The phase diagram of QCD

Thermodynamics, order parameters & dynamics

Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute

Schladming, February 27th - March 2nd 2013

Many thanks to my collaborators on the subjects reported here

J.-P. Blaizot (Paris, France) J. Braun (Darmstadt) A. Eichhorn (Perimeter, Canada) C.S. Fischer (Gießen) L. Fister (Maynooth, Ireland) K. Fukushima (Keio, Japan) H. Gies (Jena) K. Langfeld (Plymouth) A. Maas (Jena) L. McLerran (BNL, USA) S. Nedelko (Dubna, Russia) H. Reinhardt (Tübingen) **U.** Reinosa (Paris, France) **B.-J. Schaefer (Graz, Austria)** J. Schaffner-Bielich (Frankfurt) L. von Smekal (Darmstadt) J. Wambach (Darmstadt)

J. Berges

- **N.** Christiansen
- **T. Gasenzer**
- L. M. Haas
- M. Haas
- **T. Herbst**
- N. Khan
- **M. Mitter**
- F. Rennecke
- **M. Scherer**
- **D. Sexty**
- I.O. Stamatescu
- **R. Stiele**
- **N. Strodthoff**
- **C. Wetterich**

The Functional Renormalization Group

Lecture notes Saalburg summer school

JMP, Jacqueline Bonnet, Stefan Rechenberger

Material

Lecture notes

hand-written

Non-perturbative methods in gauge theories

Critical phenomena

Topical reviews

Collection of reviews & lecture notes on the FRG & DSE

Structure of the FRG: Aspects of the FRG JMP '05, Annals Phys.322:2831-2915,2007

talks

The FRG approach to gauge theories & applications to QCD JMP, ERG 2012 Aussois Aspects of the QCD phase diagram and the EoS B.-J. Schaefer, CompStar 2012 School Zadar Schladming 2011: Physics at all scales: The Renormalization Group

Outline

•(I) Introduction to the phase diagram of QCD & functional methods

•(II) Phase structure of QCD at finite temperature

(III) Phase diagram of QCD

(IV) Dynamics

(I) Introduction to the phase diagram of QCD & funMethods

Phase diagram of QCD

- Perturbative QCD & asymptotic freedom
- Confinement
- Chiral symmetry breaking

Functional methods for QCD

- FRG, DSE, 2PI
- Phase structure with the FRG & optimisation
- FRG for QCD & dynamical hadronisation

(II) Phase structure of QCD at finite temperature

Yang-Mills theory & QCD at T=0

Yang-Mills theory at finite temperature

- Confinement
- Thermodynamics

Phase structure of QCD at finite temperature

- Order parameter
- Comparison with other methods

(III) Phase diagram of QCD

Phase structure at imaginary chemical potential

- Imaginary chemical potential & Roberge-Weiss symmetry
- Dual order parameters
- Chiral versus confinement-deconfinement temperatures

Phase structure at finite density

- Chiral versus confinement-deconfinement temperatures
- Phase structure with QCD-improved effective models
- High density phases: To be or not to be

(IV) Dynamics

Turbulence in gauge theories

Abelian Higgs model & beyond

Transport in YM & QCD

- Spectral functions
- transport coefficients

(I) Introduction to the phase diagram of QCD & funMethods

Phase diagram of QCD

- Perturbative QCD & asymptotic freedom
- Confinement
- Chiral symmetry breaking

Functional methods for QCD

- FRG, DSE, 2PI
- Phase structure with the FRG & optimisation
- FRG for QCD & dynamical hadronisation

