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Chapter 1

Introduction

1.1 Motivation

Sensorimotor coordination is at the basis of any advanced behavior. Sensory
data provides an agent — a biological organism or an artificial agent like a
robot — with the necessary information about the state of the environment and
the agent’s body, and motor commands are generated by the agent to move its
actuators in the right way to fulfill its goals.1 Although this looks like a straight
input-output relationship at the first glance — sensory data in, motor data out
— both theoretical reasoning and experimental evidence in the cognitive sci-
ences have shown in recent decades that sensorimotor processing happens in an
interconnected and reciprocal way. While the straight input-output relationship
between sensory and motor data is still an adequate way to treat many motor
control problems, other areas like perception and cognition require a different
approach to sensorimotor processing, in which the clear distinction between
perception and action is replaced by an integrated and dynamic view.

A study by Held and Hein (1963) illustrates the need for an integrated
approach: In their experiment, pairs of kittens were harnessed to a carousel.
The active member of each pair was able to walk and to move the carousel
around, while the passive member was suspended to the air without contact to
the ground. In this way, the passive member was subject to the same movements
as the active member, but without initiating them, and both kittens received the
same visual stimulation over a prolonged time period (outside the carousel the
kittens grew up in complete darkness). Nevertheless, subsequent tests showed
that the active member developed normal vision, while the passive member suf-
fered from severe deficits in depth perception and paw-eye coordination. This
result strongly suggests that active self-movement is necessary to develop sen-

1 One may argue that only complex cognitive systems like humans can have goals as explicit
representations of desired states; however, also lower biological organisms have at least implicit
goals like survival and reproduction, which are expressed by their behavior.
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CHAPTER 1. INTRODUCTION

sory skills. It is not sufficient for an organism to passively retrieve sensory data,
instead it has to generate motor commands, to move, and to observe the re-
sulting sensory effects. In this way, the learning of sensorimotor contingencies
gives rise to perception and to an understanding of what one perceives (Noë,
2005).

The idea of integrated sensorimotor processing is closely linked to other
theoretical approaches in cognitive science. “Situativity theory” (Clark, 1997;
Greeno and Moore, 1993; Suchman, 1987) emphasizes the mutual interdepen-
dence between an agent and its environment in contrast to systems in classical
artificial intelligence that are defined without any relation to a concrete environ-
ment. “Embodied cognition” (e.g., Brooks, 1991a; Varela et al., 1991) supposes
that cognitive functions can only emerge in agents which are equipped with
a real-world body, since this body enables and conditions the specific way in
which the agents can perceive and understand the world. “New artificial intelli-
gence” (e.g., Pfeifer and Scheier, 1999) incorporates these principles into areas
like computer science and robotics. Psychology provides support via the “eco-
logical approach” to visual perception (Gibson, 1979) and the “common coding
approach” (Prinz, 1997), to name influential research directions. Furthermore,
also the “motor theory of perception” (Berthoz, 2000; Jeannerod, 1997), which
originates from the field of cognitive neuroscience, lays great emphasis on per-
ception as an activity.

Everyday experience shows that sensorimotor coordination has to be ac-
quired to a large extent through learning. For example, motor learning is a
lifelong necessity: An infant has to learn even the most basic skills (from an
adult perspective) like grasping and walking, an elderly person has to adapt to
its shrinking body proportions and weakening muscles. In addition, the above-
mentioned study by Held and Hein (1963) on the development of vision in kit-
tens shows exemplary that perceptual competences are subject to learning and
adaptation as well.

Considering the importance of integrated adaptive sensorimotor coordina-
tion for our understanding of motor control, perception, and cognition, this the-
sis explores computational models of sensorimotor processing. These models
relate to hypotheses on how sensorimotor processing in biological organism
may be organized at an abstract level; furthermore, these models and their spe-
cific implementations offer solutions for technical problems in the domain of
adaptive robotics. For this reason, this thesis addresses technical, psycholog-
ical, as well as biological aspects. The latter concentrate on the central ner-
vous system (CNS) of higher vertebrates, especially humans and other primates.
However, since modeling takes place on a rather abstract level, the suggested

2



1.2. OUTLINE AND CONTRIBUTIONS

computational principles can be applied to a large variety of agents2 that have
to process sensory and motor data.

On the one hand, this thesis focuses on the learning of so-called internal
models: “forward models”, which predict the sensory consequences of the
agent’s own actions, and “inverse models”, which act like motor controllers
and generate motor commands. In this area, new strategies and algorithms for
learning are suggested and tested on both simulated and real-world robot setups.
In this way, this thesis contributes to the understanding of the “building blocks”
of integrated sensorimotor processing. On the other hand, this thesis suggests
complex models of sensorimotor coordination: In a study on the grasping to ex-
trafoveal targets with a robot arm, it is explored how forward and inverse models
may interact, and a second study addresses the question how visual perception
of space may arise from the learning of sensorimotor relationships. Especially
the latter study aims on providing support for the embodied approach to percep-
tion.

The author started to work on this thesis at the Max-Planck-Institute for
Psychological Research (Munich) in the Cognitive Robotics Group. The main
part of the research took place later on at the Computer Engineering Group of
the Faculty of Technology at Bielefeld University. This location change has
contributed to the dual nature of this thesis between cognitive psychology and
computer engineering.

1.2 Outline and Contributions

This chapter (Chapt. 1) continues with a closer view on sensorimotor process-
ing. The cognitivist approach and the embodied approach to sensorimotor pro-
cessing are contrasted with each other, providing evidence from psychological
and neurophysiological studies in favor of the latter. It is outlined how the ap-
plication of robots fits into the embodied approach as research method which
is used extensively throughout this thesis. Furthermore, internal models are de-
fined in a formal way, and an overview of their role in models of perception and
cognition is provided, with a special emphasis on anticipation and predictive
forward models.

Chapter 2 presents a thorough overview of internal models in motor con-
trol. It is intended as theoretical introduction to our own studies on motor
learning. Although we deal only with kinematic problems in our own work,
some motor learning strategies have been developed originally for dynamical

2 Troughout the thesis, the term “agent” is used in a very general meaning to denote both
biological organisms and artificial agents like robots.
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CHAPTER 1. INTRODUCTION

problems. For this reason, both kinematics and dynamics are covered by this
overview. Moreover, trajectory planning and state estimation are addressed. As
an important part of this chapter, a new learning strategy for kinematic control
problems is presented which has been developed by the author (“learning by
averaging”; Sect. 2.2.7). Learning by averaging has already been applied to
saccade learning in the following studies:

• Schenck, W., Hoffmann, H., and Möller, R. Learning internal models
for eye-hand coordination in reaching and grasping. In Proceedings of
the European Cognitive Science Conference, pages 289–294. Erlbaum,
Mahwah, NJ, 2003.

• Schenck, W. and Möller, R. Staged learning of saccadic eye movements
with a robot camera head. In Bowman, H. and Labiouse, C., editors, Con-
nectionist Models of Cognition and Perception II, pages 82–91, London,
NJ, 2004. World Scientific.

• Hoffmann, H., Schenck, W., and Möller, R. Learning visuomotor trans-
formations for gaze-control and grasping. Biological Cybernetics, 93 (2):
119–130, 2005.

• Schenck, W. and Möller, R. Learning strategies for saccade control. Kün-
stliche Intelligenz, Iss. 3/06: 19–22, 2006b

Chapter 3 describes the computational methods that are used throughout
the thesis. These methods comprise algorithms for the adaptation of artificial
neural networks and for optimization. The presentation in this chapter concen-
trates on the core parts of each method without any derivations. The intention
is to provide the reader with all the information that is necessary for an exact
re-implementation of all algorithms.

In Chapter 4, a detailed comparison study of various motor learning strate-
gies for kinematic problems is presented. To the best knowledge of the author,
it is the first of its kind which directly compares the performance of “feed-
back error learning” (Kawato et al., 1987), “distal supervised learning” (Jordan
and Rumelhart, 1992), and “direct inverse modeling” (e.g., Kuperstein, 1987)
on several learning tasks from the domain of eye and arm control. Moreover,
an improved version of direct inverse modeling on the basis of abstract recur-
rent networks (Hoffmann and Möller, 2003; Möller and Hoffmann, 2004) and
learning by averaging are included in the comparison. A small subset of the
comparisons in this study has already been published by Schenck and Möller
(2006) (see the list of published studies for Chapt. 2).

4
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Chapter 5 is dedicated to the learning of a visual forward model for a robot
camera head. This forward model predicts the visual consequences of camera
movements for all pixels of the camera image. The presented learning algorithm
overcomes fundamental problems of adaptive visual prediction. The core idea
of this algorithm does not only extend to a feasible technical solution, but offers
also a plausible starting point for biological modeling. The first version of this
algorithm (as presented in Sect. 5.1) has been described in

• Schenck, W. and Möller, R. Training and application of a visual forward
model for a robot camera head. In Butz, M. V., Sigaud, O., Pezzulo, G.,
and Baldassarre, G., editors, Anticipatory Behavior in Adaptive Learning
Systems: From Brains to Individual and Social Behavior, number 4520 in
Lecture Notes in Artificial Intelligence, pages 153–169. Springer, Berlin,
Heidelberg, New York, 2007.

The permission for the republication of this paper in a slightly modified and
updated form is kindly granted by Springer.

In Chapter 6, a model for grasping to extrafoveal targets is presented. It
is based on the premotor theory of attention (Rizzolatti et al., 1994), but adds
as specific hypothesis that this grasping task involves the internal application
of a visual forward model for eye movements. In this model, several of the
already presented learning methods are combined and implemented on a robot
arm setup. Based on this model, several grasping modes are compared; the
obtained results are qualitatively congruent with the performance that can be
expected from human subjects. This model has been proposed by Schenck and
Möller (2007) (see the list of published studies for Chapt. 5) as potential appli-
cation of the visual forward model from that study. A full publication of the
model for extrafoveal grasping has been recently submitted (Schenck et al., to
appear).

The study in Chapter 7 is based on the theory that visual perception of
space and shape is based on an internal simulation process which relies on for-
ward models (Möller, 1999). This theory is tested by synthetic modeling in the
task domain of block pushing with a robot arm. First, a visuokinesthetic forward
model is learned which predicts the sensory consequences of small movement
steps in this domain. Afterwards, an optimization process is applied to deter-
mine the right motor commands for arm control to push a block to a specified
goal position; during the optimization, many movement sequences are gener-
ated as candidate solutions. The visuokinesthetic forward model is required
for an internal simulation of the sensory effects of these movement sequences
within the optimization process. Finally, the capability to find the right move-
ment sequence by internal simulation is reinterpreted as a way for the perception

5



CHAPTER 1. INTRODUCTION

of space. The work on this study was carried out in cooperation with Dennis
Sinder, who wrote his diploma thesis (Sinder, 2006) under the author’s super-
vision. An abbreviated version of this chapter has been published by Schenck
et al. (2008):

• Schenck, W., Sinder, D., and Möller, R. Combining neural networks and
optimization techniques for visuokinesthetic prediction and motor plan-
ning. In ESANN’2008 proceedings — European Symposium on Artificial
Neural Networks, Bruges (Belgium), 2008. d-side publications.

In Chapter 8, the results of all studies in this thesis are summarized and
discussed in relation to each other. Furthermore, an outlook of future research
is given.

Appendix A specifies the robot arm setup which was used throughout the
studies in this thesis (see also Fig. 1.1), and App. B provides a detailed de-
scription of the geometry of the used robot camera head. Appendix C contains
detailed tables with all parameter settings of the comparison studies on motor
control in Chapt. 4, while figures with detailed results of these studies are pre-
sented in App. D. Finally, App. E lists the often used notations and symbols.

Software The software for all learning algorithms (including the underlying
neural networks) was developed by the author from scratch in the progamming
languages C++ and Tcl/Tk except for the NGPCA algorithm (Sect. 3.4) and
for “differential evolution” (DE; Sect. 3.5). For NGPCA, an implementation
by Ralf Möller was used, for DE the implementation by L. Godwin (Godwin,
1998). Furthermore, software development partly relied on the following freely
available libraries: ColDet (3D Collision Detection), GLUT (OpenGL Utility
Toolkit), GSL (Gnu Scientific Library), ImageMagick, LAM/MPI (Local Area
Multicomputer Message Passing Interface), SSL (Simple Sockets Library), and
the TNT (Template Numerical Toolkit) matrix library. The control software for
the robot arm is based on the PowerCube library by Amtec robotics. For the
control of the pan-tilt unit of the robot camera head, we used the PanTiltRA li-
brary by the University of Tübingen. Matlab and the Netlab Toolbox (Nabney,
2002) were applied for quick prototyping and for data evaluation and visualiza-
tion.

1.3 Approaches to Sensorimotor Processing

The term “sensorimotor processing” denotes information processing which re-
lies on sensory and motor data as inputs and outputs. This kind of processing

6



1.3. APPROACHES TO SENSORIMOTOR PROCESSING

Figure 1.1 — The experimental setup which was used throughout the studies in this
thesis, consisting of a robot arm with six rotatory degrees of freedom and gripper and a
stereo-vision robot camera head (Fig. A.1 in App. A shows a slightly different version
of this setup at a later point in time).

is required for motor control and perception, but it is also linked to cognition.
Two opposing paradigms exist within cognitive science; they result in very dif-
ferent approaches to sensorimotor processing and to perception and cognition.
The first paradigm, which we here call the “cognitivist view”, relies on the
assumption that perception and cognition are based on formally defined and
implementation-independent processes in physical symbol systems. In the pro-
cess of perception, symbolic sensory representations are created solely from the
sensory input to the system. The second paradigm, called in the following “em-
bodiment”, contradicts this view. Embodiment emphasizes that perception and
cognition emerge from integrated sensorimotor processing which involves “the
dynamical interaction between agent and environment and their mutual speci-
fication during the course of evolution and the individual’s lifetime” (Ziemke,
1999, p. 179).

In the following, we will describe both paradigms in more detail and argue
that the cognitivist view has several severe shortcomings. To provide further
support for the embodied view, we will present evidence for integrated sensori-
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motor processing from psychological and neurophysiological studies.

1.3.1 The cognitivist view

The core assumption of the cognitivist view is the “Physical Symbol System
Hypothesis” (Newell and Simon, 1976).3 This hypothesis states as necessary
and sufficient condition that a physical system has to be a physical symbol sys-
tem to exhibit intelligent action. In this way, cognition is defined as computa-
tion on symbolic representations (a symbol is an element that represents what it
stands for; Varela et al., 1991). While the necessity for some kind of represen-
tation is widely accepted, the cognitivist view implies that the representations
are actually realized in the form of a symbolic code in the brain.

Although the symbolic level is physically implemented, it is not reducible
to the physical level. This distinction is quite obvious for the digital computer,
which is definitely a physical symbol system: Looking closely at the hardware
of such a computer would reveal transistors and capacitors at the physical level
(among other electronic components), but no computer programs. In the brain,
the physical level comprises the neurons and their connections (to put it simply).
Furthermore, cognitivists propose a third level above the symbolic level, the
semantic level (Pylyshyn, 1984) which concerns the purpose, the meaning, and
the overall logic of the computation. In the formulation by Marr (1982), these
three levels are the implementational, the algorithmic, and the computational
level.

An important characteristic of the cognitivist view is the strong emphasis on
representations. First of all, an agent has to build a sensory representation from
the sensory data it receives from its sensors. For example, in Marr’s theory of
vision (Marr, 1982) the goal of vision is to create a representation of the three-
dimensional world around the agent from the pattern of light detected by its
visual sensors. In this process, important objects are recognized, and irrelevant
information is sorted out. Afterwards, central processes use the internal repre-
sentation of the world for planning or problem-solving. Finally, these compu-
tations generate motor commands which are sent to the actuators. Overall, the
cognitivist approach follows a clear input-processing-output scheme in which
these stages are clearly separable from each other and understandable each on
their own without any reference to the agent’s environment. With regard to sen-
sorimotor processing, cognitivism in its strongest form would generally reject
the idea of integrated sensorimotor processing below the symbolic level. Only

3 The birth of cognitivism can be dated back much earlier to the year 1956, in which two
important conferences took place (in Cambridge and in Dartmouth). At these conferences, the
core ideas of cognitivism were formulated.
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after the generation of the representation of the world, the perceived elements
(e.g. a CUP) would be combined with actions (e.g., GRASP(CUP)) during the
subsequent computation of action plans.

Well-known cognitive architectures from the symbol-processing approach
are GPS (“general problem solver”; Newell and Simon, 1961) and STRIPS
(“Stanford Research Institute Problem Solver”; Fikes and Nilsson, 1971).
STRIPS generated plans for a robot, Shakey, who could move between a num-
ber of rooms, pushing boxes around and carrying out a small number of other
actions. Such a symbolic planning system has to provide a formal structure for
state description (e.g., the initial and the goal state of the world) and a set of
applicable operators/actions. Beyond it, procedures must be available to pro-
duce a plan from the information about states and operators. For this purpose,
STRIPS used the means-ends analysis, a planning technique from classical ar-
tificial intelligence. However, the operations of Shakey were restricted to its
well-defined laboratory environment.

1.3.2 Limitations of the cognitivist approach

The cognitivist approach did not succeed in designing truly autonomous and
“intelligent” agents4 which can successfully act in the real physical world (and
which could be used as model for intelligent behavior of biological organisms
as well) (Pfeifer and Scheier, 1999). There are several reasons for this failure.
To start with, symbol-processing systems are not well suited to cope with the
stochastic and unpredictable nature of complex real world environments. Sym-
bol processing requires that the sensory input from the world is reduced to a
clearly defined set of different states in the sensory representation of the agent.
The design of such a sensory representation can be possible for a reduced lab
environment, but is infeasible for typical environments of human beings or bi-
ological organisms (these environments provide noisy, incomplete, and unre-
liable sensory data, they may contain unknown objects, and they may change
rapidly in an unexpected way). Furthermore, even if the problem of the sen-
sory representation was solved, action planning in the style of GPS or STRIPS
becomes the more expensive (with regard to required computation time and
power) the more complex the environment and its sensory representation are.

4 Since it is far beyond the scope of this thesis, we do not want to engage in a discussion
how intelligence should be defined. When we speak of an “intelligent agent”, we have an agent
in mind which can act autonomously in the real world in its specific ecological niche under
a wide range of environmental conditions, and which has a non-trivial repertoire of actions to
choose from. At the current state of research, robot engineers would be glad if their robots were
as “intelligent” as mice or ants, to illustrate this point.
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Thus, the symbol processing approach is not suitable for real-time action; its
strength lies in the generation of “intelligent” behavior in restricted and well-
defined task domains, e.g. for playing chess (as stated in Pfeifer and Scheier,
1999).

The problem of computational effort is closely linked to the frame problem
(McCarthy and Hayes, 1990) which concerns the question how a model of the
world can be kept in tune with a changing environment. An agent has to con-
sider the side-effects of its own actions, but the number of potential side-effects
is huge for an environment with realistic complexity. However, most of the side-
effects are completely irrelevant, thus taking them into account is a pure waste
of processing time. Unfortunately, determining which side-effects are relevant
and which are not, costs computing power as well. To be fair, one has to state
that the frame problem is intrinsic to any world-modeling approach, not only to
the cognitivist one (Pfeifer and Scheier, 1999).

A further fundamental problem of the cognitivist view is the symbol ground-
ing problem: How are the symbols connected to the real world, how do they get
an intrinsic meaning? The semantics of a symbol-processing system are just
constituted by the rules that define relations between symbols and govern sym-
bol manipulation, but they are not linked to the outer world (Ziemke, 1999).
Most likely, the designer of a symbol-processing system had certain meanings
of the different symbols in mind, but this assignment of meaning is extrinsic
to the system itself. Pfeifer and Scheier (1999) argue that the symbol ground-
ing problem is a specific artifact of symbolic systems and disappears in other
approaches.

Furthermore, Möller (1996, 1999) brings forward a threefold argument why
the cognitivist approach is flawed especially with respect to perception. First,
the form of the sensory representation should not be created by an externally
imposed design process because this holds the strong risk of under- or overde-
sign. The designer could easily miss hidden features of the sensory data which
are important for the motor tasks of the agent. On the other hand, he may im-
pose his own (conscious) view of the world onto the agent although it has a very
different morphology and sensor equipment.

Second, Möller (1999) emphasizes the process of self-organization which
is supposed to take place in the neural networks of biological organisms. Self-
organization relies on determining stable statistical interrelations between dif-
ferent data streams. Restricting this process to each sensory domain alone
misses the interrelations between different modalities (e.g., between the visual
and auditive impression of an approaching predator), and even worse, misses
the strong interrelations between motor actions and the sensory consequences
of these actions.
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Third, the information processing approach suffers from the “homunculus
problem”. The rigid distinction between the sensory representation and the mo-
tor domain implies an “immaterial internal observer” who looks at the sensory
representation and invokes the appropriate motor program. Thus, instead of
explaining perception directly, it becomes necessary to explain the perceptual
capabilities of the homunculus. Möller (1999) writes on p. 185: “An approach
to perception should demonstrate that appropriate behavior is generated within
the system.” Otherwise, the designer runs into the danger of himself becoming
the homunculus.

1.3.3 Embodiment

The problems of the cognitivist approach arise from the complete ignorance of
the agent’s body and of its environment, and moreover from the strict separa-
tion of sensory and motor processing. Several approaches in cognitive science
address these issues, at the same time rejecting the claim of symbolic process-
ing in the brain. First, “embodiment” emphasizes the need for a real-world
body to enable the development of animal-like perception and cognition (Varela
et al., 1991; Wilson, 2002). Second, closely related to embodiment, “situated
action” stresses the mutual relationship between an agent and its environment,
both from an evolutionary and from the individual’s perspective (Clark, 1997;
Greeno and Moore, 1993; Suchman, 1987).5 Third, “enactment” elaborates on
the influence of action on perception, even claiming that perception without ac-
tion is not possible at all (Noë, 2005). These different approaches are generally
compatible with each other and may be interpreted as different aspects of one
and the same overarching theme, namely that perception and cognition can only
emerge in active agents equipped with a real body in a specific environment. For
simplicity, we refer to this research paradigm by the term “embodiment”. In the
following, we discuss the central concepts of embodiment for the design and
the understanding of intelligent agents:

• Physical incarnation: Intelligent agents have to be physical agents. They
exist within the physical environment and own a body with a certain mor-
phology and certain sensory capabilities. This body is the basis of any
motor action they are able to carry out, it defines their capabilities and
their limitations. Higher-level cognition is grounded in the sensorimotor
relationships this body experiences in the interaction with its environ-
ment.

5 An important foundation for embodiment and situatedness is the field of “behavior-based
robotics” set off by Brooks (1986, 1991a,b).
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• Situatedness: Intelligent agents are situated. According to Pfeifer and
Scheier (1999), this means that the agent “acquires information about
its environment only through its sensors in interaction with the environ-
ment”. Furthermore, the notion of situatedness points out that cognitive
processes rely heavily on the agent’s environment. Very often, intelligent
agents use the environment as an external aid to find a solution for certain
tasks or problems (e.g., speaking of humans, paper and pencil are used to
take notes of intermediate steps during problem solving, or as an external
memory extension). These actions modify the environment and change
the state of the real world. This change may lead to new possibilities for
the development of further ideas and actions. Clark (1997) designates
this exploitation of external structure in the process of problem solving as
“scaffolding”.

• Adaptivity: Intelligent agents are learning systems. They adapt their be-
havior continuously to a changing and unpredictable environment. Most
skills are not pre-wired, but are learned during the interaction of the
agent’s body with its surrounding. At the basis of this learning process is
the acquisition of sensorimotor relationships.

Integrated sensorimotor processing in the embodied view does not neces-
sarily imply the existence of sensorimotor representations, since the concept of
representations is controversial in this field (e.g., Brooks, 1991b). In a more
general account, integrated sensorimotor processing means sensorimotor coor-
dination that takes place at a level far below any symbolic or object-like inter-
pretation of sensory data. On the one hand, the sensory input is used for motor
control, on the other hand — more important for the embodied approach —
agents learn the sensory consequences of their own actions, in this way estab-
lishing an “understanding” of their sensory inflow in terms of their own action
repertoire. Both aspects, motor control and sensory prediction, will be consid-
ered more thoroughly in Sect. 1.5 on internal models. In this section, we will
also discuss how low-level sensorimotor coordination could give rise to percep-
tion and cognition.

In the embodied approach, the frame problem is not as prevalent as in cog-
nitivism, since world modeling plays only a minor role, following the premise
that the best model of the world is the world itself. A situated agent can always
“look” at the world to obtain the most accurate and recent data about its state
(Pfeifer and Scheier, 1999). Furthermore, a situated agent just requires very
specific information about certain aspects of the world which are relevant for
the task at hand. There is no need for an elaborated world model. This idea
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is related to the concept of “information pickup” in Gibson’s theory of direct
perception (Gibson, 1979) (see also Sect. 1.5.3).

Although the symbol grounding problem does not exist for embodied sys-
tems, Ziemke (1999) argues that the grounding problem nevertheless reappears
in a different form. According to Ziemke (1999), the embodied approach faces
the body grounding problem: Even if the control structures in an artifical agent
have evolved to a large extent by self-organization, the human designer chose
a certain robot body with specific sensors and actuators and a certain environ-
ment in advance. These choices are not intrinsically grounded in the interaction
between robot and environment. In contrast, natural embodiment and situated-
ness of an animal are the result of a long history of evolution and individual
development. Unfortunately, the body grounding problem cannot be overcome,
it only can be relieved by reducing the amount of external design decisions as
far as possible.

1.3.4 Evidence for integrated sensorimotor processing

In the following, some experimental findings from behavioral and neurophysi-
ological studies are presented which provide evidence for the close interaction
between sensory and motor data, even at the neural level. This section should
be read as a small introductory “appetizer” without any claim for complete-
ness. Further theoretical and experimental accounts to integrated sensorimotor
processing are described in Sect. 1.5 and in Chapt. 2 on adaptive motor control.

1.3.4.1 Behavioral experiments

As described in Sect. 1.1, Held and Hein (1963) demonstrated the importance
of active movement for the development of visually guided behavior in kit-
tens. Related studies on visual adaptation in humans revealed that the speed
and quality of adaptation depends on the amount and quality of active move-
ments during the adaptation process. Held and Freedman (1963) showed this
for a pointing task while the subjects had to wear wedge-prism goggles, Luria
and Kinney (1970) for underwater pointing with diving goggles. Rossetti et al.
(1998) were even able to shift the neglected region of left-hemispatial-neglect
patients through a pointing task with prism goggles. All these studies support
the claim that the development or change of perceptual skills depends heavily
on the presence of agent-induced motor commands; passive movements do not
have the same effect.

Further support arises from the phenomenon of ideomotor actions; this terms
refers to body movements which are spontaneously evoked when observers
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watch other people performing certain actions (Knuf et al., 2001). They are an
important observation within the framework of the common coding approach
(Hommel et al., 2001; Prinz, 1997). Its main assumption is that perceived
events and planned actions share a common representational domain. Prinz
(1997) reviews various studies which support this claim, among them studies
on the “Simon effect” (e.g. Hommel, 1993): In experimental studies on hu-
man subjects, it is usually observed that performance is clearly superior if stim-
ulus and response position correspond with each other, as compared to non-
correspondence. Within the common coding approach, a general explanation
for this effect is that a corresponding stimulus already activates the (shared)
code that is needed for the subsequent response. This effect is another example
for a close sensorimotor coupling.

1.3.4.2 Neurophysiological evidence

In the field of neuroscience, Rizzolatti and colleagues have discovered several
types of neurons in the rostroventral premotor cortex (area F5) of the macaque
monkey which establish a link between sensory and motor information. The
neurons in this area discharge during hand movements, but some of them also
discharge on the observation of visual stimuli. “Canonical F5 neurons” (Murata
et al., 1997; Rizzolatti et al., 1988; Rizzolatti and Fadiga, 1998) react to 3D
objects whose shape and size corresponds to the prehension movement coded
by the neuron, “mirror neurons” (Rizzolatti et al., 1996; Rizzolatti and Fadiga,
1998) react to hand actions carried out by other individuals which are similar to
the coded movement. Rizzolatti and Fadiga (1998) proposed that mirror neu-
rons are the neural basis for understanding the meaning of actions made by oth-
ers. For the integrated sensorimotor approach, the canonical neurons are even
more interesting. Their activation pattern suggests that sensory information is
“understood” in terms of associated motor actions.

In the context of saccadic eye movement, there exists evidence for a “pre-
dictive remapping” of receptive fields. In various regions of the brain, neurons
with visual receptive fields have been found which respond before an upcom-
ing saccade to a stimulus that is not yet in their receptive field, but will appear
there after the saccade. These neurons elicit a predictive sensory response to a
planned but not yet executed eye movement, in this way demonstrating a close
coupling between sensory and motor information on the neural level. Predic-
tive neurons have been found in the superior colliculus (Walker et al., 1995), in
the lateral intraparietal area (Duhamel et al., 1992), and in the frontal eye field
(Umeno and Goldberg, 1997). In a recent behavioral study with human sub-
jects, Melcher (2007) showed that the predictive remapping of retinal locations
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also extends to visual processing in an adaptation task.

1.4 Cognitive Robotics

The notion “cognitive robotics” describes a research method within the frame-
work of embodied cognition. Its focus are models of sensorimotor processing
which are implemented and tested on real-world robot platforms, following the
design principle that intelligent agents need to be embodied and situated. Ad-
mittedly, there is a considerable gap between intelligent behavior on the one
side and single sensorimotor processes on the other side. This gap has to be
closed through ongoing progress in the field. At the moment, researchers try to
understand how sensorimotor models can be learned, and how they can be used
to guide behavior and to facilitate perception.

For example, the “Darwin” series of mobile robots (Almassy et al., 1998;
Krichmar and Edelman, 2002) were developed to show by synthetic neural mod-
eling how certain perceptual skills emerge by the interaction of the robot with
its environment. On both Darwin V (Almassy et al., 1998) and Darwin VII
(Krichmar and Edelman, 2002) a rather detailed model of the brain structures
which are involved in visual processing and visomotor coordination was im-
plemented. During the interaction with the environment, this synthetic brain
developed through changes in the synaptic strengths. In this process, special-
ized neural structures emerged which are linked to perceptual skills like invari-
ant object recognition or experience-dependent perceptual categorization. The
authors claimed that by exhaustive analysis and manipulation of these artificial
brain structures, this approach provides valuable heuristics for understanding
the interactions in the real brain.

A second example for cognitive robotics research is the recent study by Bon-
gard et al. (2006). They proposed an active self-modeling process for a four-
legged robot. In this process, the internal sensorimotor self-model of the robot
is first generated by model synthesis through directed exploration. Explorative
movements are not generated at random, but chosen according to which move-
ment would be the most informative for the identification of the self-model.
Afterwards, the self-model is used for action generation until an unexpected
sensorimotor pattern is detected. In this case, the self-modeling process starts
again. The authors showed that the system is even able to cope with the loss
of one leg. They concluded that their “work suggests that directed exploration
for acquisition of predictive self-models may play a critical role in achieving
higher levels of machine cognition” (Bongard et al., 2006, p. 1121). Further
studies from the field of cognitive robotics are mentioned in Sect. 1.5.3.
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Robot experiments and computer simulations belong both to the area of
synthetic modeling, in contrast to analytical experiments on the behavioral or
neurophysiological level. Especially, the robotics approach to cognitive science
offers some genuine advantages for the process of model testing. Webb (2000)
writes on p. 546 with regard to the related field of biorobotics: “Robots as mod-
els are a means by which hypotheses can be tested for adequacy and sufficiency
to explain a set of data, and additional predictions from the hypotheses can be
derived.”

Moreover, Webb (2000) emphasizes that the use of robots enforces the re-
searcher to characterize the problem thoroughly and to consider and understand
the role of the environment. In a pure computer simulation, the simulated en-
vironment of the agent can lack important properties of the real physical world
with regard to the tested model (see also Grasso, 2001). By using robots, this
risk is reduced (although not completely eliminated; e.g., the sensor equipment
of the robot may be insufficient, causing misleading results).

In addition, robot models enforce completeness: It is not possible to omit
any part of the sensorimotor loop — the tested model works only in its full
implementation, including the sensory and the motor part (and the integrated
processing in between). This enhances the validity of the results, helps to iden-
tify missing or wrong parts of any model, and facilitates the generation of new
hypotheses.

1.5 Internal Models

The transformations between motor commands and sensory states are deter-
mined by many factors, among them the properties of the environment and
of the agent’s body. There is ample evidence that the CNS of biological or-
ganisms represents these transformations internally (Schaal and Schweighofer,
2005; Shadmehr and Wise, 2005). Therefore, these representations are called
“internal models”. Kawato writes: “Internal models are neural mechanisms
that can mimic the input/output characteristics, or their inverses, of the motor
apparatus” (Kawato, 1999, p. 718). Moreover, internal models are used to de-
scribe sensorimotor processing, independent of their hypothesized existence in
the CNS. The concept of internal models has its origin in control theory and
robotics and plays an important role in the research on motor control.

There exist two main classes of internal models: inverse models (IMs),
which generate motor commands to close the gap between the current and the
desired (sensory) state, and forward models (FMs), which predict the (sen-
sory) consequences of the agent’s actions. Moreover, it is reasonable to sup-
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pose the existence of a more general category of FMs which predict external
events (Miall and Wolpert, 1996; Schubotz, 2007), but this category is beyond
the scope of this thesis. While IMs are mainly required for motor control
(Chapt. 2), FMs (or more generally: anticipatory mechanisms) serve a multi-
tude of purposes. Theoretical considerations and experimental findings suggest
that FMs are required for sensory cancelation (Sect. 1.5.2), for state estimation
(Sects. 2.1.1 and 2.1.4.5), and for context estimation (Sect. 2.1.5). Furthermore,
FMs are a basic component of the motor learning strategy “distal supervised
learning” (Sect. 2.2.4). The combined application of forward and inverse mod-
els is hypothesized for motor planning and for simulation theories of perception
(Sect. 1.5.3) and cognition (Sect. 1.5.4).

Whenever internal models are accepted as building blocks of sensorimotor
processing, the question arises how they are acquired. For biological organ-
isms, internal models represent certain information processing capabilities of
the CNS. Such capabilities can either be inherited or learned during the life-
time of the organism. But even inheritance involves learning by evolutionary
forces in the process of phylogenesis (Ax, 1987). In robotics, a classical engi-
neering approach would try to describe the “plant” (which comprises the robot
and its environment) analytically as precise as necessary. Knowing the plant,
one already knows the FM, and IMs (motor controllers) can be designed using
the tools of control theory (Dorf and Bishop, 2004). But such an approach is
only feasible when the plant is known analytically. This may hold for certain
industrial applications, but not for autonomous robots in complex and changing
environments (where the “body” of the robot might change as well due to wear
and tear). Thus, not knowing the plant beforehand, the robot has to adapt its
internal models to the environment in which it is moving and acting — it has to
learn. In summary, the learning of internal models is an integral part of sensori-
motor processing, both for biological and artificial agents. As consequence, an
important focus of this thesis is on learning mechanisms for internal models.

In Sect. 1.5.1, we start with a formal description of internal models, based on
state-space control theory. This description is intended as precursor for Chapt. 2
on adaptive motor control. Afterwards, the role of sensorimotor internal models
for sensory cancelation, perception, and cognition is explored in detail.

1.5.1 Formal description

The following description of internal models relies on the formal approach of
state-space control theory for dynamical systems (as textbook reference, see for
example Dorf and Bishop, 2004). At a given moment, the agent and its envi-
ronment are in a certain physical state. This state and the dynamic interaction

17



CHAPTER 1. INTRODUCTION

Figure 1.2 — The plant as abstract representation of the physical system. The box
labeled D indicates a delay by one time step.

between the state variables determine how the system will develop in the future.
All (non-redundant) state variables which are causally relevant for this devel-
opment at time step t are collected in a vector xt.6 In state-space models of
physical systems, the number of state variables is usually equal to the number
of energy-storing elements (Tao, 2003). The external input of the system in each
time step is the vector ut. In motor control, it is the motor command which is
generated and executed by the agent. The output of the system is denoted by
the vector yt. In the domain of sensorimotor processing, yt is sometimes iden-
tical with the sensor readings of the agent. Alternatively, yt can also contain
a more abstract representation which is derived from the sensor readings, for
example the retinal coordinates of an object instead of the activation of thou-
sands of fibers of the optical nerve. Generally, the output yt is a function of the
current state xt: yt = h(xt). The important difference is that the output yt is
directly measurable by the agent, while the state xt may be not. Depending on
the context, we will sometimes refer to yt as plant output, sometimes as sensory
input of the agent. The first designation applies to a system-centered view, the
second to an agent-centered view. Furthermore, yt is sometimes also denoted
as sensory state (whereas xt is the system state, to which the abbreviated term
“state” always refers).

The so-called “plant” serves as an abstract representation of the physical
system. Figure 1.2 shows a block diagram of the important relationships. The
system itself is represented by the plant P ′:

xt+1 = P ′(xt,ut)

The measurement process yields

yt+1 = h(xt+1) .

6 Throughout this thesis, we will mainly deal with time-discrete systems. Nevertheless,
when it is more appropriate, we will sometimes use a time-continuous notation.
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Figure 1.3 — Left: Forward model (the output is either a prediction of the state x̂t+1 or
the sensory output ŷt+1 of the system in the next time step). Right: Inverse model.

For convenience, we define a plant P which combines the original plant P ′ and
the measurement process:

yt+1 = P (xt,ut) = h (P ′ (xt,ut))

As already stated, there are basically two classes of internal models: forward
models (FM) and inverse models (IM). FMs mimic the behavior of the plant and
generate a prediction of xt+1 or yt+1 (see Fig. 1.3, left):

x̂t+1 = FM(xt,ut) or ŷt+1 = FM(xt,ut)

In addition, pure sensory FMs are also imaginable:

ŷt+1 = FM(yt,ut)

IMs represent the inverse relationship. While an FM is an approximation
of the plant, an IM is an approximation of the inverse of the plant and acts as
motor controller (see Fig. 1.3, right):

ût = IM(xt,xt+1) or ût = IM(xt,yt+1) or ût = IM(yt,yt+1)

ût is an estimate of the motor command which would yield the respective plant’s
response in the next time step. Usually, one just writes ut instead of ût. The
IM with the inputs xt and yt+1 is the most common one. Since yt+1 is not the
real value in this context but the desired one, one writes y∗ instead of yt+1. This
finally yields

ut = IM(xt,y
∗) .

This general introduction on internal models focusses on FMs and IMs for
dynamical time-discrete systems. In Chapt. 2 on motor control, various types
of IMs will be discussed whose input can differ from this introductory presen-
tation. Furthermore, in addition to internal models for dynamical systems we
will deal with internal models for kinematic relationships.
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1.5.2 Sensory cancelation

FMs can be applied to differentiate between self-induced and externally induced
sensory effects. The FM predicts the sensory state of the next time step, given
the current motor command. If the FM is precise, the difference between the
predicted sensory state and the real sensory state after execution of the motor
command will be close to zero. However, if unexpected external processes
cause additional changes of the environment, there will be a difference between
the predicted and the real sensory state. In this way, the prediction by the FM
can be used to cancel out self-induced sensory effects, and to detect externally
induced sensory effects by the remaining difference to the predicted sensory
state.

A classical example for this kind of reasoning is the reafference principle
suggested by von Holst and Mittelstaedt (1950). They outline for several neu-
romuscular systems, among them eye movements and accommodation, how
the efference copy cancels out the “reafference”, i.e. the signal transmitted by
the sensory receptors in response to the efferent motor command. For exam-
ple, when subjects with temporarily paralyzed eye muscles elicit eye movement
commands, they experience a shift of the visual surroundings in the intended
movement direction (because the expected eye movement does not take place).
Vice versa, when we move our eyeball with external forces (e.g., by pushing it
with the finger), we perceive a movement of the visual surroundings although
only the eyeball moves — but without eye movement command. These phe-
nomena can be explained by the reafference principle. However, von Holst and
Mittelstaedt (1950) assume that the efference copy and the reafference can be
directly summed up by the CNS, thus they need no FM. This claim seems to be
questionable, especially for as complex sensory data as from the visual sense.

More recent evidence for the cancelation of self-induced sensory effects has
been presented in a study by Blakemore et al. (1999): In their experiments,
subjects had to tickle themselves via a robotics interface. The experimenters
manipulated the correspondence between the action of the subjects’ left hand
and the tactile stimulus on their right hand. One manipulation concerned the
time delay between the action and the sensory effect, the other the movement
direction of the tactile stimulus (applied by the robot) in relation to the move-
ment direction of the left hand. By these manipulations, the difference between
the normal self-elicited sensory effect and the real sensory effect was varied.
As result, the subjects rated their tactile sensation as less tickly, pleasant, and
intense, the smaller this difference was (smaller time delay, more similar hand
and stimulus movement). This effect is ascribed to FMs whose output cancels
the sensory effect of self-executed tickling out as long as the sensory predic-
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tion matches closely the experienced stimulus. In a follow-up study, Blakemore
et al. (2000) employed a simplified version of their tickliness experiment to ex-
plore the brain regions which are dedicated to the prediction of sensory conse-
quences. Based on their fMRI data, the authors concluded that “the cerebellum
is involved in predicting the specific sensory consequences of movements and
in providing the signal that is used to attenuate the somatosensory response to
self-produced tactile stimulation” (Blakemore et al., 2000, p. R14). In addi-
tion, predictive sensory cancelation has also been observed in a very different
species, in the electrosensory system of electric fish (Bell, 2001).

1.5.3 Visual perception

In psychology, the two main theoretical approaches to visual perception are the
constructivist and the ecological one (for a thorough comparison, see Norman,
2002). In the constructivist approach, perception is viewed as an inferential
process. The sensory signals are seen as inherently insufficient for unequivocal
perception. Instead, it is assumed that the sensory information has to be pro-
cessed on the basis of stored schemata and unconscious thought-like processes
before perception can arise. In this aspect, the constructivist approach resem-
bles strongly the classical AI approach to perception (see Sect. 1.3.1) which also
starts from the assumption that perception arises from pure sensory processing
without any reference to the motor system. On the contrary, the ecological ap-
proach (Gibson, 1979) is build around the conception of the so-called “direct
information pickup”. In this view, perception is an active process in which an
active observer explores his environment by deliberately moving his eyes, his
head, and his whole body. Perception extends over space and time, and objects
are not perceived by the knowledge-driven interpretation of cues found in a sin-
gle retinal image, but instead by directly detecting the affordances the objects
offer to the observer. Gibson writes: “The affordances of the environment are
what it offers the animal, what it provides or furnishes, either for the good or
for the ill” (Gibson, 1979, p. 127). For example, surfaces can be “stand-on-
able”, “climb-on-able”, or “sit-on-able”. These affordances are closely related
to the shape of the body of the observer and to his repertoire of motor actions.
Basically, perception in the ecological approach is the direct perception of the
behavioral meaning of the objects in the environment.

Möller (1996, 1999) suggested the “perception through anticipation” ap-
proach, which is related to the ecological view, but replaces the direct percep-
tion of affordances by a mental simulation process based on internal models.
The main thesis of this approach is: “Perception of space and shape is based
on the anticipation of the sensory consequences of actions that could be per-
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Figure 1.4 — Graphical illustration of the internal simulation process in the “perception
through anticipation” approach (Möller, 1999). Starting from the current sensory state
s0, different movement sequences with motor commands mij are simulated by internal
prediction (the predicted sensory states are depicted in dashed ellipoids). The predicted
sensory state s24 is evaluated as a negative outcome, thus it is not used for further sim-
ulation. When the simulation process encounters the predicted sensory state s33 with a
positive rating, the simulation is halted (at a simulation depth of three steps).

formed by the agent, starting from the current sensory situation. Perception
and the generation of behaviour are two aspects of one and the same (neural)
process” (Möller, 1999, p. 186). Starting from the current sensory situation, an
IM suggests several motor actions. A corresponding FM predicts the sensory
consequences of all suggested actions. On the basis of the predicted sensory
situations, further motor actions are suggested, afterwards their consequences
are predicted as well, and so on, until a maximum step size is reached or at least
some simulated action sequences have led to sensory results with a clear posi-
tive or negative meaning to the agent (Fig. 1.4 illustrates the internal simulation
process, omitting the IM and FM for clarity). In this way, a human agent can for
example detect if an object is “sit-on-able”, because at least one of the simulated
movement sequences would result in a typical sitting posture with support for
the body by the top surface of the object. Together with the affordances which
have emerged from the other movement sequences simulated in parallel, this
may result finally in the perception of a chair. Thus, in this approach, percep-
tion is an integrated sensorimotor process which relies on IMs, FMs, and the
evaluation of sensory states. The main problem of the anticipation approach is
how to restrict the number of simulated motor sequences to a feasible amount,
despite the combinatorial explosion that occurs when a large number of motor
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commands is tested in parallel for each predicted sensory state. As we will see
in the following, various solutions have been proposed in the literature.

Several robot studies have been published, which investigate the feasibility
of the anticipation approach. Hoffmann and Möller (2004) used a mobile robot
equipped with an omnidirectional camera, which had to move within a circle
of obstacles. The sensory data was reduced to ten distance values, each indi-
cating the distance of the robot to the closest obstacle in a different sector of
the circle. These distance values were generated from the camera image, in this
way the FM in this study may be interpreted as a simple visual FM. As motor
input, the FM received the wheel velocities for a fixed small time interval. By
internal simulation, the system was able to tell if the robot was positioned at
the center of the circle or not (perceptual task), and to generate a sequence of
motor commands to move from the starting position to a goal position which
was defined by the desired activation of a single selected distance detector (mo-
tor task). The sequence of motor commands was generated by concatenating a
chain of FMs. The resulting free parameters were the motor inputs for all FMs.
These parameters were determined by the optimization method “fast simulated
annealing” (Szu and Hartley, 1987). The optimization goal was to minimize
the difference between the desired activation of the selected distance detector
and the corresponding sensory output of the last FM in the chain. In this way,
the main problem of the anticipation approach — how to restrict the number of
simulated motor sequences to a feasible amount — was solved by transforming
the internal simulation into an optimization problem. The study presented in
Chapt. 7 relies on a similar idea.

In a further study with the same robot setup, Hoffmann (2007) refined the
visual FM. The new FM was capable to predict downsampled images of the
omnidirectional camera with a size of 40 × 40 pixels. To predict the intensity
of each single pixel, an individual MLP was used. However, because of the
lacking precision of the MLPs, noise crept very easily into the prediction pro-
cess. To overcome this problem, an abstract recurrent neural network (similar
to NGPCA in Sect. 3.4) was trained to represent the downsampled camera im-
ages which were encountered during training. This abstract recurrent neural
network was used to project the predicted noisy image back onto the data man-
ifold of “clean” camera images. The denoised image was the final output of the
visual FM. This model was applied to a dead-end recognition task. The robot
was positioned at the beginning of either a dead end or of a passage, depending
on the arrangement of obstacles. By the mental simulation of a sequence of
movement steps with prediction by the visual FM, the robot could distinguish
between dead ends and passages. The movement steps were either generated
by an obstacle avoidance algorithm or by a recursive search algorithm. Both
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variants worked well for the perception of dead ends by mental simulation as
suggested by the anticipation approach.

Möller and Schenck (2008) went even a step further. In their study, a (sim-
ulated) mobile robot system first acquired a visuo-tactile FM (which also pre-
dicted collisions with the surrounding obstacles). This FM was used to generate
learning examples for an IM. A simple movement strategy drove the mental sim-
ulation along different search paths, and the collision-free movement sequence
with the smallest costs was selected (costs were caused by rotary movements
and changes of the movement direction, thus straightforward movements were
favored). The first motor command in the selected sequence was applied as
training output to the IM. Both the FM and the trained IM were used for the
subsequent dead end recognition task. From the current visual input, the system
had to decide if it was at the entrance of a dead end or a passage. As in the pre-
vious study, dead end perception relied on a mental simulation process. Motor
commands were generated by the IM, in this way the combinatorial explosion
of a systematic search in motor space was avoided. However, to generate at
least some motor sequences in parallel, the output of the IM was disturbed in a
random fashion at certain movement steps. If none of the simulated movement
sequences allowed a passage through the obstacles, the visual scene was inter-
preted by the system as showing a dead end. This classification task was solved
successfully for many different obstacle arrangements. The authors concluded
that “the agent [...] ‘understands’ the behavioral meaning of all situations by
revealing their ‘affordances’ through a process of internal simulation” (Möller
and Schenck, 2008).

However, the study by Möller and Schenck (2008) not only provides sup-
port for the anticipation approach to visual perception, but also illustrates a
further possible function of FMs: They can be used for mental practice, here for
acquiring an IM which favors collision-free straightforward movement trajec-
tories. This corresponds to the well-known phenomenon from the psychomotor
literature that pure mental practice can help to exercise movement tasks, e.g. in
sports (e.g., Martin et al., 1999) or rehabilitation (e.g., Jackson et al., 2001).

