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Abstract

Quintanilla, P.R. Comparing vector document representation methods for au-
thorship identification. 2020. Thesis (Master) - Institute of Mathematics and Statis-
tics, University of São Paulo, São Paulo, 2020.

Over the years the information available in online media has had a great increase.
In this sense, the automation of processing languages natural for large amounts of in-
formation gained importance, for example, text classification task. It can be used to
identify the author (Authorship Identification); however, it requires Machine Learning
techniques to identify the author, these techniques have given good results in NLP. In
addition, Machine Learning receives the feature vector of the texts, which is extracted
using vector document representation methods. The methods proposed for this research
are grouped into three different approaches: i) methods based on vector space models,
ii) methods based on word embeddings, and iii) methods based on graph embeddings,
for this approach, we first model the texts as graphs. On the other hand, not all the
methods are used for different languages because they can have different efficiency de-
pending on the language of the analyzed texts. Therefore, the objective of this research
is to compare several of these methods using literary texts in English and Spanish. In
this way, we analyze whether the methods are efficient to represent several languages or
its performance depends on the characteristic of every language. The results showed that
the methods of Graph embeddings achieved the best performance for both languages,
being that English reached a fairly high success rate. On the other hand, the other meth-
ods achieved good performance for English, however, the results for Spanish were not
optimal. We believe that the results in Spanish were worse due to the morphological,
lexical, and syntactic complexity that this language presents in comparison to English.
For this reason, different approaches were compared for the mathematical representation
of texts that try to cover the different aspects of a language.

Keywords: Authorship attribution, Feature extraction, Text classification, Machine
Learning, Complex networks, Word embedding and Graph embedding.
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Summary

Quintanilla, P.R.Comparando métodos de representação vectorial de documen-
tos para identificação de autoria. 2020. Tese (Mestrado) – Instituto de Matemática
e Estatísica, Universidade de São Paulo, São Paulo, 2020.

Com o passar dos anos, as informações disponíveis na mídia online tiveram um grande
aumento. Nesse sentido, ganhou importância a automatização de processamento de lin-
guagens natural para grandes quantidades de informação, por exemplo, a tarefa de clas-
sificação de textos. Esta tarefa pode ser usada para identificar o autor, atribução de
autoria, mas precisa de técnicas de Aprendizado Máquina para identificá-lo, o que têm
dado bons resultados no PLN. Além disso, Aprendizado Máquina recebe o vetor carac-
terístico dos textos os quais são extraídos utilizando métodos de representação vetorial
de documentos. Os métodos propostos para esta investigação estão agrupados em três
abordagens: i) métodos baseados em modelos de espaço vetorial, ii) métodos baseados em
Word embeddings, e iii) métodos baseados em Graph embeddings, para esta abordagem,
primeiro modelamos os textos como grafos. Por outro lado, nem todos os métodos são
usados para diferentes idiomas, porque pode ter diferentes eficiências, dependendo do
idioma dos textos analisados. Então, o objetivo desta pesquisa é comparar vários desses
métodos utilizando textos literários em inglês e espanhol. Desta forma, nós analisamos
se os métodos são eficientes para representar várias linguagens ou seu desempenho de-
pende das características de cada linguagem. Os resultados mostraram que os métodos de
Graph embeddings obtiveram bom desempenho para as duas linguagens, sendo que para
o inglês alcançaram uma taxa de sucesso bastante elevada. Por outro lado, os demais
métodos obtiveram bom desempenho para o inglês, porém os resultados para o espanhol
não foram os ideais. Acreditamos que os resultados em espanhol foram piores devido à
complexidade morfológica, lexical e sintática que este idioma apresenta em comparação
ao inglês. Por esse motivo, foram comparadas diferentes abordagens para a representação
matemática de textos que procuram abranger os diferentes aspectos de uma língua.

Palavras-chave: Atribuição de autoria, Extração de características, Classificação de
texto, Aprendizado màquina, Redes complexas, Word embedding e Graph embedding.
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Chapter 1

Introduction

1.1 Context and motivation
The amount of information available on the Internet has grown enormously over the

past decades. An important part of this information is available in textual documents.
These documents include online news websites, user comments on various social net-
works such as Facebook, Twitter, Instagram or YouTube, blog posts, literature books
with various topics in online libraries, scientific articles available in research journals,
among many other examples. For a user, the manipulation of large amounts of informa-
tion becomes a difficult task because it requires a lot of time and resources, for example,
a first case could be of the organization of several related texts, in which the person
would have to read each one to know the correct way to order them in a database.
The accomplishment of this task becomes a tedious activity for the user because of the
length and quantity of texts. The second case might consist on analyzing the evolution
of literary texts over time, in this sense, it would be necessary to consider the different
literary movements that have existed over the years. Analyzing a large number of books
throughout history would be challenging for one or more people because it would require
reading and analyzing them. These studies also include identifying the author through
the writing style, of one or more literary books. Both organizing several related texts, as
well as analyzing the evolution of literary movements, involves the joint work of several
experts who know literary movements, styles and writing patterns.

Due to this great increase of textual information, the need to use automatic meth-
ods to understand, sort, and classify such information arises [RARP12]. For the reasons
shown above, the NLP (Natural Language Processing) [NOMC11] becomes a widely used
area for information processing. For instance, for the two cases shown above (organiza-
tion of several related texts and literature analysis over time), we can apply different
techniques of NLP. For the first case (organization of several related texts), tasks such as
automatic document summarization [CJ15] and text classification [Kor12] are the most
appropriate methodologies for the problem of text organization. While for the second
case (literature analysis over time), the authorship identification task [Juo08] looks for
document writing patterns to get special characteristics to associate an author with his
literary production.

1



2 INTRODUCTION 1.1

In addition to the above-mentioned NLP applications, there are also sentiment anal-
ysis [KZM14], topic labeling [HLZB18], authorship attribution [Sta09a], spam detection
[CKP+15], text classification [Kor12], among others. Referring specifically to text clas-
sification, offers a good framework to become familiar with textual data processing, for
this reason, in this work, we will tackle this application of NLP. The text classification
[Kor12], which consists of assigning a label or category to a text considering its content.
Several tasks are related to text classification, which varies according to the classifica-
tion criteria (author, genre, epic, literary movement, study area, among others). In this
master’s research, it has been considered the author of the text as a classification criteria
(authorship attribution), which associates each document with its author.

The best methods for text classification are the systems based on machine learning,
that is why these have giving achieved significant results. For the training of machine
learning algorithms, there should be two input parameters, which are the category or
class of the document and the feature vector representing the text. That is to say, the
reason why these techniques receive the feature vector and not the document itself is
that a computer is capable of understanding binary language, but is impossible for it to
understand each word of a text naturally (morphological, lexical, syntactic and semantic
aspects). For this sense, the encoding of texts into numerical vectors has been one of the
main research focuses related to NLP and text analysis; furthermore, the vector repre-
sentation gives us the ability to perform meaningful analytics. Moreover, to classify texts
it is required to have a vector representation of each document, which extracts the most
representative characteristics of the text. Each property of the vector representation is a
characteristic, and each characteristic represents attributes and properties of documents
including their content and meta-attributes, such as document author, length, source,
and publication date, among others. Last, The process of converting texts into numbers
is called Vectorization or Feature Extraction [Sta09b].

Then, to capture an optimal representation of documents, we need to analyze and
compare different methods for the representation of texts. The objective of these methods
is to obtain a vector representation, which is capable of maintaining the text structure
and the existing semantics between each word of the text. The vector representation
methods could be divided into two methodologies, such as sparse vector representation
and dense vector representation.

The first methodology for document vectorization called "Sparse vector representa-
tion" expresses that the vector’s dimension is equal to the size of the text vocabulary,
that is, if the word appears in the dictionary, it will be counted. The Sparse vector
representation is based on the classic vector space model (VSM) [Com18]. VSM was
successfully used for information retrieval and document-indexing tasks. This model has
different variations, such as frequency model or bag-of-words (BOW) and TF-IDF model
[SWY75a]. BOW counts how many times a word appears in a document, while TF-IDF
is a statistical measure that evaluates how important is a word in a collection of docu-
ment. Both variations are simple to understand, however, they have several weaknesses,
such as vectors with high dimensionality (for large corpus), as well as they ignore the
order and semantic of words.
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Unlike the first methodology that does not has fixed size vectors, then, the second
methodology (Dense vector representation) emerged to overcome the high dimensional-
ity problems of sparse vector representation. The Dense vector representation looks to
capture the meaning, semantic relationships and different contexts in which a word can
be used. The Dense vector representation mainly includes Word and Sentence embed-
dings models, whose objective is to find the mathematical representation of each word or
sentence that comprises a text. For this master’s work, we experimented with Word em-
beddings models (Word2vec) [MCCD13], which argues that the vectors of similar words
are close to each other, considering similar characteristics for their grouping, such as the
context.

Another approach to extract characteristics from a document is to use concepts re-
lated to graphs and complex networks [COT+11]. Complex networks are graphs with
special properties. Recently, complex networks have been used with success in different
areas, including tasks related to NLP. Anything in the real world could be modeled as
a graph, then, the documents can also be modeled as graphs. Furthermore, as described
in the previous paragraph, there are methods to represent words as numerical vectors,
so there are also methods that extract a representative N-dimensional vector of a graph,
called Graph embeddings. Therefore, we proposed to model texts as graphs (where nodes
and edges could be generated in various ways) and then, to extract the representative
vectors of such graphs using graph embedding and node embedding techniques. In other
words, we applied the most recent concepts of complex networks and Graph embeddings
techniques (Graph2vec and Node2vec) for the classification task (authorship attribution).

The dataset is composed of documents, which will be used to evaluate the vector doc-
ument representation methods using the authorship attribution task. To choose which
documents be part of our dataset, two characteristics were considered. First, we selected
a dataset composed of literary texts. This type of text represents a challenge due to
the different characteristics, such as a period of time, literary movement and writing
style, among others. Second, we choose texts written in two languages in order to an-
alyze whether the results of the vector representation methods of texts maintain their
performance in texts written in both languages. For this analysis, we considered two lan-
guage families: Romance languages (Spanish) and Germanic languages (English). These
languages have different linguistic structures, some are richer morphologically, others
lexically, and others syntactically. To preserve the different linguistic aspects of both
languages, it was proposed to use complex graphs and networks. In contrast, VSM and
word embedding models do not preserve some of these linguistic characteristics.

For this Master’s work, we compared the performance of various vector document
representation methods (classic vector space models, word embeddings, and graph em-
beddings), for the document classification task by the author using texts in English and
Spanish. On the other hand, in order not to cease our results of the performance of the
vector document representation methods, it was decided to experiment with different
classification algorithms: Decision Tree, K-Nearest Neighboors (KNN), Gaussian Naive
Bayes (Gaussian NB) and Support Vector Machine (SVM).
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1.2 Hypothesis
It is possible to use a vector document representation method to adequately repre-

sent literary texts written in English or Spanish for the task of authorship identification.
Regardless of each language, such methods can be effective in capturing the main char-
acteristics and peculiarities of each language. That is, could it be that a vector document
representation method is efficient to represent several languages or its performance de-
pends on the characteristic of every language.

1.3 Objectives
The main objective of this master’s Work is to compare various methods to represent

texts for authorship recognition and in this way find which methods give us good results
independent of the language. We aim to evaluate the performance of these methods for
both Spanish and English literary texts.

The specific objectives are:

• Analyze the difference in the performance of the methods of representation of texts
when experimenting with text in different languages.

• Create a database for Spanish classified by the author with literary texts.

• Analyze the performance, strengths and weaknesses of traditional vector space
models.

• Experiment and discuss which parameters are the most suitable to generate repre-
sentative vectors when using word embeddings techniques

• When using dense vector representation techniques, experiment with different sizes
of the feature vector.

• Compare the performance of techniques of vector representation of graphs with
vectors extracted by traditional techniques of representation of texts.

• Analyze whether the performance of the proposed methods of vector representation
of documents is independent or show many variations in the results.

• Experiment with different classifiers, so as not to divert the results of the vector
document representation method to the performance of the classifier.

1.4 Organization of this Dissertation
This document is organized as follows:

• Chapter 2: We described the linguistic concepts.
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• Chapter 3: We described the most important concepts related to NLP, authorship
attribution and the methods for vector representation of documents. Likewise, we
explained the concepts of graphs and complex networks and their applications for
the representation of texts.

• Chapter 4 : We explained the most important works related to authorship attri-
bution and the methods for the vector representation of documents.

• Chapter 5: We detailed the methodology developed for this Master’s work.

• Chapter 6: We discussed and analyzed the results we obtained.

• Chapter 7: We described the conclusions and future work options for this Master’s
work.

• Appendix A: We describe the list of authors with the list of books selected for
English and Spanish.

• Appendix B: We list the stopwords used for pre-processing in English and Spanish.
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Chapter 2

Linguistic Concepts

As we described in the previous chapter (Chapter 1), the objective of this Master’s
work is to analyze the difference in the performance of the vector document represen-
tation method using text in different languages (Spanish and English). For this reason,
not only a computational approach but also a linguistic approach should be involved
on the vector representation methods of documents. Next, a brief contrastive analysis
(contrastive linguistics) of both languages will be conducted and its contrasts in each
level of language.

2.1 Contrastive linguistics
Contrastive linguistics is a branch of general linguistics, it is also called differential

linguistics. This concept is a linguistic approach that compares and describes in detail the
structural similarities and differences between two or more languages (in this case En-
glish and Spanish). This branch of linguistics considers the phonological, morphological,
lexical-semantic, syntactic and pragmatic levels. We consider contrastive descriptions at
the morphological, lexical-semantic and syntactic levels. We do not consider the phono-
logical level because we do not study the sounds. We only study both languages in their
written representation.

Before analyzing each level of the linguistic structure of both languages. We must
understand the origin of these languages. These two come from Proto-Indo-European
languages, which means that we will recognize some aspects shared by both languages,
especially at the morphological and syntactic level (grammatical level) [Man02]. For ex-
ample, 40% of the vocabulary (lexical level) of English is made up of words of French
origin. Both Spanish and French are Latin languages. Then, we will find lexical coin-
cidences between both languages. On the other hand, English is a Germanic language,
related to German, Swedish or Danish. Spanish is a Romance language, like French,
Portuguese, Italian or Catalan.

We will describe the existing contrasts in each level of language [Man02] , chosen
for this thesis: morphological (Section 2.1.1), syntactic (Section 2.1.2), lexical-semantic
(Section 2.1.3) and pragmatic (Section 2.1.4).

7
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2.1.1 Morphological level

Morphology is a part of grammar, which studies words and their modifications in
isolation. There is the inflectional and derivational morphology:

• Inflectional Morphology: It studies the changes in words that modify them to
fit a syntactic context. These morphemes are added to a lexeme (root) and do not
change the syntactic category of the root. Lexemes and morphemes are the least
significant units called monemes. In Figure 2.1, a lexeme or root and its different
morphemes can be seen.

Figure 2.1: Lexeme and Morphemes of the word Señor in Spanish.

Although both languages have inflectional morphemes to indicate plural, Spanish
applies the singular-plural distinction of the following syntactic categories: nouns
(perro-perros), adjectives (marron-marrones), articles (el-los) and all the differ-
ent forms of the verbal derivation (como-comamos, comes-coméis, come-comen).
English only flexes nouns (dog-dogs). This explanation is reflected in Table 2.1

Types of words Spanish English

Noun Number perro-perros dog-dogs
Gender perro-perra dog

Adjective Number rojo-rojos red
Gender rojo-roja red

Article Number el-los the
Gender el-la the

Table 2.1: Inflectional Morphology for nouns, adjectives and articles.

The greatest difference in inflectional morphology is observed in the verbal paradigm.
In English, regular verbs usually have between four to five forms. For example: see,
sees, seeing, saw, seen. However, other verbs have between one to eight forms,
which are be, am, is, are, was, were, been and being. In contrast, Spanish verbs
have a singular-plural version of the first person (como-comemos), the second per-
son (comes-coméis) and third person (come-comen). English only modifies the third
person singular (she eats). All this information is contained in Table 2.2.

On the one hand, English only distinguishes two tenses, present and past; because
future tense uses the auxiliary "will". On the other hand, Spanish has four verb
tenses such as present, future and two types of past tense, past imperfect (comía)
and indefinite (comí). Furthermore, Spanish has two verb modes: indicative and
subjunctive, having 47 forms of the Spanish verbs.
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Person Number Spanish English

1º Person Singular como eat
Plural comemos eat

2º Person Singular comes eat
Plural comen eat

3º Person Singular come eats
Plural comen eat

Table 2.2: Inflectional morphology for verbs (person and number).

Finally, we can see them in inflectional morphology, which is where we find more
differences. Since Spanish has more morphological variants than English, then the
morphological information of Spanish is richer than English.

• Derivative Morphology: : These morphemes change the syntactic category from
the root to join it or alter its insignificant meaning. With the derivation, we can
create words from others. For example, for verbs: (cortar > cortadura), adjectives
(alto > altura), among others.

Although both languages use this mechanism, Spanish: (i) Diminutive: (silla >
sillita, chico > chicuelo, perro > perrazo); (ii) Augmentative (silla > sillon); (iii)
Pejorative (periodico > periodicucho).

The only diminutive exists in English as derivative morphemes but in a restricted
way. Again, Spanish has an inventory of derivative morphemes superior to English.

• The Composition: Another important process is the composition, which is on the
border between morphology and syntax (morphosyntactic). For example: boygirl =
boy + girl, paraguas = para+ aguas, among others.

In Spanish, there are four categories: verb+noun, noun+noun, noun−i+adjective
and noun + adverb. However, English has more than eleven categories, some of
them are noun+noun, adjective+noun, adjective+noun−ed, noun+verb− ing,
particle+ verb, noun+ verb− er, noun+ adjective, adverb+ noun, verb+ noun,
verb+ particle, among others.

In English, this resource is more exploited than in Spanish. Therefore, it is ob-
served that more categories to combine words, due to sequences of names that are
successively modified can be accumulated. The largest and most productive cate-
gory is noun+ noun. In Spanish, we would have to resort to the preposition "de",
which can indicate the same type of little-specified relationship between nouns. In
Spanish, the most frequent form of compound is verb+ noun.

2.1.2 Syntactic level

This level is responsible for the study of the rules that a language handles. The syntax,
not only studies the ways in which words are combined (sentences and syntagmas), but
also the relationships between them. Due to the complexity of this level, we will describe
the syntactic differences in two sections:
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• By grammatical category: Both languages have similar grammatical categories
(noun, adjective, verb, adverb, preposition and conjunction). But despite this, some
divergences can be found: (i) Difference in Noun, is related to the division be-
tween countable and uncountable nouns, besides English has a higher number of
uncountable nouns unlike Spanish, which has more countable nouns than uncount-
able; (ii) Difference in Adjective, the adjectives in English come first then the
noun (blue house), but in Spanish, they usually come after the noun (casa azul),
although there are exceptions where the adjective can be before or after the noun,
but modify the meaning, for example clase media, media clase, el mismo presi-
dente, el presidente mismo; (iii) Difference in Article, although determined and
indeterminate articles fulfill the same functions, at the time of making translations
it may or may not keep the same type of article, for example: "He has a long nose"
to "Tiene la nariz larga".

• By the Order of Words and Constituents: Although in general lines, in this
aspect both languages are very similar. Considering the idea that when a language
has more morphological information, it needs less syntactic information; and vice
versa. So, as Spanish has more morphological information, it uses fewer syntactic
rules, that is, it has a freer word order than English. Some consequences of this
are: (i) The Presence/Absence of the Subject, the verb in English as it does
not have detailed morphological information, it must include the pronominal form
of the subject (We sing today). In Spanish the details of the subject are implicit in
the verb (Cantamos hoy); also, (ii) Order subject and verb, English not allows
the placement of the subject in other places in the sentence unlike Spanish (Ya
vienen las vacaciones, versus Las vacaciones vienen ya). Therefore, we should talk
about the equivalence between word senses.

2.1.3 Lexical-Semantic Level

When we speak of lexicon we refer to the vocabulary of the language, when we speak
of semantic it refers to the meaning of the words. The task of finding lexical equivalents
between any two words in different languages is difficult, due to polysemy. Polysemy is
the ability for a word or phrase to have multiple meanings. For example, say that the
word "gato" in Spanish translates to English is "cat" is false. In Table 2.3, we see that
the different meanings of the word "gato" and the word "cat".

Meaning of Cat Meaning of Gato
1. Domestic feline 1. Domestic feline

2. Feline mammal (lion) 2. Crane to lift cars
3. Harpy 3. Tic-Tac-Toe (Mexico or Chile)

Table 2.3: Polysemic word comparison (cat-gato).

So, we should talk about the equivalence between word meanings. Even more, that
a word can mean something different depending on cultural and socio-cultural models,
subjective connotations, among others. That is why the semantic comparison between
languages offers a high level of complexity.
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2.1.4 Pragmatic Level

This level of language is concerned with how context influences the interpretation of
meaning. Because to understand a sentence or phrase, pragmatics takes into considera-
tion the extralinguistic factors that condition the use of the language. That is, all those
factors that are not referred to in a formal study, such as the knowledge shared by the
speakers, communicative situation, intentionality of the author, interpersonal relation-
ships, among others.