Heavy ion collisions

UrQMD Frankfurt/M

ALICE, LHC

Simulation of a heavy ion collision

STAR, RHIC

70 - Hatter in unusual conditions 70 a L 35 12 Election proton gas 10 Non deg. electron gas Relativ Degenerate electron gas degenerate **1953 Enrico Fermi** election an danse state 24 26 28 30 32 Kg / lad 14 22 12 7 14 Start from ordinary condensed watter with chemical forces a) Increase pressure at T < 1000 Mutil deg. electron energies exceeds 20 eV - $\overline{w} = \frac{3}{40} \left(\frac{6}{\pi}\right)^{\frac{3}{2}} \frac{h^2 n^{\frac{2}{3}}}{2^{\frac{2}{3}}} p = \frac{2}{3} \overline{w} n$ Condition W= 35× 10-27 m2/3= 3.2× 10-11 n ~ 10 10 24 p= 2 3.2×10 4 20 1024 = 2×10 \$ 2×10 atu as pressure increases beyond this point $p = 3.6 \times 10^{-27} m^{2/3} m \times \frac{2}{3} = 2.4 \times 10^{-27} m^{5/3}$ $m = 6 \times 10^{23} \frac{\rho}{R} z$ $p = 10^{13.01} \left(\frac{\rho z}{R}\right)^{5/3} \approx 3.2 \times 10^{12} \frac{\rho^{13}}{r}$

1983 US long range plan, Gordon Baym

Larry McLerran '09

Heavy ion collisions

Heavy-ion collision timescales and "epochs" @ RHIC

Strickland

Phase diagrams & order parameters

Phase diagrams & order parameters

Phases in QCD

quarks massless - massive

quarks confined - deconfined

Phase diagrams & order parameters

Phases in QCD

quarks massless - massive

quarks confined - deconfined

Phase diagram of QCD

Fukushima

QCD

Perturbative QCD & asymptotic freedom

Action and interactions

QCD action $S_{\rm QCD}$

Yang-Mills gauge fixing $\left| \frac{1}{4} \int_{x} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \frac{1}{2\xi} \int_{x} \left(\partial_{\mu} A^{a}_{\mu} \right)^{2} + \int_{x} \bar{c}^{a} \partial_{\mu} D^{ab}_{\mu} c^{b}_{\mu} \right| + \int_{x} \bar{q} \cdot (i D + i m_{\psi} + i \mu \gamma_{0}) \cdot q$ quarks matter sector Pure gauge theory $\mathbf{F}^{\mathbf{a}}_{\mu
u} = \partial_{\mu}\mathbf{A}^{\mathbf{a}}_{
u} - \partial_{
u}\mathbf{A}^{\mathbf{a}}_{\mu} + \mathbf{ig}\,\mathbf{f}^{\mathbf{abc}}\mathbf{A}^{\mathbf{b}}_{\mu}\,\mathbf{A}^{\mathbf{c}}_{
u}$ $\mathbf{D} = \gamma_{\mu} \mathbf{D}_{\mu}$ $a, b, c = 1, ..., N_c^2 - 1$ $N_f = 6$ strange $\mathbf{D}^{\mathbf{ab}}_{\mu}(\mathbf{A}) = \partial_{\mu}\delta^{\mathbf{ab}} - \mathbf{i} \mathbf{g} \mathbf{f}^{\mathbf{abc}} \mathbf{A}^{\mathbf{c}}_{\mu}$ Quarks С t charm bottom

Action and interactions

QCD action $S_{\rm QCD}$

Yang-Millsgauge fixing $\frac{1}{4} \int_{x} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \frac{1}{2\xi} \int_{x} (\partial_{\mu} A_{\mu}^{a})^{2} + \int_{x} \bar{c}^{a} \partial_{\mu} D_{\mu}^{ab} c^{b} + \int_{x} \bar{q} \cdot (i \mathcal{D} + i m_{\psi} + i \mu \gamma_{0}) \cdot q$
ghostPure gauge theorymatter sectorThe formula of the sectorThe sectorThe sectorThe sectorThe sector

