersers are likely to

have deleterious effects for the plant species that now rely on them.
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APPENDICES

Appendix S1. Sensitivity of modules to the interaction patterns of Pleistocene
megafauna

We performed an additional analysis to test whether the module organization we
found for the Pleistocene network was sensitive to the way we assigned interactions to
megafauna. To do that we relaxed our conservative assumption that Pleistocene
megafauna only interacted with highly dependent megafauna fruits. Because in the
modern network there is a strong positive relationship (Fyo; = 73.61, R* = 0.64; p <
0.001) between the number of interactions, k, of seed-dispersers and average body
mass, m (Donatti et al. 2011), we first used the equation describing this linear
relationship, £ = 8.27 + 1.71*In(m), to estimate the expected number of interactions
for each megafauna species based on body mass. Most of those species weighted
more than 10° kg and so, according to the k/m relationship, they should have around
20 interactions. Because only 10 out of the 45 plant species were identified as

potential megafaunal plants, we generated an ensemble of 100 potential Pleistocene
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networks in which all megafaunal species interacted with the plants with megafaunal
fruits, but their remaining interactions were randomly assigned to other plant species.
By doing so, we randomly distributed more than 50% of the interactions of each
megafaunal species. We then computed modularity for each network and registered
the modules each seed disperser was assigned to. All reconstructed networks had
three or four modules with an average modularity (+SD) of 0.368 (£ 0.006). For all
networks a module dominated by small mammals and one dominated by large
mammals was identified. Even randomly distributing more than a half of the
interactions of megafaunal species they were consistently assigned to the same
module (Table S3). Approximately half of the networks also had two modules
dominated by birds, whereas for the other half the two bird-modules were merged into
one. However, when two bird-dominated modules were identified, small birds were
consistently assigned to one module and larger birds to the other (Table S3). In Table
S3 we report the frequency with which a given species was assigned to each module.
These results show that even though, as expected, the degree of modularity is
sensitive to the way interactions are assigned to megafauna, the module organization
found for our more conservative assignment of megafaunal interactions, which is

presented the main text, is robust.

Appendix S2. Sensitivity of modules to changes in vegetation

Although palynological data suggest the floristic composition during late
Pleistocene in this region was similar to today’s composition (Whitney et al. 2011),
we performed an additional analysis to test whether the module assignment pattern we
found for the Pleistocene network was robust to changes in the plant composition. We
performed random removals of 10%, 20%, 30%,...90% (100 simulations each) of the

plants in the Pleistocene seed-dispersal network, computed modularity for each
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network, and registered the module each seed disperser was assigned to. If the
modular organization were highly sensitive to changes in the plant composition we
should expect that removing any small proportion of plants would result in a very
different modular organization. Our analysis suggests the module assignment pattern
is highly robust. Removing plants sometimes resulted in seed dispersers loosing all
their interaction patterns and thus not being assigned to any module. However, when
assigned to a module, seed dispersers were often assigned to the same modules they
were assigned to in the network containing all plant species. As in the analysis testing
the effects of adding more interactions to Pleistocene megafauna (Appendix S1), the
module dominated by small birds was indentified in approximately 50% of the
simulations of each scenario. Yet, whenever two bird-dominated modules were
identified, those species originally assigned to the module dominated by small birds
were consistently grouped together in the same module. The modules dominated by
large mammals, small mammals and large birds were robust to changes in the plant
assemblage. Substantial changes in the module assignment patterns are only found
after removing more than 50% of the plant species (Fig. S1), when, for instance, small
mammals that were consistently grouped together are eventually assigned to the

module originally dominated by small birds.
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Table S1. Extinct megafaunal species, with estimated body mass and diet

information, found in paleontological sites in Serra da Bodoquena, Brazil. Asterisks

indicate the species that were included in the Pleistocene seed dispersal network.