Furthermore, for interpretation of the meaning of a sentence, an understanding of the
social uses of words is necessary because when contrasting two languages on the prag-
matic level, we inevitably go beyond the purely linguistic realm to include sociocultural
aspects of the broader and more inclusive nature. On the other hand, a sentence is the
syntactic unit of complete sense and shares a semantic content, but its meaning and
proper interpretation not only depends on its content but also requires a defined linguis-
tic context to be interpreted. That is, the same sentence can have different intentions or
interpretations in different contexts (it can be literal, ironic or metaphorical). It will not
be semantic information, but inferred and contextual information, deduced jointly from
the context and words.

In conclusion, to properly analyze, interpret and understand a sentence or document
at a pragmatic level, the grammatical decoding that gives it the semantic content is
necessary and the context is also necessary for correct inference. We will describe the
context in more detail below.

Context

In real life, context is a set of circumstances that surround a situation and without
which it cannot be properly understood. In the framework of a document, the context is
words that occur in the proximity of other words. From a linguistic approach, the con-
text is the set of linguistic elements that include, precede or follow a word or sentence
and that can determine its meaning or its correct interpretation. But, for your better
understanding, the context should be understood as a situation since it can include any
extralinguistic aspect.

At time of communication, people make deductions and inferences from what is being
said in a conversation or linguistic interaction to create a linguistic context in which the
following statements are properly interpreted. The implicatures or implicit information
are the meanings in addition to the literal or explicit meaning that the receiver of a
message infers. In addition, they are also obtained from the recognition of the intention
of the speaker, considering: the literal meaning of the statement, the knowledge shared
by the speaker and listener, the situational context and the intention of the speaker.

Finally, the pragmatic level presents special characteristics, which are complex and
difficult to interpret, even for the human being, due to this particularity, we have not
reviewed the pragmatic level because it would exceed the scope of this Master’s work.
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Chapter 3

Computational Concepts

In this chapter, we will present the fundamental concepts from the main areas re-
lated to this work; authorship attribution, document classification, and methods for
mathematical document representation. We present definitions, such as applications of
authorship attribution in Section 3.1. Section 3.2 comprises the main concepts of docu-
ment classification, methods, algorithms and applications. Before analyzing the methods
for obtaining the feature vector of the documents, it is important to understand what
the vector representation of documents means (Section 3.3). Also, this chapter describes
several methods in order to obtain the feature vector that best represents a text. First,
Section 3.4 presents some of the traditional methods (Vector space model). Section 3.5
describes word embeddings techniques, that can capture the meaning, semantic rela-
tionships and different contexts in which a word is used. Finally, considering the last
vector representation approach, where the texts are first modeled as graphs, and then,
the representative vectors of such graphs are extracted. To model texts as graphs, we
previously studied graphs and complex networks in Section 3.6 and Section 3.7 explains
the methods to extract the feature vector of such graphs.

3.1 Authorship attribution
Natural language processing (NLP) is a multidisciplinary field that involves Artificial

Intelligence (AI) and Linguistics. NLP studies the interactions between computers and
linguistic signs (sound, writing, gestures and signs). Likewise, NLP focuses on the analy-
sis of human communications and, specifically, their language. This automatic analysis on
any type of text allows to classify, organize, search or discover non-explicit information.
The most important NLP applications are mentioned as follows: automatic translation of
documents [SPdVLO19]; conversational systems that allow interaction between humans
and machines [ML18]; morphological, syntactic and semantic labeling [HLZB18]; senti-
ment analysis of texts [KZM14]; automatic summarization of texts [CJ15]; information
retrieval [UF16]; document classification [Kor12]; authorship attribution [Juo08]; among
others. The main objective of these applications is to analyze large amounts of informa-
tion, and in this way, obtain relevant information that clearly and concisely represents
the content of all these textual documents.

13
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For this master’s research, we focused on authorship attribution and document clas-
sification. First, authorship attribution, which can be defined as a multi-class text classi-
fication problem. Second, document classification is required to obtain the vector repre-
sentations of source documents to be used as feature vectors for several machine learning
algorithms. In this sense, we proposed to evaluate different methods of mathematical rep-
resentation of documents for authorship recognition tasks using document classification
algorithms.

Authorship attribution (or authorship recognition) consists in assign to a text the
most probable author of a set of candidate authors [Sta09a]. These methods have been
of considerable interest for various applications, such as the classification of literature
books, identification of patterns, detection of plagiarism in text segments or full texts,
problems related to copyright, among other applications [Mar].

Several works have focused on probabilistic and statistical models for this task. Prob-
abilistic models maximize the probability of identifying the real author of a text, while
statistical models focus on finding attributes and features to characterize different writ-
ing patterns and styles. Due to the large increase in textual information on the Internet
(books, emails, blog posts, among others), the need to find methods to analyze this
large number of documents becomes important. For this reason, the stylometry research
area emerged, in charge of finding writing patterns in texts. These patterns are grouped
into the following categories: lexical, character, syntactic, and semantic features. We will
briefly explain these stylometric attributes below [Sta09a, Mar]:

• Lexical features: These features are related to word, sentence lengths, word fre-
quencies, vocabulary size and variations, among other features.

• Character features: These features consider the text as a sequence of characters.
Common features are the following: alphabetic counts, the frequency of punctua-
tion marks, frequency of letters, among other features.

• Syntactic features: These features are related to the structure of texts. These ap-
proaches include the analysis of sentences, part-of-speech (POS) tags of each word,
and how the sentences are decomposed into its constituent parts. POS tags indi-
cate the grammatical class of each word from texts. Words could be classified as
nouns, adjectives, verbs, adverbs, etc.

• Semantic features: These features consider the semantic relations between the
words composing a text. Synonymy or antonym relationships are commonly used
for this approach.

Finally, when we talk about authorship attribution, we must not only consider the
linguistic characteristics of documents (we had detailed in Section 2.1) but also consider
algorithms for text classification (Section 3.2). They allow us to classify the documents
by the author and will receive as input parameters the feature vector of the documents.
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3.2 Document Classification
The classification of documents is the process that consists of assigning labels or

categories to the documents hierarchically, according to the principles of origin, order or
other factors. We can classify any type of document: academic, literary, among others.
This task has several applications, such as sentiment analysis, topic tagging, spam de-
tection, among others [KTA+16].

Some of the document classification methods are rule-based, others are in machine
learning, and there are also hybrid approaches. Methods based on machine learning learn
to perform classifications according to past observations (look at Figure 3.1). That is,
a training is performed with the labels associated with each text. Where the label, rep-
resents the category of the text. To train the classifier, the feature vector must first be
extracted from the document. Then, the algorithm receives the training data, which are
the feature vector (numerical representation of the document) and its label (category or
class). Once trained with a sufficient amount of data, a model is generated. This model
is expected to make good predictions for the categories for which it was trained. Finally,
new documents are used for the prediction phase. From the documents, the vector of
characteristics is extracted to be introduced in the classification model and obtain its
possible label. Sections 3.4, 3.5 and 3.7 describe the methods used in this work to obtain
the vector of document characteristics.

Figure 3.1: Document classification process, training and prediction.

Furthermore, there is a great number of algorithms for document classification, such
as linear regression, logistic regression [VE18], Random Forest [Pal05], K Means Cluster-
ing [KMN+02], Decision Tree [RM05], KNN (K-Nearest Neighbors) [Alt92b], Gaussian
Naive Bayes [MM09], SVM (Support Vector Machine) [BGV92], among others. Super-
vised learning models will be used in this Master’s work [KPC95], next we are going to
detail the classification algorithms that will be used in this Master’s work:
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3.2.1 Decision Tree

Decision tree is a predictive model that uses a directed tree like to support in decision-
making. Decision tree is an algorithm that contains conditional control statements, which
have a group of hierarchical decisions where the paths taken at internal nodes are the
split criteria and the external nodes are final decisions [RM05]. The objective is to help
identify a strategy most likely to succeed; therefore, certain criteria are considered such
as: causes and consequences, possible event outcomes, resource costs, utility, among oth-
ers.

The process of training and learning of Decision tree [RM05] creates a model, which
predicts the value of a target variable by learning decision rules which are inferred from
the features [Qui14]. This model groups the independent variables, grouping from the
most common characteristics to the most specific ones, creating a series of branches to
the dependent variables. Inside the decision tree models, there are classification trees
where the dependent variables (target variables) are discrete set of values. The leaves
represent class labels. The branches or paths represent combinations of features that lead
to those class labels. So, the resulting classification tree is an input for classification.

Decision tree is graphical and easy to understand the model but there is a disadvan-
tage, it works well with training data, but when new test data is included the results
may not be as favorable. For example, Figure 3.2, where a tree is modeled to answer the
question (where the possibility of playing soccer is evaluated).

Figure 3.2: Example of Decision tree (Deciding whether or not to play soccer).

3.2.2 KNN (K-Nearest Neighbors)

KNN [Alt92b] is a supervised Machine Learning algorithm. This algorithm is based
on the idea of similarity (distance, proximity, or closeness) assuming that there are sim-
ilar things near or with similar characteristics. If it is used with discrete values it is for
classification and if it is used with continuous values it is for regression. Furthermore,
KNN does not need any training data for model generation, therefore all training data
are used in the testing phase.
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To classify an unknown element, the KNN method first initializes K choosing the
number of neighbors. Then, the distance between the q query element and all the el-
ements of the dataset is calculated. Then, it is ordered by distances from smallest to
largest and the first K elements from the sorted collection is chosen. This subset repre-
sents the k elements closest to the q query element. (i) In classification’s case, the class
that is associated with the query element corresponds to the majority class, which is
observed in the selected k-set [Alt92a]. (ii) In regression’s case, the mean of the labels of
the selected k-set is returned. Figure 3.3 ‘shows the steps of the algorithm KNN.

Figure 3.3: KNN classification process.

Finally, because all training data are used in the testing phase so the training phase is
fast, but the testing phase is slow and expensive (memory, time and processing resources).
In the worst case, if KNN will scan all the data it needs more time and therefore more
memory for storing training data. For these reasons, KNN tends to work best on small
datasets with a small number of features.

3.2.3 Gaussian Naive Bayes (Gaussian NB)

Naive Bayes [Ras14] is a statistical classification method, which used Bayes’ prob-
ability theorem for predicting unknown classes. NB is suitable for a large amount of
data, achieving high precision and speed. Likewise, based in Bayes’ theorem with strong
(naive) assumptions of independence between its features [Zha04] Born Naive Bayes clas-
sifiers, which is a supervised learning. This classifier assumes that the effect of a feature
on a class is independent of other features. This assumption is called conditional class
independence, which simplifies the calculation and is therefore considered naive.

Naive Bayes, can be extended to continuous data, that is, a real-valued attributes.
The most common for NB is to assume a Gaussian distribution. Finally, this modifica-
tion of naive Bayes is called Gaussian Naive Bayes [MM09]. Various functions can
be used to estimate the distribution of the data, but the normal distribution or Gaus-
sian distribution without covariance is the easiest to work. Distribution Gaussian only
needs to estimate the mean and the standard deviation of your training data. Therefore,
Gaussian Naive Bayes is an algorithm for classification, where the probability of the
characteristics is assumed to be Gaussian.
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3.2.4 Support Vector Machine (SVM)

SVM [BGV92] is a supervised machine learning algorithm for classification (binary
classifier) and regression analysis. In both cases, there is the first training phase, which re-
ceives the data in pairs. [(elemento1, clase1), (elemento2, clase1), ...(elementon, clase1), ...].
In its second phase or phase of use, SVM becomes a “black box” that provides a response
to an input. SVM can be used for both continuous and discrete data.

Given the training data (labeled sentences), it constructs hyperplane or line that
divides a space into two subspaces (As can be seen in Figure 3.4). This hyperplane is a
decision boundary with the margin’s property of separation between two classes being
maximum [HHHH09]. One subspace contains vectors that belong to a group. The other
subspace contains vectors that do not belong to that group. As an advantage, SVM does
not need much training data to provide accurate results like Naive Bayes. Nevertheless,
it requires more computational resources.

Figure 3.4: Schematization of SVM for two class (Hyperplane and margin).

3.3 Vector Representation of Documents
Documents are highly dimensional unstructured data, due to the number of letters

and words that it usually contains. Therefore, a more summary way must be sought to
represent them. The representation of documents is the transformation of the text into
another form of representation that is more appropriate depending on the problem to be
solved, that is, it is an alternative representation of the documents that facilitate their
analysis. This representation is performed through a set of phases that contribute to
certain simplifications and generalizations to presenting a logical view of the documents
that allow their analysis and comparison.

For example, the vector space model (Section 3.4) represents textual documents
through vectors of terms, but it does not allow to represent semantic relationships be-
tween words. On the other hand, semantic vector spaces are based on the idea that the
meaning of a word can be learned from a linguistic environment (Word Embeddings and
Graph Embeddings are in Sections 3.5 and 3.7).
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3.4 Vector Space Model
Vector space model (VSM) or term vector model is one of the most used models for

mathematical document representation. It is also used in filtering, retrieving, indexing
and calculating the relevance of information. VSM [Com18] is an algebraic model for
representing text documents as vectors of identifiers. At first, it emerged to be used in
information retrieval [HSMN12], but it is also used in information filtering, automatic
summaries, indexing and relevancy rankings, among others. Since it was born to be used
for information retrieval, then documents and queries are represented as n-dimensional
vectors. For each document we have: dj = (w1,j, w2,j, . . . , wt,j), where j is the document’s
number and t term’s number. Finally the query: q = (w1,q, w2,q, . . . , wn,q), where n is the
term’s number of query.

VSM is based on the notion of similarity. Therefore, vector operations are performed
to compare documents with queries. This leads the model to calculate the similarity
between the document dj and query q. Cosine similarity is commonly used to compare
these vectors. In the Equation 3.1 the cosine similarity is used between the document
dj and the query q. Where the ratio between the inner product of the document vector
and the query vector and the product of the norm of the document vector by the norm
of the query vector is calculated.

cos(dj, q) =
dj · q
‖dj‖ ‖q‖

=

∑N
i=1 wi,jwi,q√∑N

i=1 w
2
i,j

√∑N
i=1w

2
i,q

(3.1)

As we saw lines above in this model a document is represented by a vector of indices
of terms extracted from the text. In Figure 3.5 a three-dimensional vector space is shown
because for the best visualization of the example the vocabulary is only made up of three
terms; therefore, three dimensions are denoted. We also observe four three-dimensional
vectors that correspond to four documents, D1, D2, D3, D4; denoted ~D1, ~D2, ~D3, and ~D4.
The weights of D1 are (w11, w12, w13). The term weights represent the document’s ori-
entation and placement in the vector space. As well as documents, queries are also
represented as three-dimensional vectors, Q = (w1, w2, w3).

The similarity between document D1 and query Q is given by the similarity of the
cosine (Equation 3.1) between its vectors. If the similarity of the cosine is 1, it means
that Q and D1 are close, or that are the same. In contrast, the closer it gets to 0, the
farther Q is from D1.

In Section 3.4.1 the bag-of-words model used to represent documents and queries
is described. Also have been developed other more modern models, which use (term)
weights, such as TF-IDF weighting (Section 3.4.2).
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Figure 3.5: Vector Space Model.

3.4.1 Frequency Model

Frequency Model or Bag-of-word (BOW) is a method to obtain a simplifying repre-
sentation of any text. This model has been used in many areas, such as document sum-
marization, multi-label classification, among others. The Frequency Model represents a
document as a vector. This vector is constructed from a set of words of the text called also
vocabulary. First, the number of different terms in a document is counted and stores the
frequency of each of these terms. Formally the vector is d = (fw1, fw2, ..., fwj), where
j is the number of unique terms present in the document. Therefore, the dimensionality
of the vector is the number of terms in the vocabulary (or the number of different words
presented in the documents). While the vocabulary has more words, the characteristic
vector will be larger. Although a single word is present once in the document, it is con-
sidered for the vector representation of the document.

Currently, there are other improved adaptations based on Vector Space Model, which
use a weighting measure such as TF-IDF seen in the following Section (Section 3.4.2)

3.4.2 Term Frequency–Inverse Document Frequency (TF-IDF)

TF-IDF stands for "Term frequency-inverse document frequency". This model is a
statistical measure or numerical that analyzes, how relevant or important is a word to
a document in a collection of documents or corpus. Salton, Wong and Yang [SWY75a]
are the proponents of TF-IDF, for various applications, it is currently often used in text
summarization, stop-words filtering, information retrieval, among others.
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Theoretically, TF-IDF value has an increment proportionally to the number of repe-
titions of a word in the document, however, is offset by the frequency of the word in the
document collection. That is, TF-IDF is calculated by multiplying two measures: how
many times a word in a document is repeated, and the inverse document frequency of
the word across a set of documents. On the other hand, It is important to note that
some words appear more than others, that is, they are more frequently than others.

From a practical perspective, this model represents the texts as vectors of identifiers
in a multidimensional linear space. Formally, the vector dj = (w1j, w2j, ..., wnj) repre-
sents a document or sentence, where n represents the total number of unique words that
are presented in the documents and 0 ≤ wwij ≤ 1 is the contribution of the term ti for
representation of the document dj.

As mentioned above, TF-IDF is calculated from two measurements. The first measure,
term frequency (TF), tf(t, d), which is the number of times the term t appears in the
document d or frequency of the word. Some documents are larger than others, raising
the possibility that a word is repeated much more times in long texts than shorter ones.
Therefore, we seek to normalize tf , that is, the frequency of the term is divided by the
document length (number of terms in the document). Next, TF is calculated as follows:

tf(t, d) =
f(t, d)

|d|
(3.2)

where f(t, d) is the number of times the term t appears in the document d and |d| is
the number of terms of d, that is, the vocabulary.

The second measure is the inverse document frequency (Idf), idf(t,D), where t is the
term and, D the total number of documents, that is, the corpus. Idf is used to determine
how common or rare a word is in the corpus. This metric calculated as the logarithm
of the total number of documents |D| (cardinality of D), divided by the number of
documents that contain a word DF , as shown in:

Idf(t,D) = log
( |D|
DF

)
(3.3)

where DF is the number of documents in which the term t appears. Finally, TF-IDF
is computed in Equation 3.4, where the Equations 3.2 and 3.3 are used.

TF − IDF (t, d,D) = Tf(t, d).Idf(t,D) (3.4)

The representative vector created using TF-IDF, returns an improved approximation
than BOW (Section 3.4.1). Both models are based on linear algebra and allow computing
the similarity between queries and documents, representing the texts from a lexical
aspect. Despite giving representative results in the area of NLP, they present highly
dimensional problems, since the size of the representative vector is the number of unique
words in the document. Also, it lacks semantic sensitivity, because the documents are not
associated with their context. Due to these disadvantages, new methods have emerged
that seek to consider the semantics of documents to create the feature vector. These
methods are described in Section 3.5.
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3.5 Word embeddings
The techniques described above (Section 3.4) have the main disadvantage that they

ignore the semantics and syntax of the words. Another disadvantage is the high dimen-
sionality of data, because the more terms the documents have, the larger the feature
vector. In contrast, for Word Embeddings a fixed size is established.

Word embeddings are models for word vector representation, this model search that
words with similar meaning have similar representative vectors. Therefore, in a semantic
vector space, words with similar meanings should be located closer to each other. This
model represents each word with a real-valued vector. For example, Figure 3.6, the word
house has a semantic meaning related to the word apartment. Hence, the vector repre-
sentation of word house should occupy a position close spatial to the word apartment.
Formally, the cosine of the angle between these vectors should be close to one. It will
allow words that are used in similar ways to have similar vector representations, and
naturally capturing their meaning. Looking for the word to be represented using its con-
text. This is an advantage over the TF-IDF model, where different words have different
representations, regardless of how they are used.

Figure 3.6: Semantic representation of a word in word embeddings.

Word embeddings models are used with success in several NLP applications such
as document classification [Seb02], question answering [TKL+03], name entity recogni-
tion [TRB10], etc. There are several methods of Word Embeddings, such as Word2Vec,
FastText, GloVe, and BERT. But, we studied Word2Vec (Section 3.5.1).

3.5.1 Word2Vec

The Word2Vec model [MCCD13], converts text into a numerical representation (vec-
tors). These vectors are distributed in a vector space, where the vectors of similar words
are close to each other (they are grouped), considering similar characteristics for their
grouping such as the context. As we were saying of a vector space, the association of
words with other words is shown by mathematical similarities.
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In detail, Word2Vec [MSC+13] is a neural network, which learns to predict words
using its context (neighboring words). Word2Vec is a shallow neural network that has
three layers, input layer-hidden layer and output layer. The input layer is the collection
of documents, that is, the context. The output layer is the target word. But, to obtain
the feature vector (numerical representation) of the target word, the training process is
repeated, so that words with similar meanings begin to the group, achieving that the
weights of the neural network stabilize and thus obtain the vector. In other words, the
vectors are formed by the weights of neurons of the hidden layer because from a collection
of k neurons we would have k weights, which allow us to obtain a feature vector of size k.