Running coupling at low and high energies

Running coupling at low and high energies

Running coupling at low and high energies

Running coupling at low and high energies

Free energy $F_{q \bar{q}}$ of a quark - antiquark pair

Free energy $F_{q\bar{q}}$ of a quark - antiquark pair

Free energy $F_{q\bar{q}}$ of a quark - antiquark pair

physical masses

strong chiral symmetry breaking $\Delta m_{\chi SB} \approx 400\,MeV$

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10^{3}	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	$(4.1-4.4) \times 10^3$	

2 light flavours, one heavy flavour 2+1

physical masses

strong chiral symmetry breaking $\Delta m_{\chi SB} pprox 400 \, MeV$

2 light flavours, one heavy flavour 2+1

• Perturbative four-fermi coupling

$$\frac{\lambda_{\psi}}{2} \int \left[(\bar{q}q)^2 + (i\bar{q}\gamma_5\vec{\tau}q)^2 \right]$$

Perturbative four-fermi coupling

$$\frac{\lambda_{\psi}}{2} \int \left[(\bar{q}q)^2 + (i\bar{q}\gamma_5\vec{\tau}q)^2 \right]$$

• Chirality for massless particles

$$\bar{q}q = q_R^{\dagger} q_L + q_L^{\dagger} q_R$$

Meson potential

Chiral symmetry breaking

anomalous chiral symmetry breaking

Chiral symmetry breaking

anomalous chiral symmetry breaking

FunMethods: FRG-DSE-2PI-...

Generating functional Z

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

$$S[\varphi] = \frac{1}{2} \int_{x} \left[\partial_{\mu} \varphi \partial_{\mu} \varphi + m^{2} \varphi^{2} + \frac{\lambda}{4} \varphi^{4} \right]$$

classical action

zero-dimensional example: 'Functional' flows for integrals

Generating functional Z

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

 $\langle \varphi \rangle_J$

partition function

Effective action Γ

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \int_x \, \hat{\varphi} \, \frac{\delta\Gamma[\phi]}{\delta\phi}} \right)$$

free energy

$$\Gamma[\phi] = \sup_{J} \left(\int_{x} J \cdot \phi - \log Z[J] \right)$$

Legendre transform

Generating functional Z

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

Effective action Γ

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \int_x \, \hat{\varphi} \, \frac{\delta\Gamma[\phi]}{\delta\phi}} \right)$$

free energy

Dyson-Schwinger equation

quantum equation of motion

Dyson-Schwinger equation

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \left\langle \frac{\delta S[\hat{\varphi} + \phi]}{\delta\phi(x)} \right\rangle$$

Diagrammatics

S
$$\left[S[\phi] = \frac{1}{2} \int_{x} \left[\partial_{\mu}\phi \partial_{\mu}\phi + m^{2}\phi^{2} + \frac{\lambda}{4}\phi^{4}\right]\right]$$

$$\frac{\lambda}{2} \langle [\hat{\varphi}(x) + \phi(x)]^3 \rangle = \frac{\lambda}{2} \phi^3(x) + \frac{3\lambda}{2} \phi(x) \checkmark \qquad -$$

Dyson-Schwinger equation

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \left\langle \frac{\delta S[\hat{\varphi} + \phi]}{\delta\phi(x)} \right\rangle$$

Effective action Γ

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \int_x \, \hat{\varphi} \, \frac{\delta \Gamma[\phi]}{\delta \phi}}$$

No quantum fluctuations

$$\Gamma[\phi] = -\log e^{-S[\phi]} = S[\phi]$$

Effective action Γ

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \int_x \, \hat{\varphi} \, \frac{\delta\Gamma[\phi]}{\delta\phi}}$$

UV quantum fluctuations up to $p^2 = k^2$

Effective action $\Gamma_{\mathbf{k}}$

 $\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \frac{1}{2} \int_p \hat{\varphi}(p) R_k(p^2) \hat{\varphi}(-p) + \int_x \hat{\varphi} \, \frac{\delta \Gamma_k[\phi]}{\delta \phi}} \left| \left(\frac{1}{2} \int_p \hat{\varphi}(p) R_k(p^2) \hat{\varphi}(-p) \right) \right|_x + \int_x \hat{\varphi} \, \frac{\delta \Gamma_k[\phi]}{\delta \phi} \, d\hat{\varphi} \, d\hat{\varphi}$

