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Aplastic anemia is an historic disease. The first patient was described by the young Paul 

Ehrlich in 1885, “anemia aplastique” originated with Vaquez in 1904, and its clinical 

features were described by Cabot and other pathologists in the early 20th century. In the 

modern era, an almost uniformly fatal prognosis, mainly for young persons with sudden 

severe pancytopenia, has been reversed, with development of effective therapies for almost 

all patients. In the research laboratory understanding of pathophysiology has guided 

development of therapies. Marrow failure syndromes have been linked viral infection and 

environmental toxins, inherited and acquired genetic mutations, to the early events in 

leukemogenesis, and to the hematopoiesis of normal aging.

Definitions

Aplastic anemia’s long history has produced confusing terminology. “Anemia” derives from 

early ability to measure red blood cells in a hematocrit. Most patients have pancytopenia, 

with decreased platelets and white blood cells. “Aplastic” refers to the inability marrow to 

form blood, the end organ effect of diverse pathophysiologic mechanisms. Historically, 

identification of aplastic anemia was post-mortem, and the biopsy remains fundamental to 

diagnosis. Yet a seemingly empty bone marrow may be entirely capable of supporting 

normal hematopoiesis. Conversely, bone marrow failure can occur with normally cellular 

marrow, as in the myelodysplastic syndromes (MDS) and paroxysmal nocturnal 

hemoglobinuria (PNH).

Pathophysiologies

Three main pathophysiologies produce the pathology of an “empty” marrow (Figure 1).

Direct Marrow Damage.

Damage occurs most often iatrogenically, from chemotherapy and radiation. Marrow effects 

are dose-dependent and, at conventional doses, transient; other organ systems are affected; 

and spontaneous recovery is expected. Benzene, an inexpensive solvent, also damages 

hematopoiesis, and industrially exposed workers figured prominent in the early literature of 

aplastic anemia. Benzene now is a negligible risk factor, accounting for only a small 

etiologic fraction in most countries1,2. In China, rapidly industrialized and less regulated, 

benzene remains a workplace toxin3,4. Dosage is critical; workers with less intense and/or 

prolonged benzene exposure appear to suffer milder cytopenias, and they recover after 
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terminating exposure. Marrow failure is a proximate effect, not a late consequence, of 

benzene exposure.

Constitutional Syndromes.

Marrow failure results from loss-of-function germline mutations, usually inherited (Table 1). 

A spectrum of genetic lesions diminish the hematopoietic stem’s ability to repair DNA, as in 

Fanconi anemia (replication-dependent removal of inter-strand DNA cross-links)5 and 

dyskeratosis congenita (telomere maintenance and repair)6 or the stem and progenitor cells’ 

differentiation and self-renewal pathways, as in GATA27. Marrow failure has been 

appreciated in syndromes affecting immune regulation, as in CTLA48 and DADA2.9 

Constitutional syndromes classically appear in childhood, often with characteristic physical 

anomalies; typically organs other than marrow are involved; and family history often 

discloses affected relatives. Fatal graft rejection has followed inadvertent use of an affected 

sibling10 and persistent marrow failure after transplant in patients with mutations in the gene 

encoding the growth factor thrombopoietin.11 Results of published surveys from specialty 

clinics are dependent on referral patterns and case definitions. Among about 100 children 

and adults with aplastic anemia, 5% had genetic mutations on screening12. Of 173 patients, 

mostly under age 18 years, referred for diagnosis of constitutional marrow failure, about 

50% showed mutations on genomic screening.13 At NIH, among children and adults referred 

for protocol treatments, only one of 74 patients with severe aplastic anemia had an 

unexpected pathogenic mutation; mutations were more prevalent in moderate aplastic 

anemia patients.

Immune aplastic anemia.

Almost all sporadic aplastic anemia, especially when severe and acute, appears to be 

immune-mediated. The strongest, most relevant evidence for an immune mechanism is the 

response of blood counts to a variety of immunosuppressive therapies and dependence of 

counts after recovery on maintenance calcineurin inhibitors14,15. Immune aplastic anemia 

lies in a spectrum of bone marrow and blood cell diseases (Figure 2A).