To exemplify the model, Figure 3.7 shows an example of this neural network. Let
us suppose we have the input sentence "My pet is cheerful and playful". The neural
network tries to learn features (weights W and W ′), which look at words in a window,
for example, "my pet is" and it tries to predict the next word "cheerful". Hence, with
the input words "my", "pet", and "is"; the training process adjusts the weight of the
network, so the probability of output "cheerful" is maximized; as compared to other
words, which are in the vocabulary. As the training procedure repeats this process over
a large number of sentences, the weights stabilize. As shown above, these weights are
then used, in this example, as the vectorized representation of la word "cheerful".

Figure 3.7: Example of Word2Vec neural network.

Word2Vec has two methods: Common Bag Of Words (CBOW) and Skip Gram.
CBOW uses the context of each word (neighboring words) as the input and tries to
predict the target word. The Skip-gram model reverses the use of word target to predict
the context words. Due to its naturalness, CBOW is the fastest and best to predict
frequent words in the corpus, in addition to using little memory. On the other hand Skip
Gram is better with rare or infrequent words in the corpus, but is slower than CBOW
and uses more memory than its.
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3.6 Graphs and complex networks
The study of complex networks has almost a century of history, but since the late

50’s, thanks to the study of two mathematicians, Erdös and Rényi, a great advance has
been made in graph theory from the viewpoint of the formulation of mathematical algo-
rithms, achieving a revolution when it comes to modeling these problems, differing from
the classical way that used to be done, thus establishing the theory of random networks.
It is true that not all networks in real life are random, but the model proposed by these
two scientists established the first sensible and rigorous method of study for complex
networks.

Thanks to the advances that have taken place recent years, the study of networks has
advanced drastically, now being able to model and program networks and graphs with
a large amount of data and with numerous tools that allow the detailed study of these
networks and these data.

Currently, complex networks are studied thanks to their relationship with science and
all the areas in which they can be applied. Many fields and systems that exist in reality
can be modeled and studied through complex networks, graphs that are generated using
nodes or vertices and arcs, which through certain indices and characteristics, allow to
study them from various points of view. There are many examples of complex networks
in real life, such as the Internet, the Worldwide Web (WWW) or social networks, studied
from many different aspects.

3.6.1 Networks applied to Language Studies

Recently, a growing body of literature has been employing complex networks to model
and analyze human languages. According to findings from studies considering several
languages, human languages are also a complex system, with some properties emerging
from experience, and social interaction, for example. Therefore, the models and tools
of complex networks constitute a relevant methodology to study the language. In this
context, a network N is given by N = (V,E), where the set of nodes V represents lin-
guistic units and the set of edges E represents relationships among those units, as seen
in Figure 3.8. Some examples of linguistic units are words, phonemes, and morphemes.
The relationships among those units could be extracted from different linguistic levels,
such as co-occurrence, syntactic, or semantic. The co-occurrence relationships represent
the order of the words in a sentence.

In this model, two words are connected if they are adjacent in at least one sen-
tence. In the syntax-based models, each edge represents a syntactic dependency, which
connects a head to a modifier word. Finally, the extraction of semantic relationships
requires a deeper analysis. Despite the differences, complex networks modeling any of
those relationships display some properties found in many real networks. For instance,
show that the co-occurrence networks of human language display the small-world and
scale-free properties. Their networks presented more than 450,000 nodes and the rela-
tionships were obtained from an extract of the British National Corpus. In addition,
extracted syntactic dependency networks from three languages (European Languages),
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Figure 3.8: Network N , where N = (V,E). V represents nodes and E represents relationships
between nodes.

namely, Romanian, Czech, and German. They found the presence of small-world struc-
tures and discovered that their degree distributions follow a power law. Taken together,
these findings suggest that human language presents a structure that could be described
by universal patterns [KE07]: Node degree, that is the number of edges connected to
that node; PageRank; betweenness, it measures the number of conversations that can
pass through a node on the network; ShortestPaths, a path that links two nodes i and j
with a minimum length.

3.7 Graph embeddings
Graph embeddings are methods whose objective is to extract the properties of a

graph to convert them into a vector or set of vectors of fixed size. Such representations
must preserve the topology of the graph, relationships between the nodes, as well as
important information about graphs, subgraphs and nodes [NCV+17].

3.7.1 Node2Vec

Node2vec [GL16], is a method that returns numerical representations (vector model-
ing) of each node of a graph, optimizing the neighborhood preserving. Node2vec treats a
graph as a piece of text and nodes as text tokens, although the text is a linear sequence
and the graph is a complex structure. On the other hand, Node2vec looks for nodes that
share similar roles and have similar representative vectors

The Deepwalk method, which is based on the BFS and DFS methods to perform
random walks, was previously proposed. The sampled BFS is a local microscopic view
and the sampled DFS is a global macroscopic view. Node2vec combines the BFS and
DFS methods to sample the nodes in the graph, as shown in Figure 3.9. The goal is
to find a flexible notion of a node’s network neighborhood. As a result, perform several
random walks, which efficiently explore diverse neighborhoods of a given node.
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Figure 3.9: BFS and DFS used in Node2vec.

3.7.2 Graph2Vec

Graph2vec converts nodes and edges into a vector space representation. The ob-
jective of this method is to generate low dimensional vectors preserving the topolog-
ical properties of the graph (related to graph structure and interconnections between
nodes) [NMV+17].

Graph2vec represents entire graphs as fixed-length feature vectors – inspired by neural
document embeddings models, the authors extend the model to learn graph embeddings.
As Node2Vec is an analog to Word2Vec, Graph2Vec is an analog to Doc2Vec. Graph2Vec
proposes to view an entire graph as a document. See the subgraphs around every node as
words that compose the document. Moreover, add document embedding neural networks
to learn representations of entire graphs. An input of algorithms is a set of labeled or
unlabeled graphs, in the case of unlabeled graph nodes are labeled with their degree (or
you can provide a set of features for each node). The main motivation behind this idea
is that structurally similar graphs will be close to each other in the embedding space.



Chapter 4

Related works

For this research, we performed a comparison between several document vector rep-
resentation methods for the authorship recognition task. In most Natural Language
Processing related applications, the vectorization stage is necessary, where the input
texts are converted into their mathematical representation or a more appropriate model.
Over the years, researchers have proposed several methods to find the most suitable
representation of a document. These methods could be divided into two large groups:
representations based on high-dimensional vectors (classical methods like Vector Space
Model) and methods based on dense vectors with fixed dimensions (Word embeddings
and Document embeddings). Another more recent approach widely studied is modeling
texts as graphs or networks. Researchers used different measurements and concepts re-
lated to complex networks to find interesting patterns derived from a set of texts. These
concepts are useful for various applications such as document summarization, keyword
extraction, analysis of author writing for authorship attribution, topic labelling, auto-
matic correction of texts, among other applications.

We describe in Section 4.1 the main works related to authorship recognition. Then, in
Section 4.2 we describe the most relevant works that dealt with the traditional methods
of vector space models, subsequently in Section 4.3 we briefly detail the works and
applications related to word and sentence embeddings. Finally, in Section 4.4, we explain
how the concepts of graphs and complex networks were used to model texts for several
applications.

4.1 Authorship attribution
The objective of authorship attribution methods is to extract textual features that

are capable of distinguishing the authors of a set of texts. The research area in charge
of finding features that quantify the authors’ writing style was called stylometry. The
different features that can be extracted from the texts can be grouped into the following
categories: lexical and character features, which consider the texts as sequences of words
or characters, while the syntactic and semantic features require deeper linguistic analysis
and advanced computational methods for its development [Sta09a].

27
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One of the first works to use lexical features was [Men87], where the length of sen-
tences and words was used to identify the authorship of a set of documents. Various
works used as lexical attributes the sentence and word length, word frequencies, char-
acter frequencies and vocabulary richness. Other works studied the importance of the
use of function or common words, which includes articles, prepositions, and pronouns.
According to [Sta09a] these words can capture the writing patterns of the authors. Other
investigations considered the most frequent words as features related to an author’s writ-
ing, therefore, they considered each text as a vector of frequencies. In this way, it was
possible to use machine learning methods to classify these extracted vectors. Several
authors compared the results of evaluating both function words (stopwords) and content
words (most frequent words) as features. The authors concluded that frequency-based
features could reveal certain stylistic patterns in texts.

Other authors considered analyzing the texts as sequences of characters. In this way,
they established the following features: alphabetic counts, the frequency of punctuation
marks, frequency of letters, digit character count. Another approach was to extract the
frequencies of n-grams characters, that is, they selected subsets of n adjacent characters
to be considered as features of each text. Several authors concluded that the most com-
mon n-grams of characters are relevant for authorship attribution [Sta09a].

Other research focused on syntactic approaches that included the extraction of rewrite
rule frequencies. These approaches measure how a sentence could be decomposed into
its constituent parts. In this sense, they analyzed sentence and phrase structures from
source documents. Other works applied part-of-speech (POS) tagging to find the gram-
mar categories of each word (nouns, adjectives, verbs, adverbs) and in this way, they
analyzed the proportion regarding the use of these categories by each author. Recent
works considered semantic attributes, where they analyzed the semantic relationships
between the words of a text. Synonymy relationships and semantic dependencies were
commonly used for these approaches [Sta09a, GAPDSP18].

4.2 Classic techniques and vector space models
The need to represent texts as numerical vectors arose from the information retrieval

area. The objective of this area is to find data of an unstructured nature (generally texts)
that satisfies an information need within large data collections (stored on the Internet).
In this way, to effectively retrieve the most relevant documents, the texts were trans-
formed into a logical or mathematical representation of them [Cho10].

The first models were models based on set theory, where documents are represented as
a set of words or phrases. The most important models are the Boolean model, Extended
Boolean model, and Fuzzy model. In Boolean models, the documents to be searched and
the user’s query is conceived as a set of terms. Therefore, the retrieval is based on the
presence or absence of the query terms in the documents. Although they are easy to
implement, these models have several weaknesses: they can retrieve many or few docu-
ments, all terms have the same weight, and it is difficult to establish a ranking among
the retrieved documents [LMG09, War92].
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From the disadvantages of previous models, the algebraic models emerged, where the
documents and queries are represented as vectors, matrices or tuples. The best known
models were the vector model (bag of words model), and the generalized vector model.
For the bag of words model or frequency model, each component of the document vec-
tor reflects the importance or weighted frequency of each term (word) in the docu-
ment [SWY75b]. The computation of the importance of each term played a fundamental
role in making the similarity between the more reliable documents. For this reason, other
more efficient methods were proposed for weighting the terms of each document vector.
One method that presented several improvements was the TF-IDF weighting model.

The TF-IDF model was developed as an improvement on the Boolean and frequency-
based models. This weighting scheme measures how relevant a word is in a document
collection. The TF-IDF value increases proportionally to the number of times a word
appears in the document, but it is compensated by the word frequency in the document
collection [SB88]. Even though this model had significant improvements over previous
models, it still has some limitations:

• Long documents are underrepresented as they contain few common values

• Search words must match the words in the document

• Semantic sensitivity, documents with similar contexts but with different vocabulary
will not be associated

• High dimensionality for large document collections

To reduce the dimensionality problems presented in the previous approaches, the
LSA (Latent semantic analysis) method was proposed [DDF+90]. This method assumes
that words close in meaning occur in similar text segments. Like the previous methods,
a matrix containing word counts per document was constructed over a text collection. In
that matrix, rows represent unique words and columns represent each document. After
the matrix was constructed, a mathematical technique called singular value decompo-
sition (SVD) [GR71] was applied for that matrix. This technique was used in order to
reduce the number of rows while preserving the similarity structure among the columns
of the matrix. The new values resulting from this reduced matrix were considered as
representative vectors of each text. Therefore, the documents could be compared by con-
sidering some similarity measurement between the vectors representing such documents.
The similarity measurements (for example cosine similarity) could have values between
0 and 1, where values close to 1 represent similar documents, while values close to 0
represent different documents.

4.3 Word and document embeddings
First, in Section 4.3.1 we will describe the main methods related to Word Embeddings.

Later, in Section 4.3.2 we will discuss about Document Embedding methods.
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4.3.1 Word embeddings representations

Due to the limitations of the sparse vector representations, methods based on word
and document embeddings were developed. Word embeddings are a set of methods that
assign a representative vector for each word in the document. Such vectors store semantic
information, therefore, they can be associated or dissociated to other vectors (words)
according to different contexts [Bak18]. Word embeddings have been useful for several
important NLP related applications such as:

• Identification of synonyms, where the similarity between the vectors of two words
is greater than a previously defined threshold.

• Semantic clustering of a set of similar words (words whose feature vector is similar).

• The vector of each word can be used to generate the representative vector of a
complete text for text classification and text clustering approaches.

The first word embedding approaches that emerged were Word2Vec, GloVe, Fast-
Text, among others. The Word2Vec model, proposed by [MSC+13], is composed by a
neural network with three layers. The main idea of this algorithm was to learn word
representations that can predict a word given its surrounding or context words. This
model was quite useful to detect synonyms and to recommend words from an incomplete
sentence. The authors of [MSC+13] even evaluated this method for the word analogy
task, where, from the relations “Germany-Berlin”, and “France-X”, Word2Vec was able
to correctly predict the word "Paris".

The models for learning word representations are mainly divided into two large
groups: global matrix factorization methods and local context window methods. Word2Vec
is a model based on local context window methods. The GloVe model (Global Vectors
for Word Representation) [PSM14] was proposed as an improvement to the Word2Vec
method because it incorporates both characteristics of the methods to learn word repre-
sentations: it is based on local statistics (local context information of words), and it also
incorporates global statistics to obtain the representative word vectors. This method was
successfully evaluated for the following applications: word analogy task, word similarity,
and named entity recognition.

Most Word embeddings methods ignore word morphology (internal structure of words),
therefore, this limitation could be a problem for morphologically rich languages contain-
ing a large vocabulary with many rare or uncommon words. [BGJM16] proposed the
FastText method with the aim of overcoming such limitations. This model is an exten-
sion of Word2Vec, and each word is represented as a set of character n-grams(subwords
of n letters): corpus words are divided into several n-grams and they are trained in the
neural network. After the training stage, all extracted n-grams are associated with their
respective word embedding representation. Therefore, the vector representation of a word
is based on the sum of the vectors of the n-grams comprising such words. In comparison
to other methods, FastText has the following strengths: the training stage is faster than
other methods, and it can obtain vector representations for words that did not exist in
the training data. Also, this method is good to represent rare or uncommon words.
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4.3.2 Document embeddings representations

The goal of methods based on document embeddings is to map sentences, paragraphs
or whole texts into informative vector representations. We will now describe the most
popular approaches related to document embeddings. Several of these methods are in-
spired by approaches based on word embeddings, and some of them can be considered
as generalizations of the Word2Vec model.

The simplest methods for obtaining document embeddings were based on averaging
word embeddings. Therefore, given a document, it was feasible to apply some arithmetic
operations on the vectors of the words that comprise the document to obtain a unique
vector representing the entire document. The operations that were applied were average
and sum. These methods were quite useful for representing documents, however, mod-
els based on word embeddings need to be optimized for task sentence representation.
For that reason, [KBDR16] trained word embeddings directly for the purpose of being
averaged. They trained a neural network that learns word embeddings by predicting,
given a sentence representation, its surrounding sentences. This model was successfully
evaluated on 20 datasets for different applications.

The authors of [PGJ17] proposed the Sent2Vec model, which is a combination of the
classic Word2Vec model and the method based on averaging word vectors. Word2Vec is
extended to include word n-grams, and it is also adapted to optimize the generated word
embeddings in order to average them to yield the representative document vectors. One
of the strengths of this method is its low computational cost during the training and
inference stage of sentence embeddings. Therefore, it is a very useful method to learn
sentence representations from extremely large datasets.

One of the first attempts to generalize the Word2Vec method to obtain document vec-
tor representations was the Paragraph Vector model (or Doc2Vec) proposed by [LM14].
They trained the vector representations for predicting words in a paragraph. [LM14] con-
catenated the paragraph vector with the representative vectors of the word comprising
the paragraph, and then they predicted the following word in the given context. The
word and paragraph vectors were trained using the neural network algorithms stochastic
gradient descent and back propagation. This method was evaluated for the following
NLP applications: sentiment analysis, information retrieval and document similarity.

The Doc2VecC (Document vector through corruption) algorithm, proposed by [Che17],
combined the previous model based on paragraph vectors (Doc2Vec) with methods that
average word embeddings to get document vector representations. This algorithm used
a neural network composed of an input layer, a projection layer and an output layer to
predict the target word. Where, the embeddings of adjacent words provide local con-
text, while the vector representation of the complete document represents the global
context. Different from the paragraph vectors, Doc2VecC represents each document as
an average of the embeddings of words randomly sampled from the document. Initially,
this method was evaluated for sentiment analysis, document classification, and semantic
relatedness tasks. The results showed that this method achieved a better performance
than the Doc2Vec model.
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[KZS+15] proposed the model called Skip-thought vectors, which used the Word2Vec
method in the following way: they extended this method to sentences and they pro-
posed an encoder-decoder model. The encoder trains the input sentence and generates
a vector for that sentence. Then, two decoders that have as input parameter the gener-
ated vector from the previous step. The first decoder attempts to predict the previous
sentence, while the second decoder tries predicting the next sentence. [KZS+15] used
recurrent neural networks (RNN) to construct the encoder and decoder. The encoder
uses a word embedding layer in order to convert each word from the input sentence
to its corresponding word embedding. The decoders also used this embedding layer.
This method was successfully evaluated for several NLP tasks such as semantic relat-
edness, paraphrase detection, image-sentence ranking, question-type classification, and
sentiment and subjectivity analysis. However, the training stage of the Skip-thought
model is very slow as many deep neural language models. In this sense, [HCK16] pro-
posed the FastSent method, which is a significantly simpler variation on the Skip-thought
method but with much lower computational expense: given the vector representation of
a sentence in context, this method simply predicts the adjacent sentences. The FastSent
generated vectors were evaluated for six sentence classification tasks: paraphrase iden-
tification, movie review sentiment, product reviews, subjectivity classification, opinion
polarity, and question type classification.

The latest models we review for this research are the BERT (Bidirectional Encoder
Representations from Transformers) [DCLT18] and the Sentence-BERT(SBERT) [VSP+17].
These models achieved a better performance compared to other methods because they
are based on contextual word embeddings. For example, for the sentences “I like apples”,
and “I like Apple Macbooks”; the other methods will produce the same representation
for the word “apple”, while the BERT-based methods can differentiate the context of
that word and generate two vector representations (for the fruit context and computer
context). These models are capable not only for capturing the word polysemy, but also
they can capture other relevant information that would produce more accurate feature
representations.

BERT is an encoder that obtains bidirectional representations from transformer net-
works. This method first creates an embedding for each unique word in a sentence (like
Word2Vec). However, the same words can appear in more than one sentence (even in
different contexts). Then, BERT creates embeddings for each word pair in the sentence,
but this algorithm considers how close these words are to one another in the sentence.
Therefore, the BERT method was an excellent model to extract the feature vectors of
words comprising the documents, also that has been pre-trained with a gigantic corpus
because it was born initially to solve different NLP tasks. The Sentence-BERT method
was proposed as an improvement of BERT in order to generate semantically meaningful
sentence embeddings. Both BERT and SBERT were evaluated for the following tasks:
question answering, language inference, and document classification.
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4.4 Complex networks for text representation
The modeling of texts as graphs and the use of complex network concepts have meant

a great advance for different applications in the NLP area. Recent studies have used such
representations for various applications such as automatic language understanding and
generation, sentiment analysis, word sense disambiguation, text summarization, keyword
extraction, text classification, authorship attribution, semantic analysis, among others.
For example, for document summarization tasks [TA17, TA18], documents are repre-
sented as sentence networks, where each node is a sentence and edges are connected
according to a similarity measure. In these works, complex network metrics are applied
in order to find the most relevant sentences (nodes) that could compose a final summary.
For the keyword extraction, documents are represented as word co-occurrence networks,
where most important words from such networks are considered as keywords. Several
works used complex network measurements to represent texts achieving excellent results.

In this sense, the concept of linguistic networks emerged, where research on statisti-
cal physics is used in the study of languages [COJT+11]. A linguistic network could be
composed by a group of interconnected syllables, words, sentences or paragraphs. The re-
lationships (edges) between these text segments (nodes) were established in several ways.

According to [COJT+11], linguistic networks could be classified into semantic and
superficial networks. Semantic networks contain semantic relationships between words
such as synonymy, antonymy, hypernymy and hyponymy. These networks are constructed
from dictionaries, lexicons or thesaurus. Superficial networks are based on: the internal
structure of words (for example morphological relationships), position of words in the
text, syntactic structures, among other factors.

