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RESUMO 

A extinção de grandes mamíferos terrestres no final do Pleistoceno (entre 50 e 11 mil 

anos atrás) é um dos temas mais debatidos em ecologia. A maioria dos estudos sobre as 

causas das extinções do Pleistoceno tem como foco o papel de fatores externos como 

mudanças climáticas e a chegada do homem. Entretanto, a forma como uma 

comunidade ecológica responde a perturbações depende de suas propriedades, como o 

número e composição de espécies e a forma como essas espécies interagem. O objetivo 

final dos estudos reunidos nessa tese foi entender como estavam organizadas as 

interações ecológicas entre os mamíferos do Pleistoceno e o possível papel dessas 

interações no episódio de extinção da megafauna. Em primeiro lugar adaptei modelos 

de teias tróficas para reproduzir redes formadas por diferentes tipos de interações entre 

consumidores e recursos. Em seguida, utilizei esses modelos para reconstruir redes de 

interação entre predadores e presas da megafauna do Pleistoceno e examinei as 

propriedades estruturais e dinâmicas dessas redes. Por fim, investiguei uma das 

possíveis consequências da extinção da megafauna: a perda de serviços de dispersão de 

sementes. Os resultados aqui apresentados mostram que (i) diferentes tipos de redes de 

interação entre consumidores e recursos compartilham características estruturais e 

podem ser reproduzidas por modelos de teias tróficas; (ii) redes de interação entre 

grandes mamíferos do Pleistoceno estavam, provavelmente, estruturadas de forma 

similar aos sistemas atuais na África. Entretanto, as comunidades do Pleistoceno seriam 

especialmente vulneráveis às mudanças estruturais e na dinâmica causadas pela 

chegada de um predador como o homem; (iii) entre as consequências da extinção do 

Pleistoceno está a reorganização de outros tipos de rede de interação como as redes de 

dispersão de sementes. Em conjunto os resultados apresentados aqui enfatizam a 

importância de considerarmos o possível papel das interações ecológicas em modular os 

efeitos de perturbações ao estudarmos eventos de extinção. 
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ABSTRACT 

The extinction of large terrestrial mammals during the late Pleistocene (between 50 and 

11 kyrs ago) is one of the most debated topics in ecology. Most studies on the causes of 

Pleistocene extinctions focus on the role of external factors such as climate changes and 

the arrival of humans. Nevertheless, the way an ecological community responds to 

perturbations depends on its properties, such as its number of species, species 

composition and the way these species interact. This thesis encloses studies with the 

final objective of understanding how ecological interactions between Pleistocene large 

mammals were organized and the potential role of such interactions in the Pleistocene 

extinction episode. First, I adapted food-web models to reproduce networks depicting 

different types of ecological interactions between consumers and resources. Then, I used 

these models to reconstruct predator-prey interaction networks between Pleistocene 

large mammals and examined the structural and dynamic properties of these systems. 

Finally, as an overview of the ecological impacts of Pleistocene extinctions, I discuss one 

of the possible consequences of the demise of Pleistocene large mammals: the loss of 

seed-dispersal services. The results presented here show that (i) different types of 

interaction networks between consumers and resources share structural properties and 

can be reproduced by food-web models; (ii) interactions between Pleistocene large 

mammals were most likely structured in a similar way to modern large-mammals 

assemblages in Africa, but the former were especially vulnerable to the changes in 

structure and dynamics caused by a newly arriving predator such as humans; (iii) 

among the consequences of Pleistocene extinctions is the reconfiguration of other types 

of interaction networks such as seed-dispersal networks. Taken together these findings 

emphasize how important it is to consider the role of ecological interactions in 

modulating the effects of perturbations when studying extinctions events. 
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INTRODUÇÃO 

Com exceção do continente africano, a maior parte dos mamíferos de grande 

porte se extinguiu antes do limite entre o fim do Pleistoceno e início do Holoceno, há 

aproximadamente 11,5 mil anos (Martin & Klein 1984; Koch & Barnosky 2006). O 

número de espécies extintas foi particularmente grande nas Américas e na Austrália, 

onde se estima que entre 70 e 90% dos gêneros de mamíferos classificados como 

megafauna (animais com mais de 44kg) foram extintos (Koch et al. 2006). O fenômeno 

destaca-se não somente pela sua magnitude, uma vez que o número de espécies 

extintas foi sem precedentes no Cenozóico (Alroy 1999), mas por sua seletividade em 

relação ao tamanho corpóreo (Koch et al. 2006). Ainda que espécies menores também 

tenham sido extintas (Brook & Bowman 2004), a extinção foi total para os mamíferos 

com mais de 320 kg na América do Sul e mais de 1000 kg na América do Norte 

(Owen-Smith 1987). 

Em geral, as hipóteses propostas para explicar a extinção da megafauna do 

Pleistoceno são baseadas nos efeitos de fatores externos, como mudanças climáticas e 

a colonização dos continentes pelo homem (Barnosky et al. 2004). As hipóteses que 

sugerem a influência de mudanças climáticas como principal fator responsável pela 

extinção da megafauna do Pleistoceno baseiam-se no fato de o período estimado para 

as extinções coincidir com o período de transição entre a última era glacial e a era 

inter-glacial atual (Koch et al. 2006). As mudanças climáticas nesse período teriam 

causado mudanças na vegetação, finalmente levando à fragmentação e redução de 

habitat e disponibilidade de recursos (Barnosky 1986; Ficarelli et al. 2003). Essas 

mudanças no habitat teriam reduzido e isolado populações naturais, tendo um efeito 

profundo sobre as populações de grandes mamíferos, que possuem baixa taxa 

reprodutiva e, portanto, levam mais tempo para se recuperar (Johnson 2002). O 

ponto mais frágil dessas hipóteses é que estudos paleoclimáticos sugerem que essa 

transição não foi mais abrupta que outros períodos transitórios que não são 
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caracterizados por grandes extinções (Barnosky et al. 2004, Robinson et al. 2005) e 

pelos quais os grandes mamíferos hoje extintos teriam sobrevivido (Koch et al. 2006). 

Um segundo conjunto de hipóteses baseia-se na sincronia, em diferentes 

continentes, entre as extinções e a colonização pelo homem. A modificação do habitat 

causada pelo homem, a sobre-caça, a introdução de espécies invasoras, ou doenças 

letais que teriam o homem como hospedeiro, foram propostos como possíveis 

impactos antrópicos responsáveis pela extinção da megafauna (Martin 1973; 

Edwards & Macdonald 1991; Koch et al. 2006). Estudos teóricos que modelam as 

extinções considerando efeitos antrópicos sugerem que, mesmo em baixas 

densidades, humanos podem ter tido um papel importante no colapso das 

comunidades do Pleistoceno (Alroy 2001; Brook and Bowman 2004; Zuo et al. 2013). 

Críticas a hipóteses sobre o papel do homem nas extinções do Pleistoceno enfatizam 

o baixo número de evidências empíricas, especialmente indícios arqueológicos da 

interação entre o homem e as espécies atualmente extintas (Koch & Barnosky 2006, 

Hubbe et al. 2013; mas veja Surovell & Waguespack 2008). Além disso, a sincronia 

entre as extinções e a colonização dos continentes pelo homem tem sido contestada 

(Lima-Ribeiro et al. 2013). Atualmente, sugere-se que uma combinação entre 

atividades humanas e mudanças climáticas explicaria as extinções: o homem teria 

contribuído para a extinção da megafauna em vários locais e as mudanças climáticas 

teriam exacerbado esses efeitos em escalas espaciais maiores (Koch et al. 2006; 

Prescott et al. 2012). 

Todavia, grandes eventos de extinção tem dois componentes importantes: a 

perturbação que desencadeou o fenômeno, como, por exemplo, mudanças climáticas 

ou atividade humana, e as características inerentes do sistema, que modulam os 

efeitos dessas perturbações (Newman & Palmer 2003; Haynes 2009). Esse segundo 

componente recebeu até o presente atenção desproporcionalmente menor quando 

comparado ao primeiro (Roopnarine et al. 2007). Nesse sentido, o próximo passo para 
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entendermos a extinção da megafauna do Pleistoceno é investigar se as comunidades 

do Pleistoceno poderiam ter colapsado, em parte, devido às suas propriedades 

estruturais, isto é, a forma com que as interações entre espécies estavam organizadas 

(Forster et al. 2003). 

A organização das interações ecológicas e suas consequências dinâmicas em um 

dado local são objeto de interesse da teoria de redes ecológicas (Dunne 2006). Desde 

o debate sobre a relação entre estabilidade e diversidade desencadeado pelos estudos 

de Robert May demonstrou-se que a dinâmica de comunidades ecológicas, mais 

especificamente a resposta a perturbações, pode ser modulada pela forma como as 

interações entre as espécies estão organizadas (May 1971; Pimm 2003; Allesina & 

Tang 2012; Rooney & McCann 2012). Dessa forma, compreender a estrutura gerada 

pelas interações em uma comunidade ecológica e o papel dessa estrutura na 

dinâmica do sistema é fundamental para entendermos episódios de extinção 

biológica e, de maneira geral, os mecanismos que organizam a diversidade. 

Reconstruir redes de interação do passado e avaliar as hipóteses sobre grandes 

extinções representa um grande desafio, uma vez que é impossível realizar 

observações e experimentação nesses sistemas. A reconstrução das redes de interação 

depende de inferências sobre as possíveis interações a partir de dados 

paleontológicos, baseando-se, por exemplo, nas relações biométricas entre as espécies 

(Fariña 1996; Prevosti & Vizcaíno 2006), estudos de isótopos estáveis (Coltrain et al. 

2004, Yeakel et al. 2013) e estudos de espécies atuais supostamente análogas em seu 

modo de vida (Corlett et al. 2013). Informações sobre a ecologia da mastofauna 

africana atual, por exemplo, são comumente utilizadas para inferências sobre a 

paleoecologia da megafauna pleistocênica de outros continentes (Owen-Smith 1987; 

Guimarães et al. 2008). De fato, sob a premissa de que comunidades formadas por 

espécies similares obedecem a regras similares, se formos capazes de compreender os 

mecanismos responsáveis pela estrutura de redes de interações entre espécies atuais 
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seremos capazes de inferências mais acuradas sobre as interações entre espécies 

extintas. 

Informações sobre os mecanismos responsáveis pela organização das interações 

em comunidades atuais tem sido obtidas por meio do uso de modelos de teias 

alimentares (Stouffer 2010). Modelos de teias alimentares são conjuntos de regras 

capazes de gerar redes teóricas de interação (Williams & Martinez 2000). Diferentes 

modelos de teias alimentares baseados em regras simples de interações entre espécies 

são capazes de reproduzir a estrutura de redes de interações reais e, portanto, devem 

capturar parte dos mecanismos fundamentais que organizam essas redes (Williams 

& Martinez 2000, 2008; Cattin et al. 2004; Allesina et al. 2008). 

Modelos de teias alimentares são particularmente úteis na reconstrução redes de 

interações entre espécies extintas. Por mais que as características biomecânicas e 

indícios fósseis sugiram a interação entre duas dadas espécies extintas, há sempre 

um alto grau de incerteza quando comparado a sistemas atuais, uma vez que o 

registro empírico das interações não é possível (Roopnarine et al. 2007; Dunne et al. 

2008). Além disso, interações ecológicas podem ocorrer devido a características locais 

específicas ou devido a um conjunto de condições temporárias (Thompson 2005). O 

uso de modelos permite a simulação de diversos cenários possíveis com um mesmo 

conjunto de espécies, mantendo as características fundamentais da rede de 

interações, o que evita que as propriedades dessas redes estejam relacionadas a 

idiossincrasias de uma configuração arbitrária. 

Os modelos de teias alimentares foram originalmente propostos para teias 

alimentares completas que contemplam vários níveis tróficos desde produtores até 

decompositores (Dunne 2006). Todavia, teias alimentares completas podem ser 

subdivididas em subredes que representam as interações entre espécies em dois 

níveis tróficos contíguos (Kondoh 2010). Nessas subredes há dois conjuntos de 

espécies, um representando consumidores e outro recursos não havendo interações 
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entre os componentes do mesmo conjunto. Redes como essas, representadas por dois 

conjuntos bem definidos de elementos, são chamadas de redes bipartidas. Tais 

recortes de redes maiores levam algumas vantagens sobre teias alimentares 

completas: (i) em geral redes bipartidas possuem boa resolução taxonômica evitando 

problemas da incongruência na resolução entre os grupos (Polis 1991; De Visser et al. 

2009); (ii) em redes bipartidas todas as conexões referem-se ao mesmo tipo de 

interação ecológica e estão presumivelmente sujeitas aos mesmos processos 

ecológicos e evolutivos (Lewinsohn et al. 2006). Essa subdivisão é evidente em 

comunidades compostas por grandes mamíferos uma vez que tais comunidades se 

comportam como compartimentos bem definidos das teias alimentares, com uma 

estrutura e dinâmica característica (Holt et al. 2008; Terborgh & Estes 2010). Pelos 

motivos acima focamos aqui em interações consumidor-recurso entre dois níveis 

tróficos. Entretanto, um primeiro passo para a reconstrução das redes do passado 

usando modelos de teias alimentares foi a adaptação dos modelos tradicionais ao 

caráter bipartido das redes consumidor-recurso. 

Uma característica compartilhada pela maioria dos modelos de teias alimentares 

é a existência de uma hierarquia alimentar. Desde que os primeiros modelos de teias 

alimentares foram propostos (Cohen et al. 1990) o tamanho corpóreo tem sido 

considerado um forte candidato para explicar as regras de hierarquia alimentar e 

ordenação das espécies em que se baseiam os modelos (Warren & Lawton 1987; 

Allesina et al. 2008). De fato, diversas linhas de evidência sugerem que a massa 

corpórea seja uma característica adequada para a parametrização dos modelos, uma 

vez que, em geral, o tamanho dos organismos limita suas possibilidades de interação 

(Woodward et al. 2005; Brose 2010; Stouffer et al. 2011). Portanto, a parametrização 

dos modelos usando dados de tamanho corpóreo deve ser um caminho para 

modelos capazes de gerar redes teóricas mais realistas. 
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Uma vez que redes com estrutura realista possam ser reconstruídas é possível 

descrever a estrutura do sistema e utilizar diversas abordagens para compreender a 

sua dinâmica. Uma questão relevante do ponto de vista da dinâmica de um sistema 

ecológico é como esse sistema responde a perturbações. A análise qualitativa de 

estabilidade é uma abordagem que permite avaliar a resposta de sistemas dinâmicos 

a perturbações (May 1971; Allesina & Tang 2012). Apesar de restrita ao efeito de 

pequenas perturbações, a análise de estabilidade permite uma primeira avaliação do 

comportamento dinâmico do sistema (Pimm 2003; McCann 2011). Contudo, 

perturbações podem ter efeitos que se propagam por toda a rede de interações, por 

meio de interações diretas e indiretas entre as espécies, e levam à reestruturação da 

rede devido a extinções. Uma forma adicional para entender como comunidades 

respondem a perturbações de diferentes naturezas é simular a dinâmica do sistema 

por meio de modelos de dinâmica populacional (e.g., Alroy 2001). Simulações 

permitem avaliar as possíveis trajetórias das populações após a perturbação e 

identificar aquelas espécies que se extinguem e aquelas que persistem. Nesse sentido, 

a análise de estabilidade e simulações de dinâmica são duas abordagens 

complementares que permitem caracterizar a dinâmica do sistema de interesse e 

testar hipóteses sobre como o sistema responderia a diferentes fatores. 

Os capítulos da presente tese representam os componentes de um esforço cujo 

objetivo final foi entender o papel da estrutura e dinâmica das comunidades do 

Pleistoceno no seu colapso. A tese está dividida em três seções: a primeira seção é 

composta por 2 capítulos que compartilham como motivação a adaptação de 

modelos de teias tróficas para redes bipartidas. Uma vez que os modelos de teias 

tróficas foram generalizados para reproduzir redes bipartidas, como as redes de 

interação predador-presa, foi possível utilizar os modelos para gerar redes de 

interação realistas entre os mamíferos do Pleistoceno, investigar como essas 

comunidades estariam organizadas e a dinâmica desses sistemas (seção II; Capítulos 
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3-5). Especificamente, busquei entender se particularidades da estrutura das redes do 

Pleistoceno podem explicar porque essas comunidades colapsaram, ao passo que as 

comunidades de grandes mamíferos da África persistiram. Por fim (seção III; 

Capítulo 6), apresento resultados relacionados às possíveis consequências da perda 

dos grandes mamíferos na América do Sul. Nessa última seção foco, especificamente, 

nos prováveis impactos das extinções sobre a dispersão de sementes, um serviço 

ecossistêmico com amplas implicações para a organização e funcionamento de 

sistemas naturais. 
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Abstract

Background: Simple models inspired by processes shaping consumer-resource interactions have helped to establish the
primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other
ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in
consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic
relationships as well.

Methodology/Principal Findings: We used a likelihood-based model selection approach to compare the performance of
food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting
mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the
mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall
structural properties of real mutualistic networks.

Conclusions/Significance: Based on our results we hypothesize that processes leading to feeding hierarchy, which is a
characteristic shared by all food web models, might be a fundamental aspect in the assembly of mutualisms. These findings
suggest that similar underlying ecological processes might be important in organizing different types of interactions.
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Introduction

A major challenge in ecology is to understand how ecological
networks are assembled. Network assembly ultimately reflects how
interactions between individuals of different species scale up to
organize ecological communities [1,2]. The study of food webs,
which are networks of trophic interactions among species, has
benefited from the proposal of probabilistic, topological models
that are able to reproduce the structure of trophic interactions by
incorporating simple ecological processes (reviewed by Stouffer
[3]). These models offer a way to build realistic food webs using a
few parameters such as the number of interacting species and the
number of interactions that can be estimated in the field [4,5,6,7].
By connecting the structure of real food webs with candidate
underlying processes, such models provide a basis for investigating
the implications of food web organization for ecological dynamics
[8], species persistence [9,10], and ecosystem services [11].
Moreover, differences in how closely each model fits the structure
of empirical food webs provide insight into the fundamental rules
organizing trophic interactions in ecological systems [7,12,13].
The majority of studies on how such models reproduce

ecological networks have focused on food webs, but there is an
increasing body of theory that relies on probabilistic models to
understand the structure of networks formed by other kinds of
ecological interactions such as mutualisms [2,14,15,16]. The

theoretical background for devising specific models for mutualistic
networks stems from the fact that antagonisms and mutualisms
differ in their fundamental ecological and evolutionary implica-
tions [17,18]. Additionally, mutualistic networks share some
marked structural regularities that differ from antagonistic
networks such as food webs [18,19,20]. For instance, mutualistic
networks are best described as two-mode networks in which there
are two sets of nodes (e.g., animals and plants) and there are no
interactions among species within the same set [21]; in contrast,
food webs are organized into several loosely defined trophic levels
[12]. Moreover, mutualistic networks tend to be highly nested, that
is, a given species interacts with a subset of the partners of species
that have more interactions whereas antagonistic networks have
lower degrees of nestedness [18,19](but see [22]). An additional
feature of mutualistic networks is that they exhibit right-skewed
distributions of the number of interactions per species [21],
whereas in food webs, this skewness is, in general, less pronounced
[23].
The well-established differences between food webs and

mutualistic networks (e.g., [18,24]) have been counterbalanced
by increasing evidence that ecological networks share some basic
similarities. For instance, modularity, which was previously
predominantly related to antagonistic networks [25,26], was
reported in a large set of mutualistic networks [27]. Along the
same lines, although nestedness is often higher in mutualistic than
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in antagonistic two-mode networks [18], a recent study [22]
showed that food webs are actually composed of interconnected,
nested, two-mode sub-webs.
Another way in which mutualistic networks and food webs

converge is that most mutualistic relationships are, in fact, rooted
in consumer-resource relationships [28,29]. For example, pollina-
tion is a type of mutualism that often involves animals foraging for
resources provided by flowering plants [30]. Similarly, the
frugivores that disperse seeds away from parental trees are usually
foraging on fruit pulp [31]. Therefore, even though food webs and
mutualistic networks differ in some key aspects of their structure,
we should expect that ecological processes related to resource use
partially shape these interactions in similar ways. In fact, all of the
models proposed for food webs are inspired by processes shaping
the consumer-resource interactions in a given locality. These
consumer-resource interaction rules are quite general and may
also apply to other types of interactions. In this sense, we
hypothesize that food web models are able to reproduce the
structure of mutualistic networks. To test this hypothesis we
adapted food web models to reproduce two-mode networks and
compared their performance, and that of a model designed for
mutualisms, in reproducing real mutualistic networks. We first
calculated summary statistics that described the structural
properties of real food webs and used a likelihood-based model
selection approach [32] in which we computed the likelihood of
obtaining the observed values under a set of candidate network
models. Finally, we explored whether simple topological features
of mutualistic networks explain the performance of network
models.

Methods

The models
To test the performance of food web models in reproducing the

structure of mutualistic networks, we compiled a set of 10
pollination and 15 frugivory networks totaling 25 mutualistic
networks (see Table S1 in supporting information). These
networks ranged from networks with small species richness (animal
species richness, A=14; plant species richness, P=11) to species-
rich networks (A=64; P=43) and from loosely connected
networks (connectance, C=0.07) to highly connected networks
(C=0.47). For each of those networks, we generated an ensemble
of 1000 matrices using four different models to test model
performance. Whenever a model generated a network with
disconnected species or with a C value 3% larger or smaller than
the real one, we discarded that network before running the model
again [5,33].
In most mutualistic relationships, interactions can only occur

between species in two well-defined sets (e.g., animals and plants),
but food webs do not have this two-mode structure. In this sense,
in food web models, all species but producers can be both predator
and prey; in contrast, animals in the mutualistic networks studied
here (pollination and seed dispersal) act as foragers by feeding on
fruits and nectar provided by plants. Therefore, we adapted all
food web models used to the two-mode nature of mutualistic
networks. Our objective was to make as few changes as possible in
the original models. We used the same set of simple rules of food
web models, but interactions only occurred among species of
different sets. As a result, all of the models used the input
parameters A and P as well as the connectance, which is defined as
C=E/AP, where E is the number of recorded interactions. Below,
we first describe each model in detail and then the adaptations we
made to deal with the two-mode nature of mutualistic networks.
We recognize that the models used in this study only represent a

subset of the available food web models (e.g., [6,13,34,35]), but we
consider this to be a representative set of models that encompass a
wide range of candidate rules for how food webs are built up.
Moreover, several models were proposed to explain the structure
of mutualistic networks (e.g., [2,14,36]). However, because our
focus is to build a bridge between models describing antagonistic
and mutualistic relationships, we chose to compare food web
model performance with that of a recent proposed model that was
directly inspired by food web models and has been shown to
successfully reproduce the structure of mutualistic networks [15].

The cascade model. The cascade model was the first of a
series of static models that were capable of reproducing some of
the structural properties of real food webs [4]. The cascade model
is based on the assumption of hierarchical feeding, assigning each
of the S species in the community a random value that is uniformly
drawn from the interval [0,1], which represents species position
along a one-dimensional feeding hierarchy (Fig. 1A). Each species
has a probability q=2CS/(S – 1) of consuming those species whose
values are smaller than its own [5]. In our effort to adapt the
cascade model to the two-mode nature of mutualistic networks, the
position of species are assigned independently for animals and
plants so that instead of ordering all species along an axis there are
two axes: one for animals and the other for plants (Fig. 1B).
Animals can potentially interact with plants whose values are
smaller than their own but can never interact with other animals.
The probability q of the original model was not valid for the two-
mode version; we defined it as q =E/T, in which T is the number
of possible interactions after species positions are defined. This
approach ensures that the model creates networks with
connectance that closely resembles the connectance of the
empirical food web.

The niche model. The niche model addresses some of the
limitations of the cascade model; in particular, it addresses the lack

Figure 1. Diagrams comparing original food web models and
their two-mode version. (A) the cascade model: each species
(represented as an inverted triangle) is assigned a random value being
placed along an axis. A given species i (gray) potentially interacts with
those species whose values are less than the value assigned to i (as
indicated by arrows); (B) the cascade model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are
randomly placed along two separate axes. The upper axis represents
the axis of consumers. Therefore a given species i in the upper axis
potentially interacts with those species in the lower axis whose values
are lower than the value assigned to i. (C) The niche model: Each
species is assigned a random value ni and consume all species within a
range of niche values ri. (D) The niche model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are placed
along two separate axes according to their ni. Each species in the upper
axis consume all species in the lower axis that fall within a range of
niche values ri.
doi:10.1371/journal.pone.0027280.g001
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of feeding cycles and cannibalism. However, the niche model
retains much of the simplicity and tractability embodied by the
earlier model [5,12]. As in the cascade model, the original niche
model [5] assigns a position (ni) taken from a uniform distribution
on the interval [0,1] for all S species and places each of them along
a gradient (Fig. 1C). For each consumer i, a niche range ri= xni,
where 0 # x # 1 is a random variable with a beta-distributed
probability density function p(x) =b(1 – x)( b – 1) with b= (1/2C) –
1 is then defined. This causes species with higher ni to tend to eat
more species and ensures that the average of all species’ r equals C
[33]. The range center (ci) is a uniformly random number between
ri/2 and min (ni, 12ri/2). A consumer i eats all species j whose nj
fall within its range (Fig. 1C). Hence, a diet interval I(Di) = [ci2ri/2,
ci+ri/2] is defined for all species. As in the cascade model, to adapt
the niche model to mutualistic networks, we defined n for plants and
animals within two separate axes and diet ranges were defined only
for animals and projected in the plants axis, such that animals
always behaved as consumers and plants always behaved as food
resources (Fig. 1D). Although we recognize that in many cases plant
traits are responsible for selecting their interaction partners and thus
network assembly could occur from the perspective of plants (e.g.,
[36]) we opted for an approach that is similar to the original models
in which basal species have no defined ranges [5]. To obtain I(D) for
animals, we used functions that are identical to those used in the
original model (see Text S1 for reasoning).
In addition to having a more complex set of rules, the niche

model differs from the cascade model because it imposes
intervality in how links to resource species are assigned. Intervality
means that all of the species in a food web can be placed in a fixed
order on a line such that each consumer’s set of resources forms a
single contiguous segment of that line. Therefore, intervality
suggests that trophic niche space can be represented by a single
dimension [12,37].