The work by Gross et al. (1999) is also based on the anticipation approach.
In their study, a mobile robot had to navigate through an arena with obstacles.
For the internal simulation process, an FM was used which predicted the optical
flow field at the next time step. To avoid an exhaustive search for the best move-
ment sequence, they restricted the internal simulation to motor commands that
are typical for the current situation. They suggested a neurophysiological model
of the internal simulation process with special emphasis on the cortex (genera-
tion of motor commands), the basal ganglia (evaluation of sensory outcomes),
and the cerebellum (sensory prediction). The robot studies by Mel (1988), Tani
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(1996), and Ziemke et al. (2005) are also based on the idea of an internal pre-
diction and simulation process, but their emphasis is not on visual perception.
Instead, Mel (1988) aimed on motor planning, Tani (1996) on symbol ground-
ing, and Ziemke et al. (2005) on the emergence of an “inner world”.

O’Regan and Noë (2001) added a further aspect to the basic idea that visual
perception relies on acting (although without an explicit reference to sensory
prediction). According to their theory, “vision is a mode of exploration of the
world that is mediated by knowledge, on the part of the perceiver, of what we
call sensorimotor contingencies” (O’Regan and Noë, 2001, p. 940). Sensorimo-
tor contingencies are the rules that govern the sensory changes produced by var-
ious motor commands. For example, the sensory activation on the retina which
is caused by a straight line remains constant for certain eye movement direc-
tions. Eye movements in different directions will instead cause specific changes
of the retinal activation. O’Regan and Noë understand visual perception as “the
activity of exploring the environment in ways mediated by knowledge of the rel-
evant sensorimotor contingencies“ (O’Regan and Noë, 2001, p. 943). Following
this line of thought, visual and auditory perception are different, for example,
because the sensorimotor contingencies differ between these modalities.

However, the behavioral accounts to visual perception are not only sup-
ported by theoretical considerations and robot studies, but also by neurophysi-
ological findings. Ungerleider and Mishkin (1982) presented evidence for two
different cortical pathways in the brain of the monkey: the ventral stream lead-
ing from the occipital cortex to the inferior temporal cortex, and the dorsal
stream leading to the posterior parietal cortex. These streams serve different
purposes. In the interpretation of Goodale and Milner (1992), the ventral stream
is the “what” system for object identification, whereas the dorsal stream is the
“how” system which transforms visual information into an egocentric frame-
work which allows the subject to act on the object. Norman (2002) puts for-
ward the hypothesis that the ventral stream corresponds to the constructivist
approach to visual perception, whereas the dorsal stream corresponds to the
ecological approach. Such a unified theory could explain why both approaches
are supported by experimental findings. Even more important, the experimen-
tal evidence for the existence and the function of the dorsal pathway provides
a solid neurophysiological background for the action-related accounts to visual
perception (see for example Grezes and Decety, 2002).

Furthermore, studies on visual imagery and motor imagery support the idea
that perceiving is closely related to an internal simulation of motor sequences.
Visual mental images “correspond to short-term memory representations that
lead to the experience of ‘seeing with the mind’s eye’ ” (Kosslyn et al., 1993,
p. 263). While the Behaviorist school of thought even questioned the very ex-
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istence of visual mental images, neuroimaging studies meanwhile have shown
that these images have clear neural correlates in rather low-level areas of the
visual cortex (Kosslyn et al., 1993; Kosslyn, 1994). This shows that an inter-
nal simulation process, in which sensory states are predicted and not elicited
by real stimulation, could be possible on a neural level. A similar argument
follows from the studies on motor imagery. According to Jeannerod (1995),
a motor image is a conscious motor representation which is related to intend-
ing and preparing movements. Motor imagery implies that the subject feels
himself executing a given action, thus motor imagery “requires a representation
of the body as the generator of the acting forces” (Jeannerod, 1995, p. 1420).
Jeannerod (1995) reviewed several neuroimaging studies which show that the
cortical activation during motor imagery is similar to the activation during in-
tentionally executed actions (see also Jeannerod, 2001). Thus, the internal sim-
ulation of actions is closely related to the real execution of actions on a neural
level. This supports the initial claim of the “perception through anticipation”
approach, that “perception and the generation of behaviour are two aspects of
one and the same (neural) process” (Möller, 1999, p. 186). However, one has to
note that the findings on mental imagery concern conscious processes, while the
hypothesized mental simulation during perception are supposed to take place on
a subconscious level.

1.5.4 Cognition and consciousness

It is a long-standing idea that the motor apparatus might be involved in thinking
and other cognitive abilities. According to Hesslow (2002), it traces back to the
19th century. In its modern form, this idea is closely linked to various forms
of “simulation theory”. The basic assumption is that cognition relies on the
internal simulation of motor actions (or action-related concepts) without actu-
ally executing these actions. Although this assumption is not necessarily linked
to internal models, it fits very well to the framework of FMs and IMs for sen-
sorimotor processing. FMs might be identified here with general anticipatory
mechanisms, and IMs with general mechanisms for the generation of motor
commands.

1.5.4.1 Cognition as internal simulation

In the context of the “perception through anticipation” approach (Sect. 1.5.3),
we already mentioned studies on visual imagery and motor imagery. These
studies demonstrated that the neural correlates of visual and motor imagery
correspond (partly) to the neural correlates of visual perception (Kosslyn et al.,
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1993; Kosslyn, 1994) and of real actions (Jeannerod, 1995). These findings not
only support simulation theories of perception, but also simulation theories of
cognition. Hesslow (2002) hypothesized that the CNS might be able to gener-
ate long chains of simulated actions and perceptions, in this way not only en-
abling motor planning, but also genuinely cognitive tasks like problem solving
in games like chess or the “Tower of London” (and imaging experiments re-
vealed actually an activation of premotor areas for the latter task; Dagher et al.,
1999). In a related experiment with a simulated mobile robot setup, Ziemke
et al. (2005) demonstrated that the internal simulation of perception can replace
an explicit representational world model for movement planning over hundreds
of iteration steps. Schubotz (2007) went a step further by claiming that the
sensorimotor system is even used to simulate events that cannot be produced
or imitated like the rhythm of ocean waves or the flight of a mosquito. She
suggested that the premotor cortex houses FMs for general transformations like
rotations. These FMs could be applied both to motor actions and to external
events. Related ideas were put forward by Bar (2007), who speculated that the
brain is continuously busy generating predictions of the near future to facilitate
perception and cognition.

With regard to the social domain, the discovery of the mirror neuron sys-
tem in humans (Rizzolatti et al., 1996) (see also Sect. 1.3.4.2) established a
close link between the motor system and social cognition (Jacob and Jeannerod,
2005). For example, it is suggested that we understand the behavior of other
people by carrying out a simulation of their internal states; the activity of the
mirror neurons serves to map the observed behavior to action plans, which in
turn are associated with the supposed intentions and goals of the observed sub-
ject (e.g., Gallese and Goldman, 1998). Miall (2003) connected the concept of
internal models with the mirror neuron system, in this way explaining how the
brain might anticipate future sensory effects caused by the actions of others (see
also Iacoboni, 2005). A related approach to social cognition by internal models
is provided in the HMOSAIC model by Wolpert et al. (2003) (see Sect. 2.1.5
for more details).

1.5.4.2 Consciousness and attention

Cruse (2003) presented an approach to cognition which is also based on the idea
that the same neural substrate serves for the generation of motor commands and
for higher cognitive abilities. Instead of an iterative internal simulation process
based on feedforward models, he proposed a recurrent sensorimotor body model
as underlying structure (on basis of the MMC network architecture; Cruse and
Steinkühler, 1993). The MMC network represents the underlying sensorimotor
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mechanisms and not only specific input-output relationships. Furthermore, the
MMC network converges dynamically to its attractor states, a feature which is
biologically plausible but completely missing in pure feedforward architectures.
Cruse (2003) hypothesized that the content of the body model is subjectively
experienced when the recurrent network has sufficiently relaxed to an attractor,
in this way giving rise to consciousness.

Taylor (2006) proposed a control system for attention in the brain. This
system is based on an IM to move the focus of attention and on an FM which
predicts the attented state of the world. These models do not work with mo-
tor outputs/inputs, but instead with signals for attention control. Taylor (2006)
suggested that the corollary discharge of the “attention movement” functions as
control basis of consciousness. This activity is supposed to create the experi-
ence of an “owner” to whom the content of consciousness belongs.

Theoretical considerations like these are highly speculative at the current
level of knowledge, but they show that the concepts of integrated sensorimotor
processing and of internal models reach far beyond the level of motor control
and basic perceptual skills.
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Chapter 2

Adaptive Motor Control

2.1 Motor Control with Internal Models

Motor control is a complex task. For example, even for a simple arm movement
the human central nervous system (CNS) has to coordinate the activation of a
large number of muscles over an extended period of time. Within the framework
of internal models, one assumes that motor control in the CNS is split into dis-
tinct modules. Each module processes a certain input-output relationship on the
way from sensory data and movement goals towards the final motor commands
which specify the activation of the muscles. In biological reality, several con-
trol loops exist on various levels of the CNS, e.g., the muscular, the spinal, the
transcortical, and the cortical, thus forming a hierarchy of control loops (Mehta
and Schaal, 2002). For this reason, one has to be aware that every “block model”
of motor control is an abstraction and simplification. Moreover, the framework
of internal models has its origin in control theory, and therefore the formalism
and the mathematical methods from this area are widely used. This has proved
to be a fruitful theoretical approach, capable of explaining a large amount of
experimental data. Nevertheless, reverse engineering of the motor system is a
difficult task, which requires to integrate experimental evidence from various
sources (e.g., behavioral observations, controlled behavioral experiments, elec-
trophysiological and neuroimaging studies) and data from mainly theory-driven
work (like robot models). At the time of this writing, it seems fair to say that the
CNS might use internal models and might employ control and learning strate-
gies similar to those which have been developed in control theory in engineering
(Shadmehr and Wise, 2005).

In this section, we concentrate on human arm movements (and to a smaller
extent, on eye movements). This restriction is motivated by the fact that most
research on internal models for human motor control concerns arm movements
for pointing, reaching, and grasping. Therefore, these models are often tested
on simulated or real robot arms. Moreover, they are developed on the basis of

29



CHAPTER 2. ADAPTIVE MOTOR CONTROL

Figure 2.1 — Overview of the modules for motor control (for details see text).

robotics-related concepts, although these concepts can only rarely be applied
directly to the human motor system. For example, the state of a robot arm can
be described by a vector x(t) =

(
θ(t), θ̇(t)

)
. θ(t) is the vector of joint angles,

θ̇(t) the vector of joint angle velocities. Applied to the human motor system,
this state description is an abstraction. To the best of the author’s knowledge,
there is no experimental study which directly shows that there is a neural cor-
relate of the current joint angles and velocities anywhere in the CNS. The CNS
might use representations of the physical state of the body and relevant parts of
the environment, but one has to keep in mind that the exact nature of these rep-
resentations is still unknown. It might be that these state descriptions are more
related to the state of the muscles. Considering the motor output, a similar ab-
straction applies. For the dynamic control of robot arm movements, the motor
command is usually a vector of torques τ (t). In the human body, these torques
are generated by the muscles which contract with a certain force depending on
their state and on the activation of the attached motor neurons. In addition, mus-
cles for joint movements usually appear in agonist/antagonist pairs; the exerted
forces in the final posture determine the stiffness of the limb. Nevertheless, in
accordance with the majority of the studies presented here, we ignore the stiff-
ness aspect in the following and use x(t) =

(
θ(t), θ̇(t)

)
as state description

of the arm and τ (t) as motor output in dynamic motor control. One just has to
keep in mind that these are abstractions when they are applied to human motor
control.

To structure motor control in a modular fashion, it is a convenient approach
to distinguish between the following modules (see Fig. 2.1): state estimation,
inverse kinematics, trajectory planning, and inverse dynamics. In the following,
these modules are described in the context of a reaching task: The hand has to
move from point A to point B.
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State estimation In a real-world task with a biological agent in a dynamic
environment, the state of the overall system cannot be described completely
with a reasonable number of state variables. Therefore, it is necessary to restrict
the state description to a set of variables which is most relevant for the control
task. For arm movements, the joint angles and angular velocities form such a
set: x(t) =

(
θ(t), θ̇(t)

)
. The CNS does not have direct access to this state,

instead is has to be estimated from the sensory signals y(t) from proprioception
(originating in the receptors imbedded in the joints, tendons, muscles, and skin)
(Zimmermann, 2005). In control theory, for state estimation an “observer” is
specified which processes the current sensory input and the last state estimate
to generate a new state estimate (Dorf and Bishop, 2004). Here, we propose a
similar “state estimator” which generates the estimated state x̂(t). At time t0,
when the arm’s tip is at point A, this estimated state is x̂(t0) =

(
θ̂(t0),

̂̇
θ(t0)

)
.

Inverse kinematics In a very general sense, the term “kinematics” refers to
a transformation between coordinate systems (Jordan, 1996). For a reaching
task, this could be the transformation from the position of the reaching target
(provided in body-centered coordinates) to the corresponding arm posture. In
Fig. 2.1, we use y∗ to denote the position of the reaching target since it is closely
related to visual sensory information (in a more generic way, one can think of
y as the overall sensory inflow of the agent; depending on the specific module,
a different subset of this information is selected and further processed before it
is finally used as the module’s input). In this example, the inverse kinematics
model transforms the target coordinates of the desired movement end point y∗

(point B) into the corresponding desired arm state x∗ = (θ∗,0) (the desired
final velocity should be zero in the reaching example). One has to note that the
notation is slightly inconsistent at this point since the output of inverse models
is usually a motor command u. However, in the overall framework of Fig. 2.1,
we consider the kinematic motor command (θ∗,0) mainly in its role as desired
state x∗ of the system.

Trajectory planning Knowing the current state estimate x̂(t0) and the desired
final state x∗, a trajectory between both points can be planned. This is the
task of the trajectory planning module. The result is a function xd(t) which is
defined over a time interval [t0; tfinal]. The movement duration tfinal − t0 is also
a result of the planning process. Knowing xd(t) implies knowing θd(t) and all
of its derivatives; most interesting are the angular velocity θ̇d(t) and the angular
acceleration θ̈d(t).
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Inverse dynamics The inverse dynamics module has to transform the trajec-
tory xd(t) into the correct motor commands u(t). The function u(t) describes
the muscle activation during the movement (or on a more abstract level the
torques τ d(t)). Because of the physical characteristics of the system, not ev-
ery trajectory xd(t) can be realized by motor commands u(t) (e.g., because of
impossible arm postures or accelerations which are too large to be achievable).
Thus, the inverse dynamics has to be already considered during trajectory plan-
ning.

This modular approach is intended as guideline to structure the problems
which are connected with motor control, to organize research approaches and
results, and to discuss the role of internal models in these different contexts. It
is not intended as model of the flow of information in the CNS during motor
control. For example, trajectory planning and inverse dynamics are deeply in-
termingled. One could as well assume an inverse dynamics model (IDM) which
takes x̂(t) and x∗ as inputs and which directly generates motor commands u(t).
Moreover, instead of the system states this IDM could use the sensory data y(t)
and y∗ as inputs (which would require most likely state estimation by an internal
observer).

2.1.1 State estimation

The estimation of the current or of future states usually involves prediction.
Within the framework of internal models, the role of the predictor is quite nat-
urally assigned to forward models (FMs). In an influential study by Wolpert
et al. (1995b), a Kalman filter model on the basis of an FM was proposed. The
Kalman filter is an algorithm to estimate or predict the state of a process, in
a way that approximately minimizes the mean of the squared error (Kalman,
1960).1 It is often used in control theory as observer model. The new state
estimate is computed recursively from the previous state estimate and the new
sensory data.

Figure 2.2 shows the structure of the discrete Kalman filter for prediction
(as outlined in Haykin, 2002, for linear systems). The filter has a predictor-
corrector structure. In the upper pathway, the predictor (here an FM) generates
a preliminary state estimate x̂−t+1 for the next time step. As input, it receives
the previous state estimate x̂t and an external input ut (in the context of motor

1 Here, we do not differentiate between the standard Kalman filter for linear systems and the
extended Kalman filter for non-linear systems; for linear systems, the Kalman filter results in a
true minimization of the mean of the squared error of the state prediction.
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Figure 2.2 — Block diagram of the Kalman filter (for details see text).

control, this is generally a motor command). In the lower pathway, a correction
of the last state estimate is computed: First, the sensory error is determined as
∆yt = yt−ŷt = yt−h(x̂t). The function h is a model of the measurement pro-
cess and generates an estimate of the sensory input ŷt from the estimated state
x̂t. Afterwards, the sensory error is transformed back into the state domain by
the Kalman gain matrix Kt. Finally the results of the upper and lower pathway
(predictor and corrector) are summed up to yield the final state prediction:

x̂t+1 = x̂−t+1 + Kt∆yt

This equation illustrates clearly that the magnitude of the elements in the Kalman
gain matrix Kt determines the amount of correction of the original prediction
x̂−t+1.

The discrete Kalman filter includes an algorithm to compute the Kalman
gain matrix Kt in a way that the mean of the squared error of the state prediction
is approximately minimized. The basis of this computation is the noise in the
state prediction process and the noise in the measurement process. Depending
on the magnitude of these two sources of noise, the Kalman gain either gives
more weight to the prediction x̂−t+1 or to the correction ∆yt. In this prediction
scheme, the computation of Kt involves knowing the derivatives of the predictor
in the current and in the previous time step (Haykin, 2002).2

In the study by Wolpert et al. (1995b), human subjects had to move one of
their arms in the absence of visual feedback. At the end of the movement, sub-
jects had to estimate the position of their thumb by moving a cursor projected in

2 To be precise, this prediction scheme works only for systems with linear state transitions;
we stick to this scheme since it is used in the study by Wolpert et al. (1995b).
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the plane of the thumb along the movement line (via a trackball operated with
the other hand). In doing so, the subjects showed a clear bias to overestimate
the movement length (peaking around a movement duration of one second).
Moreover, when an assistive force field was generated during the movement,
the overestimation bias increased, while a resistive force field resulted in a re-
duced bias. Wolpert et al. (1995b) report the time course of the bias under the
varying conditions for a movement time between 0.5 and 2.5 seconds. The main
research question in their study is if the estimation of the thumb’s position relies
on motor information (efference copy), on sensory information (from proprio-
ception), or on a mixture of both.

Wolpert et al. (1995b) proposed a Kalman filter model (like in Fig. 2.2)
to determine which kind of processing yields the best fit to the experimental re-
sults. The predictor is a linear FM of the arm dynamics (with two state variables,
the velocity and the position of the thumb). The motor input ut is simplified to
the sum of the externally and the internally generated force. The parameters
of the model were fitted to the experimental data, especially the amounts of
noise in the state prediction process (relying on motor data) and in the mea-
surement process (relying on sensory data), which determine the Kalman gain.
Only when both the state prediction and the sensory correction contributed to
the state estimation, the time course of the estimation bias could be reproduced
by the model under the varying conditions. Using efferent or proprioceptive
information alone could not account for the experimental data. The authors
conclude: “We feel that the results of this state estimation study provide evi-
dence that a forward model is used by the CNS in maintaining its estimate of
the hand location” (Wolpert et al., 1995b, p. 1882).

This study is important in two respects: First, it supports the FM hypothesis
with experimental data, and second, it puts forward the idea that the state pre-
diction by FMs in the CNS is corrected as soon as sensory data is available. For
this predictor-corrector process, the Kalman filter provides a well-understood
framework from signal processing.

The Kalman filter approach to state estimation fits well into the larger
framework of Bayesian integration of sensorimotor information (Kording and
Wolpert, 2006). According to Bayes’s theorem, the probabilities P (A) and
P (B) and the conditional probabilities P (A|B) and P (B|A) are linked in the
following way:

posterior︷ ︸︸ ︷
P (A|B) =

likelihood︷ ︸︸ ︷
P (B|A)

prior︷ ︸︸ ︷
P (A)

P (B)

P (A|B) is often called the posterior belief, while P (A) is the prior belief.
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Bayes’s theorem also applies to continuous probability densities. For state esti-
mation, the continuous version yields:

p(x|y) =
p(y|x)p(x)

p(y)
(2.1)

p(x) is the estimated probability density of the state a priori with the expected
value x̂−. To update this state estimate, an observation y is made. Through
Bayes’s rule, the estimated probability distribution p(x|y) of the state a posteri-
ori with the expected value x̂ is determined, which takes the observation y into
account. The likelihood p(y|x) has to be derived from the measurement pro-
cess; this likelihood is the probability density of the observation y under varying
values of x. If all distributions are univariate Gaussians and the sensory output
model h is the identity function, the computation of p(x|y) is straightforward
(Kording and Wolpert, 2006):

x̂ = λy + (1− λ)x̂− (2.2)

λ =
σ2

x

σ2
x + σ2

y

σ2
x is the variance of the prior distribution, σ2

y is the variance of the likelihood.
The width of the posterior distribution is σ = λσy.

Equation (2.1) can be generalized to multiple sources of sensory informa-
tion. The resulting posterior distribution provides the optimum state estimate in
which each source of information is weighted in proportion to its precision (the
inverse of its variance) as in Eqn. (2.2) (Bays and Wolpert, 2007). The Kalman
filter can be derived from the Bayesian framework as well (Barker et al., 1994).

Bays and Wolpert (2007) and Kording and Wolpert (2006) review experi-
mental studies which support the view that the CNS uses Bayesian inference
to minimize uncertainty and variability in sensorimotor control: These studies
concern visual illusions, the integration of cues from different modalities, and
strategies in motor control. The study by Vaziri et al. (2006) is of special in-
terest because it deals with an oculomotor FM. When humans fixate a reach
target but then look away, the CNS generates before the actual eye movement
an estimate of the remapped peripheral location of the reach target (as it would
appear after the eye movement) in fixation-centered coordinates (this is an in-
terpretation of the studies on predictive remapping by Duhamel et al. (1992);
Umeno and Goldberg (1997); Walker et al. (1995); see also Sect. 1.3.4.2). This
remapping can be interpreted as FM which uses a copy of the oculomotor com-
mand as motor input. In this setting, subjects have two sources of target in-
formation for the reaching movement available after looking away. First, the
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remapped target position, and second, the target as it appears in peripheral vi-
sion. From a theoretical viewpoint, this could be advantageous because the
actual peripheral position of the reach target on the retina might not be precise
enough due to the low resolution to generate an adequate reaching movement.
In a controlled experimental setting, Vaziri et al. (2006) examined the precision
of reaching movements when only one of the two sources or both were available
to the subjects. Their results indicate that the CNS combines both sources in a
Bayesian way for optimal reaching performance. Vaziri et al. (2006) propose
two different integration mechanisms: Both target representations coexist un-
til the reaching movement is triggered (one representation in memory and the
other in visual cortical areas), or there is only one target representation which
is updated through a Kalman filter. In conclusion, this study provides further
support for the existence of FMs for state estimation in the CNS.

2.1.2 Kinematic control

As already mentioned, the term “kinematics” refers to a transformation between
coordinate systems (Jordan, 1996). A common example from engineering is
the transformation between joint angles θ of a robot arm and the position and
orientation of its gripper tip in the world coordinate system. This relationship
is often referred to as “forward kinematics” while the inverse relationship is
designated as “inverse kinematics” (Spong and Vidyasagar, 1989). For motor
control, the inverse kinematics is required to determine the correct posture for
a given desired limb position. In the example of the reaching task, the target is
first represented in retinal (eye-centered) coordinates. These coordinates have
to be transformed first into a head-centered and finally into a body-centered
representation (Battaglia-Mayer et al., 2003; Buneo et al., 2002; Carrozzo et al.,
1999). From the body-centered coordinates, the final reaching posture of the
arm (the joint angles) can be generated by an inverse kinematics model (IKM).

Actually, there is a large amount of experimental evidence from neurophys-
iological and psychophysical studies on humans and primates that these coordi-
nate transformations take place in the CNS (for a review, see Battaglia-Mayer
et al., 2003). Depending on the motor task and the available sensory informa-
tion about target and hand, the most relevant reference frames seem to differ
as the following two findings suggest. In support of the stepwise coordinate
transformations as outlined above, Snyder (2000) presents the finding that in
some cortical regions the locally represented retinal position is modulated by
the population code of the gaze direction (this modulation has been termed
“gain fields”). On the other hand, the results by Buneo et al. (2002) from a
neurophysiological study on monkeys indicate that the posterior parietal cor-
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tex (PPC) can also directly transform eye-centered target coordinates to hand-
centered target coordinates if both the target and the hand are visible. So far,
these results refer to the input of hypothetical IKMs in the CNS. Moreover, in
a study by Graziano et al. (2002) on monkeys, the stimulation of certain motor
cortex neurons lead to hand locations independent of the initial arm posture.
This corresponds to the output of an IKM. Another candidate for an IKM in
the CNS is the oculomotor map found in the superior colliculus. Here, retino-
topic target positions are closely linked to eye viewing directions (Leigh and
Zee, 1999). On a higher level, the lateral intraparietal area in the PPC seems to
serve as a sensorimotor “interface” for the production of saccades. Buneo and
Anderson write: “By interface we mean a shared boundary between the sensory
and motor systems where the meanings of sensory and motor-related signals are
exchanged” (Buneo and Andersen, 2006, p. 2595).

Very often, the input-output relationship of the inverse kinematics is a one-
to-many mapping. For example, to grasp for a cup on the desk before them,
humans can use a large variety of different final arm postures. Nevertheless,
many human movements and final postures are rather stereotype, thus the CNS
seems to prefer certain solutions of the inverse kinematics (Cruse et al., 1990;
Grea et al., 2000). In robotics, one distinguishes between redundant robot ma-
nipulators with a continuous set of solutions for the inverse kinematics and
non-redundant ones for which only several distinct solutions exist (Spong and
Vidyasagar, 1989). The existence of one-to-many mappings is a challenge for
many adaptive learning strategies in motor control (see Sect. 2.2.2).

The “knowledge” model of Rosenbaum et al. (1995) is a kinematic model
of motion planning for planar arm movements. One of its principal aims is to
explain how the human motor system solves the redundancy problem. The so-
lution which is offered by the model relies on a memory for stored postures. To
generate a movement, all stored postures are evaluated with respect to their spa-
tial error costs and travel costs. Spatial error costs rely on the difference between
the position of the movement target in the world coordinate system and the po-
sition of the specific contact point (usually, the hand). Travel costs are related
to the difference in the joint angles between the stored posture and the current
posture. Depending on their costs, a weight term is computed for all stored
postures. The final posture is determined as weighted sum of all stored pos-
tures in joint angle space. Whenever the spatial error costs of the final posture
are too large, a special mechanism called “feedforward correction” is applied to
generate new postures with smaller spatial errors. This model predicts success-
fully several experimental results, for example the effects of starting positions
on final postures (for an overview, see Rosenbaum et al., 2001). Subsequently,
Rosenbaum et al. (2001) extended the model to grasping and obstacle avoidance
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and offered a more flexible way of accounting for costs through a constraint hi-
erarchy. The authors put forward several reasons why human motion planning
is based on the final posture of the movement. Most important, the variability
of end positions is generally smaller than the variability of movements to those
end positions (Desmurget et al., 1995). Moreover, the memory for final posi-
tions is better than the memory for movements (Baud-Bovy and Viviani, 1998).
In summary, the IKM in the knowledge model is based on a lookup table. The
posture which is finally retrieved depends on the movement costs.

The research by Cruse and colleagues (Cruse et al., 1990, 1993) provides
further support for the idea that final postures of the redundant human arm are
determined on the basis of cost functions. In their approach, neither the spatial
error nor the travel costs are considered, but instead the “comfort” of keeping the
arm in a certain posture. In different psychophysical experiments on reaching
movements in a horizontal plane, Cruse et al. (1990) discovered u-shaped cost
functions for the shoulder, elbow, and wrist. The minimum cost (maximum
comfort) was found approximately at the middle of the range of joint movement
for different subjects. In the model of Cruse et al. (1990), the overall cost of an
arm posture is the sum of the cost values for shoulder, elbow, and wrist. This
model offers no mechanism for an IKM, but explains how an IKM could arrive
at a certain arm posture despite the redundancy.

In contrast to dynamical control tasks where even the optimal output of the
controller can only decrease the difference between the desired and the current
state over time, there is always a “one-shot” solution available in kinematic
problems. Kinematics involves only the relation between two different coordi-
nate systems without any dynamic aspect.

2.1.3 Trajectory planning

The trajectory planning module has to specify a trajectory xd(t) with t ∈
[t0; tfinal] from a known starting point x̂(t0) to a desired final point x∗. Here,
our presentation suggests that the trajectory is planned in state space, consisting
of joint angles and velocities. Although every trajectory can be specified in this
space, their is actually a lot of controversy about the level which is most relevant
for trajectory planning. Two main classes of models exist: kinematic and dy-
namic models. Kinematic models start from the assumption that the trajectory
is planned in (body-centered) workspace coordinates, while dynamic models
refer to dynamic variables like torques, forces, or muscle activations.

Point to point arm movements by human subjects show roughly straight
hand paths and bell-shaped velocity profiles (Abend et al., 1982) in workspace
coordinates. Every trajectory formation model has to account for this finding.
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Many models start from a cost function which has to be minimized (often with
the mathematical methods of optimal control theory). The final trajectory is
the one with minimum cost. One of the most influential kinematic models is
the minimum jerk model (Flash and Hogan, 1985). Jerk is the derivative of
acceleration. The cost function for planar arm movements in this model is:

C =
1

2

∫ tfinal

t0

((
d3x

dt3

)2

+

(
d3y

dt3

)2
)

dt

Here, x and y denote the coordinates of the hand in the 2D plane. The result-
ing trajectory is computed in 2D workspace coordinates. Accordingly, in this
model the IDM which finally computes the torques has also to solve the in-
verse kinematics problem (at least implicitly). But in the first place, the optimal
trajectory is determined completely independently of the dynamical quantities
such as additional payloads, torques, or external forces. This appeared to be
rather implausible and led to the development of dynamic trajectory formation
models like the minimum torque-change model (Uno et al., 1989). Here, the
cost function is:

C =
1

2

∫ tfinal

t0

n∑

i=1

(
dτi

dt

)2

dt

n is the number of joints, and τi is the torque applied to joint i.
At the first glance, the minimum torque-change model seems to be a very

elegant solution because the final trajectory is directly specified in torques τi(t),
thus no further motor controller is required. But internally, the trajectory for-
mation process requires an IKM, a state-space model of the arm dynamics, and
advanced mathematics to find the optimal trajectory. To overcome these diffi-
culties, Uno et al. (1989) presented an iterative learning scheme which gener-
ates an approximate solution for the trajectory. In contrast to the minimum jerk
model, the minimum torque-change model succeeds in predicting the hand path
of human subjects when an external force is applied. However, more recent
studies have shown that subjects adapt their movements in dynamic environ-
ments over many practice trials, finally resulting in a straightening of the hand
paths (Shadmehr and Mussa-Ivaldi, 1994). Thus, a straight movement path in
workspace coordinates seems to be the preferred solution. This finding con-
forms rather to the hypothesis of kinematic trajectory planning.

Further support for the kinematic approach stems from a study by Wolpert
et al. (1995a). In this study, subjects had to perform two-joint planar arm move-
ments. The visual feedback was disturbed to suggest increased curvature of the
movements. In accordance with the prediction of the minimum jerk model, sub-
jects adjusted their movements so that the perceived movement became nearly
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straight again. This contradicts with the minimum torque-change model which
predicts no adjustment in such a setting. Wolpert et al. (1995a) conclude that
their results are incompatible with purely dynamics-based models. They sug-
gest that “spatial perception — as mediated by vision — plays a fundamental
role in trajectory planning” (Wolpert et al., 1995a, p. 460).

The minimum-variance theory by Harris and Wolpert (1998) offers an in-
tegration of the kinematic and the dynamic approach. The foundation of their
theory is the assumption that the neural signals for motor control are corrupted
by noise, whose variance increases with the size of the control signal. The main
principle of trajectory formation is the minimization of the variance of the fi-
nal arm (or eye) position for a specified movement duration, or equivalently
the minimization of the movement duration for a specified final positional vari-
ance. This theory predicts smooth trajectories with bell-shaped velocity pro-
files; moreover, it accounts for Fitt’s law (Fitts, 1954), which basically states
that the speed of human movements is reciprocally related to their accuracy. A
further advantage of the minimum-variance theory is that it provides a reason-
able explanation in itself: Relying on the minimum-variance criterion, the CNS
would achieve the most precise trajectories it can generate with a noisy motor
system. On the contrary, it is not clear why the CNS should apply optimiza-
tion criteria like minimum jerk or minimum torque-change. On the downside,
the minimum-variance model requires a state-space model of the plant and ad-
vanced mathematical computations (see Harris and Wolpert, 2006, on saccadic
eye movements) which is not biologically plausible.

Cruse and colleagues (Cruse and Brüwer, 1987; Cruse et al., 1993) proposed
a different mechanisms to explain that hand paths sometimes deviate from a
straight line. They assume that “the control system might use a compromise
between a straight line in joint space and a straight line in the work space”
(Cruse et al., 1993, p. 138). A global strategy aims on achieving a straight
path in joint space, a local strategy aims on a straight path in the work space.
The local strategy works by computing the pseudoinverse of the Jacobian of the
plant which maps joint angles to workspace coordinates. The pseudoinverse is
used to determine the changes of the joint angles for a small movement step
in the workspace. Moreover, the resulting joint angle changes are weighted by
the corresponding cost functions which assign comfort values to joint angles
(Cruse et al., 1990, 1993). Thus, the local strategy combines pseudoinverse
control with a minimum cost principle. However, although Dean and Porrill
(1998) suggested an adaptive biological model for pseudoinverse control of eye
movements, it is still unclear how the CNS could carry out the necessary com-
putations for pseudoinverse control of the arm.

So far, we have considered simple point-to-point movements. To define
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Figure 2.3 — Modification of the framework in Fig. 2.1 for the minimum jerk model
(for details see text).

the trajectories of complex and curved arm movements, it is often assumed
that the CNS uses via-points. These are points in the work space with a time
stamp. Along the trajectory, the hand has to pass through each via-point at the
specified time. Usually, the overall trajectory is smooth without stopping at the
via-points (except for movement reversals). Wada and Kawato (1993) proposed
the “forward-inverse relaxation model” (FIRM) for trajectory formation with
via-points with a fixed time stamp. The FIRM model uses the minimum torque-
change criterion to generate the overall trajectory. Wada and Kawato (1993)
report that it can reproduce complicated human motion trajectories precisely.
In an extension of their work, Wada and Kawato (2004) modified the FIRM
model so that it only needs the spatial position of the via-points to start with
and generates the time stamps within the optimization process.

Although the model by Rosenbaum et al. (2001) (see Sect. 2.1.2) is purely
kinematic, it offers a mechanism for obstacle avoidance and trajectory plan-
ning via a single via-point. In this model, each movement to a target point is
a superposition of a first movement to a via-point and to a second movement
from the via-point to the final goal. Candidate postures for the goal and via-
point are evaluated according to a certain constraint hierarchy. One constraint
implies that collisions should be avoided along the trajectory. Collision de-
tection is carried out by simulating movements on basis of the simplified (and
basically wrong) assumption that trajectories follow straight-line movements
through joint space. In contrast to the other aforementioned models for trajec-
tory generation, the model by Rosenbaum et al. (2001) does not minimize costs,
instead it searches for appropriate postures until the movement constraints are
satisfied. The Rosenbaum model ignores the dynamics in this process, but in-
stead relies on a simplified mechanism for trajectory generation. In this respect,
the dynamic trajectory planning models and the Rosenbaum model supplement
each other.

When we reconsider the framework in Fig. 2.1, the minimum jerk model fits
in quite well, although some modifications are needed. A simplified and modi-
fied version of the framework is depicted in Fig. 2.3. The new framework leaves
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Figure 2.4 — The plant P ′ as transfer element, composed from the serial connection of
the state change function p and an integrator.

out state estimation, and the sensory variables y and y∗are now identified with
the position of the hand and the reaching target in the workspace. Although
these variables are directly connected to the visual information from the retina,
their representation in body-centered workspace coordinates requires state es-
timation. Thus, this notation is a simplification. According to the minimum
jerk model, the trajectory planner generates the trajectory yd(t) in workspace
coordinates. An IKM has to transform yd(t) into the corresponding joint angle
trajectory xd(t) = θd(t). As in Fig. 2.1, xd(t) is the input for the IDM which
generates the final motor commands.

2.1.4 Dynamic control

The task of dynamic control is to generate the necessary torques or muscle
activations for a desired movement trajectory. In the dynamic domain, it is
more convenient to switch to a time-continuous notation. In time-continuous
state-space systems, the plant dynamics is usually defined by the state equation,
a set of differential equations:

ẋ(t) = p(x(t),u(t)) (2.3)

In contrast to the time-discrete notation, in which the plant P ′ is just a simple
next state function, P ′ is now a transfer element which can be depicted by the
serial connection of the state change function p and an integrator (see Fig. 2.4).
To determine x(t), it is necessary to solve the state equation. For a multi-joint
arm with the state vector (θ, θ̇), the state equation is usually defined as follows
(Kawato, 1990):

dθ/dt = θ̇

dθ̇/dt = f(θ, θ̇, τ ) (2.4)

Equation (2.4) expresses that the changes of the angular velocities (the an-
gular accelerations θ̈) depend on the current joint angles θ, the current joint
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velocities θ̇, and on externally applied torques τ . For multi-joint manipulators,
the function f is usually non-linear since it contains sine and cosine terms of
θi (for an example, see Eqns. (2.7-2.8)). The task of the IDM is to transform a
trajectory θd(t) (which implies θ̇d(t) and θ̈d(t)) into the torques τ d(t). In the
following, two opposing control strategies, feedforward control and feedback
control, and a mixture of both are presented.3

2.1.4.1 Feedforward control

In feedforward control, the IDM is applied as shown in Fig. 2.1. The IDM
implements a solution of Eqn. (2.4) with respect to τ :

τ d(t) = IDM(θd(t), θ̇d(t), θ̈d(t)) (2.5)

Ignoring static friction, Eqn. (2.4) is linear with respect to the torques τ d(t)
because of the general relationship τ = I θ̈ (with I being the moment of inertia).
Other than this, τ has no direct impact on joint angles or velocities. Thus, there
exists an explicit analytical form of the IDM in Eqn. (2.5).

Nevertheless, pure feedforward control through the IDM is little bit risky.
While the IDM represents a functional relationship (a many-to-one mapping),
the inverse of the IDM does not. Accordingly, a certain control signal τ (t)
can have a very different impact depending on the actual state (θ(t), θ̇(t)) of
the system. Only if the IDM is really a perfect counterpart of the plant, and
if the actual starting state (θ(t0), θ̇(t0)) is equal to (θd(t0), θ̇d(t0)), the actual
trajectory θ(t) follows exactly the desired trajectory θd(t).

In practice, feedforward control is not well suited for arm movements where
a lot of state variables come into play and even a slightly inprecise IDM can
lead to an undesired outcome. Moreover, feedforward control cannot cope with
noise in the sensory and motor channels and cannot react at all to unexpected
external forces or changes in the payload.

Nevertheless, there are models which propose feedforward control for cer-
tain tasks of the human motor system. One of these models is the model by
Robinson (1981) for the vestibulo-ocular reflex (VOR). The VOR compensates
for head motion by moving the eyes in the opposite direction with opposite
speed. In the VOR model by Robinson (1981), this is achieved by an inverse
model of the oculomotor plant which is used for open-loop feedforward control.

3 Depending on the control strategy, the desired state for multi-joint arm movements is
sometimes defined as xd(t) = (θd(t), θ̇d(t)) (matching the system state; mainly in feedback
control) or as xd(t) = (θd(t), θ̇d(t), θ̈d(t)) (extending the system state by θ̈d(t); mainly in
feedforward control).
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Figure 2.5 — Simplified feedback control schemes, leaving out any reference to the
sensory variables y(t). A: Predictive control with an IDM. B: Error-correcting feedback
control.

2.1.4.2 Feedback control

In feedback control, not only the desired state or the desired output of the plant
are fed as input to the controller, but also the actual output of the plant or an
estimate of its current state (see Fig. 2.5). If the controller is well-designed, it
can overcome all the difficulties of pure feedforward control. On the downside,
feedback control faces the problem of time delays in the feedback loop. But this
is a topic on its own which is covered in Sect. 2.1.4.6.

Jordan (1996) distinguishes between two types of feedback control. The
first belongs to the category of so-called “predictive control”. Here, the con-
troller is an IDM (see Fig. 2.5a). In contrast to the IDM for feedforward con-
trol, this IDM gets both the desired state xd(t) and the current state estimate
x̂(t) as input. The feedback IDM generates (ideally) the optimal motor ouput
u(t) to decrease the difference between xd(t) and x̂(t) as fast as possible (or
according to another optimality criterion). Since xd(t) and x̂(t) are functions
over time, their difference will change dynamically. Overall, the feedback IDM
is basically an optimal controller. In addition, a feedback IDM can be viewed as
a kind of trajectory planner because it generates a trajectory “online” from the
starting point of the movement towards the desired goal position (assuming that
this position is fixed). This shall illustrate that the overall sketch in Fig. 2.1 is
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only a framework to guide the presentation, and that there are smooth transitions
between the different modules.

The feedforward IDM can be interpreted as a feedback IDM where the de-
sired and the current state are infinitesimally close together. Returning to the
example of arm control, where x(t) = (θ(t), θ̇(t)), this infinitesimal differ-
ence is expressed by the angular acceleration θ̈(t). A direct comparison of the
output equations of the feedforward IDMff and the feedback IDMfb shows this
relationship:

τ d(t) = IDMff(θd(t), θ̇d(t), θ̈d(t))

τ d(t) = IDMfb(θd(t), θ̇d(t), θ̂(t), ̂̇θ(t))

Using a feedforward IDM belongs also to the category of predictive control
(Jordan, 1996).

The second type of feedback control is “error-correcting feedback control”
(see Fig. 2.5b). Here, the controller receives only the difference between xd(t)
and x̂(t) as input. Jordan (1996) emphasizes as main difference between pre-
dictive and error-correcting control that the latter can only react after the error
has already occured. Furthermore, feedback controllers (FCs) are mostly con-
structed heuristically according to some qualitative knowledge of the plant, but
not as its optimal counterpart like an IDM. Often, this approach works quite
well and can provide a starting point to identify a real IDM as outlined in the
next sections.

2.1.4.3 Composite control systems

Feedforward and feedback control have complementary strengths and weak-
nesses. For this reason, it is a reasonable approach to integrate both in a com-
posite control scheme. A common and generally successful approach is to add
both control signals as shown in Fig. 2.6. Here, a feedforward IDM and an error-
correcting FC work together. Because of the feedforward IDM, the system is
less sensitive to time delays in the feedback loop, and on the other hand, the FC
helps to overcome unexpected disturbances, noise, and possible inaccuracy of
the IDM (Jordan, 1996).

2.1.4.4 Feedback-error learning

Feedback-error learning (FEL) is a learning strategy for feedforward IDMs
which has been proposed by Kawato et al. (1987) (see also Gomi and Kawato,
1993; Kawato, 1990). It is based on the composite control system in Fig. 2.6.
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Figure 2.6 — Combination of feedforward and feedback control. The dashed arrow
indicates the error signal in feedback-error learning. For simplicity, any reference to the
sensory variables y(t) is left out.

It has been developed in the context of dynamical systems. For this reason, it
is presented here. The following section on motor learning (Sect. 2.2) is mostly
dedicated to kinematic control and discusses FEL only in this context.

In adaptive control systems, the motor controller is not “pre-wired” but in-
stead acquired during the interaction of the controller with the plant. Often,
neural networks are used as adaptive controllers. In the FEL strategy, the cor-
rective output of the FC is used as training signal for the adaptive feedforward
IDM. At each time t̃, the input xd(t̃) and the output u(t̃) = uff(t̃) + ufb(t̃) form
a learning example for supervised neural network training. In the context of
arm movements, Kawato (1990) suggests the following FC (omitting the time
variable for simplicity):

τfb = KP (θd − θ) + KV (θ̇d − θ̇) + KA(θ̈d − θ̈) (2.6)

This is a proportional controller with three different gain factors for position,
velocity, and acceleration. Kawato (1990) shows that the resulting learning
scheme is a valid approximation of a Newton-like method in functional space.
A more thorough stability analysis is developed in Nakanishi and Schaal (2004)
on the basis of nonlinear adaptive control theory.

Kawato and colleagues (Kawato, 1990; Kawato and Gomi, 1992a,b) have
proposed a cerebellar feedback-error learning model (CBFELM). According to
this model, distinct microzones within the cerebellar cortex act as feedforward
IDMs for different motor tasks. Each microzone has two different sources of
afferent input, mossy fibers and climbing fibers. The CBFELM proposes that
the mossy fibers carry sensory information and information about the desired
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Figure 2.7 — The desired elliptical trajectory is shown as fine line, the performed tra-
jectory as bold line. The starting point is marked with a black dot. In addition, the
simulated arm is depicted in light gray. A: First round during FEL. B: 120th round.

trajectory, while the climbing fibers transmit a motor error signal from crude
FCs in the brain stem or spine. The mossy fibers form excitatory synapses with
the granule cells (first layer of the cerebellar cortex). The Purkinje cells (second
cortical layer) integrate the activation carried via the parallel fibers (axons of
the granule cells) and the climbing fibers. At this integration point, adaptation
according to the feedback-error signal in the climbing fibers is supposed to take
place.

Wolpert and Kawato (1998) summarize the results of several neurophysio-
logical studies on ocular-following responses (slow tracking movements of the
eyes evoked by movements of large-field visual stimuli). These studies pro-
vide support for the CBFELM by data from single-cell recordings comparing
the complex spikes and simple spikes of Purkinje cells (the former elicited by
climbing fiber input, the latter by parallel fiber input).

A small experiment on FEL In the following paragraphs, a small experi-
ment on FEL for a simulated two-link manipulator for planar arm movements
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Figure 2.8 — The small circle on the desired trajectory marks the position at which the
simulation of the feedforward IDM is stopped; for further explanation of the diagrams
see Fig. 2.7. A-C: Performance of feedforward IDMs without FC after different types
of training. A. Training by standard FEL. B. Training by FEL with random ordering of
learning examples. C. Training by a strategy similar to direct inverse modeling.

is presented. The dynamics for the arm are defined by the following equations:

τ1 = (I1 + I2 + 2M2L1S2 cos θ2 + M2(I1)
2)θ̈1

+(I2 + M2L1S2 cos θ2)θ̈2

−M2L1S2(2θ̇1 + θ̇2)θ̇2 sin θ2 + b1θ̇1 (2.7)
τ2 = (I2 + M2L1S2 cos θ2)θ̈1 + I2θ̈2

+M2L1S2(θ̇1)
2 sin θ2 + b2θ̇2 (2.8)

These equations and the parameter values Mi (mass), Li (length), Si (distance
from the center of mass to the joint), Ii (rotary intertia around the joint), and
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bi (coefficient of viscosity) are taken from the paper by Uno et al. (1989).4
They approximately model the dynamics of the human forearm and upper arm
for planar movements. As feedforward IDM, a standard multi-layer perceptron
(MLP) (see Sect. 3.1) with ten hidden units is used. The FC is defined like in
Eqn. (2.6) with KP = 1.2, KV = 0.8, and KA = 0.01. The MLP is adapted by
plain gradient descent with a learning rate of η = 0.004 (see Sect. 3.1.2). The
motor task is to move the arm’s tip along an elliptical trajectory (the fine line in
Fig. 2.7a). During each round, 1000 learning cycles are carried out (the time-
continuous system is approximated with Euler’s method; each discrete step is
used for one learning cycle).

Figure 2.7a shows the simulated trajectory (bold line) during the first round.
The poor performance of the forward IDM and the necessary correction by the
FC are clearly visible in the beginning. After 120 rounds, the performance of
the composite system is nearly flawless (Fig. 2.7b). Nevertheless, the perfor-
mance without FC is less convincing as shown in Fig. 2.8. In this figure, the
performance of different feedforward IDMs is presented. The simulated trajec-
tory is halted as soon as the Euclidean difference between the arm’s tip and the
current position on the desired trajectory (marked with a small circle) exceeds
0.1 m. Figure 2.8a shows the performance of the feedforward IDM trained by
FEL. The performed trajectory deviates very early from the desired one, thus
the lack of the FC results in a considerable performance drop.

For comparison, the last 100, 000 learning examples with the structure
[θd, θ̇d, θ̈d −→ τ ] (with τ = τ ff + τ fb) which have been generated during
FEL were used to train another MLP, but this time the learning examples were
presented in random order during network training (each example exactly once).
The performance of this feedforward IDM is depicted in Fig. 2.8b. The simu-
lated trajectory continues much longer for more than two rounds. This result
shows that FEL with MLPs is prone to suffer from “catastrophic interference”5

because the learning patterns occur in a temporal order during training. Learn-
ing one part of the trajectory in one part of the input space causes worse perfor-
mance in other parts of the input space. For this reason, it is advisable to use
supervised online learning algorithms for FEL which adapt only locally (e.g.,
“supervised growing neural gas” by Fritzke, 1998). For the third feedforward
IDM in the comparison, the learning examples [θd, θ̇d, θ̈d −→ τ ] are replaced
by learning examples [θ, θ̇, θ̈ −→ τ ], also collected during the last 100 rounds

4 Parameter values in SI base units: M1 = 0.9;M2 = 1.1;L1 = 0.25;L2 = 0.35;S1 =
0.11;S2 = 0.15;I1 = 0.065;I2 = 0.100;b1 = 0.08;b2 = 0.08.