Taxon Body Mass (kg) Diet
Artiodactyla
Palaeolama major* 1,000 Browser (MacFadden and Shockey
1997)
Cingulata
Glyptodon sp. 1,430 Grazer to mixed-feeder
(MacFadden 2000)
Pampatherium sp. 150 Grazer (de Iuliis, Bargo and
Vizcaino 2000)
Litopterna
Xenorhinotherium sp.* 980 Browser (MacFadden and Shockey
1997)
Notoungulata
Toxodon platensis 1,600 Grazer (Macfadden et al. 1994)
Perissodactyla
Equus sp. 350 Grazer (Macfadden et al. 1994)
Pilosa
Eremotherium laurillardi* 800 Browser (Bargo 2001)
Glossotherium lettsomi* 1,000 Mixed-feeder (Bargo 2001)
Proboscidea
Stegomastodon waringi* 6,000 Mixed-feeder to browser (Prado et

al. 2005)
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Table S2. Module assignment of each species within the seed-dispersal network for
each time period. LM = large mammal-dominated module; SM = small mammal-
dominated module; LB = large bird dominated-module; SB = small bird-dominated
module; F = fish module. Pleistocene megafaunal species and megafaunal fruits are

identified with an asterisk (*)

Time period

I [Pleistocene] II [Humans] III [Livestock] IV [Modern]

Animals
Casiornis rufa SB SB LB SB
Columbina talpacoti LB LB LB LB
Crax fasciolata SM SM SM SM
Cyanocorax chrysops SB SB LB SB
Cyanocorax
cyanomelas LB LB LB LB
Gnorimopsar chopi LB LB LB LB
Guira guira LB LB LB LB
Icterus croconotus SB SB LB SB
Myiarchus ferox SB SB LB SB
Myiodynastes
maculatus SB SB LB SB
Ortalis canicollis LB LB LB LB
Paroaria coronata SB SB LB SB
Pipile jacutinga LB LB LB LB
Pitangus sulphuratus SB SB LB SB
Psarocolius
decumanus LB LB LB LB
Pteroglossus
castanotis LB LB LB LB
Ramphastos toco LB LB LB LB
Ramphocelus carbo LB LB LB LB
Rhea americana LM F LB LM
Saltator coerulescens SB SB LB SB
Tachyphonus rufus LB LB LB LB
Thraupis palmarum SB SB LB SB
Thraupis sayaca SB SB LB SB
Trogon curucui SB SB LB SB
Turdus rufiventris SB SB LB SB
Turdus sp. LB LB LB LB
Tyrannus
melancholicus SB SB LB SB
Tityra cayana SB SB LB SB
Alouatta caraya SM LM LM LM
Cerdocyon thous SM LM SM SM
Dasyprocta sp. LM LM SM SM
Mazama americana SM LM SM SM
Nasua nasua SM LM LM LM
Pecari tajacu SM LM SM SM
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Procyon cancrivorus SM LM LM LM

Tapirus terrestris SM LM LM LM

Tayassu pecari SM LM SM SM

Geochelone

carbonaria SM LM SM SM

Piaractus

mesopotamicus F F F F

Artibeus sp. LB F SM SM

Sus scrofa — — LM LM

Cattle — — LM LM

Humans — LM SM —

Eremotherium

laurillardi* LM — — —

Stegomastodon

waringi* LM — — —

Glossotherium

lettsomi* LM — — —

Xenorhinotherium

sp.* LM — — —

Palaeolama major* LM — — —
Plants

Acrocomia aculeata

(Arecaceae)™ LM LM LM LM

Agonandra

brasiliensis

(Opiliaceae) SM LM LM LM

Alibertia sessilis

(Rubiaceace) SM LM SM SM

Annona dioica

(Annonaceae) SM LM SM SM

Attalea phalerata

(Arecaceae)™ LM LM LM LM

Attalea speciosa

(Arecaceae)™ LM LM LM LM

Bactris glaucescens

(Arecaceae) SM F LM LM

Byrsonima

orbignyana

(Malpighiaceae) SM LM SM SM

Byrsonima

verbascifolia

(Malpighiaceae) SM LM SM LM

Caryocar brasiliensis

(Caryocaraceae)* LM LM SM SM

Cecropia

pachystachya

(Urticaceae) LB LB LB LB

Copernicia alba

(Arecaceace) LB LB LB LB

Couepia uiti

(Chrysobalanaceae) SM LM LM LM

Curatella americana

(Dilleniaceae) LB LB LB LB
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Diospyros hispida