The minimum potential model. Even though the niche
model seemed to perform fairly well in reproducing most of the
features of empirical food webs, food webs often do not show
intervality for all species [34]. The minimum potential niche
model [7] is a niche-based model that relaxes the interval feeding
constraint of the niche model in a similar way to the relaxed niche
model [33]. In the minimum potential niche model (hereafter
MPN), forbidden interactions lead to gaps in consumers’ diets [7].
The MPN model can be seen as a way of embedding
multidimensional niches into a one-dimensional context [7]. The
MPN model is similar to the niche model in that at first, the
positions along the niche axis and diet interval I(Di) of each species
are defined. However a consumer eats species that fall within its
diet interval with probability 1 – f, where f is the probability of
having forbidden links in the diet (see Text S2). To adapt the MPN
model to mutualisms two axes are defined and only animals posses
I(D) as in the niche model.

Model of bipartite cooperation networks. The model of
bipartite cooperation (hereafter the BC model) was conceived for
two-mode cooperation networks such as mutualistic networks and
was directly inspired by food web models [15]. Here, we used a
slightly different version of the model described by Saavedra et al.
[15], following the authors’ suggestion. In this model, plants are
treated as members of class P and animals as members of class A.
The model consists of two mechanisms: specialization and
interaction. The specialization rule determines the number of
interaction partners, lpi, of each species p M P. This number is
determined by the interaction among two values: the reward trait,
tRp, a number randomly drawn from an uniform distribution [0,1],
which is attenuated or amplified by an external factor lp that is
randomly drawn from an exponential distribution, which accounts

for effects such as population density. The higher the reward value
of plant pi, the higher is the number of potential interactions
established by pi. The interaction rule determines which species a M
A interacts with each species p M P. Interactions are limited by the
complementarity between the reward traits, tRp, for p M P and
foraging traits, tFa, for a M A. The foraging trait tFa, which are also
uniformly drawn from [0,1], limits the range of possible partners
for each member of class A, but again, interactions are affected by
external factors llp, which could represent, for instance, temporal
variation and population density that are randomly drawn from an
exponential distribution for each interaction.
Interactions are distributed to plants sequentially, in ascending

order, according to their foraging traits tRp. Whenever tRpi.llpi
each link lpi is connected to the first node a9 M A9, where A9 is the
subset of nodes in A that have not already been linked to by
another node p ? pi. Conversely, if tRpi # llpi, interactions of pi are
distributed using a mechanism similar to that proposed by Cattin
et al. [6], i.e., a plant p M P with lower trait value is randomly
selected, and an interaction is established with an animal
randomly chosen among its partners a’’ M A’’ where A’’ is the
subset of nodes in A that have been linked in a previous time step.
If the supply of nodes in either A9 or A’’ is exhausted before all lpi
links have been allocated, then nodes in the other subset are linked
to instead. For additional detailed information on the model we
refer readers to Saavedra et al. [15].

Performance analysis
For each empirical network and their theoretical counterparts,

we calculated four structural properties often used to describe the
structure of mutualistic networks: the degree of nestedness [19],
degree of modularity [27] and the cumulative degree distributions
for both animals and plants [21]. We then used two procedures,
model fit and model likelihood, to evaluate the model perfor-
mances in reproducing these structural properties. Below, we
describe each structural property and both procedures to test
model performances.

Nestedness. Nestedness is a property of networks in which
the interacting assemblage of a species is a subset of the interacting
assemblage of species with more interactions [19]. The index
NODF (an acronym for nestedness metric based on overlap and
decreasing fill [38]) was used to compute the degree of nestedness
of both empirical networks and those generated by the models.
NODF ranges from 0, when the matrix shows other nonrandom
patterns of resource use, to 100, when the matrix is perfectly
nested (additional information on NODF at [38]).

Modularity. Modules within a network are subsets of species
that are more densely connected to each other than to species in
other modules [39]. To find the best partition of a given network
into modules, we used the simulated annealing algorithm to
maximize and index of modularity, M, that accounts for the
number of interactions between species belonging to the same
module and the number of interactions between species belonging
to different modules [39]. M equals 0 if nodes are placed at
random into modules or if all nodes are in the same module and
approaches 1 if modules have well-delimited boundaries (i.e., few
between-module interactions). Although M does not take into
account the fact that mutualistic networks are two-mode networks,
any potential effect of the two-mode structure on modularity is
controlled since all networks analyzed have two sets of species.
Thus, any difference in M among real and theoretical networks
cannot be related to the two-mode structure.

Degree distributions. The degree, k, of a species i in a
mutualistic network can be defined as the number of species with
which species i interacts. Therefore, the cumulative degree
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distribution of a mutualistic network describes the proportion of
species with k or more interaction partners [21]. It can therefore be
considered a description of the pattern of ecological specialization
in the community [40]. Because we dealt with two-mode networks,
degree distributions were calculated separately for animals and
plants.

Model fit. To test whether the models were capable of
reproducing empirical network properties, we used different
procedures depending on the topological property analyzed. For
nestedness and modularity, we calculated the normalized model
error (NME) between the empirical values and the values obtained
from the numerical simulations of each model. The NME can be
defined as the difference between the model’s median property
value and the empirical value divided by the difference between
the model’s median property value and the property value at the
2.5% or 97.5% quantiles, depending on whether the empirical
value is lower or larger than the model’s median [33]. A value of
NME greater than 1 means that the empirical value is significantly
different from the degrees of nestedness or modularity of networks
generated by a given model [33]. By doing this, we did not make
particular assumptions about the distribution of property values
generated by the food web model [33]. Here, we used a slightly
modified version of NME in which we use the absolute value of the
difference between the median and the quantile to normalize the
index so that the direction of the deviation is maintained.
Therefore, a positive NME indicates overestimation of a
property value by the model, and a negative NME indicates
underestimation. To test whether the models were capable of
reproducing degree distributions, we used the Kolmogorov-
Smirnov test [13].

Model likelihood. The procedures described above allow us
to distinguish among situations in which a network property is
reproduced or not. However one model could be regarded as the
one with larger fit when in fact it just produces a larger variance of
metric values. Therefore, to perform comparisons among models,
we opted to use the likelihood approach, which is a statistical
framework specifically designed to allow direct comparisons
among many competing models [32]. Recent studies (e.g.,
[41,42]) aiming to describe how mutualistic networks change
over time have shown that species pairwise-interactions are highly
variable whereas the overall network structure often remains
unmodified. Therefore, we opted for a likelihood approach that
differs from recent proposed likelihood frameworks, which focused
on finding the model that was most likely to reproduce all pair-
wise interactions observed in real networks [7,43]. Because we
were interested in the distinct overall structural properties of each
network, the objective of our likelihood approach is to determine
which model was most likely to reproduce the observed value for
each property separately, gauged by a summary statistic (see [44]).
If the difference between the negative log-likelihood of the best
model and another given model was less than 2, they were
considered equally plausible [32]. For additional information on
how we computed model likelihood using simulations see Text S3.

Correlates of model performance. To develop a better
understanding on which characteristics of the real network affects
the performance of each model, we used a general linear model to
test whether features such as connectance (C), animal species
richness (A), plant species richness (P), and the nestedness and
modularity values themselves affected the normalized errors of
each model, NME (i.e., a proxy for the degree of fit of a given
model for each real network). We used relative nestedness (N*;
[19]) and relative modularity (M*), in which the observed value is
corrected using the average value of 1000 random networks with
the same size and connectance as the original network. The results

still held if we assumed other theoretical benchmark that kept
heterogeneity in the number of interactions across species (‘‘null
model 2’’, [19], Table S2). There was no correlation among N*
and M* (r=20.39, n=25, P.0.05), which allowed both to be
included in the analysis as explanatory variables. Then, for each of
the four models, we used multiple regression models of the
following form:
NME = b0 + C6b1 + A6b2 + P6b3 + N*6b4 + M*6b5 + e

where NME is the normalized error, bi are the coefficients of the
multiple regression and e is the usual Gaussian error. All
regressions assumptions, such as the normality of residuals, were
met. Then we used the Akaike criterion to select the best set of
variables in predicting NME [45]. The tests were performed for
NMEs in reproducing NODF and M separately.

Results

All models performed remarkably well in reproducing both the
nestedness and modularity of the mutualistic networks. The
percentage of networks whose metrics were reproduced by each
model varied between nearly 50% and 95% (Table 1). The models
that reproduced the properties in the largest proportion of
networks were the two-mode cascade model and the BC model
(Table 1). When we directly compared the models as competing
hypotheses using the likelihood approach, the outcome of the
model comparison depended on the property being analyzed
(Table 1). The cascade and niche models were among the most
likely models for 84% of the networks considering nestedness. This
result held when using a different nestedness metric, the matrix
temperature, which indicates that these results are not affected by
metric choice (Text S4). Similarly, when considering modularity,
the cascade model was among the most likely models for 84% of
the networks. However, the BC model instead of the niche model
was the second best model in terms of reproducing modularity
(Table 1). Regarding degree distributions, the results are less
straightforward. All four models reproduced degree distributions
for nearly all analyzed networks according to the Kolmogorov-
Smirnov test results (Table 1). Nonetheless, the model comparison
suggested that the cascade model was usually among the best
models in reproducing plants degree distributions, whereas the
niche and BC models outperformed the others more often in
reproducing the degree distribution of animals (Table 1).
The sign of NME indicates whether the model overestimates or

underestimates a property value for a given network. Therefore,
an excess of negative values of NME indicates that a model often

Table 1. Proportion of mutualistic networks (N= 25) whose
properties were reproduced by each model (NME,1;
PKS,0.05)/proportion of networks in which each model was
among the most likely.

NODF M PkA PkP

Cascade 0.84/0.84 0.88/0.84 0.96/0.52 1.00/0.76

Niche 0.80/0.84 0.52/0.44 1.00/0.88 0.96/0.60

MPN 0.60/0.68 0.56/0.60 0.84/0.64 1.00/0.64

BC 0.72/0.80 0.80/0.72 0.96/0.84 0.92/0.60

Columns represent the network properties analyzed: NODF = nestedness, M =
modularity, PkA = cumulative degree distribution of animals, PkP = cumulative
degree distribution of plants. Because more than one model could reproduce or
be among the most likely models in reproducing the property of a given
network the sum of the proportions in each column is larger than 1.
doi:10.1371/journal.pone.0027280.t001
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underestimates a given property, whereas positive values suggest
that the model has a tendency to overestimate it. The niche and
MPN models tended to generate networks with lower degrees of
nestedness and higher degrees of modularity than real networks
(Fig. 2). The cascade and BC models were more balanced and
showed fewer signs of systematic biases in one direction or another
(Fig. 2). However, the degree of fit of models was associated with
basic topological features of networks (see Table 2). Noteworthy
network basic features explained between 70 and 95% of variation

in model fit regarding nestedness and modularity. All models
tended to underestimate nestedness as the degree of relative
nestedness observed increased (P,0.01; Table 2, Fig. 2A). The
degree of relative nestedness also affected the ability of the
cascade, niche and MPN models to reproduce modularity. These
models tended to overestimate network modularity for networks
that had a high degree of relative nestedness (Table 2). The degree
of relative modularity had the opposite effect for the cascade,
MPN and BC models. When reproducing networks with high

Figure 2. Normalized error (NME) of each model in reproducing nestedness (A) and modularity (B) for each of the 25 analyzed
networks. In (A) networks are sorted in increasing order of relative nestedness. Notice nestedness tend to be underestimated for networks with
large nestedness degrees as suggested by partial regression coefficients (Table 2). In (B) networks are sorted in increasing order of relative modularity.
doi:10.1371/journal.pone.0027280.g002

Table 2. Effects of basic real network features in model degree of fit as expressed by the NME.

F df r2 A P C N* M*

Cascade 266.4** 23, 1 0.92 – – – 22.01*** –

Niche 67.1*** 21,3 0.89 20.01* – – 21.05*** 2.07*

MPN 241.5*** 22,2 0.95 20.01*** – – 21.84*** –

BC 19.11*** 21,3 0.70 – – 3.15** 20.6*** 4.12*

Cascade 31.54** 20,4 0.83 0.01* – 1.6* 0.60*** 26.15***

Niche 40.5*** 21,3 0.83 0.01** – 21.59* 0.76*** –

MPN 86.84*** 22,2 0.87 0.01*** – – 1.00*** –

BC 31.89*** 22,2 0.72 – – 2.53** – 28.34***

Multiple regression analyses results reporting the F-statistics (F), degrees of freedom (df), determination coefficient (r2) and the partial regression coefficients of each of
the following factors: animal species richness (A), plant species richness (P), connectance (C), relative nestedness (N*) and relative modularity (M*). Traces mean that the
factor was not included in the best regression. The significance of each factor and the model as a whole is represented as follows:
*,0.05;
**,0.01;
***,0.001. The first 4 rows correspond to the NME for nestedness and the last for modularity.
doi:10.1371/journal.pone.0027280.t002
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relative modularity, these models were more prone to underesti-
mate modularity (Table 2). Connectance also affected model fit.
Networks with larger connectance tended to have their degrees of
modularity and nestedness overestimated by the cascade (only for
nestedness) and BC models, whereas modularity NME decreased
with increasing connectance for the niche model (Table 2).

Discussion

Our results show that all four models performed fairly well in
reproducing the properties of empirical mutualistic networks.
However, the cascade and BC models more often generated
theoretical networks that were in agreement with the structure of
real mutualistic networks. Moreover, the cascade model was
frequently among the most likely candidate models in reproducing
the structure of mutualistic networks. Although the performance of
the cascade and BC models was similar, the cascade model is
much simpler than the BC model. In addition to attributing a
value to each species as done in the cascade model, the BC model
has many other free parameters that act as external factors that
affect interactions. Therefore, the good performance of the
cascade model appears even better when model complexity is
taken into account.
In food webs, the cascade model also reproduced some aspects

of the structure of interactions between consumers and resources
[5]. Nevertheless, other models such as the niche and MPN
models often outperformed the cascade model in reproducing food
web structure [5,7,33]. The niche model was mainly proposed as a
solution that included the possibilities of feeding loops and
cannibalism, which were not allowed by the minimal rules of the
cascade model [12]. In plant-animal mutualisms, on the other
hand, interactions only occur between species in different trophic
levels (plants and animals that forage in plant resources).
Therefore, as we dealt with this two-mode structure of mutualisms,
feeding loops were not a problem. This may partially explain the
success of the cascade model for mutualisms in spite of being
outperformed by niche model derivatives in the context of food
webs [5,7,33]. In addition to the two-mode structure, other
biological aspects of mutualisms might explain why the strict
feeding hierarchy generated by the cascade model suffices to
reproduce much of the structure of mutualistic networks.
Hierarchy is also an essential component in the BC model,

which was directly inspired by the set of rules of food web models
[15]. The success of the BC model in reproducing network
structural patterns in a previous work [15] already suggested that
such hierarchical processes should play a crucial role in organizing
mutualistic networks. Because all models considered here
encompass hierarchical processes our results reinforce their
relevance in mutualisms. Moreover, the similar success in
reproducing the structure of real networks of both BC and the
much simpler food web models suggest that the feeding hierarchy
by itself is enough to capture much of the structure of mutualistic
networks. Although multiple processes may generate similar
patterns in ecological systems, our results at least indicate possible
mechanisms shaping the organization of mutualistic interactions in
networks of interacting species.
The most compelling biological basis proposed for the ordering

dimension that induces a feeding hierarchy in food web models is
body size [12,37,43,46]. In this sense, in the context of food webs,
the hierarchical ordering in the cascade model would lead to
larger species interacting with smaller species. Similarly, in niche
models, larger species would tend to have wider trophic niches
[43]. In the case of pollination and frugivory networks, such
hierarchy could refer to any measurable traits related to the

feeding interaction among fruiting/nectar-producing plants and
fruit/nectar consumers such as bill diameter, bill or mouthparts
length, and fruit size or corolla depth. Such traits would be
represented in the adapted models as the two independent axes in
which animals and plants are ordered. Indeed in a series of studies,
Stang et al. [47,48] showed that structural patterns of pollination
networks such as nestedness could be reproduced by incorporating
size thresholds imposed by floral morphology on nectar-feeding
animals. Moreover, body size was found to predict the number of
interactions of ants in ant-plant mutualisms [49]. Finally, larger
frugivores are often able to eat a large variation in fruit sizes than
smaller frugivores, leading to hierarchical ordering in frugivory
[31]. From an evolutionary perspective trait based feeding
hierarchies can emerge as a consequence of natural selection
favoring particular high profitable resource combinations [17].
The way each model encompass feeding hierarchies may also

partially explain differences in model performance. Species-rich
mutualisms often form networks modules of interacting species
based on shared phenotypic traits such as fruit color, flower shape,
animal body mass [27,50]. Nevertheless, modularity in mutualisms
such as pollination and seed dispersal is often smaller than
observed in antagonistic interactions [18] or in symbiotic
mutualisms [2]. The strict feeding hierarchy imposed by the
cascade model causes high overlap in the set of interaction
partners among consumer species, leading to low modularity.
Conversely the set of rules in other food web models, such as niche
and MPN models, that partially relax the cascade hierarchy [9]
might favor higher modularity. In niche and MPN model, species
whose feeding ranges overlap may form network modules that
differ from modules formed by species whose feeding ranges
overlap farther in the niche axis. In fact, both niche and MPN
models were outperformed by the cascade and BC models in
reproducing the low degree of modularity in mutualistic networks,
especially because they usually generated networks that were more
modular than the empirical ones. This may also partially explain
the superior performance of both the niche and MPN models in
comparison with the cascade model in generating the more
modular structure of food webs [5,33].
The degree of relative nestedness and relative modularity of the

real network were the main features of real networks affecting
model fit; for networks with higher relative nestedness, the
cascade, niche and MPN models tended to underestimate
nestedness and overestimate the modularity of real networks.
Conversely for networks with higher relative modularity, real
modularity was usually underestimated. The sensitivity of the
models accuracy to the degree of nestedness and modularity in the
real networks indicates that the high degrees of nestedness or
modularity observed in some mutualistic networks are not
completely explained by the processes incorporated in food web
models analyzed here. Stouffer et al. [13] showed analytically that
a food web model should satisfy two criteria in order to reproduce
most empirical food web properties: niche values should form a
totally ordered set, and each species has a specific, exponentially
decaying probability of preying on a fraction of the species with
lower niche-values. In the context of mutualisms, it seems that a
model’s ability to reproduce empirical networks is not only a
matter of reproducing the functional forms for the distributions of
numbers of prey, predators and links per species, but also of
reproducing the relationship between nestedness and modularity.
Many mechanisms have been proposed for the occurrence of the
nested pattern, namely, differences in abundance among species
[26,51], low interaction intimacy [2], trait complementarity and/
or exploitation barriers coupled with coevolutionary convergence
[14,17,48] and frequent extinctions of specialist-specialist interac-
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tions [52]. Along the same lines, trait matching along with
phylogenetic constraints [20] and high interaction intimacy [2] are
regarded as the main mechanisms that could lead to a modular
structure in mutualistic networks [27]. The rules of the cascade,
niche and MPN models can be interpreted as a form of
encompassing trait complementarity and exploitation barriers
among interacting species. Similarly, the BC model is based on the
complementarity among plants reward traits and animals foraging
traits. Although they do incorporate complementarity, they do not
explicitly consider other mechanisms shaping network structure
such as interaction intimacy, differential extinction and phyloge-
netic constraints. Evolving network models, models in which the
number of species and interactions change over time, have also
been shown to partially explain the structure of mutualistic
networks [2,36]. Future studies combining the mechanisms present
in these two different classes of models might provide additional
insights in the organization of mutualistic networks.
To sum up, food web minimal models were capable of

reproducing most of the mutualistic networks analyzed. Notewor-
thy, even the cascade model, the simplest among the models
considered here, reproduced the structure of nearly the whole set
of networks. Such results open the possibility that the assembly of
networks that describe mutualisms and antagonisms obey a similar
simple set of rules and reinforce that feeding hierarchy might be a
fundamental piece in this puzzle. Therefore, despite the differences
in ecology and evolution of mutualisms and antagonisms [17,18],
they seem to share some key aspects. Our knowledge of the
assembly of natural communities would benefit from future studies
that scrutinize those commonalities and differences and attempt to
sort out the evolutionary and ecological mechanisms that are
responsible for each.
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Interaction intimacy, the degree of biological integration between interacting
individuals, shapes the ecology and evolution of species interactions.
A major question in ecology is whether interaction intimacy also shapes
the way interactions are organized within communities. We combined ana-
lyses of network structure and food web models to test the role of interaction
intimacy in determining patterns of antagonistic interactions, such as host–
parasite, predator–prey and plant–herbivore interactions. Networks
describing interactions with low intimacy were more connected, more
nested and less modular than high-intimacy networks. Moreover, the per-
formance of the models differed across networks with different levels of
intimacy. All models reproduced well low-intimacy networks, whereas the
more elaborate models were also capable of reproducing networks depicting
interactions with higher levels of intimacy. Our results indicate the key role
of interaction intimacy in organizing antagonisms, suggesting that greater
interaction intimacy might be associated with greater complexity in the
assembly rules shaping ecological networks.

1. Introduction
The ways in which species interactions are organized within biological systems
affect different aspects of ecological and evolutionary dynamics, from commu-
nity stability [1,2] to ecosystem functioning [3] and coevolution [4]. Ecologists
have made substantial efforts to describe the structure and understand the
assembly of ecological communities. Through these efforts, studies focusing
on the biological attributes shaping species interactions have distinguished
the key role of a few species traits in shaping patterns of interaction within eco-
logical networks. These traits include abundance [5,6], interaction type [7] and
interaction intimacy, the degree of biological integration among interacting
individuals of different species [8–10].

There is compelling evidence that the degree of interaction intimacy shapes
the ecology and evolution of species interactions [11]. High-interaction intimacy
is often associated with the propensity of an individual to interact with few indi-
viduals of other species during most of its lifetime [8,11]. For example, in
interactions established by symbiotic organisms, e.g. parasites and gall-forming
insects, each individual spends a substantial part of its life within or attached
to a single host. These interactions often involve a high degree of physiological
integration associated with trophic and physical dependence. High intimacy at
the individual level does not necessarily imply in high specialization at species
level, as is well known for some generalist parasites [12]. Nevertheless, owing
to the high level of biological integration between individual consumers and
their hosts, extreme patterns of specialization, such as monophagy [13], are a
common feature of some high-intimacy interactions. In contrast, interactions
with lower levels of intimacy, such as those between predators and prey [14],
often imply an absence of physiological integration or trophic and physical
dependence on any single individual interaction partner. For mutualisms, the
analysis of networks describing species interactions with different levels of
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interaction intimacy shows that these networks possess distinct
structural properties that might be a result of distinct ecological
and evolutionary dynamics [9,15]. Recent analyses also suggest
that interaction intimacy is particularly important in shaping
mutualisms, whereas the effects of interaction intimacy on
the network structure of antagonisms are less clear [10].

A fundamental question is how the underlying processes
moulding ecological networks differ between interactions vary-
ing in their degree of intimacy. Food web theory provides a
useful approach to explore the potential differences between
the assembly rules of antagonisms showing low- and high-
intimacy interactions. The development of models capable of
reproducing the structure of food webs [16] has yielded insights
into the formative processes underlying ecological interactions
[17–20]. Despite the simplicity of such models, the fit of a par-
ticular model to data suggests that it captures at least the most
essential mechanisms of network assembly. Such food web
models were originally developed to reproduce food webs that
describe interactions across different trophic levels. However,
recent work adapted these models to explore the mechanisms
shaping two-mode ecological networks, such as plant–animal
interactions [21,22].

This paper investigates the differences in the assembly rules
of ecological networks related to interaction intimacy. We
divided our analysis into two parts. First, we investigated the
role of interaction intimacy in shaping patterns of interaction
in antagonisms, such as parasitism, predation and variable
types of plant–herbivore interactions. We expected that highly
intimate interactions would have higher modularity due to
different factors associated with the phenotypic integration
among partners, including strong phylogenetic constraints
and coevolution favouring specialization [9,23]. In contrast,
high nestedness and low modularity are expected for inter-
actions with low intimacy, in which differences in abundance
[6] and body size [14] are hypothesized to play a key role.
Second, the approach based on food web models allowed us
to investigate whether the assembly of two-mode antagonistic
networks varies across distinct levels of interaction intimacy.
We tested the hypothesis that models with more complex
rules would be required to reproduce networks with high
levels of interaction intimacy.