For semantic networks, the nodes are represented by words from any language, and
two nodes are connected if they express similar concepts [COJT+11]. Thesaurus is com-
monly used for constructing these networks. A thesaurus is a list of controlled words
or terms used to represent concepts [Rei96]. For English, the WordNet database [Mil98]
is an excellent tool to construct semantic networks. WordNet is a lexical database that
groups English words into sets of synonyms, providing short and general definitions and
it can store the semantic relationships between sets of synonyms [Mil95].

There are several examples of superficial networks. For example, the syllables that
compose any language could be used to build a network, where nodes represent the syl-
lables and the edges represent that two syllables co-occur in the same word [COJT+11].
Similar to this idea, word co-occurrence networks or word adjacency networks are con-
structed to represent the proximity of words in documents. For such networks, words
represent the nodes, and two words are connected if they are neighbors in the text [CS01].

Word co-occurrence networks were useful to represent the technical and literary texts
for several languages [CLA+06]. The topological properties of these networks were used
as feature vectors for several classification tasks [dACA16]. In the same way, these net-
works were used for authorship characterization, where network measurements served to
represent stylistic features from English famous writers [MHA16, APNOJ07].
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The authors of [Edm98] used word co-occurrence networks to identify synonyms in a
given context. In another application, the text quality essays written by scholar students
were evaluated using the measurements extracted from the networks. The network mea-
surements correlated with text quality scores assigned by humans [ANOJC07]. In the
same way, these networks were used to evaluate the quality of machine translations. The
network measurements from the original text and the translated text were compared. The
authors evaluated the difference between the original text and the translation [AAP+08].

Word co-occurrence networks were also used for keyword extraction. [VOGMB19]
extracted several network measurements for each word, and they considered as keywords
the words associated with the top values of the considered measurements. A sentence
network was proposed by [AOJdFCN09, TA17] for the document summarization task.
The nodes of such a network are sentences, and two sentences are connected by a simi-
larity metric. [AOJdFCN09, TA17] employed several network measurements in order to
rank each node (sentence). The most ranked sentences were considered to compose a
final summary.

Other important networks were lexical and syntactic networks. Lexical networks were
useful to the construction of spellcheckers, where each edge is linked with the ortho-
graphic distance between words [CTM+07]. The syntactic networks were used for the
study of language acquisition [ANOJC07].

In relation to the focus of our work, the authors of [SKD19] discuss the correspon-
dence or relationship between the authorship of a document and the structure of the
network generated from the document. First, they generate from the document an adja-
cency network of words, that is say, a graph. Then, they extract some properties of the
graphs to form the characteristic vector of each document, such properties are: Vertex
degree, Clustering coefficient, Average shortest path length, Assortativity coefficient and
Modularity. Finally, they normalize the vector, to go to Data grouping and classification
methods and assign the author to each document.

4.5 Graph embeddings
The methods of graph embeddings consist of obtaining from a graph a vector or set

of vectors representing such graph. This representation must capture the topology of
the graph, relationships between the nodes and other information that is relevant to the
graph, subgraphs and nodes. The more properties of the graph that the vector captures,
the better the graph will be represented for several applications. The graph embeddings
can be grouped as follows [GF18]:

• Vertex or node embeddings, where we obtain a representative vector for each node
of the graph

• Graph embeddings, where a single vector can represent all the properties of a graph.

There are many challenges for extracting the embeddings from a graph. Below we
mention the most relevant challenges [GF18]:
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• It is necessary that such vectors represent the topology of the graph, the connec-
tions between each vertex, as well as the neighborhood of each node.

• Networks representing real world applications are generally large, including thou-
sands or millions of nodes and connections. It is a real challenge to implement a
method that generates a vector representation for these types of graphs with a low
computational cost maintaining the topological properties of such networks.

• It is also necessary to know what size or dimension the embedding vector of each
graph will have. High dimensional representations will preserve much more infor-
mation, however, they may require too high computational times for their imple-
mentation.

According to [GF18], the methods for obtaining the vector representations of graphs
can be divided into three categories: methods based on factorization, methods based on
random walks, and methods based on deep learning. Methods based on matrix factoriza-
tion represent the connections between nodes using matrices and then they factor such
matrices to obtain the embedding representation. The most common matrices to rep-
resent the connections are the following: node adjacency matrix, the Laplacian matrix,
probability matrix, among others. These methods are based on the properties found in
each matrix of the graph. On the other hand, random walks are quite useful for simulat-
ing various topological properties of the graph, such as centrality measures and similarity
metrics. They are also useful because they partially traverse the graph to obtain mean-
ingful measurements when the graph is too large to fully analyze. For this reason, some
methods use algorithms based on random walks to obtain the representative vectors of
each node of the graph. Finally, deep learning-based methods use deep neural networks
in graphs to apply dimensionality reduction.

Recently, several studies are focusing on developing methods to represent graphs as
vectors due to their large number of applications, such as i) network compression, where
graph embeddings can be interpreted as a summarization of the graph [WCZ16]; ii)
visualization, since embedding represents the graph in a vector space, dimensionality
reduction techniques such as PCA (Principal Component Analysis) can be applied to vi-
sualize the graph [PARS14]; iii) clustering, where clustering algorithms such as k-means
can be used on the embedding of the nodes to group them and visualize the clusters
found by these methods. In the same way, the embeddings of a set of graphs can be
used by k-means to group graphs with similar properties [WS05]; iv) node and graph
classification, where the embeddings can extract the features of each node or graph based
on the structure of the graph. For example, in a word network (where each node repre-
sents a word), each word can be classified according to its grammatical category, in this
sense, the embedding of each node could be used with machine learning algorithms to
determine whether a word is a noun, verb, adjective or adverb [GF18].

From the mentioned applications, we think that it is possible to model literary texts
as graphs (networks of words or networks of sentences) and then obtain the embeddings
vectors of each generated graph. Finally, these vectors can be used as input to several
machine learning algorithms. In the next chapter, we will describe the use of these
methods in more detail.
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Chapter 5

Methodology

In Chapter 3 and Chapter 4, we described several methods commonly used for the
mathematical representation of documents. These methods included traditional vector
space methods and word and graph embeddings models. The above-mentioned were suc-
cessfully used to represent texts for several NLP tasks. We also studied concepts related
to complex networks, where a document could be represented as a graph of words, sen-
tences or paragraphs; and edges could be established in several ways. Recently, many
works have focused on representing texts as networks, achieving excellent results. They
found that networks are a powerful tool to represent everything in our real world. Due to
the good performance achieved using complex network concepts, novel works proposed
to compress the properties of such networks in vector representations [SKD19]. In this
way, related concepts to graph and node embeddings emerged.

The main goal of this Master work’s is to perform a comparison between several
methods for vector representation of documents for the task of authorship recognition.
Therefore, given a set of features extracted from literary texts and a set of candidate
authors, we used several supervised classifiers to associate each author with his corre-
sponding book. We selected two datasets for authorship attribution containing literary
books written in English and Spanish. We generated several feature vectors for each lit-
erary text with the aim of determining which vectors best represent the writing patterns
of each author. In the same way, we intended to analyze whether the proposed methods
of vector representation of texts are capable of adequately capturing and representing
the particular characteristics of each language (characteristics related to the lexical, syn-
tactic and semantic level of each text).

We analyzed the strengths and weaknesses from the most traditional vector space
models to the most recent methods of graph and node embeddings. Many vector repre-
sentation methods have been extensively studied. For example, methods like vector space
models (frequency and TF-IDF model) and word embeddings (Word2vec) have been suc-
cessfully employed to represent texts in different NLP tasks. Another objective of this
work is to analyze if those new models of text representation more sophisticated (Graph
embedding), they achieve represent texts as feature vectors. For Graph embedding we use
Graph2vec and Node2vec. These models seek to be better than the traditional methods,
such as vector space models and word embedding.

37
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In order to graphically understand the entire process of the proposed methodology,
Figure 5.1 shows the architecture for this research.

Figure 5.1: Architecture for this master research.

The proposed methodology for comparing the performance of vector document rep-
resentation methods using authorship attribution is organized as follows:

1. Dataset preparation:We selected two datasets of authorship recognition for text
written in English and Spanish. Section 5.1 describes the selection process for both
datasets.

2. Text pre-processing: This step is responsible for preparing the source texts to be
used for vector extraction algorithms. This preparation includes text segmentation,
stopword removal, lemmatization, and text prunning. Section 5.2 shows the text
pre-processing step.
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3. Feature vector extraction (Section 5.3): The main phase of this work includes
the methods for representing texts as feature vectors. Each one of these models
includes several ways to extract the feature vectors of documents. The proposed
methods are listed as follows:

(a) Vector space models: Section 5.4 shows the process for vector extraction using
the Frequency and TF-IDF model.

(b) Word embeddings: Section 5.5 describes one of the first word embedding mod-
els, Word2vec.

(c) Graph embeddings: Section 5.6 shows the construction process of document
networks. We modeled texts as word co-occurrence and sentence networks.
This step also includes the modeling of such networks as vectors using graph
and node embeddings.

4. Classification: The feature vectors obtained in the previous step are used as input
for traditional machine learning methods. Section 5.7 describes in detail this step.

5.1 Datasets
For this Master work, we selected two datasets (in English and Spanish) for the

authorship attribution task. Authorship attribution is a method, which assigns a text
document the most likely writer or author from a set of candidate authors [Mar].

The selected datasets were downloaded from the Gutenberg Project [Har71], which
is an online library containing more than 60,000 free eBooks in different languages. To
collect the datasets, we considered the following criteria:

• English dataset: We extracted from the Gutenberg library the English books
following the works of [SKD19, FdANSQM+18]. This dataset comprises 78 books
containing 13 authors and 6 books per author. The complete list of the books and
authors is detailed in Appendix A.1.

• Spanish dataset: We collected this dataset from the Gutenberg library because
we did not find available datasets for Spanish. We first collected all the Spanish
documents from Guttenberg, and then we looked for those authors with the largest
number of books. After removing several texts, our Spanish dataset comprises 105
books containing 21 authors and 5 books per author. The complete list of books is
detailed in Appendix A.2.

Among the criteria for selecting the authors we have (i) Each author studied has
at least 5 books, (ii) Each book has an average of 57643 words for English texts and
33451 for Spanish texts and (iii) Availability, each book is available to the public.Below
we will show in Table 5.1 some statistics related to our database: the average number
of sentences, average number of words, maximum and minimum number of sentences,
maximum and minimum number of words.
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Statistical data English Spanish
Maximum number of sentences 14717 10800
Minimum number of sentences 1562 186
Average number of sentences 5547 3042
Maximum number of words 154206 99242
Minimum number of words 22986 1458
Average number of words 57643 33451

Table 5.1: Statistical data from the English and Spanish dataset

When the dataset selection process is performed, the larger the size of the documents,
the less marked the authors’ styles are (the more the styles resemble each other) and the
less variety of epochs the dataset has, it will be more difficult to find the author for each
document. So, to make a fair comparison between the performance of the methods used
when using texts in English and Spanish, we proceeded as follows. On the one hand,
documents written in English have more words than documents written in Spanish. On
the other hand, documents in Spanish are from nearby times, being more difficult to
classify by author and thus we managed to equalize the difficulty identifying the author
in both cases.

With these dataset where each document is cataloged with its class, in this case the
class is the name of its author. The entire process for the extraction of feature vector
is conducted. However, before performing this process, the texts to be used must be
prepared, as seen in Section 5.2.

5.2 Text Preprocessing
Before extracting the representative vectors for each document, we need to transform

the texts of dataset in a more convenient way. This process is called text pre-processing.
This phase comprises the following pre-processing steps: text segmentation, stopword
removal, lemmatization, and text prunning. The definition and implementation of the
previous steps are described as follows:

• Text segmentation:We used the PythonNLTK - Natural Language Toolkit [Bir06]
for text segmentation. This step consists of dividing the texts into sentences. A
sentence is defined as any text segment, which is separated by a period, the ex-
clamation or question mark. We applied this step because the following vector
representation techniques need as input the documents divided into sentence vec-
tors like graph embeddings. This method is described in the following sections.

• Stopwords and punctuation removal: In this step, we removed the stopwords,
which are usually filtered out in several NLP tasks and do not contribute semantic
content. The stopword list generally contents prepositions, adverbs, and articles.
An example of stopword elimination for English is shown in Table 5.2, the words
to be deleted are crossed out.
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Orginal Text Text without stopwords
This is a very bare and incomplete way of
putting the case. The human soul moves
in many channels, and Mr. Casaubon, we
know, had a high sense of justice

This is a very bare and incomplete way of
putting the case. The human soul moves
in many channels , and Mr. Casaubon ,we
know , had a high sense of justice

Table 5.2: Example of stop word removal (Text taken from: Middlemarch. Author: George
Eliot)

For this research, we considered removing the stopwords considered by the Python
NLTK toolkit [Bir06]. This library has a list of stopwords stored in 16 languages.
We also removed punctuation marks. In the Aprendex B we can see the complete
list of storpwords and punctuation marks for English and Spanish. In Table 5.2 we
can see an example of removing stop words from a text.

• Lemmatization: This step is responsible for transforming the words into their
canonical form (or lemmas). For example, plural nouns converted to their singu-
lar version while verbs are transformed into their infinitive forms. An example of
stemming for English is shown in Table 5.3, the changes are highlighted.

Text without stopwords After Lemmatization
This bare incomplete way putting case.
human soul moves many channels Mr
Casaubon know high sense justice

This bare incomplete way put case.
human soul move many channels Mr
Casaubon know high sense justice.

Table 5.3: Example of Lemmatization (Text taken from: Middlemarch. Author: George Eliot)

For the implementation of this step, we used the WordNet Lemmatizer from
NLTK library [Bir06], for English text. For Spanish texts, we used the Spacy li-
brary [HM17]. This library contains several models to predict named entities part-
of-speech tags and syntactic dependencies. Spacy was trained for 16 languages.
They can include word vectors (which will be used as features during training) and
other pre-trained representations.

• Text pruning: The books we selected vary a lot in relation to their size. The book
size was considered in relation to its number of words. There are numerous books
with thousands of words and there are plenty of books containing few words. Due
to this unbalanced problem in relation to the size of such books (number of words),
we need to apply a text pruning step. For this step we first get the size M of the
smaller book (M is the number of word). Then, we select the first M words for
each book from datasets. We performed two types of test for this step: i) applying
the text pruning for each book, and ii) considering the entire content of each book.
In the Chapter 6 (Results) we detailed the performed tests.

After conducting all previous steps for the English and Spanish dataset, we stored the
pre-processed versions of such datasets. We did this procedure because the pre-processing
stage is a time consuming task. In this way, To avoid repeating several times the text
pre-processing methodology, we simply used the dataset containing the pre-processed
texts.
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5.3 Feature vector extraction
We considered the pre-processed datasets to generate the feature vector. In order

to obtain the feature vector that represents each book from the selected datasets, we
developed three techniques. These three different techniques are: i) traditional vector
space models (Section 5.4), ii) we used more recent methods called word embed-
dings (Section 5.5). iii) For the third method, we converted the pre-processed text into
networks. Such networks were used as inputs for graph embedding models (Section
5.6). In the following sections, we will describe with more detail the above three ways
for document representation. In Figure 5.2 we can observe these three paths and the
methods experienced in each path.

Figure 5.2: Feature Vector Extraction

5.4 Vector space model
The first methods we proposed are based on the traditional vector space models, such

methods have been used with success in text clasification due to their simplicity and good
results they obtained. These methods represent the texts as high sparse numerical vectors
of N dimensions, where N is the total number of unique words from the corpus of texts.
The most widely used approaches are the frequency and TF-IDF models. Next we will
explain how we used both approaches:

5.4.1 Frequency-based approaches

Each source text from the pre-processed dataset is converted into a frequency vector
of N dimensions, where N is the vocabulary size from dataset. We used the Feature
Extraction module forms the Python skLearn library [PVG+11] for the implementation
of this model.

Due to its simplicity, this model has some weaknesses. For example, very frequent
words do not necessarily denote importance in a text. Words that appear with high
frequency in several texts are very common words that would not allow to differentiate
one document from the other. For this reason, the TF-IDF method was proposed, which
gives more relevance to the most important words for a specific document in relation to
the complete corpus.
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5.4.2 TF-IDF based approaches

This method was proposed as an improvement of the frequency-based model. Similar
to the previous method, pre-processed text is transformed into a N-dimensional vector.
Each element from such vector represents a weight based on the relevance of a word in
a document collection. More specifically, Tf represents the Term Frequency while Idf is
the Inverse document frequency. The Tf value estimates how often a term occurs in a
document, and the Idf value estimates whether the word is common or rate throughout
all document collections. The weight of each vector represents the product between
the Tf with the Idf value. We used the Python skLearn module [PVG+11] for the
computation of this model.

5.5 Word embedding
The vector space model (seen in the Section 5.4) has the following main weaknesses

as follows (i) generated high dimensional space vectors, (ii) the word order is not consid-
ered and (iii) ignores the semantics of words. For example, in these models, synonyms
have very different vector representations, however, it would be more convenient that
these words had similar vector representation.

The word embedding models were proposed in order to overcome the weaknesses of
vector space models. Word embeddings consider the semantics of words because they are
capable of capturing the context of a word in a document in relation to the other words.
Another strength of these models is the dimension of vectors. We performed several
experiments to determine the ideal size for the representation of documents from the
dataset, review Section 6.3. In this research, we used Word2Vec for text representation.

5.5.1 Word2Vec

As we described in Chapter 3, Word2Vec is a word embedding model for obtaining
the feature vector of words. We used the Gensim library [ŘS10] from Python for training
this model for the documents of the pre-processed dataset. For the training process, the
Gensim’s Word2Vec model receives as input the pre-processed documents composed by
lists of words. In addition to the documents, the Word2Vec technique has some input
parameters. These parameters seek to configure the training of the model to optimize
result. The list of the main parameters is described below:

• Dimension of the feature vectors.

• Maximum distance between the current and predicted word within a sentence.

• Frequency threshold to ignore all words lower than this value.

• Unsupervised learning technique to find the words most related to a given word
(Skigram and CBOW algorithms).
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We evaluated several combinations of these parameters in order to get the feature
vectors that best represent the document collections. After selecting the optimal param-
eters for the Word2Vec algorithm, we conducted a set of steps to get the feature vectors
of words.

Algorithm 5.5.1 : Calculate Word2Vec of all Documents
Require: D = {d1, d2, . . . , di}, where i is the number of documents
1: for all D do
2: Li = {Wi1,Wi2, . . . ,Win}, where, Li is the list of unique word for document

di
3: FLi = {(Wi1, Fi1), (Wi2, Fi2), . . . , (Win, Fin)}, where W is the word and F

is the frequency for this word in document di. Fi1 is the highest frequency.
4: L(set)i = {Wi1,Wi2,Wi3, . . .Wik}, where, L(set)i is the subset of the K-

highest frequency words.
5: LVi ← Word2Vec(L(set)i), where, LVi is the list of feature vectors.
6: Vi ← average(LVi), where, Vi is the average of all these feature vectors.
7: end for=0

As we shown in Algorithm 5.5.1, the following steps were performed for each doc-
ument in order to get their feature vectors: i) We first get the list of unique word from
each document. ii) Then, the words are ordered according to their frequency for each
document. the most frequent words were considered in the top of this list. iii) From this
ordered list, we extracted a subset of the K-highest frequency words. For this research we
performed different values of K. iv) We got the feature vectors of each of the previously
selected words by using the Word2Vec model previously trained with all documents.
v) We finally averaged all features vectors from each word to get a single vector that
represents the document. vi) We also performed an additional step, where we considered
the entire words from a document to get the representative vector of such document.
Therefore, we averaged the feature vectors of Word2Vec from all words of the document.

5.6 Graph embedding
Recently, several works focused on representing text documents as graphs or networks

[SKD19]. Research showed that networks are an efficient way to capture the structure
and relationships between words or sentences in a document. For this reason, recent
methods for modeling networks as vectors have been little studied for text classification.
These novel methods are called Graph and Node Embeddings, where we can obtain a
vector that characterizes a network (Graph2Vec) or several vectors representing each
node from network (Node2Vec) respectively.

For this research, we first modeled the pre-processed texts as networks, and then we
used graph and node embedding methodologies to get the representative vectors of each
document. In Chapter 6, we discussed if such models are better than simpler models like
vector space models or word embeddings. In the following sections we explained the net-
work construction process (Section 5.6.1), the Node2Vec (Section 5.6.2) and Graph2Vec
(Section 5.6.3) techniques.
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5.6.1 Graph construction

The first step, is the construction of the network that represents the document.
Each text could be divided into sentences, and sentences are composed of words. Such
words could be classified as nouns, verbs, adverbs, etc. Based on these components,
we can model the texts in several network representations. We proposed two network
types: undirected word co-occurrence and sentence networks. For the creation and use
of networks, we used the Igraph library of Python [CN+06]. The network construction
process is explained as follows:

• Word co-occurrence networks: For this type of network, each node is represented by
a word of the document. Considering that a word can appear more than once in a
document, regardless of the number of times it appears, a single node is created for
each unique word. The edges of the network could be established in the following
ways:

– The first way considers that if two words are neighbors in the text, then
an edge is placed between two nodes that represent the words. This means
that, in any sentence, if a word is next to another word, an edge would be
established between the nodes representing such two words. For example, for
the sentence "Today we are learning machine learning concepts", the network
is composed by 6 nodes (today, we, are, learning, machine, concepts) and the
following 6 edges: (today, we), (we, are), (are, learning), (learning, machine),
(machine, learning), (learning, concepts).