UV quantum fluctuations up to $\left(p^2 = k^2\right)$

Effective action $\Gamma_{\mathbf{k}}$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \frac{1}{2} \int_p \hat{\varphi}(p) R_k(p^2) \hat{\varphi}(-p) + \int_x \hat{\varphi} \, \frac{\delta \Gamma_k[\phi]}{\delta \phi}}$$

Effective action $\Gamma_{\mathbf{k}}$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \frac{1}{2} \int_p \hat{\varphi}(p) R_k(p^2) \hat{\varphi}(-p) + \int_x \hat{\varphi} \, \frac{\delta \Gamma_k[\phi]}{\delta \phi}}$$

UV quantum fluctuations up to $p^2 = k^2$

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \left\langle \hat{\varphi}(p) \hat{\varphi}(-p) \right\rangle \partial_t R_k(p^2)$$

$$t = \log \frac{k}{\Lambda}$$

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \left\langle \hat{\varphi}(p) \hat{\varphi}(-p) \right\rangle \partial_t R_k(p^2)$$

$$t = \log \frac{k}{\Lambda}$$

Propagator $\left(\mathbf{G} = - - \mathbf{G} = \langle \hat{\varphi}(x) \hat{\varphi}(y) \rangle \right)$

$$G^{-1}[\phi] = \Gamma_k^{(2)}[\phi] + R_k$$

Flow

Flow

$$\begin{aligned}
\partial_t \Gamma_k[\phi] &= \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k \\
\overset{\bullet}{\longrightarrow} & \overset{$$

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

Properties FRG DSE **2PI 3PI 4PI** • 1-loop exact closed **RG-scaling Energy/particle-number conserv.** automatic only in specific approximation schemes

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

Properties

FunMethods

- 1-loop exact
- closed
- RG-scaling
- Energy/particle-number conserv.

only in specific approximation schemes

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k \qquad \partial_t \Gamma^{(n)} = \operatorname{Flow}_n[\Gamma^{(m)}; m = 2, ..., n + 2]$$

Derivative expansion

- Expansion in powers of momenta
- controlled in the presence of a mass gap m_{gap}
- Expansion parameter

$$\frac{p^2}{\max(k^2, m_{\rm gap}^2)}$$

Vertex expansion

- Expansion in number n of external fields
- controlled in perturbation theory/presence of symmetries
- Expansion parameter n

Mixtures, exact resummation schemes,

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

Derivative expansion

- Expansion in powers of momenta
- controlled in the presence of a mass gap $(m_{\rm gap})$
- Expansion parameter

$$\frac{p^2}{\max(k^2, m_{\rm gap}^2)}$$

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p-q)$$

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

Derivative expansion

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p-q)$$

$$R_{k,\text{opt}}(p^2) = (k^2 - p^2)\theta(k^2 - p^2)$$
$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2 - p^2)$$
$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2 - p^2)$$
$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2 - p^2)$$

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

Derivative expansion

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p-q)$$

$$\Gamma^{(2)}[\phi](p) + R_{k,\text{opt}}(p^2) = \left[k^2 + V''(\phi)\right]\theta(k^2 - p^2) + (p^2 + V''(\phi))\theta(p^2 - k^2)$$

Flow

$$\left(\partial_t V_k[\phi] = \frac{1}{2d} \frac{\Omega_d}{(2\pi)^d} k^d \frac{k^2}{k^2 + V''(\phi)}\right) \left(\Omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}\right)$$

Approximation schemes & phase structure

- bosonic flow is symmetry-restoring
- flow guarantees convexity

Approximation schemes & phase structure

- bosonic flow is symmetry-restoring
- flow guarantees convexity of effective action