2. Methods
2.1. The dataset and the characterization of

interaction intimacy
To test if antagonistic networks with varying levels of interaction
intimacy show different structural patterns related to different
assembly rules, we used 26 two-mode antagonistic networks
available online from the Interaction Web Database and compiled
from the literature (see the electronic supplementary material,
appendix A). This dataset encompass a broad range of antagon-
isms, including parasitism, predation, grazing and different
types of plant–herbivore interactions, with networks ranging
from small networks with no more than 16 species and 15 inter-
actions to large networks with more than 300 species and
700 interactions (see the electronic supplementary material,
appendix A). As in any dataset of ecological networks, certain
types of interactions are under-represented (e.g. few aquatic
antagonisms). However, we attempted to minimize the over-
representation of particular types of interactions, such as
parasite–host interactions, opting for a smaller dataset

encompassing representatives of a variety of antagonisms.
We did not use entire food webs because they often include differ-
ent types of interactions varying in their degree of intimacy [16].
Conversely in two-mode networks all links represent the same
kind of ecological interaction and thus are presumably subjected
to similar ecological and evolutionary processes [23]. Moreover,
we did not analyse networks in which a considerable proportion
of nodes (‘species’) are actually sets of species that are assumed
to be ecologically similar because two species sharing similar
resources or consumers may differ strongly in their degree of inti-
macy. Although the preponderance of plant–herbivore networks
in our dataset can be viewed as a potential bias, it is important
to note that insects represent much of the animal diversity
worldwide as well as most of the lifestyles found in nature [24].

Interaction intimacy can be viewed as a function of the degrees
of physiological integration, trophic and physical dependence of
interacting individuals of different species [8]. We opted to use a
conservative approach [10], classifying each interaction according
to three levels (low, intermediate and high) of interaction intimacy.
Interactions with low intimacy (n ¼ eight networks) are character-
ized by an absence of physiological integration and physical
dependence and by highly mobile consumers that are able to
feed upon many different individual prey throughout their life-
times. Examples include predation, grazing by mammalian
herbivores and interactions between plants and leaf-chewing
insects, such as grasshoppers. Interactions with intermediate inti-
macy (n ¼ eight networks) are characterized by an absence of
physiological integration and a certain degree of physical and
trophic dependence. Examples include the interactions between
plants and insect herbivores whose individuals feed mainly in
one or a few individual hosts for long periods of time, such as
the larvae of lepidopterans, coleopterans and dacine fruit flies.
Finally, interactions with high intimacy (n ¼ 10 networks) are
characterized by extreme physiological integration and the physical
and trophic dependence of consumers on single hosts for at least
part of the consumer’s life cycle, such as fish parasites, gall-forming
insects, leaf-mining insects and endophagous flower parasites.

2.2. Structural analysis of antagonistic networks
We used six metrics to characterize the structure of antagonistic
networks: (i) connectance, the proportion of all possible inter-
actions that are actually recorded; (ii) variance in the number of
interactions among consumers, s 2

c (iii) and among prey (hosts),
s 2

r ; (iv) nestedness; (v) modularity; and (vi) the number of mod-
ules. We used the metric NODF (nestedness metric based
on overlap and decreasing fill) to characterize nestedness [25]
and M to characterize modularity and compute the number of
modules in the network [26]. We used general linear models
(GLMs) to investigate if interaction intimacy (coded as an ordinal
explanatory variable) explains differences in each of the structural
metrics. Because species richness varies widely across networks
potentially affecting network structure, we used the total species
richness, S, as a covariate. Network metrics are often correlated,
for that reason, we performed two complementary analyses.
First, we used a principal component analysis (PCA) to test
whether the combined information on the metrics provides a
clear partition among interactions with different levels of intimacy
(electronic supplementary material, appendix B). Second, we used
null model analysis to determine if the differences in nestedness
and modularity are consistent after controlling for other network
properties (see the electronic supplementary material, appendix B).

2.3. Food web models and assembly rules of
antagonistic networks

To test whether networks with different degrees of intimacy are
better reproduced by different assembly rules, we compared the
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ability of three probabilistic food web models, namely the cascade
model [17], and the one-dimensional and two-dimensional prob-
abilistic niche models (PNMs), respectively [27], to predict
interactions within networks. Each model represents distinct can-
didate assembly rules with increasing degree of complexity that
may reproduce antagonistic networks.

The first model is a probabilistic version of the cascade model
[17]. In the original cascade model, each species is given a position
(n) along an axis that represents a feeding hierarchy, and a given
species i can only use species j as a resource if species j occupies
a lower rank in the feeding hierarchy, i.e. if ni . nj. Because
likelihood-based methods require that any interaction must have
a non-zero probability of occurrence, we adapted the cascade
model as a logit regression

log
Pðaij ¼ 1Þ
Pðaij ¼ 0Þ

! "
¼ aþ bfi;j; ð2:1Þ

in which aij is a cell in the matrix A that depicts species inter-
actions, a and b are parameters to be estimated, and fi,j equals
1 if ni . nj and 0 otherwise. Thus, the probability of an interaction
between consumer i and resource j given a particular parameter
set u ¼ fn1,n2. . . nS, a, bg is

Pði; jjuÞ ¼ eaþbfi;j

1þ eaþbfi;j
: ð2:2Þ

To maintain consistency with the original rules of the cascade
model, we constrain a to be ,1 and b . 1 such that the
probability of interaction is larger if ni . nj.

In the probabilistic niche model (PNM) [27,28], the consumer
may use a set of resources within a determined diet range. The
probability of an interaction between consumer i and resource j
is a continuous function:

Pði; jjuÞ ¼ v
YD

d¼1

exp %
nd;j % cd;i

rd;i=2

# $g% &
; ð2:3Þ

where nd,j represents the position in the niche dimension d for
resource j, cd,i represents the diet optimum of consumer i
for dimension d, rd,i is the diet range for consumer i within
dimension d, g controls the cutoff rate of the probability function
and y is the maximum probability that i consumes any given
prey, here set to 1 following Williams & Purves [27]. Because
species in two-mode networks will only be consumers or
resources, species positions (n) are defined only for the R species
that are used as resources, whereas diet positions and ranges
(c and r) are defined only for the C consumer species. Thus,
the parameter set can be defined as u ¼ fnd,1, nd,2, . . . nd,R, cd,1,
cd,2, . . . cd,C, rd,1, rd,2, . . . rd,C, gg. We restrict our analyses to
the one-dimensional (D ¼ 1) and two-dimensional (D ¼ 2)
niche models.

For each two-mode network represented by a matrix A, we
computed the probability of reproducing each link under each
model (cascade, one- and two-dimensional PNMs) for a given set
of parameters. Therefore, we define the log-likelihood for a given
parameter set as

LðujAÞ ¼
X

i

X

j
ln Pði; jjuÞ if

1% Pði; jjuÞ if
aij ¼ 1
aij ¼ 0

% &
: ð2:4Þ

The maximum-likelihood parameter set is that which maxi-
mizes the likelihood. All models have a large number of
parameters. Therefore, to obtain maximum-likelihood estimates
(MLEs) is an optimization problem. We used simulated anneal-
ing [29], an optimization procedure that is less prone to
become trapped in suboptimal values, and the Latin hypercube,
a sampling technique that allows to explore large parameter
space [30]. We repeated the procedure 30 times for each combi-
nation of networks and models, starting from different points
in parameter space to improve the reliability of the estimates.

To compare model performance, we used the corrected
Akaike information criterion for finite sample sizes, AICc [31].
The model with the lowest relative value of AICc is that
showing the best fit to the data. We also computed the expected
fraction of correct links for each network under each model, an
additional measure of model performance [32]. The expected
number of correctly predicted links can be computed as
NcðAjuÞ ¼

P
i
P

j aijPði; jjuÞ: Therefore, the expected fraction of
links predicted correctly, fc, is obtained by dividing Nc by the
number of interactions in the actual network. This approach is
possible because MLEs for parameters imply that all models
would tend to generate networks with connectances similar to
the connectances of the real networks. We then tested whether
the fc differed between networks with high, intermediate and
low intimacy. To control for the possible effect of network size
on fc, we used a GLM in which total species richness and level
of interaction intimacy were factors. We performed the test
separately for each food web model.

3. Results
After controlling for species richness, all aspects of antagonistic
network structure but the variance in the number of interactions
per consumers (F2,23¼ 1.36, p¼ 0.28) varied across the gradient
of intimacy in predictable ways: low-interaction intimacy was
associated with higher connectance (F2,23¼ 5.74, p¼ 0.01),
higher nestedness (F2,23 ¼ 9.89, p¼ 0.0009), a higher variance
in the number of interactions per resource (F2,23¼ 17.36, p ,

0.0001), lower modularity (F2,23 ¼ 5.79, p¼ 0.01) and a smaller
number of modules (F2,23¼ 3.56, p¼ 0.04; figure 1). In all
cases, only networks with low intimacy differed signifi-
cantly from networks with intermediate and high intimacy
(figure 1). PCA analysis corroborates these results; by showing
low-intimacy interactions structurally differ from networks
formed by interactions with average and high levels of inti-
macy. Along of the same lines, null model analysis used to
evaluate nestedness and modularity significance led to similar
results, in which low intimacy is associated with significant
nestedness and high and intermediate intimacy with significant
modularity. For additional details on the analyses using the
GLM, PCA and null model analysis, see the electronic
supplementary material, appendix B.

The disparate structural patterns between antagonisms with
low intimacy and higher degrees of intimacy produced differ-
ences in the model fit for networks depicting interactions
with different levels of intimacy. The fraction of links correctly
predicted by the cascade model (figure 2) was significantly
higher for the low-intimacy networks (on average 76+ 21%)
than for the intermediate- (36+ 20%) and high-intimacy
networks (41+ 26%, F3,22 ¼ 6.27, p , 0.01). There were no sig-
nificant differences in the performance of the one-dimensional
PNM (low: 78+ 20%; intermediate: 70+ 23%; high: 78+ 19%;
F3,22 ¼ 0.39, p¼ 0.67) and the two-dimensional PNM (low:
81+ 20%; intermediate: 86+ 10%; high: 88+ 11%; F3,22 ¼
0.41, p ¼ 0.31) models across networks depicting interactions
with different levels of intimacy. The model selection procedure
favoured different models for networks with different degrees
of intimacy. The goodness of fit of the cascade model was the lar-
gest for six of the eight low-intimacy networks (figure 2). For
intermediate and high levels of intimacy, the performance of
the one-dimensional PNM was superior, showing the highest
fit to the data for six of the eight intermediate-intimacy networks
and six out of 10 of the high-intimacy networks (figure 2).
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The goodness of fit of the two-dimensional PNM was only
larger for the largest intermediate-intimacy network and for
one of the largest high-intimacy networks (figure 2). However,
for large networks the differences in the AICc between the
two-dimensional PNM and the other two models were gener-
ally smaller and the disparity in the fraction of links correctly
predicted was generally larger (figure 2).

4. Discussion
Our results showed clear differences between the structural
properties of networks depicting low-intimacy antagonistic
interactions and those of networks that depict antagonis-
tic interactions with intermediate and high levels of
intimacy. A long-lasting notion is that high modularity and
low nestedness characterize antagonistic ecological networks
[7,23]. Here, we show antagonisms can give rise to nested
networks when interactions have a low degree of intimacy.
At the community level, the presence of generalist lifestyles
in interactions with low intimacy produced not only lower
specialization (higher connectance), but also higher nested-
ness. In contrast, the higher-intimacy interactions are
associated with high specialization (lower connectance) and
also to higher modularity in antagonisms. Similar patterns
were reported for mutualisms, in which intimate mutualisms
are highly modular, whereas low-intimacy mutualisms are
often highly nested [9]. Taken together, these results suggest
the ecological and/or coevolutionary processes that shape
interaction patterns might be similar for systems with similar

levels of intimacy despite these systems representing antag-
onisms or mutualisms. Nestedness partially emerges due
to differences in population abundances among potential
partners [6], probably a key component shaping both mutu-
alisms and antagonisms with low intimacy. In addition, it
has been proposed that grazing and free-living mutualisms
might be much alike in the evolutionary processes shaping
specialization [11], whereas symbiotic mutualisms might be
similar to symbiotic antagonisms in the evolutionary pro-
cesses shaping their patterns of interaction [33]. Moreover,
our results suggest that interaction intimacy might have
strong implications for the stability of species interactions.
Nested patterns of resource use may have a destabilizing
effect on antagonisms, as suggested by numerical simulations
[7] and qualitative stability analysis [2], whereas the lower
connectance and higher modularity of intimate antagonisms
are associated with higher stability at the community level
[2,7]. Future studies should investigate if antagonisms with
low-interaction intimacy in fact tend to be more unstable to
ecological perturbations than intimate antagonisms. Overall,
our analyses using food web models contribute in three prin-
cipal ways to our understanding of the organization of
antagonisms involving multiple interacting species.

First, our results show that simple models are capable of
reproducing different types of antagonistic, two-mode net-
works. Therefore, large differences in network structure can
be reproduced by a set of simple models assuming that antag-
onistic interactions are determined by a few dimensions in
the niche space. Because two-mode networks are the build-
ing blocks of more complex ecological networks [34], a
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promising avenue for research is to explore how ecological net-
works formed by different types of interactions [10] can be
reproduced by merging assembly rules in different ways.

Second, model performance differed among two-mode net-
works with different levels of interaction intimacy. The
mechanisms underlying intimate interactions can be very com-
plex. Organisms, such as leaf-mining and gall-forming insects
and parasites need very specific host-recognition systems and
mechanisms to avoid the mechanical and chemical defences
of the hosts, in addition to specific morphology and physiology
that allow these organisms to live within their hosts in such a
close relationship [13,33,35]. Similar trends are observed in
interactions with intermediate levels of intimacy, such as
those formed by caterpillars and their host plants, in which
complex defence/counter defence complementarities play a
key role [36,37]. Thus, the assembly mechanisms of intimate
interactions are in general much more complex than the mech-
anisms structuring low-intimacy trophic interactions, such as
body size [14,32], feeding apparatus constraints [38] or phenolo-
gical matching and abundance effects [39]. These differences
were mirrored by differences in model performance. The
cascade model, the simplest in the set of models we tested in
this study, can reproduce a great percentage of the interactions
in low-intimacy networks, but it performs poorly in repro-
ducing networks depicting interactions with intermediate
and high levels of intimacy. These results generalize recent

findings [22] that the cascade model shows good performance
in reproducing low-intimacy mutualistic networks, pointing
out for general mechanisms shaping low-intimacy mutualisms
and antagonisms.

The cascade model tends to generate networks that are
more nested than modular [22] and was thus unable to repro-
duce the highly modular structure of networks of interactions
with higher intimacy. Conversely, the two versions of the
PNM were much more successful in reproducing the high-
intimacy networks. The addition of one dimension to the
niche space was only advantageous for the largest networks
analysed. This finding agrees with previous results for
whole food webs [27]. Therefore, the simple assumptions of
the niche model appear to successfully capture the essential
assembly rules of networks representing intimate inter-
actions. The versatility of the rules of the niche model
facilitates the reproduction of the patterns of interaction of
consumers with very narrow diet ranges, allowing each con-
sumer to explore a small portion of the feeding axis such that
niche overlap is minimal. These results corroborate the view
[40] that one-dimensional niche generalization may be a
useful simplification in models used to reproduce the struc-
ture of food webs. Although this property certainly does
not mean that only one characteristic of consumers and
resources is important in determining who interacts with
whom in a given locality [16], it does suggest that the core
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of the network of interactions is well represented by consid-
ering one dimension that can, in turn, represent a
combination of traits. The current challenge is to find an
approach allowing the different traits shaping high-intimacy
interactions to be combined in estimates of the parameters. A
next step in this analysis would be to parametrize these
minimal two-mode models with biological information on
species traits, as in the recently introduced body size-based
models for entire food webs [28,32].

Third, in addition to the insights that they yield into the
assembly processes of ecological communities, food web
models furnish the possibility of building ensembles of net-
works that share the same realistic structural backbone but
encompass the uncertainty of the occurrence of each pairwise
interaction. For this reason, food web models have been used
to build ensembles of food webs with a similar realistic struc-
ture. This approach allowed tests of the general properties of

the structure and dynamics of study systems [2,41]. In this
paper, we expanded the range of the types of ecological net-
works that can be reproduced by food web models. One key
problem that still requires a solution is the extent of the appli-
cability of the one-dimensional niche simplification results to
all species and all their interactions. By probing into each net-
work, future studies could provide an assessment of the
species whose interactions are well predicted by food web
models and the species for which food web models often
fail. This assessment will allow us to improve our under-
standing of the generality of simple assembly rules and the
complementary mechanisms generating the diversity of pat-
terns of interaction in nature.

We thank S. Allesina for suggestions related to the likelihood
approach, and two anonymous reviewers for their comments and
suggestions. M.M.P. and P.R.G. were supported by FAPESP grants.
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THE DISRUPTION OF PREDATOR-PREY INTERACTION NETWORKS AFTER 

MEGAFAUNAL EXTINCTIONS 

 

Mathias M. Pires, Paul L. Koch & Paulo R. Guimarães Jr. 

 

Abstract. The megafaunal extinction by the end of the Pleistocene drastically reduced 

the diversity of large mammals worldwide especially in the Americas. Considering 

the great chances in the composition of mammalian assemblages, it is expected this 

large extinction episode would have caused a major re-organization of species 

interactions, with implications to ecosystem function. However, we know little about 

how the communities these animals were part of were organized. We combine 

paleontological data and network models to reconstruct networks of predator-prey 

interactions between Pleistocene mammals in the Americas and investigate their 

structural properties. Although species composition were remarkably different 

between Pleistocene networks in America and modern large-mammal assemblages in 

Africa their network structure were likely similar. The Pleistocene extinction 

disrupted the structure of such networks so that large-mammal assemblages in the 

Americas are now simplified and more dependent on a few central species. Our 

results suggest that considering only the structure of Pleistocene assemblages there is 

no sign that they should be more prone to collapse them the assemblages we find 

today in Africa. Yet, we show Pleistocene extinctions in the America generated 

species-poor assemblages with structural properties that made them highly vulnerable 

to species loss. 
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INTRODUCTION 

The extinction event known as the megafauna extinction, by the end of the 

Pleistocene (~50 – 11 kyr BP), drastically reduced the diversity of large mammals 

worldwide (Martin & Klein 1984). Australia and the Americas suffered the greatest 

impact with more than 70% of the mammalian genera extinct (Koch & Barnosky 

2006). Although several hypotheses on the causes for the megafauna extinction have 

been debated (Koch & Barnosky 2006) we know little about how the communities 

that perished were organized, i.e., the structure formed by species interactions. The 

organization of ecological communities has implications for system dynamics and 

consequently for the systems properties such as robustness (Dunne 2006). Therefore 

understanding how ecological communities were organized may provide insights on 

the causes why a given system collapsed (Roopnarine et al. 2007). Nonetheless, to 

understand how paleocommunities were organized we need to find ways to 

reconstruct the patterns of interactions of extinct species, which is often challenging 

(Roopnarine 2009). 

Evidences of paleoecological interactions such as marks of predators’ teeth on the 

bones of prey (Marean & Ehrhardt 1995) or remains of food resources on the teeth of 

consumers (Akersten et al. 1988) are occasionally found. It is unfeasible tough to 

reconstruct the whole diet of a given species relying upon this type of evidence. When 

fossils are well preserved, stable isotopes can be used to estimate probabilities of 

interactions between pairs of species, allowing interaction patterns to be reconstructed 

from the isotopic profiles (Yeakel et al. 2013). Additionally, it is possible to make 

paleoecological inferences based on species biological traits. Dunne et al. (2008), for 

instance, compiled information on the possible trophic role of Cambrian taxa and 

aggregated taxa into trophic species to study the structure of networks describing the 

possible trophic interactions between Cambrian species. 
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An alternative for reconstructing paleoecological networks are modeling 

approaches (e.g., Roopnarine 2009). In studies with modern communities, food web 

models have been shown to reproduce several structural properties of real food webs 

(Williams & Martinez 2000; Stouffer 2010). Food web models are often used to build 

ensemble of food webs with a realistic structure, allowing network properties to be 

investigated (e.g., Brose et al. 2008; Dunne & Williams 2009). Here we combined 

this widely used approach in the study of modern food webs and paleontological data 

to investigate how Pleistocene mammal assemblages were organized. Understanding 

the structural properties of communities that collapsed is key to understand whether 

these communities had intrinsic properties that played a part in their collapse. 

We first show network models can reproduce interaction patterns between large 

mammals that are currently observed in African ecosystems. Then, we use these 

models to reconstruct possible predator-prey networks between Pleistocene large 

mammals and investigate what would be the most likely structure of such 

paleoecological networks. To understand whether the organization of Pleistocene 

assemblages was as particular as their faunal composition we then compare the 

structure of Pleistocene networks with networks depicting interactions between the 

large mammals in Africa and the surviving large mammals in the Americas. 

  

METHODS 

Pleistocene Data 

To build the Pleistocene predator-prey networks we gathered information on the 

composition of Pleistocene assemblages from the literature and the Paleobiology 

Database (http://paleodb.org/; Table 1 and Appendix S1). We searched for 

Pleistocene fossil assemblages for which the composition, chronology and taphonomy 

suggest an actual community of interacting species. Because we are interested in the 
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interaction patterns of large Pleistocene mammals we considered only large predators, 

leaving out predators that were more likely to consume mostly small prey such as 

rodents and invertebrates. As prey we considered only mammalian herbivores 

weighing > 5 kg, which are more likely to be preyed upon by large carnivores 

(Carbone et al. 1999). We obtained data on the estimated body mass of extinct 

mammalian species from Smith et al. (2003b). When no body mass estimate was 

available for a given species, we used the average body mass of species within the 

same genus. 

 

Reconstructing networks 

Assuming similar large-mammal assemblages are organized by similar processes 

(Owen-Smith 1987), if a model is able to reproduce interaction patterns between 

African large mammals it should be appropriate to reconstruct Pleistocene networks 

with a realistic structure. Therefore, prior to the reconstruction of Pleistocene 

networks, we used data on the interactions between large mammals in three locations 

in Africa (Table 1) to test the performance of two different models in reproducing 

large-mammal predator-prey interaction patterns. 

Although food-web models are often used in studies with whole food webs 

comprised of several trophic levels (Dunne 2006), food-web models can be adapted to 

reproduce networks of interactions between consumers and resources such as 

predator-prey interactions (Pires & Guimarães 2013). The first model is a 

parameterized version of the probabilistic niche model (PNM; Williams et al. 2010). 

Because body mass is often considered a key trait in determining species interactions 

(Brose et al. 2006), including predator-prey interactions between terrestrial mammals 

(Carbone et al. 1999), we parameterized network models using species body mass. In 

the PNM species are ordered along an axis representing a niche dimension and a 
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predator preys upon species within a determined diet range along this axis. The 

probability of an interaction between consumer i and resource j is a continuous 

function: 

      (1) 

where nj represents the position in the niche dimension for prey j, ci represents 

the diet optimum of predator i, ri is the diet range for predator i, and ν is the maximum 

probability that i consumes any given prey, here set as 1 following Williams et al. 

(2010). Because we are not considering intra-guild predation, species can be only 

predators or prey. Thus, species positions (n) are defined only for the prey species, 

whereas diet center and ranges (c and r) are defined only for the predators (Pires & 

Guimarães 2013). To parameterize the model using body mass information we 

followed Williams et al. (2010) and set n = (log mj - logmmin)/(logmmax - logmmin), 

where mj is the body mass of prey species j and mmin and mmax are the minimum and 

maximum values for prey body mass. The parameters ri and ci are free parameters. 

Thus, the free parameter set can be defined as θ = {c1, c2,… cP, r1, r2,…rP}. 

The second model, herein LRM (log ratio model), is a statistical model that uses 

the log ratio of the body mass of predator and prey species as the explanatory variable 

(Rohr et al. 2010). The probability of interactions can be modeled as a logit 

regression: 

    (2) 
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γ are parameters to be estimated. Thus, the probability of an interaction between 

predator i and prey j given a particular parameter set θ = {α, β, γ} is: 

     (3) 

For both models different parameter sets result in different probabilities of 

interaction. The maximum likelihood parameter set is that which maximizes the log-

likelihood: 

    (4) 

We combined the simulated annealing optimization (Kirkpatrick et al. 1983) and 

the Latin hypercube sampling technique (Mckay et al. 1979) to find the parameter set 

that maximizes the likelihood of each model (see Pires & Guimarães 2013 for a 

similar approach). To compare model performance, we used the Akaike information 

criterion, AIC (Burnham & Anderson 2002). The model with the lowest relative value 

of AIC is the one showing the best fit to the data. To provide a straightforward 

characterization of the performance of the models in reproducing each predator-prey 

network between African large mammals, we also computed the fraction of presences 

and absences of pairwise interactions (1’s and 0’s in matrix A) each model correctly 

predicts when parameterized with the maximum likelihood estimates: 

   (5)
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By considering the ability of the model in predicting both the 1’s and 0’s in the 

interaction matrix we avoid overestimating the performance of a model that predicts, 

for example, that all interactions occur. 

We also tested whether the models failed in any characteristic way for the three 

African predator-prey networks. A model parameterized with body mass could 

perform better in predicting the interactions of larger or smaller species or perform 

poorly in predicting the interaction of social hunters, for instance, which are more 

likely to take down larger prey then would be expected based on their body mass 

(Macdonald 1983). Thus, we computed an analogue of fc for each species by fixing i 

(or j) in eq. 5 and dividing the numerator by number of interactions of i (or j). 