– The second way, consist on enrich word relationships using word embeddings.
Here, we calculate the similarity between the vectors of each pairs of words of
the network, and then we selected those pair of words with the highest simi-
larities. We added new edges to these selected words. We used the Word2Vec
model for calculation vector similarities.

Figure 5.3 shows an example of a word co-occurrence network.

• Sentence networks: In this type of network, nodes represent each sentence of doc-
ument and the edges can be established in the following ways:

– Common word between two sentences: If two sentences have words or
nouns in common, they increase an edge that would join the nodes represent-
ing these sentences. After performing this process on the entire document, we
needed to apply a cleaning process for the graph, since it must be a simple
undirect graph. A simple graph means that it accepts a single edge joining
any two vertices, which is equivalent to saying that any edge is the only one
that joins two specific vertices. Undirect graphs are graphs where edges have
no direction. In these graphs, for an edge between the nodes i and j, we have
(i, j) = (j, i). This graph creation criteria is interesting in this study, because
it shows that two arbitrarily chosen sentences by having some common words
represent that they are trying some related criteria and that would help to
extract their feature vector.
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(a) Network visualization considering an equal size for each node (word).

(b) Network visualization considering the size of each node is proportional to the node degree. The
most frequent words can be clearly seen.

Figure 5.3: Two examples of network visualization of a word co-occurrence network extracted
from the book "The War in South Africa: Its Cause and Conduct" written by Arthur Conan
Doyle. For visualization, we considered the first 15 sentences. Each node represents a word and
two words are connected if they are adjacent in the text.
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– Similarity between two sentences: In order to construct this type of
graph, the feature vectors of each sentence should first be extracted using tra-
ditional methods such as (i) TF-IDF representation, or (ii) Frequency count.
Therefore, an edge arises between two sentences if the similarity between the
two vectors of such sentences is greater than a predefined threshold. We also
considered a simple undirect graph.

In Figure 5.4 we can see an example of a sentence network where each node rep-
resents a sentence and the edges are established based on considering the common
words between sentences.

Figure 5.4: Sentence network extracted from the book "The War in South Africa: Its Cause
and Conduct" written by Arthur Conan Doyle. For visualization, we considered the first 80
sentences. Each node represents a sentence, while two sentences are connected if they have at
least one word in common.

5.6.2 Node2Vec

This method we proposed is based on node embeddings called Node2Vec. The main
objective of this method is to get a feature vector for each network node. We used the
library [GL16] for the implementation of this method. Similar to Graph2Vec, we need the
network representation of the documents to be used as input for the Node2Vec method.
As we mentioned earlier, we must create the network to use graph vector representation
methods, in this case Node2Vec. For this method we only experimented with sentence
networks (View Section 5.6.1).
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We evaluated different parameters to get the best representation of each document.
It was also important to select parameters whose computational time would not be very
high. This technique requires the following parameters:

• The dimension size of the feature vector

• The number of paths to be generated for each node

• The path size, which is related to the number of nodes in each walk

The selection of the best parameters is discussed in Chapter 6. After finding the op-
timal parameters, we used the Node2Vec algorithm to extract the feature vector for each
node from network. Then, we obtained the feature vector of each network by averaging
the vectors of their composing nodes. The generated vector of each network was used for
the text classification step (Section 5.7).

5.6.3 Graph2Vec

As we mentioned earlier, for the vector representation of documents using graph
embeddings, we first must create the network based on the pre-proccessed version of
each document. Then, from this network we can extract a feature vector based on graph
or node embeddings. To get the vector representation of a document, we performed the
following steps:

1. We transformed the documents into networks (word co-occurrence or sentence net-
works) as we mentioned in Section 5.6.1. We performed several tests to get the
best representation of a document.

2. The Graph2Vec method requires a set of input parameters for its execution. The
first parameter is the number of iterations required to execute each subgraph per
node. This step is needed to enrich the set of words that are input parameters
for the Doc2Vec algorithm [Che17]. The Doc2Vec model is a sentence embedding
method that is used internally by Graph2Vec.

3. After enriching the graph, we considered two other input parameters of Graph2Vec:
the number of dimensions of the feature vector, and the number of iterations that
the Doc2Vec method must perform.

4. As we mentioned in the previous steps, we used the Doc2Vec method to train the
model that will generate feature vectors based on the enriched network considering
the above-mentioned parameters.

5. Finally, we get the feature vector of each document based on the vector obtained for
each network. We used the obtained vector for the text classification step (Section
5.7).

In summary, Graph2Vec considers the following parameters (i) number of iterations
required to execute each subgraph per node, (ii) dimensions of the feature vector and
(iii) the number of iterations that executes the Doc2Vec method. In Chapter 6 we dis-
cussed the results obtained for the different experiments that we performed using these
parameters.
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5.7 Document classification
In this last step, we used the extracted features in the previous sections for the

text classification task. As we mentioned before, for this research we proposed three
techniques for feature extraction: i) features based on vector space models (frequency
and TF-IDF model), ii) features based on word embeddings (Word2Vec) and iii) features
based on graph and node embeddings (Node2Vec and Graph2Vec). These features are
used as input for traditional machine learning methods. We used the following supervised
classifiers [KPC95]:

• Decision Tree (DT) [Qui14].

• Gaussian Naive Bayes (Gaussian NB) [Zha04].

• K-Nearest NeighborsClassifier (kNN) [Alt92a].

• Support Vector Machine (SVM) [HHHH09]

The features extracted from the datasets of authorship recognition are used for the
classification process. For the datasets we used, the class labels represent the authors of
each dataset. English dataset is composed by 13 different class labels while the Spanish
dataset is composed by 21 different class labels, where 13 and 21 represent the number
of authors for each dataset.

For several classification tasks, the datasets are often divided into training and test
datasets. While the training dataset is used to create the model, the test dataset serves
for evaluating the model performance. However, the datasets we selected are not divided
into training and test datasets. For this reason, we used the K-fold cross validation (View
Section 6.1.1) procedure to split the original dataset into training and test datasets.

In Chapter 6 we discussed the results we obtained for document classification using
the different feature extraction methods for text representation.
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Chapter 6

Results and Discussion

In this chapter, we explained the main results obtained from the evaluation of meth-
ods for feature vector representation of English and Spanish documents. Our objective is
to compare the performance of several mathematical representation’s methods of texts
for authorship recognition, where each document represents a literary book and each
class represents an author.

The current chapter is organized as follows. In Section 6.1, we describe some ini-
tial considerations such as the cross validation method, which was used to evaluate all
methods and details about the use of pruning in our dataset. In Section 6.2 are shown
the results of frequency count and TF-IDF based methods. Section 6.3 describes the
results of Word2Vec model. Sections 6.4 and 6.5 explain the results obtained from the
graph embedding technique Node2Vec and Graph2Vec. Finally, in Section 6.6 is shown
a comparative approach among all methods used in this Master’s work.

6.1 Initial considerations
For this research we used two different datasets. The English dataset has 78 books,

and the Spanish dataset has 105 books. In Appendices A we show the complete list of
books that comprises these datasets. The database is not divided into training dataset
and test dataset. So, for the purposes of this research, it is necessary to divide the
datasets into these two sets and then we apply a cross validation method, which helps
us to obtain the accuracy rate of each proposed method. The Cross Validation Method
is described in Section 6.1.1.

Moreover, in Section 6.1.2. We will describe the pruning process that was conducted
in our dataset. As there are some documents larger than others and to standardize
the size of the documents, the experiments were performed with pruning and without
pruning.
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6.1.1 Cross Validation Method

Cross-validation is a statistical method employed to compute the performance of
machine learning models [Bro00]. Cross-validation help us to test the model’s ability
to predict new data that was not used in the training stage, that is, with independent
dataset.

Here, we use K-fold cross validation for the evaluation of each method. K-fold cross
validation first partitions the data into multiple subsets k. Then, it proceeds to train with
all groups except one. The remaining pool is used for testing. This process is repeated
for each subset of the dataset. At the end, all the results of the iterations are averaged.
To exemplify this process, see Figure 6.1), where five iterations are performed, that is,
5-Folds. After performing the iterations, all these are averaged.

Figure 6.1: K-fold cross validation.

In each test (iteration) which is executed by the K-fold cross validation it is evaluated
using the accuracy metric. This measure is outlined in the Equation 6.1. Accuracy is
the most intuitive performance measure and it is a relationship between the correctly
predicted observation and the total number of observations. That is, how close the result
of a measurement is to the true value (true positives among the total samples). It is
represented by the ratio between the real positives predicted by the algorithm and all
the positive cases. Where the total of samples is the sum of true positives and false
positives.

Accuracy =
true_positives

true_positives+ false_positives
(6.1)
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6.1.2 Pruning Stage

As we described in Section 5.2, our dataset goes through a pre-processing and one
of these stages is the pruning stage. Due documents in our dataset have different sizes
(the size measures by the number of word), then the pruning process was conducted.
Another reason why pruning was used is because of the high dimensionality of traditional
techniques (Frequency and TF-IDF Model). To perform the pruning, the document with
the fewest number of words was selected, then all the documents were only allowed to
keep this number of words. Last, it is important to note that to perform our experiments,
the complete dataset was used and the dataset after the pruning process, that is why all
the experimented methods have results with pruning and no pruning.

6.2 Experiments with Frequency and TF-IDF Models
In this section we displayed the results based on frequency counts and TF-IDF method

for the selected databases for English and Spanish. As previously shown, the represen-
tative vectors obtained by frequency (Section 3.4.1) and TF-IDF (Section 3.4.2) models
have high dimensionality. High dimensionality means that the number of dimensions are
staggeringly high, since the dimension or size of vector works is based on the count of
unique words. Both the Frequency and TF-IDF models consider the number of unique
words (vocabulary) for the vector size (dimension), therefore, the number of dimensions
is the same considering the Frequency or the TF-IDF method. In other words, as ex-
plained above (Section 6.1.2) pruning was used to try combating the high dimensionality
of the feature vector.

Therefore, Table 6.1 shows the dimension’s summary that we considered to create the
feature vectors that represent the documents for both English and Spanish. The size of
the feature vectors in English without pruning (where the entire document is considered)
is 58511 for both Frequency method and TF-IDF method. Applying the pruning stage
the number decreased by 30% resulting in a size of 37268, but it is still a vector with a
very high dimensionality. For Spanish, the number of dimensions is 21740 with pruning
and 106717 with no pruning, in this case it decreased by 80%, but despite the size of the
vector, it still has a high dimensionality. As can be seen, the number of dimensions of
the vector obtained from traditional vector representation techniques such as frequency
and TF-IDF models is very high. This is one of the main reasons we evaluate other
techniques to reduce their high dimensionality of the feature vectors of documents. By
having fewer dimensions, less execution time is expected.

Language Pruning No pruning
English 37268 58511
Spanish 21740 106717

Table 6.1: Dimensions of features (number of unique words) vectors for frequency count and
TF-IDF method
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In Table 6.2 we show the results obtained from evaluating the frequency counting
technique to generate the feature vectors that represent each dataset document. For En-
glish, the best classification method is SVM with an accuracy of 89, 23%. The worst case
is obtained using the Decision Tree classifier with 46, 15%. Additionally, better results
were obtained using pruning on our dataset than not using it. For Spanish, the best
result is 69, 52% with the SVM classifier and the worst result is 39, 5% with Decision
Tree classifier. Unlike the English books that the use of pruning before extracting the
feature vector improves the results, however, for Spanish documents, the best option is
to consider the complete document, that is, do not use pruning. In conclusion, in both
cases (English and Spanish) the best classifier is SVM and the worst is Decision Tree. In
another way, we can see despite the high dimensionality in English, acceptable results are
obtained, nevertheless, for Spanish books the results are not very good using frequency
count. For the previously mentioned, in the next sections we will analyze another tech-
nique usually used to extract the feature vector from documents.

English SpanishClassifier Pruning No pruning Pruning No pruning
Decision Tree 49,23 46,15 39,05 40,00

KNN 58,46 60,77 39,05 50,48
Gaussian NB 50,00 50,00 54,29 53,33

SVM 89,23 81,54 65,71 69,52

Table 6.2: Result (accuracy) of frequency count for Dataset in English and Spanish

The results based on TF-IDF experiments are shown in Table 6.3 for English and
Spanish database. For English, the best result was obtained using SVM, with an ac-
curacy of 80, 00% and the worst ranked was KNN with 26, 92%. Then, analyzing the
use of the complete document or the pruned document for feature vector extraction, we
can see that the results are the same. So, if we use the pruned document for English
texts, the results will be obtained in less time. For Spanish, the best result is 60, 95%
with the SVM classifier, and the worst result is 39, 05% with Decision Tree. In the case
of Spanish, it shows better results with the use of the pruned document than with the
complete document (without pruning). In another way, the results with TF-IDF model
of English are better than Spanish, as with the Frequency Model.

English SpanishClassifier Pruning No pruning Pruning No pruning
Decision Tree 48,46 49,23 39,05 39,05

KNN 30,77 26,92 55,24 47,62
Gaussian NB 49,23 48,46 51,43 47,62

SVM 80,00 80,00 60,95 55,24

Table 6.3: Result of TF-IDF for Dataset in English
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Comparatively, for both the Frequency method and the TF-IDF method, the classifi-
cation method that gives us the best results is SVM, independent of Language. Likewise,
the classifier that gives us the worst results is the Decision Tree, except for the results of
the TF-IDF model with English, where the worst is KNN. So we can conclude that SVM
is the best classifier for the task of authorship attribution with our dataset of literary
documents. Because the results vary a lot between classifiers, at the classifier selection
stage, special care must be taken with this choice because a bad choice of classifier can
lead to bad results.

From the linguistic viewpoint, both frequency model and TF-IDF are methods that
consider only the lexical level to generate the characteristic vectors. The lexical level
mainly represents the vocabulary of language (see Section 2.1.3). As well, Frequency
model and TF-IDF ignore the syntactic level (see Section 2.1.2) since the order is lost
of the words, which represents their grammar. These techniques also lose the semantic
information (semantic level) since it only considers the number of times a word ap-
pears in the document or in the collection of documents and not the meaning of these
words. Since in the case that two words are linguistically similar (synonyms), they should
have close or similar vectors. However, since that these models ignore semantics, words
with similar meanings are not necessarily represented by similar vectors. Regarding the
morphological level (see Section 2.1.1), which studies words and their modifications in
isolation, in the pre-processing stage the lemmatization (view Section 5.2) is performed
where only the root (lexeme) of the word is saved; therefore, almost all the morphological
information is lost.

Both frequency counts and TF-IDF results are better in English than Spanish. One
of the possible reasons is when the lemmatization is applied a large part of the mor-
phological information is lost in both languages, because the Spanish language has more
morphological information and it loses more information than English. Lemmatization
is computationally important because if this process is not performed, there would be
many versions of the same word, then, the computer could understand that they are
different words and not the same word with variations of gender or number, among
other variations. In addition, we observed in Table 6.1, the vectors would have a higher
dimensionality. If the dimensionality of a vector is high, then the classification will have
a high computational cost, and it could lower the performance of the classifier. For this
reason, the lemmatization process is important, despite the loss of relevant information
(at morphological level).

In next sections we will analyze different more modern techniques for extraction of
feature vectors with Word Embedding techniques (Section 6.3) and Graph Embedding
techniques (Sections 6.4 and 6.5). These techniques were used with the aim of improving
the performance of vector representation methods for both Spanish and English books,
and specifically improving the results for texts in Spanish.



56 RESULTS AND DISCUSSION 6.3

6.3 Word2Vec experiments
As we discussed in the previous section, only the lexical level was considered to rep-

resent each document, which is not enough in most cases, a clear example is Spanish
that loses a lot of morphological and lexical information by only using the lexical aspect.
We can also conclude from the study of previous techniques, that due to their high di-
mensionality when classifying with these vectors, they will have a high computational
cost. In order to solve the above-mentioned two problems, we experimented with word
embedding techniques that consider the semantic level of words and have a fixed size
vector feature.

Consequently, one of the main word embedding techniques is the Word2Vec model.
As we mentioned in Section 3.5.1, Word2Vec considers several parameters that must be
considered to configure execution of this technique in search of the best results. The
parameters that were used are mentioned as follows:

• Dimensions: This parameter defines the size of the vector. We experimented with
50, 100, 150, 200, 300 and 400 dimensions.

• Min count: All words with a frequency lower than this parameter are not consid-
ered. It was experimented with values of 10 to 60 that restrict more words up to
the value one that considers all the words.

• Number of Word: It is the number of words that is considered to form the feature
vector of the document. Before selecting the words, they are ordered from highest
to lowest frequency and the first n words are considered most frequently. In this
parameter, it is experienced from 10, 20, 30, ... to all the words.

• Algorithms: Consider two algorithms to train CBOW (0) and Skip-gram model.
CBOW uses the context of each word and tries to predict the target word and
Skip-gram model reverses the use of word target to predict the context words.

We outlined in Table 6.4 the experimentation process for the evaluation of Word2Vec,
with different dimensions for the feature vector. Regarding the configuration and choice
of parameters "Min count", and "Number of Word" and, the best values of parameter’s
variation were considered for each case. It was also considered the best result between
experimenting with the Skip-Gram Algorithm and the CBOW algorithm. In addition,
Table 6.4 is subdivided into two tables, where Table 6.4a shows the results for English
books and Table 6.4b summarizes the obtained results for Spanish. Furthermore, the
results are shown, considering the complete document and including the pass’ process
of the documents through the pruning stage as explained in the Section 5.2. Last, we
considered four classifiers (described in Section 3.2) to be used to extract the percentage
of success of our proposed feature vectors.
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According to results of dataset in English presented in Table 6.4a, better results were
obtained using the SVM classifier with an accuracy of 93.08%. Followed by Gaussian NB
classifier together with KNN classifier with an accuracy of 83.08% and 83.07% respec-
tively. Finally, the worst results were obtained by Decision Tree Classifier with accuracy
rate of 57, 70%. In the case of English, it shows better results with the use of the pruned
document (93.08%) than with the complete document, that is, without pruning (max.
83.08%). Also for English documents, when comparing the best results of Word2Vec
and vector space model (described in the previous Section 6.2), Word2Vec achieved a
certainty percentage of 93.08%, and vector space model 89.23%.

From the results for dataset in Spanish (Table 6.4b), KNN classifier achieved the
best accuracy rate, 69, 52%. Followed by Gaussian NB classifier with 65, 71% and SVM
Classifier with 63, 81%. Finally, Decision Tree Classifier obtained the accuracy value of
59.05%. Regarding the use of pruning process in experimentation with documents in
Spanish, for every case of Word2Vec was obtained excellent results using the complete
document; that is, without pruning. In best case, we obtained without pruning 69, 52%
and with pruning 45, 71%. On the other hand, when comparing the results of Word2vec
with vector space model, for Spanish do not show significant differences, because the
accuracy in both cases is 69.52%.

Regarding the number of dimensions, it shows better results using 150 dimensions for
both English and Spanish. By using Word2Vec models, this methodology reduced the
size of the dimensions about 95% compared to traditional techniques based on vector
space models. As can be seen in the results of Table 6.1 for English documents, there are
37268 dimensions considering pruning and 58511 dimensions without applying pruning;
and for Spanish documents, there are 21740 dimensions considering pruning and 106717
dimensions; in contrast, with the use of 50 to 400 dimensions considered in these exper-
iments. In this sense, the computational cost was significantly reduced considering the
word embedding models.