(Ebenaceac) SM LM LM LM
Dipteryx alata

(Fabaceae)* LM F LM LM
Doliocarpus dentatus

(Dilleniaceae) SB SB LB SB
Dulacia egleri

(Olacaceae) LM LM SM SM
Enterolobium

contortisiliquum

(Fabaceae)* LM LM SM SM
Eugenia dysenterica

(Myrtaceae) SM LM SM SM
Ficus gomelleira

(Moraceae) SM F SM SM
Ficus pertusa

(Moraceae) LB LB LB LB
Garcinia brasiliensis

(Clusiaceace) SM LM LM LM
Genipa americana

(Rubiaceae)* LB LB LB LB
Guazuma ulmifolia

(Malvaceae) SM LM SM SM
Hancornia speciosa

(Apocynaceae) SM LM SM SM
Hymenaea

stigonocarpa

(Fabaceae)* LM LM SM SM
Inga laurina

(Fabaceae)* LM F F F
Licania parvifolia

(Chrysobalanaceae) F F F F
Melicoccus

lepidopetalus

(Sapindaceae) SM LM LM LM
Mouriri elliptica

(Melastomataceae) SM LM SM SM
Ocotea dyospirifolia

(Lauraceae) SB SB LB SB
Pouteria gardneri

(Sapotaceae) SM LM LM LM
Pouteria ramiflora

(Sapotaceae) SM LM SM LM
Protium heptaphyllum

(Burseraceac) LB LB LB LB
Psidium nutans

(Myrtaceae) SM LM SM SM
Psittacanthus

caliculatus

(Loranthaceae) SB SB LB SB
Psittacanthus

cordatus

(Loranthaceae) SB SB LB SB
Rhamnidium

elaeocarpum LB LB LB LB
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(Rhamnaceae)

Salacia elliptica

(Celastraceae)* LM LM SM F
Sapindus saponaria

(Sapindaceae) LB F SM LB
Sterculia apetala

(Malvaceae) LB LB LB LB
Solanum viarum

(Solanaceae) SM LM LM LM
Swartzia jorori

(Fabaceae) SB SB LB SB
Syagrus flexuosa

(Arecaceac) SM LM LM LM
Tocoyena formosa

(Rubiaceace) F F F F
Vitex cymosa

(Verbenaceae) SM LM LM LM
Zanthoxylum rigidum

(Rutaceae) SB SB LB SB
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Table S3. Module assignment when considering interactions with non-megafaunal
fruits. Relative frequency (in 100 networks) with which a given species (rows) was
assigned to each module (columns) after considering the potential interactions of
Pleistocene megafauna with non-megafaunal fruits (Appendix S1). Pleistocene

megafauna are identified with an asterisk (*)

Large Small Large Small
mammals mammals birds birds
Casiornis rufa 0 0 0.53 0.47
Columbina talpacoti 0 0 1 0
Crax fasciolata 0 0.98 0 0.02
Cyanocorax chrysops 0 0 0.53 0.47
Cyanocorax cyanomelas 0 0 1 0
Gnorimopsar chopi 0 0 1 0
Guira guira 0 0 1 0
Icterus croconotus 0 0 0.53 0.47
Myiarchus ferox 0 0 0.53 0.47
Myiodynastes maculatus 0 0 0.53 0.47
Ortalis canicollis 0 0 1 0
Paroaria coronata 0 0 0.53 0.47
Pipile jacutinga 0 0 1 0
Pitangus sulphuratus 0 0 0.53 0.47
Psarocolius decumanus 0 0 1 0
Pteroglossus castanotis 0 0 1 0
Ramphastos toco 0 0 1 0
Ramphocelus carbo 0 0 1 0
Rhea americana 0.15 0.79 0 0.06
Saltator coerulescens 0 0 0.53 0.47
Tachyphonus rufus 0 0 1 0
Thraupis palmarum 0 0 0.53 0.47
Thraupis sayaca 0.06 0 0.47 0.47
Trogon curucui 0 0 0.53 0.47
Turdus rufiventris 0 0 0.53 0.47
Turdus sp. 0 0 1 0
Tyrannus melancholicus 0 0 0.53 0.47
Tityra cayana 0 0 0.53 0.47
Alouatta caraya 0 0.97 0.01 0.02
Cerdocyon thous 0 1 0 0
Dasyprocta sp. 0.53 0.45 0 0.02
Mazama americana 0 0.98 0 0.02
Nasua nasua 0 0.98 0 0.02
Pecari tajacu 0 0.98 0 0.02
Procyon cancrivorus 0 1 0 0
Tapirus terrestris 0 1 0 0
Tayassu pecari 0 0.98 0 0.02
Geochelone carbonaria 0 0.98 0 0.02
Piaractus 0.87 0 0.05 0.08
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Figure S1. Robustness of modules to changes in vegetation. Frequency with which

seed dispersers in a given module in the Pleistocene seed-dispersal network were

assigned to a different module after plants were removed (Appendix S2). Filled bars

denote the median considering all the species originally in a given module and error

bars denote the median absolute deviation.
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CONSIDERACOES FINAIS