5 The term “catastrophic interference” is often used to describe that artificial neural network
tend to “forget” what they have already learned as soon as they have to adapt to new training
data.
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Figure 2.9 — The forward dynamics model (FDM) as transfer element, composed from
the serial connection of the approximated state change function p̂ and an integrator.

of FEL and presented in random order during training. These learning exam-
ples perfectly represent the inverse of the plant (basically, using such learning
examples is similar to “direct inverse modeling”, which is described in detail in
Sect. 2.2.5 for kinematic problems; for a related dynamic approach see Miller
et al., 1990). The MLP which is trained with these learning examples yields
the best performance (see Fig. 2.8c) with more than three rounds. This rank-
ing order of the different types of feedforward IDMs could be replicated during
several training attempts with different parameter settings, thus there is more to
it than just anecdotical evidence.

In conclusion, this small experiment shows that FEL works as expected.
However, depending on the implementation of the feedforward IDM, FEL may
suffer from catastrophic interference. Moreover, a modification of FEL towards
direct inverse modeling can improve the final performance.

2.1.4.5 Feedforward control with an internal feedback loop

For the composite control systems that are presented in this and in the next
section, it is necessary to clarify the concept of the forward model in the time-
continuous dynamical domain. These models are often called “forward dynam-
ics models” (FDM). Since one cannot differentiate between the current and the
next time step in the time-continuous domain, an FDM cannot directly predict
a future system state. Instead, FDMs mimic the dynamics of the plant. Thus,
the FDM has its own state equation (like Eqn. (2.3) for the plant) based on an
approximated state change function p̂:

̂̇x(t) = p̂(x̂(t),u(t))

If FDMs are acquired through learning, it is basically this function which
has to be learned. The overall FDM is a transfer element, composed from the
approximated state change function p̂ and an integrator, similar to the plant P ′

(see Fig. 2.9). The internal state of the FDM is the state estimate x̂(t) of the
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real plant state x(t). At distinct points in time, here denoted as t0, the state
estimate of the FDM can be set to the real state of the system (or to a better
estimate obtained from other sources): x̂(t0) = x(t0). An FDM can be used
to generate an internal simulation of the plant’s behavior over a certain time
interval [t0; t0 + ∆t]: One just has to feed it with the planned motor output
u(t) for this time interval. In this way, an FDM can be used to predict states at
arbitrary future points in time. A discretization of the FDM (for example via the
Euler method with a step size h ∈ IR) leads directly to the FM in time-discrete
notation, demonstrating their equivalence:

x̂t+1 = x̂t + hp̂(x̂t,ut) = FM(x̂t,ut)

In the time-discrete form, x̂t as input can be replaced by the real state xt (if
available). In the time-continuous form, this makes only sense at distinct points
in time as outlined above (otherwise one would end up with x̂(t) = x(t) and
therefore not need an FDM at all). In the following, we will use the term FDM
only for the formal description of time-continous systems, otherwise we will
stick to the more general term FM.

The FDM can be used for a composite control system, in which the feed-
forward IDM is replaced by an internal feedback loop with an FDM instead of
the plant (see Fig. 2.10). The estimated state of the system x̂(t) (generated by
the FDM) is used instead of the real state of the system x(t) to compute the
difference to the desired state xd(t). The difference xd(t)− x̂(t) serves as input
for an FC which generates the motor command u(t). At distinct points in time,
especially at the beginning of the movement, the state estimate x̂(t) can be set
to values from an external source, e.g. the real system state: x̂(t0) = x(t0). If
the real system state is only available with a certain time delay, this approach is
reasonable: At the beginning of the movement, after a moment of rest, the real
system state is known, during the movement it is not and has to be replaced by
the estimated state. Since precise feedforward control relies on the precondition
that the initial desired state is equal to the initial real state of the system, one
can as well apply x̂(t0) = xd(t0). How well this type of feedforward control
approximates the desired trajectory depends on the precision of the FDM and
on the choice of the gain parameters in the FC. Moreover, this approach suffers
from external disturbances and noise like all feedforward control systems.

Composite control systems like this are presented by Jordan (1996) and Mi-
all et al. (1993). These systems are closely related to neurophysiological models
which propose that the cerebellar cortex implements FMs which are used in mo-
tor control. For example, Keeler puts forward that “the cerebellar cortex com-
bines its input sensory information to build an internal model of the world that
allows prediction of the dynamics of the sensory-motor system” (Keeler, 1990,
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Figure 2.10 — Composite control system with an FDM in a negative feedback loop
which replaces a feedforward IDM (gray box) (for details see text).

p. 409). Ito (1984) suggested a model in which the cerebellar cortex serves as a
predictive, adaptive filter in an FC.

2.1.4.6 Control systems with time delay

Feedback control systems like in Fig. 2.5 are sensitive to delays in the feedback
loop. If considerable delays are present, the gain parameters in the FC need to
be small to avoid instabilities. But small gains result in slow adjustments and
overall larger differences beween the desired and the actual trajectory. Thus,
time delays are an important problem for motor control, especially in biological
organisms. Here, delays occur on the way from the sensors to the brain (e.g.,
50 ms from retina to visual cortex; Miall et al., 1993), during the generation
of the motor commands, during the transmission of the efferent commands to
the muscles (axonal delays), and finally in the response of the limb (muscle
latencies). For the total feedback-loop in the human motor system, Miall et al.
(1993) present the following figures: 130 ms for oculomotor control, 110-150
ms for proprioceptive control, and 200-250 ms for visuomotor control. Since
fast arm movements can last less than 200 ms, feedback control alone does not
seem to be feasible for this purpose.

To avoid the time delay problem, one could rely on pure feedforward con-
trol. However, feedforward control has its own disadvantages: requirement of
very precise feedforward IDMs, high noise sensitivity, and moreover no means
to deal with external disturbances (see Sect. 2.1.4.1). In Sect. 2.1.4.3, com-
posite control systems consisting of a feedforward IDM and an FC (Fig. 2.6)
have been suggested to compensate for the complementary weaknesses of feed-
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Figure 2.11 — The Smith predictor. An FDM and a delay model are used for state
estimation in a system with time delay in the feedback loop (for details see text).

forward and feedback control. In these systems, the time delay problem of
feedback control is not solved, but it is less prevalent because the feedforward
IDM does the main work in generating the motor output: The FC has only to
compensate for the remaining deviations between the desired and the performed
trajectory, therefore it can work with small gain parameters (necessary because
of the time delay) without sacrificing too much of the overall performance of
the control system. Nevertheless, time delays also deteriorate the performance
of such composite control systems. The Smith predictor, which is presented in
the following, offers a better way to deal with time delays in the feedback loop.

Miall et al. (1993) suggested the Smith predictor as a model how the human
motor system could overcome the time delays. The Smith predictor was first
proposed by Smith (1959) for factory processes with long transport delays, but
the idea applies as well to other control processes with long loop delays. The
flow chart of the Smith predictor for motor control is shown in Fig. 2.11. The
state estimator (large dashed box) is based on an FDM which generates a pre-
liminary state estimate x̂−(t) (the superscript minus sign indicates that this is an
uncorrected state estimate). This state estimate is corrected by an adjustment
term ∆x̂(t) which is computed as difference of the delayed real state of the
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Figure 2.12 — Modification of the Smith predictor into a time-continuous Kalman filter
with time delay (for details see text).

system x(t− tfb) and the delayed preliminary state estimate x̂−(t− t̂fb):

∆x̂(t) = x(t− tfb)− x̂−(t− t̂fb)

x̂(t) = x̂−(t) + ∆x̂(t)

x̂(t) is the final state estimate which is used for comparison with the desired
state xd(t). Besides the FDM, the Smith predictor features a delay model which
is used to estimate the time delay tfb in the feedback loop. Its output is the es-
timate t̂fb. Since the FDM is placed in the feedback loop instead of the plant
(resulting in neglible time delays), larger gain parameters are usable without
sacrificing stability compared to a feedback loop with time delays. Only unex-
pected differences between the estimated state and the real events are subject to
long time delays before they contribute to the input of the FC.

The control scheme in Fig. 2.11 (as proposed by Miall et al., 1993) can be
modified to incorporate a Kalman filter (with time delay). The extended control
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system is illustrated in Fig. 2.12. There is no direct access to the plant state x(t)
anymore, but instead the system incorporates the delayed sensory output y(t) of
the plant. y(t) is used to correct the preliminary state estimate x̂−(t) which is
generated by the FDM. The amount of correction is determined by the Kalman
gain K(t). Like in the original Smith predictor, an FDM and a delay model are
required. This demonstrates how close the concepts of the Smith predictor and
the Kalman filter are related to each other. Gerdes and Happee (1994) suggested
a similar Kalman filter model for fast goal-directed arm movements (without an
explicit delay model). Their simulated results show a good fit with experimental
data from human subjects.

The proponents of the Smith predictor hypothesis (Miall et al., 1993; Miall
and Wolpert, 1996; Wolpert et al., 1998) suggest that the cerebellum is the lo-
cation of the FMs and the delay models. They cite functional imaging, clinical,
and neurophysiological studies which provide at least indirect evidence for this
claim. For the delay model, Miall et al. (1993) list several putative physiological
mechanisms: The parallel fibers in the cerebellum or chains of pontine nuclear
cells could act as a “tapped delay line” for short time intervals. For long time
delays, Miall et al. (1993) propose a model which predicts backwards instead
of a model which implements a time delay.

The weakness of the Smith predictor model is that it requires two predictive
models (the FM and the backprediction or time delay model) which are trained
simultaneously during learning. They share the same training signal (the real
state x(t); see Fig. 2.11), thus a credit assignment problem occurs. Miall et al.
(1993) expresses the view that the delay model could be learned first by carry-
ing out single motor commands and awaiting the change in the afferent sensory
response. Over many trials, this could result in an estimate of the time delay. Al-
ternatively, in a simulation of a two-joint planar arm Miall and Wolpert (1995)
trained both predictive models simultaneously, but with different learning rates.
This proved to be successful as well.

2.1.4.7 Internal models vs. single-point equilibrium hypothesis

So far, dynamic control has been discussed on the basis of internal models. A
very different approach is the single-point equilibrium hypothesis. It is based
on the observation that muscles and peripheral reflex loops have spring-like
properties. This viscoelasticity pulls joints back to their equilibrium position by
generating a restoring force against external perturbations. The CNS could ex-
ploit the viscoelasticity by commanding a series of stable equilibrium positions
along the desired trajectory (e.g., Flash, 1987). In this approach, only IKMs are
needed, but neither IDMs nor any of the control schemes with internal models.

55



CHAPTER 2. ADAPTIVE MOTOR CONTROL

However, this theory predicts that the viscoelastic forces increase as the
movements gets faster, while control by internal models can realize fast move-
ments with low viscoelastic forces. At least for well-trained movements, experi-
mental observations of relatively low stiffness of the limbs support the existence
of internal models (Gomi and Kawato, 1996; Morasso and Schieppati, 1999).

2.1.5 Forward-inverse coupling: MOSAIC

Motor control in the real world faces the problem that the dynamics of the plant
changes depending on the context. For example, while lifting an object, the dy-
namics of the arm changes depending on the payload. In theory, one could over-
come this problem with monolithic and complex IDMs with a lot of additional
input lines which specify the perceived context. However, a more elegant solu-
tion is offered by a modular approach in which a multitude of different IDMs
serves for different contexts. Wolpert and Kawato state the following three ad-
vantages of a modular approach: “First, the world is essentially modular, in
that we interact with multiple qualitatively different objects and environments.
[...] Second, the use of a modular system allows individual modules to partic-
ipate in motor learning without affecting the motor behaviors already learned
by other modules. [...] Third, many situations which we encounter are derived
from combinations of previously experienced contexts, e.g. novel conjoints of
manipulated objects and environments” (Wolpert and Kawato, 1998, p. 1318).

Based on the theoretical framework of sensorimotor coordination with in-
ternal models, Wolpert and colleagues (Haruno et al., 1999, 2001; Wolpert and
Kawato, 1998) proposed the MOSAIC model (“modular selection and identi-
fication for control”) as modular approach for motor control. MOSAIC over-
comes the two basic challenges of modular systems, the module selection prob-
lem (which module to select in which context) and the module learning problem
(how to adapt each module). Within each module, an FM and an IDM are com-
bined. They are matched to the same context: The more precise the FM predicts
in the current context, the better the IDM is currently suited for motor control.
Accordingly, depending on the prediction accuracy of the FM in the current
context, the module gets more or less responsibility (denoted as λi

t; t is the time
step, i the module index;

∑
i λ

i
t = 1). The overall motor output of the system

is the sum of the motor outputs of the IDMs in all modules, weighted by λi
t.

Thus, module selection is carried out on the basis of the prediction accuracy of
the FMs.

Module learning has to address the adaptation of the FMs and of the IDMs.
The FMs in all modules are adapted to the same learning examples, which are
sampled during the movements of the agent, but the learning rate of each FM is
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multiplied with λi
t. Thus, the best FM in the current context is adapted the most.

This results in a specialization of the different modules to different contexts.
The motor error for the adaptation of the IDMs is determined by FEL like in
Sect. 2.1.4.4. It is also multiplied with λi

t, so that the IDM in the module with
the most precise FM is adapted the most. In this way, it is ensured that the FM
and the IDM in every module become specialists for the same context.

Up to this point, the outlined architecture can switch between modules and
distribute the error signals for the adaptation of the FMs and IDMs after the first
motor command has been generated and the prediction by the FMs has started.
To generate responsibility estimations in advance in a feedforward fashion, each
module gets an additional responsibility predictor. These predictors learn how
much responsibility their respective module receives in the current context. The
final responsibility estimate is a multiplicative combination of the output of
the responsibility predictor and of the responsibility which is derived from the
accuracy of the FM. This final estimate serves also as the desired output for the
adaptation of the responsibility predictor.

The MOSAIC model allows several interesting predictions. The most im-
portant is that FMs have a primary role in motor learning. The FMs have to
learn to predict before the IDMs learn to control. Experimental evidence for
this adaptation order has been found in studies on grip-force modulation (e.g.,
Flanagan et al., 2003) and for the learning of a visuomotor task completely
novel to the test subjects (Sailer et al., 2005). Furthermore, the MOSAIC model
predicts that context-dependent IDMs are learned. This claim has been exper-
imentally confirmed in a study by Wada et al. (2003) in which subjects had to
adapt their arm movements to two different external force fields, cued by blue or
red color on a screen. Finally, Davidson and Wolpert (2004) demonstrated that
inverse models for grasping objects with different weights are additively com-
bined. In principle, a superposition of module outputs is also predicted by the
MOSAIC model. However, MOSAIC can only interpolate between the output
of different modules while the subjects in the study by Davidson and Wolpert
(2004) extrapolated new motor output by adding up the motor output of two
modules. Thus, the MOSAIC model needs further modification to incorporate
results like this.

Wolpert and Kawato (1998) are proponents of the view that the cerebellum
is used as neural substrate for internal models. They suggest that the cerebellum
“implements” both FMs and IDMs, integrating earlier theories that the cerebel-
lum it either the location of FMs or of IDMs (see Sect. 2.1.4.4). As extension
of their work, Wolpert et al. (2003) proposed a hierarchical version of the MO-
SAIC model: Higher-level modules in this extended model might be used to
understand the actions of others, for imitation learning, and for social interac-
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Figure 2.13 — Simplified motor control scheme (the internal state loop of the plant as
in Fig. 1.2 is omitted for simplicity). The box labeled D indicates a delay by one time
step. In kinematic problems without strict separation of sensory and state variables, x

can also serve as sensory context information.

tion. This approach fits to other theories which suppose that the motor system
is the basis for cognitive abilities (see Sect. 1.5.4).

2.2 Kinematic Motor Learning

2.2.1 Overview of inverse models

In the previous section on motor control, three different types of inverse mod-
els have been presented, the feedforward inverse dynamics model (IDM), the
feedback IDM, and the inverse kinematics model (IKM).

The feedforward IDM is usually a many-to-one mapping. Although it is pos-
sible to define plants with redundant dynamics, this redundancy can be mostly
resolved by introducing a more precise state description. For example, muscles
for limb movements appear in agonist/antagonist pairs. To generate a certain
torque, a continuum of different muscle activations is available. But if one in-
troduces the stiffness of the limb as additional state variable, this ambiguity
vanishes and for a given torque and stiffness only a precisely defined pair of
muscle activations applies (from a biological perspective, this is still a severe
simplification). In summary, feedforward IDMs are “simple” functions which
drive the plant along a predefined way.

Feedback IDMs correspond to optimal controllers as known from control
theory. Since they are used to control plants with internal dynamics, they have to
generate the optimum motor command over a certain time interval to achieve the
desired state xd(t). Moreover, the “correct” motor output of the IDM depends
on the applied optimality criterion.

The IKM is quite different from its dynamic cousins. It is the counterpart of
a “kinematic plant” (see the simplified control scheme in Fig. 2.13; the internal
state loop of the plant as in Fig. 1.2 is omitted in the following for simplic-
ity). Ideally, such a plant has the form y = P (x,u) without any reference
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to distinct time steps, since both the forward and the inverse relationship are
just a mapping between the respective input and output space in the kinematic
domain. However, with certain restrictions we also include plants of the form
xt+1 = P ′(xt,ut) with yt+1 = h(xt+1) (see Sect. 1.5.1) in the kinematic do-
main, although these plants define a time-discrete dynamical system as soon
as the loop between xt and xt+1 is closed. These restrictions are: First, with
zero motor input, the state of the system does not change; second, an IKM can
always achieve the desired system output y∗ in a single time step (as long as
this is possible at all). Kinematic control does not require a strict separation of
sensory output and state variables, thus it is also possible to interpret y as a set
of variables which are used to define the desired plant output and x as (sensory)
context information. This suggests that IKMs are easier to handle than IDMs,
but on the downside the inverse of a kinematic plant is often a one-to-many
mapping. This has to be considered in the implementation and adaptation of
IKMs.

This section on adaptive motor learning focuses on IKMs since the studies in
this thesis deal solely with kinematic problems. Learning of feedforward IDMs
is only briefly addressed in Sect. 2.3 (in addition to Sect. 2.1.4.4 on feedback-
error learning), learning of feedback IDMs in Sect. 2.4.1.

2.2.2 Problems of motor learning

Motor learning is required for both biological organisms and adaptive robotic
systems. While the former need to control their musco-sceletal system, the lat-
ter have to command their artificial actuators. Motor learning is goal-oriented
and aims on a certain effect in the external world or on the agent itself. This
effect has to be specified and measured in the sensory domain. For example,
visual and tactile information indicate the failure or success of a human grasp-
ing movement. Nevertheless, although this sensory feedback is available, the
correct motor command remains unknown. This example shows that motor
learning has to rely on the sensory error, the deviation between the desired and
actual sensory outcome after a movement. The main problem of motor learning
is the transfer of this sensory error to an error signal in the motor domain. A
correct mapping from sensory to motor error space might be very complex. In
the example, high-dimensional visual and tactile data has to be mapped to the
activation of a large set of motor neurons.

In general, the mapping from sensory to motor error is unknown to the agent.
A very simple solution to this problem would be the random exploration of
sensorimotor space in the search for motor commands which accomplish the
task at hand. Unfortunately, through the high dimensionality of sensorimotor
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Figure 2.14 — A. Plant P as mapping between motor and sensory space. B. Inverse
plant. In contrast to P , P−1 is not a function.

space in natural tasks, such an approach is way too expensive in terms of time
and energy.

For the learning of kinematic motor control, we start from the simplified mo-
tor control scheme in Fig. 2.13. Instead of the term “inverse kinematics model”,
the shorter term “controller” is used in the following in the text (abbrev.: C).
The following general equations apply:

ut = C(xt,y
∗)

yt+1 = P (xt,ut)

Ideally, the controller is the inverse of the plant (with regard to u and y). For
an untrained adaptive controller, there remains a residual ∆y = y∗−yt+1 after
a movement. This sensory error is accessible while the corresponding ∆u for
which ∆y = 0 is unknown. This is the first problem of motor learning, the
“problem of the missing teacher signal”, as mentioned above.

The second problem arises if the inverse plant is a one-to-many mapping.
Figure 2.14a shows a very simple plant mapping from a one-dimensional motor
space u to a one dimensional sensory space y (omitting the state x). y = P (u) is
a smooth function. A properly working controller should implement P −1, thus
u = C(y) = P−1(y). As shown in Fig. 2.14b, P−1 is not a function. This is
a serious challenge to any approach to motor learning using a function approx-
imator (like the MLP) as adaptive controller. The problem can be illustrated
solely refering to P as well (see Fig. 2.15a). To reach y∗, two different motor
commands u∗1 and u∗2 are suitable. This causes an ambiguity in the motor error
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Figure 2.15 — A. Two motor commands u∗

1 and u∗

2 are applicable to obtain the desired
sensory output y∗. B. Ambiguity of motor error signals. Both ∆u1 and ∆u2 can be used
to correct the controller output uC .

as well. If we consider an untrained controller which produced uC = C(y∗)
leading to yC 6= y∗ (Fig. 2.15b), two different corrections of its motor output,
∆u1 and ∆u2 are possible. Thus, a motor learning procedure either has to guar-
antee that the controller output converges to one of the possible solutions, or the
controller architecture itself has to be capable of storing multiple outputs for one
and the same input. The MLP and other function approximators converge in-
stead to the average of u∗1 and u∗2. The resulting motor command has obviously
not the desired sensory effect y∗. Only if the solution sets {u|P (u) = y∗} are
convex, function approximators can deal with one-to-many mappings. When
we speak in the following of the “problem of one-to-many mappings”, we usu-
ally address one-to-many mappings with non-convex solution sets.

In the literature regarding internal models and adaptive controller learning,
several approaches have been proposed to circumvent these problems. The most
popular are “feedback-error learning” (FEL) (Kawato, 1990), “distal supervised
learning” (DSL) (Jordan and Rumelhart, 1992), and “direct inverse modeling”
(DIM) (e.g., Kuperstein, 1988). Moreover, Kröse et al. (1990) and van der
Smagt (1995) suggested “learning by input adjustment” (LbI). In the following,
we provide a review of these approaches to motor learning in the context of
internal models, and show the relationship between them. Moreover, we present
a novel learning procedure called “learning by averaging” (LbA) (Schenck and
Möller, 2004, 2006). In Chapter 4, the performance of FEL, DSL, DIM, and
LbA is compared on two different learning tasks, concerning active vision and
the control of a planar robot arm.

FEL and DSL are closely related; they use a local linear approximation for
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Figure 2.16 — Feedback-error learning scheme for kinematic problems. The box la-
beled D indicates a delay by one time step (for details see text).

the unknown mapping from sensory error to motor error space and solve the
one-to-many problem by converging to one of the possible solutions. DIM and
LbI rely on a reformulation of the learning problem. They offer no genuine so-
lution for the one-to-many problem, but the usage of abstract recurrent neural
networks as adaptive controller (Hoffmann and Möller, 2003; Möller and Hoff-
mann, 2004) can overcome this shortcoming. LbA employs an MLP as adaptive
controller and actually exploits its averaging capabilities in the learning process.
Learning examples are generated by a heuristic search process. LbA can only
cope with the one-to-many problem as long as additional learning constraints
are defined. It will be presented in a staged and a continuous version.

To reduce the complexity of figures and equations, we omit the time step
indices t and t + 1 in the following for the most part as long as it is possible
without any loss in generality or clarity.

2.2.3 Feedback-error learning

FEL has been developed in the context of dynamic motor control (see
Sect. 2.1.4.4), but it can also be applied to kinematic problems. The control
scheme is shown in Fig. 2.16. In addition to the controller C and the plant P ,
a feedback controller F is displayed. As input, it gets the sensory error ∆y.
The feedback controller has the task to convert ∆y into the motor error ∆u

which is used as error signal for the adaptation of C. In contrast to the dynamic
version, u and x are additional inputs to F that provide the necessary context
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information. Usually, F is a linear function (see also Eqn. (2.6)):

∆u = F (∆y,u,x) = Gu,x∆y

Gu,x is a gain matrix depending on u and x. Gu,x can be computed by the
following approach as long as P is an analytically known continuously differ-
entiable function. As basis for the local linear approximation, the Jacobian Ju,x

of the plant at the position (u,x) in motor and state space is used. Note that Ju,x

is not the full Jacobian; it only contains the columns concerning motor space:

∆y = Ju,x∆u (2.9)
⇒ ∆u := J+

u,x∆y

Employing the pseudoinverse J+
u,x, the solution ∆u is either the least

squares solution to Eqn. (2.9) (if the problem is overdetermined) or the min-
imum length solution (if the problem is underdetermined). Thus, using the
pseudoinverse J+

u,x of the motor part of the Jacobian of the plant as gain ma-
trix Gu,x is a general and straightforward approach. In addition, it is useful to
introduce a gain factor η to control learning speed:

Gu,x = ηJ+
u,x (2.10)

The appropriate value range for η for convergence of the learning process de-
pends on the motor task. Usually, a function approximator like an MLP is used
as adaptive controller, and η implicitly adjusts the learning rate. FEL does not
provide a perfect mapping from sensory error to motor error space. Instead, the
feedback controller provides a coarse local linear approximation. By adapting
along these small local corrections during the course of learning, the MLP out-
put converges to one of the possible solutions for u (in case of a one-to-many
problem) as we explore in Sect. 4.2. Because of this stepwise linear adaptation,
FEL is basically an online training procedure. It is not possible to collect a set
of training examples for batch learning. For rather simple sensorimotor rela-
tionships, one may determine the gain matrix of the feedback controller heuris-
tically. This approach is used for the saccade controller example in Sect. 4.1.

FEL for kinematic problems is rarely used in the literature. Exemplary
applications are from the field of biologically inspired active vision systems
(Bruske et al., 1997; Dean et al., 1991) where FEL is used for adaptive oculo-
motor control. If the plant is too complex to define a gain matrix heuristically,
FEL is no longer a really adaptive learning scheme since one needs to know the
plant analytically to compute Gu,x. Thus, for the biological modeling of kine-
matic control, FEL is only attractive for rather simple plants like the ones found
in oculomotor control. Prewired feedback controllers for such simple plants
could have been acquired during evolutionary development.
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Figure 2.17 — A. Distal supervised learning scheme. The box labeled D indicates a
delay by one time step. B. Learning scheme for the FM (for details see text).

2.2.4 Distal supervised learning

DSL was introduced by Jordan and Rumelhart (1992) for the kinematic control
of a planar arm. The controller learning scheme of DSL is very similar to FEL
as shown in Fig. 2.17a. The feedback controller F is replaced by a forward
model FM. The FM itself approximates the plant (see Fig. 2.17b): FM = P̂ . It
receives a motor command u and state x and predicts the sensory outcome y.
For DSL, the FM has to be implemented by an MLP. Training data for the FM
is generated by collecting the plant’s response to random motor commands.

For controller training, DSL uses the trained FM in reverse direction
(Fig. 2.17a): The sensory error ∆y becomes the input, the motor error ∆u

becomes the output. This conversion of error signals is possible by error back-
propagation (see Sect. 3.1.2) without weight change, as we show in the follow-
ing.6

Backpropagation implements gradient descent on MLPs to minimize the
error E of the activation of the units of the output layer. For the sensory output
y, the error is defined as E = 1

2 ‖∆ŷ‖ with ∆ŷ = y∗− ŷ. ŷ is the output of the
FM (used in its normal direction). In the following, Nout denotes the dimension
of the output space (with index j), while Nin is the dimension of the motor input
space (with index i). The backpropagated error signal δi for each motor unit of

6 Although Jordan and Rumelhart (1992) derived DSL analytically, they did not elaborate
on this step.
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the input layer is computed as follows:

δi = −∂E

∂ui

According to the chain rule:

∂E

∂ui
=

Nout∑

j=1

∂E

∂yj

∂yj

∂ui

Substituting for the partial derivatives we obtain:

∂E

∂yj
= −

(
y∗j − ŷj

)

∂yj

∂ui
= Ĵu,x(ji) = Ĵt

u,x(ij)

⇒ ∂E

∂ui
= −

Nout∑

j=1

(
Ĵt

u,x(ij) ·
(
y∗j − ŷj

))

Ĵu,x is the motor part of the Jacobian of the FM (which approximates the
plant). Gradient descent in motor space for error minimization with a step size
∆E = −η yields:

∆ui =
∂E

∂ui
∆E = −η

∂E

∂ui

= η

Nout∑

j=1

(
Ĵt

u,x(ij) ·
(
y∗j − ŷj

))

⇔∆u = ηĴt
u,x∆ŷ (2.11)

Equation (2.11) shows that backpropagation through the FM results in a lo-
cal linear approximation of the motor error with Ĵt

u,x as gain matrix. However,
there is still one downside: The learning algorithm would try to change the mo-
tor commands u in a way that the output of the FM finally equals the desired
sensory output. But we are actually interested in a close match with the sensory
output of the plant, which might differ from the output of the FM. To overcome
this problem, Jordan and Rumelhart (1992) replaced ∆ŷ with ∆y, the differ-
ence between the desired output and the real plant output. Thus, Eqn. (2.11)
changes to

∆u = ηĴt
u,x∆y . (2.12)
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Considering Eqns. (2.10) and (2.12), DSL is equivalent to FEL with a gain
matrix Gu,x = ηĴt

u,x.7 The adaptive motor controller (also an MLP) is trained
online by small approximated motor error signals. For one-to-many problems,
the controller output converges to one of the possible solutions (Jordan and
Rumelhart, 1992).

DSL is truely adaptive because no analytical knowledge about the plant is
needed beforehand. Moreover, even with a rather imprecise FM, successful
controller learning is possible as Jordan and Rumelhart (1992) emphasize. It is
also possible to learn both the FM and the controller online simultaneously from
scratch. The main drawback of DSL for biological modeling is the requirement
of backpropagation which is in itself not a biologically plausible neural learning
mechanism. Although DSL could be realized in theory with other decompos-
able learning systems, we are not aware of any implementation of DSL which
is really biologically plausible.

2.2.5 Direct inverse modeling

DIM is based on a reformulation of the motor learning problem (Fig. 2.18). In-
stead of searching for the right motor command u for a certain desired sensory
output y∗ and state x, random motor commands u∗ are generated. For each u∗,
the resulting sensory output y∗ of the plant is recorded. Afterwards, y∗ is inter-
preted as desired output for which u∗ is actually a perfect motor response. The
combination [x,y∗ −→ u∗] forms a perfect learning example for the training of
the motor controller. Due to this characteristic, DIM works both for online and
batch learning.

DIM has been used in various applications and simulations of robot arms
for visuomotor coordination (Mel, 1988; Kuperstein, 1987, 1988, 1990). Ku-
perstein motivated DIM by the “circular reaction” Piaget (1952) observed in
children during their development: Children carry out explorative actions in a
rather random fashion and observe the sensory effects. In this way, they find
out which actions are best suited to obtain these effects. This corresponds very
closely to the DIM learning strategy.

Although this psychological motivation seems to be plausible, DIM has
several shortcomings. First, DIM cannot cope with the one-to-many problem
as long as the controller is implemented by a function approximator. This
was illustrated by Jordan and Rumelhart (1992) for a planar arm (see also

7 FEL can also be used with a gain matrix Gu,x = ηJt
u,x. In this way, the computation

of the pseudoinverse can be omitted. Although DSL and FEL look nearly identical from this
perspective, DSL has still the advantage over FEL that no analytical knowledge of the plant is
required. Comparative results for a planar arm are shown in Sect 4.2.
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Figure 2.18 — Direct inverse modeling: Random motor commands u∗ are generated for
controller training. The box labeled D indicates a delay by one time step (for details see
text).

Sect. 4.2.1.1). To overcome this shortcoming, Hoffmann and Möller (2003)
used abstract recurrent networks as controller. This type of network approx-
imates high-dimensional sensorimotor data manifolds by a mixture of local
PCAs (see Sect. 3.4 on NGPCA). Using such networks, the controller is ac-
tually able to reproduce all motor outputs of the one-to-many mapping as long
as an appropriate recall procedure is used (Hoffmann, 2004; Hoffmann et al.,
2005; Schenck et al., 2003). The learning strategy which combines DIM with
NGPCA is called DIM_NGPCA in the following.

Second, DIM is not goal-oriented. Random sampling in motor space may
elicit various sensory effects, but may rarely hit the ones which are later used as
desired sensory outcomes. Therefore, the resulting controller has to extrapolate
the motor output in the region of sensory space containing the desired outcomes
and will most likely exhibit bad performance. However, this criticism also ap-
plies to a certain extent to DSL with regard to FM training, because the learning
examples for the FM are generated in the same non-goal-directed way. But an
FM which is inaccurate in the region of sensory space containing the desired
outcomes may still allow slow but nevertheless successful training of the con-
troller, because only the coarse direction of the local linear approximation needs
to be correct. Thus, usually one would expect DIM to suffer considerably more
from the lacking goal-directedness than DSL.

Third, on the neural implementation level, DIM seems to be biologically
rather implausible at the first glance. During learning, the input units of the
controller receive the real sensory signals, later during the usage of the con-
troller, these units receive the desired sensory outcome. This switch requires
a “rewiring” of the connections to the input units which does not seem to take
place in the CNS (Kawato, 1990). However, it is questionable if such a rewiring
is really necessary. One could also hypothesize that the real and the desired
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Figure 2.19 — Learning by input adjustment: Generated learning examples map (x∗,y∗)

to u. The box labeled D indicates a delay by one time step (for details see text).

sensory outcome are represented by the activation of the same neural substrate
like in the model by Kuperstein (1987, 1988).

2.2.6 Learning by input adjustment

LbI was applied by Kröse et al. (1990) for visually guided grasping with a robot
arm. Like DIM, LbI works by a reformulation of the learning problem. The
learning scheme is shown in Fig. 2.19. It consists basically of three steps for the
generation of one learning example for the motor controller.

First, for a given state x und desired sensory output y∗, the controller gen-
erates an output u. This motor command evokes a plant response y which is
different to y∗ for an untrained controller. In the second step, LbI does not at-
tempt to solve the problem of the missing teacher signal directly, but instead to
determine a state x̃ for which the plant equation is fulfilled in the desired way
with y∗ = P (x̃,u). u is the motor command that has been actually generated
by the controller before. In combination, x̃, y∗, and u form a valid learning
example [x̃,y∗ −→ u] for controller training. Thus, LbI does not correct the
controller output u, but instead the state input x. For the state correction, an
input adjustment function f is required: x̃ = f(x,y∗,y). This function has
to be determined analytically through knowledge of the plant characteristics. In
the third step, the resulting learning example [x̃,y∗ −→ u] is used for controller
training (depicted in the lower part of Fig. 2.19). Both online and batch train-
ing are possible, although the latter requires a really precise input adjustment
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function f to obtain a set of good learning examples.
In the original LbI scheme (Kröse et al., 1990; van der Smagt, 1995), a

controller with a fixed desired sensory output y∗ is used. The control task is to
move a robot arm which operates above a table surface. A camera is mounted at
the tip of the arm which records the image of the table surface. The controller
has to position the robot arm in a way that a target object on the table appears
exactly in the center of the camera image. The sensory output yt of the system
in time step t is defined as the image coordinates of the target object. Thus,
the desired sensory output y∗ is constant. The controller output is specified as
change of the joint angles of the robot arm: ut = ∆θt. The state xt is defined
as xt = (yt, θt). In this application, the input adjustment function computes
x̃t = (ỹt, θt), thus basically only ỹt = f(yt,yt+1). Compared to the general
presentation in the previous paragraph without time indices, y∗ is completely
omitted, yt replaces x, and yt+1 replaces y. In this special case, the input
adjustment function f works only with image coordinates as parameters. f is
defined on the basis of the known geometry of the imaging process, but without
explicit analytical knowledge of the complete plant. On this background, Kröse
and colleagues claim that LbI “does not need a model of the system” (Kröse
et al., 1990, p. 201). However, this claim seems to be too strong since at least
a part of the system has to be known precisely enough for the definition of a
reasonable input adjustment function f .

With regard to the one-to-many problem, LbI does not offer any inherent
solution if a function approximator is used as adaptive controller. Only in the
online version of LbI, one can hope that the learning process converges to one of
the possible solutions of the inverse kinematics. But this has not been discussed
by the original authors (Kröse et al., 1990; van der Smagt, 1995) and has yet
to be tested. For the batch version, one might use abstract recurrent neural
networks for the learning of one-to-many mappings as suggested for DIM.

LbI is the least general and least adaptive approach among the presented
ones. It always requires the analytical construction of a function f for input
adjustment. For this reason, we do not pursue LbI any further and do not include
it in the simulation study in Sect. 4.

2.2.7 Learning by averaging

The development of LbA started with the simple observation that unfavorable
results in motor performance are often scattered around the desired outcome in
the sensory domain. E.g., in throwing a ball to a certain target, the throw might
be too close or too far. In this task, the sensory outcome depends heavily on
the force generated by the muscles, thus it seems to be a good guess to apply
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the average force of a throw which is too close and of a throw which is too
far. If a throw is way off (e.g., accidentally backwards), it should be discarded
completely and not considered at all for learning.

This illustrates the basic idea of LbA: to collect learning examples which
are neither too bad nor necessarily perfect, and to adapt the motor controller
to their average motor output during training. In this way, the problem of the
missing teacher signal is solved: Instead of directly converting the sensory into
the motor error, averaging over non-perfect learning examples takes place. To
accomplish this, one needs a controller architecture capable of averaging over
learning examples. For example, the MLP fulfills this requirement.

Pure averaging alone is not sufficient to train precise motor controllers. For
this reason, controller performance has to be further enhanced. This is achieved
by incrementally improving the quality of the learning examples used for con-
troller training. Such improved learning examples are obtained by searching in
motor space in the region around the motor output of the already trained but still
inprecise controller for even better motor output. This search can be accelerated
by an evolutionary optimization method. In the following, we present LbA as
staged version for batch learning and as continuous version for online learning.

2.2.7.1 Staged version

“Staged learning by averaging” (SLbA) works by repeatedly generating a set
of learning examples and subsequently training a controller with this set (see
Fig. 2.20). Learning examples are included in the training set only if they exceed
a certain quality threshold Q̃. The quality Q of a learning example [x,y∗ −→ u]
or of a controller output u in response to the input (x,y∗) depends on the de-
sired output y∗ and the resulting plant output y = P (x,u). It is computed by
a function Q : (y,y∗) → Q(y,y∗). This function has the following property:
the smaller the deviation between y and y∗, the larger Q. Here, we assume that
the maximum of Q is 1.0. The deviation between y and y∗ can be expressed by
their Euclidean distance, but alternative distance measures which are meaning-
ful for the motor learning task at hand are usable as well. Moreover, the quality
function Q can be used to incorporate additional constraints in the learning task
as we will show for the planar arm (see Sect. 4.2).

In stage k, a single learning example [x,y∗ −→ u] is generated by the
following steps:

1. x and y∗ are created at random within their operating range.

2. In the first stage (k = 1), without an existing controller, a random vector
u0 is drawn. In later stages (k > 1), u0 = Ck−1(x,y∗); Ck−1 is the
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Stage k
k = 1 k > 1
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controller Ck
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k

random generation
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by random variation
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controller Ck−1

of controller Ck−1

controller C
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quality threshold

quality threshold

training set

D

D

Figure 2.20 — Basics steps of staged learning by averaging. The boxes labeled D
indicate a delay by one learning stage (adapted from Hoffmann et al., 2005, c© Springer).

controller trained in the preceding stage.

3. The quality threshold Q̃k is determined: In the first stage (k = 1), Q̃k may
be a constant or may depend on x, y∗, and u0. In later stages (k > 1),
Q̃k may depend on the overall quality of the preceding controller Ck−1 as
well.

4. u is repeatedly computed as random variation of u0 until
Q(P (x,u),y∗) > Q̃k. In its simplest form, the random variation
is realized by adding noise to u0. Alternatively, one can apply an
evolutionary optimization process instead (see Sect. 4.2.3.1 for the planar
arm).

The generated learning examples are accumulated in a training set of a pre-
defined size. This set is used for the training of the controller Ck afterwards.
Ideally, with a controller implementation which is capable of averaging, two
learning examples [x,y∗ −→ u1] (with quality q1) and [x,y∗ −→ u2] (with
quality q2) result in a controller response uC = u1+u2

2 to the input (x,y∗). Suc-
cessful learning only takes place when the controller response is at least better
than the inferior learning example of the two. Thus, SLbA requires as necessary
precondition that Q(P (x, u1+u2

2 ),y∗) > min(q1, q2) for u1 6= u2. This is illus-
trated in Fig. 2.21: For a certain x and y∗, two different combinations of P and
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Figure 2.21 — For a fixed state x and a fixed desired sensory outcome y∗, the quality of
motor commands u in a two-dimensional motor space is shown as contour plot. Maxi-
mum quality is achieved at the point marked Qmax. A. Convex equi-quality curves. B.
Non-convex equi-quality curves. C. Illustration of SLbA. For further explanation see
text.

Q result in different equi-quality curves in a two-dimensional motor space. In
Fig. 2.21a, these curves enclose convex subsets in motor space; for this reason,
the SLbA precondition is fulfilled. On the contrary, in Fig. 2.21b, the quality
curves enclose non-convex subsets; in this setting, it is easily possible that the
average of two motor commands u1 and u2 has lower quality than each of the
commands (as shown in the figure).

Fig. 2.21c illustrates the functioning of the staged procedure: in this exam-
ple, Q̃k+1 = Q(P (x,uCk

),y∗) (marked by the bold dashed curve). Random
learning examples are created by adding uniform noise with radius r to uCk

.
Only the learning examples whose quality exceeds Q̃k+1 are included in the
training set of stage k + 1 (gray area). Training controller Ck+1 with this set
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results in a controller output uCk+1
with better quality than uCk

. Instead of just
adding noise, for the simulations with the planar arm in this study a simple evo-
lutionary strategy (see Sect. 4.2.3.1) was applied to explore the region around
uCk

in the search for learning examples exceeding Q̃k+1.
While SLbA replaces the unknown mapping from sensory to motor error

with averaging and a goal-directed search in sensorimotor space, it does not
offer a straightforward solution for the one-to-many problem. Usually, a one-
to-many mapping implies a multi-modal quality function in motor space for
fixed values of x and y∗ (like in Fig. 2.21a, but with multiple peaks equal to
Qmax for the multiple solutions of the inverse kinematics and “valleys” between
these peaks). Accordingly, the equi-quality curves no longer enclose convex
subsets of the motor space, and it is not longer guaranteed that averaging over
learning examples results in improved motor output. Whenever a one-to-many
mapping spoils learning by averaging in this way, one has to include additional
constraints in the quality function Q to disambiguate the learning task. SLbA
for the planar arm in Sect. 4.2 relies on such constraints. In previous studies,
SLbA has been applied to saccade control with a robot camera head (Hoffmann
et al., 2005; Schenck et al., 2003; Schenck and Möller, 2004).

2.2.7.2 Continuous version

Continuous learning by averaging (CLbA) works similar to the staged version
with one important difference: Instead of collecting a set of learning examples
before training, each example is immediately taken for the training of one sin-
gle controller. The learning process is organized in training cycles j instead
of stages k. In each cycle, one learning example is created in four steps as
described for SLbA (substituting stages k for cycles j; moreover, instead of
multiple controllers Ck, there is only one controller C). As fifth step, controller
C is trained with the resulting learning example. Like SLbA, CLbA requires
additional constraints in the quality function to circumvent the one-to-many
problem.

Fig. 2.22 shows the structural similarity of CLbA to FEL and DSL. Instead
of a feedback controller or reversed FM, a “quality enhancer” serves to generate
an improved motor command uQE by which the motor error ∆u is computed.
But in contrast to FEL and DSL, this motor error is not result of a local linear
approximation, but of a heuristic search in motor space. The generated motor
errors average out in controller training to guide learning in the right direction.
Results for the performance of CLbA on saccade control have been published
by Schenck and Möller (2006). Moreover, CLbA has been used to train the
saccade controller in the study by Schenck et al. (to appear) (see also Sect. 6.3).
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Figure 2.22 — Continuous learning by averaging: A quality enhancing mechanism
serves to generate motor error signals ∆u. The box labeled D indicates a delay by
one time step (for details see text).

2.2.8 Summary on learning strategies

Table 2.1 summarizes and compares the most important properties of FEL,
DSL, DIM, LbI, and LbA. In conclusion, no learning strategy is clearly prefer-
able. Nearly all of them are fully adaptive insofar as no analytical knowledge
about the plant is required (except for LbI; FEL only for simple plants), thus,
they are suited for adaptive motor control in the kinematic domain. Being fully
adaptive is also a precondition for biological plausibility. Moreover, as long as
there is no convincing counterargument, we assume that a learning mechanism
is biologically plausible. Following this reasoning, FEL and LbA are the most
promising candidates for biological plausibility (but also with restrictions). FEL
is only adaptive for simple plants, and the staged version of LbA (SLbA) re-
quires the storage of a set of learning examples before the actual training takes
place. Batch learning like this is always biologically less plausible than on-
line learning because it seems to be rather unlikely that the CNS is capable of
storing hundreds or thousend of learning examples with the necessary precision
over a long period of time. With regard to DIM and DSL, one should not re-
ject their biological plausibility too early (for this reason, Table 2.1 shows the
entry “questionable” at the respective positions). Maybe neural rewiring is not
necessary at all (with regard to DIM), maybe a biologically plausible variant of
backpropagation will be discovered in the future (with regard to DSL).

FEL and LbA are the only learning strategies which are clearly goal-directed
towards the desired sensory outcomes. DIM is not goal-directed at all and DSL
and LbI suffer from limitations: While the controller learning in DSL is goal-
directed, the preceding or accompanying adaptation of the FM is not. LbI is
goal-directed with regard to the desired sensory outcome, but one cannot ex-
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FEL DSL DIM LbI LbA

Batch
learning

No No Yes Yes SLbA only

Online
learing

Yes Yes Yes Yes CLbA only

Usable for
one-to-many
problems

Yes,
converges to
one solution

Yes,
converges to
one solution

Only with
abstract
recurrent
networks

Only with
abstract
recurrent
networks
(batch
version)

Only with
additional
constraints

Goal-
directed

Yes (Yes) No (Yes) Yes

Fully
adaptive

Only for
simple
plants∗

Yes Yes No Yes

Biologically
plausible

Only for
simple
plants∗

Questionable
(because of
backpropa-
gation)

Questionable
(because of
neural
rewiring)

No (because
of analytical
input
adjustment
function)

(Yes)

Applicable
to dynamic
domain (see
Sect. 2.3)

Yes Yes Yes No No

∗ complex plants require analytical knowledge

Table 2.1 — Comparison of learning strategies. A “yes” in round brackets indicates a
restricted affirmation.

clude that the input adjustment produces only state inputs which later on, during
the application of the controller, are only rarely encountered, resulting in bad
performance.

With regard to one-to-many mappings, DIM seems to be one of the worst
candidates (similar to LbI). But this is only true if DIM is used with a function
approximator as adaptive controller. If DIM is implemented on the basis of ab-
stract recurrent neural networks, the resulting controller is capable of storing all
solutions simultaneously and not only one (as it is the case for FEL, DSL, and
LbA). In Chapter 4, these theoretical claims will undergo experimental exami-
nation.
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CHAPTER 2. ADAPTIVE MOTOR CONTROL

2.3 Learning of Feedforward Inverse Dynamics
Models

Some of the described learning strategies for adaptive IKMs are also suitable for
feedforward IDMs. First of all, FEL has been first developed for the dynamic
domain as outlined in Sect. 2.1.4.4 (Kawato et al., 1987; Kawato, 1990). Gen-
erally, a dynamic feedback controller (FC) like in Eqn. (2.6) can be specified
for the control of manipulators. In a similar way, DSL can be used for the adap-
tation of feedforward IDMs (Jordan and Rumelhart, 1992). Instead of the FC
used in FEL, a reversed dynamic FM is used to generate the motor error along
the desired trajectory. Otherwise, the control loop stays the same. With regard
to the training of the dynamic FM, Jordan and Rumelhart (1992) point out that it
is generally not feasible to produce arbitrary random control signals in dynamic
environments because the resulting trajectories are most likely just jitter move-
ments. Instead, they recommend to produce random equilibrium positions for
the arm instead of random torques, or to generate learning examples along the
target trajectories by a preliminary PD feedback controller. However, FEL is by
far the most popular learning strategy for IDMs. Although DSL is even more
adaptive without the need to specify the FC in advance, DSL is barely used for
applications or modeling. The main reason for rejecting DSL seems to be that
backpropagation of the error signal through the FM is biologically not plausible
(e.g., Kawato and Gomi, 1992a,b).