With respect to use of pruning to reduce the computation time due to the large size
of the documents. In all the experiments for documents in Spanish using Word2Vec, it
is better not to use pruning, that is to say to use the complete document. However, for
English, only the SVM classifier shows the best result using pruning, when comparing
this result using pruning (93.08%) with the no pruning result (92.74%) it obtained a
difference of 0.5% . Therefore, it is observed that in most cases for both languages it is
better to use the whole document than to use the pruned document. Since the Word2Vec
method is based only on the feature vector of each word. Then by reducing the size of the
document we lose words, likewise the representative power of this method is decreased.
Even more for Spanish, more words are needed for the characterization of Spanish doc-
uments.
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English
Decision Tree Classifier

Dimensions Pruning No pruning
50 50,00 51,54
100 53,07 56,15
150 53,85 56,92
200 54,62 57,70
300 52,05 52,54
400 50,01 51,03

KNN Classifier
Dimensions Pruning No pruning

50 58,46 56,15
100 73,85 77,69
150 75,38 82,31
200 78,46 83,07
300 77,43 82,05
400 71,01 80,00

Gaussian NB Classifier
Dimensions Pruning No pruning

50 61,54 63,08
100 76,15 76,92
150 80,00 80,00
200 80,77 83,08
300 77,32 80,06
400 74,28 80,00

SVM Classifier
Dimensions Pruning No pruning

50 61,54 60,77
100 90,77 87,69
150 93,08 91,53
200 93,08 91,54
300 93,08 92,74
400 92,30 90,00

(a) Word2Vec for English

Spanish
Decision Tree Classifier

Dimensions Pruning No pruning
50 37,14 59,05
100 40,00 58,10
150 42,86 55,24
200 41,90 53,33
300 42,86 53,33
400 41,90 55,24

KNN Classifier
Dimensions Pruning No pruning

50 41,90 59,05
100 42,86 64,76
150 44,76 69,52
200 45,71 69,52
300 43,81 68,57
400 44,76 67,63

Gaussian NB Classifier
Dimensions Pruning No pruning

50 35,24 60,95
100 36,19 60,00
150 36,19 60,95
200 33,33 63,81
300 38,10 65,71
400 37,14 61,90

SVM Classifier
Dimensions Pruning No pruning

50 38,10 62,86
100 37,14 60,00
150 40,00 63,81
200 36,19 63,81
300 39,05 62,86
400 40,00 62,86

(b) Word2Vec for Spanish

Table 6.4: Results obtained based on Word2Vec for English and Spanish literary books
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One of the main differences between vector space models and Word Embedding mod-
els is that Word Embedding considers the semantics of the words to extract the char-
acteristic vector of each one of them. On the contrary, as we saw in Section 6.2, the
vector space models consider only the lexical level to extract the characteristic vectors.
In our methodology (Section 5.5), we tried to combine these two approaches (lexical
y semantic), we first extracted the feature vector using Word2Vec from each word in
the document (providing the semantic information to our feature vector) and then we
considered averaging the vectors representing the most frequent words in the document
(providing the lexical information). This is because for some methods the most frequent
words can be considered as keywords. Since we have lexical and semantic information in
the feature vectors generated by Word2Vec, this could be the reason that the documents
in English dataset show us better results. Unlike the Spanish documents, in which the
results do not improve compared to the frequency model, because for the documents in
Spanish it is not enough to consider the lexical and semantic information.

In summary, according to the Table 6.4, the results for documents in English show
greater accuracy than the results for Spanish dataset. These findings show us that, the
semantic information provided by Word2Vec along with lexical information of the space
model vector is not enough to obtain an optimal characteristic vector in Spanish and
compensate for the loss of information suffered by texts in Spanish when lemmatization
is performed. We mentioned in the previous sections, that when we lemmatizing Spanish,
we lose morphological information that is more important for Spanish than for English.
Another reason, why in Spanish the results are not very good, is due to the fact that
space model vector and word embedding techniques consider only the words to represent
document as isolated entities, and not as a set of interconnected and related words for
different reasons.

Finally, for the reasons mentioned above, to improve the results for Spanish docu-
ments, in the next section we will analyze more sophisticated techniques based on Graph
Embedding that search to give notions of the relationships and contexts of the words.

6.4 Node2Vec experiments
In order to improve the results, even more so for the document in Spanish, we eval-

uated the performance of Graph Embedding methods for the vector representation of
documents. As we saw in the previous sections, the Spanish datasets lose morphological
information when lemmatizing information that is relevant to its vector representation
process. So, in order to try to compensate for this loss of information, the use of graph
and complex networks is considered to represent the documents as vectors. Applying
concepts of graphs and complex networks help us to preserve the context, order and
structure of the document, that is to say, the relationships between words and sentences.

In this section, we evaluated approach of using the concept of graphs to represent a
document, in this case, the characteristic vector of each node is extracted, this method
is called Node2Vec. Each document is modeled to graph first, after extracting the vector
of each node, finally, the characteristic vectors of all the nodes are averaged.
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Before displaying and analyzing the results, Node2Vec has several parameters that
must be considered for its execution. The parameters are the following: (i) the number
of dimensions, for this experimentation we use 50 and 100 dimensions; (ii) the number
of paths to be generated for each node, where we experiment with values 5, 10, 15 and
20; (iii) the path size (number of nodes in each walk), for this parameter we was ex-
perimented with values of 10 to 40, increasing from five to five. In search of finding the
optimal vector, for the last two parameters mentioned, the best values of parameter’s
variation were considered.

The results obtained from the evaluation of Node2Vec are shown in Table 6.5, with 50
and 100 dimensions. In addition, this Table is subdivided into two tables, where Table
6.5a shows the results for English books and Table 6.5b the obtained results for the
books in Spanish are displayed. Moreover, for Node2Vec we only show results considering
the pass’ process of the documents through the pruning stage, for both English and
Spanish documents. The reason why the complete document was not experimented, that
is, without pruning, is because of the high cost and computational time of Node2Vec.
Finally, as with the other experiments, we considered four classifiers (Section 5.7).

English

Decision Tree Classifier

Dimensions Pruning

50 13,33
100 16,19

KNN Classifier

Dimensions Pruning

50 18,10
100 13,33

Gaussian NB Classifier

Dimensions Pruning

50 18,10
100 15,48

SVM Classifier

Dimensions Pruning

50 19,05
100 21,90

(a) Evaluation of the node2Vec model for
English documents

Spanish

Decision Tree Classifier

Dimensions Pruning

50 15,24
100 12,38

KNN Classifier

Dimensions Pruning

50 17,14
100 13,33

Gaussian NB Classifier

Dimensions Pruning

50 19,05
100 13,33

SVM Classifier

Dimensions Pruning

50 15,24
100 14,29

(b) Evaluation of the node2Vec model for
Spanish documents

Table 6.5: Results obtained based on Node2Vec for English and Spanish literary books
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For the results of English texts presented in Table 6.5a, the best result is 21.90%
with SVM classifier. Followed by Gaussian NB Classifier and KNN Classifier with an
accuracy of 18.10% for both cases. Finally, Decision Tree Classifier with 16.19%. How-
ever, none of the classifiers get good results.

On the other hand, the results of the Spanish dataset shown in Table 6.5b, where
the best classifier is Gaussian NB Classifier with an accuracy of 19.05%. Followed by
KNN Classifier with 17.14%. Finally, the worst results were obtained by Decision Tree
classifier together SVM classifier with an accuracy of 15.24%. As with the results for
English, Node2Vec method give us bad results.

In conclusion, considering the Node2vec algorithm, the vector is based on the con-
nections that each node has with the other nodes from the network. So, the reason why
the results using Node2Vec are bad, could be that the information to generate the char-
acteristic vector of the document is lost when all nodes are averaged. A suggestion for
better results would be that only the vectors of the nodes that represent words with high
frequency could be averaged.

6.5 Graph2Vec experiments
In search of improving the results obtained with Word2Vec and Node2Vec, that is,

mainly improving the results with texts in Spanish, we evaluated another approach that
uses the concept of graphs to represent a document, this method is called Graph2Vec,
the characteristic vector of the entire graph is extracted. In this way, with Graph2Vec
we seek to preserve the relationship between the words and the context of the document,
when extracting the characteristic vector from it, in addition to the semantic and lexical
information extracted when using Graph Embedding techniques.

As with Node2Vec, each document is modeled to graph first, the graphs can be
modeled in different ways, because the nodes can represent words or sentences. After
obtaining the graph, Graph2Vec is used to represent a graph in compressed form, by
using a characteristic vector. Therefore this proposal seeks to obtain better results to
compensate the loss at the morphological level of Spanish documents. Likewise, this
method guarantee to consider the semantic and lexical information of each document.
Regarding the experiments, we first experimented with generating sentence networks
from the documents to use Graph2Vec. Another group of experimentation was performed
using word networks, where Graph2Vec was later used.

6.5.1 Graph2Vec Results with Sentence Networks

In this section we experimented with sentence networks generated from the doc-
uments to use Graph2Vec and to extract the characteristic vector. As we can see in
Section 5.6.1, when representing a document as a graph, nodes can represent words, as
well as nodes can be sentences.
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English

Decision Tree Classifier

Dimensions Pruning No pruning

50 16,67 16,61
100 20,51 20,48
200 19,23 19,16
300 19,23 19,13
350 19,23 19,17

KNN Classifier

Dimensions Pruning No pruning

50 12,82 12,76
100 15,38 15,29
200 19,23 19,15
300 20,51 20,39
350 12,82 12,79

Gaussian NB Classifier

Dimensions Pruning No pruning

50 23,08 22,91
100 24,36 23,99
200 26,92 26,75
300 24,36 24,11
350 20,51 20,29

SVM Classifier

Dimensions Pruning No pruning

50 19,23 19,14
100 17,95 17,76
200 21,79 21,60
300 23,08 22,98
350 15,38 15,21

(a) Graph2Vec for English

Spanish

Decision Tree Classifier

Dimensions Pruning No pruning

50 17,14 18,70
100 15,24 18,10
200 12,38 13,33
300 16,19 19,50

350 16,19 17,90

KNN Classifier

Dimensions Pruning No pruning

50 16,19 17,60
100 16,19 23,81

200 18,10 19,05
300 17,14 20,60
350 18,10 20.01

Gaussian NB Classifier

Dimensions Pruning No pruning

50 17,14 18,9
100 18,10 20,00
200 14,29 16,19
300 19,05 22,11

350 18,10 19,80

SVM Classifier

Dimensions Pruning No pruning

50 21,90 24,20
100 20,95 22,86
200 20,00 25,71

300 19,05 22,10
350 20,00 22,90

(b) Graph2Vec for Spanish

Table 6.6: Results based on Graph2Vec using sentence networks for English and Spanish books.
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In the Table 6.6 shows the results of Graph2Vec using sentence networks with dif-
ferent dimensions. The results for the English documents can be seen in Table 6.6a.
Moreover, in Table 6.6b, the results of Graph2Vec with sentence networks for Spanish
books are displayed.

For English (Table 6.6a) best accuracy result is 26.92%, with the Gaussian NB clas-
sifier and considering 200 dimensions for the feature vector. Followed by SVM Classifier
with an accuracy of 23.08% and 300 dimensions. Finally, note that KNN and Decision
Tree Classifier gives us the worst results with an accuracy of 20.51% and likewise 300
and 100 dimensions respectively. Regarding the use of the pruning process, the results
with pruning give better results than the results without pruning for English books.

Regarding the results of Table 6.6b, where sentence networks were used to generate
the graph and then apply Graph2Vec with books in Spanish. In this case, a better ac-
curacy is 25.71% was obtained using 200 dimensions, being the best classifier for this
case SVM. Then, there is the KNN Classifier with an accuracy for English of 23.81%
with 100 dimensions. Followed by an accuracy of 22.11% with 300 dimensions for the
Gaussian NB Classifier. Lastly, the worst classifier is Decision Tree with an accuracy of
19.50% for 300 dimensions. It is also important to note that the results without pruning
give better results than the results with pruning.

In conclusion, for both English and Spanish texts the results have declined compared
to vector space model and Word2Vec. The reason why these bad results are shown may
be that when constructing the graphs based on the documents, the sentence was selected
as the minimum unit, that is, each node represents a sentence. Then, these networks of
sentences, although they preserve the relationship between sentences, lose the relation-
ship between words, which seems to be very important when representing documents
as feature vectors. Consequently, lexical information is lost, because the contribution or
count of each word is lost. In addition, semantic information is lost, because the mean-
ing of each word is not saved, considering the sentence as a minimum unit. Therefore,
the concept of context is also lost by not being able to save the relationship between
the words. For all the aforementioned, it searches to experiment for better results, with
another form of network construction to achieve a more adequate representation of the
document. In next section we will show the results using another form of network con-
struction.

6.5.2 Graph2Vec Results with Word Networks

In the process of representing documents as graphs, just as the nodes of the graph
can represent sentences, so the nodes of the graph could be words. Then, each document
would first be like a network of words, and then the Graph2Vec method is used to ex-
tract the characteristic vector of each graph, that is, of each document. Therefore, in
this section we show the results using Graph2Vec with word networks, to obtain better
results. In the Table 6.7 are displayed the result of Graph2Vec with word networks for
documents in English and Spanish. This table is divided in two. First, Table 6.7a which
shows the results for documents in English. Lastly, in Table 6.7b, which concentrates the
results of the Spanish dataset.
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In Table 6.7a, we can see the Graph2Vec results with word networks for English
books. The best accuracy result is 93.59% with 350 dimensions which was obtained with
SVM Classifier. Followed by KNN classifier which result is 80.77% with 350 dimensions.
Then, Gaussian NB classifier is 74.36% with 150 dimensions. Finally, the worst classifier
is Decision Tree Classifier with 50 dimensions and an accuracy of 62.82%. Furthermore,
regarding the use of pruning, as with Word2Vec, in most experiments it is better not
to use pruning, except for results with SVM classifier that shows the best result using
pruning because when comparing the result from using pruning, because when compar-
ing the result of using pruning 93.59% with the no pruning result 91.03% it obtained
a difference of 3%. On the other hand, we obtained 93.59% which is the best accuracy
result in English texts, we can infer that the vector representation of English documents
has maintained favorable results in most techniques. Since, with Word2Vec an accuracy
of 93, 08% was obtained and with Frequency model 89, 23%. Thus, showing that for En-
glish, these techniques provide enough lexical and semantic information when obtaining
the feature vectors. However, using Graph2Vec with word networks the results improve
slightly, improving 0.6% in relation to the best result obtained previously (Word2Vec).

In another way, for Spanish documents we have Table 6.7b, which results have varied
positively with respect to other techniques. The best accuracy result of 81, 90%, was ob-
tained by SVM classifier with 350 dimensions. Followed by KNN Classifier with 64, 76%
for 50 dimensions. Next, we obtained the same result of 60, 95% for Gaussian NB Classi-
fier with 150 and 300 dimensions. Finally, the worst classifier for this experimental group
is Decision Tree Classifier with a value of 52, 38% for 300 dimensions. Regarding to the
use of pruning, in all the experiments for Spanish documents using Graph2Vec with word
networks, it is better not to use pruning; that is to say, to use the complete document.
The reason why better results are shown without pruning, it may be that when losing
a part of the document, words and relationships (relationships between words) are lost,
which is relevant for building the word network and provides essential information to
extract the feature vector.

In contrast to the English results, the best accuracy results of Spanish texts are shown
a significant improvement when we compared 81, 90% versus 69, 52%. The first value was
obtained by Graph2Vec with word networks and the second value was obtained by Vector
space model improving 17.80%. Then, Graph2Vec with word networks shows us better
results for both languages, but much more for Spanish compared to other techniques.

About the number of dimensions, Graph2Vec and Word2Vec reduce the size of di-
mensions compared to traditional techniques like vector space model. Where the best
accuracy value for English is obtained with 350 dimensions, unlike 37268 dimensions for
vector space model. Then, in the case of Spanish experiments, the best result is with 100
dimensions, but for vector space model it is with 21740. Therefore, Graph2Vec in addi-
tion to improving the accuracy for both English and Spanish, the computational cost is
significantly reduced when processing vectors with fewer dimensions. On the other hand,
regarding the classifiers, for both English and Spanish results, SVM gives us the best
results, unlike Decision Tree Classifier which shows the lowest results.
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English

Decision Tree Classifier

Dimensions Pruning No pruning

50 35,90 62,82

100 37,18 53,85
150 39,74 50,00
200 55,13 55,13
300 41,03 50,00
350 43,59 50,00

KNN Classifier

Dimensions Pruning No pruning

50 66,67 79,49
100 64,10 79,49
150 71,79 80,77
200 78,21 78,21
300 74,36 78,21
350 78,21 80,77

Gaussian NB Classifier

Dimensions Pruning No pruning

50 53,85 73,08
100 62,82 64,10
150 56,41 74,36

200 73,08 70,51
300 65,38 69,23
350 69,23 71,79

SVM Classifier

Dimensions Pruning No pruning

50 71,79 87,18
100 84,62 89,74
150 89,74 85,90
200 91,03 88,46
300 92,31 91,03
350 93.59 89,74

(a) Graph2Vec for English

Spanish

Decision Tree Classifier

Dimensions Pruning No pruning

50 23,81 44,76
100 20,95 47,62
150 20,00 47,62
200 24,76 46,67
250 27,62 42,86
300 27,62 52,38

KNN Classifier

Dimensions Pruning No pruning

50 40,00 64,76

100 38,10 60,95
150 39,05 62,86
200 37,14 61,90
250 36,19 59,05
300 40,95 60,95

Gaussian NB Classifier

Dimensions Pruning No pruning

50 31,43 53,33
100 29,52 60,00
150 28,57 60,95

200 23,81 53,33
250 24,76 58,10
300 35,24 60,95

SVM Classifier

Dimensions Pruning No pruning

50 50,48 77,14
100 53,33 81,90

150 60,00 80,95
200 54,29 80,00
250 52,38 79,05
300 54,29 76,19

(b) Graph2Vec for Spanish

Table 6.7: Results based on Graph2Vec with word networks for English and Spanish books.
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In Summary, using Graph2Vec with word networks, an improvement is shown. In
case of English, the results improve slightly (0.6%). But in Spanish the results improve
much more (17.80%). That is, where the question arises. Why does Graph2Vec with word
networks better represent documents for Spanish?. Firstly, for Spanish documents, the
lexical and semantic information is not enough to represent this language using vector
representation methods. Since Spanish, with the lemmatizing process, it loses a lot of
morphological information; so it is necessary to add information about the context, to
improve the results. Secondly, it was found that one way to compensate for this loss of
information by considering the context. In this sense, the graph based methods help us in
the process of preserving this information (context, order and structure). Consequently,
reinforce our supposition, using Graph2Vec with word networks obtained good results
for both English and Spanish. Therefore, this method obtained more homogeneous re-
sults, and it can be considered the best option to be used when using different languages.

Finally, to close section Graph2Vec experiments, we concluded that the experiment
with Graph2Vec (using word networks), achieved good performance for both languages.
However, The results with Graph2Vec (using sentence networks) were not good. The
reason for these bad results is due to the fact that the relevance of each word within the
document is lost, because sentence networks consider the sentence and not the word as
a minimum unit.

6.6 Final Results
For this research, we experimented different methods, whose results are displayed

and analyzed in Sections 6.2, 6.3, 6.4 and 6.5. Firstly, we experimented with traditional
techniques based on vector space model (Frequency and TF-IDF model), next, with
techniques based on Word Embedding and finally, with Graph Embedding techniques.
As a result, in this Section summarizes and analyzes the best results of all the proposed
techniques.

In Table 6.8 we show the best results we obtained from all the proposed methods
for this Master’s work, for both the English and Spanish dataset. According to this ta-
ble, the Graph2Vec method using word networks outperformed the other methods for
both English (con 93.59%) and Spanish (con 81.90%) documents. First, We observed
a considerable improvement Graph2Vec with word network (con 81.90%) achieved for
Spanish books compared to the traditional vector space models and Word embedding
(69.51%). Second, for English documents, all methods except Node2Vec and Graph2Vec
with sentence network had obtained an excellent performance. Additionally, Word2Vec
also shows good results for English (93.08%), but for Spanish it doesn’t give us good
results (69.52%).

On the other hand, in Table 6.8 we also observe that the worst results are the meth-
ods Node2Vec and Graph2Vec with sentence networks. For English, Node2Vec give us
better accuracy of (21.90%) and Graph2Vec with sentence network of (26.92%). For
results in Spanish, Node2Vec shows (19.05%) and Graph2Vec with sentence network
(25.71%). It is concluded that Node2Vec is the worst method for both languages.
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Vcctor Document Representation Method English Spanish
Frequency Model 89,23 69,52

TF-IDF 80,00 60,95
Word2Vec 93,08 69,52
Node2Vec 21,90 19,05

Graph2Vec (sentence network) 26,92 25,71
Graph2Vec (word network) 93.59 81,90

Table 6.8: Summary of the best results obtained for each proposed vector representation method.

Regarding the high dimensionality problem of traditional techniques based on vector
space model, we have the following statements. First of all, although the results with
VSM were good for English (89.23%) and fair for Spanish (69.52%), the main problem
with these techniques is their high dimensionality due to the fact that comparing the size
of the vectors generated with the vector space model versus the vectors generated with
Word and Graph Embedding, with these last techniques the size of the vector is reduced
by up to 98%. Therefore, by reducing the dimensionality of the vector, the problem of
high dimensionality is eliminated and the computational time is reduced when processing
the feature vectors; moreover, resources are optimized using Embedding methods. Lastly,
Embedding methods, despite experimenting with language differences, their number of
dimensions is maintained, unlike with other techniques. To understand better all this
analysis, look at Figure 6.2.
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Figure 6.2: Number of dimensions for each vector document representation methods
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On the other hand, in relation to the classifiers, in Figure 6.2 we also observed that in
most cases SVM Classifier gives us the best results for English documents(83.3% of the
times used), despite the different vector representation approaches. Unlike Decision Tree
Classifier that in most cases show the worst results(0% of the times used). In addition,
for Spanish SVM classifiers in most cases give us the best results (66.6% of the times
used), unlike Decision Tree Classifier which shows mostly the lowest results (0% of the
times used). Finally, in the scope of this work, with each of the experimented methods,
in no case does the SVM classifier give the worst results, and likewise in no case does
the Decision Tree Classifier give the best results.