Because both models performed similarly (see Results) we chose to use the LRM 

to reconstruct the Pleistocene networks. Even though the PNM has parameters that are 

easier to interpret biologically, such as preferred prey size and diet range, the LRM 

has far less free parameters than the PNM. As our main purpose here is not related to 

understanding the processes organizing interaction networks but to reconstruct 

networks with a realistic structure the LRM is, thus more appropriate. For each 

Pleistocene assemblage we generated 100 potential networks using the number of 

predators and prey and average body masses of each species as input parameters for 

the model. In each model run, we sampled the model parameters (α, β, γ) from the 

range defined by the maximum likelihood parameter set found for the three African 

networks. These parameters only determine how the probability of interactions are 

linked to body-mass ratios. As a consequence, variation in species richness and body 

mass distributions can lead to very distinct network structures even with the same 

parameter values. 
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Structural analyses 

To describe network structure we focused on two structural properties: 

nestedness (Almeida-Neto et al. 2008) and modularity (Olesen et al. 2007). 

Nestedness and modularity are often found in two-mode networks including predator-

prey networks (Pires & Guimarães 2013) and are important network patterns related 

to community dynamics (Bascompte 2010). Nestedness is high when the interactions 

of species with few interaction partners form a subset of the interactions of more 

connected species (Bascompte et al. 2003). We used the metric NODF (Almeida-Neto 

et al. 2008), to compute the degree of nestedness, herein N, of each predator-prey 

network. N tends to 100 for highly nested networks and to zero when species show 

other non-random patterns of interaction (Almeida-Neto et al. 2008). Network 

modularity is high when the network has groups (modules) of highly connected 

species that are loosely connected to other species in the network (Olesen et al. 2007). 

To find the partition of a given network into modules that maximizes within-module 

interactions relative to between-module interactions, we used an optimization 

algorithm to maximize an index of modularity, M (Guimerà & Amaral 2005). M tends 

to 0 when between-module interactions largely exceed within-module interaction, and 

equals 1-NM
-1 when the network contains NM isolated modules. We used the program 

MODULAR (Marquitti et al. 2014) to compute M. Because each assemblage differs 

in the number of predators and prey and the number of species affect both nestedness 

(Almeida-Neto et al. 2008) and the number of modules (Olesen et al. 2007) we 

computed the relative nestedness and modularity to allow comparisons (Bascompte et 

al. 2003): 

       (6),
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where N and M are the nestedness and modularity degrees of each network generated 

by the model and   

€ 

N R  and   

€ 

M R are the average nestedness and modularity of random 

networks with the same number of species and same average number of interactions, 

where all interactions are equiprobable. With this null model approach we are not 

aiming to test the significance of structural patterns, but to control for the statistical 

effects of connectance and networks size on these metrics so we are able compare 

different systems. 

 

Modern large-mammal assemblages in the Americas 

A straightforward consequence of the Pleistocene extinctions was the reduction 

in the mammalian diversity. Yet, how these losses translated into changes in the 

structural properties, and ultimately dynamics, of mammalian assemblages is less 

clear. Thus, we used information on the interactions of extant large mammals in North 

and South America to explore the effects of the LQE over the network structure of 

large-mammal assemblages. Because in both North and South America there is not 

much variation in the composition of the few locations that still bear representative 

large-mammal faunas, we chose two locations to represent the surviving assemblages. 

We chose the Yellowstone Park, which bears one of the richest mammalian 

assemblages in North America (Van Valkenburgh 2001), and the Central region of 

South America, where the two extant large South American predators, the jaguar 

(Panthera onca) and the cougar (Puma concolor), can still be found in sympatry 

(Crawshaw & Quigley 2002). Using information on the diet of each carnivore (Taber 

et al. 1997; Crawshaw & Quigley 2002; Husseman et al. 2003; Smith et al. 2003a) we 

built the networks describing predator-prey interactions in each system. We excluded 

the coyote (Canis latrans), which was not considered in the Pleistocene assemblages 
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as well, from the network representing North America, because it is known to include 

less live prey in its diets behaving more often as a scavenger (Smith et al. 2003a). 

Network metrics that quantify the number of paths connecting species and how 

centralized are networks help us assessing how likely are the effects of perturbations 

to spread and how vulnerable is an ecological network to species loss. We used the 

average shortest path length and central point dominance, to measure the differences 

between the potential structure of Pleistocene and recent predator-prey networks. The 

number of connections between any two given nodes in a network is termed path 

length. The average shortest path, D, can be computed as the mean shortest distance 

between all pairs of nodes in the network (Williams et al. 2002). In ecological 

networks with smaller D species are tightly connected to each other and thus the 

effects of perturbations are more likely to spread (Williams et al. 2002). The central 

point dominance (CPD) is computed as: 

      (7) 

where 
    

€ 

Bi =
j≠i≠k
∑

l jk (i)
l jk

 is the betweenness centrality of species i (ljk is the number of 

shortest paths from node j to node k and ljk(i) is the number of paths between j and k 

that pass through i); Bmax is the largest value of betweenness centrality in the network 

and S is the total number of species (Costa et al. 2007). CPD is 0 if the network is 

totally connected and 1 when there is a central node (species) that participates in all 

interactions (Costa et al. 2007). Thus, CPD describes how dependent is the structure 

of an ecological network on a small subset of species. Because we are considering 

two-mode networks where only interactions between predators and prey are depicted, 

CPD will never reach zero, but will tend to zero if there are several nodes that are 

equally central. 
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RESULTS 

Both network models performed well in reproducing the interaction patterns 

between African large mammals. Using only the number of predators and prey and 

their average body mass as input parameters, the models were able to predict on 

average more than 70% of the interactions correctly (Table 2). For two of the three 

networks the LRM had a better fit considering the number of parameters (Table 2). 

The LRM tended to perform slightly better in predicting the interactions of larger 

predators than smaller predators (Linear regression: F1,12 = 4.78, R2 = 0.22, p < 0.05). 

The performance of the LRM was similar for social hunters, such as lions and wild 

dogs and solitary hunters, such as leopards and cheetahs. Regarding prey species, we 

found no trend related to body size (F1,54 = 2.07, R2 = 0.02, p = 0.15) and although the 

model performed poorly (less than 50% of the interactions correctly predicted) in 

reproducing the interaction patterns of a few prey species (see Fig. S1 in Appendices) 

it did not seem to fail in any characteristic way. 
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Table 1. Sites included in the analyses, number of predators (Npred) and prey (Nprey) 

and the average (± SD) degree of nestedness and modularity considering 100 potential 

networks reconstructed using the LRM. The values for African assemblages represent 

the actual values for the real interaction networks. 

 

Site Location Npred Nprey Nestedness Modularity 

American Falls (Amf) Idaho, USA 7 15 79.82±4.09 0.13±0.03 

Page-Ladson site -Aucilla 

River (Pls) 

Florida, USA 5 15 75.48±4.87 0.13±0.03 

La Brea Tar Pits - Pit 91 (Bre) California, USA 8 12 78.62±6.20 0.16±0.03 

Friesenhahn Cave (Fri) Texas, USA 6 9 80.53±6.62 0.14±0.03 

Ingleside (Ing) Texas, USA 5 17 72.15±5.47 0.15±0.03 

Guerrero Member – Luján 

(Luj) 

Buenos Aires, 

Argentina 

5 23 73.34±3.65 0.17±0.04 

Talara Tar seeps (Peru) Talara Region, Peru 3 9 61.92±8.99 0.11±0.04 

São Raimundo Nonato (Srn) Piauí, Brazil 3 13 53.33±10.83 0.09±0.04 

Tarija Basin (Trj) Tarija, Bolivia 6 28 77.30±4.92 0.17±0.04 

Serengeti (Ser) N Tanzania 5 16 73.84 0.10 

Kruger Park (Kru) NE South Africa 5 22 61.99 0.07 

Mala Mala Reserve (Mal)  NE South Africa 4 18 74.07 0.16 
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Table 2. Goodness of fit (as measured by the AIC) and the expected fraction of 

predator-prey interactions correctly predicted by each model (fc) between African 

large mammals in three sites. Name codes in Table 1. 

 

Despite the differences in the composition and body size distribution of each 

Pleistocene community (Fig. 1) their structure was most likely very similar: All 

networks showed a large absolute degree of nestedness and small degree of 

modularity (see Table 1). Comparing the relative degrees of nestedness and 

modularity across assemblages we found the degree of nestedness and modularity of 

African assemblages are a subset within the range defined by the Pleistocene 

networks (Fig. 2). 

 

Figure 1. Body size distribution of predators (green) and prey (yellow) for each 

assemblage. Name codes in Table 1. 
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Figure 2. Average relative nestedness (N*) and modularity (M*) of Pleistocene 

predator-prey networks. The shaded area represents the range of N* and M* for the 

three modern African communities. Error bars depict ± SD. 

 

Current large-mammal assemblages in North and South America are largely 

depauperate in comparison to Pleistocene large-mammal assemblages (Fig. 3). The 

networks comprising only surviving species are more tightly packed (smaller average 

shortest path, D; Fig. 3) and their structure is more dependent on a small subset of 

species, mainly predators (larger central point dominance, CPD; Fig. 3).  
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Figure 3. Predator-prey interactions between large mammals in the Pleistocene (left) 

and at present (right) in North and South America. Pleistocene networks are 

represented by one potential network reconstructed using the LRM. The large-

mammal faunas from La Brea and Yellowstone represent North America. The large-

mammal faunas from Luján and the Pantanal region represent South America. Values 

denote the average shortest path, D, and central point dominance, CPD, for 

Pleistocene (average ± SD for 100 potential networks) and modern networks. We 

aggregated a few species in Pleistocene networks to ease visualization. 
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DISCUSSION 

We showed here network models parameterized with body mass information are 

able to reproduce much of the interaction patterns among large mammals. Using such 

network models we reconstructed potential networks of interaction between late 

Pleistocene mammals in the Americas and showed their structure would have been 

similar to modern mammal assemblages in Africa, but networks suffered major 

structural changes after the extinctions. 

Previous studies using network models parameterized with body mass information 

showed body size alone is unable to predict interaction patterns of several species in 

food webs (Rohr et al. 2010; Williams et al. 2010). Here we show that when focusing 

on smaller “subnetworks”, with only two trophic levels and fewer groups, the 

performance of such models is greatly improved. A good fit of models parameterized 

only with body mass to a whole food web would indicate body size translates into 

interaction patterns in a similar way for different groups and different trophic levels, 

which seems unlikely. In contrast, our dataset includes only large mammalian 

predators, all carnivorans, and prey, mostly ungulates. It is reasonable to assume that 

this smaller set of species obey similar rules regarding how interaction patterns are 

mapped into body size relationships. Network models have also been used to test 

whether ancient networks reconstructed using paleocological inferences share 

similarities with modern communities (Dunne et al. 2008). We feel using network 

models to reconstruct networks of interaction representing ancient systems is 

promising and might bring insights on the structure and dynamics of other 

paleocological systems. In this study, the combination of food web models and 

paleontological data allowed us to infer the organization of Pleistocene networks and 

to discuss consequences of this organization for system dynamics. 
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Modern Africa bears the largest extant terrestrial mammals, but the body-mass 

distribution of Pleistocene mammals in the Americas was even more skewed towards 

larger species (Koch & Barnosky 2006). Because the model we used assumes body-

mass ratios determine the probability of interactions, such differences in species 

composition and body-size structure could have resulted in assemblages with different 

structural patterns. However, we showed here that the overall structure of Pleistocene 

predator-prey networks in the Americas was most likely similar to what we find today 

in the African savannas. Pleistocene predator-prey networks were likely highly nested 

and non-modular, similar to the extant large-mammal communities (Sinclair et al. 

2003) and contrasting with other types of antagonistic networks (Pires & Guimarães 

2013). 

Although the overall structure of whole food webs, comprising several trophic 

levels, often show a high degree of modularity (Baskerville et al. 2011), food webs 

are formed by connected subnetworks that are often nested (Kondoh et al. 2010). In 

fact when the degree of biological association between interaction partners is low 

antagonistic interactions are expected to form nested networks (Pires & Guimarães 

2013). Nestedness means the resource use patterns of consumers overlap 

asymmetrically, what should have implications for competition and, thus, coexistence 

(Kondoh et al. 2010). Moreover, nestedness is frequently associated with lower 

stability for networks depicting antagonistic interactions (Thébault & Fontaine 2010; 

Allesina & Tang 2012). The intrinsic instability of nested networks can be 

counterweighted by patterns of interaction strength (Staniczenko et al. 2013). An 

open avenue for future work on the structure of Pleistocene systems is to estimate the 

strength of interactions and evaluate whether different patterns emerge. Based on 

recent results using isotope analyses (Yeakel et al. 2013) we expect that by 

considering the strength of interactions modularity should increase, what is often 
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related to higher stability, and could help explaining the co-occurrence of so many 

large species with overlapping interaction patterns. 

We showed the interactions of Pleistocene large mammals and modern African 

large mammals were most likely organized in a similar way. Still, Pleistocene large-

mammal assemblages collapsed in the Americas, whereas large-mammal assemblages 

still persist in Africa. This differential survival may be related to other aspects of the 

community organization. For example, the larger number of interacting species in 

Americas provides several potential pathways by which species indirectly affect each 

other (Forster 2003; Ripple & Van Valkenburgh 2010). Moreover, the large number 

of slow-breeding animals in Pleistocene assemblages could have made the 

populations less likely to recover after perturbations (Johnson 2002; Koch & 

Barnosky 2006). In addition to the climate changes and anthropogenic impacts that 

might have triggered the extinctions (Koch & Barnosky 2006), the interplay between 

the nested structure, high species richness and slow breeding might have contributed 

to the collapse of Pleistocene large-mammal assemblages. The relative contribution of 

each of these factors remains an open question.  

By now we show the Pleistocene extinction not only eroded the diversity of 

mammalian assemblages but also disrupted the organization of interactions between 

large mammals. The current large-mammal interaction networks in the Americas are 

more compact, with all species a few links apart from each other. This arrangement 

has implications for dynamics as the effects of perturbations are much more likely to 

spread in smaller networks where all species are closely connected (Williams et al. 

2002). In addition, current large-mammal assemblages are more dependent on a few 

species central to network structure. Species rich-systems will often have high levels 

of functional redundancy and thus the loss of one or a few species may be 

compensated by the remaining ones. In contrast, species-poor systems such as current 
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large-mammal assemblages, lack functional redundancy and are thus more vulnerable 

to species loss, which is likely to result in trophic cascades (Terborgh & Estes 2010). 

A classic example is the sea otter/kelp forest system in which the loss of one single 

species, the sea otter (Enhydra lutris), leads to great changes in the landscape (Estes 

& Duggins 1995). However, unlike in the sea otter case, the lack of functional 

redundancy and dependence on a few central predators in terrestrial large-mammal 

communities (Ripple & Beschta 2003; Estes et al. 2011) is most certainly linked to 

the Pleistocene extinctions. We showed here that large-mammal assemblages were 

not as centralized and tightly packed in the Pleistocene as they are today. We 

hypothesize the disruption of large-mammal networks led to the omnipresence of 

systems that hinge upon a few species central to network structure and dynamics and 

are thus highly vulnerable to species loss. 
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Fig S1. Fraction of presences and absences of pairwise interactions (fc) correctly predicted by 

the LRM for each species in each network representing African assemblages. Green bars 

represent predators and yellow bars prey species. 
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THE NETWORK ORGANIZATION OF MEGAFAUNA ASSEMBLAGES MADE 

THEN VULNERABLE TO HUMAN ARRIVAL 

 

Mathias M. Pires, Paul L. Koch, Richard A. Fariña, Marcus A. M. de Aguiar, 

Sérgio F. dos Reis & Paulo R. Guimarães Jr. 

 

Abstract. The end of the Pleistocene was marked by the extinction of almost all large 

land mammals (the megafauna) everywhere except in Africa. The debate on the 

megafaunal extinction has focused on possible external triggers for the event, such as 

climate change and direct and indirect effects of humans. However, the impact of 

such triggers depends on the organization of species interactions, which modulates 

how perturbations propagate. We combined network models, extinction simulations, 

and data on extinct and extant megafaunal assemblages to investigate if differences in 

the organization of Pleistocene and modern communities explain why the megafauna 

died out in the Americas while persisting in Africa. We show that Pleistocene 

communities should not have been more responsive to small perturbations than extant 

African communities, but differences in the features that determine the organization 

of species interactions, such as species richness and body-size distributions, made 

Pleistocene communities remarkably more vulnerable to the arrival of new predators 

such as humans. Our findings show that extinction events have to be addressed taking 

into account not only the effects of external processes but also information on the 

network organization of species assemblages, which can contribute to our 

understanding of past and future large extinction events. 
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INTRODUCTION 

The end of the Pleistocene was marked by an extinction event (the Late 

Quaternary Extinction, LQE) that led to the demise of large vertebrates, profoundly 

affecting the organization of ecosystems worldwide (Martin & Klein 1984; Koch & 

Barnosky 2006). The greatest impact was on the mammalian megafauna (body mass ≥ 

44 kg) with the extinction of more than 100 genera (Koch & Barnosky 2006; 

Barnosky 2008). The LQE was particularly severe in Australia and the Americas 

where more than 70% of the megafauna genera perished (Koch & Barnosky 2006). 

Africa retains the remnants of these once widespread megafauna assemblages 

(including species weighing > 1,000 kg; Owen-Smith 1987). Studies on the causes of 

the LQE focus mostly on potential external triggers for the extinctions (Scott 2010), 

such as direct (Martin & Klein 1984; Alroy 2001) and indirect (Barnosky et al. 2004; 

Koch & Barnosky 2006) impacts of humans, climate change (Guthrie 1984), and 

combinations of these factors (Barnosky 2008; Prescott et al. 2012). However, 

extinctions result not only from external factors that disturb ecosystems (Newman & 

Palmer 2002). Community organization, as determined by species interactions, 

dictates how perturbations affect the community (Forster 2003; Roopnarine 2006). 

Therefore, the answer for why large mammals died out almost everywhere except 

Africa could reside not only in the perturbations themselves, but, at least in part, in 

the interactions within megafauna assemblages. 

Theory shows that basic features of ecological systems have large effects on the 

way perturbations propagate (Rooney & McCann 2012). Specifically, species 

richness, the number and strength of interactions, and the way such interactions are 

organized determine the probability that population densities within a community will 

reestablish (stability) or diverge (instability) after a perturbation (May 1972; Neutel et 
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al. 2007; Allesina & Tang 2012). If communities are unstable or populations take too 

long to reestablish, fluctuations may reduce populations to low densities, making 

them vulnerable to demographic stochasticity and ultimately local extinction. 

Here we combine paleontological and ecological data, extinctions simulations, 

and network theory, which deals with the organization and dynamics of interactive 

systems, to explore the role of species interactions in shaping the dynamics of past 

and present assemblages of large mammals. First, we investigate whether differences 

in the organization of Pleistocene and surviving African large-mammal communities 

offer insights on why the former collapsed while the later persisted. Then we evaluate 

if the basic characteristics of large-mammals communities can explain extinction 

patterns in the Late Pleistocene in Americas. Finally, to understand possible effects of 

the arrival of humans to the Americas, we test how the invasion by a new predator 

would impact the dynamics in different locations by altering community organization. 

 

METHODS 

Large-mammal assemblages 

We searched the literature and the Paleobiology Database (http://paleodb.org/) 

for Pleistocene fossil assemblages for which the composition, chronology, and 

taphonomy suggest an actual community of interacting species. We avoided sites with 

a mammalian fauna that seemed incomplete based on our general knowledge of 

Pleistocene faunas or those with dates that were too unconstrained, which might have 

yielded time-averaged assemblages. We ended up with five Late Pleistocene sites in 

North America and four sites in South America (Table S1 in Appendices). For the 

comparison with modern systems we used mammalian assemblages from three 

localities in Africa (see Table S1 in Appendices). We considered only the large-
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mammal assemblages within communities, which form compartments loosely 

connected, both structurally and dynamically, with the rest of the food web (Terborgh 

& Estes 2010). Because we are interested in interactions among large mammals, we 

established systematic criteria to determine which species to consider. We considered 

only mammalian herbivores larger than 5 kg, which are more likely to be preyed upon 

by the carnivores that make up the large mode of the body-size distribution (Carbone 

et al. 1999; Owen-Smith & Mills 2008). Accordingly, we only included carnivore 

species with body mass greater than 20 kg that had evidence of hypercarnivory. In 

this way we avoided including carnivores such as small felids, which rely mainly on 

rodents or other small prey, or large omnivores, such as some bears (Carbone et al. 

1999; Figueirido & Soibelzon 2010), both of which probably played a minor role in 

the predator-prey dynamics of large-mammal assemblages. We obtained data on the 

body mass of Pleistocene mammals from compiled data available in the literature 

(Smith et al. 2003). When no body mass estimate was available for a given species, 

we used the average body mass of species within the same genus. 

 

Reconstructing predator-prey interaction networks 

Despite the insights brought by indirect evidence of interactions (Marean & 

Ehrhardt 1995) and isotope analysis (Yeakel et al. 2013), determining who interacted 

with whom in paleocological systems is challenging (Roopnarine 2006; Dunne et al. 

2008). To account for the uncertainty inherent to any characterization of ecological 

networks we used a probabilistic model (Rohr et al. 2010) to generate ensembles of 

possible Pleistocene networks with a realistic structure. Because body size has a 

central role in structuring African large-mammal communities (Sinclair et al. 2003; 

Owen-Smith & Mills 2008), and ecological networks in general (Woodward et al. 



Mathias M. Pires  Capítulo 4 
!

! 73!

2005), we parameterized the model using the body mass of herbivores and predators 

(Fig. 1). 

 

Figure 1. Reconstructing predator-prey interactions. A) Conceptual 

representation of the model used to reconstruct predator-prey interaction networks. 

The model assumes body-mass relationships determine the probability of interactions 

between predators and prey, as depicted by the probability curves corresponding to 

each predator. B) Example of a probability matrix produced by a model run 

parameterized with the information for a system from Africa. The color heat 

illustrates the probability of each interaction between predators (rows) and prey 

(columns). This model correctly reproduced on average 75% of the interactions 

within the three predator-prey systems from modern Africa1. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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In this model the probability of an interaction between predator i and prey j is a 

function of the log ratio of the body mass (m) of i over the body mass of j (Brose et al. 

2006) and can be represented as a logit regression of the form:  

    (1) 

in which aij is a cell in the binary matrix A that depicts species interactions and α, 

β, and γ are parameters to be estimated. The model has a quadratic polynomial term 

and, hence, the interaction probabilities form a Gaussian-like curve reflecting the idea 

of an optimal range for the predator. This formulation is consistent with other food-

web models based on the niche concept (Williams & Purves 2011). Thus, the 

probability of an interaction between predator i and prey j given a particular 

parameter set θ = {α, β, γ} is: 

     (2)

 

To test the performance of the model in reproducing predator-prey interactions 

among large mammals we used the three sites in Africa for which we had actual data 

on predator-prey interactions (Table S1). First, we used a logit regression to find the 

maximum likelihood estimates (MLE) of parameters α, β, and γ for each location. 

Then, we used the MLE and equation 2 to generate a matrix P in which each cell, pi,j, 

described the probability of interaction between predator i and prey j. The probability 

matrix P allows computing the expected number of cells aij in matrix A correctly 

predicted by the model: 
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The expected fraction of cells predicted correctly, fc, is obtained by dividing Nc 

by the number of cells in A (Williams & Purves 2011). The model performed well in 

reproducing the three networks representing large-mammal interactions in Africa2 (fc 

= 83%, 68% and 74%; Ser, Mal, and Kru, respectively; see Table 1 for acronyms), 

indicating that it is able to generate realistic structures of predator-prey interactions. 

Given this result, we used the same model to generate predator-prey networks 

among the Pleistocene mammals at each site. To do so, we first defined the range of 

the three parameters α, β, and γ. The extremes of the range of each parameter were the 

smallest and largest values found as MLEs for the three African sites. By doing so, we 

adopt the assumption that the constraints imposed on diet by the body-mass 

relationship between predator and prey were similar in Pleistocene and modern 

African large-mammal communities (Prevosti & Vizcaíno 2006). Although we used 

the parameters estimated for the African networks, the parameters only determine 

how the probability of interactions are linked to body mass relationships. The number 

of predator and prey species and body mass distribution in each assemblage are the 

factors that determine the network organization. 

To generate a predator-prey network we then sampled values of α, β, and γ within 

the defined range and computed all pij to obtain a matrix P. The matrix P was then 

used to generate a potential binary matrix, A, depicting interactions among predator 

and prey species in each assemblage. Because this procedure envisages incorporating 

the uncertainty inherent to inferring interactions among extinct species, we generated 

1000 possible interaction networks for each site. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Capítulo 3 - The disruption of predator-prey interaction networks after megafaunal extinctions 
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The community matrix 

To analyze the dynamical behavior of these potential interacting assemblages 

each binary matrix A was transformed in an adjacency matrix Q of size S×S, being S 

the total number of species, in which a cell, qij, represents the effect of species i on 

species j (interaction strength) around a feasible equilibrium (Allesina & Tang 2012). 

Thus Q can be viewed as an approximation to the Jacobian matrix (Allesina & Tang 

2012). To build Q all diagonal elements, representing the effect of intraspecific 

interactions, were assigned -1. Off-diagonal elements qij were only ≠ 0 if aij = 1. 