Cytotoxic T cells have been the focus in studies of patient samples and in vitro. These cells 

appear functionally and phenotypically activated16,17, skewed to produce type 1 

cytokines18,19, induce apoptosis via Fas/FasL20, and circulate as oligoclones.21 Acquired, 

somatic mutations in the STAT3 signaling pathway may be pathogenic in some aplastic 

anemia, as they are in large granular lymphocytosis, producing constitutively activated T 

cells22. Treg cells are decreased in patients with aplastic anemia and increase with 

hematologic response.2324,25

Aplastic anemia is associated with specific histocompatibility antigens2627. More striking is 

the presence of “escape clones”, granulocytes with loss of the region of chromosome 6 that 

encompasses HLA alleles, in 10–15% of patients2829,30; cells selected by absence of HLA, 

acquired by 6pLOH or somatic mutations, sustain hematopoiesis by clonal expansion31 

Immune escape has been hypothesized to explain clonal expansion of cells globally deficient 

in glycosylphosphoinositiol (GPI)-anchored proteins32 in PNH, due to an acquired mutation 

in PIG-A in a stem cell. The GPI anchor itself has been suggested to be a target of the 
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immune response.33 Autoantibodies, of uncertain significance, have been identified by high 

throughput screening of sera3435 but the inciting antigen(s) for the dominant T cell response 

remain unknown.

Immune aplastic anemia can be modeled in mice: infusion of mis-matched donor 

lymphocytes leads to rapid hematopoietic failure and death.3637 Limited numbers of T cells 

specifically attack marrow cells, produce apoptosis through Fas/FasL engagement; type 1 

cytokines have an active role in target cell death, directly for IFN-γ, indirectly for TNF-α; 

and Tregs are modulatory.

Hematopoiesis

Stem Cell Number.

Aplastic anemia long has been regarded as the result of a profound deficit in hematopoietic 

stem and progenitor cells. The marrow is devoid of morphologic precursors to erythrocytes, 

granulocytes, and platelets. CD34 cells are almost completely absent in fixed biopsies or by 

flow cytometry. Colony forming cells for differentiated lineages and more immature 

multipotent cells are also extremely low in number.

None of the available measurements of hematopoiesis correlates closely with blood counts. 

More important, recovery of blood counts and of bone marrow function after 

immunosuppression and even more dramatically with growth factor stimulation indicates 

that stem cells are present even in the most deficient marrow. Assays to measure functional 

stem cells in humans are not quantitative, the contributions of true stem cells and more 

mature but still primitive multipotent progenitors to maintenance of hematopoiesis are 

controversial, and even changes with aging within the stem cell compartment have only been 

broadly defined.

Stem Cell Clonality.

Hematopoiesis in aplastic anemia is “clonal”, but this is not a well-defined term38. Cancer is 

clonal: a tumor is derived from a single malignant cell. Clonality in marrow failure refers to 

the presence of populations originating from a single stem cell, which are easier to detect in 

circumstances of a failed bone marrow than in healthy individuals with hundreds of active 

stem cells. In aplastic anemia, benign clonal populations of granulocytes deficient in GPI-

anchored proteins or lacking HLA expression are frequent, presumably selected by survival 

under immune attack. Indeed, normal individuals have tiny numbers of leukocytes mutated 

in PIGA, and chromosomal clonal mosaicism is present in many normal tissues. “Clonal 

evolution” in aplastic anemia is development of MDS or acute myeloid leukemia (AML), 

characterized by aneuploidy, usually loss of all or a portion of chromosome 7. That similar 

chromosome abnormalities feature in both acquired39 and constitutional40 aplastic anemia 

suggests that the marrow failure environment itself predisposes to their selection.

With next generation sequencing, clonality is apparent in leukocytes mutated in a specific 

gene, in most studies a “candidate” gene known to be recurrently mutated in MDS and 

AML.41 In aplastic anemia, such clonal populations are present in about 1/3 of patients, but 

in contrast to MDS and AML, a very limited set of genes (DNMT3A, ASXL1, and BCOR) 
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is involved and the clone size (variant allele fraction) is small.42,43 The presence of a 

mutated clone in a patient associated with outcomes (BCOR and PIGA a favorable 

prognosis; mutations including DNMT3A and ASXL1, a worse prognosis).42 Paradoxically, 

mutated clones rarely appeared to drive evolution to a myeloid malignancy.

Telomeres.

Extremely short telomeres are typical of the patient with a genetic telomere disease. In 

immune aplastic anemia, telomere length may be decreased due to increased mitotic demand 

on a limited pool of stem cells.44 Telomere length at diagnosis has correlated with 

outcomes45,46, response to immunosuppression,47 and evolution to MDS and AML.45 

Accelerated telomere attrition precedes progression to monosomy 7.48

Diagnosis

A fatty bone marrow remains basic to diagnosis, but sophisticated testing now can be 

directed at distinguishing among diverse pathophysiologies and discriminating among 

similar, sometimes overlapping diseases whi in the differential diagnosis (Fig. 2B). Accurate 

diagnosis is required for appropriate therapy and effective management.