Litim, JMP, Vergara '06

Example: 3d critical exponents with FRG

$$\Gamma_k[\phi] = \frac{1}{2} \int_p Z_k \phi p^2 \phi + \int_x V_k(\phi)$$

$$V_k(\phi) = \sum_{n=1}^{N_{\text{max}}} \frac{\lambda_n}{n!} (\phi^2 - \phi_{0,k}^2)^n$$

$$N = 1: \ \nu_{\text{Ising}} = 0.630...$$

 $N = 1: \ \nu_{\text{Ising}} = 0.637...$

A simple program to compute critical exponents in O(N)-models with the Wetterich equation

Michael Scherer

Approximation schemes & phase structure

- bosonic flow is symmetry-restoring
- fermionic flow is symmetry-breaking
- competing dynamics decides about fate of symmetries
- flow guarantees convexity

'governs general phase structures'

Approximation schemes & error control

Approximation schemes & error control

Approximation schemes & error control

FRG for QCD

JMP, AIP Conf.Proc. 1343 (2011)

JMP, AIP Conf.Proc. 1343 (2011)

Gluons have cost us decades

• Fermions are straightforward though `physically' complicated

- no sign problem
- chiral fermions

• bound states via dynamical hadronisation

Complementary to lattice!

JMP, AIP Conf.Proc. 1343 (2011)

free energy

free energy

Yang-Mills theory
JMP, AIP Conf.Proc. 1343 (2011)

free energy

quark quantum fluctuations

NJL-type models

JMP, AIP Conf.Proc. 1343 (2011)

free energy

quark quantum fluctuations

NJL-type models

PNJL models

JMP, AIP Conf.Proc. 1343 (2011)

bound states via dynamical hadronisation

JMP, AIP Conf.Proc. 1343 (2011)

hadronic quantum fluctuations

quark quantum fluctuations

Quark-hadron models

PQM models

free energy

JMP, AIP Conf.Proc. 1343 (2011)

Naturally encorporates PQM/PNJL models as specific low order trunations

Gies, Wetterich '01 JMP '05 Flörchinger, Wetterich '09

Chiral symmetry breaking

A glimpse at chiral symmetry breaking in QCD within the FRG

Flow for four-fermion coupling $\hat{\lambda}_{\psi} = \lambda_{\psi} k^2$ with infrared scale k

$$k\partial_k \hat{\lambda}_{\psi} = 2\hat{\lambda}_{\psi} + A\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}^2 + B\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}\alpha_s + C\left(\frac{T}{k}\right)\alpha_s^2 + \cdots$$

Gies, Wetterich '01 JMP '05 Flörchinger, Wetterich '09

General dynamical hadronisation

hadronised Flow

$$\begin{split} & \left(\frac{\partial}{\partial t} \Big|_{\phi} \Gamma_{k}[\phi] = \frac{1}{2} G_{k,\phi} \dot{R}_{k,\phi} + R_{k} G_{k,\phi} \frac{\delta \dot{\phi}}{\delta \phi} - \frac{\delta \Gamma}{\delta \phi} \dot{\phi} \right) \\ & \left(\phi = (A_{\mu}, C, \bar{C}, q, \bar{q}, \Phi, ..., n, \bar{n}, ...) \right) \\ & \text{mesons baryons} \end{split}$$

$$\left(-\frac{1}{2}\int_{p}\phi_{k}^{*}\cdot R_{k}\cdot\phi_{k}+J\cdot\phi_{k}\right)$$

guarantees 1-loop flow

Gies, Wetterich '01 JMP '05 Flörchinger, Wetterich '09

General dynamical hadronisation

hadronised Flow
$$\begin{split} & \left. \frac{\partial}{\partial t} \right|_{\phi} \Gamma_{k}[\phi] = \frac{1}{2} G_{k,\phi} \dot{R}_{k,\phi} + R_{k} G_{k,\phi} \frac{\delta \dot{\phi}}{\delta \phi} - \frac{\delta \Gamma}{\delta \phi} \dot{\phi} \right. \end{split}$$
 $\int \phi = (A_{\mu}, C, \bar{C}, q, \bar{q}, \Phi, ..., n, \bar{n}, ...)$ mesons baryons \end{split}

How to fix
$$\phi_k$$
 & ϕ_k ?