As diferentes se¢des que compdem a tese abordam aspectos relacionados a
organizacdo de redes de interagdes ecologicas de diferentes tipos e, mais
especificamente, aos mecanismos € consequéncias relacionados a extingdo de

mamiferos do Pleistoceno:

o Nossos resultados com modelos de teias troficas sugerem que diferentes tipos
de interacdes ecoldgicas, como interagdes mutualisticas entre plantas e
dispersores de sementes e interacdes antagonisticas entre predadores e presas,
sd0 organizadas por processos similares. Além disso, mostramos a importancia
do grau de intimidade das intera¢des na organizacdo das redes ecologicas e
como modelos de teias tréficas podem ser adaptados para reproduzir diversos
tipos de sistemas incluindo sistemas do passado. As modificagdes dos modelos
de teias troficas, o desenvolvimento de abordagens para testar seu desempenho
e a integracdo dos modelos com informacgdes sobre a biologia dos sistemas de
estudo criam as bases para futuros estudos sobre como aspectos basicos da

biologia dos organismos organizam redes ecologicas.

o Os sistemas naturais que vemos hoje sdo uma consequéncia de processos
ecologicos e evolutivos que os modificaram com o tempo. Para compreender
0s mecanismos responsaveis por extingdes e mudancas na estrutura das
comunidades ecologicas ¢ necessario olhar ndo somente para os fatores
externos as comunidades, mas também para suas propriedades intrinsecas.
Nossos resultados sugerem que as interagdes nas comunidades de grandes

mamiferos do Pleistoceno provavelmente estavam organizadas de forma
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similar as interagdes nas comunidades atuais na Africa. Entretanto, diferencas
na composi¢ao e na distribui¢do de massas corporeas fariam com que essas
comunidades fossem especialmente sensiveis a certos tipos de perturbagdes,
como a invasdo de um grande predador como o homem. Nossas simulagdes
mostram ainda como diferentes combinagdes de efeitos de mudangas
climaticas e da chegada do homem poderiam, por meio de efeitos diretos e
indiretos mediados por interagdes interespecificas, resultar no colapso de
comunidades do Pleistoceno. Esse conjunto de resultados da embasamento
quantitativo a hipdteses propostas previamente para explicar as extingdes do
Pleistoceno. NoOs sugerimos que sao necessarios estudos como este, integrando
abordagens quantitativas e conhecimento paleontologico e ecoldgico, para
entendermos melhor como a interagdo entre fatores extrinsecos e intrinsecos

influenciaram a dindmica de sistemas do passado.

o As extingdes do Pleistoceno tiveram uma série de consequéncias ecologicas,
influenciando a composicdo de comunidades vegetais e processos como
ciclagem de nutrientes e a dispersdo de sementes. O estudo das mudangas em
uma rede de dispersdo de sementes apds a extingdo dos grandes mamiferos do
Pleistoceno, permitiu avaliar como extingdes podem impactar a estrutura de
outros tipos de redes ecoldgicas, influenciando tanto plantas — potencialmente
alterando padrdes de recrutamento — quanto animais — por modificar seu papel
na rede de interagdes. Abordagens como as utilizadas neste estudo, que
permitiram reconstruir e avaliar as propriedades de comunidades do passado,
sd0 essenciais para entendermos as consequéncias de episodios de extingao,

tanto no passado quanto atuais.
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O presente estudo contribui para a compreensdo dos processos que organizam
interagdes ecologicas e enfatiza a importancia das interagdes entre espécies para a
dindmica de comunidades ecoldgicas. De maneira geral, o conjunto de resultados
apresentado e discutido aqui ressalta que para compreendermos as causas e
consequéncias de extingdes bioldgicas, tanto do passado quanto atuais, € necessario
considerar as propriedades dos sistemas nos quais os organismos de interesse estao

inseridos.
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