Constitutional versus acquired bone marrow failure.

Genomic screening complements functional testing for Fanconi anemia (chromosomes after 

clastogenic stress) and telomeropathies (telomere length). However, comprehensive germline 

screening adds to the cost of the evaluation, results may not return to the clinician for several 

weeks, and a report can be difficult to interpret. Screening for the approximately 50 genes 

that cause constitutional marrow failure is particularly valuable in moderate and chronic 

pancytopenia, thrombocytopenia, and macrocytic anemia; absent a family history, physical 

stigmata, or evidence of organ involvement beyond the marrow, it is not likely to be positive 

in severe pancytopenia. Commercial testing reports “pathogenic” mutations, a determination 

that relies on continual reannotation of the literature and judgements based on amino acid 

changes and their location in conserved or functionally critical regions of a gene. Some base 

substitutions are infrequent polymorphisms in certain ethnic populations, and their 

significance is uncertain. Conversely, exome sequencing of candidate genes may not detect 

critical mutations in regulatory regions.49,50 Correlation of genomics with functional testing 

is desirable, but some telomeropathy patients have normal telomere length, short telomeres 

not below the first percentile can be difficult to interpret, and mosaicism due to reversion of 

a Fanconi anemia gene can lead to a normal chromosome study in peripheral blood.

Hypoplastic MDS versus aplastic anemia.

Acquired mutations are detected on genomic screens of recurrently mutated genes in MDS 

and AML. Such testing is valuable when MDS is suspected. Hypocellular MDS may be 

suggested from the bone marrow appearance, especially dyspoietic megakaryocytes,51 and a 

normal or increased number of CD34 cells is not consistent with aplastic anemia. Flow 

cytometry enumerates CD34 cells and may show anomalous phenotypes indicating aberrant 

differentiation52. Genomics may be useful, as spliceosome gene mutations are prevalent in 

MDS but unusual in aplastic anemia, as is more than a single mutated gene.53 However, the 
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genomic pattern of hypoplastic MDS, although distinct from normal or hypercellular MDS, 

is similar to the pattern in aplastic anemia, in the specific genes involved, the likelihood of 

only a single gene mutation, and smaller clone size.54 The finding of a DNMT3A- or 

ASXL1-mutated clone does not alter the diagnosis of aplastic anemia or likelihood of 

response to therapy.

PNH/aplastic anemia syndrome.

Screening for PNH is performed by flow cytometry, which precisely measures clone size as 

a proportion of GPI-anchored protein deficient cells by absence of specific antibody binding 

on erythrocytes and leukocytes. In hemolytic PNH, the clone is large, above 50% and 

sometimes approaching representation of all circulating cells from the mutated clone. A 

large clone also correlates with the risk of catastrophic clots and is an indication for anti-

complement therapy with eculizumab; eculizumab resolves intravascular hemolysis and is 

effective as thrombosis prophylaxis. Clones are much smaller in aplastic anemia, requiring 

monitoring but not treatment; clinical PNH is unlikely to develop from tiny clones or 

without a clone at diagnosis55

Treaments

Bone marrow transplantation (BMT).

Replacement of a failed bone marrow is curative of the underlying disease. Transplant has 

been limited by its complications, graft rejection and graft-versus-host disease (GVHD), and 

the availability of suitable donors.

For immune aplastic anemia, transplant is always preferred in the young patient, and when 

undertaken expeditiously after diagnosis using a histocompatible sibling donor, results are 

excellent, with more than 90% long term survival in young children,56,57 more than 80% in 

adolescents58, and a low rate of complications short- and long-term. While sibling donor 

transplant now is more frequent in older adults, results have not improved over several 

decades, remaining about 50% for recipients over 40 years of age59, almost 3-fold higher 

than in children.60 African-Americans also have poorer outcomes compared to Caucasians.
61 Marrow is the preferred source due to more GVHD using peripheral blood.62,63 Rabbit 

ATG is often added to the conditioning regimen64,65, and radiation, especially in children, 

avoided.