 $\left[\dot{\Phi}_k \simeq \dot{A}_k \bar{\psi} \tau \psi + \dot{B}_k \Phi_k + \dot{C}_k\right]$

Flow for four-fermion coupling $\hat{\lambda}_\psi = \lambda_\psi k^2$ with infrared scale k

Braun, Fister, Haas, JMP, Rennecke, in prep

Braun, Fister, Haas, JMP, Rennecke, in prep

Approximation scheme

present approximation scheme

(II) Phase structure of QCD at finite temperature

Yang-Mills theory & QCD at T=0

Yang-Mills theory at finite temperature

- Confinement
- Thermodynamics

Phase structure of QCD at finite temperature

- Order parameter
- Comparison with other methods

Yang-Mills theory & QCD at T=0

^oFunctional Methods for QCD

+

T=0 results for Yang-Mills correlation functions

+

-2

Yang-Mills theory at finite temperature

Free energy $F_{q\bar{q}}$ of a quark - antiquark pair

Reminder

Order parameters

 $L[\langle A_0 \rangle]$) order parameter

$$L[\langle A_0 \rangle] = 0 \longleftrightarrow \langle L[A_0] \rangle =$$
$$L[\langle A_0 \rangle] \ge \langle L[A_0] \rangle$$

up to lattice renormalisation

Marhauser, JMP '08

$$_{0}\rangle$$
 order parameter

$$\frac{\partial V[A_0]}{\partial A_0}\Big|_{A_0 = \langle A_0 \rangle} = 0$$

$$V[A_0] = \frac{1}{\beta \operatorname{Vol}_3} \Gamma[A_0]$$

Effective Polyakov loop potential

Non-perturbative effective potential

$$\left(V[A_0] = -\frac{1}{2} \operatorname{Tr} \log \langle AA \rangle [A_0] + O(\partial_t \langle AA \rangle) + \operatorname{Tr} \log \langle C\bar{C} \rangle [A_0] + O(\partial_t \langle C\bar{C} \rangle)\right)$$

free energy

Effective Polyakov loop potential

Non-perturbative effective potential

$$\left[V[A_0] \simeq -\frac{1}{2} \operatorname{Tr} \log \langle AA \rangle [A_0] + O(\partial_t \langle AA \rangle) + \operatorname{Tr} \log \langle C\bar{C} \rangle [A_0] + O(\partial_t \langle C\bar{C} \rangle) \right]$$

free energy

 $\beta^4(V^{\rm UV}[A_0]-V^{\rm UV}[0])$

$$\frac{1}{2}\operatorname{Tr}\frac{1}{\Gamma_k^{(2)}[\phi] + R_k}\partial_t R_k = \frac{1}{2}\operatorname{Tr}\partial_t \log(\Gamma_k^{(2)}[\phi] + R_k) - \frac{1}{2}\operatorname{Tr}\frac{1}{\Gamma_k^{(2)}[\phi] + R_k}\partial_t \Gamma_k^{(2)}[\phi]$$

Propagators

$$\langle AA \rangle [A_0] \simeq \frac{1}{-D^2_{\mu}(A_0)} \frac{1}{Z[-D^2_{\mu}(A_0)]}$$