DIM could be used in principle for dynamic problems. However, the miss-
ing goal orientation of DIM is a severe problem in the dynamic domain. By
“motor babbling”, many training examples can be generated, but there is no
guarantee that these examples are relevant for the final trajectories the feed-
forward IDM has to control afterwards (this is basically the same problem as
raised by Jordan and Rumelhart (1992) for FM learning in the dynamic do-
main). Nevertheless, at least for the two-joint planar arm in Sect. 2.1.4.4, this
problem could be solved by using a PID controller in a negative feedback loop
to generate approximately the desired elliptical trajectory and to collect training
examples along the way. With this training set, a feedforward IDM with good
performance could be learned. Miller et al. (1990) used a different approach
to the real-time dynamic control of a five-axis industrial robot with DIM. Their
learning scheme is very similar to FEL, but the feedforward IDM was trained
online with the learning examples [θ, θ̇, θ̈ −→ τ ] instead of [θd, θ̇d, θ̈d −→ τ ],
thus applying a mixture of DIM and FEL.

In real-world applications, inverse dynamics problems often involve high-
dimensional input spaces: For every degree of freedom of a robot setup, its
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2.3. LEARNING OF FEEDFORWARD INVERSE DYNAMICS MODELS

position, velocity, and acceleration have to be provided as input. In the study
by Vijayakumar et al. (2005), a humanoid robot with 30 degrees of freedom
was trained to draw a planar figure 8 with one of its end effectors. The adap-
tive feedforward IDM had to learn the mapping from a 90-dimensional input
space to a 30-dimensional output space (the torques). Standard function ap-
proximator techniques like the MLP do not perform very well on such high-
dimensional learning problems. For this reason, Vijayakumar and Schaal (2000)
developed “locally weighted projection regression” (LWPR), a function approx-
imator technique especially suited for high-dimensional input spaces. It works
on the basis of partial least squares (PLS) regression (e.g., Wold, 1985), which
identifies the (orthogonal) directions in the input space with the largest corre-
lations to the output data and restricts the regression to these directions. This
reduces the dimensionality of the learning problem. However, for non-linear
functions these relevant directions vary from position to position in the input
space, therefore LWPR combines a multitude of PLS regressions which are
centered at different points in the input space and which are locally learned and
applied. In this way, LWPR can deal with high-dimensional function approx-
imation tasks. LWPR was successfully applied to the inverse dynamics prob-
lem with the 90-dimensional input space for drawing the figure 8 (Vijayakumar
et al., 2005). Learning examples were collected in a DIM-like fashion. In the
earlier study by Vijayakumar and Schaal (2000), LWPR was tested as well on
the basis of a DIM-like learning scheme for a 50-dimensional inverse dynamics
task. Furthermore, in the study by Vijayakumar et al. (2002) LWPR was used
for a dynamic biomimetic gaze stabilization task with FEL as learning strategy.
However, in a diploma thesis under the author’s supervision (Gerstung, 2006)
we explored how easy LWPR is applicable in practice to various synthetical
learning tasks. Our findings suggest that LWPR is very sensitive with regard to
its adjustable parameter settings. The best settings seem to vary strongly from
task to task, and successful learning requires a lot of test runs in advance.

LbI is not suited for the adaptation of feedforward IDMs because they have
no additional state information as input which could be adjusted after the move-
ment. The best and only adjustment for feedforward IDMs is the usage of the
real or estimated state of the plant after the movement as training input, and this
means basically to apply DIM.

The application of LbA to dynamic motor control has not been tested yet.
Since LbA relies on making several test steps in motor space from a given con-
troller output, and because the state of the system changes during these test
steps, LbA seems to be rather unsuited for dynamic problems. Generally, it is
not possible to revert the state of the plant to the point at which the original
controller output has been generated first. Thus, any comparative quality judge-
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ment with regard to the test steps becomes quickly impossible, and therefore
the generation of new and better training examples.

In conclusion, FEL, DSL, and DIM are applicable to the training of feed-
forward IDMs. With regard to feedback IDMs, things get more complicated.
To learn a feedback IDM basically means to learn an optimal control strategy
(which implicitly includes to learn how to generate trajectories). Tasks like this
belong to the field of reinforcement learning (see next section).

2.4 Alternative Routes to Motor Learning

2.4.1 Reinforcement learning

The motor learning strategies in Sect. 2.2 belong to the paradigm of supervised
learning which is based on providing an explicit correction of the output of the
adaptive learning system (although the “supervisor” is another compound of the
learning system). In contrast, reinforcement learning (RL) (Sutton and Barto,
1998) works by just providing a specific reward to each output. The learning
process is driven by the maximization of the reward. For motor learning with
continuous state and motor variables, the temporal difference (TD) family of
RL algorithms is often used (Doya et al., 2001). In this framework, a learn-
ing system consists of an “actor” and a “critic”. The actor is equivalent to the
controller or inverse model. It implements a control law

ut = G(xt) + νt .

G it the control policy, ν ∈ IR
m denotes noise for exploration, m is the di-

mensionality of the motor space. The state change via the plant is defined as
usual:

xt+1 = P (xt,ut)

The reward in time step t is computed as:

rt = R(xt,ut)

The critic has to predict the cumulated future reward V (a scalar value), given
the current state of the system:

V (xt) = E[rt + γrt+1 + γ2rt+2 + ...]

The parameter γ is the “discount factor” with 0 ≤ γ ≤ 1. The error signal δt of
RL is the prediction error of the critic. It is called “temporal difference error”
(TD error):

δt = r(t) + γV̂ (xt+1)− V̂ (xt)

78



2.4. ALTERNATIVE ROUTES TO MOTOR LEARNING

If the policy and the critic are implemented as adaptive neural networks
(e.g., as function approximators), their parameters are updated by gradient as-
cent proportional to δt (for details, see Doya et al., 2001). Therefore, the pre-
dicted cumulated future reward V is reduced for negative values of δt and vice
versa. Over many learning trials, the critic is adapted in this way towards bet-
ter prediction performance. The adaptation of the policy G takes place in a way
that its motor output is moved either in the direction of the last exploration noise
vector νt in motor space or exactly in the opposite direction. This changes the
policy towards motor output with higher rewards. The desired state of the sys-
tem x∗ has to be hard-coded in the reward function R. A reasonable approach
is to choose larger values for R the smaller the distance between xt and x∗ is.

Wolpert and Flanagan (2003) point out that optimal control theory and RL
are mathematically equivalent. The former focuses on systems with known dy-
namics and known cost functions, while the latter have to learn both the dynam-
ics and the costs through experience. Referring to the different types of inverse
models, the IKM, the feedforward IDM, and the feedback IDM (see Sect. 2.2.1),
RL can be used to acquire the latter, while the former two are best learned with
supervised learning strategies. However, RL for feedback IDMs faces the fol-
lowing problem: If the desired state x∗ is time-dependent (x∗t in time-discrete
or xd(t) in time-continuous notation), TD learning as described above does not
converge because R is not stationary. To overcome this problem, one could
provide x∗t as additional input to the policy G and the critic V . During learn-
ing, one should keep x∗t constant over longer time intervals or change it only
slowly because otherwise the computation of the TD error would be meaning-
less. Moreover, the function approximators for the policy and the critic must
not suffer from catastrophic interference, because learning in one part of the
input space would result in forgetting in other parts otherwise. However, we are
not aware of any study which attempts to learn a feedback IDM with varying
desired state input on the basis of RL. It might be an interesting and challenging
research project to develop a TD based learning algorithm for the training of a
feedback IDM which generates arm trajectories between any two points in the
workspace according to the minimum-variance principle (Harris and Wolpert,
1998). In the learning architecture by Shimansky et al. (2004), a feedback IDM
for a simulated two-joint planar arm was trained which is at least capable to gen-
erate trajectories towards eight different target zones in the workspace. Their
work is similar to RL to some extent, but instead of an actor and a critic they use
a forward dynamics model, an internal model of the movement cost rate, and an
internal model of the minimal movement costs in addition to the feedback IDM.
Unfortunately, the generated velocity profiles are not bell-shaped, questioning
the biological plausibility of their learning architecture.
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While RL is usually restricted to time-discrete systems, Doya (2000b) de-
veloped a variant of TD learning for time-continuous systems which is even
better suited for smooth motor control. He showed the successful application of
his algorithm for a pendulum swing-up task with limited torque and a cart-pole
swing-up task. These are rather low-dimensional systems in state and motor
space which illustrates one of the weaknesses of RL: RL algorithms cannot be
easily applied to large-scale problems. For this reason, the recent trend in RL
research is to use modularization and hierarchical architectures for realistic and
large-scale problems (Miyamoto et al., 2004).

With regard to the neurophysiological foundation of RL, Doya (2000a) re-
views several studies which support the view that the basal ganglia are the neural
substrate of reward-based learning, while the cerebellum serves for error-based
(supervised) learning. Especially the activity of dopamine neurons in the basal
ganglia seems to resemble the output of the critic, predicting future reward. To
complete the picture, Doya (2000a) ascribes unsupervised learning to the cere-
bral cortex.

2.4.2 Learning by imitation

A very different approach to motor learning is learning by imitation. For hu-
mans, imitation provides an important means to acquire new skills, both on
a basic motor level and on the level of complex social interactions (see for
example Tomasello et al., 1993). Imitation-like behavior is also observed in
nonhuman primates and other species (e.g., Bard, 2007), although there is dis-
agreement about the equivalence of human and nonhuman imitative behavior
(Byrne and Russon, 1998). Regardless of this debate, one of the most important
neurophysiological findings with regard to imitation was the discovery of “mir-
ror neurons” in the premotor cortex of monkeys, which discharge both when
the monkey performs an action and when he observes a similar action made by
another monkey (Rizzolatti et al., 1996) (see also Sect. 1.3.4.2). These neurons
are thought to be part of the neural foundation of learning by imitation (Billard
and Schaal, 2006).

Compared to the supervised learning of internal models, imitation learning
has many additional requirements: pose estimation and tracking, body corre-
spondence, coordinate transformation from external to egocentric space, match-
ing of observed against previously learned movements, suitable movement rep-
resentations for imitation, etc. (Schaal et al., 2003). In return, imitation offers a
speedup of learning because the troublesome conversion from sensory to motor
error is less difficult: The search space for the right motor command is signif-
icantly reduced through the observation of the correct behavior. In addition,
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imitation offers a fast way to transfer the optimal behavior under certain task
conditions from one individuum to the next. In robotics, learning by imitation
gathers a lot of interest, motivated both from the cognitive modeling and from
the technical application perspective (Billard and Schaal, 2006). Especially for
humanoid robots with a large number of degrees of freedom, learning by imita-
tion might offer a flexible means for human-robot interaction.
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Chapter 3

Computational Methods

This section summarizes the theoretical background of the neural network and
optimization techniques used throughout the thesis. Neural network techniques
can be classified along different characteristics. One important distinction is
between feedforward and recurrent networks, another between supervised and
unsupervised learning rules. Feedforward networks are usually used for func-
tion approximation while recurrent networks are capable of representing high-
dimensional data manifolds or spatio-temporal data. Usually, feedforward net-
works are coupled with supervised learning, requiring a “teacher” which cor-
rects their output. Recurrent networks, on the other hand, are mainly trained by
presenting learning examples without explicit correction of any output. By this
unsupervised learning regime, recurrent networks learn to model the distribu-
tion of the data.

A classical feedforward network is the multi-layer perceptron (MLP). In
this thesis, it is used for adaptive motor control and for the learning of FMs.
Moreover, for the latter purpose radial basis functions networks (RBFN) are
applied.

Recurrent networks are often used for pattern completion. They receive an
incomplete pattern as input, and after several iterative cycles in which the acti-
vation of the network’s units is updated, they settle down to a final state which
is supposed to be the complete pattern (e.g., the Hopfield network works in this
way; Hopfield, 1982, 1984). In this thesis, the focus lies on so-called “abstract”
recurrent neural networks. They are based on vector quantization methods (Ger-
sho and Gray, 1991) and do not require an iterative activation update for pattern
recall (therefore the term “abstract”). From this class of networks, NGPCA (a
combination of neural gas and local principal component analysis; Möller and
Hoffmann, 2004) is used in the context of motor learning. However, vector
quantization is not only used for recurrent neural networks, but also in combi-
nation with supervised learning techniques, e.g. RBFNs.

Furthermore, the optimization method Differential Evolution (DE) (Storn

83



CHAPTER 3. COMPUTATIONAL METHODS

Figure 3.1 — General structure of the MLP, shown for a single unit n1k (first unit of
layer k). In this figure, the preceding layer l has five units. Their outputs are the weighted
inputs for unit n1k. Moreover, unit n1k receives a weighted input from the bias unit of
the layer l (with output o0l = 1.0), and an external input x1k

in . For clarity, only two layers
and only the connections to a single unit are shown.

and Price, 1997) is used for the studies in Chapts. 4 and 7. In the following, all
these methods are briefly described.

3.1 Multi-Layer Perceptron

The MLP belongs to the class of feedforward neural networks. It was pro-
posed first by Werbos (1974), and became very popular among researchers with
the publication by Rumelhart et al. (1986). It is mainly used for function ap-
proximation. We first describe the general structure of MLPs, afterwards the
backpropagation algorithm for network adaptation is presented.

3.1.1 Topology

The basic component of MLPs are units {nik} (see Fig. 3.1). Each unit is an
artificial neuron (in analogy to biological neurons, but on a very abstract level)
with input and output links by which the unit is connected to other units in
the network. The units are arranged in layers {k} (the index i of nik counts
units within a layer; k = 1..K, i = 1..Nk; K is the number of network layers,
Nk is the number of units in layer k). Each unit can receive inputs from units
in preceding layers, and can provide an output to units in succeeding layers.
Within a layer, no connections between units exist.
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Each unit nik has an activation aik. This activation is transformed into the
unit’s output oik by oik = fact(a

ik). fact is the so-called “activation function”,
which can take different forms. For the units of the first and the last network
layer, often linear functions are used, for the layers in-between (the “hidden
layers”) squashing functions like hyperbolic tangent. The standard formula for
the activation is

aik =
∑

l∈Lk

[
Nl∑

j=0

(wik
jl o

jl)

]
+ xik

in . (3.1)

Lk is an index set referencing all layers l from which layer k receives input
with

∨
l∈Lk

l < k. The term xik
in is an external input to unit i of layer k; in the

standard MLP, these inputs only exist in the first layer, but in a more general
form, any unit may receive an external input. The parameter wik

jl is the weight
assigned to the connection between unit j in layer l and unit i in layer k. The
weights between two layers l and k are often collected in a matrix Wlk. For the
first layer (k = 1), Eqn. (3.1) can be simplified to aik = xik

in . The inner sum in
Eqn. (3.1) starts with an index j = 0 although the units are counted beginning
with 1. The unit index 0 in each layer is reserved for the so-called “bias unit”
with a constant output of 1.0.

The main purpose of MLPs is the transformation of the real-valued inputs
{xik

in} into the real-valued outputs {oik}. In the standard MLP with three lay-
ers, in which the activation functions of the units in the single hidden layer are
squashing functions, the external inputs {xi,1

in } (i = 1, ..., N1) of the first layer
are transformed into the output values {oj,3} (j = 1, ..., N3) of the last layer.
Moreover, for the standard MLP we have Lk = {k − 1} for k ∈ {2, 3}. Hornik
et al. (1989) showed for this standard type that it is an universal approximator
for real-valued Borel measurable functions.1 Actually, this topology is the min-
imum specification for MLPs. An MLP can be larger (more layers, additional
“shortcut” connections between layers), but it cannot be smaller. A two-layered
network is only capable to represent linearly separable input-output relation-
ships and belongs to the class of perceptrons (Minsky and Papert, 1969).

3.1.2 Backpropagation

An important feature of MLPs is their ability to learn input-output relationships.
They can adapt their output by adjusting the parameters wik

jl . This adaptation
usually takes place by presenting examples of the input-output relationship the
MLP is supposed to learn. For the standard MLP with three layers, there is an

1 For practical applications, it is most important that continuous real-valued functions which
map compact sets to compact sets are Borel measurable (Yen and Vaart, 1966).
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input vector xin with elements xi
in (assigned to the external inputs xi,1

in of the first
layer) and an output vector xout with elements xj

out which are the desired values
for the network outputs oj,3. The task of the MLP is to learn the empirical data
in the set X:

(x
(1)
in ,x

(1)
out), ..., (x

(P )
in ,x

(P )
out ) ∈ X .

In the process of learning, training patterns (x
(p)
in ,x

(p)
out) (p = 1..P ) are presented

to the MLP. The input x
(p)
in is transformed into the corresponding network out-

put op which usually deviates considerably from the desired output x
(p)
out in the

beginning of the learning process.
The following error measure quantifies this deviation for a single pattern p:

Ep =
1

2
‖x(p)

out − op‖2

The overall error for the whole training set is:

E =
P∑

p=1

Ep (3.2)

The task of any training algorithm for the adaption of MLPs is to minimize this
error by computing appropriate weight changes ∆wik

jl . The popular backpropa-
gation algorithm (Werbos, 1974; Rumelhart et al., 1986) for MLPs is based on
gradient descent. The weight changes ∆wik

jl are computed by

∆wik
jl = −η

∂E

∂wik
jl

. (3.3)

η is the learning rate.
From this starting point, the backpropagation algorithm is derived as shown

in Rumelhart et al. (1986). Here, we present only the final algorithm. Online
backpropagation (with weight changes after each pattern presentation p) com-
prises the following steps:

1. Compute an error signal δik
p = ∂E

∂oik
p

for each unit nik with k > 1:

δik
p =

{
f ′act(a

ik
p )(x

i (p)
out − oik

p ) if layer k is the output layer
f ′act(a

ik
p )
∑Nk+1

j=0 δj,k+1
p wj,k+1

ik otherwise
(3.4)

The error signals are determined first for the output layer with k = K,
afterwards for the layer with k = K − 1, and so on. In this way, the error
signals are “back propagated” through the network.
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2. Compute the weight changes:

∆pw
ik
jl = −ηojl

p δik
p

Equation (3.4) can be extended to a more general form in which it applies to
MLPs with multiple hidden layers and shortcut connections, where every unit
can be an output unit.

In the batch version of backpropagation, the weight changes for the whole
training set are summed up before applying the change. Batch learning is de-
rived directly from Eqn. (3.3), while the online version has an additional heuris-
tic component. It belongs to the class of optimization methods labeled “stochas-
tic gradient descent”. A presentation of a single pattern for learning is often
called “learning cycle”, while the presentation of the whole training set is called
“learning epoch”. Before the first learning cycle or epoch, the weights wik

jl are
initialized to random values from the interval [wmin; wmax].

Parameter Description
η Learning rate
wmin Lower bound for the weight initialization range
wmax Upper bound for the weight initialization range

Table 3.1 — Learning parameters for MLPs trained with the backpropagation method.

3.2 Radial Basis Function Networks

Radial basis function networks (RBFN) are used for function approximation
and interpolation (Moody and Darken, 1989). Similar to the MLP, the learning
task is to adapt to the empirical data in the set X:

(x
(1)
in ,x

(1)
out), ..., (x

(P )
in ,x

(P )
out ) ∈ X .

RBFNs are two-layered networks (see Fig. 3.2). The first layer consists of
N1 Gaussian units with index i = 1, ..., N1. The activation of a Gaussian unit is
computed as:

φi(xin) = exp

(
−‖ci − xin‖2

2σ2
i

)

ci is the center of unit i, σ2
i its variance.
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Figure 3.2 — Basic structure of an RBFN for a two-dimensional input space (spanned
by x1 and x2). Data points {xin} are shown as gray dots. Gaussian units φi are depicted
as circles in the data plane. A single output unit oj is shown which receives weighted
input from all Gaussian units and from the bias unit with a constant activation of 1.0.

The second layer is very similar to the output layer of standard MLPs. It
consists of N2 units. The output of unit j with j = 1, ..., N2 is determined by:

oj =

N1∑

i=0

wj
i φi(xin) (3.5)

The unit with index i = 0 in this equation is a bias unit with a constant activation
of φ0 = 1.0.

For the adaptation of RBFNs, usually the following steps are carried out
(Moody and Darken, 1989; Fritzke, 1998):

• Position the centers {ci} in the input data space by using a vector quan-
tization method for the vectors {x(p)

in } (p = 1, ..., P ); for this purpose,
we use the K-means algorithm (see Sect. 3.3.1); alternatively, the NG
method (see Sect. 3.3.2) might be applied as well.

• Determine the variances {σ2
i }; it is suggested to choose σi proportionally

to the mean distance di of unit i to the input data points that have been
assigned to this unit in the preceding step (here we use: σi = ασdi + βσ).

• Compute the weights wj
i by regression techniques.

The last step requires further explanation. In vector form, and for a specific
pattern p, Eqn. (3.5) can be written as

o = Wφ(x
(p)
in )
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with o = (o1...oN2
)T and the matrix W containing the weights wj

i (i indexing
columns, j indexing rows). Substituting the actual network output o with the
desired output x(p)

out yields

x
(p)
out = Wφ(x

(p)
in ) .

Since there are P training patterns in the empirical data set, P different equa-
tions of this form are available. This system of equations can be rewritten as

Xout = WΦ (3.6)

with Xout =
(
x

(1)
out · · ·x

(P )
out

)
and Φ =

(
φ(x

(1)
in ) · · ·φ(x

(P )
in )
)

.
The system in Eqn. (3.6) is either underdetermined (if N1 > P ; very un-

likely), exactly solvable, or overdetermined (if N1 < P ; the normal case). A
general approach to its solution is the computation of the pseudoinverse Φ+ of
Φ. Then, the weights of the output layer can be determined by

W = XoutΦ
+ . (3.7)

If Eqn. (3.6) is overdetermined, the solution from Eqn. (3.7) is not exact but
conforms to a least squared error criterion (Golub and van Loan, 1996).

Instead of determining W with help of the pseudoinverse of Φ, one can
use the same gradient descent technique as used in the backpropagation algo-
rithm (based on the error function in Eqn. (3.2)). Since there are no hidden
layers involved, it even simplifies to the standard delta rule (Widrow and Hoff,
1960). Moreover, one can generalize the backpropagation method to finetune
the parameters {ci} and {σi} by gradient descent (Zell, 1997). This yields three
different learning rates for RBFN networks: η, ηc, and ησ (for explanation, see
Table 3.2)

Parameter Description
η Learning rate for the weights wj

i

ηc Learning rate for the unit centers ci

ησ Learning rate for the unit variances σ2
i

wmin Lower bound for the weight initialization range
wmax Upper bound for the weight initialization range
ασ, βσ Factor and offset for determining σi

Table 3.2 — Learning parameters for RBFNs.
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3.3 Vector Quantization

The goal of vector quantization is to represent a set of data points {x(p)} (p =
1, ..., P ) in n-dimensional space with a smaller set of so-called “codebook vec-
tors” {ci}; i = 1, ..., N is the unit index. P (i|x(p)) is the probability that x(p)

belongs to unit i.
There are two basic categories of vector quantization methods: Hard-

clustering methods assign only binary values (0 or 1) to P (i|x(p)) so that each
data point is assigned to exactly one unit. On the contrary, soft-clustering meth-
ods work with continuous values for P (i|x(p)), thus each data point can be as-
signed to multiple units with different probabilities.

The optimal positions {ci} are usually determined by minimizing the fol-
lowing error measure:

E =
∑

i,p

P (i|x(p))‖x(p) − ci‖2

Generally, E has many local minima and it is hard to find the optimum solution.
Therefore, many different vector quantization methods have been developed,
both in the hard- and the soft-clustering category. In the following, the pattern
index p is mostly omitted for clarity.

3.3.1 K-means algorithm

The K-means algorithm (Lloyd, 1982; Moody and Darken, 1989) is a widely
used hard-clustering method. In the online version, a single data point x is
presented in each learning step. The codebook vector ci with the smallest Eu-
clidean distance to x is determined. Afterwards, this codebook vector is updated
according to the following rule:

ci ← ci + ε (x− ci)

ε is the learning rate. The update of the codebook vectors continues until conver-
gence is reached. In the batch version, all training patterns {x(p)} are presented
first without changing the positions {ci}. Only the assignments P (i|x(p)) are
determined. Afterwards, each position ci is set to the mean value of all vectors
assigned to unit i: {x(p)|P (i|x(p)) = 1}. This procedure is repeated until con-
vergence is reached. The K-means algorithm is prone to end in local minima.
The final result depends heavily on the initial choice of the codebook vectors
{ci}.
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3.3.2 Neural gas

Martinetz et al. (1993) presented a vector quantization method called “Neu-
ral Gas” (NG). NG belongs to the class of soft-clustering methods with “soft
competition” between units. First, the units {ci} are initialized by assigning
randomly selected vectors from the training set to them. Afterwards, in each
training step one vector x of the training set is drawn at random. The squared
Euclidean distance

di(x) = ‖x− ci‖2

is computed for each unit; the vector of these distances is d. A rank ri(d) =
0, ..., N −1 is assigned to each unit: A rank of 0 indicates the closest and a rank
of N − 1 the largest distance to the vector x. After the ranking, the units {ci}
are updated according to the following rule:

ci ← ci + ε · hρ [ri(d)] · (x− ci) (3.8)

The function hρ(d) = e−r/ρ ensures that not only the best-matching unit is
updated, but every unit with a factor exponentially decreasing with their rank
(this is an important difference to the “hard-clustering” method K-means). The
parameter ρ determines the neighborhood range. The second parameter ε is a
global learning rate. Both ρ and ε decrease exponentially from initial positive
values (ρ(0), ε(0)) to smaller final positive values (ρ(T ), ε(T )), where T de-
notes the index of the final training step. By this means learning starts with the
adaptation to the global structure of the training data and becomes more local
during the training process.

3.4 NGPCA

NGPCA combines the vector quantization method NG with local principal com-
ponent analysis (PCA) (Hoffmann and Möller, 2003; Möller and Hoffmann,
2004). As with vector quantization, the goal is to represent a high-dimensional
data manifold by a model with only a small number of parameters (compared
to the amount of training data).

PCA is a method of dimension reduction in multivariate data. The high-
dimensional pattern space (with n dimensions) is approximated by a subspace of
lower dimension. This subspace is spanned by the first m principal eigenvectors
of the data covariance matrix (with m ≤ n). In the following, W denotes the
matrix of estimated eigenvectors wj, j = 1, ..., m (one vector per column). W

is of size n ×m. The eigenvalue λj of wj is equal to the variance of the data
distribution in this eigendirection. The m × m matrix Λ is a diagonal matrix
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Figure 3.3 — NGPCA model with four local PCA units, depicted as ellipsoids in a
two-dimensional data space. The arrows within each ellipsoid indicate the principal
components. The data points {x} belonging to the data manifold are shown as gray dots.

containing the values λj . If the data has not been centered before the PCA, an
additional vector c of dimension n is necessary. c is the mean vector of the data
distribution and the center of the PCA. Altogether, the multivariate data is just
represented by the matrices W and Λ and the vector c.

Both NG and PCA have certain strengths and weaknesses. In NGPCA, the
weaknesses of one method are compensated by the other, while the strengths
are preserved. NG suffers from dimensions which contain mainly noise. Many
units are needed to fill these dimensions. This is quite inefficient. PCA, on
the other hand, needs just a single eigenvector to represent a noise dimension.
But PCA is only a linear method and not capable to describe data manifolds if
components have non-linear dependencies. NGPCA overcomes this drawback
by describing the data manifold with a sufficiently large number of local PCAs
which are placed at different positions {ci}. Each local PCA only adapts to the
structure of the data distribution in the neighborhood of ci. In this way, curved
data distributions are described by a local linear approximation. The positions
of the units {ci} are determined by an algorithm closely related to NG. Thus,
NGPCA overcomes the inefficiency of NG with regard to noise dimensions and
of PCA with regard to non-linear dependencies in the data by combining both
methods.

A complete NGPCA model consists of N local PCAs, each described by
the tupel {ci,Wi,Λi, λ

∗
i}, with i = 1, ..., N . λ∗i represents an estimate of the

eigenvalue in each of the remaining n−m minor eigendirections. In geometrical
terms, each unit i is a hyperellipsoid centered at ci (see Fig. 3.3). In the n−m
minor eigendirections, it has the form of a hypersphere.
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3.4. NGPCA

3.4.1 Learning

Adaptation of the centers {ci} is carried out in the same way as in the NG
algorithm, only the distance measure for the ranking of the units is modified
(Möller and Hoffmann, 2004):

di(x) =

(
ξT

i WiΛ
−1
i WT

i ξi +
1

λ∗i

(
ξT

i ξi − ξT
i WiW

T
i ξi

))
V 2/n (3.9)

ξi is the difference between the unit center ci and the presented data point x:
ξi = x−ci. V is proportional to the volume of the hyperellipsoid and computed
as V =

√
|Λ|λ∗i n−m.

Equation (3.9) is the sum of a normalized Mahalanobis distance plus re-
construction error. It is a modified form of the equation found in (Möller and
Hoffmann, 2004, p. 308); in the original equation, the ranking measure di(x)
depends on the volume of the ellipsoid. In Hoffmann (2004), Eqn. (3.9) is
presented which handles all ellipsoids for the ranking as if they had the same
constant volume. According to Hoffmann (2004), this can be advantageous for
the learning process.

λ∗i in Eqn. (3.9) is determined as

λ∗i =
σ2

i

n−m
.

σ2
i is the residual variance of unit i. It is computed by an iterative update:

σ2
i ← σ2

i + αi ·
(
ξT

i ξi − ξT
i WiW

T
i ξi − σ2

i

)

According to Möller and Hoffmann (2004), the choice of the starting value
of the iteration σ2(0) is not critical. αi is a unit-specific learning rate: αi =
ε · hρ [ri(d)] (as in Eqn. (3.8) for NG). As in the NG method, the neighborhood
range ρ and the learning rate ε decrease exponentially.

In addition to the centers {ci}, the matrices {Wi} and {Λi} have to be
updated with each pattern presentation x. For this purpose, an online PCA
method is applied:

Wi,Λi ← PCA{Wi,Λi, ξi, αi}

Throughout the studies in this thesis, the online PCA method presented in
Möller (2002) is used. It works by the interlocking of RRLSA (Ouyang et al.,
2000), a neural method for PCA based on the recursive least squares method,
and the Gram-Schmidt method for orthonormalization (Golub and van Loan,
1996). Since this interlocked online PCA method does not guarantee perfect
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orthogonality, after every Tortho learning steps an explicit Gram-Schmidt or-
thonormalization is carried out for all units.

In the beginning of the learning process, the centers {ci} are set to randomly
chosen data vectors from the training set {x(p)}. The matrices {Wi} are initial-
ized to random orthonormal systems, the eigenvalues in {Λi} to a constant λ(0).
Möller and Hoffmann (2004) state that the choice of λ(0) is not critical.

3.4.2 Recall

After training, the tupel {ci,Wi,Λi, λ
∗
i} has been adapted for every unit i so

that the overall model represents the data manifold from which the training vec-
tors {x} have been drawn. Each unit is a hyperellipsoid which describes an
iso-potential surface of the normalized Mahalanobis distance plus reconstruc-
tion error (Hoffmann and Möller, 2003; Hoffmann, 2004):

di(x) = ξT
i WiΛ

−1
i WT

i ξi +
1

λ∗i

(
ξT

i ξi − ξT
i WiW

T
i ξi

)

+ ln detΛi + (n−m) ln λ∗i (3.10)

This equation is similar to Eqn. (3.9) but takes the actual volume of the ellipsoid
into account (with ξi = x− ci).

For pattern recall, some dimensions of the data space have to be defined
as input and the others as output. The vector p (of dimension n) contains the
input values at the input positions and zero elsewhere. It defines the offset of a
constraint space z(η) spanning the space of all possible output values:

z(η) = Mη + p (3.11)

η is a parameter vector of size nout (number of output dimensions). M is a
matrix of size n × nout. In all applications of NGPCA in this thesis, M is
defined in a way that the constraint space is aligned with the coordinate system.

The goal of recall is to generate a pattern ẑ containing the inputs defined in
p and the outputs generated by the NGPCA model. For this purpose, z(η) is
inserted into Eqn. (3.10) instead of x:

di(z(η)) = (Mη + πi)
T

(
WiΛ

−1
i WT

i +
1

λ∗i

(
I−WiW

T
i

))
(Mη + πi)

+ ln detΛi + (n−m) ln λ∗i

with πi = p− ci.
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For each unit i, the parameter vector η̂i resulting in the smallest distance
measure di(z(η)) has to be determined. Hoffmann and Möller (2003) show that
setting ∂di/∂η = 0 yields

η̂i = Aiπi

with
Ai = −

(
MTDiM

)−1
MTDi

and
Di = WiΛ

−1
i WT

i +
1

λ∗i

(
I−WiW

T
i

)
.

Since di(z(η)) is convex, η̂i actually points to the only minimum. The unit
î with the smallest distance measure di(z(η̂i)) is selected, yielding the corre-
sponding parameter vector η̂ î. The final pattern ẑ is determined by inserting η̂ î

into Eqn. (3.11). For each input, a unique output is generated without the danger
of getting trapped in a local minimum (Hoffmann and Möller, 2003; Hoffmann,
2004).

Parameter Description
T Number of training steps
Tortho Orthogonalization enforcement cycles
ε(0) Initial value for parameter ε (learning rate of NG)
ε(T ) Final value for parameter ε

ρ(0) Initial value for parameter ρ (neighborhood range of NG)
ρ(T ) Final value for parameter ρ

σ2(0) Iteration start value for the residual variance
λ(0) Initial eigenvalues

Table 3.3 — Learning parameters for NGPCA.

3.5 Differential Evolution

Differential evolution (DE) has been developed by Storn and Price (1997). It
is a method for global optimization over continuous spaces which shares some
of the general techniques of evolutionary algorithms. Storn and Price (1997)
showed in their initial work that it is superior to well-known methods like adap-
tive simulated annealing (Ingber, 1993) on a test suite of objective functions.
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Meanwhile, DE has been used in various technical applications, e.g. in chemi-
cal engineering (Babu and Sastry, 1999) or in the design of digital filters (Storn,
1999). In the following, the algorithm is presented in the specific form in which
it is used throughout the studies in this thesis (see Chapts. 4 and 7). Storn and
Price (1997) provide the reader with a more general approach.

The goal of the optimization process is to find the global minimum of an
analytically unknown function fopt:

fopt : IR
n → IR , x 7→ y = fopt(x)

DE is a parallel search method: In each optimization step g, NDE different
parameter vectors xi,g (i = 0, ..., NDE − 1) are generated and evaluated. From
this population, the best parameter vector xbest

g = ximin,g is determined with

imin = argmin
i
{fopt(xi,g)} .

To generate the population of the next generation g + 1, the following steps
are carried out for each of the parameter vectors xi,g: First, a trial vector v

is computed. This can be done in various different ways. In our studies, we
used the version DE2 (from Storn and Price, 1997) as it proved to be the most
successful:

v = xi,g + γ
(
xbest

g − xi,g

)
+ λ (xr1,g − xr2,g)

In our studies on motor learning (Chapt. 4), it was advantageous to set γ = 1,
resulting in the simplified rule

v = xbest
g + λ (xr1,g − xr2,g) .

The indices r1 and r2 are drawn at random from the range [0, NDE − 1] with
the restriction that they do not equal neither the index i nor each other. γ and
λ are free parameters set by the user. The computation of the trial vector by
adding population vector differences to the candidate vector xi,g is the most
important innovation of DE. It enables DE to move the vector population rather
fast through narrow and long valleys of the objective function.

In the second step, the trial vector is combined with the original vector xi,g

by a crossover method to determine the vector xi,g+1. Each element (xi,g+1)j of
xi,g+1 (with j = 1, ..., n) is determined by

(xi,g+1)j =

{
vj : r ≤ pCR

(xi,g)j : otherwise .

pCR is the crossover probability (also a free parameter set by the user). r is a
random number drawn from a uniform distribution in the range [0; 1]. Moreover,
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the implementation of DE we used (Godwin, 1998) ensures that at least one
element from v is carried over to xi,g+1. The crossover method described in
Storn and Price (1997) is more restrictive but should yield very similar results
in practical usage.

By repeating these two steps for all vectors xi,g+1 of generation g, the pop-
ulation of the next generation g + 1 is constructed, consisting of vectors xi,g+1.
This process is repeated until the maximum number of generations Gmax is ex-
ceeded or the best parameter vector xbest

g of generation g falls below an “energy”
threshold Emin with fopt(x

best
g ) < Emin. For the studies in this thesis, DE proved

to be a reliable optimization method.

Parameter Description
NDE Population size
λ Scaling factor for the computation of the trial vector
γ Scaling factor for the computation of the trial vector
pCR Crossover probability
Gmax Maximum number of generations
Emin “Energy” threshold

Table 3.4 — Parameters for DE.
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Chapter 4

Experimental Studies on
Kinematic Motor Learning

Section 2.2 outlines various controller learning strategies, among them staged
and continuous learning by averaging which have been developed by the author.
The performance of these learning strategies is compared in different (simu-
lated) motor control tasks: First, for saccade-like fixation movements with a
robot camera head, and second, for the kinematic control of a planar arm. Both
motor control tasks are explored for different task conditions, e.g. the number
of links of the planar arm is varied.

The performance measure is always the number of exploration trials needed
to achieve a certain controller quality Q∗. The term “exploration trial” is defined
as motor command carried out to collect the plant’s response. Because explo-
ration trials are the most expensive part of learning, their number is used as
performance measure: The fewer trials are needed the better. The quality level
Q∗ is determined by training a controller network with a set of perfect learning
examples and assessing its quality afterwards. These examples were obtained
by the optimization method “differential evolution” (see Sect. 3.5). The size of
the perfect training set and the quality level Q∗ vary from task to task. Important
research questions addressed in this chapter cover the following topics:

• How do the learning strategies perform for plants with approximately lin-
ear input-output relationships (saccade learning)?

• How do the learning strategies perform for plants with highly non-linear
input-output relationships (planar arm)?

• How well do the learning strategies deal with one-to-many mappings in
practice (planar arm)?

• How robust are the learning strategies in the presence of noise (saccade
learning and planar arm)?
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• How well do the learning strategies cope with additional constraints added
to the learning task (planar arm)?

The compared learning algorithms are (see Sect. 2.1): feedback error learn-
ing (FEL), distal supervised learning (DSL), direct inverse modeling with multi-
layer perceptrons (DIM), direct inverse modeling with NGPCA (DIM_NGPCA),
staged learning by averaging (SLbA), and continuous learning by averaging
(CLbA) (only for saccade learning since it is not well suited for the planar arm
task). In the following, both learning tasks and all experiments are outlined in
close detail. The results are first discussed separately for each learning task. In
the final overall discussion, they are reviewed together.

4.1 Comparison Study on Saccade Control

Saccades are fast fixation movements of the eyes. Their purpose is to center
interesting targets detected in the visual surroundings on both foveas. With the
exception of special experimental settings, saccades are generally assumed to be
“ballistic” open-loop movements: Once started, their course cannot be changed.
The research on the mechanisms and neural underpinnings of saccade control
in humans and primates has gained a lot of interest from psychology, biology,
and neurophysiology (for a comprehensive overview, see Leigh and Zee, 1999).
In computer science, especially robotics, the field of “active vision” deals with
artificial saccades of robot camera heads. While this research is centered to
a large extent on the development of technical solutions (e.g., Klarquist and
Bovik, 1998), several studies propose models of saccade generation which are
closely related to neurophysiological findings (Dean et al., 1994; Gancarz and
Grossberg, 1999). In this area between robotics and biology, methods of adap-
tive saccade learning are of special interest (Bruske et al., 1997; Pagel et al.,
1998). In the present study, biological modeling has not been the main pur-
pose, but instead the comparison of the learning strategies FEL, DSL, DIM,
DIM_NGPCA, SLbA, and CLbA on a saccade learning task for a robot cam-
era head. The experimental studies have been carried out in four different task
conditions:

• Fixation targets restricted to a 2D table surface (without noise)

• Fixation targets restricted to a 2D table surface (with retinal noise)

• Fixation targets located in a 3D cube (without noise)

• Fixation targets located in a 3D cube (with retinal noise)
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In the following, first the underlying setup and controller structure is de-
scribed. Afterwards, the parameter settings chosen for the simulation study are
explained. Finally, the results are presented and discussed.

4.1.1 Saccade controller

4.1.1.1 Setup

Figure B.1 shows the robot camera head used for the saccade control task.
This setup is thoroughly described in Appendix B. The used camera model
is equipped with an 1/3" CCD (4.8× 3.6 mm). Only a central quadratic region
with a size of 3.2 × 3.2 mm is used for target identification (in the following,
the term “camera image” refers to this cropped region). The lenses have a fo-
cal length of 4 mm, resulting in a diagonal angle of view of 59 degrees. Each
camera is mounted on its own pan-tilt unit, providing two degrees of freedom
(horizontal pan, vertical tilt). In the 2D version of the fixation task, fixation
targets are placed on the surface of the white table in Fig. A.1.

Due to the large overall amount of needed exploration trials for the present
study, the comparison results were generated with a simulated geometrical
model of this setup. It covers all transformations which are necessary to de-
scribe the projection from the target objects on the table surface to coordinates
in the camera images. The geometrical model is described in the appendix in
Sect. B.1.

4.1.1.2 Control scheme

The sensory context1 x the controller receives as input (see Fig. 2.13 in
Sect. 2.2.1) consists of a kinesthetic and a visual part. The kinesthetic input
comprises the current position of the cameras represented by a conjoint pan-
tilt direction and a horizontal and a vertical vergence2 value: pan, tilt, verghor,
vergvert. These values are scaled to the range [−1; +1]. The corresponding pan
and tilt angles of each camera (p̃anleft, t̃iltleft, p̃anright, and t̃iltright) are computed

1 In accordance with our reasoning on kinematic control in Sect. 2.2.1, we designate x as
sensory context information and not as system state throughout this chapter.

2 Horizontal vergence indicates the difference between the individual pan directions of each
camera, vertical vergence between the individual tilt directions.
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by the following equations:

p̃anright/left =
pan± λhor(

1
2verghor + 1

2)

1 + λhor

t̃iltright/left =
tilt± λvertvergvert

1 + λvert

λhor and λvert are the horizontal and vertical vergence factor with values of 0.5
and 0.2, respectively. They restrict the vergence operating range to avoid pos-
tures where both cameras point into completely different directions without any
overlapping part of their fields of view. Moreover, the term 1

2verghor + 1
2 in the

first equation ensures that the optical axes of the cameras never point horizon-
tally into diverging directions. After this conversion, p̃anleft, t̃iltleft, p̃anright, and
t̃iltright are scaled back to the selected operating range of the pan-tilt units (in
degrees). The operating range is chosen in a way that at any (pan, tilt) setting
with zero vergence at least a small part of the table surface is visible in at least
one camera image.

The visual part of the controller input x represents the target position in the
left and right camera image: xleft, yleft, xright, yright. These image coordinates
are scaled to the range [−1; +1] as well, the image center is at the origin. The
desired sensory state y∗ as additional controller input is defined via the sensory
variables xleft, yleft, xright and yright. Successful fixation implies that all of these
variables amount to zero. Thus, y∗ is constant for the saccade control task; for
this reason, it can be omitted as controller input. Only DIM and DIM_NGPCA
require that y∗ =

(
x∗left, y

∗
left, x

∗
right, y

∗
right

)T is provided as controller input be-
cause y∗ is an essential element of these learning strategies (see Sect. 2.2.5).

The motor output u of the controller is defined as change of the motor po-
sition. It consists of four values: ∆pan, ∆tilt, ∆verghor, and ∆vergvert (range:
[−2; +2]). The plant adds the delta values to the current motor position to arrive
at the new position. Whenever the valid range [−1; +1] for the new position is
exceeded, it is corrected so that no range transgression takes place. Moreover,
the plant generates the new target position in the left and right camera image
after the camera movement. To summarize the controller input and output:

• Inputs:

– Sensory context x:
∗ Kinesthetic: pan, tilt, verghor, vergvert

∗ Visual: xleft, yleft, xright, yright

– Desired sensory state y∗ (only for DIM and DIM_NGPCA):
x∗left, y∗left, x∗right, y∗right

102



4.1. COMPARISON STUDY ON SACCADE CONTROL

• Motor output u: ∆pan, ∆tilt, ∆verghor, ∆vergvert

4.1.2 Experimental procedure

4.1.2.1 Quality measure

The different learning strategies are compared with regard to the number of ex-
ploration trials NEX which are required to arrive at a certain controller quality
Q∗. The quality QC of a controller is computed as average quality of 250 motor
outputs u to random inputs x.3 The quality Q of a single motor output is com-
puted by the following quality function which is also used for SLbA and CLbA
(with y∗ = 0; Q(y) = Q(P (x,u)) := Q(P (x,u),0)):

Q(y) = 1− rL + rR

2
(4.1)

rL/R =
1√
2

√
x2

left/right + y2
left/right

rL and rR represent the left and right radial target distance: the Euclidean dis-
tance between the image center and the current image coordinates of the fixation
target in the left and right camera, respectively. If the target object is not visible
in both camera images simultaneously, Q is set to −1.

The quality level Q∗ is determined by training the standard controller net-
work (see Fig. 4.2, left) with a set of 500 perfect learning examples over 500
epochs and assessing its quality afterwards. These examples were obtained by
an optimization method called “differential evolution” (DE, see Sect. 3.5) with-
out applying retinal noise. The objective function is 1−Q(P (x,u)) with vari-
able parameters u. The parameters of DE are NDE = 40, λ = 0.4, γ = 1,
pCR = 0.5, Gmax = 500, and Emin = 0.001 corresponding to a value of
Q(...) = 0.999; for the parameter definitions see Table 3.4. This procedure
was repeated 20 times for both the 2D and 3D task. In the task conditions with-
out retinal noise, the value for Q∗ was chosen slightly below the average quality
of the resulting controller networks. For the task conditions with noise, the av-
erage quality of these controller networks was assessed while applying retinal
noise. The value for Q∗ was chosen slightly below the resulting quality as well.

The results of the DE controller networks are shown in Table 4.1. For each
task condition, two quality values are given. The left one is the average con-
troller quality QDE, the right one the value chosen for Q∗ for the respective

3 Whenever random sensory input is generated for the saccade task, first a random position
for the target object is determined (from either the 2D table surface or from the 3D cube).
Afterwards, the initial motor position of the cameras is repeatedly generated at random until the
target object is “visible” in both camera images.
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Saccade task QDE Q∗ Exploration trials (SD)
2D 0.989 0.985 591179 (67778)
2D with noise 0.98 0.975
3D 0.985 0.98 516721 (79917)
3D with noise 0.977 0.972

Table 4.1 — Results of the DE controller networks for the saccade control task. QDE

is the average controller quality for the respective task condition, Q∗ the desired quality
level.

task condition for the subsequent studies. The average quality of these con-
troller networks (trained with virtually perfect learning examples) marks the
upper performance limit of these networks for the saccade control task. For this
reason, Q∗ is chosen just slightly below their average quality. Moreover, the
average number of exploration trials required to collect the training set by DE is
reported in Table 4.1 as well. It is rather large for both the 2D and 3D saccade
control task in comparison to the results obtained with the different learning
strategies (see Tables 4.3 and 4.4).

4.1.2.2 Parameter variation

All learning strategies differ in the way they can be adjusted by implementing
certain constraints or by setting specific parameters. To arrive at a fair com-
parison of their performance, less important parameters were carefully set to
assure a good basic performance of each learning strategy (“fixed parameters”
in Tables C.1 to C.4 in App. C). Afterwards, one to three parameters with sig-
nificant impact on the performance were varied systematically for each strategy
(“variable parameters” in Tables C.1 to C.4). For each parameter combination,
20 learning passes were carried out. QC was measured during the course of
learning. Whenever QC equaled or exceeded Q∗, the learning pass was halted.
The needed number of exploration trials for a certain parameter combination is
the average of all 20 learning passes. Furthermore, a learning pass was stopped
without success whenever the number of learning cycles became larger than an
upper limit Tmax (for the online methods FEL, DSL, and CLbA, a learning cycle
is identical to the generation of a single learning example; for the batch methods
DIM and DIM_NGPCA, a learning cycle is identical to a training epoch (DIM)
or a single training step (DIM_NGPCA); for SLbA, a learning cycle is identical
to a stage; these different definitions result from the different structure of the
compared learning strategies). Values for Tmax are also reported in Tables C.1
to C.4. A combination of variable parameter values is only designated as “suc-
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Term Explanation
Exploration trial Execution of a single motor command during the course of learning
Learning pass A single attempt to acquire the desired quality level through learning

with a specific setting of the variable parameters
Learning cycle Each learning pass consists of a sequence of learning cycles; the

exact meaning varies between learning strategies
Training step An update of the network parameters by a single learning example
Training epoch An update of the network parameters by an iteration through all of

the learning examples in the training set

Table 4.2 — Definition of important terms.

cessful” if all 20 learning passes succeeded. For clarity, Table 4.2 provides an
explanation of the terms “exploration trial”, “learning pass”, “learning cycle”,
“training step”, and “training epoch”.