We used different methods to assign values to off-diagonal coefficients. The first 

method is similar to previous work on the stability of food webs (Allesina & Tang 

2012). Each cell qij ≠ 0 was assigned a value xij drawn from a normal distribution with 

parameters µ = 1 and σ = 1. Because prey have positive effects on the demography of 

predators, but predators have negative effects on prey populations, we used -|xij| when 

qij represented the effect of predator i on prey j and |xji| for the effect of prey j on 

predator i. Note that qij ≠ qji. We chose a Gaussian distribution centered around 1 

because it guarantees that most of the values representing interaction strengths will be 

small while only a few will be large, a pattern that is often found in nature (Wootton 

& Emmerson 2005). Moreover, the parameters used avoid situations such as matrices 

with very low interaction strengths, in which the effect of intraspecific competition 

(set to 1) is much larger than that of interspecific interactions. Although assuming 

strong intraspecific competition leads to stable dynamics (Allesina & Tang 2012), a 

higher role of intraspecific competition for all species in the predator-prey assemblage 

is very unlikely (Owen-Smith & Mills 2008). Conversely, if the mean interaction 

strength were too large the effects of intraspecific interactions become negligible for 

all species, inducing unstable behavior in all matrices. Again this is an unlikely 
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scenario in predator-prey assemblages (Owen-Smith & Mills 2008). Therefore, by 

choosing an intermediate value, we simulate a more plausible scenario. Similar to the 

results of Allesina and Tang (2012) on the consequences of using different 

distributions for interaction strengths, exploratory analyses where we varied the 

distribution of interaction strengths showed that different distributions yield results 

that are qualitatively similar (results not shown). To compute confidence intervals we 

repeated analyses 100 times for each site. 

The dynamics of the potential communities under a small perturbation are given 

by the real part of the leading eigenvalue, Reλ, of Q (May 1972; Allesina & Tang 

2012). We computed the proportion of matrices with stable behavior, Reλ < 0, as a 

measure of the probability that communities are stable, Pst. For matrices presenting 

stable behavior we also computed the average time to return to equilibrium, τ ~ 1/|Reλ| 

(Loeuille 2010). 

 

Asymmetry in the distribution of interaction strengths 

The efficiency of predators in converting prey into actual population growth is 

unlikely to be close to maximum. Thus the per capita effect of the prey on the 

predator may be smaller than the converse. Several studies on food web dynamics 

have considered this asymmetry in interaction strengths (Pimm & Lawton 1978; 

Emmerson & Yearsley 2004). To test the effect of breaking the symmetry between 

the distributions of interaction strengths we reran all tests assuming the average per 

capita effects of predators upon their prey are twice as large as the effect of prey on 

predators. We did this by drawing interaction strengths from different distributions (µ1 

= µ2/2). Breaking the symmetry in interaction strength distributions did not alter the 

results qualitatively (Tables S2 to S5 in Appendices). 
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Interaction strength as a function of body mass 

If we assume the body-size relationship between predator and prey determines 

the probability of interactions, it may affect the demographic effect of interactions as 

well (Woodward et al. 2005; Brose et al. 2008). Therefore we tested the effects of 

assigning interaction strengths in matrix Q as a function of body-size relationships by 

defining the off-diagonal elements as: 

  

€ 

qij = aij yije
− mi −m j( ) 2

       (4), 

where the term y is a random value drawn from a normal distribution with parameters 

µ = 1 and σ = 1. This formulation was adapted from studies on coevolution that model 

the outcome of species interactions taking into account phenotype matching (Nuismer 

et al. 2010; Yoder & Nuismer 2010). Such a formulation implies smaller interaction 

effects for species that differ in size by a great amount. The random variable adds 

noise to the relationship and portrays the uncertainty about how exactly body-mass 

relationships translate into interaction strengths. By considering the uncertainty of the 

relationship between body mass and interaction effects, we loosen the constraints 

imposed by body size. In this way we allow, for instance, that large prey eventually 

benefits relatively smaller predators, as would be expected for species that also feed 

on carcasses (Houston 1979) or social predators, such as lions and wolves, which are 

able to prey upon larger prey (Macdonald 1983). 

Assigning interactions effects as a function of body-mass relationships 

reproduces structural patterns that are more realistic for large-mammal assemblages: 

large-sized predators will have a stronger impact on populations of medium–sized 

prey, smaller predators will have larger effects on small prey, and the largest prey are 

controlled mainly by bottom-up effects (Owen-Smith & Mills 2008). It also increases 
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compartmentalization since predators will tend to interact more heavily with prey 

within a certain size range (Yeakel et al. 2012). Although changing the way we assign 

interaction strength influences the magnitude of Pst and τ, it does not alter the results 

qualitatively (Tables S2 to S5 in Appendices). 

 

General linear models 

To evaluate which components determining community structure are the most 

important in determining the dynamic behavior of the predator-prey systems we used 

regression models of the form:  

Pst = β0 + β1 × Rpred + β2 × Rpred +β3 × Mpred + β4 × Mprey  (5), 

where Rpred and Rprey are the richness of predator and prey species and Mpred and 

Mprey are the average body mass of predators and prey species. We also used a similar 

model to test how each factor affected τ. All models passed diagnostic tests, 

performed using R, to check whether the assumptions of general linear tests such as 

homogeneity of variances and normality of errors applied for each model. We used 

the Akaike information criterion to select among models including different 

combinations of explanatory variables. In Tables S4 and S5 (Appendices), for the 

models with best relative goodness of fit (lowest AIC value), we report the results of 

the regression analyses for Pst and τ for each different method used to assign 

interaction strengths. 

 

Testing the reliability of Pst estimates 

It is unlikely that dynamical systems like assemblages of interacting species have 

only one feasible equilibrium point (Allesina & Tang 2012). Because we built one 

community matrix Q from each interaction matrix A generated using the body-mass 



Mathias M. Pires  Capítulo 4 
!

! 80!

parameterized model, in the baseline simulations we are analyzing only one of the 

possible equilibrium points of each system. To test whether this approach would 

impact the patterns we found, we generated 100 possible matrices Q using each of 

100 matrices A as a template in a total of 10,000 Q matrices. We then looked at the 

real part of the leading eigenvalue of each of the 100 Q matrices generated from A to 

determine the probability of stability, Pst, of A. By doing this we explored distinct 

possible equilibrium points for each possible structure. We then checked whether the 

averaged Pst over the 100 A matrices differed from the Pst computed by considering 

only one equilibrium point for each matrix A. As seen in Table S6, these two 

approaches yield very similar results. 

 

Removal simulations 

Unstable communities are not necessarily destined to collapse. A system may 

reach other equilibrium points with different stability properties after rearranging. To 

find how changes in the species composition of a given site would impact community 

dynamics we performed simulations removing species and recalculating the 

eigenvalues for the resulting community matrices. Starting from 100 community 

matrices per site we removed species combined in groups of size k (1 ≤ k ≤ S - 1) and 

registered the change in Reλ. When the number of combinations for a given k 

exceeded 105 we tested 105 random combinations, otherwise we tested all possible 

combinations of species. We then registered the smallest change in species richness 

that resulted in the largest reduction in Reλ relative to the original matrix. By doing 

this we searched for assemblages that were stable, highly resilient, but retained a large 

number of species. We also registered the species composition that yielded the 
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smallest Reλ possible. The results of both analyses are reported in Figs S1 and S2 

(Appendices). 

 

The effect of humans 

The arrival of humans can be seen as the invasion of a new predator that changes 

community structure. We tested the relative impact of humans by measuring how the 

addition of a new predator would affect Pst. Because in our approach body mass 

determines interaction patterns, we simulated humans assuming their interaction 

patterns would be similar to those of large-sized predators (350 kg in our dataset). The 

effects of humans may be due to their ability to feed on prey of different sizes or just 

because the networks are vulnerable to the addition of any predator. Because we 

know adding a predator should, by itself, affect the probability of stability, we 

estimated the destabilizing effects of humans as the difference in Pst after adding 

humans when compared to the sole effect of adding a predator. To control for the 

effect adding a predator could have on stability, we measured the effect of adding a 

small-sized predator (30 kg). We computed the effects of humans on stability as: 

(P!!st,humans - P!st)/P!st - (P!!st_control - P!st)/P!st, where P!!st and P!st are the probabilities of 

stability after and before the additions. 

 

RESULTS 

Pleistocene communities were as prone to be unstable as modern African 

communities. The probability of a community being stable, Pst, was not higher and 

the average time required for stable communities to return to equilibrium, τ, was not 

lower for the three modern African communities when compared to Pleistocene 

communities (Table 1). Multiple regression analyses showed both Pst (F3,8 = 65.43; R2 
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= 0.94; p < 0.001) and τ (F3,8 = 95.76; R2 = 0.96; p < 0.001) were well predicted by 

basic characteristics of each assemblage (Table S2). Lower Pst (Fig. 2) and higher τ 

were mainly associated with larger predator-richness and lower average prey mass 

(Table S3). Results hold if matrices are built under different assumptions such as 

random interaction strengths or body-mass driven interaction strength (Tables S2 to 

S5). 

 

Table 1. Dynamics of mammalian communities. Probability of stability (Pst) and 

average time (τ) to return to equilibrium of community matrices built for each large-

mammal assemblage. Confidence intervals within parentheses. Acronyms are shown 

after the name for each locality. 

 Pst τ 

N. America (Pleistocene)   

La Brea Tar Pits (Bre) 0.32 (0.29-0.35) 4.18 (3.84-4.59) 

American Falls Area (AmF) 0.30 (0.27-0.33) 3.87 (3.54-4.27) 

Friesenhan Cave (Fri) 0.56 (0.53-0.59) 2.86 (2.71-3.03) 

Ingleside (Ing) 0.65 (0.62-0.68) 2.06 (1.97-2.16) 

Page-Ladson Site (PLS) 0.56 (0.53-0.59) 2.29 (2.19-2.41) 

S. America (Pleistocene)   

Guerrero Member – Luján (Luj) 0.71 (0.68-0.74) 1.91 (1.83-1.99) 

Tarija (Tar) 0.53 (0.50-0.56) 2.56 (2.34-2.71) 

São Raimundo Nonato (SRN) 0.85 (0.82-0.88) 1.25 (1.21-1.29) 

Talara Tar Seeps (Tal) 0.85 (0.83-0.87) 1.30 (1.27-1.34) 

Africa (Modern)   

Serengeti National Park (Ser) 0.41 (0.38-0.44) 2.56 (2.41-2.73) 

Kruger National Park (Kru) 0.47 (0.43-0.50) 2.37 (2.24-2.51) 

Mala Mala Reserve (Mal) 0.60 (0.57-0.63) 1.79 (1.72-1.86) 
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Figure 2. The effect of community structure on stability. Partial regression plots 

showing the probability of stability of communities, Pst, as a function of predator 

richness (A) and the average body mass of prey (B) after controlling for all other 

variables. Different colors represent assemblages from different continents. Values for 

the y and x axes were standardized by removing the effects of the other variables in 

the regression model. Test statistics in Table S4. 

 

Simulating extinctions and looking at the dynamics of the resulting communities, 

we found that communities with fewer predators were more likely to be stable and 

have smaller τ (Fig. S1). Yet, for all sites (including African), stable communities 

with the smallest τ are simplified assemblages, with less than 10 large mammals, 

similar to present-day large-mammal assemblages in the Americas (Fig. S2). 

Simulations to test the potential effects of humans showed that the assemblages 

with an additional large predator, capable of preying upon a wide range of prey, were 

invariably more prone to instability and had longer return times than original 

communities, as expected from our results on the destabilizing effects of predators. 
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Yet, the arrival of humans would affect modern and past communities in distinct 

ways. In the three modern communities, the effects of humans on the probability of 

stability would not be greater than the expected effect of adding a smaller predator 

(Fig. 3). Conversely, in Pleistocene communities, the destabilizing effect of humans 

would considerably larger (Fig. 3). 

 

Figure 3. The impact of human arrival on community stability. Each point shows the 

average (± SD; 100 simulations) destabilizing effect of humans in a given site. 

Different colors represent assemblages from different continents. Values close to zero 

mean the destabilizing effect of humans would not be greater than the expected effect 

of an additional small-sized predator. 
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DISCUSSION 

Our results suggest Pleistocene large-mammal assemblages were not intrinsically 

prone to be unstable when compared to modern African communities, but were 

remarkably sensitive to the arrival of a large predator such as humans. Large 

predators often have large dietary breadths and interact strongly with many species 

(Sinclair et al. 2003; Owen-Smith & Mills 2008). In contrast, large herbivores escape 

predation from most predators, interacting weakly only with the largest predators 

(Sinclair et al. 2003), and are controlled mainly by bottom-up processes (Owen-Smith 

& Mills 2008). As a consequence, large predators and large prey have opposite roles 

in community structure – large predators contribute to increase the connectivity and 

average interaction strength whereas large prey species contribute to a less connected 

community with weak interactions. All else being equal, increased connectivity and 

strong interactions reduce the stability of ecological communities (May 1972; 

Allesina & Tang 2012; Rooney & McCann 2012). Therefore, the likelihood a 

perturbation will spread throughout the community should be greater in a community 

with several large predators, but smaller in communities with many large herbivores. 

Indeed our results from extinction simulations suggest large-mammal 

assemblages with fewer predators are more likely to be stable. However, simplified 

communities with smaller richness of both predator and prey species were the most 

stable scenarios. This result agrees with the general theoretical understanding that it is 

much easier to attain stable dynamics in simpler systems (May 1972). On the other 

hand such impoverished communities would be vulnerable to species loss, since there 

is limited redundancy, and extinction cascades may follow the extinction of a given 

species (Terborgh & Estes 2010). These findings suggest the composition of present-

day large-mammal assemblages in the Americas could be the consequence of 
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sequential rearrangements that resulted in communities that are more resilient to small 

perturbations but so species-poor that became highly vulnerable (Terborgh & Estes 

2010). 

In our dataset the average number of predator species is greater in North than 

South American Pleistocene sites. Overall, Pleistocene faunas in North America 

appear to have had richer predator assemblages, whereas South American faunas had 

richer large-herbivore assemblages (Fariña 1996; Lyons et al. 2004). Although dates 

for Pleistocene fossils from South America are still sparse compared to North 

America, existing data indicate that the LQE took longer in South America than it did 

in North America (Cione et al. 2009; Barnosky & Lindsey 2010). Based on our 

findings on the effects of predators and large herbivores in the dynamics of large-

mammal assemblages, we hypothesize that the diversity of large herbivores and the 

relative lack of predators might have favored stability in South American 

communities. Thus, our results provide a potential explanation for a LQE pattern that 

relies upon intrinsic characteristics of ecological communities rather than purely 

external factors. These intrinsic differences in stability, in turn, could interact with 

external factors such as differences in the timing of human arrival, to generate the 

chronology of megafaunal extinctions in Americas. 

Our simulations testing the effects of humans on the dynamics of large-mammal 

assemblages suggest the effect of a large predator such as humans would be greater in 

Pleistocene assemblages than in modern African assemblages. Pleistocene mammal 

assemblages in the Americas had a greater diversity of large herbivores than the 

modern African assemblages. The arrival of a predator capable of feeding on a broad 

range of prey, including the many Pleistocene large herbivores, would increase 

connectivity and the proportion of strong interactions, greatly changing the network 
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structure and the dynamics of Pleistocene assemblages. There is compelling 

archaeological evidence that humans hunted large Pleistocene herbivores (e.g., 

proboscideans, bison) in the Americas (Surovell & Waguespack 2008; Cione et al. 

2009), but debate continues about whether human overhunting was the main driver of 

megafaunal extinction (Alroy 2001; Koch & Barnosky 2006), or if other factors 

(including habitat alteration driven by humans; Barnosky et al. 2004) contributed to 

the LQE. Our results suggest humans, as predators that were able to exploit a variety 

of large prey in Pleistocene communities, would promote structural changes in these 

systems, reducing their ecological stability, which in turn may favor extinction 

cascades and reduce species persistence. Taken together, our findings reveal that 

knowledge of the network organization of species interactions may be critical to 

understanding past and future large extinction events. 
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APPENDICES 

Table S1. Information on the Pleistocene and modern sites used. 

Site Location Npred Nprey Time range 

N. America (Pleistocene)     

La Brea Tar Pits (Pit 91; Friscia et 

al. 2008) 
California, USA 8 12 0.1-0.01 Ma 

American Falls Area (Hopkins et al. 

1969; Pinsof 1998) 
Idaho, USA 7 15 0.1-0.01 Ma 

Friesenhahn Cave (Graham 1976; 

Toomey 1994) 
Texas, USA 6 9 0.02-0.01 Ma 

Ingleside (Lundelius Jr. 1972) Texas, USA 5 17 0.01-0.01 Ma 

Page-Ladson Site (Aucilla River; 

Webb 2006) 
Florida, USA 5 15 0.01-0.01 Ma 

S. America (Pleistocene)     

Guerrero Member – Luján (Tonni et 

al. 1985; Tonni et al. 2003) 

Buenos Aires, 

Argentina 
5 23 0.8-0.01 Ma 

Tarija Basin (Marshall & Sempere 

1991; Coltorti et al. 2007) 
Tarija, Bolivia 6 23 0.04-0.02 Ma 

São Raimundo Nonato (Guerin 

1991) 
Piauí, Brazil 3 13 0.1-0.01 Ma 

Talara Tar Seeps (Lemon & 

Churcher 1961) 
Talara Region, Peru 3 9 0.1-0.01 Ma 

Africa (modern)     

Serengeti National Park (Baskerville 

et al. 2011) 
N Tanzania 5 16 Modern 

Kruger National Park (Owen-Smith 

& Mills 2008) 
NE South Africa 5 22 Modern 

Mala Mala Reserve (Radloff & Du 

Toit 2004) 
NE South Africa 4 18 Modern 



Mathias M. Pires  Capítulo 4 
!

! 94!

Table S2. Probability of stability (Pst) for community matrices representing each site. 

Columns represent different methods of assigning interaction strengths. Confidence 

intervals within parentheses. 

 Pst 

 Random Asymmetric Body mass 

N. America 

(Pleistocene) 
   

La Brea Tar Pits 0.32 (0.29-0.35) 0.68 (0.65-0.71) 0.53 (0.50-0.56) 

American Falls 

Area 
0.30 (0.27-0.33) 0.64 (0.61-0.67) 0.48 (0.45-0.51) 

Friesenhan Cave 0.56 (0.53-0.59) 0.83 (0.81-0.85) 0.73 (0.70-0.73 

Ingleside 0.65 (0.62-0.68) 0.85 (0.83-0.87) 0.69 (0.66-0.68) 

Page-Ladson Site 0.56 (0.53-0.59) 0.80 (0.78-0.83) 0.65 (0.62-0.67) 

S. America 

(Pleistocene) 
   

Guerrero Member 

- Luján 
0.71 (0.68-0.74) 0.88 (0.86-0.90) 0.60 (0.58-0.61) 

Tarija Basin 0.53 (0.50-0.56) 0.78 (0.75-0.80) 0.48 (0.45-0.51) 

São Raimundo 

Nonato 
0.85 (0.82-0.88) 0.93 (0.92-0.95) 0.89 (0.87-0.91) 

Talara Tar Seeps 0.85 (0.83-0.87) 0.95 (0.93-0.96) 0.90 (0.89-0.91) 

Africa (modern)    

Serengeti National 

Park 
0.41 (0.38-0.44) 0.68 (0.65-0.71) 0.50 (0.48-0.52) 

Kruger National 

Park 
0.47 (0.43-0.50) 0.72 (0.69-0.74) 0.50 (0.47-0.53) 

Mala Mala 

Reserve 
0.60 (0.57-0.63) 0.79 (0.77-0.82) 0.66 (0.63-0.69) 
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Table S3. Average time to return to equilibrium (τ) for community matrices 

representing each site. Columns represent different methods of assigning interaction 

strengths. Confidence intervals within parentheses. 

 τ 

 Random Asymmetric Body mass 

N. America 

(Pleistocene) 
   

La Brea Tar Pits 4.18 (3.84-4.59) 3.36 (3.21-3.53) 3.58 (3.38-3.78) 

American Falls 

Area 
3.87 (3.54-4.27) 3.27 (3.08-3.46) 3.51 (3.31-3.71) 

Friesenhan Cave 2.86 (2.71-3.03) 2.41 (2.31-2.50) 2.56 (2.45-2.67) 

Ingleside 2.06 (1.97-2.16) 1.91 (1.84-1.98) 2.12 (2.03-2.21) 

Page-Ladson Site 2.29 (2.19-2.41) 2.14 (2.07-2.22) 2.30 (2.19-2.41) 

S. America 

(Pleistocene) 
   

Guerrero 

Member - Luján 
1.91 (1.83-1.99) 1.77 (1.71-1.82) 2.41 (2.28-2.54) 

Tarija Basin 2.56 (2.34-2.71) 2.31 (2.20-2.41) 2.95 (2.78-3.12) 

São Raimundo 

Nonato 1.25 (1.21-1.29) 1.26 (1.23-1.29) 1.23 (1.20-1.26) 

Talara Tar Seeps 1.30 (1.27-1.34) 1.30 (1.27-1.33) 1.32 (1.28-1.36) 

Africa (modern)    

Serengeti 

National Park 
2.56 (2.41-2.73) 2.47 (2.34-2.60) 2.64 (2.47-2.81) 

Kruger National 

Park 
2.37 (2.24-2.51) 2.28 (2.18-2.38) 2.64 (2.50-2.78) 

Mala Mala 

Reserve 
1.79 (1.72-1.86) 1.80 (1.73-1.87) 1.82 (1.75-1.89) 
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Table S4. Results of regression models for Pst. Each column represents a different 

method of assigning interaction strengths in the community matrix. Rows show the F-

statistic, the determination coefficient (R2), and estimates for each model parameter. 

d.f. = 8 for all models. * p < 0.05; ** p < 0.001; *** p < 0.001. 

 

 

 

 

 

 

 

 

Table S5. Results of regression models for τ. Each column represents a different 

method of assigning interaction effects in the community matrix. Rows show the F-

statistic, the determination coefficient (R2), and estimates for each model parameter. 

d.f. = 8 except for the third model where d.f. = 9 . * p < 0.05; ** p < 0.001; *** p < 

0.001. 

 

 
 
 

 Random Asymmetric Body mass 

F 66.74*** 33.94*** 41.16*** 

R2 0.92 0.85 0.91 

Npred -115.21*** -64.13*** -77.46*** 

Nprey _ _ -14.96*** 

Mpred _ _ _ 

Mprey 288.97*** 202.74** 173.081** 

 Random Asymmetric Body mass 

F 135.20*** 63.69*** 130.00*** 

R2 0.97 0.91 0.92 

Npred 0.66*** 0.10*** 0.48*** 

Nprey _ _ _ 

Mpred 1.06** _ _ 

Mprey -0.92** -0.16** _ 
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Table S6. Comparison of Pst estimates derived using two different methods. Pst and averaged 

Pst over 100 potential matrices (

€ 

P st). Interaction strength assignment as a function of body 

mass. 

 
 Pst   

€ 

P st  

N. America (Pleistocene)   

La Brea tar pits 0.53 (0.50-0.56) 0.52 

American Falls Area 0.48 (0.45-0.51) 0.47 

Friesenhan cave 0.73 (0.70-0.73 0.72 

Ingleside 0.69 (0.66-0.68) 0.67 

Page-Ladson site 0.65 (0.62-0.67) 0.67 

S. America (Pleistocene)   

Guerrero Member - Luján 0.60 (0.58-0.61) 0.59 

Tarija 0.48 (0.45-0.51) 0.51 

São Raimundo Nonato 0.89 (0.87-0.91) 0.88 

Talara tar seeps 0.90 (0.89-0.91) 0.91 

Africa (modern)   

Serengeti National Park 0.50 (0.48-0.52) 0.53 

Kruger National Park 0.50 (0.47-0.53) 0.49 

Mala Mala Reserve 0.66 (0.63-0.69) 0.66 
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Figure S1.Changes in species composition resulting in the largest change in stability 

properties for each site. Gray bars depict the original number of predators and prey in each 

site. Colored bars show the average number of predators and prey after extinction simulations. 

Error bars tied to the colored bars denote the standard deviation for 100 extinction 

simulations. 

 

Figure S2. Changes in species composition resulting in the most resilient communities for 

each site. Gray bars depict the original number of predators and prey in each site. Colored 

bars show the average number of predators and prey after extinction simulations. Error bars 

tied to the colored bars denote the standard deviation for 100 extinction simulations.
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MODELING THE RESPONSE OF A PLEISTOCENE MAMMAL ASSEMBLAGE 

TO CLIMATE CHANGE AND HUMAN IMPACT 

 

Mathias M. Pires & Paulo R. Guimarães Jr. 

 

Abstract. Pleistocene extinctions depleted the fauna of large vertebrates worldwide. 

The proposed underlying causes include the effects of climate change, anthropogenic 

impacts and combinations of both. Despite the arguments in favor or against each set 

of hypotheses, understanding how the dynamics of Pleistocene assemblages 

responded to different impacts, and how these changes would affect their 

composition, is a fundamental step to understand the Pleistocene extinctions. Here we 

simulated the ecological dynamics of a North American large-mammal assemblage 

from the Pleistocene, using an allometric predator-prey model, to unravel the potential 

ways whereby climate change and the arrival of humans could have affected such 

systems. Our results show species persistence would be impaired by increased 

competition and reduced carrying capacities, due to climate change. Moreover, we 

show the impact of a newly arriving predator with wide dietary breadth, such as 

humans, could be devastating. Our results also point out indirect effects due to 

interactions mediated by predators and producers may have had an important role in 

Pleistocene extinctions, reducing populations that were not directly impacted by 

climatic or anthropic factors. Moreover, our findings on the combined effects of 

climate change give quantitative support to the most recent assessments on the causes 

of the LQE, which suggest climate changes could have forced the populations to 

lower densities whereas humans delivered the final blow determining extinction 

patterns. 
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INTRODUCTION 

The worldwide extinction of large terrestrial vertebrates by the end of the 

Pleistocene, between 50,000 and 11,000 years ago, was the Earth’s latest great 

extinction event (Martin & Klein 1984; MacPhee 1999). This episode led to the 

disappearance of more than 100 large-mammal genera and impacted primarily the 

Americas and Australia, which lost more than 70% of their large mammalian fauna 

(Koch & Barnosky 2006). Because extinctions happened at a time climate was 

fluctuating and the human populations were expanding, the Pleistocene extinctions 

provide not only the opportunity to better understand how large extinction episodes 

take place, but to comprehend how the interplay between climactic and anthropogenic 

impacts affects ecological communities. 