Integrals & sums

$$\mathbf{Tr} f[-D_{\mu}^{2}(A_{0})] = \sum_{\vec{p},\pm} f[(2\pi T)^{2}(n\pm\varphi)^{2} + \vec{p}^{2}] + \varphi - \text{indep.terms}$$

$$gA_{0} = \frac{\varphi}{2\pi T}\tau_{\text{ad}}^{3}$$

$$gA_{0} = \frac{\varphi}{2\pi T}\tau_{\text{ad}}^{3}$$

$$\int \beta^{4} V^{UV}[A_{0}] = -2 * 3\left(\frac{\pi^{2}}{90} - \frac{2\pi^{2}}{3}\tilde{\varphi}^{2}(1-\tilde{\varphi})^{2}\right)\right) \tilde{\varphi} = \varphi \mod 1$$

sori

Effective Polyakov loop potential

Non-perturbative effective potential

$$V[A_0] \simeq -\frac{1}{2} \operatorname{Tr} \log \langle AA \rangle [A_0] + O(\partial_t \langle AA \rangle) + \operatorname{Tr} \log \langle C\bar{C} \rangle [A_0] + O(\partial_t \langle C\bar{C} \rangle)$$

free energy

$$\frac{1}{2}\operatorname{Tr}\frac{1}{\Gamma_k^{(2)}[\phi] + R_k}\partial_t R_k = \frac{1}{2}\operatorname{Tr}\partial_t \log(\Gamma_k^{(2)}[\phi] + R_k) - \frac{1}{2}\operatorname{Tr}\frac{1}{\Gamma_k^{(2)}[\phi] + R_k}\partial_t \Gamma_k^{(2)}[\phi]$$

Propagators

$$\langle AA \rangle [A_0] \simeq \frac{1}{-D^2_{\mu}(A_0)} \frac{1}{Z[-D^2_{\mu}(A_0)]}$$

Integrals & sums

$$\begin{array}{c}
\left(\operatorname{Tr} f[-D_{\mu}^{2}(A_{0})] = \sum_{\vec{p},\pm} f[(2\pi T)^{2}(n\pm\varphi)^{2} + \vec{p}^{2}] + \varphi - \text{indep.terms} \right) \\
\left(N_{c}^{2} - 1 \right) \\
\left(gA_{0} = \frac{\varphi}{2\pi T} \tau_{ad}^{3} \right) \\
\left(\beta^{4}V^{UV}[A_{0}] = -2 \ast 3 \left(\frac{\pi^{2}}{90} - \frac{2\pi^{2}}{3} \tilde{\varphi}^{2}(1-\tilde{\varphi})^{2} \right) \right) \\
\left(\tilde{\varphi} = \varphi \mod 1 \right)$$

sori

Effective Polyakov loop potential

Non-perturbative effective potential

Gluon contribution deconfines

Ghost contribution confines

Thermal gluon propagators

Fister, JMP '11

+ **RG-dressed gluonic vertices**

confirmed with the full system, JMP, Fister, in prep

101

Thermal gluon propagators

Fister, JMP '11

Lattice: Maas, JMP, Spielmann, von Smekal '11 Maas '11

Chromo-electric propagator

Order parameter

thermodynamics

Confinement & Thermodynamics

Fister, JMP

Confinement & Thermodynamics

Phase structure of QCD at finite temperature
Full dynamical QCD: $N_f = 2$ & chiral limit

Phase structure

Full dynamical QCD: $N_f = 2$ & chiral limit

Phase structure

(III) Phase diagram of QCD

Phase structure at imaginary chemical potential

- Imaginary chemical potential & Roberge-Weiss symmetry
- Dual order parameters
- Chiral versus confinement-deconfinement temperatures

Phase structure at finite density

- Chiral versus confinement-deconfinement temperatures
- Phase structure with QCD-improved effective models
- High density phases: To be or not to be