4.1.2.3 Task conditions

In the 2D version of the fixation task, the table surface (size: 800 × 800
mm) with fixation targets was defined by the corners (250,−700,−300) and
(1050,−700, 500) (in mm) in the world coordinate system as depicted in
Fig. A.1. From the viewpoint of the cameras, most part of the table surface
extends rightwards. In the 3D version, the cube had a size of 550 × 550 × 550
mm and was defined by the corners (275,−925,−275) and (825,−375, 275)
(in mm). The cube extends above and below the surface of the white table in
Fig. A.1. For both the 2D and the 3D version, Fig. 4.1 illustrates that the sac-
cade plant is close to linear. For the center and the corners of the square (2D)
and cube (3D), the relationship between the pan and tilt setting and the values
for xleft and yleft is shown. At least in the visible range (xleft, yleft ∈ [−1; 1]), the
resulting graphs are approximately linear.

In the task conditions with noise, the controller input from the visual modal-
ity (xleft, yleft, xright, yright) was disturbed by Gaussian noise with a standard
deviation of 0.015 (approx. 1% of the camera images’ diagonal).

4.1.3 Learning strategies

4.1.3.1 Networks

The adaptive controllers (expect of DIM_NGPCA) were implemented by multi-
layer perceptrons (MLPs; see Sect. 3.1). Figure 4.2 (left) shows the general
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Figure 4.1 — These graphs show how the normalized x and y coordinates in the left
camera image for the projection of different points in the world change depending on
the pan and tilt setting (verghor and vergvert are set to 0.0). Bold dashed line: Center
of the square (2D) or the cube (3D) with fixation targets. Bold black lines: Corners
of the square (2D) or lowermost corners of the cube (3D) with wy = −925 mm. Bold
gray lines: Uppermost corners of the cube (3D) with wy = −375 mm. Horizontal dashed
lines: Upper and lower limit of visibility in the camera image.
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Figure 4.2 — Left: General controller network for the saccade control task. Right: Con-
troller network for DIM (with additional input units for y∗, the desired target position;
the dashed arrow line indicates a shortcut connection from the y∗ input layer directly to
the output layer).

controller network with linear input units, four hidden sigmoid units (hyperbolic
tangent as activation function), and linear output units. A shortcut connection
projects directly from the input to the output layer. This facilitates learning
of the linear part of the inverse plant. Only the network for DIM (Fig. 4.2,
right) is larger (with six hidden sigmoid units) because of the additional input
for y∗. Figure 4.3 depicts the combined network used for DSL consisting of
the forward model (FM) and the controller. As pointed out in section 2.2.4,
first the network weights belonging to the FM are learned. Afterwards, these
connections are frozen and the controller part of the network is trained. For
all learning strategies, stochastic gradient descent (online backpropagation, see
Sect. 3.1.2) was applied for network training. To keep things as straightforward
as possible, we did not apply any modifications to the standard backpropagation
algorithm such as using an additional momentum term (Zell, 1997). Weights
were initialized to random values from the range [−0.1; 0.1]. Thus, regarding
network training, there is only one free parameter, the learning rate η.

The NGPCA network for DIM_NGPCA is specified as described in
Sect. 3.4. The learning parameters are T = 100000 (alias Tmax), Tortho =
10000, ε(0) = 0.5, ε(T ) = 0.05, ρ(0) = 1.0, ρ(T ) = 0.01, σ2(0) = 0.0, and
λ(0) = 10.0. The number of ellipsoids N and the number of eigenvectors m
are varied.

4.1.3.2 Parameter settings

Parameters for FEL In our implementation of FEL, the only free parameter
is the gain factor η. It is equivalent to the learning rate of stochastic gradient
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Figure 4.3 — Combined network for DSL for the saccade control task, consisting of the
controller and the forward model. The dashed arrow line indicates a shortcut connection.

descent. The feedback controller equation ∆u = Gu,x∆y takes the follwing
form for the saccade control task:

∆




∆pan
∆tilt

∆verghor

∆vergvert


 =




1
2 0 1

2 0
0 1

2 0 1
2

−1
2 0 1

2 0
0 −1

2 0 1
2







−xleft

−yleft

−xright

−yright




This is a heuristic form which does not take the kinesthetic input into account.
As shown in Sect. B.3 in the appendix, the kinesthetic input plays only a subor-
dinate role for the plant characteristics. Therefore, this omission is justified.

Parameters for DSL DSL has four parameters: the number of learning ex-
amples for the FM NFM, the number of epochs used to train the FM, and the
learning rates ηFM for FM training and η for controller training. The number of
epochs used to train the forward model was set equal to NFM. This proved to
result in proper learning of the FM without overfitting. ηFM was set to a fixed
value, NFM and η were varied systematically.

Parameters for DIM The most important parameter for DIM is the number
of learning examples NCON in the training set. The learning rate η was set to a
fixed value.
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Parameters for DIM_NGPCA In addition to the number of ellipsoids N and
the number of eigenvectors m, a third variable parameter for DIM_NGPCA is
the number of learning examples NCON in the training set.

Parameters for SLbA For SLbA, one needs a strategy how to increase the
number of learning examples and training epochs in each stage. It proved to be
a favorable approach to increase the number of learning examples from stage
to stage, starting with 10 examples in stage 1 and increasing this number by
10 every stage. This corresponds to learning the coarse structure of the prob-
lem first with only a small number of learning examples and refining it in later
stages. For proper learning without overfitting, the number of training epochs
in each stage was chosen to equal the number of learning examples. The ap-
plied quality function Q is stated in Eqn. (4.1). The quality threshold for the
generation of a single learning example with random sensory context input x

is computed as Q̃k = Q(P (x,u0)). In the first stage (k = 1), u0 is a random
motor command. For k > 1, u0 = Ck−1(x). The noise which is added to u0

in the search for a better motor output is drawn from a multivariate Gaussian
distribution with zero mean and standard deviation σ = σ0 [1−Q(P (x,u0))]
for all dimensions. Computing σ this way ensures that the better the saccade
u0, the smaller its variation. This is reasonable since large variations of a good
saccade are more likely to result in worse than better fixation. The parameter
σ0 was varied systematically. It has a significant impact on the performance of
SLbA.

Parameters for CLbA Similar to SLbA, also CLbA relies on the qual-
ity function Q in Eqn. (4.1). The quality threshold is computed as
Q̃k = Q(P (x,u0)) with u0 = C(x) for all learning cyles expect for the
first where u0 is a random motor command. The motor noise distribution is
defined as stated for SLbA. The two adjustable learning parameters σ0 and η
were varied systematically.

The parameter settings for all learning strategies and task conditions are re-
ported in Tables C.1 to C.4 in App. C.

4.1.4 Results

General remarks The results for the 2D learning task are presented in Table
4.3, for the 3D learning task in Table 4.4. The number of required exploration
trials NEX for the best successful combination of variable parameter values and
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the settings of these parameters are reported there (for DSL, NEX is computed
as the sum of the number of exploration trials for the generation of the training
set of the FM NFM

EX and for the subsequent controller training NCON
EX ). A more

detailed presentation is provided in Appendix D.1: Histogram plots for each
learning strategy (Figs. D.2, D.4, D.6, and D.8) show the number of exploration
trials for every combination of variable parameters. Parameter combinations for
which at least one of the 20 learning passes failed are omitted since their number
of exploration trials is not comparable any more with the fully successful com-
binations in a meaningful way, at least for the learning strategies for which the
number of learning cycles is tied to the number of exploration trials (FEL, DSL,
SLbA, CLbA). These histograms are mainly provided to prove that the range
of variable parameter values was carefully chosen. Mostly, the best parameter
value (combination) is at the minimum of an approximately u-shaped distribu-
tion. Only for DIM and DIM_NGPCA, the number of exploration trials NEX

increases linearly with the size of the training set NCON. The ratio NEX/NCON is
larger than 1.0 since a single random saccade is not necessarily usable as learn-
ing example for DIM or DIM_NGPCA. Instead, the saccadic target is most
often not longer visible in both camera images after a random saccade. Learn-
ing examples like this are useless. For the same reason, the collection of a
single learning example for the training set of the FM in DSL requires multiple
exploration trials. The ratios NEX/NCON (for DIM) and NFM

EX /NFM (for DSL)
amount roughly to 10 for all task conditions.

In addition, for DIM_NGPCA a special difficulty arises: The number of
exploration trials depends only on the size of the training set NCON. Thus, a
multitude of combinations of the number of ellipsoids N and the number of
eigenvectors m can be successful for a certain value of NCON. In Tables 4.3 and
4.4, only one of these combinations is reported, but in Figs. D.1, D.3, D.5, and
D.7, a grayscale plot shows for each parameter combination how many of the
20 learning passes were successful.

General performance For the 2D task without noise, FEL is clearly the
fastest learning strategy with only 184 required exploration trials (NEX = 184),
followed by DIM_NGPCA (NEX = 400), DIM (NEX = 415), DSL (NEX =
658), CLbA (NEX = 3120), and SLbA (NEX = 8535). The same ranking order
with similar numbers of exploration trials applies to the 2D task with noise; only
CLbA shows a considerably worse performance with NEX = 5756. The per-
formance of DIM and DIM_NGPCA is barely distinguishable. Without noise,
both require a training set size of NCON = 50, with noise NCON = 40 for
DIM_NGPCA and NCON = 50 for DIM.

In the 3D task, the ranking order is different. Without noise, DIM_NGPCA
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2D saccade learning task without retinal noise

Learning strategy Exploration trials (SD) Variable parameters
FEL 184 (49) η = 0.28

DIM_NGPCA 400 (43) NCON = 50, N = 1, m = 16

DIM 415 (51) NCON = 50

DSL 658 (90) NFM = 20, η = 0.14

CLBA 3120 (497) σ0 = 0.7, η = 0.2

SLBA 8535 (1162) σ0 = 2.0, kmax = 8.0(0.45)

2D saccade learning task with retinal noise

Learning strategy Exploration trials (SD) Variable parameters
FEL 181 (26) η = 0.18

DIM_NGPCA 319 (34) NCON = 40, N = 2, m = 10

DIM 418 (53) NCON = 50

DSL 604 (71) NFM = 20, η = 0.14

CLBA 5756 (1681) σ0 = 1.3, η = 0.12

SLBA 8855 (1790) σ0 = 2.0, kmax = 7.7(0.56)

Table 4.3 — Results for the 2D saccade learning tasks. Learning strategies are sorted
in ascending order with regard to the required number of exploration trials. The cor-
responding best settings for the variable parameters are shown in the right column (for
SLbA, the average required number of stages kmax and its standard deviation (in brack-
ets) are shown as well).

takes the lead (NEX = 410, NCON = 40), closely followed by DIM (NEX = 538,
NCON = 50). The remaining results are: FEL (NEX = 1904), DSL (NEX =
4137), SLbA (NEX = 19005), CLbA (NEX = 33737). Virtually the same rank-
ing order results from the 3D task with noise, also the number of explorations
trials stays in the same order of magnitude for all strategies except for CLbA
with NEX = 58185. With noise, DIM_NGPCA and DIM share the first place,
both with the same size of the training set (NCON = 60).

Statistical tests Since we started this study without any in-advance hypothe-
ses, the only purpose of statistical tests is to support the post-hoc analysis of the
data by indicating how likely measured differences are caused by random vari-
ations or by real differences between the underlying populations. We restricted
the statistical analysis to the most important comparison, namely between learn-
ing strategies within each task condition. For this comparison, every learning
strategy was matched with every other strategy. The compared measure was the
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3D saccade learning task without retinal noise

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 410 (57) NCON = 40, N = 1, m = 16

DIM 538 (63) NCON = 50

FEL 1904 (322) η = 0.26

DSL 4137 (849) NFM = 20, η = 0.18

SLBA 19005 (1069) σ0 = 0.8, kmax = 22.9(0.74)

CLBA 33737 (5808) σ0 = 0.9, η = 0.2

3D saccade learning task with retinal noise

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 648 (71) NCON = 60, N = 1, m = 16

DIM 652 (64) NCON = 60

FEL 1680 (366) η = 0.2

DSL 3197 (499) NFM = 20, η = 0.11

SLBA 26498 (5308) σ0 = 1.4, kmax = 16.6(1.35)

CLBA 58185 (12989) σ0 = 1.7, η = 0.08

Table 4.4 — Results for the 3D saccade learning tasks. See caption of Table 4.3 for
further explanation.

mean number of required exploration trials (as reported in Tables 4.3 and 4.4).
The computed pairwise t-tests (two-sided, for independent samples4) yielded
highly significant results (p < 0.001) in all pairwise comparisons except for the
ones in which DIM and DIM_NGPCA were compared with NCON being equal
(2D task without noise, 3D task with noise). Since the process of training data
generation is identical for DIM and DIM_NGPCA, the latter result is inevitable.
Overall, these statistical results support the reliability of the reported data.

Additional observations In examining the grayscale plots for DIM_NGPCA
(Figs. D.1, D.3, D.5, and D.7), two interesting observations can be made which
partly reveal the structure of the underlying learning task. First, the lower bound
for the number of eigenvectors m amounts to 10 for successful parameter com-
binations in the 2D task and to 11 in the 3D task. Second, in every task condi-
tion, a single ellipsoid is sufficient for successful learning as long as NCON is
large enough. For the 2D task without noise and the 3D task with and without

4 The degrees of freedom were corrected to compensate for the unequal estimated popula-
tion variances (Bortz, 1993).
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Figure 4.4 — Required exploration trials for DSL with learning rate η = 0.1 for the
3D saccade learning task with retinal noise, split into trials needed for forward model
(FM) and controller training. Bars are completely omitted whenever at least one of the
20 learning passes failed.

noise, especially the combination of one ellipsoid with 16 eigenvectors belongs
to the parameter combinations which succeed with the smallest number of train-
ing examples NCON. Taken together, these findings support the initial claim that
the sensorimotor data manifold in the saccade learning task is not curved but
mainly linear, and moreover that the intrinsic dimensionality of this manifold
amounts to 10 or 11, respectively. Thus, the 3D task is more difficult to learn
than the 2D task because of the increased dimensionality of the sensorimotor
data manifold.

Regarding DSL, the best performance of DSL is obtained with NFM = 20
for all task conditions. For NFM = 10, DSL is rarely successful. For larger
values (NFM ≥ 30), learning succeeds but an increasing number of exploration
trials during controller learning NCON

EX is required. Only including the success-
ful parameter combinations, the correlations between NFM and NCON

EX amount
to r = 0.17 for the 2D task without noise, r = 0.22 for the 2D task with noise,
r = 0.45 for the 3D task without noise, and to r = 0.56 for the 3D task with
noise. Figure 4.4 illustrates the relationship between NFM and NCON

EX for the 3D
task with noise. Actually, NFM is an indirect measure for FM precision: The
correlations between the mean squared error of the FM (per pattern and output
unit) on a test set and NFM are negative (r = −0.70 for the 2D task without
noise, r = −0.59 for the other task conditions). Directly correlating the mean
squared test error and NCON

EX yields the following results: r = 0.01 for the 2D
task without noise, r = −0.22 for the 2D task with noise, r = −0.65 for the 3D
task without noise, and r = −0.69 for the 3D task with noise.
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2D Saccades 3D Saccades

Stage 1 Stage 1
left camera right camera

pan/tilt verg. hor./vert.

left camera right camera

pan/tilt verg. hor./vert.

Stage 4 Stage 11
left camera right camera

pan/tilt verg. hor./vert.

left camera right camera

pan/tilt verg. hor./vert.

Stage 8 Stage 22
left camera right camera

pan/tilt verg. hor./vert.

left camera right camera

pan/tilt verg. hor./vert.

Figure 4.5 — Graphical results of SLbA for the 2D and 3D saccade learning tasks
without noise at different stages. The sensory consequences of 1000 controller outputs in
response to random controller inputs are marked with black dots in the different panels.
In the final stage (last row), the controller output results in precise fixation (minimum
scatter around the center of the left and right camera image). The graphical display of
the final performance of the DE controller networks looks virtually the same.
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Without With noise
noise

Stage k QPS QC QPS QC

1 0.729 > 0.666 0.567 < 0.620

2 0.766 < 0.795 0.784 < 0.791

3 0.843 < 0.905 0.842 < 0.884

4 0.919 < 0.938 0.910 < 0.927

5 0.947 < 0.961 0.939 < 0.957

6 0.970 < 0.975 0.972 > 0.969

7 0.981 < 0.983 0.976 > 0.971

8 0.985 ≈ 0.985 0.980 > 0.977

Table 4.5 — Comparing the average quality QPS of the learning examples in the training
set with the average controller quality QC on a test set for the different stages of a single
learning pass of SLbA for the 2D saccade learning task without and with retinal noise.

With regard to SLbA, the required number of stages kmax is of special inter-
est. For the 2D task, it amounts to 8.0 (without noise) or 7.7 (with noise). The
standard deviations are smaller than one, indicating small variability. For the 3D
task, the values for kmax amount to 22.9 (without noise) or 16.6 (with noise),
also with rather small variability. Fig. 4.5 illustrates the results of two single
learning passes with optimum parameter settings, one for the 2D task without
noise with kmax = 8, and one for the 3D task without noise with kmax = 22.
For the first and last stage and a stage in between, a fourfold panel is shown,
depicting the coordinate space of the left and right camera image, the (pan, tilt)
subspace, and the (verghor, vergvert) subspace. The sensory consequences xt+1

of 1000 controller outputs ut in response to random controller inputs xt are
marked with black dots in the different panels. After the final stage, the con-
trollers are very good performers; this can be concluded from the small scatter
around the image centers, indicating precise fixation. In contrast, after the first
stage this scatter is still very large. In the 2D task, the shape of the table surface
on which the fixation targets are positioned emerges in the (pan, tilt) panel after
the last stage. Moreover, the (verghor, vergvert) panels of the last stage indicate
for both the 2D and the 3D task how small the variation of these variables is for
proper fixation movements.

To point out the aspect of quality increase due to the averaging which takes
place in controller training, Table 4.5 presents for the 2D task without and with
noise the average quality QPS of the learning examples in the training set side by
side with the average controller quality QC on a test set for the different stages
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of a single learning pass. For the 2D task without noise, from the second stage
on the controller is always better than the learning examples it gets for training.
Finally, in the last stage both quality values are nearly equal. This shows that
learning by averaging actually works as supposed. For the 2D task with noise,
the positive effect of averaging is lost because of the noise from the sixth stage
on. Nevertheless, controller quality still increases from stage to stage because
the underlying training set continues to improve.

4.1.5 Discussion

The saccade learning task requires that the controller adapts to an approximately
linear input-output relationship. Learning strategies which work by local linear
approximation like FEL and DSL, or which use linear models to represent the
training data manifold like DIM_NGPCA, seem to profit from this task charac-
teristic. For the simpler version, the 2D task, FEL is clearly the best. As soon
as the sensorimotor relationship gets more complex (3D task), DIM_NGPCA
and DIM take the lead. The performance of the variants of learning by averag-
ing (LbA) is considerably worse. Obviously, LbA cannot exploit the linear task
characteristics as efficient as the other learning strategies. The ranking order
between SLbA and CLbA changes depending on the task: In the 2D task condi-
tions, CLbA is first, otherwise SLbA. This indicates that CLbA has difficulties
to cope with complex sensorimotor relationships. The influence of noise on the
overall ranking order is basically non-existent, only the performance of CLbA
drops significantly.

Since the performance of FEL is considerably better than the performance
of DSL, it is fair to say that the heuristically determined gain matrix for FEL
is better suitable for the local linear adjustment than the estimate Ĵt

u,x which
is provided by the FM in DSL. A puzzling finding with regard to DSL are the
negative correlations between FM precision and the required number of explo-
rations trials for controller training. Intuitively, one would expect a better FM
to facilitate controller training and not vice versa. Only if the FM training set
is too small, controller training is in the danger to fail, most likely because the
small number of training examples is often not sufficient to cover all regions of
the sensorimotor space, forcing the FM to extrapolate. As soon as the FM train-
ing set is large enough, the negative correlation takes effect. This phenomenon
needs to be explored in forthcoming studies.

In summary, for mainly linear tasks like 2D and 3D saccade learning, the
learning strategies FEL, DIM_NGPCA, and DIM seem to be best suited. Only
if the ratio NEX/NCON gets too large because of the task characteristics, this
recommendation has to be restricted to FEL. However, every learning strategy
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is the superior choice for saccade learning compared to optimization methods
like DE which require a huge number of exploration trials (see Table 4.1 vs. Ta-
bles 4.3 and 4.4). The good performance of FEL supports biologically inspired
models of saccade learning which rely on FEL. In these models, the feedback
controller is mostly identified as (inherited and pre-wired) “brainstem mecha-
nism” (Dean et al., 1994; Gancarz and Grossberg, 1999).

4.2 Comparison Study on the Control of a Planar
Arm

In this section, the performance of the different learning strategies is compared
for the kinematic control of a simulated planar arm. This task poses several
special difficulties. First, the plant is strongly non-linear. Second, it implies
a one-to-many mapping. Since some of the explored learning strategies are
not suited for one-to-many mappings, different constraints are imposed on the
learning task.

Three different planar arms are explored in this study. They differ with
regard to the number of links L which varies between two and four. For the 3-
and 4-link arm, two different learning constraints are explored in addition to the
no-constraint condition. Moreover, for each planar arm, there is an additional
experimental condition with sensor noise. Altogether, this yields ten different
comparisons. Not all learning strategies are suited for each combination of
planar arm and constraint, thus the list of learning strategies in each comparison
varies (see Table 4.7).

4.2.1 Arm controller

4.2.1.1 Setup

The planar arm consists of L links, each of them with unit length (see Fig. 4.6).
The basis joint is at the origin of the two-dimensional coordinate system of
the working space. The joint angles of the planar arm form the vector θ =
(θ1, ..., θL)′. The relevant sensory information in this system is the position of
the tip of the last link y = (y1, y2)

′. It is used to define the desired sensory state
y∗ as well. The plant P is defined by the following equations:

(
y1

y2

)
= P (θ) =



∑L

i=1 cos
(∑i

j=1 θj

)

∑L
i=1 sin

(∑i
j=1 θj

)


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Figure 4.6 — Planar arm with L links. In this illustration, the tip position y deviates
from the desired tip position y∗.

Figure 4.7 — The operating range of the planar arm (gray area). The diagonal line
depicts the fully stretched planar arm with L links.

The operating range in which the desired sensory states y∗ are positioned is
restricted to an area with y∗1 ∈ [−L/

√
2; L/

√
2] and y∗2 ∈ [0.2; L/

√
2] (see

Fig. 4.7). The task of the controller is to position the planar arm by a motor
command u = θ resulting in y∗ = y. In contrast to the saccade controller of
Sect. 4.1, y∗ is variable and there is no sensory context input x.

Except for the marginal case of a completely outstretched arm, the inverse
kinematics of such a planar arm yields two solutions (for L = 2) or infinitely
many solutions (for L ≥ 3). Figure 4.8 illustrates for a 3-link arm that the
set of solutions is non-convex: The average of two solutions is no solution in
itself. This is clearly visible, when an elbow-down and an elbow-up solution are
combined (Fig. 4.8, left), but holds as well for two solutions from the elbow-
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Figure 4.8 — These figures illustrate the non-convexity of the sets of solutions for the
inverse kinematics of the 3-link planar arm. Left: The average of an elbow-down and
an elbow-up solution deviates considerably from the desired tip position. Right: Even
within the set of elbow-down solutions, averaging is not possible.

down class (Fig. 4.8, right). Thus, the planar arm suffers from the one-to-many
problem of motor learning (see Sect. 2.2.2). Jordan and Rumelhart (1992) used
a 3-link planar arm to illustrate exactly this point and to argue that DSL is
superior to DIM because the latter cannot cope with one-to-many problems (at
least when a function approximator is used as adaptive controller).

Since SLbA works also on the basis of function approximation, the mixture
of elbow-down and elbow-up postures during training resulted in a severe per-
formance drop for this learning strategy during initial preliminary tests. For this
reason, the learning task was slightly facilitated by restricting the initialization
range of the joint angles for the random generation of motor commands (when-
ever required in the course of each learning strategy): The angle θ1 of the basic
joint was drawn from the range between −90◦ and 180◦, all other angles from
the range between 0◦ and 180◦. This prevented the mixture of elbow-down and
elbow-up solutions during the random generation of motor commands while
preserving part of the one-to-many relationship. Beyond this, the operating
range of the joint angles was not restricted at all; depending on the learning
strategy, new motor commands outside the initialization range could arise.

4.2.1.2 Control scheme

The task of the controller is to generate motor output u = θ so that the tip of
the last link is placed at the desired position in the working space. As controller
input, there is no sensory context x (see Fig. 2.13) in this control task, only the
desired tip position y∗. The basic quality Q of an arm posture θ in conjunction
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with a desired tip position y∗ is computed as:

Qbasic(P (θ),y∗) = Qbasic(y,y∗) = 1− ‖y − y∗‖

As mentioned before, there are different constraints imposed on the learn-
ing task. These constraints are reflected by different quality functions for the
evaluation of the arm controllers (all computations involving θ angles are in
radiant):

• No additional constraint: Q0(y,y∗) = Qbasic(y,y∗)

• First constraint (“maximum symmetry”): All joint angles θi with i > 1
should be equal.

Q1(y,y∗) =
1

2
Qbasic(y,y∗) +

1

2


1−

√√√√ 1

L− 1

L∑

i=2

(
θ̄ − θi

)2



with θ̄ =
1

L− 1

L∑

i=2

θi

Whenever the arm collides with itself, Q1(y) is set to a penalty value of
−100.

• Second constraint (“minimum energy”): The arm should move as little as
possible from the zero position (where all joint angles amount to zero).

Q2(y,y∗) =
2

3
Qbasic(y,y∗) +

1

3


1− 1

2L

√√√√
L∑

i=1

θ2
i




The first constraint completely disambiguates the learning problem. To
achieve maximum quality Q1, only one elbow-down and one elbow-up solu-
tion are applicable. Together with the restricted initialization range, controller
learning is reduced to a functional relationship. It was expected in advance that
such a constraint would work in favor of SLbA. On the contrary, the second
constraint poses additional difficulties to SLbA since the maximum achievable
quality Q2 varies depending on the desired tip position. This requires changes
of the SLbA learning strategy as outlined in Sect. 4.2.3.1. Since constraints like
the first one (“maximum symmetry”) and second one (“minimum energy”) are
not unusual for complex learning tasks, it was considered worthwhile to explore
how they influence the performance of the different learning strategies.
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4.2.2 Experimental procedure

4.2.2.1 Quality measure

Like in the saccade control task, the different learning strategies are compared
with regard to the number of exploration trials which are required to arrive at
a certain controller quality Q∗. The quality QC of a controller is computed as
average quality of 250 motor outputs u in response to random desired sensory
states y∗. The quality Q of a single motor output is computed by the quality
function which corresponds to the current learning constraint.

The quality level Q∗ is determined by training the standard controller net-
work (see Fig. 4.9, left) with a set of 1000/1500 perfect learning examples over
2000/3500 epochs (first value for the 2-link arm, second value for the 3-link and
4-link arm) and assessing its quality afterwards. These examples were obtained
by the optimization method “differential evolution” (DE, see Sect. 3.5) under
application of the second constraint: The objective function is 1−Q1(P (θ),y∗)
with variable parameters θ. The parameters of DE are NDE = 40, λ = 0.4,
γ = 1, pCR = 0.5, Gmax = 500, and Emin = 0.001 corresponding to a value
of Q1(...) = 0.999; for details, see Table 3.4. This procedure was repeated 20
times. The value of Q∗ for each constraint was chosen close to the average qual-
ity QDE accomplished by the resulting controller networks if evaluated with the
respective quality function (and with application of additional sensory noise in
the condition with noise).

The results of the DE controller networks are shown in Table 4.6. For each
task condition, two quality values are given. The left one is the average con-
troller quality QDE, the right one the value chosen for Q∗ for the respective
task condition for the subsequent studies. The average quality of these con-
troller networks (trained with virtually perfect learning examples) marks the
upper performance limit of these networks for the planar arm task. For this
reason, Q∗ is generally chosen close to QDE with the exception of the 4-link
arm combined with Q2. Because this task condition proved to be very hard
and time-consuming, Q∗ was chosen considerably lower than QDE in this case.
Moreover, the average number of exploration trials required to collect the train-
ing set by DE is reported in Table 4.6 as well. It increases considerably with the
number of links and demonstrates that motor learning by DE is not a good idea
for real world applications.

4.2.2.2 Parameter variation

Like in the saccade learning task, less important parameters of the learning
strategies were carefully set to assure a good basic performance of each strat-
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Links QDE
0 Q∗

0 QDE
0N Q∗

0N QDE
1 Q∗

1 QDE
2 Q∗

2 Explor. trials (SD)
2 0.979 0.97 0.957 0.945 763413 (61724)
3 0.962 0.96 0.926 0.93 0.981 0.97 0.867 0.86 5508549 (310954)
4 0.947 0.94 0.904 0.9 0.973 0.97 0.889 0.86 10533129 (485243)

Table 4.6 — Results of the DE controller networks for the planar arm control task, eval-
uated with the different quality functions. QDE values are the average controller qualities
for the respective task conditions, Q∗ values are the corresponding desired quality lev-
els. QDE

0N and Q∗

0N indicate the values for the task condition with additional noise and no
constraint.

egy (“fixed parameters” in Tables C.5 to C.14 in App. C). Afterwards, one to
three parameters with significant impact on the performance were varied sys-
tematically for each strategy (“variable parameters” in Tables C.5 to C.14). For
each parameter combination, 20 learning passes were carried out.5 QC was
measured during the course of learning. Whenever QC equaled or exceeded
Q∗, the learning pass was halted. The needed number of exploration trials for
a certain parameter combination is the average of all 20 (or 5) learning passes.
Furthermore, a learning pass was stopped without success whenever the number
of learning cycles became larger than an upper limit Tmax (see Sect. 4.1.2.2 for a
definition of learning cycle for the different learning strategies). Values for Tmax

are reported in Tables C.5 to C.14. A combination of variable parameter values
is only designated as “successful” if all 20 learning passes succeeded (see Table
4.2 in the section on saccade learning for an overview of the terms “exploration
trial”, “learning pass”, “learning cycle”, “training step”, and “training epoch”).

4.2.2.3 Task conditions

The task variation for the arm control task has two components as explained be-
fore. First, the number of links is varied between two and four, and second, two
different constraints are applied to the learning task (in addition to the standard
no-constraint condition). Moreover, for each arm, there is one condition with
additional sensory noise, added to the measurement of the tip position y. This
influences both the accuracy of the sensory error signal and the quality mea-
surement. The noise is generated from a Gaussian distribution with variance
σnoise = 0.015L (1.5% of the length of the fully stretched arm). Altogether, this
yields ten task conditions as depicted in Table 4.7, in which the learning con-

5 Because of restrictions in the available computing time, some of the comparisons for the
4-link arm which turned out to be completely without success had to be restricted to 5 learning
passes.
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Number of links / quality function
2 3 4

Learning strategy Q0 Q0N Q0 Q0N Q1 Q2 Q0 Q0N Q1 Q2

FEL/J+
√ √ √ √ √ √

FEL/Jt
√ √ √ √ √ √

DIM
√ √

DIM_NGPCA
√ √ √ √ √ √ √ √ √ √

DSL
√ √ √ √ √ √ √ √ √ √

SLbA/a
√ √ √ √ √ √ √ √ √ √

SLbA/b
√ √ √ √ √ √ √ √ √ √

Table 4.7 — Overview of the experimental conditions. Combinations of learning strat-
egy and constraint without tick are excluded from the study.

straints are designated by their respective quality function: Q0→ no constraint,
Q0N → no constraint with noise, Q1 → "maximum symmetry" constraint, Q2

→ "minimum energy" constraint.

4.2.3 Learning strategies

4.2.3.1 Special considerations for the planar arm task

In the following, it is explained which learning strategies are employed in the
comparison study on the planar arm in which task conditions (see Table 4.7)
and which particular modifications are applied.

FEL The straightforward approach to FEL is to chose the gain matrix as
Gu = J+

u,x (see Sect. 2.2.3). In addition to this standard approach, a variation
of FEL with Gu = Jt

u,x is explored as well. As we pointed out in Sect. 2.2.4,
DSL works by approximating Jt

u,x as gain matrix. Thus, it is interesting to find
out how the performance of FEL with a precise gain matrix Jt

u,x differs from
the performance of DSL.

FEL is only incorporated into the comparisons without additional constraint.
It is possible to define a plant whose output reflects how well the constraints are
fulfilled (see DSL), but the analytical identification of the matrices J+

u,x and Jt
u,x

for this extended plant involves so many operations which are not plausible at
all for a truly adaptive system that FEL was only included in the comparisons
without learning constraint.

123



CHAPTER 4. EXPERIMENTAL STUDIES ON KINEMATIC MOTOR LEARNING

DSL DSL is included in every task condition. In the conditions with con-
straint, the FM of the DSL learning scheme has to learn the output of an ex-
tended plant which not only provides the tip position as output but also in-
formation relevant for the fulfillment of the constraint. For the first constraint
(“maximum symmetry”), the following L − 1 additional outputs are provided
by the plant:

yi+2 = θi+1 − θi+2 with i = 1, ..., L− 2 for L ≥ 3

Moreover, yL+1 is set to 1 for a posture with collision, and to−1 for a collision-
free posture. The desired outputs y∗i amount to 0 for i = 3, ..., L, and to −1 for
i = L + 1.

For the second constraint (“minimum energy”), the following additional out-
put is provided by the plant:

y3 =
1

2L

√√√√
L∑

i=1

θ2
i

The corresponding desired output y∗3 amounts to 0.

DIM Since DIM on the basis of function approximation cannot work for one-
to-many problems (Jordan and Rumelhart, 1992), it is only included in the com-
parisons with the 2-link arm. In searching learning examples for the training set
of DIM (and also of DIM_NGPCA), we decided to include only motor com-
mands which result in sensory states y such that y1 and y2 are positioned in the
operating range of the desired sensory states y∗. For this reason, the number
of exploration trials for DIM and DIM_NGPCA is larger than the number of
collected learning examples. By this means, the lacking goal-directedness of
DIM is directly reflected by the number of exploration trials and not only by the
additional effort of network training (network size, number of learning epochs,
etc.).

DIM_NGPCA The combination of DIM with NGPCA should be able to
tackle one-to-many problems. For this reason, DIM_NGPCA is included in
every comparison. In the conditions with constraint, the desired sensory state
as controller input and the output of the plant are extended in the same way
as described for DSL. This leads to the additional difficulty that the portion of
randomly generated learning examples in the training set which are useful for
the control task is considerably reduced (only the ones close to fulfilling the
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respective constraint by chance). Moreover, the second constraint, which en-
forces minimum deviation from the zero position of the arm, implies a tradeoff
between reaching precision and constraint fulfillment. During controller usage
after training, the desired sensory state y∗3 as controller input for this constraint is
specified as 0 to indicate that it should be as small as possible. However, none of
the learning examples contains an input y∗3 = 0 since y3 is always larger. Thus,
the NGPCA network has to extrapolate while generating motor commands dur-
ing controller usage. The results will show how well DIM_NGPCA can cope
with these added difficulties.

SLbA The simple standard strategy of learning by averaging as employed for
the saccade learning task did not yield satisfying results for the strongly non-
linear plant of the planar arm which includes non-convex solution sets for the
controller output. Therefore, three different enhancements are implemented, all
of them concerning the generation of a single learning example [x,y∗ −→ u].
They are explained in the following with the notation and on the basis of Sect
2.2.7.1, thus including the sensory context x.

First, a simple evolutionary strategy is used in the search for better learning
examples. The new motor command u is not only determined by the random
variation of u0 until Q(P (x,u),y∗) > Q̃k. Instead, for each generated motor
command u, an additional check is performed: Whenever Q(P (x,u),y∗) >
Q(P (x,u0),y

∗), u0 is substituted by u: u0 := u. Afterwards, the new u0 is
the basis for the generation of motor commands u. This process is repeated
until Q(P (x,u),y∗) > Q̃k (as usual). This evolutionary strategy speeds up the
search for better learning examples.

Second, during each search for a better learning example, the quality thresh-
old Q̃k is lowered with every non-successful attempt to find a motor command
u which exceeds this threshold. Let Q̃init

k be the inital quality threshold, uinit
0 the

initial u0 before the evolutionary process kicks in, and t the number of attempts
to find a suitable u so far. Q̃k is determined as

Q̃k = (1− λ∗SLbA) Q(P (x,uinit
0 ),y∗) + λ∗SLbAQ̃init

k

λ∗SLbA = e−λSLbAt

with λSLbA ∈ ]0; 1]. To interpret these equations: Q̃k decreases exponentially
towards the quality of uinit

0 , starting from Q̃init
k . λSLbA determines the speed of

decay and has to be set by the user as free learning parameter. This enhance-
ment helps to avoid that SLbA gets stuck with the generation of better motor
commands in a region where this is very difficult.

Third, an additional learning parameter λσ ∈ ]0; 1] is introduced for the
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random variation of u0. The noise which is added to u0 in the search for a better
motor command u is drawn from a multivariate Gaussian distribution with zero
mean and standard deviation σ = σ0λ

t
σ [1−Q(P (x,u0))] for all dimensions.

t is again the number of attempts to find a suitable u so far, σ0 is another free
learning parameter also found in the saccade learning task. By this means, the
search region for motor commands is reduced step by step, with the expectation
that it is easier to find better motor commands in the close vicinity of u0.

For the arm control task, the quality threshold Q̃k is determined in the fol-
lowing way: In the first stage (k = 1), it is set to 0.3. Afterwards, two different
algorithms are employed. In version (a), Q̃k is either set to the average quality
of the controller of the preceding stage k− 1 on its training set, or computed by

Q̃k = (1−Q(P (x,u0),y
∗))γQ̃ + Q(P (x,u0),y

∗) (4.2)

(depending on which value is larger). γQ̃ is a free learning parameter from the
range [0; 1] (in all simulation runs on the planar arm, it is set to γQ̃ = 0.5). In
version (b), only Eqn. (4.2) is used. Thus, the quality threshold in version (b)
depends solely on the quality of the controller output u0 in the specific con-
text, while version (a) uses the average controller quality as lower bound for
this threshold. This facilitates that the controller quality increases evenly in the
overall input space from stage to stage. On the other hand, version (b) is com-
putationally less expensive and has a simpler algorithmic structure which makes
it more attractive for both practical usage and biological modeling. SLbA/a and
/b are included in all comparisons.

CLbA Several attempts were made to find parameter configurations for CLbA
which allow at least an acceptable performance. But this proved to be impos-
sible; learning got stuck on a very low quality level. For this reason, further
attempts with CLbA were abandoned, and it is excluded from the comparison
study. The failure of CLbA is further discussed in Sect. 4.2.5.

4.2.3.2 Networks

Like in the saccade control task, the adaptive controllers (expect of
DIM_NGPCA) were implemented by MLPs. Figure 4.9 (left) shows the general
controller network with linear input units, ten hidden sigmoid units (hyperbolic
tangent as activation function), and linear output units. The only network input
is the desired tip position, no sensory context is provided. Figure 4.9 (right)
depicts the combined network used for DSL consisting of the FM and the con-
troller. The hidden layer of the FM has 30 sigmoid units. This rather large
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Figure 4.9 — Left: General controller network for the planar arm control task. The mo-
tor output consists of two to four joint angles, depending on the number of links of the
planar arm. Right: Combined network for DSL for the planar arm control task, consist-
ing of the controller (top three layers) and the forward model (bottom three layers). The
output of the forward model contains both the tip position and (optionally) additional
constraint units.

number was chosen to ensure that the network is complex enough to acquire
a precise FM even for the 4-link arm. As explained in section 2.2.4, first the
network weights belonging to the FM are learned. Afterwards, these connec-
tions are frozen and the controller part of the network is trained. For all learning
strategies, stochastic gradient descent (online backpropagation, see Sect. 3.1.2)
was applied for network training. To keep things as straightforward as possible,
we did not apply any additional tuning methods. Weights were initialized to
random values from the range [−0.1; 0.1]. Thus, regarding network training,
there is only one free parameter, the learning rate η.

The NGPCA network for DIM_NGPCA is specified as described in
Sect. 3.4. The learning parameters are Tortho = 10000, ε(0) = 0.5, ε(T ) = 0.05,
ρ(0) = 1.0, ρ(T ) = 0.01, σ2(0) = 0.0, and λ(0) = 10.0. The maximum number
of training steps Tmax differs between task conditions, the number of ellipsoids
N and the number of eigenvectors m are variable parameters.
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4.2.3.3 Parameter settings

Parameters for FEL The only free parameter is the gain factor η which is
equivalent to the learning rate of stochastic gradient descent.

Parameters for DSL DSL has four parameters: the number of learning ex-
amples for the FM NFM, the number of epochs used to train the FM, and the
learning rates ηFM for FM training and η for controller training. The number of
epochs used to train the FM was set to a quarter of NFM. This proved to result
in proper learning of the FM without overfitting. ηFM was set to a fixed value,
NFM and η were varied systematically.

Parameters for DIM The most important parameter for DIM is the number
of learning examples NCON in the training set. The learning rate η was set to a
fixed value.

Parameters for DIM_NGPCA In addition to the number of ellipsoids N and
the number of eigenvectors m, a third variable parameter for DIM_NGPCA is
the number of learning examples NCON in the training set.

Parameters for SLbA For SLbA, one needs a strategy how to increase the
number of learning examples and training epochs in each stage. This strategy
was varied depending on the number of links and the selected constraint. It is
reported in Tables C.5 to C.14 in the format LE: a-b-c / EP: a-b-c with a being
the start value, b the increase from stage to stage, and c the maximum value.
LE indicates the number of learning examples, EP the number of epochs. The
other learning parameters are λSLbA (fixed), λσ (fixed), and σ0 (varied system-
atically) as described in Sect. 4.2.3.1. The quality function is either Q0, Q1, or
Q2, depending on the applied constraint.

The parameter settings for all learning strategies and task conditions are re-
ported in Tables C.5 to C.14.

4.2.4 Results

General remarks The results for the 2-link arm are presented in Table 4.8, for
the 3-link arm in Table 4.9, and for the 4-link arm in Table 4.10. The number of
required exploration trials NEX for the best successful combination of variable
parameter values and the settings of these parameters are reported there (for
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DSL, NEX is computed as the sum of the number of exploration trials for the
generation of the training set of the FM NFM

EX and for the subsequent controller
training NCON

EX ; NFM
EX = NFM for the planar arm task). A more detailed presen-

tation is provided in Appendix D.2: Histogram plots for each learning strategy
(Figs. D.10, D.12, D.14, D.16, D.18, D.20, D.22, D.24, D.26, and D.28) show
the number of exploration trials for every combination of variable parameters
for all task conditions. Parameter combinations for which at least one of the 20
learning passes failed are omitted since their number of exploration trials is not
comparable any more with the fully successful combinations in a meaningful
way, at least for the learning strategies for which the number of learning cycles
is tied to the number of exploration trials (FEL, DSL, SLbA). Histograms for
learning strategies without any success under the given task conditions are com-
pletely omitted. These histograms are mainly provided to prove that the range of
variable parameter values was carefully chosen. The best parameter value (com-
bination) is ideally at the minimum of an approximately u-shaped distribution
although this is often not clearly visible because of the omitted bars. Only for
DIM and DIM_NGPCA, the number of exploration trials NEX increases linearly
with the size of the training set NCON.

In addition, for DIM_NGPCA a special difficulty arises: The number of
exploration trials depends only on the size of the training set NCON. Thus, a
multitude of combinations of the number of ellipsoids N and the number of
eigenvectors m can be successful for a certain value of NCON. In Tables 4.8
to 4.10, only one of these combinations is reported, but in Figs. D.9, D.11,
D.13, D.15, D.17, D.19, D.21, D.23, D.25, and D.27, a grayscale plot shows
for each parameter combination how many of the 20 (or 5) learning passes were
successful.

General performance Instead of reiterating the numbers given in Tables 4.8
to 4.10, we will only point out the most interesting results here. Moreover,
the task conditions are abbreviated in the following: “LxQy” is the task condi-
tion with x links and quality function Qy. The task conditions with noise are
L2Q0N, L3Q0N, and L4Q0N. A learning strategy is designated as “successful”
in a certain task condition if it is able to exceed the desired quality level Q∗ in
all learning passes at least with one parameter combination; otherwise, it has
failed in this task condition.

Generally, DIM_NGPCA is the fastest learning strategy. The only excep-
tions are conditions L3Q2 (DSL is best) and L4Q1 (SLbA/a is best). In con-
dition L2Q0, DIM and DIM_NGPCA share the first place with NCON = 125.
Under the application of sensory noise (L2Q0N), DIM performs worse (but still
comes in second). For the 2-link and the 3-link arm, the winning margin of

129



CHAPTER 4. EXPERIMENTAL STUDIES ON KINEMATIC MOTOR LEARNING

2-link arm with Q0 (Q∗

0 = 0.97)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 552 (44) NCON = 125, N = 19, m = 3

DIM 573 (43) NCON = 125

SLbA/a 23154 (5231) σ0 = 0.7, kmax = 3.2(0.54)

SLbA/b 23559 (5418) σ0 = 0.7, kmax = 3.4(0.57)

DSL 25% failed (Q̄C = 0.969) NFM = 21000, η = 0.06

FEL/Jt 15% failed (Q̄C = 0.966) η = 0.1125

FEL/J+ 100% failed (Q̄C = 0.91) η = 0.025

2-link arm with Q0 and additional sensor noise (Q∗

0N = 0.945)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 901 (59) NCON = 200, N = 10, m = 4

DIM 2712 (105) NCON = 600

SLbA/b 41459 (20288) σ0 = 0.9, kmax = 3.3(0.64)

SLbA/a 47904 (14769) σ0 = 1.1, kmax = 3.7(0.71)

DSL 57090 (15404) NFM = 7000, η = 0.07

FEL/Jt 63335 (27819) η = 0.075

FEL/J+ 60% failed (Q̄C = 0.94) η = 0.025

Table 4.8 — Results for the 2-link arm. Learning strategies are sorted in ascending
order with regard to the required number of exploration trials. The corresponding best
settings for the variable parameters are shown in the right column (for SLbA, the average
required number of stages kmax and its standard deviation (in brackets) are shown as
well). For learning strategies which never succeeded in all learning passes the parameter
combination with the maximally achieved average final controller quality Q̄C and the
percentage of failed passes with these settings is reported.

DIM_NGPCA compared to the second-best is large (for L2Q0, NEX = 552
for DIM_NGPCA and NEX = 23154 for SLbA/a; for L3Q0, NEX = 2696 for
DIM_NGPCA and NEX = 62614 for SLbA/b). For the 4-link arm, this distance
is smaller (for L4Q0, NEX = 18171 for DIM_NGPCA and NEX = 48650 for
FEL/Jt). In task condition L3Q2, DIM_NGPCA fails completely by a consid-
erable margin (Q̄C = 0.80 compared to Q∗2 = 0.86), in condition L4Q1 only
by a small amount. In the latter task condition, a slight decrease of the desired
quality level would likely have resulted in a success of DIM_NGPCA with at
least a few parameter combinations.

The performance of SLbA is mixed with versions (a) and (b) being similar
performers. Version (a) has a slight lead since it is faster than (b) in six of
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3-link arm with Q0 (Q∗

0 = 0.96)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 2696 (70) NCON = 1000, N = 100, m = 4

SLbA/b 62614 (34174) σ0 = 0.4, kmax = 6(2)

SLbA/a 73788 (50860) σ0 = 0.4, kmax = 6(4)

FEL/Jt 100615 (36808) η = 0.03

DSL 106590 (43683) NFM = 3000, η = 0.03

FEL/J+ 10% failed (Q̄C = 0.959) η = 0.035

3-link arm with Q0 and additional sensor noise (Q∗

0N = 0.93)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 5439 (52) NCON = 2000, N = 40, m = 4

FEL/Jt 90775 (29422) η = 0.02

DSL 102530 (41040) NFM = 5000, η = 0.03

SLbA/a 179026 (152936) σ0 = 0.4, kmax = 7(4)

SLbA/b 232908 (168604) σ0 = 0.6, kmax = 8(4)

FEL/J+ 15% failed (Q̄C = 0.929) η = 0.04

3-link arm with Q1 (Q∗

1 = 0.97)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 8116 (123) NCON = 3000, N = 60, m = 3

SLbA/a 34971 (889) σ0 = 0.9, kmax = 3(0)

SLbA/b 36325 (5284) σ0 = 0.9, kmax = 3(0)

DSL 82765 (30371) NFM = 7000, η = 0.03

3-link arm with Q2 (Q∗

2 = 0.86)

Learning strategy Exploration trials (SD) Variable parameters
DSL 53950 (13972) NFM = 7000, η = 0.03

SLbA/a 65194 (29768) σ0 = 0.6, kmax = 4(0)

SLbA/b 70691 (30483) σ0 = 0.3, kmax = 4(0)

DIM_NGPCA 100% failed (Q̄C = 0.80) NCON = 41000, N = 120, m = 1

Table 4.9 — Results for the 3-link arm. See caption of Table 4.8 for further explanation.
kmax and its standard deviation are rounded down to integer values.
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4-link arm with Q0 (Q∗

0 = 0.94)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 18171 (175) NCON = 7500, N = 200, m = 6

FEL/Jt 48650 (15288) η = 0.015

DSL 56100 (19144) NFM = 3000, η = 0.01

FEL/J+ 158050 (59411) η = 0.02

SLbA/b 40% failed (Q̄C = 0.93) σ0 = 0.55, kmax = 38(11)

SLbA/a 80% failed (Q̄C = 0.92) σ0 = 0.1, kmax = 45(8)

4-link arm with Q0 and additional sensor noise (Q∗

0N = 0.9)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 18141 (188) NCON = 7500, N = 140, m = 4

FEL/Jt 52500 (23972) η = 0.0125

DSL 63850 (22477) NFM = 5000, η = 0.01

FEL/J+ 142850 (82594) η = 0.02

SLbA/b 20% failed (Q̄C = 0.90) σ0 = 0.3, kmax = 36(8)

SLbA/a 20% failed (Q̄C = 0.899) σ0 = 0.2, kmax = 35(11)

4-link arm with Q1 (Q∗

1 = 0.97)

Learning strategy Exploration trials (SD) Variable parameters
SLbA/a 188863 (29839) σ0 = 0.7, kmax = 6(0)

SLbA/b 199904 (45781) σ0 = 0.7, kmax = 6(1)

DSL 20% failed (Q̄C = 0.97) NFM = 15000, η = 0.01

DIM_NGPCA 40% failed (Q̄C = 0.968) NCON = 90000, N = 360, m = 4

4-link arm with Q2 (Q∗

2 = 0.86)

Learning strategy Exploration trials (SD) Variable parameters
DIM_NGPCA 16976 (133) NCON = 7000, N = 820, m = 1

DSL 18750 (2826) NFM = 5000, η = 0.015

SLbA/a 306796 (219080) σ0 = 0.2, kmax = 16(10)

SLbA/b 376095 (247611) σ0 = 0.5, kmax = 19(11)

Table 4.10 — Results for the 4-link arm. See caption of Table 4.8 for further explana-
tion. kmax and its standard deviation are rounded down to integer values.
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the eight task conditions in which SLbA is successful at all. SLbA gets the
first place in task condition L4Q1 and the second place in the task conditions
L2Q0, L3Q0, L3Q1, and L3Q2. In the conditions L4Q0 and L4Q0N, none of
the parameter combinations for SLbA/a or /b is successful.