All continents experienced climatic fluctuations during late Pleistocene. Climate 

variability was strong especially during the transition between the Last Glacial 

Maximum (26.5-19.0 ky BP) and the beginning of the Holocene (11.7 ky BP; Stuart 

1991; Barnosky et al. 2004; Nogués-Bravo et al. 2010). Hypotheses evoking climate 

changes as the main trigger of megafaunal extinctions suggest the ecological effects 

of climate change, not the changes in climate per se, would have caused extinctions 

(Graham & Lundelius 1984; Guthrie 1984; Koch & Barnosky 2006). Climatic 

fluctuations would have reduced the availability of habitat and resources, thus 

reducing the populations of large terrestrial vertebrates below a point at which they 

were not able to recover (Koch & Barnosky 2006; Nogués-Bravo et al. 2010). 

Roughly at the same time, humans were dispersing globally (Bowler et al. 2003; 

Goebel et al. 2008). 

The arrival and expansion of human populations predates most of the Pleistocene 

extinctions, what has fueled several hypotheses on the role of anthropogenic impacts 

on megafaunal extinctions (MacPhee 1999; Burney & Flannery 2005; Koch & 
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Barnosky 2006; but see Wroe et al. 2013). Overkill hypotheses suggest prehistoric 

humans hunted megafauna to extinction (Martin 1984), but it has been argued humans 

could also have impacted megafauna indirectly, chiefly due to habitat alteration 

(Miller et al. 2005; Robinson et al. 2005). 

Most of the studies on the potential causes for the Pleistocene megafaunal 

extinctions focused on examining the timing of extinctions in relation to the timing of 

human arrival and climate changes (Martin & Klein 1984; Stuart et al. 2004; Guthrie 

2006; Prescott et al. 2012). Current evidence on the timing of extinctions suggests 

both climatic and anthropogenic impacts might have contributed (Lorenzen et al. 

2011; Prescott et al. 2012; Lima-Ribeiro et al. 2013). Explicit quantitative models 

testing the potential effects of climate changes on megafaunal extinctions are scant, 

but several studies used simulations to explore whether the population growth and 

hunting rates of humans would be able to generate the observed extinction patterns 

(e.g., Belovski 1988; Alroy 2001; Brook & Bowman 2002, 2004). Collectively these 

studies show there are different possible scenarios whereby humans could have driven 

megafauna to extinction (but see Choquenot & Bowman 1998). 

Despite the arguments in favor or against each set of hypotheses (see Koch & 

Barnosky 2006), a fundamental step to understand the Pleistocene extinctions is to 

investigate how should large-mammal assemblages respond to different types of 

impact (Ripple & Van Valkenburgh 2010). Species within any assemblage are 

connected through their interactions, and the effects of any perturbation have the 

potential to propagate through the system via direct and indirect effects (Terborgh & 

Estes 2010). Here we used a system of differential equations where life history and 

ecological attributes are a function of body size to simulate predator-prey dynamics in 

a North American large-mammal assemblage from late Pleistocene. We simulated 

different scenarios, such as the arrival of humans as a new predator and increased 
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competition driven by climate change, to understand how the potential triggers of the 

extinction episode would have changed community dynamics, affecting species 

persistence. 

 

METHODS 

Data 

We used data on the species composition and estimated body mass of species 

found within the La Brea tar pits (Akersten et al. 1983). We chose this fossil 

assemblage as a model system because it bears several of the megafauna species 

known to have occurred at the same time during late Pleistocene in North America. 

We consider here only mammalian herbivores weighing more than 5 kg, which are 

preyed mainly by large predators (Carbone et al. 1999), and carnivores with average 

body mass greater than 20 kg. These cut-off values allow us to define a large-mammal 

assemblage forming a compartment that is loosely connected, both structurally and 

dynamically, with the rest of the food web (Terborgh & Estes 2010). 

 

Simulating system dynamics 

Biological traits of different organisms scale with body size obeying simple 

allometric scaling relationships (Damuth 1981; Niklas 2007). Such empirical 

allometric relationships have been formalized by the metabolic theory, which predicts 

how metabolic rate, which varies with body size, affects biological processes by 

constraining the rates of resource use and resource allocation (Peters 1986; Brown et 

al. 2004; Savage et al. 2004). To simulate the dynamics of a Pleistocene large-

mammal assemblage we used a scaled version of the Rosenzweig-MacArthur 

predator-prey model in which life history attributes, such as mortality rate and 

population growth, and ecological attributes such as carrying capacity scale with body 
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size (Weitz & Levin 2006). We generalized the model for S species and added 

competition between primary consumers (equations 1 and 2). Allometric scaling 

functions and the meaning of each parameter in equations 1 and 2 are presented in 

Table 1. The reasoning behind each function can be found in Weitz and Levin (2006) 

and Scheffer and van Nes (2006). 
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Table 1. Model parameters and scaling functions. mN is the body mass of prey and mP 

the body mass of predators. 
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ε Conversion 

efficiency 
  

€ 

mN mP  

d Death rate   

€ 

mP

−1
4
 

 

Body size controls not only resource use and allocation but also constrains 

foraging behavior since it determines the size limits of potential prey of a given 

predator, thus affecting the rate of biotic interactions (Emmerson & Raffaelli 2004; 

Brose 2010). Empirical data suggest there is often a hump-shaped relationship 

between attack rate and predator-prey body-mass ratios (Brose 2010). Moreover, 

dietary breadth of carnivores is often positively related to body size (Sinclair et al. 

2003). Thus, we used a statistical model based on body mass ratios (Rohr et al. 2010) 

to parameterize the interaction probability between predators and prey, which is 

embedded in the function ϕ in the differential equations 1 and 2 (Table 1). This 

statistical model relating interaction probability and body mass ratios has been shown 

to be effective in predicting predator-prey interactions between large mammals in the 

African savannah3. Therefore by using such model we include a realistic structure for 

predator-prey interaction patterns among mammalian species. We parameterized the 

log ratio model using the range of values that maximize the model goodness of fit for 

interactions between African large mammals3. Therefore, we assume that similar rules 

govern how body-size relationships translate into interaction patterns in the 

Pleistocene and modern large-mammal assemblages, as often assumed in 

paleoecological studies with Pleistocene megafauna. By doing that, in our simulations 

large predators will interact more frequently with medium- and large-sized prey than 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Capítulo 3 – The disruption of predator-prey interaction networks after megafaunal extinctions 
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with small prey. Accordingly, small-sized predators are more likely to interact with 

smaller prey than with large prey. 

We also used body-mass relationships to estimate the competition coefficient, α, 

between prey species. Assuming we can order species along an axis representing a 

niche dimension, competition should be higher for species with higher niche overlap. 

Thus, following Scheffer and Van Nes (2006) we first ordered prey species along an 

axis according to body mass. The position of each species along the axis determines 

the mean of a distribution depicting resource use. Therefore, we assumed species of 

similar body size are more likely to share similar resources. Then, we sampled n 

values from a normal distribution with parameters µ = 0.1 and σ = 0.1 and assigned 

the absolute values as the niche widths of each of the n prey species. Niche widths 

were assigned according to body mass, i.e., assuming larger species have more 

diverse diets. Because there’s conflicting evidence for the relationship between body 

mass and niche width of large terrestrial herbivores (Hansen et al. 1985; Dobson et al. 

2009) we also tested the robustness of our results by assigning niche widths at 

random. After assigning niche widths we used the framework proposed by Scheffer 

and Van Nes (2006) to estimate competition coefficients from niche overlap along a 

finite linear niche axis. 

 

Baseline simulations 

We performed all numerical simulations using an ordinary differential equation 

solver in MATLAB® environment. We sampled initial population densities from 

uniform distributions ranging from 0.7 to 1 for prey and 0.05 to 0.2 for predators so 

that initial density of predator populations is smaller than that of prey. A system 

modeled with that many parameters and several species is unlikely to have easily 

identifiable equilibrium points. Moreover, evidence shows populations continuously 
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fluctuate suggesting the transient dynamics are important in understanding how 

natural systems behave (Hastings 2001). For this reason we opted to analyze the 

dynamic behavior of the community for a fixed amount of timesteps (T = 200). 

Although most of the parameters of the dynamic model are fixed by the 

allometric scaling relationships, some of them have more empirical support than 

others. The mortality rates of mammals, for instance, seem to be consistently lower 

than that of ectothermic organisms (Mccoy & Gillooly 2008), which are 

overrepresented in the tests of the empirical scaling relationship. We also have limited 

information on how resource use patterns translate into competition, especially for 

large herbivores for which the relevance of interspecific competition has been subject 

of debate (Sinclair & Norton-Griffiths 1982; Mcnaughton & Georgiadis 1986). 

Therefore we included two additional parameters, β0 and β1, to rescale predator 

mortality rate, d, and the competition coefficients α, respectively. We ran the 

simulations varying these parameters between 0.1 and 1, by 0.05, (103 simulations for 

each), and registered the number of extinct species at the end of 200 timesteps. We 

then used in the subsequent simulations the values of β0 and β1 found to minimize the 

average number of extinctions. By minimizing the number of extinctions in baseline 

simulations we are more confident we are modeling a plausible scenario, since 

assemblages like the one we model here seem to have existed for a long time before 

the LQE. Moreover, we guarantee that most extinctions after simulating human 

arrival or climate change are a consequence of these factors. 

 

Persistence and coexistence  

To summarize the dynamics of the community under different scenarios we 

measured two main components of system stability: persistence and coexistence. To 

evaluate persistence we registered the number of species that died out after each 
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simulation under each scenario. As a measure of the probability of coexistence we 

registered the proportion of time steps within each simulation in which all starting 

species coexisted. 

We also registered the frequency with which each species went extinct, 

considering all simulations under each scenario (see below), to obtain an estimate of 

the probability of extinction. To allow the comparison of extinction patterns generated 

under the different simulated scenarios we used the extinction patterns of the LQE as 

a benchmark. We developed an index that considers the odds that simulations under a 

given scenario correctly predict the extinction or survival of each species:  

      (3), 

where fi is the proportion of simulations, under a given scenario, in which species i 

went extinct and Ei equals 1 when i is extinct and 0 if i is extant. A C value equal to 1 

would indicate that a given scenario correctly predicts extant and extinct species in all 

simulations. We are aware this approach has limitations. Extinction in our model is a 

local phenomenon and does not necessarily imply in regional or global extinction. 

Our models do not include, dispersal or any spatially structured processes, which are 

especially important if we are considering the extinction of a species in regional or 

global scale. However, assuming species most likely to go extinct locally are those 

most likely to go extinct globally is reasonable. Therefore, computing C allows us to 

assess whether the mechanisms simulated here in local scale would be plausible 

drivers of the LQE extinction patterns. 
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The relevance of trophic structure 

Species are connected to each other through their interactions and thus are likely 

to directly or indirectly affect each other. In this sense the structure of trophic 

interactions should be important to determine dynamics, and, more specifically, how 

the system responds to different impacts (McCann 2011). To test the relevance of 

trophic structure for system dynamics we ran 100 simulations and for each of those 

we randomly redistributed the probabilities of interaction between predator and prey 

species (100 randomizations each) in order to break the relationship between 

interaction patterns and body mass ratios. We then compared the distributions of the 

response variables with that of baseline simulations. 

 

The effect of climate changes 

Among the potential effects of climate changes are the loss of natural habitats and 

vegetation shifts, which decrease resource availability (Guthrie 1984; Barnosky 1986; 

Guthrie 2006). Therefore, we simulated two potential effects of climate change: (i) 

increase in the niche overlap between herbivores; (ii) the reduction of carrying 

capacities of prey populations. In such scenarios we did not model producers 

explicitly, but simulated possible consequences of fluctuations in resource availability 

for herbivores. Moreover, the effects of climate change over predators are solely 

indirect, through changes in prey availability. 

For simplicity we assume the increase in niche overlap and the reduction in 

carrying capacities to be proportional across all prey species. Thus, to simulate 

increases in niche overlap we incremented by 10% to 300% (increasing by 10%) the 

mean of the distribution from which the values of niche widths were sampled. We 

performed 103 simulations for each increment in the mean of the distribution. The 
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effect of increasing niche overlap could be constrained because we rescaled 

competition (using β1; see Baseline simulations) to reduce extinctions in the baseline 

simulations. To test how the scaling of competition affected our overall results we 

reran the simulations while considering the baseline competition is twice as large as 

considered originally. To simulate the effect of decreasing carrying capacities of 

herbivores we reduced a fraction (10% to 90% decreasing by 10%) of the carrying 

capacity originally computed from the allometric scaling. Again, we performed 103 

simulations for each percent decline in carrying capacities. 

 

Human impact 

Previous studies on the overkill hypotheses tested the potential of humans to hunt 

megafauna to extinction by simulating the population dynamics of megafauna 

herbivores and humans while considering specific aspects of human ecology (e.g., 

Alroy 2001; Brook & Bowman 2004). Our focus here is not to test whether humans 

would be able to hunt megafauna to extinction on a continental scale. Also, we are 

aware the arrival of humans could have had different impacts over Pleistocene 

populations, including indirect impacts through habitat alteration (Koch & Barnosky 

2006). Here we aimed at understanding how humans, as a new predator joining a 

Pleistocene large-mammal assemblage, would affect the ecological dynamics of the 

system locally. Therefore, we tested the potential effects of humans by comparing the 

dynamics of the large-mammal assemblage with and without humans. As done for the 

other predators the population parameters of humans were a function of body mass, 

set as 70 kg. To test the effects of different possible hunting behaviors we ran 

simulations changing the interaction coefficient of humans with prey species. By 

changing the body mass input for humans in function ϕ, which represents predation 

rates, we varied the optimum prey size (17.5, 35, 70, 140, 280, 560, 1120, 2240, and 
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4480 kg) for humans while keeping the remaining parameters fixed as a function of 

actual human body mass (70 kg). In each simulation we sampled the initial population 

size of humans from the same distribution used for other predators. We ran 103 

simulations for each optimum prey size. 

 

The combined effect of humans and climate 

We tested the combined effect of humans and climate change by simulating each 

climate effect scenario of increased interspecific competition under the different 

scenarios that included humans. We then registered persistence, coexistence and 

extinction patterns for each combination. We ran 103 simulations for each 

combination. 

 

RESULTS 

Our simulations always resulted in a few species going extinct, even in the 

baseline simulations (Fig. 1). In the baseline simulations species that went extinct 

were the smallest predators, which probably fed upon alternative, smaller, prey that 

are not included in our analysis. When compared to a theoretical scenario in which 

allometric scaling of life history attributes is kept the same, but interaction patterns 

are randomly determined, the scenario in which body size shapes interaction patterns 

yields larger persistence (Fig 1), suggesting that size-based interactions favor 

coexistence in networks formed by large mammals. 
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Figure 1. Comparing the effect of realistic predator-prey interaction patterns 

determined by body size (A) against randomized interaction patterns (B). A and B 

show population densities over time. Gray solid lines represent predators and dashed 

lines represent prey species. C) Number of extinctions under the two scenarios (102 

simulations with the same initial conditions). 

 

Our simulations of climate-driven changes in resource availability, by increasing 

niche overlap or reducing the carrying capacity of prey populations, reduced the 

overall density of prey. As expected, simulations of climate change reduced 

persistence and coexistence when compared to baseline simulations (Fig. 2A and 2B; 

Table S1). For instance, when the average niche width of prey species was twice as 

large as that in baseline simulations, the mean number of extinctions increased from 3 

to 5 and the probability of coexistence reduced from 0.5 to 0.3. Although we 

simulated climate change by altering the parameters of prey populations, the increase 

in the probability of extinction of predators was much greater than the changes in the 

probability of extinction of herbivores themselves (Fig. 3A). Under the scenarios of 

increased competition between prey species, a two-fold increase in the average niche 

width of herbivores was enough to drive all predators to extinction in all simulations 
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(Fig. 3A). If the carrying capacities are halved, the effect is similar and all predators 

die out (Fig. 3B). Additional analyses where we considered a greater baseline 

competition or where niche widths were assigned independently from body mass 

yielded qualitatively similar results (Table S2). 

The addition of humans produced more variable results. Adding a new predator, 

such as humans, to the system also reduced persistence and coexistence when 

compared to the baseline simulations. However, different hunting behaviors resulted 

in very different dynamics and extinction patterns. For instance, including humans 

targeting preferably prey species weighting around 17 kg the mean number of 

extinctions increased from 3 to 4.5, whereas humans targeting prey around 200 kg 

increased the number of extinction to 18 and decreased the probability of coexistence 

from 0.5 to 0.1 (Fig 2C and Table S1). Changing from humans more likely to prey on 

smaller herbivores, to humans targeting large game - passing through more 

generalized hunting patterns - persistence and coexistence followed a hump-shaped 

relationship (Fig. 2C). Prey species and large predators were more likely to survive 

and small predators more likely to die out when we simulated humans targeting 

smaller prey. Simulating humans preying preferably on the largest prey species 

increased the probability of extinction for preferred prey, but smaller predators and 

prey species became less likely to go extinct (Fig 3). When humans targeted prey of 

intermediate size nearly all species had a high probability of dying out. 
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Figure 2. Number of extinctions under each simulated scenario. A and B 

simulate possible effects of climate change. A shows the number of extinctions in 

simulations where we increased the niche width of prey species. B depicts extinctions 

after decreasing the carrying capacity, K, of herbivores. C shows how the number of 

extinctions varies for simulations with humans targeting prey of different sizes. 

Colors portray the density of points considering 103 simulations under each scenario. 

The gray dotted line shows the average number of extinctions in 103 baseline 

simulations. 
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Figure 3. Probability of extinction of each species under each simulated scenario: 

increasing niche widths of prey, reduced carrying capacity of prey, and arrival of 

humans targeting prey of different sizes. † signals extinct species.  

 

If we compare the results of our simulations on the effects of climate change and 

introduction of humans, the later produced more abrupt changes in system dynamics 

(Fig. 2). Even when we increased the magnitude of competition, by setting βo twice as 

large as the value found to minimize extinctions in baseline simulations (see climate 

change effects under Materials and Methods), the effects of increasing niche widths, 

relative to baseline simulations, were smaller than the effects of human arrival (Fig 

S1). Some scenarios including humans as large-game hunters produced extinction 

patterns more similar to the extinctions patterns of the LQE (C > 0.5) than scenarios 

simulating climate change effects (C ~ 0.3) or those that included humans targeting 

smaller prey species (C ~ 0.3; Table S1). Interestingly, the largest extinct herbivore in 

our data set, the American mastodon (Mammutt americanum), had small probability 

of extinction under all scenarios (Fig. 3). 
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When we combined both the increase in niche width of prey and the addition of a 

predator species, simulating the combined effects of climate change and human 

arrival, we found increasing niche overlap decreased persistence when humans 

targeted primarily smaller prey (Fig. 4). However, for humans targeting preferably 

prey > 70 kg, the effects of increasing niche widths were negligible (Fig. 4). Thus, the 

extinction patterns resulting from our simulations seem to be driven qualitatively by 

humans, but may be quantitatively affected by the effects of climate change simulated 

here (Fig. S2). 

 

Figure 4. Number of extinctions when combining the simulated effect of climate 

change and human arrival. Each panel depicts how the number of extinctions varies 

with increasing niche width under each scenario of human hunting behavior (optimum 

prey size ranging from 17.5 kg to 4480 kg; above each panel). 
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DISCUSSION 

Our simulations allowed us to assess how important are interaction patterns to 

understand the dynamics of large-mammal assemblages and to examine how 

processes related to LQE hypotheses would have affected Pleistocene assemblages. 

Randomizing the interaction patterns determined by body-size relationships between 

predator and prey significantly impacted dynamics, reducing species persistence. 

These results emphasize the value of considering the way interactions are organized 

when studying system dynamics. Moreover, our findings suggest the constraints 

imposed by body-mass relationships in foraging behavior favor persistence and may 

promote coexistence in rich assemblages (Brose et al. 2006). Interactions modulate 

how perturbations such as the effect of climate change and the arrival of a new 

predator propagate through the system affecting species trough direct and indirect 

effects. 

By simulating some of the potential impacts of climate change and human arrival 

in a model Pleistocene large-mammal assemblage we were able to examine the 

plausibility the LQE hypotheses in a local context. As expected, our results show the 

effects of climate change and the arrival of humans, as we modeled here, are likely to 

reduce species persistence and the likelihood of coexistence over time. Yet, the 

specific responses of the assemblage studied here to each scenario differed 

substantially. The increase in the niche widths and decrease in carrying capacities of 

prey populations reduced their final densities, and frequently led to the extinction of 

predators. The response of predators to increased competition between prey species 

underscores the importance of indirect effects in the dynamics of the assemblage 

(Wootton 1994). Although we are not modeling producers explicitly, our climate 

change scenarios simulate the reduction of resource availability for herbivores. Thus, 

the resulting extinctions of predators can be interpreted as indirect bottom-up effects 
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spreading across trophic levels (Terborgh & Estes 2010). The potential relevance of 

competition and indirect effects in Pleistocene extinctions has been acknowledged 

before (Guthrie 1984; Owen-Smith 1999). Here we modeled possible effects of 

climate change and showed how competition and indirect effects could have 

contributed to reduce the populations of predator and prey species in Pleistocene 

assemblages. 

Human arrival also impacted persistence, but produced more variable results. 

Although considering humans that hunt preferably smaller (< 40 kg) prey species had 

little effect on the overall patterns, a predator targeting larger prey markedly affected 

the dynamics, and ultimately the composition, of the assemblage. The addition of a 

predator targeting species between 100 and 1000 kg resulted in the extinction of 

almost all species except for two or three herbivores. In simulations where humans 

preferred prey species weighing more than 1,000 kg, however, the overall impact on 

the assemblage was reduced. Large predators and medium-sized prey ended up 

extinct, but smaller prey and predators were more likely to survive, a scenario more 

similar to what happened with the North American large mammals (Martin & Klein 

1984; Barnosky et al. 2004). The main pathway by which the added species impact 

dynamics is, again, by decreasing prey densities. However, a predator that exploits 

intermediate body sizes is less likely to decline even after reducing the density of 

preferred prey, since there are several fallback prey species that prevent its density 

from crashing (Ripple et al. 2010). As a result, the addition of a predator that targets 

the medium-sized prey in our simulations creates a scenario of apparent competition 

where prey populations are overexploited. Apparent competition mediated by 

predators, occurs, when prey species negatively affect each other, by enhancing the 

equilibrium density of shared predators (Chaneton & Bonsall 2000). Both theoretical 

and empirical evidence suggest apparent competition increases the potential of 
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overexploitation and, ultimately, extinction in modern systems (Holt 1977; Bonsall & 

Hassell 1997). Additionally, by reducing the availability of prey, humans preying 

upon medium-sized prey compete with other predators, increasing the likelihood they 

go extinct in the simulations as well. A similar mechanism, whereby humans 

preferring large prey would have triggered Pleistocene extinctions through indirect 

effects, has been proposed by Ripple and Van Valkenburgh (2010). Here we showed 

through our simulations this mechanism is plausible and we identified a set of 

conditions in which extinctions are likely to occur and which would be the most 

vulnerable species. 

There is unequivocal evidence that paleoindians hunted large prey (Buchanan 

2006; Surovell & Waguespack 2008), and foraging models suggest paleoindians 

should pursue a wide range of potential prey (Byers & Ugan 2005). The extinctions 

caused by predators invasions in historical times such as predatory fishes in lakes 

(Pelicice & Agostinho 2009), foxes in Australia (Kinnear et al. 2002), and domestic 

cats in islands (Donlan & Wilcox 2008) show how devastating can the arrival of an 

allochthonous generalist predator be. Yet, one of the most debated topics related to 

the hypotheses pointing humans as the cause of extinctions is how small populations 

of hunters with primitive technologies could have led so may species to extinction 

(Stuart 1991). We show here that regardless of the density of human populations, 

Pleistocene large-mammal assemblages should be strongly impacted by the arrival of 

a large predator, at least on a local scale. These findings agree with Alroy’s (2001) in 

that there is no need to assume exceptionally high population growth rates or attack 

rates to generate a scenario where several species go extinct: the arrival of a new 

predator with wide dietary breadth in an established assemblage is enough to result in 

many extinctions. Our findings cannot unambiguously point in the direction of 

humans as the immediate cause of megafaunal extinctions. However, here we go one 
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step further by showing how the arrival of a new predator could drastically impact 

ecological dynamics affecting not only its prey species, but indirectly affect other 

herbivores and predators. 

Our results simulating the combined effects of climate change and anthropogenic 

impacts, show the impact of an allochthonous predator in the assemblage may be 

aggravated by bottom-up forcing driven by climate changes. Yet, extinction patterns 

were determined chiefly by the addition of a predator. These results agree with the 

most recent assessments on the causes of the LQE in North America, which suggest 

climate changes could have forced the populations to lower densities and humans 

delivered the final blow (Barnosky et al. 2004; Barnosky 2008; Prescott et al. 2012; 

Lima-Ribeiro et al. 2013). 