 $Z_{\theta} = Z_{\theta+1/3}$

via a center transformation e

$$\frac{2}{3}\pi i \, \mathbb{1} \in \operatorname{center}[SU(3)]$$

gauge field insensitive to center transformations

Partition function

Roberge-Weiss symmetry

$$\left(Z_{\theta} = Z_{\theta+1/3}\right)$$

gauge field insensitive to center transformations

Partition function

confinement order parameters

$$q_{\theta}(t+\beta,\vec{x}) = -e^{2\pi\theta \,i}q_{\theta}(t,x)$$

Center-sensitive observables

confinement order parameters

confinement order parameters

Nature of the RW endpoint

Full dynamical QCD: $N_f = 2$ & chiral limit

Phase structure

Potential

Dynamical Polyakov-extended models

Mesonic potential

 $V[\sigma \vec{\pi}]$

Potential

Fermionic fluctuations

$$\Omega[\Phi, ar{\Phi}, \sigma, ec{\pi}]$$

Fit to YM-thermodynamics

fermionic fluctuations

quark fluctuations change glue dynamics

$$T_{0\,\mathrm{YM}} \to T_0(N_f,\mu;m_q)$$

estimated via HTL/HDL computation

Schaefer, JMP, Wambach '07

Polyakov-extended models as reduced QCD

Effective potential

Polyakov-extended models as reduced QCD

Improving models towards full QCD

Technical report

Gluons

JMP, Aussois '12

Functional Methods for QCD

present approximation scheme

Functional Methods for QCD

present approximation scheme

Yang-Mills

Matter

(IV) Dynamics

Turbulence in gauge theories

Abelian Higgs model & beyond

Transport in YM & QCD

- Spectral functions
- transport coefficients

Non-equilibrium dynamics in QCD

Gauge dynamics far from equilibrium

Quiz

Complex scalar vs Abelian Higgs

phase of scalar field

2+1 dim

Which is which?

mt=000000

Gasenzer, McLerran, JMP, Sexty, in prep

3

2

1

0

-1

-2

-3

Far from equilibrium & hydrodynamics

Extraction of $(\eta/s)_{\rm QGP}$ from AuAu@RHIC

 $1 < 4\pi (\eta/s)_{
m QGP} < 2.5$

U. Heinz, talk at RETUNE '12

This exercise proves: (i) Fitting $v_3(p_T)$ data with MC-Glauber and MC-KLN initial conditions yields the same η/s (within narrow error band); (ii) The corresponding $v_2(p_T)$ fits are quite different, and only one (more precisely: at most one!) of the models will fit the corresponding $v_2(p_T)$ data.

U. Heinz, talk at RETUNE '12

This exercise proves: (i) Fitting $v_3(p_T)$ data with MC-Glauber and MC-KLN initial conditions yields the same η/s (within narrow error band); (ii) The corresponding $v_2(p_T)$ fits are quite different, and only one (more precisely: at most one!) of the models will fit the corresponding $v_2(p_T)$ data.

Transport in QCD

correlations of energy-momentum tensor

current approximation

$$\rho_{\pi\pi}(p) = \frac{2d_A}{3} \int \frac{d^4k}{(2\pi)^4} \left[n(k^0) - n(k^0 + p_0) \right] \left(V_{TT} \rho_T(k) \rho_T(k+p) + V_{TL} \rho_T(k) \rho_L(k+p) + V_{LL} \rho_L(k) \rho_L(k+p) \right)$$

Viscosity in QCD

Shear viscosity

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$
 Kubo relation see talk of M. Laine

current approximation

Viscosity in pure glue

imaginary time correlations

spectral functions

Fister, M. Haas, JMP, in prep

longitudinal spectral functions

T=1.2GeV

transversal spectral functions

T=1.2GeV

spectral functions

spectral functions

Fister, M. Haas, JMP, in prep

→ Broad spectral function :

E. Bratkovskaya, talk at RETUNE '12

transversal spectral function

confirmed at T=0 with complex DSEs Strauss, Fischer, Kellermann '12

shear viscosity

Fister, M. Haas, JMP, in prep

Thanx a lot

for the smooth organisation!!

of a very interesting winterschool as always in Schladming! Some participants at the lectures