Comparing DSL and FEL/Jt, the required number of exploration trials NEX

is in the same order of magnitude. In condition L2Q0N, DSL is faster, in
conditions L3Q0, L3Q0N, L4Q0, and L4Q0N, FEL/Jt is faster (even if only
the number of exploration trials for controller training NCON

EX in DSL is con-
sidered: NCON

EX = NEX − NFM for the planar arm task). First and second
places are reached in the following task conditions: L3Q2 (first place for DSL);
L3Q0N, L4Q0, and L4Q0N (second place for FEL/Jt); L4Q2 (second place for
DSL). FEL/J+ is generally slower or worse than FEL/Jt. Only in task condi-
tions L4Q0 and L4Q0N some of the parameter combinations are successful for
FEL/J+; nevertheless, FEL/J+ still requires around three times as many explo-
ration trials NEX as FEL/Jt.

As a general tendency, with an increasing number of links there is an in-
creasing number of required exploration trials NEX. Comparing for example the
conditions L2Q0, L3Q0, and L4Q0, the best learning strategy (DIM_NGPCA)
requires NEX = 552 for the 2-link arm, NEX = 2696 for the 3-link arm, and
NEX = 18171 for the 4-link arm. Thus, the increased complexity and dimen-
sionality of the sensorimotor space for larger link numbers has a direct im-
pact on the required learning effort for DIM_NGPCA (and also for SLbA). On
the contrary, FEL/Jt and DSL seem to perform the better the more links are
involved. The results for FEL/Jt are: no success at all in condition L2Q0,
NEX = 100615 in condition L3Q0, and NEX = 48650 in condition L4Q0.
Moreover, FEL/J+ in only successful for the 4-link arm and not for smaller link
numbers.

The application of sensory noise has only a small impact on the perfor-
mance of the different learning strategies. For the 2-link arm, the ranking order
does not change between conditions L2Q0 and L2Q0N; without noise, DSL
and FEL/Jt are not successful at all, with noise, at least some parameter com-
binations allow successful learning for these strategies. Comparing conditions
L3Q0 and L3Q0N for the 3-link arm, DSL and FEL/Jt profit again from the
application of noise which causes a slight reduction in the number of required
exploration trials NEX. On the contrary, SLbA/a and /b suffer from the noise
through a triplication of NEX; this changes the ranking order as well. For the
4-link arm, the application of noise neither changes the ranking order nor the
number of required exploration trials considerably between conditions L4Q0
and L4Q0N.

The influence of the constraints on the learning performance is rather in-
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consistent. Generally, SLbA profits from the first constraint in conditions L3Q1
and L4Q1. For SLbA/a, NEX = 73788 in condition L3Q0 compared to NEX =
34971 in condition L3Q1. A similar relationship holds for the 4-link arm: no
success in condition L4Q0 vs. NEX = 188863 in condition L4Q1. In the latter
condition, SLbA/a and /b are the only successful learning strategies although
DIM_NGPCA and DSL only fail by a small margin. A slight decrease of the
desired quality threshold Q∗1 would likely have changed the picture. In con-
dition L3Q1, DIM_NGPCA has still the lead, but with a triplication of NEX

compared to condition L3Q0. For the second constraint, the results are very
different between the 3-link and the 4-link arm. Comparing conditions L3Q0
and L3Q2, the ranking order of learning strategies reverses. SLbA/a and /b
stay on the same performance level, while DSL improves from NEX = 106590
(L3Q0) to NEX = 53950 (L3Q2) and DIM_NGPCA fails completely in con-
dition L3Q2 by a considerable margin. For the 4-link arm, the ranking order
does not change between conditions L4Q0 and L4Q2. DIM_NGPCA stays first
with roughly the same number of required exploration trials. DSL stays sec-
ond but with a much better performance (NEX = 18750 for L4Q2 compared to
NEX = 56100 for L4Q0); SLbA improves as well from no success at all (L4Q0)
to NEX = 306796 (version (a) in condition L4Q2).

Statistical tests We restricted the post-hoc statistical analysis to the most im-
portant comparison, namely between learning strategies within each task con-
dition. For this comparison, every learning strategy was matched with every
other strategy (excluding the failed ones). The compared measure was the mean
number of required exploration trials (as reported in Tables 4.8 to 4.10). The
computed pairwise t-tests (two-sided, for independent samples6) yielded signif-
icant results (p < 0.05) in all pairwise comparisons except for the following
ones (p values are reported if smaller than 0.2):

L2Q0 : DIM vs. DIM_NGPCA (NCON equal, thus inevitable);
SLbA/a vs. SLbA/b

L2Q0N: SLbA/b vs. SLbA/a; SLbA/a vs. DSL (p = 0.07); DSL vs. FEL/Jt

L3Q0 : SLbA/b vs. SLbA/a; SLbA/a vs. FEL/Jt (p = 0.07); FEL/Jt vs. DSL
L3Q0N: FEL/Jt vs. DSL; SLbA/a vs. SLbA/b
L3Q1 : SLbA/a vs. SLbA/b
L3Q2 : DSL vs. SLbA/a (p = 0.15); SLbA/a vs. SLbA/b
L4Q0 : FEL/Jt vs. DSL (p = 0.19)
L4Q0N: FEL/Jt vs. DSL (p = 0.14)

6 The degrees of freedom were corrected to compensate for the unequal estimated popula-
tion variances (Bortz, 1993).
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L4Q1 : SLbA/a vs. SLbA/b
L4Q2 : SLbA/a vs. SLbA/b

These results suggest that it is not possible to draw any firm conclusions
from the direct comparisons between SLbA/a and SLbA/b and between FEL/Jt

and DSL. Otherwise, the statistical analysis supports the reliability of the re-
ported data.

Additional observations The grayscale plots for DIM_NGPCA (Figs. D.9,
D.11, D.13, D.15, D.17, D.19, D.21, D.23, D.25, and D.27) reveal interesting
observations regarding the interaction of the task characteristics and the behav-
ior of NGPCA. First of all, for the conditions without constraint (L2Q0, L2Q0N,
L3Q0, L3Q0N, L4Q0, and L4Q0N), the lower limit for the number of eigenvec-
tors m in successful learning passes seems to be equal to L, the number links.
Only if a huge number of ellipsoids N is available to the network (in conditions
L4Q0 and L4Q0N for N > 200), parameter combinations with m < L suc-
ceed consistently. The upper limit for m for successful performance seems to
be L + 2, the overall number of dimensions of the sensorimotor space. Only if
additional noise is applied and N is large in relation to the size of the training
set NCON (as in conditions L3Q0N and L4Q0N), parameter combinations with
m > L can be unfavorable. These results show that there is at least a partial
tradeoff between m and N , and that network performance can drop if the data
manifold is too crowded with too many ellipsoids with too many eigenvectors.

In the conditions with the first constraint (L3Q1 and L4Q1), DIM_NGPCA
fails completely for the 4-link arm, thus there is only evaluable data for condi-
tion L3Q1. Here, the lower limit for m is still L = 3; moreover, there seems to
be a strict upper limit of m = L + 1 = 4. A closer inspection of the experimen-
tal data reveals that the average final controller quality Q̄C of DIM_NGPCA
is not just slightly below the desired quality level Q1 for m > 4, but instead
really abysmal (partly, Q̄C is even negative, indicating the occurrence of col-
lisions). Thus, the first constraint seems to impose a structure on the training
data manifold which is difficult for NCPCA to cope with when the number of
eigenvectors is too large. This result was barely foreseeable and illustrates the
need to test the parameter settings for NGPCA carefully.

Applying the second constraint, DIM_NGPCA fails completely in condition
L3Q2, thus only condition L4Q2 remains for closer inspection. Here, success
is only possible for m ≤ 2 eigenvectors. The smallest number of learning
examples with NCON = 7000 is required for the combination of m = 1 and
N = 820. For m = 2, at least NCON = 13000 learning examples are necessary
(with N = 520). Overall, at least N = 420 ellipsoids are necessary (starting
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2-link 3-link

4-link

Figure 4.10 — Distribution of 1000 learning examples for DIM_NGPCA in the (y1, y2)

working space for the different planar arms. Only the position of the tip y is shown as
black dot.

with NCON = 22000 and m = 2). This strange behavior of NGPCA can be ex-
plained by the special characteristic of the second constraint which has already
been discussed before in Sect. 4.2.3.1 for DIM_NGPCA. Basically, the sec-
ond constraint forces the NGPCA network to extrapolate for the generation of
motor commands. Obviously, this extrapolation only yields the desired results
if the training data manifold is represented by a densely packed large number
of units with only one or two directions for linear interpolation. This network
structure reminds of a lookup table where interpolation plays a subordinate role.
Thus, no far-reaching extrapolation along the direction of the eigenvectors takes
place, but instead the best-fitting motor output is recalled from the PCA unit
closest to the desired sensory state. Obviously, this "lookup table approach" of
DIM_NGPCA does not work as well in condition L3Q2 for the 3-link arm.

Figure 4.10 shows the distribution of 1000 learning examples in the working
space which are collected for DIM_NGPCA for the different planar arms (the
tip position y is shown as black dot). These learning examples are collected
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Stage 1 Stage 2

Stage 3 Stage 4

Figure 4.11 — Graphical results of SLbA/b for Q0 for the 3-link arm, depicted in the
(y1, y2) working space. The controller performance after different stages is illustrated by
black bars which indicate the distance between the desired tip position y∗ and the tip
position y resulting from the arm posture which is generated by the controller output u.
These error bars are shown for a regularly spaced grid of desired tip positions covering
the whole operating range. Moreover, for 14 desired tip positions at the outer border of
the operating range the corresponding controller-generated arm posture is shown in gray
color.

by generating random motor commands u = θ and assessing the plant output
y = P (θ) afterwards. Only if y is within the operating range of the desired
sensory states y∗, the learning example [y −→ u] is added to the training set.
Therefore, the ratio between the number of required exploration trials NEX and
the size of the training set NCON for DIM/DIM_NGPCA is larger than one. It
amounts to 4.5 for the 2-link arm, to 2.7 for the 3-link arm, and to 2.4 for the
4-link arm. Although this ratio works in favor for DIM_NGPCA for larger link
numbers, Fig. 4.10 shows that larger link numbers are actually worse: The dis-
tribution of learning examples becomes more and more unbalanced, lumping
around the origin of the working space while the outer corners of the operat-
ing range are only sparsely populated with learning examples. Therefore, the
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Stage 1 Stage 2

Stage 3

Figure 4.12 — Graphical results of SLbA/b for Q1 for the 3-link arm. For further
explanation see the caption of Fig. 4.11.

overall number of learning examples has to increase to guarantee that controller
training is successful in the periphery as well. For even longer planar arms,
this effect will work strongly against DIM_NGPCA while the ratio NEX/NCON

will converge to a value around 2 (since the operating range takes roughly half
of the working space in which the main part of the learning examples is gen-
erated). This uneven distribution of learning examples in the training set for
DIM_NGPCA is an indirect consequence of the lacking goal-directedness of
DIM.

As in the saccade learning task, we explore for DSL if the correlations be-
tween the mean squared error of the FM (per pattern and output unit after train-
ing) on a test set and the number of exploration trials during controller learning
NCON

EX are positive or negative. In contrast to saccade control, the results for the
planar arm are quite mixed in this respect: r = 0.20 for L2Q0N with ns = 29
(ns is the number of successful parameter combinations; only these are consid-
ered for the computation of r); r = 0.07 for L3Q0 with ns = 5; r = −0.17 for
L3Q0N with ns = 5; r = −0.24 for L3Q1 with ns = 16; r = 0.05 for L3Q2
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Stage 1 Stage 2

Stage 3 Stage 4

Figure 4.13 — Graphical results of SLbA/b for Q2 for the 3-link arm. For further
explanation see the caption of Fig. 4.11.

with ns = 14; r = 0.13 for L4Q0 with ns = 19; r = 0.39 for L4Q0N with
ns = 14; r = −0.01 for L4Q2 with ns = 19. These results are inconclusive.

With regard to SLbA, it is interesting to note that the number of required
stages increases strongly with the number of links. For example, in condition
L2Q0 kmax amounts to 3.2 for SLbA/a, in condition L3Q0 to 6, and in condition
L4Q0 to 25 (only considering the 20% of successful learning passes in this
condition). With noise, kmax gets slightly larger, whereas both constraints help
to reduce kmax considerably (e.g., kmax = 6 in condition L4Q1). As examples
for the course of learning with SLbA, Table 4.11 reports the average quality
QPS of the training set side by side with the average controller quality QC on a
test set for the different stages of a single learning pass of SLbA/b for the task
conditions L3Q0, L3Q0N, L3Q1, and L3Q2. The quality values in this table
demonstrate that averaging has here the same positive effect (as theoretically
supposed) as in the saccade learning task: At least in the first and second stage,
the controller quality is larger than the quality of its learning examples. In later
stages, especially in condition L3Q0N with sensor noise, learning slows down
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L3Q0 L3Q0N L3Q1 L3Q2

Stage k QPS QC QPS QC QPS QC QPS QC

1 0.53 < 0.59 0.52 < 0.57 0.46 < 0.85 0.49 < 0.60

2 0.84 < 0.90 0.84 < 0.88 0.94 < 0.96 0.76 ≈ 0.76

3 0.96 > 0.94 0.95 > 0.92 0.98 > 0.97 0.84 ≈ 0.84

4 0.98 > 0.96 0.97 > 0.92 0.88 > 0.87

5 0.97 > 0.93

Table 4.11 — Comparing the average quality QPS of the learning examples in the train-
ing set with the average controller quality QC on a test set for the different stages of a
single learning pass of SLbA/b for the task conditions L3Q0, L3Q0N, L3Q1, and L3Q2.

and relies mainly on the improvement of the training set from stage to stage.
Figures 4.11 to 4.13 further illustrate the course of learning for SLbA/b

for the 3-link arm with quality functions Q0 to Q2 (conditions L3Q0, L3Q1,
and L3Q2). In each figure, the controller performance after all stages from the
very first to the very last is indicated with black error bars (difference between
desired tip position y∗ and the tip position y resulting from the controller output
u = Ck(y

∗)). Moreover, the corresponding arm posture u is depicted as well
for 14 positions y∗ at the border of the operating range. The presented learning
passes have been carried out with the optimal parameter settings from Table
4.9. Independent of the quality function, learning progresses noticeably from
stage to stage with shorter and shorter error bars. Depending on the region
within the operating range, learning takes place with different speed, the outer
corners being the most difficult part. The first constraint (Q1) facilitates learning
in the second stage compared to the no-constraint condition (Q0), while the
second constraint (Q2) has the contrary effect. For Q1, the finally generated
arm postures show a clear symmetry (which is enforced by the first constraint
— obviously successfully); this is not the case for Q0 and Q2.

Figure 4.14 shows the final results for the other learning strategies in con-
dition L3Q0; controllers are trained with the optimal parameter settings from
Table 4.9. It is noticeable that all learning strategies which rely on local linear
approximation (DSL and FEL) converge to very similar final controller output
(comparing the arm postures of DSL, FEL/Jt, and FEL/J+ on the one hand and
of DIM_NGPCA and SLbA/b (in Fig. 4.11) on the other hand). In the analogous
comparison for the 4-link arm in Fig. 4.15, this similarity remains only between
FEL/Jt and DSL (which works basically with an approximation of Jt) while
the final arm postures for FEL/J+ show a very uneven characteristic. SLbA/a
and /b generate also similar arm postures. However, these figures present only
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DIM_NGPCA DSL

FEL/J+ FEL/Jt

Figure 4.14 — Comparison of various learning strategies for Q0 for the 3-link arm,
depicted in the (y1, y2) working space. The controller performance after training is illus-
trated by black error bars. Moreover, for certain desired tip positions the corresponding
controller-generated arm posture is shown in gray color. For a more detailed explana-
tion, see the caption of Fig. 4.11. Since FEL/J+ is not capable to reach the desired
quality level in this task condition, the error bars are longer on average for FEL/J+ than
for the other learning strategies.

the results of a single learning pass, and especially for the 4-link arm the final
arm postures generated by the controller networks do vary from pass to pass.
Nevertheless, Figs. 4.14 and 4.15 illustrate that the one-to-many problem of
the no-constraint conditions is solved by all learning strategies by converging to
distinct solutions in the different regions of the operating range. These solutions
vary between learning strategies and also between learning passes.

In Fig. 4.16, the influence of the different constraints on the final controller
output is compared for SLbA/b for the 3-link and the 4-link arm. For Q1

(the “maximum symmetry” constraint), it is clearly visible from the controller-
generated arm postures that this symmetry has been successfully achieved. With-
out any constraint (Q0), the arm postures show less symmetry (3-link arm) or
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DIM_NGPCA DSL

FEL/J+ FEL/Jt

SLbA/a SLbA/b

Figure 4.15 — Comparison of various learning strategies for Q0 for the 4-link arm. For
further explanation see the caption of Fig. 4.14. Since SLbA/a and /b are not capable to
reach the desired quality level in this task condition, the error bars are longer for SLbA/a
and /b on average than for the other learning strategies.
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3-link 4-link

Q0

Q1

Q2

Figure 4.16 — Comparison of the final results after the last stage for the different con-
traints with SLbA/b for the 3-link (left) and the 4-link (right) arm. For further explana-
tion see the caption of Fig. 4.14.
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barely any symmetry (4-link arm). The arm postures for Q2 and Q0 are very
similar. With regard to the 4-link arm, the constraint Q2 seems to help in reduc-
ing the length of the error bars. Although this constraint introduces a tradeoff
between reaching precision and “energy minimization”, the positive effect of
reducing the ambiguity of the one-to-many mapping seems to prevail for SLbA.

4.2.5 Discussion

In contrast to the saccade learning task, the plant in the planar arm task is non-
linear. As result, DIM_NGPCA is the clear performance leader while the local
linear approximation techniques like FEL and DSL are not really competitive
any longer. These linear techniques seem to be less well suited to non-linear
tasks. Nevertheless, successful NGPCA networks are also composed of a mul-
titude of ellipsoids to cope with the non-linearity. SLbA is a fair performer, but
decreasingly less so with an increasing number of links of the planar arm.

The strength of DIM_NGPCA is that it combines the simple learning strat-
egy of DIM with the capability of NGPCA to learn one-to-many mappings.
DIM_NGPCA offers a unique approach to the one-to-many problem by storing
multiple solutions of the inverse kinematics simultaneously if encountered dur-
ing learning. Here, we use a recall mechanism which only generates the solution
with the smallest distance measure (see Sect. 3.4.2). This solves one of the two
main problems of DIM. The second problem, its lacking goal-directedness, re-
mains but is not that important for planar arms with up to 4 links. However,
with an increasing number of links the distribution of learning examples in the
operating range becomes more and more unfavorable as shown in the results
section. Thus, at some point the missing goal-directedness will become an is-
sue. Another implication of the missing goal-directedness shows up for the first
constraint (Q1), for which only a small subset of the learning examples (the ones
close to “maximum symmetry”) represents the desired sensory outcome. How-
ever, the first constraint has only a mild negative impact on the performance of
DIM_NGPCA (at least for the 3-link arm), which demonstrates that the lack-
ing goal-directedness does not always pose a problem in practice. Overall the
performance of DIM_NGPCA becomes less reliable when learning constraints
are enforced by additional units for the desired sensory input. Especially for
the “energy minimization” constraint (Q2), the successful NGPCA networks
require at least 420 ellipsoids with exactly 2 eigenvectors and remind more of
a lookup table than of a “healthy” approximation with local PCAs. Such an
NGPCA network has 10080 parameters compared to the 74 weights of the MLP
controller networks which perform successfully with DSL or SLbA. One can
state in favor of DIM_NGPCA that it even manages to learn a task which re-
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quires extrapolation, but on the downside this is very expensive in terms of
network complexity, storage requirements, and computation effort during re-
call. Sensor noise has a negative impact on DIM_NGPCA as well, but not up
to a point where the performance leadership of DIM_NGPCA is endangered.
To learn noisy data, larger training sets are required. In the 2-link task, where
no one-to-many mapping is involved, DIM with MLPs performs just as good as
DIM_NGPCA in the condition without noise, but suffers more from noise.

Surprisingly, the performance of the local linear approximation techniques
(FEL and DSL) increases for larger link numbers. These learning strategies
might surpass DIM_NGPCA at some point. However, this has not been tested
in the present study. FEL/Jt shows the best performance, closely followed by
DSL and with a larger margin by FEL/J+. Thus, the best gain matrix is the ex-
act transpose of the Jacobian Jt

u,x. The estimate Ĵt
u,x which is generated by the

FM in DSL is slightly worse (but these are not firm conclusions; see the statisti-
cal analysis). Since the precision of the estimate Ĵt

u,x depends on the precision
of the FM, it is as puzzling as in the saccade learning task that the correlations
between the mean squared error of the FM on a test set and the number of ex-
ploration trials during controller learning in the DSL learning scheme are not
clearly positive, although the exact transpose of the Jacobian yields the overall
best results (in FEL). The pseudoinverse J+

u,x is the worst choice as gain ma-
trix; for the planar arm, one would clearly prefer Jt

u,x. However, based on the
available data it is not clear to what extent this ranking order of gain matrices
generalizes to other learning tasks. From the local linear approximation tech-
niques, DSL was the only one tested with constraints. These were imposed on
the learning task by adding sensory output units to the FM. Each of these output
units had a fixed desired value signaling perfect constraint fulfillment. Gener-
ally, DSL experienced a speedup of learning through the constraints, only for
the 4-link arm the first constraint (“maximum symmetry”) caused DSL to fail
by a very small margin. Additional sensor noise has only a small impact on
FEL and DSL; for the 2-link arm, it even helped DSL and FEL/Jt to get into the
set of successful learning strategies. In addition, FEL and DSL cope very well
with the one-to-many mapping of the planar arm task by converging to distinct
solutions which vary between learning passes due to the stochastic nature of
network initialization and training pattern generation.

The performance of SLbA decreases with an increasing number of links in
the no-constraint conditions. The most likely reason is that the one-to-many
nature of the learning task becomes the more dominant the more links are in-
volved. For the 2-link arm, there is no ambiguity at all; here, SLbA gets the
second place while FEL and DSL fail completely (at least without noise). For
the 3-link arm, SLbA still comes in second although the one-to-many prob-

145



CHAPTER 4. EXPERIMENTAL STUDIES ON KINEMATIC MOTOR LEARNING

lem is present and — even worse — the non-convexity of the solution sets (see
Sect. 4.2.1.1) violates one precondition of learning by averaging: It is not guar-
anteed that the average of two arm postures has a quality which is larger than
the quality of the worse of these two postures. Although this precondition is vi-
olated, SLbA is fairly successful for the 3-link arm, and averaging over learning
examples has the expected positive effect for subsequent controller performance
(see Table 4.11). But for the 4-link arm, SLbA finally fails because it cannot
cope with the increased ambiguity. Nevertheless, as soon as the ambiguity is
removed by the first constraint (there is only one posture for each tip position
with “maximum symmetry”), SLbA even becomes the best learning strategy
while DSL and DIM_NGPCA fail (at least for the 4-link arm). The second con-
straint (“minimum energy”) does not help to reduce the ambiguity completely,
instead it introduces a tradeoff between reaching precision and the distance of
the arm posture to the resting position in joint space. However, this constraint
helps SLbA as well to become successful for the 4-link arm although only with
a huge number of required exploration trials compared to the other learning
strategies. The impact of sensor noise on SLbA is rather negative for the 2-
and the 3-link arm (duplication respectively triplication of required exploration
trials), but for the 4-link arm additional noise lifts SLbA nearly into the group
of successful learning strategies: With noise, SLbA fails only by a very tight
margin. The performance difference between SLbA/a and /b is very small with
a slight edge for version (a) (as outlined in the results section; however, the
performance difference between SLbA/a and /b is not statistically significant in
any task condition). Thus, it might be favorable to use the overall quality of
the controller of the preceding stage as minimum for the quality threshold. This
may ensure more even learning speed across the operating range: Problematic
areas are lifted earlier on the average performance level.

The complete failure of CLbA on the planar arm task illustrates that learning
by averaging is not that well suited for online learning. For non-linear tasks,
the averaging between different imperfect learning examples obviously only
takes place in the desired way if the whole set of learning examples is presented
simultaneously for batch learning as in SLbA. We assume that during online
learning the effect of averaging is counteracted by catastrophic interference,
this means “forgetting” of the approximated function in one part of the input
space while learning takes place in other parts of the input space. In non-linear
tasks, the target function which has to be approximated by the MLP changes
significantly between different local parts of the input space, while linear tasks
are well-tempered in this respect. For this reason, learning by averaging in an
online fashion suffers especially from catastrophic interference for non-linear
tasks as was observed for the planar arm with CLbA.
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In conclusion, for non-linear and redundant task domains like the planar
arm, the application of DIM_NGPCA can be recommended as long as the neg-
ative impact of the lacking goal-directedness of DIM is not too strong, for ex-
ample due to an uneven distribution of learning examples in the operating range.
Otherwise, DIM_NGPCA is fairly efficient and resistent to noise. If additional
constraints have to be incorporated into the learning task, SLbA is a strong
contender since the constraints can be specified in a straightforward fashion in
the quality function which is used during learning. Moreover, SLbA proved
to be the overall most reliable learning strategy if constraints are applied. On
the downside, SLbA slows down if sensor noise is present and does not cope
well with one-to-many mappings and non-convex solution sets. The local lin-
ear approximation techniques (FEL and DSL) show no distinct advantage other
than their resistance to noise. They are not that fast and also not that reliable
with constraints (speaking of DSL; for FEL, constraints get even more compli-
cated since one needs to determine the Jacobian of the plant which is extended
by the constraint output units analytically). However, the available data shows
the trend that DIM_NGPCA slows down with an increasing number of links
while DSL and FEL speed up. Thus, for motor tasks with high-dimensional
sensorimotor spaces DSL and FEL may be faster than DIM_NGPCA since the
latter is hampered by the lacking goal-directedness in the generation of learning
examples.

4.3 Overall Discussion

In summary, the initial reasearch questions have been answered by the results
of the two learning tasks in the following way: For linear plants, local linear ap-
proximation techniques like FEL and DSL work very well while DIM_NGPCA
is a good allround performer for both linear and non-linear plants. CLbA is the
only learning strategy which fails completely on non-linear tasks. DIM_NGPCA
deals well with one-to-many mappings as do FEL and DSL while SLbA fails if
the redundancy of the learning task is too large. With regard to sensory noise,
the most considerable performance drop can be observed for CLbA, SLbA, and
DIM. If additional learning constraints are imposed, the most reliable learning
strategy is SLbA (closely followed by DSL). Overall, the results are consistent
with the theoretical summary on the different learning strategies in Sect. 2.2.8
(see also Table 2.1).

However, it has to be emphasized that the performance of DIM-related tech-
niques like DIM_NGPCA depends heavily on two task characteristics: First,
how much sampling effort is required to find learning examples which are close
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to the desired operating range of the controller in sensory space, and second,
how much sampling effort is required to fill all areas within the operating range
with at least the minimum of learning examples needed for good interpolation
during controller learning. Although these task characteristics are not directly
linked to the dimensionality of the combined input/output space of the con-
troller, one can expect that a larger number of dimensions often implies enlarged
sampling effort (as it does for the planar arm).

Moreover, the comparison in this study relies on the number of required ex-
ploration trials. This performance indicator works in favor of learning strategies
which are based on batch learning, this means collecting a set of learning ex-
amples first and using it afterwards multiple times for controller adaptation. In
contrast, learning strategies like FEL and DSL cannot reuse learning examples,
thus every cycle of controller adaptation requires additional exploration trials
to generate a new learning example. If one aims at biological plausibility and
rejects batch learning for this reason, the number or required exploration trials
for DIM/DIM_NGPCA and SLbA (and also for DSL due to FM training) gets
much larger. For example, the DIM_NGPCA networks with optimal parameter
settings in condition L3Q0 for the planar arm (3-link arm without constraint and
without noise) would require around seven times as many exploration trials if
they were not allowed to reuse the collected learning examples during controller
adaptation. However, in this task condition DIM_NGPCA would remain fastest
even with this additional burden.

Other performance indicators besides the required number of exploration
trials could be the number of required network adaptation cycles (as suggested
in the previous paragraph), the overall computational effort, the minimum re-
quired number of adjustable network parameters, etc. In this study, we referred
to number of exploration trials since these are connected to “real” movements
of the agent. We judge these real movements to be more relevant than indica-
tors of computational effort because the latter are not only linked to the motor
learning strategy but also to the applied neural network algorithm. For the same
reason, we evaluated batch learning strategies just by the number of required
exploration trials without any attempt to make this number equivalent to the
online learning strategies as discussed in the previous paragraph. Future neu-
ral network algorithms (e.g., an advanced version of NGPCA) may allow much
faster learning so that a single cycle through the training set would be sufficient
for successful controller learning. The absolute number of learning examples
in the training set, on the other hand, has a lower limit to allow precise interpo-
lation between the provided data points for any neural network algorithm, and
this number is directly linked to the required number of exploration trials.

Our goal in this study was to compare the effort of the different learning

148



4.3. OVERALL DISCUSSION

strategies to reach a very high quality level, close to the achievable optimum.
Because of this approach, some strategies simply failed in certain task condi-
tions because they were not able to reach this level consistently. Generally,
one can expect that the performance comparisons yield different results if the
demanded quality levels are varied, depending on the relationship between the
number of exploration trials and acquired controller quality for the different
learning strategies. One strategy may advance quickly in the beginning but
stagnate close to the demanded very high quality level, a second strategy may
proceed slower in the beginning but does not stagnate until the demanded very
high quality level is already surpassed. It might be interesting to explore these
relationships in future studies. Furthermore, one could extend the present study
to multiple noise levels instead of just one in each task configuration. Similar
to the demanded quality level, one can expect the different learning strategies to
break down at different levels of applied sensory noise (or even motor noise).
However, all of these additional variations will require a lot of additional com-
putational effort if they are combined with an as thorough exploration of the
parameter space for each learning strategy as in the present study.

Additional learning constraints have only been applied in the planar arm
task. Depending on the learning strategy, they were implemented differently.
SLbA adjusts itself easily to the constraints since they are directly encoded in
the quality function. For DIM_NGPCA and DSL, constraints were imposed by
additional desired sensory input units of the controller (DIM_NGPCA) or by
additional sensory output units of the FM (DSL). For DIM_NGPCA and DSL,
this constraint implemention caused less reliable learning success, while SLbA
partly even relied on additional constraints for successful learning to reduce
the ambiguity of the one-to-many mappings. Without constraints, the perfor-
mance of SLbA was worse than expected; nevertheless, for learning tasks with
constraints SLbA is the most direct approach without the need to modify the
controller input or to specify additional plant outputs, and moreover the most
reliable approach throughout our studies.

In conclusion, it has to be stated again that DIM in combination with NG-
PCA is the overall winner of this comparison study. This contradicts the view
that DIM is the least favorable approach among DIM, FEL, and DSL although
this view is often expressed in the literature (e.g., Jordan, 1996; Kawato, 1990).
It could be shown that the first argument against DIM, its inability to deal with
one-to-many mappings, can be overcome by abstract recurrent neural networks.
Moreover, the impact of its second weakness, the lacking goal-directedness, de-
pends heavily on the task characteristics, thus one can expect DIM to be fairly
efficient for many kinematic control tasks like in the present study. The third
criticsm (with regard to biological plausibility), the hypothesized need for neu-
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ral rewiring, can be counteracted by neural architectures where the input layer
of the DIM controller is a neural map which can be activated both from sen-
sory afferences and from memory (to represent desired sensory states) — this
could be part of a larger recurrent neural network architecture which repre-
sents sensory states and which can reproduce these states when it is triggered
by memory traces (this idea extends the neural map approach by Kuperstein,
1988). To resolve the remaining second weakness of DIM more convincingly,
future research might explore goal-directed search strategies in motor space to
replace the random sampling for the generation of learning examples.
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Chapter 5

Visual Forward Models
for Camera Movements

5.1 Adaptive Acquisition of a Prediction Mapping1

5.1.1 Visuomotor prediction

In Sect. 1.5 and Chapt. 2, we argued how important sensory or state predic-
tion by forward models (FMs) is for motor control, perception, and cognition
in general. Since many species rely on the visual sense for movement control,
for orientation and navigation, and for the identification of relevant objects and
events in the environment, it is of special interest to explore the mechanisms of
visual prediction. Accordingly, the focus in this section is on the learning of
FMs in the visual domain. In our understanding, visual FMs predict representa-
tions of entire visual scenes. In the nervous system, this could be the relatively
unprocessed representation in the primary visual cortex or more complex rep-
resentations generated in higher visual areas. Studies on predictive remapping
(see Sect. 1.3.4.2) suggest that visual prediction takes place at various process-
ing levels in the brain (Duhamel et al., 1992; Melcher, 2007; Umeno and Gold-
berg, 1997; Walker et al., 1995). Regarding robot models, the high-dimensional
sensory input and output space of visual FMs poses a tough challenge to any
machine learning or neural network algorithm. Moreover, there might be un-
predictable regions in the FM output (because parts of the visual surrounding
only become visible after execution of the motor command whose consequences
are to be predicted). In the following, a learning algorithm is suggested which
solves both problems in the context of robot “eye” movements.

1 This section is a slightly modified and updated version of the publication by Schenck and
Möller (2007; c© Springer). The permission for republication is kindly granted by Springer.
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Figure 5.1 — Left: Visual forward model (FM). Right: Single component of a visual
forward model predicting the intensity of a single pixel (xOut, yOut) of the output image
(adapted from Schenck and Möller, 2007, c© Springer).

5.1.2 Structure of the visual forward model

The task of the robot model is to predict the visual consequences of eye move-
ments. In the model, the eye is replaced by a camera which is mounted on
a pan-tilt unit. Prediction of visual data is carried out on the level of camera
images. In analogy to the sensor distribution on the human retina, a retinal
mapping is applied which decreases the resolution of the camera images from
center to border. This mapping is used to make the prediction task more difficult
and more realistic. The input of the visual FM is a “retinal image” at time step t
(called “input image” in the following) and a motor command mt.2 The output
is a prediction of the retinal image at the next time step t + 1 (called “output
image” in the following; see left part of Fig. 5.1).

The question is how such an adaptive visual FM can be implemented and
trained by exploration of the environment. A straight-forward approach is
the use of function approximators which predict the intensity of single pix-
els. For every pixel (xOut, yOut) of the output image, a specific forward model
FM(xOut,yOut) is acquired which forecasts the intensity of this pixel (see right part
of Fig. 5.1). Together, the predictions of these single FMs form the output im-
age as in Fig. 5.1 (left). This simple approach was explored in a diploma thesis
(Große, 2005) under the author’s supervision: Various neural network topolo-
gies and learning algorithms were tested and compared, but unfortunately none
of them produced satisfactory learning results. In conclusion, the direct predic-
tion approach suffers from the high dimensionality of the input space (since the
retinal image at time step t is part of the input) and is not successfully applica-
ble in practice. In the work of Hoffmann (2007), where images with a size of
40× 40 pixels are directly predicted, an additional denoising model is required.
This model has to be trained for the specific environment of the mobile robot.

Hence, in this study we pursue a different approach. Instead of forecasting
pixel intensities directly, our solution is based on a “back prediction” of where a

2 In contrast to the preceding chapters, the symbol m is used in this chapter to denote motor
commands, and the symbol s to denote sensory states. This change is applied to avoid confusion
with the image coordinates x and y.
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Figure 5.2 — Left: Mapping model (MM). Right: Validator model (VM) (for details
see text) (adapted from Schenck and Möller, 2007, c© Springer).

pixel of the output image has been in the input image before the camera’s move-
ment. The necessary mapping model (MM) is depicted in Fig. 5.2: As input, it
receives the motor command mt and the location of a single pixel (xOut, yOut)
of the output image; as output it estimates the previous location (x̂In, ŷIn) of the
corresponding pixel (or region) in the input image. The overall output image is
constructed by iterating through all of its pixels and computing each pixel in-
tensity as ÎOut

(xOut,yOut)
= IIn(x̂In,ŷIn) (using bilinear interpolation).3 Moreover, an ad-

ditional validator model (VM) generates a signal v(xOut,yOut) indicating whether
it is possible at all for the MM to generate a valid output for the current input.
This is necessary because even for small camera movements parts of the output
image are not present in the input image. In this way, the overall FM (Fig. 5.1,
left) is implemented by the combined application of a mapping and a validator
model.

The basic idea of the learning algorithm for the MM is outlined in the fol-
lowing for a specific mt and (xOut, yOut). During learning, the motor command
is carried out in different environmental settings. Each time, both the actual
input and output image are known afterwards, thus the intensity IOut

(xOut,yOut)
is

known as well. It is possible to determine which of the pixels of the input image
show a similar intensity. These pixels are candidates for the original position
(xIn, yIn) of the pixel (xOut, yOut) before the movement. Over many trials, the
pixel in the input image which matches most often is the most likely candidate
for (xIn, yIn) and therefore chosen as MM output (x̂In, ŷIn). When none of the
pixels matches often enough, the MM output is marked as non-valid (output of
the VM).

5.1.3 Method

To acquire such an MM and VM as in Fig. 5.2, the following steps are executed.
First, a grid of points is defined in the input space of the MM and VM (com-

3 In this study, pixel intensities of the retinal input and output images are three-dimensional
vectors in RGB color space.
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Figure 5.3 — Retinal mapping. Left: For an image depicting a regular grid. Right: For
a camera image (right part adapted from Schenck and Möller, 2007, c© Springer).

posed of mt and (xOut, yOut)), ranging from the minimum to the maximum
value in each input dimension. For each grid point, the most likely estimate
(x̂In, ŷIn) is determined by collecting candidate pixels in many different visual
surroundings. Along the way, the VM output v(xOut,yOut) is determined as well.
Thereafter, one radial basis function network (RBFN) is trained to interpolate
the MM output between the grid points, and another RBFN to interpolate the
VM output. The resulting networks can be applied to image prediction after-
wards. In the following, the methods are outlined in more detail.

5.1.3.1 Setup

The robot setup is shown in Fig. A.1 (left) in App. A. Only the right camera
is used during training, although the FM can be used afterwards for both the
left and right camera since they share the same geometry. A central quadratic
region of the original camera image (captured in RGB color) with a resolution
of 240 × 240 pixels is used for further processing (and called “camera image”
in the following for simplicity). The horizontal and the vertical angle of view
of this region amount to 48.5 degrees. The camera is mounted on a pan-tilt unit
with two degrees of freedom. In this study, the valid range for the pan angle
is between −60.4 and 23.8 degrees, for the tilt angle between −42.9 and 21.4
degrees (for a more thorough description, see App. B). In this range, the camera
image always captures at least a small part of the white table shown in Fig. A.1
(left) below the cameras.
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The pan and tilt axes cross in close vicinity to the nodal point of the camera-
lens system. For this reason, the effect of changing the pan and tilt position
by a certain amount (∆pan,∆tilt) is almost independent of the current camera
position (a detailed analysis of the camera geometry which supports this claim
is provided in App. B). Accordingly, the motor input mt of the FM just consists
of ∆pan and ∆tilt. Both values can vary between−29 and +29 degrees. For the
same reason, object displacements in the camera images during camera move-
ments are virtually independent from the object distance to the camera. Thus,
depth information is irrelevant for the learning task.

For the training of the visual FM, not the real setup was used, but instead
“virtual” camera movements were carried out using an image database. This
image database contains the camera images for more than 120, 000 different
camera positions within the above-mentioned pan-tilt range. Instead of using
the camera directly, we retrieved the images from the database. The recorded
scene shows the white table with 56 colored wooden blocks on its surface — 14
blocks each of the colors red, green, blue, and yellow.

5.1.3.2 Retinal mapping

As mentioned before, the input and output images of the FM are “retinal” im-
ages with decreasing resolution from image center to border. Camera images
are converted to such retinal images by a “retinal mapping”. The effect of this
conversion is depicted in Fig. 5.3. The basic idea of this mapping is best out-
lined in polar coordinates. The origins of the coordinate systems are located at
the image centers. They are scaled in a way that in both images the maximum
radius (along the horizontal/vertical direction) amounts to 1.0. rR is the radius
of a point in the retinal image, rC is the radius of the corresponding point in the
camera image, the angle of the polar representation is kept constant. rC is com-
puted by rC = λrγ

R + (1− λ)rR , γ > 1 , 0 ≤ λ ≤ 1. Here we use γ = 2.5
and λ = 0.8. The resolution of the final retinal image is 69 × 69 pixels. To
avoid aliasing artifacts in the heavily subsampled outer regions of the original
image, adaptive smoothing is applied (with a binomial filter whose mask size is
proportional to the local subsampling factor).

While the input image of the FM is an unmodified retinal image, the output
image is a center crop with a size of 53 × 53 pixels. This is necessary to clip
the black corners of the retinal image without valid information (see Fig. 5.3)
which are just a technical artifact.
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5.1.3.3 Grid of cumulator units

The input space of the MM and VM consists of four dimensions: ∆pan,
∆tilt, xOut, and yOut. In this space, a four-dimensional grid P of points
pijkl =

(
∆pan(i), ∆tilt(j), x(k)

Out, y
(l)
Out,

)
is inscribed, with i, j = 1, .., 11 and

k, l = 1, .., 13. ∆pan(i) and ∆tilt(j) vary from −29 to +29 degrees with con-
stant step size (covering the whole valid ∆pan/∆tilt range), while x

(k)
Out and y

(l)
Out

form an equally spaced rectangular grid covering the whole output image.
To each point pijkl, a so-called “cumulator unit” Cijkl is attached. Such a

unit is basically a single-band image with the same size as the input image. Each
“pixel” of this unit can hold any positive integer value including zero. They are
used to collect candidate pixels for the MM output (x̂In, ŷIn).

5.1.3.4 Learning process

The goal of the learning process is to accumulate activations in the cumulator
units. At the beginning, all pixels of these units are set to zero. In each learning
trial, the pan-tilt unit is first moved into a random (pan,tilt) position. The input
image for the FM is recorded and processed. Afterwards, the algorithm iterates
through all points of the grid P, the corresponding motor command is executed
(relative to the initial random position), and the output image is generated from
the camera image after the movement.4 For each point pijkl, the intensity of the
output image at the coordinates

(
x

(k)
Out, y

(l)
Out

)
is compared to the intensities of all

pixels (xIn, yIn) in the current input image. Whenever the intensity difference is
below a certain threshold α, the value of pixel (xIn, yIn) in cumulator unit Cijkl

is increased by one. The intensity difference is computed as Euclidean distance
in RGB color space. The threshold α is set to 3.5% of the overall intensity range
in a single color channel. In the present study, 100 trials were carried out, each
with 11 × 11 × 13 × 13 = 20449 iteration steps (size of the grid P).5 In each
trial, the initial camera position was varied, resulting in different input images.

Figure 5.4 illustrates four final cumulator units Cijkl in the grid P. Their po-
sitions along the ∆pan and ∆tilt dimensions are marked on the two-dimensional
grid on the left (camera movements to the lower right of increasing length, start-
ing at position 1 with zero movement). Their position

(
x

(k)
Out, y

(l)
Out

)
in output

4 To save time and effort, ∆pan(i) and ∆tilt(j) are iterated in the outer loops so that every
distinct motor command in the grid has only to be carried out once.

5 Because of the symmetric effect of ±∆pan and ±∆tilt, the effective number of iteration
steps could be quadruplicated to 81796 by varying the sign of ∆pan and ∆tilt systematically
while mirroring the input image accordingly — without carrying out any additional actual cam-
era movements.
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Figure 5.4 — Cumulator units for the center pixel for four different (∆pan,∆tilt) posi-
tions. All depicted cumulator units were normalized by the same scaling factor so that a
pixel value of zero corresponds to white and the overall maximum pixel value to black
(adapted and updated from Schenck and Möller, 2007, c© Springer).

image coordinates is the center pixel. The pixel color in the cumulator units
reflects the size of the accumulated sum from white (zero) to black (maximum
sum). Unit 1 with zero camera movement shows a clear maximum exactly in
the center. Thus, the most likely origin of the center pixel in the output image
is the center pixel in the input image. This is exactly what is expected when no
camera movement takes place. Unit 2 is associated with a small camera move-
ment to the lower right. The intensity maximum is no longer in the center of
the unit, but in the lower right corner: When the camera moves into a certain
direction, the new image center has its origin in the direction of the movement.
Because of the retinal mapping, the intensity maximum moves a large distance
towards the border of the cumulator unit although the corresponding camera
movement is rather small. Unit 3 with a larger camera movement shows a sim-
ilar effect. Moreover, its maximum intensity is obviously weaker than in unit
1. This is mainly caused by the retinal mapping with its heavy subsampling
in the outer image regions (causing fewer matches with the correct candidate
pixel). Finally, unit 4 shows no visible maximum in print at all. Actually, the
corresponding camera movement is so large that the center pixel of the output
image has no valid counterpart in the input image, therefore it is unpredictable.

5.1.3.5 Generating a raw version of the MM and VM

After the cumulator units have been acquired in the learning process, raw ver-
sions of the MM and VM can be created whose output is defined at the grid
positions pijkl in input space. The output (x̂In, ŷIn) of the MM at grid point
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pijkl are the coordinates of the pixel with maximum intensity in the cumulator
unit Cijkl. The outputs v(xOut,yOut) of the VM at point pijkl is set to 1 (signaling
valid output of the MM at this point) whenever the maximum pixel intensity in
unit Cijkl is above a certain threshold. Otherwise, v(xOut,yOut) is set to 0. The
threshold is computed as the product of the maximum pixel intensity of all cu-
mulator units and a factor β = 0.41. This proved to be the value resulting in the
most correct separation.

Figure 5.5 shows the output of the MM and VM for 6 × 6 different motor
commands (∆pan(i),∆tilt(j)). For each motor command, the pixel coordinate
space of the input image is shown in a single panel. The two-dimensional grid in
each panel connects points along the x

(k)
Out and y

(l)
Out directions of P. The position

of each grid point corresponds to the output (x̂In, ŷIn) of the MM at this point.
Only points with valid output are shown (determined by the VM). The lower
right panel with no movement shows an identity mapping between

(
x

(k)
Out, y

(l)
Out

)

and (x̂In, ŷIn) (as expected). The other panels reflect the relationship between
the camera movement and the pixel shift between input and output image. The
strong curvature of the grid is mainly caused by the retinal mapping.

5.1.3.6 Network training

The output of the raw versions of the MM and the VM is only defined at the grid
points pijkl. To get the output in-between, function interpolation is necessary.
For this purpose, the raw versions of the MM and the VM were replaced by
radial basis function networks (RBFN) (for details, see Sect. 3.2) in the final step
of the learning algorithm. These networks have the same input-output structure
as the MM and the VM, respectively (see Fig. 5.2). The training data for both
networks was generated from the output of the raw versions of the MM and the
VM at the grid points pijkl (overall, there are 11× 11× 13× 13 = 20449 grid
points). For the MM network, training data was restricted to the 10523 grid
points with valid output (as indicated by the raw version of the VM).