Even though some of the modeled scenarios accurately predict species that went 

extinct and species that survived, we modeled here the dynamics of a local 

assemblage and extinctions should not be interpreted as the regional or global 

extinction of a given species. The next step in understanding the underlying 

mechanisms of the LQE is to unravel how these local processes could have scaled 

contributing to the extinction patterns in larger scales. A few species that did go 

extinct in the LQE, such as the American mastodon and peccaries had low probability 

of extinction under any of the simulated scenarios. Here we only included information 

on the body mass of each species, which was used to parameterize the model. We did 

not distinguish, for instance, among browsers and grazers, an important aspect of 

herbivore ecology structuring competition (Mcnaughton & Georgiadis 1986) and 

patterns of predation (Yeakel et al. 2012) that could have affected how species 

experienced late Pleistocene impacts (Koch & Barnosky 2006). Moreover, the fact 

that even in baseline simulations a few species may go extinct suggests some 

processes that help to maintain viable populations may have been left out. Our 
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modeling framework does not include, for example, processes related to spatial 

heterogeneity and dispersal, which may increase the likelihood of coexistence and 

persistence (Kareiva 1990). Incorporating other layers of biological realism and 

examining how extinction patterns are impacted may reveal the relative importance of 

diet variation, spatial heterogeneity and metapopulation dynamics in understanding 

the role of the intrinsic dynamics of large-mammal assemblages in the LQE. 

Taken together, our results allowed us to test the plausibility of some hypotheses 

on the mechanisms underlying the LQE at the level of local assemblages. 

Assessments like ours, aiming to understand how the intrinsic dynamics of local 

assemblages in the past could have contributed to their collapse are crucial before 

extrapolating to understand the mechanisms driving past and on-going extinctions at 

larger scales. 
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APPENDICES 

 

Table S1. Dynamics of a Pleistocene large-mammal assemblage under different 

scenarios. Average values (± standard deviation) for the probability of coexistence 

and number of extinct species in 103 simulations. C measures the accuracy in 

predicting LQE extinction patterns under each scenario. 

 

Climate effect on niche width 

Proportional increase 

in niche widths Coexistence Extinctions C 

0.1 0.47 ± 0.16 3.22 ± 1.48 0.33 

0.2 0.48 ± 0.19 3.11 ± 1.51 0.33 

0.3 0.44 ± 0.17 3.39 ± 1.56 0.33 

0.4 0.43 ± 0.17 3.48 ± 1.55 0.33 

0.5 0.41 ± 0.17 3.70 ± 1.67 0.32 

0.6 0.39 ± 0.17 3.92 ± 1.82 0.32 

0.7 0.36 ± 0.15 4.34 ± 1.84 0.31 

0.8 0.35 ± 0.14 4.53 ± 2.02 0.31 

0.9 0.32 ± 0.13 5.03 ± 2.09 0.31 

1 0.30 ± 0.11 5.25 ± 2.06 0.31 

1.1 0.29 ± 0.11 5.70 ± 2.10 0.31 

1.2 0.27 ± 0.09 6.06 ± 2.06 0.31 
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1.3 0.26 ± 0.07 6.56 ± 1.92 0.31 

1.4 0.24 ± 0.05 6.87 ± 1.77 0.31 

1.5 0.24 ± 0.06 7.22 ± 1.61 0.31 

1.6 0.23 ± 0.04 7.44 ± 1.42 0.31 

1.7 0.23 ± 0.03 7.67 ± 1.26 0.31 

1.8 0.22 ± 0.03 7.81 ± 1.16 0.31 

1.9 0.22 ± 0.03 7.96 ± 0.91 0.32 

2 0.22 ± 0.03 8.12 ± 0.72 0.32 

2.1 0.22 ± 0.03 8.13 ± 0.81 0.32 

2.2 0.22 ± 0.02 8.18 ± 0.66 0.32 

2.3 0.21 ± 0.02 8.25 ± 0.65 0.32 

2.4 0.21 ± 0.02 8.32 ± 0.62 0.32 

2.5 0.21 ± 0.02 8.40 ± 0.64 0.32 

2.6 0.21 ± 0.02 8.45 ± 0.70 0.32 

2.7 0.21 ± 0.02 8.59 ± 0.77 0.33 

2.8 0.21 ± 0.02 8.69 ± 0.83 0.33 

2.9 0.21 ± 0.02 8.87 ± 0.95 0.34 

3 0.21 ± 0.02 9.03 ± 1.06 0.35 

Climate effect on carrying capacity (K) 

Proportional decrease 

in K Coexistence Extinctions C 

0.1 0.43 ± 0.15 3.43 ± 1.51 0.32 

0.2 0.37 ± 0.12 4.02 ± 1.81 0.32 

0.3 0.31 ± 0.09 5.15 ± 2.17 0.31 

0.4 0.26 ± 0.05 6.97 ± 1.77 0.31 

0.5 0.24 ± 0.02 7.97 ± 0.53 0.31 

0.6 0.23 ± 0.02 8.18 ± 0.59 0.32 

0.7 0.21 ± 0.03 8.93 ± 1.24 0.34 
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0.8 0.18 ± 0.01 11.49 ± 1.44 0.43 

0.9 0.16 ± 0.01 14.71 ± 1.18 0.50 

Effect of adding humans 

Optimum body mass of 

human prey (kg) Coexistence Extinctions C 

17.5 0.32 ± 0.09 4.63 ± 1.67 0.29 

35 0.21 ± 0.04 10.55 ± 3.47 0.31 

70 0.16 ± 0.03 15.89 ± 3.55 0.37 

140 0.14 ± 0.01 18.59 ± 1.63 0.43 

280 0.14 ± 0.02 18.54 ± 1.67 0.44 

560 0.14 ± 0.02 17.15 ± 2.76 0.49 

1120 0.17 ± 0.07 14.03 ± 4.30 0.58 

2240 0.26 ± 0.20 9.26 ± 5.26 0.61 

4480 0.31 ± 0.16 6.01 ± 3.99 0.52 
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Figure S1. Number of extinctions under different scenarios. A shows the number of 

extinctions in simulations where we increased the niche width of prey species, but 

competition was twice as large as that in baseline simulations. B shows how the number of 

extinctions varies for simulations with humans targeting prey of different sizes. Colors 

portray the density of points considering 103 simulations under each scenario. The gray dotted 

line shows the average number of extinctions in 103 baseline simulations. 
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Figure S2. Probability of extinction of each species when combining the simulated effect of 

climate change (increasing niche widths) and human arrival. Each panel depicts how the 

probability of extinction varies with increasing niche width under each scenario of human 

hunting behavior (optimum prey size ranging from 17.5 kg to 4480 kg; above each panel). † 

signals extinct species. 
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RECONSTRUCTING PAST ECOLOGICAL NETWORKS: THE 

RECONFIGURATION OF SEED-DISPERSAL INTERACTIONS AFTER 

MEGAFAUNAL EXTINCTION 

 

Mathias M. Pires, Mauro Galetti, Camila I. Donatti, Marco A. Pizo, Rodolfo 

Dirzo & Paulo R. Guimarães Jr. 

 

Abstract. The worldwide extinction of Pleistocene megafauna impacted ecological 

communities, affecting keystone ecological processes such as seed dispersal by 

vertebrates. Seed-dispersal interactions form networks, the structures of which have 

implications for community dynamics. Here, we combined ecological and 

paleontological data and network analyses to investigate how the structure of a 

species-rich seed-dispersal network in Central Brazil could have changed from the 

Pleistocene to the present and examine the possible consequences of such changes. 

Our results suggest the Pleistocene seed-dispersal network would be organized into 

modules similarly to the modern network. The episode of megafaunal extinction and 

the arrival of humans changed how seed dispersers were distributed among modules. 

The introduction of livestock partially restored the original network organization, but 

now introduced species and smaller native mammals are key components for the 

structure of the modern seed-dispersal network. We hypothesize the ongoing 

extinction of key large vertebrates will lead to the omnipresence of rearranged 

ecological networks most certainly affecting ecological processes. 
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INTRODUCTION 

The species in a community form a network of interactions whose structure has 

implications for the ecological and evolutionary dynamics of the populations (Dunne 

2006). Although snapshots in time are required to assess the structure of the 

community, ecological communities are constantly losing and gaining species through 

extinctions and invasions, thus network structure is continuously changing (Petanidou 

et al. 2008). Insight into how changes in species composition induce changes in the 

structure of ecological networks has been provided by studies focusing on the 

consequences of extinctions and the impact of species invasions (Memmott et al. 

2004; Vilà et al. 2009). Extinction simulations have shown that food webs and 

mutualistic networks are highly robust to random extinctions (Dunne et al. 2002; 

Memmott et al. 2004). Similarly, studies on the effects of species invasions and on the 

temporal reconfigurations of ecological networks, in which species were both lost and 

gained over time, agree that the overall structure of networks is robust to changes in 

species composition (Petanidou et al. 2008; Vilà et al. 2009). Nonetheless, when a 

great number of species is lost, major changes in network structure and, consequently 

in network dynamics are expected. 

The disruption of ecological networks is the most likely outcome of large 

extinction events in which many species are removed from the community within a 

relatively short time. A representative example of a large extinction event affecting 

community structure and function is the worldwide extinction of mammalian 

megafauna (body mass ≥ 44 kg) close to the Pleistocene-Holocene transition (the late 

Quaternary extinction, LQE; Martin & Klein 1984). Only in South America 

approximately 50 genera of large-bodied mammals went extinct (Koch & Barnosky 

2006; Barnosky & Lindsey 2010). Although many studies have focused on the causes 
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underlying the LQE (Koch & Barnosky 2006), the consequences of megafaunal 

extinctions have received considerably less attention (Galetti 2004; Rule et al. 2012). 

There is compelling evidence that the large mammals that died out in the LQE 

were key species in the communities of which they were part (Martin & Klein 1984; 

Janzen 1986; Gill et al. 2009; Johnson 2009). Evidence supporting this view is 

represented by seed-dispersal anachronisms, whereby many extant plant species show 

traits that are best explained as having been shaped by interactions with extinct 

megafauna (Janzen & Martin 1982; Donatti et al. 2007; Guimarães et al. 2008). 

Indeed, anachronistic seed-dispersal systems are thought to be the result of the 

disruption of the seed-dispersal services formerly provided by megafauna due to the 

LQE (Janzen & Martin 1982; Guimarães et al. 2008). Those plant species probably 

suffered some degree of seed dispersal limitation after the extinction of their large 

seed dispersers (Janzen 1986), currently relying upon seed dispersal by scatter-

hoarding rodents, surrogate megafauna (e.g., livestock), runoff, flooding, gravity, and 

human-mediated dispersal (Guimarães et al. 2008; Jansen et al. 2012). The study of 

how seed dispersal systems were affected by megafaunal extinction may allow us to 

understand how on-going defaunation will affect ecological processes. 

Here, we examine the potential changes caused by the extinction of megafauna 

and following key historical events, such as the arrival of humans in the Americas and 

the introduction of exotic species (livestock and feral pigs) on a seed-dispersal 

network. We performed addition and removal simulations of extinct Pleistocene 

mammals, humans, and livestock in one of the most diverse seed-dispersal networks 

recorded to date, which includes species from major taxonomic groups of seed 

dispersers – mammals, birds, fish and reptiles – and the plants they interact with in the 

Pantanal (Donatti et al. 2011). First, we compiled from the literature a list of 
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mammalian megafauna likely to occur in the Pantanal during the Pleistocene. Second, 

we combined data on the feeding ecology of Pleistocene megafauna (e.g., MacFadden 

& Shockey 1997; MacFadden 2000) and information on seed-dispersal anachronisms 

(Guimarães et al. 2008) to outline the putative interactions among the extinct 

megafauna and fleshy-fruited plants. Finally, we built a potential network time series 

from the end of the Pleistocene to the present day and used metrics that describe the 

network organization to evaluate the changes in the patterns of interactions between 

seed dispersers and plants over time. Because the LQE represented a major change in 

the composition of mammalian assemblages (Martin & Klein 1984), we expected that 

network organization in the Pleistocene would be substantially different and would 

have suffered a great reconfiguration after most large-bodied mammals became 

extinct. To our knowledge, this is the first attempt to reconstruct how a large 

extinction event and human arrival reconfigures an ecological network. 

 

METHODS 

Study site 

The seed-dispersal interactions were surveyed in two neighboring locations in the 

Brazilian Pantanal: Rio Negro (19°34’15’’ S 56°14’43’’ W) and Barranco Alto farms 

(19°34’40’’ S 56°09’08’’ W), covering 7500 ha and 11 000 ha, respectively (Donatti 

et al. 2011). The vegetation in these locations is characterized by gallery forests, 

savannas, and semi-deciduous forests. As in all the South America lowlands (Bush et 

al. 2011), paleoclimatic studies suggest that the Pantanal experienced climatic 

fluctuations during the Late Pleistocene and Holocene (Assine & Soares 2004) that 

resulted in vegetation shifts (Whitney et al. 2011). Although such changes most 

certainly affected plant communities, palynological data shows that by 19.5 kyr BP, 
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when tropical forest communities began to expand following the Late Glacial 

Maximum (LGM), most plant taxa represented in the modern pollen assemblages 

were already present in the Pantanal region (Whitney et al. 2011). Therefore, even 

considering that the relative plant abundances likely changed during the interval 

considered here, changes in species occurrence in this particular region seem to have 

been less pronounced. For this reason, in our baseline analysis, we assume the plant 

taxa were the same throughout the time series. However, we also performed 

simulations to explore the effects of changes in plant composition on the network 

organization (see below). 

 

Pleistocene mammals 

Several sites containing fossils of Pleistocene mammals can be found within 200 

km of the study sites (Scheffler et al. 2010). We assume that the species found in 

those sites could also be found in the study sites due to the high mobility of 

megafaunal species and the vegetational, climatic and topographic homogeneity of the 

Pantanal floodplain. Fossil data for extinct megafaunal assemblages originate from 

limestone caves of the Serra da Bodoquena (19°48’-22°16’S; 56°32’-57°24’W), 

Brazil (Salles et al. 2006; Scheffler et al. 2010). Although dates for the fossils are 

unavailable, fossils are from taxa that survived into late Pleistocene (Barnosky & 

Lindsey 2010). The estimated body masses were obtained from literature (Smith et al. 

2003; Table S1). Dietary data were compiled from feeding ecology studies of each 

taxon (Table S1). When estimated body mass or diet of a given species was not 

available, we used information on closely related taxa. 

Archeological evidence suggests that fruits were also important in the diet of 

paleoindians in the Neotropics (Roosevelt et al. 1996). In fact, seed dispersal by 
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humans that live in traditional communities close to forested areas seems to be 

important for several plant species in the tropical region (Guix 2009). To incorporate 

the role of paleoindians as seed dispersers, we assigned interactions to humans while 

assuming that the fruits used were the same as those used currently by the indigenous 

people that inhabit the Pantanal region (Pott et al. 2011). This assumption is 

supported by the fact that fruits of several species have evidence of long-term use by 

indigenous people, such as some palm fruits. 

 

The network time series 

We used the seed-dispersal network sampled by Donatti et al. (2011). This 

dataset contains only seed-dispersal interactions; fruit consumption by seed predators 

or non-disperser pulp consumers was not included in the assembly of the network. We 

included seed dispersal by introduced species, such as cattle and feral pigs, which 

interact with several plant species in the area (Galetti, M. unp. data; Donatti et al. 

2007). 

To evaluate the possible structural differences in the Pantanal seed-dispersal 

network over time, we built a potential network time series from the Pleistocene to the 

present. We modeled four key periods in network reorganization: (i) the plant-

frugivore network in the late Pleistocene, after the expansion of tropical forest 

communities that followed the LGM (Whitney et al. 2011); (ii) the early Holocene 

network in which most megafaunal species died out and paleoindians already 

inhabited the region; (iii) the Colonial period (1800’s), with the onset of livestock 

production in the Pantanal region (Abreu et al. 2010), with cattle, pigs, and also 

indigenous people acting as dispersers; and (iv) the modern period in which humans 

are no longer relevant dispersers due to the demise of local human communities but 
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cattle and pigs are part of the seed-disperser assemblage (Fig. 1). For simplicity, we 

assume that the extant species interacted with the same plant species in the past, an 

assumption supported by some degree of niche conservatism in the identity of 

mutualistic partners observed in seed-dispersal networks (Rezende et al. 2007). 

Although we included extant grazers (e.g., cattle) in some of the seed-dispersal 

networks, to reconstruct the Pleistocene network, we opted for a conservative 

approach and included only those mammals with browsing and mixed diets, i.e., those 

taxa more likely to have fruits as an important component on their diets (MacFadden 

& Shockey 1997; Table S1). By doing so we attempted to avoid overestimating the 

role of Pleistocene megafauna. To define the interactions that megafaunal species 

potentially established in seed-dispersal networks, we identified fruits showing 

characteristics that fit the megafaunal syndrome, i.e., similar to fruits that are 

dispersed by the extant megafauna in Asia and Africa (Guimarães et al. 2008). 

Megafaunal fruits are characterized by a large size (diameter >4 cm) and contain 

extremely large (diameter >2 cm) individual seeds (type I fruits), or by extremely 

large fruits (diameter >10 cm) that contain a large number of moderate- or small-sized 

seeds (type II fruits; Guimarães et al. 2008). We assume that the extant plant species 

with fruits that possess those characteristics interacted more frequently with the 

megafauna in the past than did other extant plant taxa. Although megafauna may have 

interacted with other types of fruits (Janzen & Martin 1982; Janzen 1984), by 

restricting megafaunal interactions to those plants and fitting an operational and 

conservative definition of megafaunal fruits (Guimarães et al. 2008), we avoid 

overestimating the structural effects of megafaunal extinction. However, as restricting 

megafaunal interactions to a subset of plant species certainly affects the network 

topology, we performed additional simulations to test how our results are affected if 
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we consider the consumption of non-megafaunal fruits by the extinct megafauna (see 

below). 

 

Network structure 

For each of the reconstructed networks, we analyzed the two most commonly 

explored structural patterns of mutualistic networks: nestedness (Bascompte et al. 

2003) and modularity (Olesen et al. 2007). Nestedness occurs if the interacting 

assemblage of a species is a subset of the interacting assemblage of species with more 

interactions (Bascompte et al. 2003). We used the index NODF (Almeida-Neto et al. 

2008) to compute the degree of nestedness of each network. NODF ranges from 0, 

when the matrix is non-nested, to 100, when the matrix is perfectly nested. The 

modules within an ecological network are subsets of species that are more connected 

to each other than to other species in the network (Olesen et al. 2007). We detected 

modules using the simulated annealing algorithm to maximize the index of modularity 

M (Guimerà & Amaral 2005). M equals 0 if species are placed at random into 

modules and approaches 1 if there are few between-module interactions. Although M 

does not take into account the fact that seed-dispersal networks are two-mode 

networks, it is also suited to estimate modularity of two-mode networks (Olesen et al. 

2007). Moreover, because the theoretical model we used to test the significance of M 

(see below) also yields two-mode networks, any difference in M among real and 

theoretical networks cannot be related to the two-mode structure (Pires et al. 2011). 

To verify the significance of the empirical degrees of nestedness and modularity 

of each network, we used a null model approach. We generated 103 theoretical 

networks in which the probability that an animal species, i, interacts with a plant 

species, j, is 
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in which ki is the number of plants that interact with the animal species i, kj is the 

number of animal species that interact with plant species j, P is the plant species 

richness and A is the animal species richness (Bascompte et al. 2003). NODF and M 

were then computed for each theoretical network to generate null distributions of 

NODF and M values. 

We also evaluated how the role of a species in the network structure would differ 

between Pleistocene and modern networks. We assigned a role for each species in the 

network based on the number of its interactions with species within its own module 

(z) and on how evenly distributed its interactions are across species in different 

modules (c; Guimerà & Amaral 2005). Species with low z and low c values are 

peripheral species interacting with species within their own module. Species with 

either a high z or c were generalists and either (1) module hubs, i.e., highly connected 

within their own module (high z and low c), or (2) connectors, those species that link 

modules (low z and high c; Olesen et al. 2007). 

 

Megafauna feeding on non-megafaunal fruits 

In our baseline analysis we assumed that megafauna would interact with the same 

subset of available fruits, which results in total overlap of interaction patterns. This 

overlap may impact network structure in non-obvious ways. For instance, megafaunal 

species could form an additional module with the megafaunal fruits, increasing 

modularity. Alternatively, if megafaunal fruits are in different modules in the modern 

network, adding several species with a similar interaction pattern could merge such 

modules, reducing modularity. Nevertheless, it is unlikely that all megafaunal species 
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fed on the exactly same set of species. Thus, we performed an analysis to test if the 

degree of modularity and module assignment in the Pleistocene network (time period 

I) would be different if megafaunal species varied in their fruit consumption. In this 

second set of simulations we assume megafaunal species would feed, in addition to 

megafaunal fruits, on a variable set of non-megafaunal fruit species (Appendix S1). 

 

Effects of shifts in plant composition 

Even though palynological data support our assumption that the floristic 

composition in the region was reasonably similar between the Pleistocene and today 

(see Study site), we performed an additional analysis to test whether our results were 

robust when this assumption was relaxed (Appendix S2). We performed random 

removals of the plants in the Pleistocene seed-dispersal network and computed 

modularity for each network registering the module each seed disperser was assigned 

to. If the modular organization were highly sensitive to changes in the plant 

composition we should expect that removing any small proportion of plants would 

result in a very different modular organization 

 

RESULTS 

We identified nine species of Pleistocene large herbivores that lived close to the 

area assessed by Donatti et al. (2011). Five of these nine species were mixed-feeders 

or browsers (Table S1) and thus more likely to be relevant seed dispersers. Ten of the 

48 plant species in the modern network (20.8%) are plants with fruits that fit the 

megafaunal seed-dispersal syndrome (Table S2). 

All the networks in the time series were both more nested and more modular than 

expected by the null model (Table 1). However, the number and composition of the 
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modules changed across networks (Table S2). The Pleistocene network was best 

characterized by five modules (Fig. 1). Two modules are dominated by bird species, 

with large birds, such as toucans and guans, being more frequent in the first bird-

dominated module (average body mass ± SD = 0.24 ± 0.07 kg) and small birds, 

mainly passerine birds, in the second (0.06 ± 0.01 kg). Mammals also dominate two 

modules: one of these mammal-dominated modules included mainly large mammals 

(1.6×103± 2.2×103 kg), whereas small mammals dominated the second (35.19 ± 69.09 

kg). The module dominated by large mammals would include mainly the Pleistocene 

megafauna and one small mammal, the agouti (genus Dasyprocta), scatter-hoarding 

rodents that feed upon and disperse large seeds (Jansen et al. 2012). The second 

mammal-dominated module would include mammals that are small-bodied compared 

to the Pleistocene megafauna, such as peccaries (Pecari and Tayassu spp.) and the 

coati (Nasua nasua). If we relax the assumption that megafauna only interacted with 

megafauna-dependent fruits, the predicted degree of modularity of the Pleistocene 

networks should be smaller (M = 0.368 ± 0.006). Nevertheless, the module 

organization of the two mammal-dominated modules is consistent even when 

considering that megafauna would have interacted with several other plant species 

that do not fit the megafaunal dispersal syndrome (Appendix S1 and Table S3). The 

two mammal-dominated modules and the module dominated by large birds were also 

robust after relaxing the assumption that the Pleistocene and modern plant 

assemblages were similar (Appendix S2 and Fig. S1). 
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Table 1. Nestedness (NODF) and modularity (M) of the seed dispersal networks 

representing each time period in the time series and the average nestedness (NODFR) 

and modularity (MR), ± standard deviation, for their randomized counterparts. 

Time period 

 I [Megafauna] II [Humans] III [Livestock] IV [Modern] 

NODF 27.45 31.88 32.09 29.46 

NODFR 19.73 ± 1.40 20.50 ± 1.18 25.34 ± 1.21 20.59 ± 1.12 

M 0.45 0.39 0.37 0.39 

MR 0.33 ± 0.01 0.33 ± 0.01 0.31 ± 0.01 0.33 ± 0.01 

 

In the second major period, in the early Holocene, after the Pleistocene 

megafaunal extinction, paleoindians, by interacting with a considerable proportion of 

the plant species, would have changed the module organization of the network, 

merging both mammal-dominated modules into a single module (Fig. 1). Conversely, 

the arrival of livestock (pigs and cows) in the third period (Colonial period) would 

have restored the large/small mammal modules. Finally, in the modern time period, a 

time when humans are no longer relevant as dispersers, but cows and pigs still act as 

seed dispersers, the network is, again, best characterized by the five modules (Fig. 1). 
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Figure 1. Seed-dispersal networks representing each time period in the network time 

series. Nodes represent animals (circles) and plants (diamonds) and the size of a node 

is proportional to its number of interactions. Colors identify the modules each species 

was assigned to. Green and blue modules are dominated by large and small birds, 

respectively; red and yellow modules are dominated by large and small mammals; the 

purple module is defined by a fish species (Piaractus mesopotamicus). In all networks 

species occupy the same position defined for the modern network, even when 

assigned to different modules, to allow comparisons. When the color of a given node 

changes from one network to the other, that species was assigned to different modules 

in different periods. Representative species within the module dominated by large 

mammals are represented by illustrations to highlight the changes across time periods. 

See Table S2 for the species composition of each module. 

Time Period I!
[Megafauna]!

Time Period IV!
[Modern]!

Time Period III!
[Livestock]!