Histocompatible sibling donors are unavailable for most patients, but large donor registries 

provide the option of unrelated source HLA-matched at molecular resolution for most 

Caucasian patients.66–69 In a comprehensive report of over 500 transplants, outcome 

measured as survival was not statistically inferior to conventional matched sibling 

transplants, but the frequency of serious GVHD was two-fold higher67,68 Young age is a 

favorable factor for unrelated transplant as for sibling donor transplant. Children who have 

failed other therapies can receive unrelated grafts and have excellent survival, 95% in a 

multicenter British study.70 Outcomes are better with use of marrow rather than blood donor 

cells, ATG in the conditioning, younger donors, and a shorter interval from diagnosis.67,68,71 

Outcomes have been so good that some experts have advocated for first-line use of unrelated 
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donors,72,73 despite sometimes protracted delays in identifying and collecting donor cells. 

Late effects are more frequent in recipients after unrelated compared to sibling donor 

transplants.74

Umbilical cord transplantation also has been successful in aplastic anemia, mainly in 

children due to the relationship between donor inoculum cell numbers and recipient weight, 

with survival approximating 90%.75,76 Rates of GVHD are low; the major disadvantage of 

cord blood is delayed engraftment and prolonged neutropenia. Some protocols combine cord 

and mismatched bone marrow77

A potential donor half matched to the patient should be present in virtually every family. As 

even single antigen disparities markedly affect outcomes of transplants, overcoming major 

histocompatibility differences had seemed an insuperable barrier. T cell depleting strategies, 

pre-transplant by cytotoxic drugs and biologics, and post-transplant with cyclophospamide78 

have been utilized to prevent GVHD. Extensive experience in Chinese centers and smaller 

series of patients transplanted in the United States and Europe shows excellent results (Table 

2). Haploidentical transplant has been advocated in China as first treatment for children.79; 

in Europe, with 1 year survival of about 77%, haploidentical transplant is recommended as 

second-line therapy.80 Long-term effects of the complicated regimens and mismatched 

immune system are unknown but possibly they will be ameliorated by the low prevalence 

and severity of graft-versus-host disease.

For the constitutional marrow failure syndromes, specific considerations relate to the 

underlying biology, in Fanconi anemia the sensitivity of cells in many organs to alkylating 

agents in conditioning regimens, and the natural history of these diseases, resulting in late 

cancers in Fanconi anemia and organ failure in telomere disease. Both the decision to 

transplant and timing of transplant can be difficult, due to slow progression of moderate 

hematopoietic failure and the uncertainty of highly variable disease outcomes without 

intervention. Results generally have been less than optimal.8182,83 Worsening blood counts 

or evidence of progression to malignancy are obvious indications for transplant, and in some 

syndromes transplant has been remarkably effective.84

Immunosuppression.

In the early years of transplant, occasional autologous recovery of patient marrow suggested 

that the antilymphocyte globulin employed in conditioning might have had a salutary effect. 

Combined with cyclosporine, anti-thymocyte globulin (ATG) leads to hematologic responses 

in about 2/3 of patients.1480 ATGs are complex, not fully defined mixtures of antibodies to 

human proteins. ATGs are relatively mildly lymphocyte depleting but subtle differences in 

mechanism of action appear important for efficacy. For example, rabbit ATG was much less 

efficacious than was horse ATG in a randomized controlled trial, in which a major difference 

in biologic effect was more severe depletion of CD4 cells and T regulatory cells following 

rabbit ATG.25 Even with response, most patients do not recover normal blood counts. About 

1/3 patients relapse or require cyclosporine long-term to maintain their response.85; relapse 

usually responds to further immunosuppression.86 Responses and outcomes are better in 

children than in older adults.87,8889 Patients who do not respond to horse ATG may improve 

with second line rabbit ATG or alemtuzumab, a pan-T cell monoclonal antibody.86
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Immunosuppressive therapy is less arduous than transplant and is available to all patients, 

but, in not replacing the affected marrow or immune system, late consequences of the 

disease can occur. Not infrequent relapse can be ameliorated but obligates the patient to long 

term cyclosporine. More serious is “clonal evolution”, the later development of MDS or 

AML, even after stable blood count recovery. Clonal evolution most often manifests as a 

cytogenetic abnormality, usually loss of all or part of chromosome 739 and occurs in about 

15% of aplastic anemia patients over the decade following initial immunosuppression.14 

Chromosome 7 aneuploidy has a poor prognosis and triggers efforts to transplant.

Stem Cell Stimulation.

Attempts to improve on ATG by addition of androgens, granulocyte colony stimulating 

factor, mycophenolate, or rapamycin have not altered response rates or long-term outcomes. 