Both the MM and the VM network were initialized with the K-means al-
gorithm, the weights between the layer with Gaussians and the output layer
were computed by a standard pseudoinverse technique (Moody and Darken,
1989). The variances of the Gaussian units were determined with the parame-
ters ασ = 1.0 and βσ = 0.1 (see Table 3.2 for the parameter definitions). Input
and output values were scaled to the range [−0.6; 0.6].

The MM network is an RBFN with 1500 Gaussians for each output unit
(xOut and yOut). The training set consisted of the 10523 valid input-output pairs
of the raw MM. The mean squared error per pattern per output unit amounted to
6.1 ·10−5 after network adaptation. The VM network has 1500 Gaussians in the
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Figure 5.5 — Mapping from pixel coordinates
(
x

(k)
Out, y

(l)
Out

)
(grid points) in the output

image to pixel coordinates (x̂In, ŷIn) in the input image for 6 × 6 different (∆pan,∆tilt)
positions. Only the upper right corner of the grid in the motor subspace is shown since
the effects of ±∆pan and ±∆tilt are mirror-symmetric. The overall grid contains 11×11

different (∆pan,∆tilt) positions.
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hidden layer for its single output unit. It basically had to learn a classification
task with a training set covering all 20449 grid points. While the mean squared
error per pattern per output unit still amounted to 5.2 · 10−2 after network adap-
tation, only 1.1% of the grid points were misclassified.

It is possible to use alternative methods for function interpolation, e.g., to
construct the RBFNs directly from the grid points without learning (even during
the acquisition of the cumulator units as a kind of “online” method), or to use
other non-linear regression methods.

5.1.4 Results

The MM and VM network are used to implement the overall visual FM for pre-
dicting the output image as explained in Sect. 5.1.2. Especially, non-predictable
regions of the output image are marked by the VM network. The predic-
tion works rather precise as shown exemplary in Fig. 5.6. The actual and
the predicted output image are compared for four different motor commands
(∆pan,∆tilt) (camera movements to the lower right of increasing length as in
Fig. 5.4). Moreover, the region of each output image which is marked as non-
predictable by the VM network is shown in black color in the third row of im-
ages. The input image (the same for all four movements) is displayed as well.
Movement 1 is a zero movement. The actual and the predicted output image
are very similar and show the center crop from the input image. Movements
2 and 3 are of increasing size. The non-predictable regions mask parts of the
output images which have no correspondence in the input image. The center
of the predicted images is slightly blurred and distorted because the mapping
generated by the MM network has to enlarge a region of a few pixels in the
input image to a much larger area (especially for movement 3). Movement 4 is
so large that the center of the output image is non-predictable. Nevertheless, the
small upper left part of the output image which is predicted corresponds closely
to the actual output.

This visual inspection of a few exemplary camera movements demonstrates
the learning success. At the current stage of development, the additional appli-
cation of quantitative evaluations is not useful because of the lack of competing
learning algorithms for visual FMs. Furthermore, quantitative measures like the
Euclidean distance in pixel space are difficult to interpret because the FM has
to enlarge parts of the input image while the actual output maintains the opti-
mum resolution in the image center. We pointed out in Sect. 5.1.3.1 that depth
information is irrelevant for our learning task because of the camera geometry.
Therefore, it is possible to rearrange objects in the field of view of the camera
without any harm to the prediction performance of the visual FM.
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Figure 5.6 — Comparison of actual and predicted output images at four different
(∆pan,∆tilt) positions (the same as in Fig. 5.4) (adapted and updated from Schenck
and Möller, 2007, c© Springer).

5.1.5 Discussion and conclusions

The proposed learning algorithm for visual FMs overcomes the problem that
these models have a high-dimensional input and output space due to the size of
visual data. Forecasting pixel intensities is replaced by forecasting a mapping
between output and input pixel locations. The only restriction regarding image
size during the learning process is imposed by the size of the computer memory
because it has to hold the cumulator units during the learning process. After
learning, the acquired mapping in the MM network can be applied to images of
arbitrary size.

The learning process relies on matching pixels between the output and input
image. By imposing a retinal mapping, it is demonstrated that this learning prin-
ciple even works when strong image distortions are involved (including color
changes caused by smoothing and subsampling in the outer areas of the cam-
era images). Future research will reveal to which extent the performance of the
learning algorithm deteriorates in response to even more ambiguous visual data
(e.g., by using monochrome images). The distinction between cumulator units
with a large and a small maximum pixel intensity offers a natural solution for
the detection of unpredictable image regions. A small maximum indicates that
no correct pixel match exists, while an existing correct match accumulates to a
large maximum during the learning process.

At the current stage of development, the application of a grid of cumula-
tor units spanned in the input space of the MM and VM only allows for low-
dimensional motor commands mt because of the storage requirements of these

161



CHAPTER 5. VISUAL FORWARD MODELS FOR CAMERA MOVEMENTS

units. To overcome this problem, the next step of development is an online
learning scheme to adapt to the maximum (the modal value) of the intensity
distribution in each cumulator unit without the need to store the distribution.
Preliminary results of this approach are presented in the next section (Sect. 5.2).
This would make it possible to extend the scheme towards more dimensions in
motor space. Even further, the goal is to replace the fixed grid structure in motor
space by random movements (while maintaining the grid in (xOut, yOut) space
with the appropriate spacing for the distortions caused by the imaging system).
In addition, the learning algorithm in its current form is limited insofar as it
cannot be applied to setups in which depth information is relevant for precise
prediction, e.g. a camera mounted on a mobile robot or on a pan-tilt unit whose
axes are too far away from the nodal point of the camera-lens system. In setups
like this, it is necessary to determine the depth information and to incorporate it
into the learning algorithm. Future work will address this issue.

The visual FM of this study belongs to the class of anticipatory mechanisms
which generate sensory anticipations (in contrast to the prediction of future sys-
tem states). The FM works at the lowest level of abstraction by predicting direct
sensor output (in the model: continuous pixel intensities in RGB color space of
a retinal image). It remains an open question at which level visual FMs work in
biological organisms. Studies on predictive remapping (see Sect. 1.3.4.2) dis-
covered neurons which shift their visual receptive fields in anticipation of an
upcoming saccade in the superior colliculus (Walker et al., 1995), in the lateral
intraparietal area (Duhamel et al., 1992), and in the frontal eye field (Umeno and
Goldberg, 1997). Overall, it seems to be very likely that predictive remapping
is an important brain mechanism in the context of visual anticipation.

The basic ideas of the proposed learning algorithm might offer an explana-
tion for the acquisition of visual FMs in biological organisms: first, learning
the input-output relationship by matching low-level visual features, and second,
identifying predictable regions by detecting that a good match emerges during
learning. It might be a worthwhile future research project to combine this idea
with the concept of shifting visual receptive fields as in predictive remapping.

In robot models of sensorimotor processing, visual FMs can be used to ex-
plore the various functions of FMs stated in Sect. 1.5. In the following chapter
(Chapt. 6), we will suggest a model of grasping to extrafoveal targets which
is built around the visual FM of this study. Moreover, we will propose how
the visual FM could be used in the field of saccade learning. These models
provide insights about possible functional principles on an abstract modeling
level. Moreover, for robotics applications, visual FMs may become an impor-
tant building block of truly autonomous systems, both for motor control and for
perceptual competences.
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5.2 Replacing Cumulator Units by Online
Learning

In the learning algorithm for the visual FM in the preceding section, the cumu-
lator units basically serve the purpose of determining the modal value of the
distribution of the matching pixels. This a kind of batch learning scheme: First,
a data distribution is sampled, and all encountered examples are stored, and af-
terwards all stored data points are used to determine the modal value. However,
it would be more elegant to use an online learning scheme for modal values
without the need to store the learning examples. For other statistical values like
the mean and the median value, this is possible by using an appropriate error
function and gradient descent. Unfortunately, such a straightforward approach
does not work for modal values. In the following, we will first present the learn-
ing of the mean and the median value for illustrative purposes; afterwards, we
will develop a novel learning algorithm for modal values.

5.2.1 Learning of the mean and the median value

The starting point of the following considerations is a function approximator
whose parameters are adapted by gradient descent along an error function (like
the MLP in Sect. 3.1). Usually, a function approximator has to learn a mapping
between many different pairs of input and output values. For each distinct input,
there is one correct training output. For simplicity, we assume an unspecific
single fixed input instead. Moreover, the task of the approximator is to learn
either the mean or the median value of a distribution of corresponding output
data points. In practice, such a distribution may originate in noise which scatters
around the “true” output value. The function approximator has a single output
ŝ, output data points are denoted as si.6 i is the index of the learning cycle, ŝi is
the output of the approximator in cycle i.

Mean value The correct error function for the learning of the mean value is

E =
1

2
(ŝi − si)

2 , (5.1)

as is proven in the following. The gradient of this error function with regard to
the approximator output amounts to

∂E

∂ŝi
= ŝi − si

6 s is used as symbol for an arbitrary data point within this section to avoid confusion with
the image coordinates x and y.
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(generally, this gradient is used to compute the gradients of the adaptable pa-
rameters of the approximator by the chain rule afterwards). After a sufficient
number of learning cycles, the approximator output has converged to an (ap-
proximately) stable value ŝ, and the expected value of this gradient amounts to
zero (otherwise learning would not have converged yet):

〈
∂E

∂ŝ

〉
= lim

n→∞
1

n

n∑

i=1

(ŝ− si)
!
= 0

⇔ lim
n→∞

1

n

n∑

i=1

ŝ = lim
n→∞

1

n

n∑

i=1

si

⇔ ŝ = s̄i

Thus, the output of the function approximator after learning is the mean
value of the output data distribution. If one deals with noisy data and can savely
assume that the noise distribution is symmetric, the error function in Eqn. (5.1)
yields the desired learning results.

Median value The correct error function for the learning of the median value
is

E = |ŝi − si| . (5.2)
The proof starts again by determining the gradient:

∂E

∂ŝi
=




−1 , ŝi < si

+1 , ŝi > si

nd. , ŝi = si

Again, after the approximator output has converged to an (approximately) stable
value ŝ, the expected value of this gradient amounts to zero (we ignore the non-
defined case here):

〈
∂E

∂ŝ

〉
= lim

n→∞
1

n

n∑

i=1

{
−1 , ŝ < si

+1 , ŝ > si

!
= 0

For this equation to be fulfilled, the count of −1 and +1 in the sum has to be
equal, thus ŝ is as often larger than si as it is smaller. In conclusion, ŝ is the
median value of the distribution of data points si.

For noisy data with asymmetric noise distributions, learning the median
value is more appropriate than learning the mean value. Therefore, the er-
ror function in Eqn. (5.2) is advantageous for such data. Moreover, the me-
dian value is less sensitive to outliers than the mean value. On the downside,
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Eqn. (5.2) is at a general disadvantage compared to Eqn. (5.1), because the de-
rived gradient does not take the size of the difference ŝi − si into account. This
could result in slower learning if the approximator output ŝi is way off in the
beginning of the learning process.

General remark These derivations apply as well to function approximators
with multiple outputs since each output dimension can be treated on its own in
the same way as shown for a single output.

5.2.2 Learning of the modal value

Algorithm To the best of the author’s knowledge, there is no way to impose
learning of the modal value by using gradient descent. The learning algorithm
which is presented in this section is based on a very different idea: to fit an
hyperellipsoid to the data distribution so that the center of this hyperellipsoid is
approximately located at the modal value. The hyperellipsoid is defined by its
center c and the covariance matrix Σ.7 It is acquired by an online learning rule
which is directly related to the usual “offline way” of computing the mean value
and the covariance matrix of a data set:

ci+1 ← (1− η1)ci + η1si (5.3)
Σi+1 ← (1− η2)Σi + η2(ci − si)(ci − si)

T (5.4)

i is the index of the learning cycle, si is the data point which is sampled in cycle
i. η1 and η2 are learning parameters, which are determined in the following way
in each cycle i:

η1 = η̃1 G(ci;Σi)(si) (5.5)
η2 = η̃2 G(ci;Σi)(si) (5.6)

G(ci;Σi) is the Gaussian which corresponds to the hyperellipsoid:

G(ci;Σi)(si) = exp

(
−1

2
(ci − si)

TΣ−1
i (ci − si)

)

η̃1 and η̃2 in Eqns. (5.5-5.6) are fixed learning rates. Computing the actual learn-
ing rates η1 and η2 by Eqns. (5.5-5.6) has the following effects in combination
with Eqns. (5.3-5.4):

7 The eigenvectors wj and eigenvalues λj of Σ determine the shape of the hyperellipsoid:
The axes of the hyperellipsoid point into the directions of the eigenvectors, and the length of
each axis is equal to the corresponding

√
λj . In the context of principal component analysis

(see Sect. 3.4), λj is interpreted as the variance of the data distribution in the direction of the
corresponding eigenvector wj .
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• The smaller the distance ‖c−si‖, the larger the influence of the data point
si on the update of the hyperellipsoid.

• During learning, the hyperellipsoid gets smaller and smaller, because data
points which are close to the center have a large impact in Eqn. (5.4)
because of η2.

• From the region close to the modal value of the data distribution, more
data points are sampled than from other regions; thus, even if the hyper-
ellipsoid is relatively far away from this region, the modal value attracts
the center of the hyperellipsoid because of the frequency of updates from
this region.

• Furthermore, the hyperellipsoid gets a shape, in which it is elongated
towards the region around the modal value, while it shrinks in the other
directions; accordingly, the actual learning rates η1 and η2 stay large for
data points which are sampled from the region around the modal value.

• The closer the center of the hyperellipsoid gets to the modal value, the
easier the hyperellipsoid can shrink, which in return reduces the influence
of data points which are not close to the modal value.

• Finally, the hyperellipsoid ideally settles at the modal value and shrinks
to an extremely small size.

For the initialization of c0 and Σ0 it proved to be a good approach in our
tests to place c0 at the center of the likely range of the data distribution; the
hyperellipsoid is aligned initially with the coordinate system and is defined by
rather large variance values such that it covers a large proportion of the likely
range of the data distribution.

Experiments In the following, it is shown how the learning algorithm per-
forms on four different cumulator units which were generated in the previous
study (as described in Sects. 5.1.3.3/5.1.3.4). The pixel intensities in these
units are interpreted as (unnormalized) density function which defines a two-
dimensional data distribution over the input pixel position space. In Fig. 5.7,
these units are shown with their respective mean, median, and modal values.
The two-dimensional mean and median values are composed from the particu-
lar values for each single dimension, which are computed from the respective
marginal distributions. The modal values mark the density maximum in the
two-dimensional data space. Unit A has a clear modal value in the center which
is identical to the mean and the median value. In unit B, the modal value is still
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Unit A Unit B Unit C Unit D

Mean
value

(34.0,34.0) (42.9,37.2) (32.4,36.5) (33.7,35.0)

Median
value

(34,34) (48,39) (32,38) (33,35)

Modal
value

(34,34) (62,52) (18,63) (34,68)

Figure 5.7 — The mean, the median, and the modal value are marked with a cross in
four different cumulator units. Below each image, the respective value is reported in
pixel coordinates (running from 0 to 68 in each dimension). The density maxima in each
cumulator unit are shown in black color, the minima in white color.

clearly identifiable, but shifted towards the lower right corner and no longer
identical to the mean and the median value. In unit C, the density distribution
is rather uniform with a lot of local density maxima. The overall density maxi-
mum is at the lower left corner very close to the border. Unit D is even worse:
The overall density maximum is only at a small peak at the lowermost position.
The overall density distribution has many other maxima which are nearly as
strong.

In the experiments, 3000 data points are drawn at random from the data
distribution in each cumulator unit and fed to the online learning algorithm for
the modal value. The fixed base learning rates are η̃1 = 0.5 and η̃2 = 0.2.
The course of learning is illustrated in Fig. 5.8. For each unit, the shape and
position of the ellipsoid is shown after different numbers of learning cycles.
Moreover, the data points which have been drawn from the distribution so far
are depicted. For units A to C, learning is successful — the difference between
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Cycle Unit A Unit B Unit C Unit D

0

50

150

400

1000

3000

(34.6,33.4) (61.9,50.6) (17.1,62.7) (28.8,36.1)
Modal
value

(34,34) (62,52) (18,63) (34,68)

Figure 5.8 — Illustration of the learning process for the four cumulator units. For
each reported learning cycle and unit, the respective shape and position of the ellipsoid
is depicted (the initial ellipsoid is only shown once for all units and in smaller size).
Moreover, the data points which have been sampled so far are shown as well (black
indicates data points with the maximum sampling frequency, white with the minimum
sampling frequency for the respective cycle and unit). For the last cycle, the position of
the center of the ellipsoid is reported (all values in pixel coordinates running from 0 to
68).
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the final position of the center and the modal value amounts to less than two
pixels in each dimension (in pixel coordinates running from 0 to 68 for the
cumulator units). The larger the number of learning cycles, the smaller the
ellipsoids become. In unit C, the ellipsoid moves first into the wrong direction
and nearly settles down on a local density maximum (in cycle 1000), but finally
it gets the “kick” to move on to the global density maximum (in cycle 3000).
For unit D with the most disadvantageous data distribution, learning gets stuck
before the modal value is reached. However, at least the shape of the ellipsoid
is oriented into the right direction, illustrating exemplary this feature of the
learning algorithm (as does the ellipsoid for unit B in cycle 50). Overall, the
learning examples in Fig. 5.8 demonstrate clearly that the proposed learning
scheme converges towards the modal values and not to the mean or median
values which are depicted for comparison in Fig. 5.7.

A quantitative analysis yields the following results: Over 10 learning passes,
the average Euclidean distance between the center of the ellipsoid and the modal
value after 1000 learning cycles amounts to 2.3 (in pixel coordinate space) for
unit A, to 2.7 for unit B, to 14.2 for unit C, and to 22.7 for unit D. After 3000
cycles, the distance values for unit A and B improve to 1.5 and for unit C to
7.4, while the distance value for unit D stays at 19.6. The worse performance
of unit C compared to unit A and B is mainly caused by one completely failed
learning pass in which the ellipsoid settles down far away from the modal value
of unit C. Without this failed pass, the average distance value for unit C after
3000 learning cycles amounts to 2.5.

Conclusion The experimental results demonstrate clearly that the proposed
learning algorithm can be successfully applied to the identification of modal
values, at least for two-dimensional data distributions like the cumulator units.
However, it is not guaranteed that the proposed learning algorithm converges to
the modal value. On rather uniform data distributions with only a small density
peak like in unit D, learning can get stuck with a shrinked hyperellipsoid before
the modal value has been reached. Moreover, on data distributions with many
different modal values, learning may not end up at the modal value with the
highest density.

More thorough tests on data sets of higher dimensionality have to be carried
out in the future. Furthermore, in contrast to function approximators which map
different input values to different output values, the proposed algorithm works
so far without any additional input data, thus it cannot adapt to modal values
which change depending on the input. To overcome this limitation, one has to
find ways to combine the algorithm with function approximator techniques. A
promising candidate for the underlying function approximator is “supervised

169



CHAPTER 5. VISUAL FORWARD MODELS FOR CAMERA MOVEMENTS

growing neural gas” (Fritzke, 1998), because it supports single units between
which interpolation takes place; these single units could be used to encode the
parameters of the hyperellipsoids.

5.2.3 Learning of the raw MM and VM with the new modal
value algorithm

The proposed online learning scheme can be directly used to replace the cumu-
lator units in the visual FM which has been presented in the first part of this
chapter. The FM is composed from a mapping model (MM) and a validator
model (VM). In the following, we will describe a new way to learn the “raw
versions” of the MM and the VM (see Sect. 5.1.3.5). The raw MM and the raw
VM are only defined at the points of the grid P which is inscribed in the input
space of the MM and the VM. In Sect. 5.1.3.3, a cumulator unit was attached
to each grid point. Now this cumulator unit is replaced by an ellipsoid, and the
center of the ellipsoid defines the output of the raw MM at the particular grid
point.

During the learning process of the raw MM and the raw VM (see
Sect. 5.1.3.4), the matching pixels in the input image are determined in each
iteration.8 These pixels are assigned a value of 1, while the other pixels get a
value of 0. In the following, this image consisting of 0 and 1 pixels is called
"matching-pixel image". In the previous version of the learning algorithm for
the raw MM/VM, the matching-pixel image was added to the cumulator unit at
the respective grid point. In the new version of the learning process, in which
the cumulator units are replaced by the ellipsoids, up to 10 of the pixel positions
to which a 1 is assigned are drawn at random to update the respective ellipsoid
in each iteration.9 In this way, the ellipsoid converges to the modal value (of the
hypothetical cumulator unit) at the particular grid point over many iterations.

Learning the raw VM is more difficult without the cumulator units. Before,
its output has been determined on the basis of the maximum pixel intensity in
each cumulator unit in relation to the overall maximum pixel intensity. Without
cumulator units, this straightforward approach is no longer possible. Instead,
each ellipsoid gets its own additional “load” parameter ζCum. Each time an el-
lipsoid is updated by the presentation of a new data point, the current matching-
pixel image IMatch is used to change the load parameter in the following way

8 In this context, the term “iteration” means a single learning step at a single grid point
during an overall learning trial.

9 The update is restricted to 10 pixels per matching-pixel image to avoid that the ellipsoid
gets stuck too early at the wrong position because of a non-representative pattern in a single
matching-pixel image.
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(with ζCum
0 = 0):

ζCum
i+1 ← ζCum

i +
∑

(x,y)∈IMatch

[
N(ci;ΣCum)

((
x y

)T) · IMatch
(x,y)

]
(5.7)

i is the update cycle of the ellipsoid, ci is the current center of the ellipsoid,
x and y are the horizontal and vertical pixel coordinates in the matching-pixel
image (the sum is computed over all of its pixels), IMatch

(x,y) is the intensity of a
single pixel in the matching-pixel image (0 or 1), and N(ci;ΣCum) is a normalized
Gaussian distribution:

N(ci;ΣCum)(s) =
1

2π
√
|ΣCum|

exp

(
−1

2
(ci − s)TΣ−1

Cum(ci − s)

)

In Eqn. (5.7), s is the pixel coordinate vector
(

x y
)T . ΣCum is a fixed

diagonal matrix

ΣCum =

(
σ2

Cum 0
0 σ2

Cum

)

with σCum being set to 0.16 times the width of the (quadratic) matching-pixel
image. Basically, these equations define the convolution of a narrow normalized
Gaussian, which is positioned at the current center of the ellipsoid, with the
matching-pixel image. The result of this computation is cumulated in ζCum

i

from update cycle to update cycle. Finally, after the last update cycle imax of the
particular ellipsoid, the final ζ value is computed as ζ = ζCum

imax
/imax.

ζCum grows the faster the larger the density maximum around the center
of the ellipsoid is. In this way, one can estimate the “strength” of the modal
value without storing the cumulator unit. After all learning trials of the raw
MM and VM have been finished, the output of the VM is determined in the
following way: The output v(xOut,yOut) of the VM at a particular grid point is set
to 1 (signaling valid output of the MM at this point) whenever the ζ value of the
ellipsoid at this point is above a certain threshold. Otherwise, v(xOut,yOut) is set
to 0. The threshold is computed as the product of the maximum ζ value of all
ellipsoids and a factor β.

The learning results for the raw MM and VM, which are shown in Fig. 5.9
(in analogy to Fig. 5.5 for the algorithm with the cumulator units), were gen-
erated with a grid with 7 × 7 positions in motor space and 11 × 11 positions
in output pixel position space. 100 learning trials were carried out, the param-
eter β was chosen as β = 0.012. Figure 5.9 shows the output of the raw MM
and VM for 4 × 4 different motor commands (∆pan,∆tilt) on the basis of the
described online learning scheme for modal values. For each motor command,
the pixel coordinate space of the input image is shown in a single panel. The
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Figure 5.9 — Mapping from pixel coordinates
(
x

(k)
Out, y

(l)
Out

)
(grid points) in the output

image to pixel coordinates (x̂In, ŷIn) in the input image for 4 × 4 different (∆pan,∆tilt)
positions. Only the upper right corner of the grid in the motor subspace is shown. The
overall grid contains 7 × 7 different (∆pan,∆tilt) positions. This figure has been gener-
ated on the basis of the online learning scheme for modal values without the storage of
cumulator units.

two-dimensional grid in each panel connects points along the x
(k)
Out and y

(l)
Out di-

rections of the grid P. The position of each grid point corresponds to the output
(x̂In, ŷIn) of the MM at this point. Only points with valid output are shown
(determined by the VM).

Overall, the results appear rather similar to the results which are obtained
on the basis of the cumulator units (see Fig. 5.5). However, one has to note that
the output of the raw MM is erratic at some grid points (most likely because
of ellipsoids which got stuck before they reached the modal value). Moreover,
the output of the raw VM generates too many false 0 outputs, marking valid
MM outputs as non-valid. We expect that the first problem can be solved by
linking the learning of neighboring ellipsoids in the grid in some way (similar
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to a self-organizing map; Kohonen, 1995). The second problem requires fur-
ther refinement of the calculation of the ζ values. Nevertheless, these results
demonstrate clearly that the online learning algorithm for modal values can be
successfully applied to real-world problems. For the visual FM, it replaces the
cumulator units by ellipsoids with just eight parameters (center, covariance ma-
trix, load value ζCum, number of update cycles), in this way resolving the prob-
lem of the large storage requirements of the cumulator units. This in turn allows
theoretically for motor commands of higher dimensionality for the visual FM.
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Chapter 6

Grasping to Extrafoveal Targets

6.1 Introduction

In everyday live, reaching and grasping movements are mainly carried out un-
der visual control. The most important information about the position and shape
of target objects is obtained from accompanying eye movements and retinal ac-
tivation. A considerable amount of research adresses the question how eye and
arm movements are coordinated and which information is used at which stage
of motor planning and execution (e.g., Bekkering and Sailer, 2002; Frens and
Erkelens, 1991; Horstmann and Hoffmann, 2005; Mather and Fisk, 1985; Neg-
gers and Bekkering, 2000; Prablanc et al., 1979). Experimental studies show
that saccades for target fixation usually precede arm movements (Abrams et al.,
1990; Neggers and Bekkering, 1999; Vercher et al., 1994). Even when the onset
time of eye and arm movements is the same, eye movements are finished more
rapidly, providing the eye orientation as input for the completion of the arm
movement. Nevertheless, as everyday experience shows, it is possible for hu-
mans to reach for and grasp objects while the saccade to the target is suppressed.
But this ability comes at a price: Several studies have shown that the accuracy
of limb movements suffers in such a setting (Abrams et al., 1990; Mather and
Fisk, 1985; Prablanc et al., 1979; Vercher et al., 1994). In conclusion, grasp-
ing and reaching to both fixated and to non-fixated target objects is possible,
although the former allows for more precise arm and hand movements.

In a previous study (Hoffmann et al., 2005), we explored the necessary co-
ordinate transforms for both settings, and presented a computational model for
grasping movements with a robot arm. In this chapter, the focus is on the sen-
sorimotor processing for grasping to non-fixated target objects which are pro-
jected on the extrafoveal region of the retina. The starting point is the premotor
theory of attention (Rizzolatti et al., 1994) which states that spatial attention is
a consequence of the preparation of goal-directed, spatially coded movements.
Because the neural mechanisms for foveal vision in primates and humans ap-
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pear to be highly developed, oculomotor maps coding space for eye movements
play a central role in selective attention according to this theory. Experimental
evidence for the close coupling of saccade preparation and visual attention has
been found in several studies, for example in the work of Deubel and Schneider
(1996) and Irwin and Gordon (1998). Moreover, there is a considerable over-
lap between frontoparietal control structures which are activated during covert
shifts of visual attention and during saccade preparation, as functional imaging
studies have shown (Beauchamp et al., 2001; Nobre et al., 2000; Perry and Zeki,
2000). Muggleton et al. (2003) were able to modulate attentionally guided per-
formance in visual search tasks by transcranial magnetic stimulation over the
frontal eye fields. In summary, there is strong experimental evidence for the
link between visual attention and saccade preparation. The link between man-
ual response preparation and shifts of spatial attention has been less convincing,
but several studies (Deubel et al., 1998; Eimer et al., 2006; Schiegg et al., 2003)
provide support for the claim that covert preparation of manual responses is
linked to shifts of spatial attention as well.

In this chapter, a computational model of grasping to extrafoveal targets
is proposed, which is implemented on a robot setup. This model is based on
the premotor theory of attention and adds one specific hypothesis: Attention
shifts caused by saccade planning imply a prediction of the retinal images after
the saccade. The foveal region of these predicted retinal images is required to
determine movement parameters for the manual interaction with objects at the
target location of the attention shift.

Without visual prediction, grasping towards extrafoveal target objects is dif-
ficult because of the heavy distortions found in retinal images (with the term
“retinal image” we refer here to the activation pattern of receptors in the retina).
These distortions have at least three distinct sources. First, the retina has ap-
proximately the shape of a half-sphere (Atchinson and Smith, 2000). This
brings about that the projection of one and the same object on the retina has a
different shape, depending on its position relative to the optical axis of the eye.
Second, the lens system of the eye suffers from chromatic and monochromatic
aberrations in various forms, causing varying image quality (focus, shape of
point spread function) throughout the retina (Atchinson and Smith, 2000). And
third, the distribution of light receptors (rods and cones) on the retina is non-
uniform. Cones are used for color vision under strong light, rods for monochro-
matic vision under low light levels. The cones are densely packed in the fovea
(around 0 degrees eccentricity) with rapidly decreasing density towards the pe-
riphery of the eye. The density of rods decreases much slower towards the
periphery but they are completely absent from the fovea (see Fig. 6.12 in McIl-
wain, 1996, p. 93). Because of the non-uniform sensor distribution, the pattern
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Figure 6.1 — Resolution of the artificial retinal images (as specified in Sect. 5.1.3.2)
depending on the distance from the image center. Resolution values are standardized to
a maximum of 1.0.

of rod and cone activation caused by the projection of a certain object on the
retina varies considerably with the retinal position of this projection. This non-
uniformity is also found in the retinotopic maps in the visual cortex (Mallot,
1985).

Considering this background information, a grasping task in which the eyes
do not fixate the target object poses a special difficulty because the object-
related retinal activation differs depending on the object’s position relative to
the eyes. Any mechanism which extracts the necessary information for proper
grasping (e.g., object orientation) from this activation pattern has be tuned to the
exact position on the retina onto which the object is projected. This would cause
considerable computational overhead and the need to learn complex input-output
relationships between retinal activation and grasping parameters. To avoid this
overhead, the system could predict how the foveal representation of the tar-
get object would look like after a successful saccade, and use a much simpler
sensorimotor model which takes just the predicted foveal activation as input to
generate the grasping parameters as output. This model could be the same sen-
sorimotor model as the one which is applied to fixated target objects. Thus,
visual prediction would allow to apply one and the same model for the senso-
rimotor processing for both grasping to foveal and extrafoveal target objects.
We hypothesize that such a prediction actually takes place when humans and
other primates grasp towards extrafoveal targets. In accordance with the pre-
motor theory of attention, the first step would be that spatial attention is shifted
towards the object by preparing the motor command for making a saccade to-
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wards this object (but this saccade is never carried out). The second step is to
use this saccadic motor command as input for a visual forward model to gener-
ate the predicted foveal representation of the target object. In the third step, the
planned new eye position and the predicted foveal representation of the target
object are provided as input for the sensorimotor model which associates this
information with an appropriate motor command for grasping.

For the visual prediction, the visual forward model (FM) from Sect. 5.1
is used. We do not make strong assumptions about the visual representation
underlying the prediction. In the robot implementation, the prediction takes
place on the level of artificial retinal images (see Sect. 5.1.3.2) which mimic
roughly the cone distribution on the human retina (see Fig. 6.1). The important
analogy to biological retinal activation patterns is the fact that a target object
appears in a different shape depending on its location in the retinal image.

The anticipation of sensory consequences in the nervous system of biolog-
ical organisms is supposed to be involved in several sensorimotor processes
which are outlined in detail in Sect. 1.5 and Chapt. 2. In the model of grasp-
ing to extrafoveal targets, the prediction of visual data serves as a replacement
for sensory feedback and is used in the planning process for motor control (al-
though it is only a one-step “planning” for the generation of a single movement).
The learning of adaptive visual FMs is a rather new field. It is difficult because
of the high dimensionality of visual data and because part of the output may be
non-predictable. The learning algorithm for visual FMs in Sect. 5.1 overcomes
both problems.

In the following, the components of the overall model are explained in de-
tail, and it is described by which learning procedures they are acquired. Af-
terwards, the final experiments and their results are presented. The purpose of
these experiments is to show that a robot implementation of the proposed model
is actually capable of grasping to extrafoveal targets. Moreover, we hypothesize
that grasping of fixated targets results in slightly better performance than grasp-
ing to extrafoveal targets, and that grasping of extrafoveal targets without visual
prediction results in low grasping success, illustrating the need for a visual FM.
These hypotheses are tested in the experiments.

6.2 Overall System Architecture

6.2.1 Overview

The overall model consists of three parts (see. Fig. 6.2). First, a sac-
cade controller acquired through continuous learning by averaging (CLbA; see
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Sects. 2.2.7.2 and 4.1); second, a visual FM predicting retinal images with de-
creasing image resolution towards the corners in analogy to the sensor distri-
bution on the human retina (see Sect. 5.1); and third, an arm controller for
grasping movements which receives the output of the saccade controller and
the orientation of the target object as inputs (similar to the controller presented
by Hoffmann et al., 2005).

When the model is used for grasping to extrafoveal targets, a single trial
starts with the presentation of the grasping target, a red wooden block, at a
random location within the working space on a table surface. The cameras
are in a random posture. The saccade controller generates the necessary motor
command for proper fixation with the cameras, but this movement is not carried
out, only the suggested motor command is recorded as input for the visual FM
and the arm controller. Afterwards, the visual FM predicts the retinal images
after the (hypothetical) saccade. From these predicted images, the orientation
of the block is determined. Finally, the arm controller uses both the saccadic
motor command and the block orientation in the predicted images as inputs to
generate the grasping movement.

In the final experiments, the grasping performance of four different versions
of the robot model is compared: (1) for grasping towards target objects which
are precisely fixated by a series of saccades, using the actual retinal images
instead of the predicted ones; (2) for grasping towards target objects which are
fixated just by one saccade, also using the actual retinal images instead of the
predicted ones; (3) for grasping towards non-fixated target objects using visual
prediction; (4) for grasping towards non-fixated target objects without visual
prediction.

6.2.2 Setup

The experimental setup (see Fig. A.1) consists of a robot arm with six rotatory
degrees of freedom and two-finger gripper (for details see App. A). More-
over, a robot camera head belongs to the setup as described in Sect. 5.1.3.1 and
App. B. For the training of the saccade controller (Sect. 6.3) and the visual FM
(Sect. 6.4), not the real setup was used, but instead “virtual” camera movements
were carried out using an image database (see Sect. 5.1.3.1).

6.3 Saccade Controller

The saccade controller in this study is very similar to the one in Sect. 4.1. As
main difference, it is not trained on the basis of a geometrical model, but in-
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Figure 6.2 — The overall system architecture. The main components of the model are
a saccade controller, a visual FM, and an arm controller (for details see text) (adapted
from Schenck and Möller, 2007, c© Springer).

stead for the real setup. As controller learning strategy, CLbA is applied (see
Sect. 2.2.7.2). For convenience, a description of this learning strategy especially
for the saccade learning task is provided in the following.

6.3.1 Controller input and output

The task of the saccade controller is to fixate target objects with both cam-
eras so that the target object is projected onto the center of both camera im-
ages. In time step t, the saccade controller receives the current sensory state
s
(t)
SAC as input1, composed of a kinesthetic and a visual part (see Fig. 6.3). The

1 In contrast to Chapts. 2 and 4, the symbol m is used in this chapter to denote motor
commands, and the symbol s to denote sensory states. This change is applied to avoid confusion
with the image coordinates x and y.
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Figure 6.3 — Input and output of the saccade controller (adapted from Schenck and
Möller, 2007, c© Springer).

kinesthetic input s
(t)
KIN consists of the current position of the cameras, defined

by a conjoint pan-tilt direction (pan, tilt), and a horizontal and vertical ver-
gence value (verghor, vergvert). The visual part s

(t)
VIS represents the position of

the target object in the left and right camera image relative to the image cen-
ter: xleft, yleft, xright, yright. The motor output m

(t)
SAC of the saccade controller

is defined as change of the motor position. It consists of four values: ∆pan,
∆tilt, ∆verghor, and ∆vergvert. The new position of the cameras is computed
as s

(t+1)
KIN = s

(t)
KIN + m

(t)
SAC, and the cameras are moved accordingly. All sensory

variables are scaled to the range [−1; 1], the motor output variables to the range
[−2; +2].

6.3.2 Image processing

The image processing is restricted to a central area of 213× 213 pixels in each
camera image. For simplicity, in the following (throughout Sect. 6.3) the term
“camera image” refers to this cropped region. The image processing extracts
the position of the target object in the left and right camera image. Before any
saccade, an appropriate target object has to be selected, after the saccade, it
has to be re-identified to evaluate the success of the saccadic movement. In
our setup, target objects are colored wooden blocks (see Fig. 6.4). To identify
the blocks, the camera images are first converted into the CIELAB color space
(Jain, 1989). Afterwards, the resulting a- and b-chroma channels are matched
against default intensity values for red, green, blue, and yellow objects. The
resulting segments for each color are denoised and smoothed by a median filter.
Their center of mass is calculated, finally yielding a list of red, green, blue, and
yellow object coordinates.

Before any saccade, one of the detected objects is chosen from either the
left or right camera image, depending on the current task. Afterwards, the
matching target object in the other camera image is identified by searching
for the image region with the highest local pixel intensity correlation. In this
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camera
Right

Left
camera

Figure 6.4 — Camera images (left column; the surroundings of the table are already
blanked) and salience images for red objects (right column) before a saccade. The se-
lected target is marked with a rectangle in the salience images. It has been identified first
in the right camera (bold rectangle); by a correlation approach, the corresponding image
region in the left camera has been found.

way, the target object coordinates s
(t)
VIS =

(
x

(t)
left, y

(t)
left, x

(t)
right, y

(t)
right

)
are deter-

mined. After the saccade, the target object is re-identified in both camera
images by the same correlation approach, providing the coordinates s

(t+1)
VIS =(

x
(t+t)
left , y

(t+t)
left , x

(t+t)
right , y

(t+t)
right

)
.

6.3.3 Implementation

The saccade controller is implemented by a multi-layer perceptron (MLP; see
Sect. 3.1). It has eight inputs and four linear output units (see also Fig. 6.3). The
single hidden layer has four units with hyperbolic tangent as activation function;
in addition, the inputs are also directly connected to the output layer (“shortcut
connections”). In the beginning, the network weights are initialized to random
values, resulting in erratic output. The network is trained by providing proper
learning examples for weight adjustment as outlined in the following section.

6.3.4 Learning by averaging

Like most motor learning tasks, saccade learning suffers from the problem of the
“missing teacher signal”. Whenever an incorrect motor command is carried out,
the resulting error is only measurable in the sensory domain. The motor error
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and therefore the correct motor output remains unknown (for a more thorough
discussion, see Sect. 2.2.2). In Sect. 2.2.7.2, a new motor learning algorithm
called “continous learning by averaging” (CLbA) is suggested to overcome this
problem. Expressed for the domain of saccade control, its basic idea is to search
at random in the neighborhood of the network output in motor space for sac-
cades which are slightly better than the saccade produced by the controller net-
work and which bring the target object closer to the center in the camera images.
These improved saccades are used as learning example for network adaptation.
In the process of learning, over- and undershoot saccades cancel each other out,
resulting in more precise motor output of the network. This “canceling out”
only works because the MLP as function approximator adapts to the average of
the over- and undershoot saccades.

For a precise description of the algorithm, we first define the radial target
distance as r = r(sVIS) = 1

2
√

2

(√
x2

left + y2
left +

√
x2

right + y2
right

)
, with r = 0.0

indicating a perfect saccade where the center of mass of the target object is
projected exactly on the center of both camera images, and with r = 1.0 being
the worst value (as long as the target is not completely lost which is even worse).
The basic steps of the algorithm in each learning trial are:

• Generate a sensory state s
(t)
SAC =

(
s
(t)
KIN, s

(t)
VIS

)
by positioning the cameras

at random and selecting one of the available target objects at random.

• Assess the output of the controller network in response to this input:
m

(t)
SAC = C(s

(t)
SAC). Compute s

(t+1)
KIN , move the cameras to their new posi-

tion, and determine r = r(s
(t+1)
VIS ).

• Generate a new motor command m̂
(t)
SAC by adding Gaussian noise with a

variance of (rσ0)
2 to each motor parameter of m

(t)
SAC. Compute the corre-

sponding ŝ
(t+1)
KIN = s

(t)
KIN + m̂

(t)
SAC, move the cameras to their new position,

and determine r(ŝ
(t+1)
VIS ). Repeat this step until r(ŝ

(t+1)
VIS ) < r(s

(t+1)
VIS ) and

r(ŝ
(t+1)
VIS ) < r(s

(t)
VIS).

• Use the final motor command m̂
(t)
SAC as learning example for the controller

network. For weight adaptation, we use simple gradient descent with a
learning rate η (see Sect. 3.1.2).

The saccade controller network of this study was trained with parameter
values σ0 = 1.3 and η = 0.12. After 450 learning trials, the average radial target
distance over 50 test saccades amounted to r < 0.018. In the course of these
450 learning trials, 4435 saccades were carried out. Compared to the results
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Figure 6.5 — Visual forward model (FM) (adapted from Schenck and Möller, 2007,
c© Springer).

for the 2D saccade learning task with noise on the simulated camera setup in
Sect. 4.1, the value of r < 0.018 corresponds to a quality QC > 0.982 which is
slightly above the desired quality level Q∗ = 0.975 for this task condition. In
conclusion, this single result provides evidence for a close match between the
real setup and the simulated setup.

6.4 Visual Forward Model

6.4.1 Application in the overall model

The task of a visual FM is to predict future visual sensory states. In the frame-
work of the used robot setup, this means to predict how the retinal images
(which are generated from the original camera images) will look like after a
movement of the camera head. The input of a visual FM is the current retinal
image at time step t and the motor command m

(t)
FM, the output is a prediction

of the resulting retinal image in time t + 1 (see Fig. 6.5). Learning of this
input-output relationship is difficult because of the high dimensionality of the
image data, and because of the fact that part of the future image may not be
predictable at all. The learning algorithm for visual FMs which is presented in
Sect. 5.1 overcomes both problems. Exactly the FM from Sect. 5.1 is applied in
the overall model on grasping to extrafoveal targets for the left camera. The mo-
tor command m

(t)
FM, which specifies the relative movement of the left camera,

is computed from m
(t)
SAC, the overall movement command for the robot camera

head, which is generated by the saccade controller (see Fig. 6.2).

6.4.2 Potential application for saccade learning

The saccade controller in Sect. 6.3 could benefit from a visual FM as well. In
the following, an integration of the FM and the saccade controller is proposed
which has not yet been implemented. In the image processing for the saccade
controller, first a suitable target object for fixation has to be determined in either
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the left or right camera image. Afterwards, the object has to be identified in
the other camera image as well. Most importantly, the target object has to be
re-identified in both camera images after the saccade for the computation of the
sensory error. This re-identification is computationally very expensive since it
involves extensive matching of image regions. Moreover, when working with
distorted retinal images like the ones used for the visual FM, simple matching
algorithms do not work (for this reason, the saccade controller in its current
implementation just uses non-distorted camera images).

A straightforward solution for the re-identification of target objects is the
application of the visual FM developed in Sect. 5.1. For each camera, it can
predict from the executed motor command to which image location the center
of mass of the target object has moved (via the internal mapping model), or if it
has been lost (via the internal validator model). Afterwards, the exact position
of the target object can be determined by a search process which is restricted to
the very close neighborhood of the predicted position. No extensive matching
or search process is necessary. Used in the way, the visual FM offers improved
sensory processing and faster behavioral learning.

Furthermore, the application of the visual FM for target re-identification
has a biological motivation. Several studies on human saccades show that small
displacements of target objects during saccades go unnoticed (e.g., Bridgeman,
1975; Deubel et al., 1996). This finding implies that the mechanisms which
implement the reafference principle (see Sect. 1.5.2) are not precise enough
to detect such small target shifts. Deubel (2004) proposes that visual stabil-
ity between saccades is maintained by matching visual landmarks before and
after the saccade. According to the robot model, we suggest that landmark re-
identification is based on a visual FM which predicts approximately the position
of the landmarks after the saccade. Such an FM is not precise enough for the
detection of small displacements, but it suffices to point at a search region. If
the target is not found within this region, the mismatch is detected (in the study
of Bridgeman (1975), target shifts of 4 degrees are detected by the subjects in
at least 40% of the trials).

6.5 Arm Controller

The purpose of the arm controller is to generate the motor command for the final
grasping movement. As input, it receives the orientation of the target object, a
red wooden block on the table surface (see Fig. 6.6), and the position of the
cameras s

(t+1)
KIN after a successful fixation movement towards the target object.

The camera position implicitly encodes the position of the red block. As output,

185



CHAPTER 6. GRASPING TO EXTRAFOVEAL TARGETS

Figure 6.6 — Resting, pre-grasping and grasping posture (from left to right).

the arm controller produces two sets of joint angles, for the pre-grasping and the
grasping posture. The pre-grasping posture serves as via point for the robot arm
when it moves from its resting position to the final grasping position. This is
necessary to avoid collisions with the environment and with the block before
it is grasped. Figure 6.6 shows the resting, the pre-grasping, and the grasping
posture for a single grasping trial. In a perfect grasping movement, the approach
direction of the gripper is perpendicular to the table surface. Because of the
geometry of the robot arm, this movement is only possible over a restricted area
of the table. Here, a rectangular region of 380 × 250 mm for the placement of
target objects is used.

6.5.1 Data preprocessing

The arm controller is implemented as abstract recurrent neural network (de-
tails follow in Sect. 6.5.3). To achieve maximum learning success with this
approach, certain preprocessing of the controller input and output is necessary.
We use similar methods as in the study by Hoffmann et al. (2005).

The visual input of the arm controller is the orientation of the red block.
To determine this orientation, the left retinal image after the successful fixation
saccade towards the target object is used as default (although this is later varied
in the experiments). A color filter is used to generate an image where the block
appears as single white segment on a completely black background. In the next
step, four compass filters enhance the edges in four different directions (0◦,
45◦, 90◦, and 135◦) (see Fig. 6.7). After thresholding, the remaining pixels in
each image are counted to give a value for the distribution of edges in a given
direction. The resulting four values are normalized so that there sum yields
1.0. These normalized values form a “compass filter histogram” which uniquely
encodes the orientation of the block independent of its size.
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Figure 6.7 — Image processing to encode the block’s orientation. On the very left is the
block segment. In each column, the preprocessing steps for one compass filter (top) are
shown, the edge-image, the threshold image, and the sum of white pixels in the threshold
image (adapted from Hoffmann et al., 2005, c© Springer).

All postural variables (camera position, arm joint angles) are encoded by
tuning curves: A variable x is represented by the values of four Gaussian func-
tions fi(x) = exp(−(x−ci)

2/(2σ2)) whose centers ci are uniformly distributed
within the maximal range of the variable. σ equals the distance between two
neighboring centers (Fig. 6.8). Overall, there are 20 input values for the arm
controller (4 compass filter values and 4 × 4 values for the camera position),
and 48 output values (2 arm postures with 6× 4 values each).

6.5.2 Collection of training data

A single training example for the arm controller network is collected in the
following way (similar to the procedure suggested by Hoffmann et al., 2005):
First, a random block position and orientation on the table surface are gener-
ated. By the analytical solution of the inverse kinematics of the robot arm, a
corresponding pre-grasping and grasping posture are determined. If the inverse
kinematics yields several applicable solutions, one of them is chosen at random.
The robot arm is moved to this position with the red block held by the gripper,
and releases the red block on arrival. Afterwards, the arm returns to its resting
position. The saccade controller from Sect. 6.3 is used to fixate the red block; to
enhance precision, a second corrective saccade is carried out if the radial target
distance r is larger than 0.015 after the first saccade. Afterwards, the image of
the left camera is recorded and mapped to the retinal image. From the infor-
mation which is gathered in this sequence, a full learning example with input
(camera position and block orientation) and output (pre-grasping and grasping
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σ

Figure 6.8 — Four Gaussians functions with different centers encode the value (thick
arrow) of a variable x with four values (circles) (adapted from Hoffmann et al., 2005,
c© Springer).

posture) is constructed. This way of collecting learning examples is a technical
solution and not intended for biological modeling.

Altogether, 3213 learning examples were collected. All input and output
dimensions were normalized to mean 0.0 and variance 1.0. The postural dimen-
sions were normalized before the encoding to tuning curve values.

6.5.3 Neural network algorithm

Since one of the possible solutions of the inverse kinematics is chosen at ran-
dom, the training data represents a one-to-many mapping. For this reason, func-
tion approximator networks like MLPs are not suitable for the implementation
of the controller. This is a general problem found in many motor control tasks.
Möller and Hoffmann (2004) suggested so-called “abstract recurrent neural net-
works” as solution. These networks consist of a set of hyperellipsoids in the
sensorimotor space which comprises both the input and output dimensions. The
hyperellipsoids decribe the training data manifold with considerably fewer pa-
rameters than the original training data contains. To determine the center and
shape of the hyperellipsoids, different algorithms are suggested in the literature
(for an overview, see Hoffmann, 2004). In this study, the NGPCA method by
Möller and Hoffmann (2004) was applied. A detailed description of this neural
network algorithm is provided in Sect. 3.4.