Time Period II!
[Humans]!
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The changes in mammal-dominated modules across the time series had 

consequences for the interaction patterns of the plants in those modules. In the late 

Pleistocene, the members of the large mammal module would be mainly the 

Pleistocene megafaunal species weighing in the order of 103 kg. In contrast, most 

extant mammals that comprise the module in the modern network, such as the tapir 

(Tapirus terrestris), black howler (Alouatta caraya), and coati (Nasua nasua), would 

be, functionally, small mammals in the Pleistocene network (Fig. 1 and Table S2). As 

a result, if we compare the two extremes of the time series, the Pleistocene and 

modern networks, major differences with regard to the distribution of the body mass 

of dispersers are noted. In the Pleistocene network, plants within the large mammal-

dominated module would have dispersers that are, on average, much larger than in the 

modern network (Fig. 2). However, as the network diminished to its current size, so 

did the dispersers, and the plants in both mammal-dominated modules now have seed 

dispersers of a similar size (Fig. 2). 
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Figure 2. Average body size of dispersers of each plant species in the Pleistocene and 

modern seed dispersal networks. Colors indicate the module each plant species was 

assigned: red = large mammal-dominated module, yellow = small mammal-

dominated module, green = large bird-dominated module, and blue = small bird-

dominated model. 

 

Because of the modular organization, the effects of megafauna loss mainly 

influenced the plant species within the mammal-dominated modules, whereas the 

average size of dispersers of plants in the bird-dominated modules would be similar 

across both periods (Fig. 2). This is also true for the functional roles of species. We 

found that nearly all of the species that differ in their contribution to the connections 

within and between modules were species assigned to the mammal-dominated 

modules in the modern network (Fig. 3). Most of these species, such as the crab-

eating fox (Cerdocyon thous), the red brocket deer (Mazama americana), and the 

tapir (Tapirus terrestris), have larger c-values in the modern network, indicating that 
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they are now more relevant as module connectors and are thus more central in the 

modern network, than in the Pleistocene network. Conversely, other mammal species, 

such as the white-lipped peccary (Tayassu pecari), the collared peccary (Pecari 

tajacu) and the agouti (Dasyprocta sp.), have larger z-values in the modern network, 

indicating they are more central to their module in the modern period than they would 

have been in the Pleistocene (Fig. 3). 

 

Figure 3. Network roles of extant species in the modern and Pleistocene seed-

dispersal networks. The metric c measures the inter-module connectivity, and z 

measures intra-module connectivity. Colors indicate the modules each species is 

assigned to in the modern network (following the color scheme of figures 1 and 2). 

Points that fall outside the 1/1 line represent those species whose role changed from 

the Pleistocene to the modern network. 

 

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Pleistocene c−value

M
od

er
n 

c−
va

lu
e

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Pleistocene z−value

M
od

er
n 

z−
va

lu
e



Mathias M. Pires  Capítulo 6 

! 155!

DISCUSSION 

Many of the large mammals that became extinct in South America during the 

Pleistocene were also potential seed dispersers of extant plant species (Janzen & 

Martin 1982; Guimarães et al. 2008). The approach we used here, albeit conservative, 

suggests that the demise of the megafauna could have had important consequences for 

the organization of the seed-dispersal network in the Pantanal region. The Pleistocene 

network, which was most likely characterized by two modules of mammalian seed 

dispersers, was reconfigured after the loss of most of the large-bodied mammals in the 

LQE. Acting as generalist foragers, humans would have rearranged the seed-dispersal 

network in a novel way, merging together the two modules dominated by mammals. 

The organization of the Pleistocene network would have been partially restored after 

the arrival of pigs and cattle, which consume the fruits, potentially dispersing the 

seeds, of many of the plants presumably dispersed by Pleistocene megafauna (Janzen 

& Martin 1982; Donatti et al. 2011). 

The introduction of surrogate seed dispersers, that is, extant species ecologically 

equivalent to the extinct species ("rewilding"; Donlan et al. 2006), has been suggested 

as a management tool to locally restore ecological and evolutionary processes in those 

areas where large vertebrates died out (Donlan et al. 2006; Griffiths et al. 2011). 

Although our results suggest livestock could have partially restored the structural 

properties of the Pantanal seed-dispersal network, whether or not livestock is able to 

compensate for the loss of extinct megafauna within the community remains to be 

tested. 

Pleistocene and modern networks with surrogate Pleistocene dispersers would 

still be very dissimilar in at least one key feature: the body size range of the extant 

seed dispersers is truncated at the large end of the size spectrum. This difference in 
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the body sizes of seed dispersers has a number of implications for seed dispersal. 

Large frugivores are the main seed dispersers of seeds that are too large for smaller 

mammals and birds (Janzen & Martin 1982; Hansen & Galetti 2009), and are more 

likely to promote long-distance dispersal, connecting plant populations across 

fragmented landscapes (Nathan & Muller-Landau 2000; Fragoso et al. 2003). Also, 

because large mammals ingest more seeds per feeding event, seeds are more likely to 

be dispersed in clumps, potentially affecting seed germination success and the spatial 

distribution of the adult plants (Fragoso et al. 2003). Therefore, the extinction of 

megafauna is likely to have affected population dynamics, the patterns of spatial 

distribution and the genetic structure of large-seeded plants in ways that livestock 

may not compensate. 

Our results also indicate how far-reaching the impacts of megafaunal extinction, 

for other plants and seed dispersers, could have been. In a modular system, species are 

tightly connected to other species in the same module but loosely connected to the 

rest of the network. As a result, the direct effects of structural changes are often 

localized, directly impacting the species within certain modules instead of spreading 

to the entire network (Dunne 2006). As seed dispersal and the recruitment of plants 

that relied on megafaunal species decreased, however, those plants that are dispersed 

by other primary seed dispersers, such as birds, and by secondary dispersers, such as 

rodents, would face lower competition and higher probabilities of recruitment, leading 

to a positive indirect effect of the megafaunal extinction on plant species in other 

modules of the network. Palynological data suggest some fruiting tree species 

declined in abundance, whereas Cyperaceae and Poaceae increased, in the Pantanal 

region during late Pleistocene (Whitney et al. 2011). Although this vegetation shift is 

likely related to changes in climate conditions, the loss of megafauna might have 
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contributed. A similar phenomenon has been reported for modern-day communities in 

South and Central America, where hunting has reduced the densities of large- and 

medium-sized seed dispersers, leading to an increase in the richness and densities of 

plants that are dispersed by small, non-game animals and by abiotic means (Wright et 

al. 2007). As better data on the composition of the plant communities in the past is 

obtained from the fossil record, future studies should be able to test whether a shift in 

plant composition followed the Pleistocene megafaunal extinction, thus contributing 

to our understanding of the large-scale consequences of defaunation both in the past 

and in modern times. 

A further consequence of the LQE was the increase in the importance of extant 

species across time. The megafaunal plants now rely on dispersal by smaller species, 

such as the agouti (Dasyprocta spp.; Jansen et al. 2012), and only on a few large 

mammals, such as feral pigs and the tapir (Donatti et al. 2011). Our results suggest 

species such as the tapir, brocket deer, and peccaries would have had a more 

peripheral role in the seed-dispersal network during the Pleistocene when compared to 

modern communities. The same seems to be taking place in modern communities. As 

populations of Asian elephants and rhinos decline, large-seeded plants dispersed by 

them have to rely on smaller species such as the Asian tapir, which seems to be far 

less effective as seed disperser of large-seeded plants (Campos-Arceiz et al. 2012). 

Our knowledge of the ecology of modern communities is biased toward systems 

that are already largely defaunated (Corlett 2013), but the roles that species play in the 

community could have been different in the past. The few extant large vertebrates in 

the tropical ecosystems are the last option for the seed dispersal of plant species that 

have lost a significant proportion of their interaction partners. The ongoing or future 
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consequences of local extinctions of such large-bodied seed dispersers are likely to 

have deleterious effects for the plant species that now rely on them. 
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APPENDICES 

 

Appendix S1. Sensitivity of modules to the interaction patterns of Pleistocene 

megafauna 

We performed an additional analysis to test whether the module organization we 

found for the Pleistocene network was sensitive to the way we assigned interactions to 

megafauna. To do that we relaxed our conservative assumption that Pleistocene 

megafauna only interacted with highly dependent megafauna fruits. Because in the 

modern network there is a strong positive relationship (F40,1 = 73.61, R2 = 0.64; p < 

0.001) between the number of interactions, k, of seed-dispersers and average body 

mass, m (Donatti et al. 2011), we first used the equation describing this linear 

relationship, k = 8.27 + 1.71*ln(m), to estimate the expected number of interactions 

for each megafauna species based on body mass. Most of those species weighted 

more than 103 kg and so, according to the k/m relationship, they should have around 

20 interactions. Because only 10 out of the 45 plant species were identified as 

potential megafaunal plants, we generated an ensemble of 100 potential Pleistocene 
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networks in which all megafaunal species interacted with the plants with megafaunal 

fruits, but their remaining interactions were randomly assigned to other plant species. 

By doing so, we randomly distributed more than 50% of the interactions of each 

megafaunal species. We then computed modularity for each network and registered 

the modules each seed disperser was assigned to. All reconstructed networks had 

three or four modules with an average modularity (±SD) of 0.368 (± 0.006). For all 

networks a module dominated by small mammals and one dominated by large 

mammals was identified. Even randomly distributing more than a half of the 

interactions of megafaunal species they were consistently assigned to the same 

module (Table S3). Approximately half of the networks also had two modules 

dominated by birds, whereas for the other half the two bird-modules were merged into 

one. However, when two bird-dominated modules were identified, small birds were 

consistently assigned to one module and larger birds to the other (Table S3). In Table 

S3 we report the frequency with which a given species was assigned to each module. 

These results show that even though, as expected, the degree of modularity is 

sensitive to the way interactions are assigned to megafauna, the module organization 

found for our more conservative assignment of megafaunal interactions, which is 

presented the main text, is robust. 

 
Appendix S2. Sensitivity of modules to changes in vegetation 

Although palynological data suggest the floristic composition during late 

Pleistocene in this region was similar to today’s composition (Whitney et al. 2011), 

we performed an additional analysis to test whether the module assignment pattern we 

found for the Pleistocene network was robust to changes in the plant composition. We 

performed random removals of 10%, 20%, 30%,…90% (100 simulations each) of the 

plants in the Pleistocene seed-dispersal network, computed modularity for each 
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network, and registered the module each seed disperser was assigned to. If the 

modular organization were highly sensitive to changes in the plant composition we 

should expect that removing any small proportion of plants would result in a very 

different modular organization. Our analysis suggests the module assignment pattern 

is highly robust. Removing plants sometimes resulted in seed dispersers loosing all 

their interaction patterns and thus not being assigned to any module. However, when 

assigned to a module, seed dispersers were often assigned to the same modules they 

were assigned to in the network containing all plant species. As in the analysis testing 

the effects of adding more interactions to Pleistocene megafauna (Appendix S1), the 

module dominated by small birds was indentified in approximately 50% of the 

simulations of each scenario. Yet, whenever two bird-dominated modules were 

identified, those species originally assigned to the module dominated by small birds 

were consistently grouped together in the same module. The modules dominated by 

large mammals, small mammals and large birds were robust to changes in the plant 

assemblage. Substantial changes in the module assignment patterns are only found 

after removing more than 50% of the plant species (Fig. S1), when, for instance, small 

mammals that were consistently grouped together are eventually assigned to the 

module originally dominated by small birds. 
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Table S1. Extinct megafaunal species, with estimated body mass and diet 

information, found in paleontological sites in Serra da Bodoquena, Brazil. Asterisks 

indicate the species that were included in the Pleistocene seed dispersal network. 

Taxon Body Mass (kg) Diet 

Artiodactyla   

Palaeolama major* 1,000 Browser (MacFadden and Shockey 

1997) 

Cingulata   

Glyptodon sp. 1,430 Grazer to mixed-feeder 

(MacFadden 2000) 

Pampatherium sp. 150 Grazer (de Iuliis, Bargo and 

Vizcaíno 2000) 

Litopterna   

Xenorhinotherium sp.* 980 Browser (MacFadden and Shockey 

1997) 

Notoungulata   

Toxodon platensis 1,600 Grazer (Macfadden et al. 1994) 

Perissodactyla   

Equus sp. 350 Grazer (Macfadden et al. 1994) 

Pilosa   

Eremotherium laurillardi* 800 Browser (Bargo 2001) 

Glossotherium lettsomi* 1,000 Mixed-feeder (Bargo 2001) 

Proboscidea   

Stegomastodon waringi* 6,000 Mixed-feeder to browser (Prado et 

al. 2005) 
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Table S2. Module assignment of each species within the seed-dispersal network for 

each time period. LM = large mammal-dominated module; SM = small mammal-

dominated module; LB = large bird dominated-module; SB = small bird-dominated 

module; F = fish module. Pleistocene megafaunal species and megafaunal fruits are 

identified with an asterisk (*) 

Time period 

 I [Pleistocene] II [Humans] III [Livestock] IV [Modern] 
Animals     

Casiornis rufa SB SB LB SB 
Columbina talpacoti LB LB LB LB 
Crax fasciolata SM SM SM SM 
Cyanocorax chrysops SB SB LB SB 
Cyanocorax 
cyanomelas LB LB LB LB 
Gnorimopsar chopi LB LB LB LB 
Guira guira LB LB LB LB 
Icterus croconotus SB SB LB SB 
Myiarchus ferox SB SB LB SB 
Myiodynastes 
maculatus SB SB LB SB 
Ortalis canicollis LB LB LB LB 
Paroaria coronata SB SB LB SB 
Pipile jacutinga LB LB LB LB 
Pitangus sulphuratus SB SB LB SB 
Psarocolius 
decumanus LB LB LB LB 
Pteroglossus 
castanotis LB LB LB LB 
Ramphastos toco LB LB LB LB 
Ramphocelus carbo LB LB LB LB 
Rhea americana LM F LB LM 
Saltator coerulescens SB SB LB SB 
Tachyphonus rufus LB LB LB LB 
Thraupis palmarum SB SB LB SB 
Thraupis sayaca SB SB LB SB 
Trogon curucui SB SB LB SB 
Turdus rufiventris SB SB LB SB 
Turdus sp. LB LB LB LB 
Tyrannus 
melancholicus SB SB LB SB 
Tityra cayana SB SB LB SB 
Alouatta caraya SM LM LM LM 
Cerdocyon thous SM LM SM SM 
Dasyprocta sp. LM LM SM SM 
Mazama americana SM LM SM SM 
Nasua nasua SM LM LM LM 
Pecari tajacu SM LM SM SM 
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Procyon cancrivorus SM LM LM LM 
Tapirus terrestris SM LM LM LM 
Tayassu pecari SM LM SM SM 
Geochelone 
carbonaria SM LM SM SM 
Piaractus 
mesopotamicus F F F F 
Artibeus sp. LB F SM SM 
Sus scrofa — — LM LM 
Cattle — — LM LM 
Humans — LM SM — 
Eremotherium 
laurillardi* LM — — — 
Stegomastodon 
waringi* LM — — — 
Glossotherium 
lettsomi* LM — — — 
Xenorhinotherium 
sp.* LM — — — 
Palaeolama major* LM — — — 

     
Plants     

Acrocomia aculeata 
(Arecaceae)* LM LM LM LM 
Agonandra 
brasiliensis 
(Opiliaceae) SM LM LM LM 
Alibertia sessilis 
(Rubiaceae) SM LM SM SM 
Annona dioica 
(Annonaceae) SM LM SM SM 
Attalea phalerata 
(Arecaceae)* LM LM LM LM 
Attalea speciosa 
(Arecaceae)* LM LM LM LM 
Bactris glaucescens 
(Arecaceae) SM F LM LM 
Byrsonima 
orbignyana 
(Malpighiaceae) SM LM SM SM 
Byrsonima 
verbascifolia 
(Malpighiaceae) SM LM SM LM 
Caryocar brasiliensis 
(Caryocaraceae)* LM LM SM SM 
Cecropia 
pachystachya 
(Urticaceae) LB LB LB LB 
Copernicia alba 
(Arecaceae) LB LB LB LB 
Couepia uiti 
(Chrysobalanaceae) SM LM LM LM 
Curatella americana 
(Dilleniaceae) LB LB LB LB 
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Diospyros hispida 
(Ebenaceae) SM LM LM LM 
Dipteryx alata 
(Fabaceae)* LM F LM LM 
Doliocarpus dentatus 
(Dilleniaceae) SB SB LB SB 
Dulacia egleri 
(Olacaceae) LM LM SM SM 
Enterolobium 
contortisiliquum 
(Fabaceae)* LM LM SM SM 
Eugenia dysenterica 
(Myrtaceae) SM LM SM SM 
Ficus gomelleira 
(Moraceae) SM F SM SM 
Ficus pertusa 
(Moraceae) LB LB LB LB 
Garcinia brasiliensis 
(Clusiaceae) SM LM LM LM 
Genipa americana 
(Rubiaceae)* LB LB LB LB 
Guazuma ulmifolia 
(Malvaceae) SM LM SM SM 
Hancornia speciosa 
(Apocynaceae) SM LM SM SM 
Hymenaea 
stigonocarpa 
(Fabaceae)* LM LM SM SM 
Inga laurina 
(Fabaceae)* LM F F F 
Licania parvifolia 
(Chrysobalanaceae) F F F F 
Melicoccus 
lepidopetalus 
(Sapindaceae) SM LM LM LM 
Mouriri elliptica 
(Melastomataceae) SM LM SM SM 
Ocotea dyospirifolia 
(Lauraceae) SB SB LB SB 
Pouteria gardneri 
(Sapotaceae) SM LM LM LM 
Pouteria ramiflora 
(Sapotaceae) SM LM SM LM 
Protium heptaphyllum 
(Burseraceae) LB LB LB LB 
Psidium nutans 
(Myrtaceae) SM LM SM SM 
Psittacanthus 
caliculatus 
(Loranthaceae) SB SB LB SB 
Psittacanthus 
cordatus 
(Loranthaceae) SB SB LB SB 
Rhamnidium 
elaeocarpum LB LB LB LB 
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(Rhamnaceae) 
Salacia elliptica 
(Celastraceae)* LM LM SM F 
Sapindus saponaria 
(Sapindaceae) LB F SM LB 
Sterculia apetala 
(Malvaceae) LB LB LB LB 
Solanum viarum 
(Solanaceae) SM LM LM LM 
Swartzia jorori 
(Fabaceae) SB SB LB SB 
Syagrus flexuosa 
(Arecaceae) SM LM LM LM 
Tocoyena formosa 
(Rubiaceae) F F F F 
Vitex cymosa 
(Verbenaceae) SM LM LM LM 
Zanthoxylum rigidum 
(Rutaceae) SB SB LB SB 
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Table S3. Module assignment when considering interactions with non-megafaunal 

fruits. Relative frequency (in 100 networks) with which a given species (rows) was 

assigned to each module (columns) after considering the potential interactions of 

Pleistocene megafauna with non-megafaunal fruits (Appendix S1). Pleistocene 

megafauna are identified with an asterisk (*) 

 

 
Large 

mammals 
Small 

mammals 
Large 
birds 

Small 
birds 

Casiornis rufa 0 0 0.53 0.47 
Columbina talpacoti 0 0 1 0 
Crax fasciolata 0 0.98 0 0.02 
Cyanocorax chrysops 0 0 0.53 0.47 
Cyanocorax cyanomelas 0 0 1 0 
Gnorimopsar chopi 0 0 1 0 
Guira guira 0 0 1 0 
Icterus croconotus 0 0 0.53 0.47 
Myiarchus ferox 0 0 0.53 0.47 
Myiodynastes maculatus 0 0 0.53 0.47 
Ortalis canicollis 0 0 1 0 
Paroaria coronata 0 0 0.53 0.47 
Pipile jacutinga 0 0 1 0 
Pitangus sulphuratus 0 0 0.53 0.47 
Psarocolius decumanus 0 0 1 0 
Pteroglossus castanotis 0 0 1 0 
Ramphastos toco 0 0 1 0 
Ramphocelus carbo 0 0 1 0 
Rhea americana 0.15 0.79 0 0.06 
Saltator coerulescens 0 0 0.53 0.47 
Tachyphonus rufus 0 0 1 0 
Thraupis palmarum 0 0 0.53 0.47 
Thraupis sayaca 0.06 0 0.47 0.47 
Trogon curucui 0 0 0.53 0.47 
Turdus rufiventris 0 0 0.53 0.47 
Turdus sp. 0 0 1 0 
Tyrannus melancholicus 0 0 0.53 0.47 
Tityra cayana 0 0 0.53 0.47 
Alouatta caraya 0 0.97 0.01 0.02 
Cerdocyon thous 0 1 0 0 
Dasyprocta sp. 0.53 0.45 0 0.02 
Mazama americana 0 0.98 0 0.02 
Nasua nasua 0 0.98 0 0.02 
Pecari tajacu 0 0.98 0 0.02 
Procyon cancrivorus 0 1 0 0 
Tapirus terrestris 0 1 0 0 
Tayassu pecari 0 0.98 0 0.02 
Geochelone carbonaria 0 0.98 0 0.02 
Piaractus 0.87 0 0.05 0.08 
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mesopotamicus 
Artibeus sp. 0.01 0 0.92 0.07 
Eremotherium 
laurillardi* 0.98 0.02 0 0 
Stegomastodon waringi* 0.98 0.02 0 0 
Glossotherium lettsomi* 0.98 0.02 0 0 
Xenorhinotherium sp.* 0.98 0.02 0 0 
Palaeolama major* 0.98 0.02 0 0 
     

 

 
Figure S1. Robustness of modules to changes in vegetation. Frequency with which 

seed dispersers in a given module in the Pleistocene seed-dispersal network were 

assigned to a different module after plants were removed (Appendix S2). Filled bars 

denote the median considering all the species originally in a given module and error 

bars denote the median absolute deviation. 
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CONSIDERAÇÕES FINAIS 

As diferentes seções que compõem a tese abordam aspectos relacionados a 

organização de redes de interações ecológicas de diferentes tipos e, mais 

especificamente, aos mecanismos e consequências relacionados à extinção de 

mamíferos do Pleistoceno: 

 

o Nossos resultados com modelos de teias tróficas sugerem que diferentes tipos 

de interações ecológicas, como interações mutualísticas entre plantas e 

dispersores de sementes e interações antagonísticas entre predadores e presas, 

são organizadas por processos similares. Além disso, mostramos a importância 

do grau de intimidade das interações na organização das redes ecológicas e 

como modelos de teias tróficas podem ser adaptados para reproduzir diversos 

tipos de sistemas incluindo sistemas do passado. As modificações dos modelos 

de teias tróficas, o desenvolvimento de abordagens para testar seu desempenho 

e a integração dos modelos com informações sobre a biologia dos sistemas de 

estudo criam as bases para futuros estudos sobre como aspectos básicos da 

biologia dos organismos organizam redes ecológicas. 

 

o Os sistemas naturais que vemos hoje são uma consequência de processos 

ecológicos e evolutivos que os modificaram com o tempo. Para compreender 

os mecanismos responsáveis por extinções e mudanças na estrutura das 

comunidades ecológicas é necessário olhar não somente para os fatores 

externos às comunidades, mas também para suas propriedades intrínsecas. 

Nossos resultados sugerem que as interações nas comunidades de grandes 

mamíferos do Pleistoceno provavelmente estavam organizadas de forma 



Mathias M. Pires  Considerações finais 
!

! 176!

similar às interações nas comunidades atuais na África. Entretanto, diferenças 

na composição e na distribuição de massas corpóreas fariam com que essas 

comunidades fossem especialmente sensíveis a certos tipos de perturbações, 

como a invasão de um grande predador como o homem. Nossas simulações 

mostram ainda como diferentes combinações de efeitos de mudanças 

climáticas e da chegada do homem poderiam, por meio de efeitos diretos e 

indiretos mediados por interações interespecíficas, resultar no colapso de 

comunidades do Pleistoceno. Esse conjunto de resultados dá embasamento 

quantitativo a hipóteses propostas previamente para explicar as extinções do 

Pleistoceno. Nós sugerimos que são necessários estudos como este, integrando 

abordagens quantitativas e conhecimento paleontológico e ecológico, para 

entendermos melhor como a interação entre fatores extrínsecos e intrínsecos 

influenciaram a dinâmica de sistemas do passado. 

 

o As extinções do Pleistoceno tiveram uma série de consequências ecológicas, 

influenciando a composição de comunidades vegetais e processos como 

ciclagem de nutrientes e a dispersão de sementes. O estudo das mudanças em 

uma rede de dispersão de sementes após a extinção dos grandes mamíferos do 

Pleistoceno, permitiu avaliar como extinções podem impactar a estrutura de 

outros tipos de redes ecológicas, influenciando tanto plantas – potencialmente 

alterando padrões de recrutamento – quanto animais – por modificar seu papel 

na rede de interações. Abordagens como as utilizadas neste estudo, que 

permitiram reconstruir e avaliar as propriedades de comunidades do passado, 

são essenciais para entendermos as consequências de episódios de extinção, 

tanto no passado quanto atuais. 
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O presente estudo contribui para a compreensão dos processos que organizam 

interações ecológicas e enfatiza a importância das interações entre espécies para a 

dinâmica de comunidades ecológicas. De maneira geral, o conjunto de resultados 

apresentado e discutido aqui ressalta que para compreendermos as causas e 

consequências de extinções biológicas, tanto do passado quanto atuais, é necessário 

considerar as propriedades dos sistemas nos quais os organismos de interesse estão 

inseridos. 

 