SVM

83.3%

Gaussian NB

16.7%

(a) Ranking for English

SVM

66.6%

Gaussian NB
16.7%

KNN

16.7%

(b) Ranking for Spanish

Figure 6.2: Ranking of the classification algorithms with the vector document representation
method

In conclusion, as we saw previously, in order to obtain good results with English, the
lexical level must be minimally considered (Frequency and TF-IDF Model), it already
offers significant results, but if lexical and semantic level (Word2Vec and Graph2Vec)
is considered, it shows us excellent results. On the other hand, to show good results
in Spanish it is necessary to consider the lexical level, semantic level and consider the
context of the document. First, lexical information and use of context are considered
when modeling the document as a graph. Second, when using Graph2Vec method, the
semantic information is considered.



Chapter 7

Conclusions

Due to the great growth of textual information in digital media, the need to use
various automatic methods to understand and organize this information arises. For this
reason, there are countless investigations for manipulating large amounts of textual infor-
mation. Under this context, the main objective of these investigations is that a computer
system could capture the greatest amount of information and properties present in a text
or sets of texts. The most commonly used method is to extract the numerical represen-
tation of the texts in the form of vectors of n dimensions.

There are simple methods such as vector space models (frequency and TF-IDF based),
to the more advanced methods such as word and sentence embeddings, which attempted
to capture the semantics and context of the words.Other methods focused their analysis
on the structure and organization of words in a text using concepts related to graphs
and complex networks. In this master’s thesis we conducted a comparative analysis of
the strengths and weaknesses of each of these approaches and we evaluated their per-
formance for the authorship attribution task. Similarly, we analyzed the performance of
each method in text written in different languages (English and Spanish).

We evaluated the methods based on graph embeddings to obtain the feature vectors
of each text (previously modeled as graphs of words or sentences). These methods, which
emerged recently, have been successfully used for applications related to compression,
classification and visualization of graphs. However, there are few studies that have used
graph embeddings for text-related applications. These methods exceeded our expecta-
tions because they achieved an excellent performance for both English and Spanish texts.

The obtained results showed that most of the proposed methods ranged from good
to excellent results when they were evaluated for English literary texts. However, the
performance of most of these algorithms decreased significantly for Spanish texts. As
already studied in the previous chapters, the Spanish language is a more complex lan-
guage than the English language. For this reason we believe that the performance of
the proposed methods was worse for texts in Spanish. It is also important to remember
that all these methods were originally proposed for the English language, however, there
are very few studies that have examined the Spanish language properly. Most of these
investigations adapt methodologies that were successfully used for the English language.

69
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In the following sections, we detailed the contributions, limitations, and future work
related to this master’s work.

7.1 Contributions
Below we briefly explain the main contributions of this master’s work:

• Methods based on graph embeddings are being used for various graph-related ap-
plications. However, they have not yet been used for text-related applications.
Therefore, this master’s thesis is one of the first investigations that used the graph
embedding approach to obtain the representative vectors of a set of documents.
We have obtained excellent results using these algorithms, in this sense, we think
that we can use these methodologies for various tasks related to NLP. Such repre-
sentations can be used for classification, clustering and visualization of texts.

• According to the research we perform for authorship recognition, there are various
methods to extract the attributes representing the writing style of an author. Most
of these attributes consider both the morphological, lexical and syntactic aspects
present in a text. However, semantic attributes have not yet been studied in depth,
due to their complexity and possible high computational cost. The methods pro-
posed in this thesis successfully addressed considerations related to the semantic
level. The methods based on word embeddings and graph embeddings partially
addressed these semantic considerations of the language.

• The proposed methods are not only useful for authorship recognition, but they
could be efficient to study literary movements or analyze books according to the
time in which they were written. It is likely that writers of the same era have
similar writing patterns or that the topics of their books have been influenced by
the events that happened at the time in which the authors lived. Therefore, we
think that the writing styles for each literary movement or era could be recognized
by the methods proposed in this master’s work.

• To have a more complete analysis, we compared the proposed methods for different
languages. Most of the authorship recognition works evaluated only texts for the
English language. Likewise, we did not find research that investigated authorship
recognition for texts in Spanish. Therefore, this master’s thesis could initiate future
research related to authorship recognition and other topics related to NLP for
Spanish texts.

7.2 Limitations
Below, we briefly explain the limitations we found for this master’s work:

• Existence of specialized corpus for other languages different from English. There
are many methods and corporas for various applications for English. However, for
other languages, such as Spanish, it becomes a difficult task to find a representative
corpus for the applications, we intend to evaluate.
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• High computational cost of some algorithms. For word and graph embeddings
based methods, finding the ideal size of each vector is challenging. Vectors with
high dimensions could store more information, however they would have a high
computational cost for their computation. On the other hand, if we consider vectors
with small dimensions, it is likely that we lose important information considering
a low computational time.

• Another algorithm with high computational cost was Node2Vec, which took a long
time to obtain the representative vectors of each node in the network. It also
obtained the worst results.

• Although there is much research related to document representation, it is still
very difficult for a computer system to understand all the characteristics of each
language. All the proposed methods and those that we find in the literature are
approximations at different levels of each aspect of the language. These aspects in-
clude the morphological, lexical and syntactic part (several works have approached
it successfully), to deeper aspects such as the semantic and pragmatic level (which
are a great challenge to model due to their high complexity)

7.3 Future works
Below we list the future works for this master’s work:

• We propose to combine the methods of this research with author attributes that
were used for the stylometry research area. We think that the combination of both
approaches will improve for both English and Spanish texts.

• To evaluate the proposed methods not only for other authorship datasets, but
also for text classification datasets. For example, it would be relevant to analyze
texts grouped by literary genre (fiction, romance, or comedy) or by period (literary
movement). We can also evaluate with other types of texts such as academic texts.
For this work we only compare one dataset for each selected language.

• To extend the proposed methodology to various languages, such as Portuguese,
French, German, among others. For example, since the Portuguese and Spanish
are languages with similar characteristics (Romance or Latin languages), we think
that our methods will possibly have similar performance for these two languages.
It would also be interesting to work with languages that have different letters such
as Japanese, Arab, Tibetan, among others.

• There are too many works related to word and sentence embeddings. Because the
language is complicated to model computationally, various approaches have been
proposed to try to capture all the peculiarities that each language has. For this
reason, it would be interesting to thoroughly analyze each of these methods and
use them together. In this way, we think that the representation of a text would
improve significantly.



72 CONCLUSIONS

• Concepts related to complex networks have also been used successfully for various
NLP applications. It would be important to deepen these concepts and use them for
the authorship task. For example, the topological and metric properties of complex
networks have been used successfully to find writing patterns of authors. Measures
such as node degree, pageRank, betweenness, among other more advanced measures
could capture stylistic patterns of each author.

• For future works, it would be very interesting to use, analyze and visualize a con-
fusion matrix for all the methods used in both languages. This tool would allow us
to determine where the system is confusing the classes, visualize the performance
of the different vector document representation methods and work separately with
different types of errors.

• It would be important to make a comparison of the computational times of each
proposed method and the most relevant methods found in the literature. Using
parallelization and GPU methods, we could speed up the execution time of each
method.



Appendix A

Datasets for authorship recognition

As mentioned in Section 5.1, we downloaded our dataset from Project Gutenberg [Har71].
The selected books are associated with their author, who for the purpose of our thesis is
very relevant. The documents are literary productions. To make up our dataset, we con-
sidered two language families: Romance languages (Spanish) and Germanic languages
(English). In Sections A.1 and A.2, we describe the list of authors with the list of books
selected for English and Spanish, respectively.

A.1 English dataset
Below is the list of 13 authors selected for the English dataset:

• Allan Poe

• Arthur Conan Doyle

• Bram Stoker

• Charles Darwin

• Charles Dickens

• Daniel Defoe

• George Eliot

• Jane Austen

• Joseph Conrad

• Hector Hugh

• Mark Twain

• P.G. Wodehouse

• Thomas Hardy
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On the Tables A.1 , A.2 and A.3 we can see the list of books in English that are part
of our dataset. Its author and year of publication are also shown. Six books were chosen
for each author. In total, our dataset in English contains 78 books.

Author Book
Publication

Date

Allan Poe

The Narrative of Arthur Gordon Pym 1838
The Works of Edgar Allan Poe - V1 1850
The Works of Edgar Allan Poe - V2 1859
The Works of Edgar Allan Poe - V3 1859
The Works of Edgar Allan Poe - V4 1859
The Works of Edgar Allan Poe - V5 1859

Arthur Conan Doyle

Micah Clarke 1889
The Adventures of Sherlock Holmes 1892

The Refugees 1893
The Exploits of Brigadier Gerard 1896

The Lost World 1912
The Valley of Fear 1915

Bram Stoker

The Mystery of the Sea 1902
The Jewel of Seven Stars 1903

The Man 1905
The Lady of the Shroud 1909

The Lair of the White Worm 1911
Dracula’s Guest 1914

Charles Darwin

The Structure and Distribution of Coral Reefs 1842
Geological Observations on the Volcanic

Islands
1844

Geological Observations on South America 1846
On the origin of species 1859

The Expression of the Emotions in Man and
Animals

1872

The Different Forms of Flowers on Plants of
the same Species

1877

Table A.1: DataSet English (Part 1)
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Author Book
Publication

Date

Charles Dickens

The Pickwick Papers 1836
Oliver Twist 1837

Barnaby Rudge: A Tale of the riots of eighty 1841
David Copperfield 1849

A Tale of Two Cities 1859
The Mystery of Edwin Drood 1870

Daniel Defoe

Captain Singleton 1719
Memoirs of a Cavalier 1720

The Life, Adventures of Robinson Crusoe 1720
Colonel Jacque 1722

The Fortune and Misfortune of Mall Flanders 1722
Roxana 1724

George Eliot

Adam Bede 1859
The Mill on the Floss 1860

Romola 1862
Felix Holt, the Radical 1866

Middlemarch 1871
Daniel Deronda 1876

Hector Hugh

The Rise of the Russian Empire 1900
The Chronicles of Clovis 1912

The Unbearable Bassington ‘ 1912
When William Came 1913

Beasts and Super-Beasts 1914
The Toys of Peace and other papers 1919

Jane Austen

Sense and Sensibility 1811
Pride and Prejudice 1813

Mansfield Park 1814
Emma 1816

North anger Abbey 1817
Persuasion 1818

Table A.2: DataSet English (Part 2)
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Author Book
Publication

Date

Joseph Conrad

An Outcast of the Islands 1896
Lord Jim 1900

Nostromo: A Tale of the Seaboard 1904
Under WesternEyes 1911

Chance: A Talein Two Parts 1913
Victory: An Island Tale 1915

Mark Twain

Innocents Abroad 1869
The Adventures of Tom Sawyer 1876
The Prince and the Pauper 1881

Life on the Mississippi 1883
The Adventures of Huckleberry Finn 1884

The Equator a Journey Around the World 1897

P.G. Wodehouse

Tales of St. Austin’s 1903
The Man with Two Left Feet 1917

My Man Jeeves 1919
The Adventures of Sally 1921
The Clicking of Cuthbert 1922

Right Ho. Jeeves 1934

Thomas Hardy

A Pair of Blue Eyes 1873
Far from the Madding Crowd 1874

The Hand of Ethelberta 1876
The Return of the Native 1878

Jude the Obscure 1895
A Changed Man and other Tales 1913

Table A.3: DataSet English (Part 3)
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A.2 Spanish dataset
The following list shows the authors (21 authores) selected for the spanish dataset:

• Adolf Friedrich von Schack

• Armando Palacio Valdés

• Bartolomé de las Casas

• Benito Pérez Galdós

• Concha Espina

• Eduardo Zamacois

• Emilia Pardo Bazán

• Jacinto Benavente

• Jacinto Octavio Picón

• Jaime Balmes

• José Maria de Pereda

• José Rizal

• Juan Valera

• Manuel Fernández y González

• Mariano José de Larra

• Marie Lebert

• Miguel De Unamuno

• Pío Baroja

• Ramon del Valle-Inclan

• Rubén Darío

• Vicente Blasco Ibañez

For the Dataset of Spanish five books were chosen for each author. In total, our
dataset in Spanish contains 105 books. On the Tables A.4, A.5 and A.6 we can see the
list of books in Spanish that are part of our dataset.
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Author Book
Publication

Date

Adolf F. von Schack

H. de la literatura y del arte dramático V1 1885
H. de la literatura y del arte dramático V2 1886
H. de la literatura y del arte dramático V3 1887
H. de la literatura y del arte dramático V4 1887
H. de la literatura y del arte dramático V5 1888

Armando Palacio V.

La Espuma 2004
Riverita 2009

Aguas Fuertes 2010
Marta y Maria 2010

La Guerra Injusta 2013

Bartolome de las Casas

Historia de las Indias - V1 1875
Historia de las Indias - V2 1875
Historia de las Indias - V3 1875
Historia de las Indias - V4 1876
Historia de las Indias - V5 1876

Benito Perez Galdos

La Fontana de Oro 2004
La desheredada 2008
Gloria (Parte 1) 2015

La Familia de León Roch 2015
El Amigo Manso 2017

Concha Espina

Dulce Nombre 2013
Agua de Nieve 2014
Ruecas de Marfil 2015

Despertar para Morir 2015
La Esfinge Maragata 2016

Eduardo Zamacois

La enferma 2015
Incesto 2015
La cita 2015

De carne y hueso 2016
El misterio de un hombre pequeñito 2016

Emilia Pardo Bazan

La Quimera 2015
La Sirena Negra 2016

Insolación y Morriña 2016
Cuentos de Navidad y Reyes 2017

Dulce Dueño 2017

Table A.4: DataSet Spanish (Part 1)
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Author Book
Publication

Date

Jacinto Benavente

Heath’s Modern Language Series 2009
De Sobremesa; crónicas - V1 2017
De Sobremesa; crónicas - V2 2017
De Sobremesa; crónicas - V4 2018
De Sobremesa; crónicas - V5 2018

Jacinto Octavio Picon

Cuentos de mi tiempo 2008
Dulce y sabrosa 2008

Lázaro 2008
El enemigo 2009

Vida y obras de don Diego Velázquez 2009

Jaime Balmes

Filosofia Fundamental - V1 2004
Filosofia Fundamental I-IV, V2 2005

Filosofia Fundamental, V3 2006
El Criterio 2009

Filosofía Fundamental - V4 2009

Jose Maria de Pereda

Escenas Montañesas 2004
Los Hombres de Pro 2005

La Montálvez 2008
El Buey suelto 2017
La Puchera 2017

Jose Rizal

El Consejo de los Dioses 2005
Filipinas Dentro De Cien Años 2005

Junto Al Pasig 2005
El Filibusterismo 2010
Noli me tángere 2014

Juan Valera

Doña Luz 2005
Juanita la Larga 2005
Cuentos y diálogos 2008
A vuela pluma 2011

Las Ilusiones del Doctor Faustino 2016

Manuel Fernandez y G.

Amparo 2008
El Manco de Lepanto 2009

Los Hermanos Plantagenet 2012
La Vieja verde 2014

La alhambra; leyendas árabes 2015

Table A.5: DataSet Spanish (Part 2)
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Author Book
Publication

Date

Mariano Jose de Larra

Fígaro 2010
El doncel de don Enrique el doliente V1 2016
El doncel de don Enrique el doliente V2 2016
El doncel de don Enrique el doliente V3 2016
El doncel de don Enrique el doliente V4 2016

Marie Lebert

El Internet y los Idiomas 2009
Una Corta Historia del eBook 2009

Del Libro impreso al Libro digital 2011
El eBook tiene 40 años 2011

La web, una enciclopedia multilingüe 2013

Miguel de Unamuno

La tía Tula 2013
Abel Sánchez: Una Historia de Pasión 2013

Amor y Pedagogía 2015
Niebla 2015

Tres novelas ejemplares y un prólogo 2017

Pio Baroja

Las Inquietudes de Shanti Andía 2014
Memorias de un Hombre de Acción: V4 2015
Memorias de un Hombre de Acción: V5 2015

El Sabor de la Venganza 2017
La Isabelina 2017

Ramon del Valle-Inclan

Romance de lobos, comedia barbara 2003
Sonata de estío 2013

Sonata de primavera 2013
Sonata de otoño 2014

El Marqués de Brandomín 2018

Ruben Dario

Los Raros 2015
Autobiografía 2016

España Contemporánea 2017
Parisiana 2017

La Caravana Pasa 2018

Vicente Blasco Ibañez

El Préstamo de la Difunta 2006
La Barraca 2005

Los cuatro Jinetes del Apocalipsis 2008
La Bodega 2009

Los Enemigos de la Mujer 2011

Table A.6: DataSet Spanish (Part 3)
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Stopwords

By definition, Stopword are words that do not have a meaning by themselves (null
meaning) but rather modify or accompany others, this group is usually made up of
articles, pronouns, prepositions, adverbs and even some verbs. Next we will list the
stopwords are filtered in the pre-processing stage, for English (Section B.1) and Spanish
(Section B.2). Additionally in Section B.3 the punctuation marks that were removed in
the text pre-processing are mentioned.

B.1 English
The list below illustrates the stopwords in English that were used in the pre-processing

of the texts. Therefore, all of these words have been eliminated from the analysis of writ-
ing style:

Don, needn’t, you’re, the, whom, shouldn’t, yourself, for, when, ma, were, wasn’t,
between, don’t, that, both, do, i, before, y, mightn’t, now, myself, a, further, in, who,
herself, is, be, how, where, by, and, am, than, himself, all, once, hadn’t, wasn’t, you,
from, other, you’d, isn’t, being, mustn’t, this, wouldn’t, they, shan’t, an, will, ourselves,
o, these, won’t, them, same, into, couldn’t, should, themselves, above, while, again, did,
mustn’t, its, any, at, should’ve, each, such, to, only, haven, can, wouldn’t, what, if, why,
d, didn’t, about, been, off, ’ve, hasn’t, more, aren’t, he, she, own, ours, she’s, here, yours,
with, t, then, after, through, was, ain’t, doing, him, it, or, they’ll, are, re, because, no,
had, needn’t, her, on, hers, doesn’t, shall, didn’t, you’ve, so, does, few, we, won, has, his,
up, very, of, most, weren’t, hasn’t, me, against, shouldn’t, which, m, have, but, weren’t,
haven’t, below, your, s, ll, our, as, theirs, down, just, their, itself, out, too, under, aren’t,
over, nor, couldn’t, not, mightn’t, until, during, its, having, doesn’t, isn’t, some, there,
you’ll, those, hadn’t, yourselves, my.

B.2 Spanish
Next we will show a list wich illustrates the stopwords in Spanish that were used in

the pre-processing of the texts. Consequently, entirely these words have been excluded
from the analysis of writing style:
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He, hubieron, eran, estamos, tenido, tuvieses, fuesen, teníamos, habidos, habiendo, so-
mos, tuve, estoy, había, esto, tú, habida, este, estar, esta, habrían, tenéis, unos, estaríais,
seremos, todos, fui, lo, fuéramos, fuésemos, seas, suyos, se, habíais, estuvo, mis, una,
mucho, sentidos, algunas, fueseis, tienes, hubimos, teniendo, antes, tendremos, nuestras,
tuvieras, tuviesen, estaríamos, seáis, estuviéramos, tenidos, habían, hube, tuviéramos,
hayan, sea, tuya, estarían, sois, estado, estará, sentida, muchos, eres, habré, y, son, otro,
esa, tuvisteis, suyo, sean, tendría, estas, habríamos, sobre, otra, sí, fuese, hubisteis, hu-
bieses, algunos, hubiéramos, todo, nosotras, durante, estuvieron, hubiésemos, como, teng-
amos, tuvieran, donde, tengo, estada, e, tenemos, estadas, qué, les, le, las, tuviese, tendré,
desde, estuviera, han, estáis, están, suyas, mío, tendríais, estuvieran, estuviésemos, tened,
algo, hay, fue, para, tendrán, entre, estaba, tuyas, tenías, tuviste, está, habías, también,
estuve, hubierais, ha, tuyos, hubiera, tuvieseis, tendrá, estuvieseis, éramos, estuviesen,
sentido, vuestra, sintiendo, fuerais, habrías, tenida, estuvimos, habrán, era, vuestras, es-
tuviste, hasta, sentid, hubieran, esos, has, otras, ella, o, el, mías, fuimos, ese, estaréis,
que, tengas, tenga, tanto, vosotros, tienen, quien, hayamos, nuestra, míos, habrá, en,
estés, estados, ti, fuisteis, haya, te, suya, tuvierais, estuvieses, es, tiene, siente, voso-
tras, serás, estaría, tendrás, estuviese, yo, habidas, tuvieron, habréis, mi, estuvierais,
hubiste, del, nada, fueran, hubieseis, hubiesen, más, con, sentidas, esté, ni, hubo, estu-
vieras, habido, porque, por, estos, habría, pero, cuando, estaré, tuvimos, nosotros, uno,
ya, sería, nuestros, estaban, tenía, nos, hubieras, cual, teníais, estad, poco, mí, la, tuyo,
estéis, estuvisteis, estén, fueron, contra, ellas, él, estemos, habrás, tengan, fueras, sus,
un, eso, seréis, ellos, tenidas, seré, los, estábamos, seríamos, tuvo, habríais, estás, estarás,
hayas, no, tengáis, estaremos, nuestro, tu, su, habéis, seamos, estarán, tenían, habremos,
al, sin, tuviera, fueses, a, eras, muy, tendrían, fuiste, estando, tus, serán, hemos, esas,
mía, seríais, fuera, tendréis, soy, quienes, vuestro, vuestros, tendrías, estarías, ante, será,
habíamos, estabais, tuviésemos, me, hubiese, estabas, os, serías, hayáis, erais, tendríamos,
otros, serían, de.