Hematopoietic growth factors are ineffective in aplastic anemia. It was therefore unexpected 

when eltrombopag, a synthetic mimetic of thrombopoietin, showed activity in patients with 

refractory aplastic anemia, about half of whom responded with robust trilineage 

improvements in blood counts, most durable after discontinuation of drug.9091 Eltrombopag 

has been relabeled for this indication. When eltrombopag was added to initial standard 

immunosuppression, it markedly increased the overall response rate to about 80% and the 

complete response rate to about 50%, with patients often showing more rapid than expected 

hematologic recovery.46 To date, the rates of relapse and evolution to myeloid malignancies 

appear similar or lower than in historical controls treated with immunosuppression alone.

Increased bone marrow cellularity, CD34 cell and progenitor numbers suggest a direct effect 

of eltrombopag on marrow stem cells.46 Thrombopoietin concentrations in the blood of 

aplastic anemia patients are very high92,93, but eltrombopag may evade a block to receptor 

engagement in the presence of interferon-γ (Alvarado and Larochelle, personal 

communication).

Androgens.

Androgens are historic therapy for marrow failure syndromes. While generally regarded as 

much less efficacious in severe aplastic anemia than are immunosuppressive strategies, 

androgens are standard care for many constitutional syndromes. Sex hormones increase 

expression of the gene for telomerase in cell culture94 and in mice.95 In a recent prospective 

trial, high doses of danazol, a synthetic androgen, improved blood counts in patients with 

telomere disease and also appeared to reverse accelerated telomere attrition.96

Provisional treatment algorithms are provided in Figure 3.

Conclusion

Aplastic anemia is a remarkable story of success in the clinic and the laboratory, with 

implications beyond bone marrow failure. Its etiologies relate to common environmental 

toxins, to specific viral infections, and to genes affecting basic cellular mechanisms; the role 

of the immune system has been appreciated as both potent and subtle. Most gratifying, 

treatments for the patient with immune aplastic anemia have improved remarkably over the 

last several decades, due to the development of better transplant and immunosuppression 
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regimens. Transplant can be beneficial in all types of marrow failure, but in the future gene 

editing and modulation offer hope for constitutional diseases.
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Figure 1. 
Pathophysiologies of aplastic anemia. The common pathology of the bone marrow replaced 

by fat can result from chemical or physical damage (iatrogenic; benzene); immune 

destruction (mainly T cells); and as a constitutional defect in genes important in 

maintenance of cell integrity and immune regulation. HGF=hematopoietic growth factors; 

BMT= bone marrow transplantation; IST=immunosuppression.
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Figure 2. 
Aplastic anemia in relationship to other diseases. A) Venn diagram emphasizing overlap of 

aplastic anemia, both diagnostic and pathophysiologic, with PNH, MDS, and constitutional 

marrow failure syndromes, as well as to other immune-mediated diseases in which a single 
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organ is targeted. B) Spectrum of immune cytopenias. The consensus for dominant immune 

effectors is delineated on the y axis; for examples, autoimmune peripheral blood cell 

destruction is mainly antibody mediated, whereas T cells have been implicated in marrow 

destruction. However, the immune response is almost certainly complex in all these diseases. 

AA=aplastic anemia; PNH=paroxysmal nocturnal hemoglobinuria; LGL=large granular 

lymphocytosis; MDS=myelodysplastic syndromes; AML=acute myeloid leukemia; 

MS=multiple sclerosis; IBD=inflammatory bowel disease; DM=diabetes mellitus; ITP= 

immune thrombocytopenic purpura; AIHA=autoimmune hemolytic anemia; PRCA=pure red 

cell aplasia; PWCA=pure white cell aplasia; AMT=amegakaryocytic thrombocytopenia; 

HLH=hemophagocytic lymphohistiocytosis. (For schematic purposes the circles in the Venn 

diagram have been scaled to PubMed citations.)
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Figure 3. 
Treatment algorithms for A) children and B) adults with immune aplastic anemia. Treatment 

strategies are not fixed, due to developing results, especially long-term, with the use of new 

agents like eltrombopag and transplants from alternative donors; proposed approaches are 

indicated with dashed arrows. The ordinate bars represent the stages of treatment: days to 

diagnose and stabilize the severely pancytopenic patient; months to select, implement, and 

complete definitive therapy; and years of monitoring for responses and complications. The 

ability to salvage the extremely susceptible neutropenic patient105 is fundamental to long-

term outcomes. Undesirable delays from diagnosis to transplant should be avoidable when 

outcomes from immunosuppression are clear in 3–6 months. Patients who fail 

immunosuppression70,106103 or who develop complications107 can do well with second-line 

transplant. IST=immunosuppression, BMT= bone marrow transplantation, MUD=matched 

unrelated donor transplant.
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