B.3 Punctuation marks
This section lists the punctuation marks (Table B.1) that were removed for both

databases (English and Spanish). Punctuation marks and stopwords were removed in
pre-processing text stage. Next we list these punctuation marks below:

Symbol Punctuation Symbol Punctuation
Mark Mark

. Period ; Semicolon
... Ellipsis marks ¡! Exclamation mark
. Square brackets " " Quotation marks
- Hypen ’ Apostrophe
{} Braces : Colon
, Comma () Round brackets
¿? Question marks ¨ Umlaut marks
/ Slash § Paragraph marks
* Asterisk

Table B.1: Puntuation Marks



Bibliography

[AAP+08] Diego R Amancio, Lucas Antiqueira, Thiago AS Pardo, LUCIANO
da F. COSTA, Osvaldo N Oliveira Jr e Maria GV Nunes. Complex
networks analysis of manual and machine translations. International
Journal of Modern Physics C, 19(04):583–598, 2008. 34

[Alt92a] Naomi S Altman. An introduction to kernel and nearest-neighbor non-
parametric regression. The American Statistician, 46(3):175–185, 1992.
17, 49

[Alt92b] N.S. Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. American Statistician - AMER STATIST, 46:175–
185, 08 1992. 15, 16

[ANOJC07] Lucas Antiqueira, M das Gracas V Nunes, ON Oliveira Jr e L da F
Costa. Strong correlations between text quality and complex net-
works features. Physica A: Statistical Mechanics and its Applications,
373:811–820, 2007. 34

[AOJdFCN09] Lucas Antiqueira, Osvaldo N Oliveira Jr, Luciano da Fontoura Costa e
Maria das Graças Volpe Nunes. A complex network approach to text
summarization. Information Sciences, 179(5):584–599, 2009. 34

[APNOJ07] Lucas Antiqueira, Thiago Alexandre Salgueiro Pardo, Maria das
Graças Volpe Nunes e Osvaldo N Oliveira Jr. Some issues on complex
networks for author characterization. Inteligencia Artificial. Revista
Iberoamericana de Inteligencia Artificial, 11(36):51–58, 2007. 33

[Bak18] Amir Bakarov. A survey of word embeddings evaluation methods. arXiv
preprint arXiv:1801.09536, 2018. 30

[BGJM16] Piotr Bojanowski, Edouard Grave, Armand Joulin e Tomas Mikolov.
Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606, 2016. 30

[BGV92] Bernhard E. Boser, Isabelle M. Guyon e Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. Em Proceedings of the 5th
Annual ACM Workshop on Computational Learning Theory, páginas
144–152. ACM Press, 1992. 15, 18

[Bir06] Steven Bird. Nltk: the natural language toolkit. Em Proceedings of
the COLING/ACL on Interactive presentation sessions, páginas 69–
72. Association for Computational Linguistics, 2006. 40, 41

83



84 BIBLIOGRAPHY

[Bro00] Michael W Browne. Cross-validation methods. Journal of Mathematical
Psychology, 44(1):108 – 132, 2000. 52

[Che17] Minmin Chen. Efficient vector representation for documents through
corruption. arXiv preprint arXiv:1707.02377, 2017. 31, 48

[Cho10] Gobinda G Chowdhury. Introduction to modern information retrieval.
Facet publishing, 2010. 28

[CJ15] Michal Campr e Karel Jezek. Comparing semantic models for evaluat-
ing automatic document summarization. páginas 252–260, 09 2015. 1,
13

[CKP+15] Michael Crawford, Taghi Khoshgoftaar, Joseph Prusa, Aaron Richter
e Hamzah Al-Najada. Survey of review spam detection using machine
learning techniques. Journal of Big Data, 2:23, 10 2015. 2

[CLA+06] Silvia MG Caldeira, TC Petit Lobao, Roberto Fernandes Silva An-
drade, Alexis Neme e JG Vivas Miranda. The network of concepts in
written texts. The European Physical Journal B-Condensed Matter and
Complex Systems, 49(4):523–529, 2006. 33

[CN+06] Gabor Csardi, Tamas Nepusz et al. The igraph software package for
complex network research. InterJournal, complex systems, 1695(5):1–9,
2006. 45

[COJT+11] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso,
Francisco Aparecido Rodrigues, Paulino Ribeiro Villas Boas, Lucas An-
tiqueira, Matheus Palhares Viana e Luis Enrique Correa Rocha. Ana-
lyzing and modeling real-world phenomena with complex networks: a
survey of applications. Advances in Physics, 60(3):329–412, 2011. 33

[Com18] Chapter 11 - information retrieval: Concepts, models, and systems. Em
Venkat N. Gudivada e C.R. Rao, editors, Computational Analysis and
Understanding of Natural Languages: Principles, Methods and Applica-
tions, volume 38 of Handbook of Statistics, páginas 331 – 401. Elsevier,
2018. 2, 19

[COT+11] Luciano da Fontoura Costa, Osvaldo N. Oliveira, Gonzalo Travieso,
Francisco Aparecido Rodrigues, Paulino Ribeiro Villas Boas, Lucas An-
tiqueira, Matheus Palhares Viana e Luis E C Rocha. Analyzing and
modeling real-world phenomena with complex networks : a survey of
applications. ADVANCES IN PHYSICS, 60(3):329–412, 2011. 3

[CS01] Ramon Ferrer I Cancho e Richard V Solé. The small world of hu-
man language. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 268(1482):2261–2265, 2001. 33

[CTM+07] Monojit Choudhury, Markose Thomas, Animesh Mukherjee, Anupam
Basu e Niloy Ganguly. How difficult is it to develop a perfect spell-
checker? a cross-linguistic analysis through complex network approach.
arXiv preprint physics/0703198, 2007. 34



BIBLIOGRAPHY 85

[dACA16] Henrique F de Arruda, Luciano da F Costa e Diego R Amancio. Us-
ing complex networks for text classification: Discriminating informative
and imaginative documents. EPL (Europhysics Letters), 113(2):28007,
2016. 33

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee e Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018. 32

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer e Richard Harshman. Indexing by latent semantic analysis. Jour-
nal of the American society for information science, 41(6):391, 1990.
29

[Edm98] Philip Edmonds. Choosing the word most typical in context using a
lexical co-occurrence network. arXiv preprint cs/9811009, 1998. 34

[FdANSQM+18] Henrique Ferraz de Arruda, Filipi Nascimento Silva, Vanessa
Queiroz Marinho, Diego Raphael Amancio e Luciano da Fon-
toura Costa. Representation of texts as complex networks: a mesoscopic
approach. Journal of Complex Networks, 6(1):125–144, 2018. 39

[GAPDSP18] Helena Gomez Adorno, Juan Posadas Durán, Grigori Sidorov e David
Pinto. Document embeddings learned on various types of n-grams for
cross-topic authorship attribution. Computing, 100, 07 2018. 28

[GF18] Palash Goyal e Emilio Ferrara. Graph embedding techniques, applica-
tions, and performance: A survey. Knowledge-Based Systems, 151:78–
94, 2018. 34, 35

[GL16] Aditya Grover e Jure Leskovec. Node2vec: Scalable feature learning for
networks. Em Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pági-
nas 855–864, New York, NY, USA, 2016. ACM. 25, 47

[GR71] Gene H Golub e Christian Reinsch. Singular value decomposition and
least squares solutions. Em Linear Algebra, páginas 134–151. Springer,
1971. 29

[Har71] Michael Hart. Dataset gutenberg, @BOOKLET, 1971. 39, 73

[HCK16] Felix Hill, Kyunghyun Cho e Anna Korhonen. Learning distributed
representations of sentences from unlabelled data. arXiv preprint
arXiv:1602.03483, 2016. 32

[HHHH09] Simon S Haykin, Simon S Haykin, Simon S Haykin e Simon S Haykin.
Neural networks and learning machines, volume 3. Pearson Upper Sad-
dle River, NJ, USA:, 2009. 18, 49



86 BIBLIOGRAPHY

[HLZB18] Shexia He, Zuchao Li, Hai Zhao e Hongxiao Bai. Syntax for semantic
role labeling, to be, or not to be. Em Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), páginas 2061–2071, Melbourne, Australia, Julho 2018.
Association for Computational Linguistics. 2, 13

[HM17] Matthew Honnibal e Ines Montani. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and
incremental parsing. To appear, 2017. 41

[HSMN12] Eric H Huang, Richard Socher, Christopher D Manning e Andrew Y Ng.
Improving word representations via global context and multiple word
prototypes. Em Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers-Volume 1, páginas
873–882. Association for Computational Linguistics, 2012. 19

[Juo08] Patrick Juola. Authorship attribution. Foundations and Trends® in
Information Retrieval, 1:233–334, 03 2008. 1, 13

[KBDR16] Tom Kenter, Alexey Borisov e Maarten De Rijke. Siamese cbow: Op-
timizing word embeddings for sentence representations. arXiv preprint
arXiv:1606.04640, 2016. 31

[KE07] Jinyun KE. Complex networks and human language. 02 2007. 25

[KMN+02] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman
e A. Y. Wu. An efficient k-means clustering algorithm: analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, 2002. 15

[Kor12] Vandana Korde. Text classification and classifiers:a survey. Interna-
tional Journal of Artificial Intelligence Applications, 3:85–99, 03 2012.
1, 2, 13

[KPC95] Julian Kupiec, Jan Pedersen e Francine Chen. A trainable document
summarizer. Em Proceedings of the 18th annual international ACM SI-
GIR conference on Research and development in information retrieval,
páginas 68–73. ACM, 1995. 15, 49

[KTA+16] Joo-Kyung Kim, Gokhan Tur, Celikyilmaz Asli, Bin Cao e Ye-Yi Wang.
Intent detection using semantically enriched word embeddings. páginas
414–419, 12 2016. 15

[KZM14] Svetlana Kiritchenko, Xiaodan Zhu e Saif Mohammad. Sentiment anal-
ysis of short informal text. The Journal of Artificial Intelligence Re-
search (JAIR), 50, 08 2014. 2, 13

[KZS+15] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel
Urtasun, Antonio Torralba e Sanja Fidler. Skip-thought vectors. Em
Advances in neural information processing systems, páginas 3294–3302,
2015. 32



BIBLIOGRAPHY 87

[LM14] Quoc Le e Tomas Mikolov. Distributed representations of sentences and
documents. Em International conference on machine learning, páginas
1188–1196, 2014. 31

[LMG09] Arash Habibi Lashkari, Fereshteh Mahdavi e Vahid Ghomi. A boolean
model in information retrieval for search engines. Em 2009 Interna-
tional Conference on Information Management and Engineering, pági-
nas 385–389. IEEE, 2009. 28

[Man02] Javier Valenzuela Manzanares. Linguistica contrastiva ingles-español:
una visión general. 51:27–45, 2002. 7

[Mar] Vanessa Queiroz Marinho. Development of new models for authorship
recognition using complex networks. Tese de Doutorado, Universidade
de São Paulo. 14, 39

[MCCD13] Tomas Mikolov, Kai Chen, Gregory S. Corrado e Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013. 3, 22

[Men87] Thomas Corwin Mendenhall. The characteristic curves of composition.
Science, 9(214):237–249, 1887. 28

[MHA16] Vanessa Queiroz Marinho, Graeme Hirst e Diego Raphael Amancio.
Authorship attribution via network motifs identification. Em 2016 5th
Brazilian Conference on Intelligent Systems (BRACIS), páginas 355–
360. IEEE, 2016. 33

[Mil95] George A Miller. Wordnet: a lexical database for english. Communi-
cations of the ACM, 38(11):39–41, 1995. 33

[Mil98] George A Miller. WordNet: An electronic lexical database. MIT press,
1998. 33

[ML18] Julia Masche e Nguyen-Thinh Le. A review of technologies for conver-
sational systems. páginas 212–225, 06 2018. 13

[MM09] Ronei Moraes e Liliane Machado. Gaussian naive bayes for online train-
ing assessment in virtual reality-based simulato. Mathware Soft Com-
puting, 16:123–132, 01 2009. 15, 17

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado e Jeff Dean.
Distributed representations of words and phrases and their composi-
tionality. Em Advances in neural information processing systems, pági-
nas 3111–3119, 2013. 23, 30

[NCV+17] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar
Venkatesan, Lihui Chen, Yang Liu e Shantanu Jaiswal. graph2vec:
Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017. 25



88 BIBLIOGRAPHY

[NMV+17] Annamalai Narayanan, Chandramohan Mahinthan, Rajasekar
Venkatesan, Lihui Chen, Yang Liu e Shantanu Jaiswal. graph2vec:
Learning distributed representations of graphs. 07 2017. 26

[NOMC11] Prakash M Nadkarni, Lucila Ohno-Machado e Wendy W Chapman.
Natural language processing: an introduction. Journal of the American
Medical Informatics Association, 18(5):544–551, 09 2011. 1

[Pal05] Mahesh Pal. Random forest classifier for remote sensing classification.
International Journal of Remote Sensing - INT J REMOTE SENS,
26:217–222, 01 2005. 15

[PARS14] Bryan Perozzi, Rami Al-Rfou e Steven Skiena. Deepwalk: Online
learning of social representations. Em Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, páginas 701–710, 2014. 35

[PGJ17] Matteo Pagliardini, Prakhar Gupta e Martin Jaggi. Unsupervised
learning of sentence embeddings using compositional n-gram features.
arXiv preprint arXiv:1703.02507, 2017. 31

[PSM14] Jeffrey Pennington, Richard Socher e Christopher Manning. Glove:
Global vectors for word representation. Em Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
páginas 1532–1543, 2014. 30

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot e E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. 42, 43

[Qui14] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
16, 49

[RARP12] Rafael Ribaldo, Ademar Takeo Akabane, Lucia Helena Machado Rino
e Thiago Alexandre Salgueiro Pardo. Graph-based methods for multi-
document summarization: exploring relationship maps, complex net-
works and discourse information. Em International Conference on
Computational Processing of the Portuguese Language, páginas 260–
271. Springer, 2012. 1

[Ras14] Sebastian Raschka. Naive bayes and text classification i - introduction
and theory. 10 2014. 17

[Rei96] Joan M Reitz. Online dictionary for library and information science:
ODLIS. Libraries Unlimited, 1996. 33

[RM05] L. Rokach e O. Maimon. Top-down induction of decision trees classifiers
- a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 35(4):476–487, 2005. 15, 16



BIBLIOGRAPHY 89

[ŘS10] Radim Řehůřek e Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. Em Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, páginas 45–50, Valletta, Malta,
Maio 2010. ELRA. http://is.muni.cz/publication/884893/en. 43

[SB88] Gerard Salton e Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information processing & management,
24(5):513–523, 1988. 29

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM computing surveys (CSUR), 34(1):1–47, 2002. 22

[SKD19] Tomasz Stanisz, Jarosław Kwapień e Stanisław Drożdż. Linguistic data
mining with complex networks: a stylometric-oriented approach. Infor-
mation Sciences, 482:301–320, 2019. 34, 37, 39, 44

[SPdVLO19] Xabier Soto, Olatz Perez-de Viñaspre, Gorka Labaka e Maite Oronoz.
Neural machine translation of clinical texts between long distance lan-
guages. Journal of the American Medical Informatics Association,
26(12):1478–1487, 07 2019. 13

[Sta09a] Efstathios Stamatatos. A survey of modern authorship attribution
methods. JASIST, 60:538–556, 03 2009. 2, 14, 27, 28

[Sta09b] Efstathios Stamatatos. A survey of modern authorship attribution
methods. JASIST, 60:538–556, 03 2009. 2

[SWY75a] G. Salton, A. Wong e C. S. Yang. A vector space model for automatic
indexing. 18(11):613–620, Novembro 1975. 2, 20

[SWY75b] Gerard Salton, Anita Wong e Chung-Shu Yang. A vector space model
for automatic indexing. Communications of the ACM, 18(11):613–620,
1975. 29

[TA17] Jorge Valverde Tohalino e Diego Raphael Amancio. Extractive multi-
document summarization using dynamical measurements of complex
networks. Em 2017 Brazilian Conference on Intelligent Systems
(BRACIS), páginas 366–371. IEEE, 2017. 33, 34

[TA18] Jorge V Tohalino e Diego R Amancio. Extractive multi-document sum-
marization using multilayer networks. Physica A: Statistical Mechanics
and its Applications, 503:526–539, 2018. 33

[TKL+03] Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes e Gregory
Marton. Quantitative evaluation of passage retrieval algorithms for
question answering. Em Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval, páginas 41–47. ACM, 2003. 22

http://is.muni.cz/publication/884893/en


90 BIBLIOGRAPHY

[TRB10] Joseph Turian, Lev Ratinov e Yoshua Bengio. Word representations: a
simple and general method for semi-supervised learning. Em Proceed-
ings of the 48th annual meeting of the association for computational
linguistics, páginas 384–394. Association for Computational Linguis-
tics, 2010. 22

[UF16] Rishabh Upadhyay e Akihiro Fujii. Semantic knowledge extraction
from research documents. volume 8, 09 2016. 13

[VE18] Kimmo Vehkalahti e Brian Everitt. Applying Logistic Regression, pági-
nas 123–137. 12 2018. 15

[VOGMB19] Didier A Vega-Oliveros, Pedro Spoljaric Gomes, Evangelos E Milios e
Lilian Berton. A multi-centrality index for graph-based keyword ex-
traction. Information Processing & Management, 56(6):102063, 2019.
34

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser e Illia Polosukhin. Attention is
all you need. Em Advances in neural information processing systems,
páginas 5998–6008, 2017. 32

[War92] Steven P Wartik. Boolean operations., 1992. 28

[WCZ16] Daixin Wang, Peng Cui e Wenwu Zhu. Structural deep network embed-
ding. Em Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, páginas 1225–1234,
2016. 35

[WS05] Scott White e Padhraic Smyth. A spectral clustering approach to find-
ing communities in graphs. Em Proceedings of the 2005 SIAM inter-
national conference on data mining, páginas 274–285. SIAM, 2005. 35

[Zha04] Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004. 17, 49


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Context and motivation
	Hypothesis
	Objectives
	Organization of this Dissertation

	Linguistic Concepts 
	Contrastive linguistics
	Morphological level
	Syntactic level
	Lexical-Semantic Level
	Pragmatic Level


	Computational Concepts
	Authorship attribution
	Document Classification
	Decision Tree
	KNN (K-Nearest Neighbors)
	Gaussian Naive Bayes (Gaussian NB)
	Support Vector Machine (SVM)

	Vector Representation of Documents
	Vector Space Model
	Frequency Model
	Term Frequency–Inverse Document Frequency (TF-IDF)

	Word embeddings
	Word2Vec

	Graphs and complex networks
	Networks applied to Language Studies

	Graph embeddings
	Node2Vec
	Graph2Vec


	Related works
	Authorship attribution
	Classic techniques and vector space models
	Word and document embeddings
	Word embeddings representations
	Document embeddings representations

	Complex networks for text representation
	Graph embeddings

	Methodology
	Datasets
	Text Preprocessing
	Feature vector extraction
	Vector space model
	Frequency-based approaches
	TF-IDF based approaches

	Word embedding
	Word2Vec

	Graph embedding
	Graph construction
	Node2Vec
	Graph2Vec

	Document classification

	Results and Discussion
	Initial considerations
	Cross Validation Method
	Pruning Stage

	Experiments with Frequency and TF-IDF Models
	Word2Vec experiments
	Node2Vec experiments
	Graph2Vec experiments
	Graph2Vec Results with Sentence Networks
	Graph2Vec Results with Word Networks

	Final Results

	Conclusions
	Contributions
	Limitations
	Future works

	Datasets for authorship recognition
	English dataset
	Spanish dataset

	Stopwords
	English
	Spanish
	Punctuation marks

	Bibliography