For the arm controller, an NGPCA network consisting of 100 hyperellip-
soids with 4 dimensions was used. The learning parameters were T = 100000,
Tortho = 10000, ε(0) = 0.5, ε(T ) = 0.05, ρ(0) = 1.0, ρ(T ) = 0.01, σ2(0) =
0.0, and λ(0) = 10.0 (for an explanation of the parameters see Table 3.3). From
the collected 3213 learning examples, 2900 randomly selected examples were
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used for training (and 313 for the test set). After training, the arm controller
showed the following performance figures on the test set: The average horizon-
tal distance between the gripper tip and the block on the table surface amounted
to 8.7 mm. The average difference between the orientation of the gripper and
the block orientation amounted to 3.4 degrees (for a more detailed specification
of these performance indicators see Sect. 6.7).

6.6 Experiments

In the final experiments, it was tested if the overall robot model shows the hy-
pothesized performance in different task conditions. These conditions vary with
respect to the experimental sequence within a single trial. In general, an exper-
imental trials starts by generating a block position and orientation at random.
The robot arm is used to place the red block on the table surface at exactly this
position and in this orientation. Afterwards, the robot arm returns to its resting
posture.

Task condition WW represents grasping to properly fixated targets.2 In this
task condition, the saccade controller is used for a very precise fixation move-
ment towards the red block. A maximum of five correction saccades is allowed
to reduce the radial target distance to less than r = 0.015. The left camera im-
age after the last saccade is used to compute the retinal image and the compass
filter values as input for the arm controller. Moreover, the final camera position
is used as input s(t+1)

KIN for the arm controller.
In task condition OW, grasping to extrafoveal target objects is carried out.3

After the red block has been placed on the table surface, the cameras are moved
to a random position where (1) the block is visible in both camera images as
input to the saccade controller, and (2) the full shape of the block is visible in the
left retinal image as input to the visual FM. Afterwards, the saccade controller
is used to generate one saccade towards the red block, but this saccade is never
carried out, only s

(t+1)
KIN is computed. The visual FM predicts the hypothetical

retinal image after the saccade, and from this image the compass filter values
are determined as input for the arm controller.

Task condition WW1 serves as comparison: It is equal to WW, but only one
saccade is carried out, accepting a less than optimal target fixation.4 This al-
lows a more fair comparison with OW, where only a single hypothetical saccade
is determined, but no correction saccade. This reduces the quality of the cam-

2
WW: With saccade execution, With proper retinal image

3
OW: withOut saccade execution, With proper retinal image

4
WW1: With saccade execution, With proper retinal image, only 1 saccade
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era position input s
(t+1)
KIN of the arm controller, and the retinal images after the

saccade may differ slightly from the images which were used during training
(where a corrective saccade was carried out if necessary).

Task condition OO is used as a control experiment to demonstrate that the
extraction from orientation information from the retinal images is not trivial
and depends actually on the position of the block in the retinal image.5 Here,
the sequence is similar to condition OW, but the visual FM is not used. Instead,
the retinal image before the hypothetical fixation saccade is used to compute the
compass filter values as input for the arm controller.

In all conditions, the grasping movement which is finally generated as out-
put from the arm controller was carried out at the end of every sequence, and
the grasping success was evaluated. Overall, 100 trials were performed in every
task condition.

6.7 Results

To evaluate the grasping success, the most important indicator is the percent-
age of successful grasping trials; a trial was rated as success if the gripper of
the robot arm was able to grasp the red block firmly and to lift it. This mea-
sure tolerates small position and orientation errors since the distance between
the gripper jaws amounted to 60 mm when it approached the red block. The
red block itself had a horizontal cross section of 74 × 23 mm. Moreover, the
following indicators are used to evaluate the grasping precision:

• Block position error: The Euclidean distance between the center of mass
of the red block and the center of the open gripper, projected onto the
table surface.

• Vertical position error: The difference between the ideal height of the
gripper tip above the table surface (held constant for all learning exam-
ples) and the actual height.

• Block orientation error: The difference between the block’s orientation
on the table surface and the orientation of the perpendicular to the line
that connects both gripper jaws, projected onto the table surface.

• Vertical orientation error: In all learning trials, the approach direction
of the gripper is exactly perpendicular to the table surface. The vertical

5
OO: withOut saccade execution, withOut proper retinal image
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Task condition
WW WW1 OW OO

97 % 89 % 85 % 40 %

Table 6.1 — Success rate (over 100 grasping trials in each experimental condition).

orientation error is the difference between this ideal approach orientation
and the actual approach orientation.

6.7.1 Grasping success

First of all, the percentage of successful grasping trials clearly shows that the
model of extrafoveal grasping actually works as expected (see Table 6.1): In
condition OW, the success rate amounts to 85%. As expected, the success rate
in grasping towards precisely fixated target objects (condition WW) is higher,
amounting to 97%. Condition WW1 (target objects only fixated with one saccade)
has a success rate of 89%, which shows that the performance difference between
conditions WW and OW is largely attributable to the less precise camera position
information if only one saccade is scheduled. The baseline condition OO has
only a success rate of 40%, clearly indicating that the prediction of the retinal
image is not just a trivial add-on, but instead crucial for successful grasping
towards extrafoveal targets. The pairwise differences are statistically significant
on the p < 0.01 level, expect of the differences WW vs. WW1 (only p < 0.05) and
WW1 vs OW (not significant) (four cell Chi-square test).

6.7.2 Grasping precision

The indicators for grasping precision show results which are consistent with the
grasping success rate. Table 6.2 and Fig. 6.9 present the average position and
orientation errors for the grasping posture of the robot arm. In addition to the
error results for all trials, Fig. 6.9 also presents separate results for successful
and failed trials. Regarding the mean value of all trials, condition WW shows
always the best precision, closely followed by WW1, and with a certain distance
by OW. OO is always the worst performer, especially with regard to the block
orientation error. The last result illustrates very clearly the impact of the missing
visual FM.

The vertical position and orientation error are much smaller than the block
position and orientation error in all conditions. This is no surprise since the
distance between gripper tip and table surface and the default approach direction
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Figure 6.9 — Average position and orientation errors for the different task conditions.
The exact values for all trials are listed in Table 6.2.

of the gripper are constant for all learning examples and thus rather easy to learn
by the adaptive arm controller. The distinction between successful and failed
trials (Fig. 6.9) reveals that the mean position and orientation errors within one
task condition are always higher for the failed trials (as it has to be expected).

The statistical tests were restricted to a pairwise comparison of the mean
values for all trials. For each error measure, pairwise t-tests (two-sided) were
computed for independent samples between the four task conditions. The de-
grees of freedom were corrected to compensate for the unequal estimated popu-
lation variances (Bortz, 1993). Most of the 24 tests yielded significant results at
least on the p < 0.05 level with the following exceptions: block position error:
WW1 vs. OW; vertical position error: WW vs. WW1, WW1 vs. OW, OW vs. OO; block
orientation error: WW vs. WW1; vertical orientation error: WW vs. WW1, WW1 vs. OW,
WW1 vs. OO, OW vs. OO.
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Task condition
Error WW WW1 OW OO

Block position [mm] 8.9 (7.2) 12.9 (12.2) 15.4 (9.7) 23.6 (27.1)
Vertical position [mm] 2.1 (2.9) 2.4 (4.8) 4.0 (6.4) 6.1 (12.1)
Block orientation [deg] 4.2 (9.4) 6.4 (13.2) 12.5 (13.1) 37.9 (23.0)
Vertical orientation [deg] 0.5 (0.4) 0.7 (1.2) 1.1 (1.5) 2.0 (5.1)

Table 6.2 — Average position and orientation errors for the different task conditions.
Standard deviations are given in brackets.

6.7.3 Saccadic precision

In condition WW, the average radial target distance after the final saccade amounts
to r = 0.012, while in condition WW1 with only one saccade it amounts to
r = 0.018. This shows that the lower saccadic precision in condition WW1 is
actually the most plausible source of the larger mean block position error and
smaller success rate found in WW1 compared to WW. Furthermore, in condition
WW1 the correlation between saccade length (for the left camera) and radial target
distance amounts to rCorr = 0.16. Inspired by this finding, it was investigated
if there is a direct relationship between saccade length and grasping precision.
For conditions WW1, OW, and OO, the correlations between saccade length and the
different position and orientation errors were computed. The largest absolute
correlation coefficient is found between saccade length and block orientation
error in the OO condition (rCorr = 0.11). However, even this correlation value
is not significantly different from zero (t = 1.1; df = 98), thus one cannot draw
any firm conclusions from these correlation coefficients.

6.7.4 Visualization

Figures 6.10 to 6.13 show some exemplary retinal images which are used for
the computation of the compass filter values for the different task conditions. In
the first row of each figure (white background), the images from four successful
trials are shown, in the second row (gray background) from three or four failed
trials. In addition to the retinal image, the segment which is identified as red
block is shown together with the compass filter histogram which is computed
from this segment. Moreover, Fig. 6.12 for task condition OW shows on top of
this information the retinal image which is used as input for the visual FM. The
predicted retinal image is depicted underneath together with the identified block
segment and compass filter histogram.
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Figure 6.10 — This figure shows the retinal images which are used to extract the block
orientation for the WW task condition. A cross marks the center of each retinal image. In
addition, the block segment and the corresponding compass filter histogram are shown
for each retinal image. The first row with white background depicts successful trials, the
second row with gray background failed trials. There are only three failed trials in the
WW condition.

Figure 6.10 shows the examples for the WW condition. The block is well
centered in the retinal image, indicating good saccadic accuracy. For the first
row with successful trials, four different block orientations have been chosen.
The compass filter histogram reflects the block orientation by the position of the
minimum within the histogram.

Figure 6.11 is dedicated to the WW1 condition. The retinal images reveal that
even in the successful trials the red block is not as well centered as in the WW

condition, resulting in slightly banana-shaped segments (top left trial).
Figure 6.12 displays exemplary trials of the OW condition. The difference

between the depicted retinal images which are input and output of the visual
FM illustrate its performance. Shape and orientation of the block in the reti-
nal images differs considerably between input and output. But it becomes also
clear that the prediction is sometimes not accurate enough and generates atypi-
cal block shapes like in the second trial in the first row (nevertheless successful)
or in the second trial in the second row (failed). The predicted block shape in the
latter is nearly quadratic resulting in a compass filter histogram with equal val-
ues. Histograms like this don’t occur in the learning examples for the arm con-
troller network, thus this input is outside the learned data manifold and causes
erratic extrapolation and failure.

Finally, Fig. 6.13 shows exemplary trials for the OO condition. Here, no sac-
cade and no prediction takes place, and the retinal images which are recorded
at the initial camera position are used to generate the compass filter histograms
from the block segment. The shapes of the block segment differ strongly from
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Figure 6.11 — Retinal images of the WW1 task condition (for further explanation see
caption of Fig. 6.10).

the ideal shapes shown in Fig. 6.10 in the context of the WW condition. Ac-
cordingly, the compass filter histograms are sometimes ill-shaped (especially
showing too large differences between minima and maxima). Moreover, the
correction of the orientation of the block segment, which is accomplished by
the visual FM in condition OW, is missing. These findings correlate well with
the low grasping success rate in the OO condition.

6.8 Discussion

6.8.1 Evaluation of the results

The most important goal of this robotics study was to show that the model of
grasping towards extrafoveal targets actually works as expected. All important
components of the model — a saccade controller, a visual FM, and an arm
controller — were implemented for the use with a a real-world robot setup for
this grasping task. The results show that the suggested architecture is actually
capable to fulfill this task. This supports the claim that spatial attention shifts are
accompanied by the preparation of eye movements (as the premotor theory of
attention states; Rizzolatti et al., 1994), and corroborates our specific hypothesis
that a visual FM predicts how the target object would appear in the fovea, and
that this prediction is used to extract precise information about orientation (or
in a more general sense, about shape).

Furthermore, we expected that grasping towards precisely fixated target ob-
jects results in a better grasping performance than grasping towards extrafoveal
target objects (as suggested by the literature on eye-arm coordination; Abrams
et al., 1990; Vercher et al., 1994). This expectation was confirmed in a compari-

195



CHAPTER 6. GRASPING TO EXTRAFOVEAL TARGETS

Figure 6.12 — Retinal images of the OW task condition (for further explanation see
caption of Fig. 6.10; in addition, the retinal image which is used as input for the visual
FM is shown for each trial on top of the other images).

son of the respective task conditions with regard to the overall grasping success
and with regard to the grasping precision. In an additional task condition, the
influence of saccadic accuracy on grasping success was explored. The fixation
movement was restricted to one saccade regardless of the resulting accuracy
(like in the extrafoveal condition). This revealed that the superior performance
of grasping towards precisely fixated targets compared to extrafoveal targets can
be attributed to a large extent to the inferior saccadic accuracy. Only part of the
performance difference has to be explained by insufficient visual prediction.

The baseline condition without saccade execution and without visual pre-
diction was used to show that the retinal mapping causes non-trivial changes
of object shape and orientation depending on the position in the retinal image.
As expected, directly extracting orientation information from the non-predicted
retinal images and feeding it to the arm controller resulted in low grasping suc-
cess. Furthermore, especially the block orientation error in this task condition
was very high compared to the other conditions.
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Figure 6.13 — Retinal images of the OO task condition (for further explanation see
caption of Fig. 6.10).

6.8.2 Model compared to neurophysiological findings

Overall, the model operates on a rather abstract level. The input and output of
the different components are intended to model the information flow on a level
of abstraction which is feasible to be implemented on a robot setup. Neverthe-
less, in the following some correspondences between the model and neurophys-
iological findings are pointed out.

An important input to the arm controller is the camera position which corre-
sponds to the gaze direction of the eyes in biological systems. In the literature on
eye-arm coordination, this information is often referred to as “extraretinal eye
position information” (EEPI) (e.g., in Bockisch and Miller, 1999). EEPI plays
in important role in the localization of targets which appear as visual stimuli
on the retina (e.g., Battaglia-Mayer et al., 2003; Bock, 1986). EEPI allows the
transformation from eye-centered to head-centered coordinates; head position
information is needed to further localize the target in body-centered coordinates.
As simplification, the latter is omitted in the model, assuming a fixed head po-
sition. Both kinesthetic eye position information and the efference copy of the
eye positioning commands are plausible sources for EEPI (Bridgeman, 1995;
Weir, 2006). Here it is supposed that both sources are compatible with each
other and can be added up to compute the hypothetical eye position information
after a non-executed saccade. Otherwise, an additional internal model would be
necessary for this transformation. Despite this simplification, it is important for
the plausibility of our model that the “hypothetical EEPI” is actually available
to the nervous system. Actually, experimental studies show that EEPI starts
to change before saccade onset (Bockisch and Miller, 1999; Dassonville et al.,
1992; Matin et al., 1970); thus, the nervous system has the means to update
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EEPI before the eye movement takes place and therefore before the kinesthetic
eye position information can change.

Many studies on eye-arm coordination emphasize the necessity of coordi-
nate transforms for the localization of target objects in body- or arm-centered
space after they have been perceived as visual input on the retina. For example,
Snyder (2000) presents the finding that in some cortical regions the locally rep-
resented retinal position is modulated by the population code of the gaze direc-
tion (this modulation has been termed “gain fields”). Coordinate transforms like
this allow to compute the position of a target object in head- or body-centered
coordinates, but they do not explain how the overall object shape is transformed.
Here, the visual FM of our model offers a plausible mechanism.

The output of the arm controller in our model are final arm postures, not
trajectories. This is consistent with the result of Graziano et al. (2002) in a
study on monkeys, in which the stimulation of certain motor cortex neurons
lead to hand locations independent of the initial arm posture. Thus, this level
of encoding is biologically plausible. A more thorough discussion of kinematic
control is provided in Sect. 2.1.2.

6.8.3 Alternative solutions

The retinal mapping in the model is used to change the pattern of sensor acti-
vation depending on the position of a visual stimulus in a retinal image (like
in biological systems as pointed out in Sect. 6.1). These activation differences
are still relevant on the next processing level where compass filters are used to
detect edge orientations (like the simple cells in the visual cortex; Hubel and
Wiesel, 1962). In consequence, the arm controller which has been adapted to
orientation information gained from the foveal region of the retina cannot work
successfully with extrafoveal target objects. As solution, visual prediction of
the foveal region by an FM was suggested. This has the advantage that the sys-
tem can solve the task by a single arm controller which is also used for grasping
to precisely fixated targets.

Within our framework, there exist two additional approaches which offer
alternative solutions. Both cause considerably more overhead on part of the
arm controller. First, instead of visual prediction, one might use a multitude of
arm controllers, each adapted to a certain region of the retina. This might work
in theory, but would require a lot of storage effort for the parameters of the large
number of arm controllers. Moreover, each arm controller would need its own
learning examples in which the target object is exactly depicted on the retinal
region for which the controller is responsible. This would result in considerable
additional effort in the collection of learning examples and in the adaptation
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process. As second alternative solution, one might use a single arm controller
which also takes the retinal position of the target as input. This seems to be a
straightforward solution, but it suffers from the disadvantage that the manifold
of training data becomes considerably more complex. The relation between
compass filter values and joint angles would be mediated by retinal position
in a non-linear fashion which basically adds two non-redundant dimensions to
the data manifold. Thus, the interpolation task of any neural network algorithm
(whether biological or artificial) would become more difficult and would require
more complex network structures. Moreover, the required amount of training
data for such a network would be much larger: Enough learning examples for
all retinal regions would be needed to allow for adequate interpolation.

6.8.4 Remarks on the components of the model

The components of the overall model — the saccade controller, the visual FM,
and the arm controller — are not pre-wired. Instead, they are acquired by dif-
ferent learning strategies. These strategies have been presented and discussed
in previous publications (Hoffmann et al., 2005; Schenck and Möller, 2007,
2006) and in preceding chapters of this thesis. For this reason, the discussion is
restricted to a few remarks at this point.

In the present implementation, the saccade controller works with non-
distorted camera images, while the forward model and the arm controller rely
on retinal images. This inconsistency does not affect the validity of the overall
model and might be resolved as suggested in Sect. 6.4.2. For saccade adapta-
tion, learning by averaging is used although many authors favor feedback error
learning for saccade control in humans and primates (Dean et al., 1994; Gan-
carz and Grossberg, 1999). Nevertheless, learning by averaging offers a new
way of adaptive motor control which is genuinely simple and low-level in its
algorithmic structure and therefore a viable candidate for biological modeling.
Future research has to show for which motor tasks it is suited as biologically
plausible mechanism.

The visual FM is learned by matching regions in the retinal images before
and after the saccade. Over many learning trials, correspondences emerge dur-
ing the matching process. From these correspondences, a mapping between
pixel positions in the retinal images before and after the saccade is constructed,
and non-predictable image regions are detected by the lack of any clear cor-
respondence. This learning process is restricted to low-level visual processing
and therefore a plausible candidate for biological modeling. Studies on predic-
tive remapping (see Sect. 1.3.4.2) support the claim that visual prediction takes
place in the brain. In these studies, neurons which shift their visual receptive
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fields in anticipation of an upcoming saccade were discovered in various brain
areas (Duhamel et al., 1992; Umeno and Goldberg, 1997; Walker et al., 1995).

For the arm controller, the NGPCA method is used as abstract recurrent
neural network. This learning algorithm is capable to cope with one-to-many
mappings which arise in many motor control tasks (especially, when postural
control is concerned as in our model). Alternative methods for this purpose are
the “mean of multiple computations (MMC)” network (Cruse and Steinkühler,
1993; Steinkühler and Cruse, 1998) and the “parametrized self-organizing map
(PSOM)” (Ritter, 1993; Walter et al., 2000). Furthermore, Hoffmann (2004)
compared the performance of Kernel PCA and a mixture of local PCA on a
kinematic arm model.

6.8.5 Final conclusion

The overall model offers a novel functional framework for grasping to ex-
trafoveal targets based on the premotor theory of attention which has gained
a lot of experimental support in the past (e.g., Eimer et al., 2006). It identifies
visual prediction as an important putative component of eye-hand coordination
in this task domain. Moreover, its applicability to a real-world setup is success-
fully demonstrated, which corroborates its plausibility for biological modeling.
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Chapter 7

Visuokinesthetic Prediction for a
Block-Pushing Task1

7.1 Introduction

In this chapter, the idea of “visual perception through anticipation” is explored
on a robot arm setup on the basis of a block-pushing task under visual con-
trol. The theoretical background of the anticipation approach (Möller, 1999) is
described in detail in Sect. 1.5.3. The basic hypothesis states that visual percep-
tion of shape and space is based on an internal simulation process which relies
on the anticipation of the sensory consequences of motor actions, and which is
closely related to motor planning. Starting from the current sensory situation,
an inverse model (IM) suggests several motor actions. A corresponding forward
model (FM) predicts the sensory consequences of all these actions. On the basis
of the predicted sensory situations, further motor actions are suggested, after-
wards their consequences are predicted as well, and so on, until a maximum step
size is reached or at least some simulated action sequences have led to sensory
results with a clear positive or negative meaning to the agent.

As stated in Sect. 1.5.3, the main problem of the anticipation approach
is how to restrict the number of simulated movement sequences to a feasible
number despite the combinatorial explosion that occurs when a large number
of motor commands is tested in parallel for each predicted sensory state. In
the present study, we solve this problem by the application of an optimization
method which guides the search for the “right” movement sequence. This ap-
proach is similar to the one in the study by Hoffmann and Möller (2004) on
motor planning and perception with a mobile robot (this study is described as
well in more detail in Sect. 1.5.3).

The present study starts from a motor control perspective. The first task
1 This chapter is an extended version of the publication by Schenck et al. (2008). The results

presented by Schenck et al. (2008) are more recent and demonstrate a better performance.
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Figure 7.1 — Left: The robot arm in a typical posture for the pushing task; the red block
appears in this monochrome image in light gray color in front of the gripper. Right: Tool
that is held by the gripper during pushing (adapted from Sinder, 2006).

is to generate a sequence of motor commands so that the block-pushing task
can be successfully fulfilled. Once the motor planning capability is established,
we will re-interprete in the discussion section this process as a perceptual one
for the location of blocks in the working area of the robot, as the anticipation
approach hypothesizes.

The work on this study was carried out in cooperation with Dennis Sinder,
who wrote his diploma thesis under the author’s supervision. For thorough
information about technical details, we would like to refer the reader to his
thesis (Sinder, 2006) and restrict the presentation here to the main ideas.

7.2 Method

7.2.1 Setup and task

The robot arm setup which is used in this study is described in detail in App. A.
For the block-pushing task, movements of the robot arm are restricted to a 2D
plane directly above the surface of the white table (see Fig. 7.1, left). With the
help of a special tool (Fig. 7.1, right), which is held by the gripper, the robot arm
pushes a red block made from foam material (size: 135× 45× 45 mm) around
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Figure 7.2 — Sketch of the working area (gray) of the robot arm for pushing movements
on the table surface. A robot arm posture is defined by the gripper position (x, z) and the
pushing orientation α.

the table surface. The posture of the robot arm is defined by the workspace
coordinates x and z of the gripper tip (the axes of the world coordinate system
are depicted in Fig. A.1 in App. A), and by an angle α that indicates the pushing
orientation of the gripper; an angle α = 0◦ indicates a pushing direction parallel
to the x axis of the world coordinate system, away from the base joint of the
robot arm (see Fig. 7.2). The two remaining degrees of freedom with regard
to the gripper orientation are fixed as well as the y position of the gripper tip,
resulting in robot arm postures as shown in Fig. 7.1 (left) with constant distance
between table surface and gripper. Collision-free operation is only possible for
a restricted area of the table surface defined by x ∈ [330 mm; 730 mm] and
z ∈ [−69.5 mm; 250.5 mm]. In this working area, the operating range for α
amounts to [−40◦; +40◦].

Visual data is collected with the right camera of the robot camera head
shown in Fig. B.1 in App. B. The camera is held in a fixed position in which the
camera image records the entire white table surface (see Fig. 7.3, left). From the
original camera image (in RGB color) with a size of 320× 240 pixels, a central
region with a size of 200 × 200 pixels is extracted which covers the effective
working area for the block-pushing task. The region is denoted as “camera
image” in the following for simplicity.

The task of the robot arm is to push the red block from a start position to
a goal position within the working area. Because of the geometry of the robot
arm, the general pushing direction is directed away from its base joint. The
orientation of the block generally varies between start and goal. In the current
implementation, the red block is first placed at its goal position by the operator
and the first camera image is recorded; afterwards the operator moves the robot
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Figure 7.3 — Input and output of the image processing for the encoding of the position
of the red block. Left: Original full-sized camera image (in this monochrome version,
the red block appears in dark gray in front of the gripper). Right: Activation values of
the 3 × 3 “neurons” with Gaussian receptive fields encoding the block position (white:
maximum activation; black: minimum; the depicted activation values are simulated for
illustrative purposes).

arm to an arbitrary start posture (considering the general pushing direction) and
places the red block in front of the pushing tool. A second camera image is
collected, showing the red block at the start position, and from the first and the
second camera image a sequence of motor commands is determined, by which
the robot arm manages to push the red block from the start to the goal.

To generate the sequence of motor commands by an interal simulation pro-
cess, a visuokinesthetic FM is required. The FM predicts visual data (position
and orientation of the red block in the camera image) and kinesthetic data (po-
sition and orientation of the gripper as indicators of the arm posture) resulting
from a given movement. In the following, we describe the training and the
application of this FM.

7.2.2 Image processing

Visual prediction as performed by the visuokinesthetic FM is a difficult task
because of the high dimensionality of visual data. Instead of applying a general
solution to the prediction task as in Chapt. 5, we decided to drastically reduce
the dimensionality of the visual data. This is possible since we only have to
encode the position and orientation of the red block on the white table surface.

First, the camera image is converted into a monochrome image, in which
all pixels of the red block get maximum intensity and all other pixels zero in-
tensity. From this image, a population code of the block’s position is obtained
by superimposing a grid of 3× 3 “neurons” with Gaussian receptive fields, the
centers of which cover the image uniformly. The activation of a neuron is the
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weighted sum over all pixels, with weight factors taken from the corresponding
Gaussian function. The resulting 9 activation values encode the position of the
block (see Fig. 7.3, right).

The orientation of the block is encoded by a compass filter histogram as in
Sect. 6.5.1. Four compass filters enhance the edges of the block segment in
the monochrome image in four different directions (0◦, 45◦, 90◦, and 135◦) (see
Fig. 6.7). After thresholding, the remaining pixels in each image are counted to
give a value for the distribution of edges in a given direction. The resulting four
values encode the orientation of the block. Both the encoding of the position
and of the orientation are inspired by the work by Hoffmann et al. (2005).

7.2.3 Network structure and training

The visuokinesthetic FM for the internal simulation process has the follow-
ing inputs:2 First, the current gripper position and orientation as kinesthetic
input s

(t)
KIN (t denotes the time step) with s

(t)
KIN = (xt, zt, αt); second, a

nine-dimensional vector s
(t)
POS comprising the activation of the 3 × 3 grid of

neurons encoding the position of the block in the camera image; third, a
four-dimensional vector s

(t)
OR that contains the compass filter values encoding

the orientation of the block; and fourth, a motor command mt with mt =
(∆xt, ∆zt, ∆αt). Although the motor command mt and the kinesthetic state
s
(t)
KIN share the same coordinate system and the computation of s

(t+1)
KIN is straight-

forward with s
(t+1)
KIN = s

(t)
KIN + mt, it is important to note that this addition is

never carried out in the model, in which the motor space and the kinesthetic
space are conceptually different entities. The compatibility between mt and
s
(t)
KIN is only exploited at the level of software implementation for the functions

which evaluate learning success and which move the robot arm. Moreover, it
facilitates the training of precise visuokinesthetic FMs with basic artificial neu-
ral network techniques (which is also a technical design decision). The output
of the visuokinesthetic FM consists of the kinesthetic and the visual state of the
next time step: ŝ

(t+1)
KIN , ŝ(t+1)

POS , and ŝ
(t+1)
OR . Overall, the input-output relationship is

s
(t)
KIN, s

(t)
POS, s

(t)
OR, mt −→ ŝ

(t+1)
KIN , ŝ

(t+1)
POS , ŝ

(t+1)
OR .

Learning this relationship is a function-approximation task; for this reason,
the FM is implemented by a multi-layer perceptron (MLP; see Sect. 3.1). 37500

2 In contrast to Chapts. 2 and 4, the symbol m is used in this chapter to denote motor
commands, and the symbol s to denote sensory states. This change is applied to avoid confusion
with the workspace coordinate x.
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learning examples for the MLP were generated by systematically moving the
gripper of the robot arm along different trajectories through the working area,
while it was pushing the red block. The movements were either translations
in the current gripper direction α of a size of 10, 20, or 30 mm or rotations
by a small angle ∆α = 5◦. At the beginning and the end of each movement
step, a camera image was recorded, so that a full learning example consisting of
kinesthetic and visual data could be constructed. The systematic approach and
the large number of learning examples ensured a uniform distribution of learn-
ing examples in the whole working area (including the gripper orientation α).3

This process can be interpreted as a “motor babbling” stage, in which the system
learns the relevant sensorimotor relationships through its own experience.

In the thesis by Sinder (2006), different MLP topologies, types of input
encoding, pattern set sizes, and learning algorithms were compared. The best
performance with regard to the precision of the predicted data was obtained by
three separate MLPs for each output ŝ

(t+1)
KIN , ŝ

(t+1)
POS , and ŝ

(t+1)
OR , with the already

described input encoding and pattern set size, and with plain online backprop-
agation (see Sect. 3.1.2) as learning algorithm. The final networks from which
the visuokinesthetic FM is composed have a single hidden layer with 10 units
with hyperbolic tangent as activation function. The activation function of the
input and output units is the identity function. The input for the MLP for the
kinesthetic prediction is restricted to s

(t)
KIN and mt, while the other MLPs get

the full input. The learning rates amount to η = 0.0022 for the sKIN-MLP, to
η = 0.002 for the sPOS-MLP, and to η = 0.003 for the sOR-MLP. After 300
epochs of network training, Sinder (2006) reports for this type of visuokines-
thetic FM the following prediction accuracy on a test set: The average absolute
percentage difference between the correct output and the network-generated
output amounts to less than 3% for the position and orientation output units
and to nearly 0% for the kinesthetic output units (the percentage values are
computed in relation to the desired output). This precision is sufficient for an
iterative prediction several time steps ahead in the future, as we will see in the
following.

7.2.4 Motor planning as optimization problem

The internal simulation process for motor planning and perception requires an
iterative application of the visuokinesthetic FM. For t = 1 with known sensory
input, an adequate motor command m1 has to be generated (without executing

3 Since the data range in the different input and output dimensions varies considerably, all
dimensions were normalized to a mean value of 0.0 and a variance of 1.0 before MLP training.
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Figure 7.4 — The iterative application of the visuokinesthetic FM, depicted exemplary
as chain of three FMs. The initial sensory state is used as input to the chain, the final
output (ŝ

(4)
POS, ŝ

(4)
OR) of the last FM is constrained to be as close to the desired sensory goal

state s∗ as possible (indicated by the left-pointing arrow from s∗). The motor commands
m1 to m3 are free parameters in the optimization process. Network units are only shown
schematically to indicate the implementation of the FM through MLPs (adapted from
Hoffmann, 2004; Sinder, 2006).

it). The FM predicts the sensory state ŝ2 = (ŝ
(2)
KIN, ŝ

(2)
POS, ŝ

(2)
OR) of the next time

step t = 2, a second motor command m2 is generated (without execution),
the FM predicts the sensory state for t = 3 on the basis of the input (ŝ2,m2),
and repeatedly so, until the sequence of motor commands {mt} (t = 1..N )
results in a predicted sensory state that either indicates failure or success, or
until the number of prediction steps N is equal to a predefined maximum. Such
an iterative application of an FM is illustrated in Fig. 7.4 for three prediction
steps.

In the block-pushing task, the initial sensory state s1 = (s
(1)
KIN, s

(1)
POS, ŝ

(1)
OR) is

determined from the initial posture of the robot arm and the camera image show-
ing the red block at the start position. The sensory goal state s∗ = (s∗POS, s

∗
OR) is

determined from the camera image that shows the red block at its goal position.
It is important to note that sKIN is not part of the sensory goal state. The sys-
tem has no direct way to determine the kinesthetic state at the goal position. A
movement sequence {mt} is successful if the difference between (ŝ

(N)
POS, ŝ

(N)
OR )

and s∗ is very small. If the sequence {mt} is actually executed afterwards, the
final real sensory state (s

(N)
POS, s

(N)
OR ) may differ considerably from s∗, depending

on the precision of the prediction by the visuokinesthetic FM. Thus, a precise
visuokinesthetic FM is an important precondition for a realistic internal simu-
lation process.

The anticipation approach to visual perception hypothesizes that many move-
ment sequences {mt} are simulated in parallel. In previous studies, the motor
commands were either generated by an IM with additional random variation of
its motor output (Möller and Schenck, 2008), they were determined on the ba-
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sis of a movement heuristic or by recursive search (Hoffmann, 2007), or they
were computed by an optimization process (Hoffmann and Möller, 2004). For
the present study, we decided to use an optimization method as well because it
leaves the generation of motor commands in a kind of “black box”. One may
even argue that the optimization process acts like an IM which produces an en-
tire movement sequence from a given initial sensory state and a given sensory
goal state.

The optimization problem is stated as follows. The initial sensory state is
given by s1 = (s

(1)
KIN, s

(1)
POS, s

(1)
OR), the sensory goal state by s∗ = (s∗POS, s

∗
OR).

The number of iteration steps is set to a fixed number N . The free parameters
in the optimization process are the motor parameters in the sequence {mt} (t =
1..N ). The optimization criterion is the minimization of the difference between
(ŝ

(N)
POS, ŝ

(N)
OR ) and s∗.

In each internal simulation step, the visuokinesthetic FM predicts first a
translational movement in direction of the current estimated gripper orientation
with length rt, afterwards it predicts on the basis of the new estimated sensory
state the rotation by an angle ∆αt. Thus, in each iteration step i a double pre-
diction is carried out to avoid that the MLPs have to operate in an untrained
part of the input data space, since they were only trained with purely trans-
lational and purely rotational movements. For the same reason, ∆xt and ∆zt

are not allowed to vary freely, but are instead computed as ∆xt = rt cos(α̂t)
and ∆zt = −rt sin(α̂t) since the training data only contains purely translational
movements in direction of the current gripper orientation. In summary, the free
motor parameters are (rt, ∆αt) for each movement step. Overall, this defines
an optimization problem with 2N free parameters.

Differential evolution (DE) is used as optimization method (see Sect. 3.5)
with the following parameter settings: NDE = 50, λ = 0.7, γ = 0.7, pCR =
0.95, Gmax = 15, and Emin = 1.0−10 (see Table 3.4 for the parameter defi-
nition). The energy E of a movement sequence indicates the “fitness” of the
specific solution in the process of differential evolution (the smaller the better;
E is designated as fopt in Sect. 3.5). E is computed by the following equation
on the basis of unnormalized sensory values:

E = ‖ŝ(N)
POS − s∗POS‖ ·

(
1 + 0.0005 · ‖ŝ(N)

OR − s∗OR‖
)

The formula defines a tradeoff between position and orientation accuracy with
priority to the former. Moreover, penalty terms are added to E if any motor
parameter rt or ∆αt is outside the range that the MLPs of the visuokinesthetic
FM have encountered during training. Penalties are added as well if any esti-
mated kinesthetic state ŝ

(t)
KIN during the simulation of the movement sequence
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is outside the working area. In this way, the energy function prevents the opti-
mization process from drifting into areas in which the MLPs of the FM do not
work properly because they have to extrapolate.

Since the distance between the start and the goal is not known beforehand,
the optimization process has to be carried out with different numbers of iteration
steps N . In our experiments, we varied N between 7 and 15. Considering the
population size NDE = 50 and the maximum number of generations Gmax = 15,
the computation of the best movement sequence required the internal simulation
of 6750 different movement sequences.

The movement sequence which resulted from the optimization trial with the
lowest final energy E was picked as overall best movement sequence. However,
for a fair comparison between optimization trials with a different iteration depth
N , we multiplied E before the comparison with an “increase factor” equal to
1.2N . In this way, the energy of the movement sequences increases exponen-
tially by a factor of 1.2 for every movement step. This is motivated by the fact
that the precision of the final prediction gets worse the more internal simulation
steps have to be carried out. Thus, before the multiplication with the increase
factor a solution with N = 15 may have resulted in a smaller energy than a
solution with N = 7, but ultimately the shorter sequence yields the better per-
formance because the accumulated prediction error is smaller, which in turn
implies a more precise energy value E. As solution to this problem, energy
values were compared not until after multiplication with the increase factor.

7.3 Results

Simulation runs The results that are reported here were generated in a simu-
lation study, in which 100 movement tasks with different start and goal positions
were solved. The start and goal positions and their accompanying visual sensory
data were retrieved from the pattern set for the training of the visuokinesthetic
FM with 37500 learning examples. For each of the 100 tasks, two learning ex-
amples were drawn at random. Since originally each of these learning examples
represents a small movement step, the sensory data for the start position was ex-
tracted from the part of the first learning example that encodes the sensory state
before the movement, the sensory data for the goal position from the part of
the second learning example that encodes the sensory state after the movement.
Certain constraints were applied to these randomly generated movement tasks
to ensure that they are geometrically possible (e.g., the start position has to be
closer to the base joint of the robot arm than the goal position), that the overall
orientation difference is not too large, and that start and goal are not placed at
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the very border of the working area.
For each movement task, the optimization process generates a movement

sequence by the algorithm described in the preceding section. By executing this
sequence, the red block would be ideally pushed to the goal position which is
encoded by s∗ = (s∗POS, s

∗
OR). The corresponding desired final arm posture is

denoted as s∗KIN = (x∗, z∗, α∗), the actual final arm posture after the simulated
movement as s

(N)
KIN = (xN , zN , αN). Since s∗KIN is part of the learning examples

in the pattern set, it can be used for evaluation purposes. However, if an operator
places the red block at a random goal position in the working area for a real-
world test, the accompanying arm posture and thus s∗KIN would be unknown.

The mean position error, defined as the Euclidean distance between (xN , zN)
and (x∗, z∗), amounts to 27.9 mm for the 100 movement tasks (σ = 18.2 mm),
the mean orientation error, defined as absolute value of the difference between
αN and α∗, amounts to 6.0 degrees (σ = 6.3 degrees).4 The mean movement
distance, defined as the distance between the start and the goal position of a
movement task in the (x, z) space, amounts to 175 mm. The percentage ra-
tio between the mean position error and the mean movement distance amounts
to 16.0%. On average, a movement sequence has a length of 8.6 steps. The
movement distance is correlated to the length of the corresponding movement
sequence (r = 0.33, p < 0.001) and to the resulting position error (r = 0.73,
p < 0.001). The orientation error shows no significant correlations with other
important variables.

Figure 7.5 shows the movement sequences that were generated in 16 of the
100 movement tasks. Each panel depicts the complete working area, the x-axis
pointing in the vertical, the z-axis in the horizontal direction. The goal position
(x∗, z∗) is indicated by a circle with a diameter of 20 mm in each panel. The
longer bar of the cross at the center of the circle points into the goal orienta-
tion α∗. Successive movement steps within a sequence are separated by bars
that are orthogonal to the movement direction. The upper nine examples show
rather precise solutions over various movement distances, while the four exam-
ples in the last row illustrate failed solutions. The mean position error of the 16
examples is slightly larger than the overall position error, while the mean orien-

4 An additional simulation run with 100 different movement tasks was carried out to explore
the influence of the population size NDE on the movement precision. The population size was
set to NDE = 30, reducing the number of simulated movement sequences per movement task to
4050 (compared to 6750). This parameter configuration results in a position error of 29.9 mm
and an orientation error of 9.0 degrees. The difference to the run with NDE = 50 is statistically
significant only with regard to the orientation error (p < 0.01). This shows that the number
of movement sequences that are simulated in parallel can be considerably reduced without a
major loss in movement precision, most likely because many of the simulated sequences are
very similar.
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15.9 / 10.6 23.1 / 1.9 12.9 / 5.4 10.2 / 3.9

22.7 / 4.6 15.4 / 4.3 20.2 / 4.0 12.9 / 2.8

17.0 / 0.1 25.2 / 5.7 7.1 / 0.2 19.7 / 6.4

67.4 / 1.9 40.0 / 2.4 67.4 / 1.5 106.3 / 4.2

Figure 7.5 — Simulated trajectories for 16 different start and goal positions (marked
with a cross within a circle; the longer bar of the cross indicates the goal orientation);
unsatisfactory trials are shown in the last row. The figures underneath each trajectory
indicate the final position error (left; in mm) and the final orientation error (right; in
degrees).
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tation error is slightly lower for the shown examples. Thus, Fig. 7.5 provides a
representative illustration of the performance of the suggested motor planning
scheme. The failed solutions are remarkable insofar as the orientation error is
kept small although the position error is large. This may be caused by a bad
performance of the MLP that predicts ŝPOS in some regions of the input space.

Practical tests Tests with the robot arm, in which the red block is placed by
an operator at random start and goal positions within the working area, revealed
a similar performance as the simulation runs.

7.4 Discussion

The performance of the internal simulation process for motor planning is rather
good, given the prediction accuracy of the MLPs which constitute the visuokines-
thetic FM. While the kinesthetic prediction is nearly flawless, the visual position
and orientation data is predicted with an average accuracy of 3%. Although this
sounds like a tolerable error, even small prediction errors accumulate easily,
rendering the final output useless. This is reflected by the strong correlation
between movement distance and final position error. Nevertheless, the internal
simulation process can successfully generate even movement sequences with a
length of 15 steps with tolerable final position and orientation errors (for exam-
ple, in the first column/second row of Fig. 7.5), although success is not guaran-
teed, as the four examples in the last row of Fig. 7.5 show. As already stated,
a likely reason for failed trials is a sub-average prediction accuracy of the vi-
suokinesthetic FM in some regions of its input space. Thus, further research has
to concentrate on techniques for the training of even more precise FMs.

The trajectories which are generated in the movement planning process are
not defined by their via-points first, as suggested by many models for arm tra-
jectory generation (e.g., Rosenbaum et al., 2001; Wada and Kawato, 2004). In-
stead, the motor commands for every movement step are specified first, and
the locations of the via-points are determined afterwards by updating the esti-
mated kinesthetic state iteratively through the visuokinesthetic FM. Thus, our
model offers an alternative approach to trajectory formation, in which the posi-
tions of the via-points emerge from the best movement sequence. In our model,
we work with motor commands which indicate a kinematic change of the arm
posture. Future research has to address the question if this method of trajec-
tory generation is actually feasible for more complex motor commands and for
the dynamic domain. Moreover, one has to ask if there are “cheaper ways” of
trajectory generation, since the application of an optimization method is rather
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expensive with regard to the number of simulated movement sequences for a
single task. However, this method has the great advantage that there is no need
for an explicit movement strategy or an IM. Instead, the optimization criterion
implicitly defines the movement strategy.

One may critize from the cognitive and biological modeling perspective that
the representation of the kinesthetic state is too abstract. However, the conver-
sion between sKIN and the joint angles of the robot arm is purely kinematic,
and the joint angles would be a plausible representation of the kinesthetic body
state, even though their neural encoding in the brain may be rather complex.
Moreover, we omitted a clear distinction between sensory and state variables,
and the kinesthetic state has been subsumed into the sensory data. We feel that
this simplification enhances the clarity of the description, and the distinction be-
tween sensory and state variables is conceptually not important in the scope of
this study. The visual “sensory” representations are also rather abstract. How-
ever, the compass filters work by extracting edges of a specific orientation and
therefore act in analogy to the simple cells in the primary visual cortex (Hubel
and Wiesel, 1962).

A small twist in the formulation of the movement task reveals that the in-
ternal simulation process is not only the basis for movement planning, but also
for the visual perception of space. Instead of placing the red block first at the
goal position and afterwards at the start position, from which the pushing is
initiated, the red block is only placed at the goal position. The perceptual task
is to infer from the camera image the block’s position in the working area in
kinesthetic coordinates, and thus to perceive the location of the block in a way
that is intimately linked to the body of the agent (here: the robot arm).

Since we work in a very restricted domain, we have to assume that the robot
arm is in a valid posture for the pushing task, thus in a kinesthetic state s

(1)
KIN,

which can be expressed by the variables x1, z1, and α1. Now, we use the pattern
set for the visuokinesthetic FM with its 37500 learning examples as lookup
table. s

(1)
KIN is the retrieval cue, s

(1)
POS and s

(1)
OR are recalled;5 in this way, the

complete initial input for the chain of FMs is obtained. The final desired output
(s∗POS, s

∗
OR) is already known through the presentation of the red block at its

current position. Using the mental simulation process, ŝ
(N)
KIN is generated, the

internal estimate of the arm posture directly in front of the red block. The
generation of ŝ

(N)
KIN can be interpreted as perception of the location of the red

5 This lookup table is not implemented yet, but there is no reason why the recall from the
pattern set should fail. Alternatively, one might use an NGPCA network (see Sect. 3.4) that is
trained with these learning examples for the recall.
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block in kinesthetic body coordinates.6 The results of the simulation runs in the
results section can be reinterpreted in this way as well.

One may argue that it would be easier within the presented framework to
infer ŝ

(N)
KIN directly, using the lookup table approach on the basis of the pattern

set for the visuokinesthetic FM, but this time applying (s∗POS, s
∗
OR) as retrieval

cues. Although this direct visuokinesthetic association may work for the spe-
cific setup of this study, this does not question the applicability of the inter-
nal simulation approach. For example, in the study by Möller and Schenck
(2008) dead ends and corridors were successfully classified by internal sim-
ulation, whereas the direct classification just by visual data would have been
much more difficult, if not impossible. Thus, independent of the existence of a
straight association between visual data and other perceptual categories (object
classification, kinesthetic data), the internal anticipation approach allows for the
perception of shape (dead end vs. corridor) or space (block location). This fits
nicely to the core idea that action enables perception (Gibson, 1979; Hoffmann
and Möller, 2004; Möller, 1999; Möller and Schenck, 2008; Noë, 2005).

Nevertheless, it would strengthen the argument in favor of the perception
through anticipation approach if one was able to avoid the usage of a lookup ta-
ble or similar recall mechanism at all. Future experiments will aim at generating
estimates of s

(1)
POS and s

(1)
OR in the process of optimization as well (most desirably

with biologically more plausible optimization methods). If this succeeds, the
system would not only perceive the location of the block in kinesthetic coordi-
nates, but would also get a visual image of how the object would look like in
a position close to the gripper (given the current start posture of the arm). In
more general terms, the imagined visual stimulation by an object close to the
agent’s body could trigger other associations, for example imagined tactile sen-
sations, in this way providing a multisensory and body-related perception and
understanding of an object which is only observed visually in the first place.

6 The MLP that predicts ŝ
(t+1)
KIN works very precisely so that the difference between the real

kinesthetic state s
(N)
KIN and the estimated kinesthetic state ŝ

(N)
KIN at the end of a simulated move-

ment sequence is completely negligible. Thus, the perception of space does not suffer from any
additional inaccuracy which could theoretically arise from the iterative prediction of ŝ

(t+1)
KIN .
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Chapter 8

Summary and Outlook

The focus of this thesis were adaptive internal models for integrated sensori-
motor processing. We explored motor learning strategies for inverse models
and learning algorithms for visual forward models. In doing so, we pursued
the goal to provide novel learning schemes which might be used as basis for
biological modeling, but which could also serve as technical solution in the
area of adaptive robotics. Furthermore, we developed a model for grasping to
extrafoveal targets, composed from inverse and forward models, which is mo-
tivated by the premotor theory of attention (Rizzolatti et al., 1994). Finally,
we demonstrated in the context of a block-pushing task that visual perception
of space can be realized by an internal simulation of movement sequences as
proposed by the “perception through anticipation” approach (Möller, 1999). As
research method, robot experiments and computer simulations were used in all
studies. In the following, the main results of each study are summarized, and
an outlook of future research is given.

8.1 Kinematic Motor Learning

In the study on kinematic motor learning in Chapt. 4, we compared “learning
by averaging” (Schenck and Möller, 2004, 2006), “feedback error learning”
(FEL; Kawato, 1990), “distal supervised learning” (DSL; Jordan and Rumel-
hart, 1992), and “direct inverse modeling” (DIM; e.g., Kuperstein, 1988). Learn-
ing by averaging was developed by the author; it was tested in a staged (SLbA)
and a continuous (CLbA) version. Furthermore, direct inverse modeling on the
basis of the NGPCA algorithm for abstract recurrent neural networks (Hoff-
mann and Möller, 2003; Möller and Hoffmann, 2004) was included in the com-
parison study (DIM_NGPCA).

The performance of these motor learning strategies was compared on dif-
ferent tasks for simulated robot setups. The first setup was a robot camera head
with stereo vision; this system had to learn to fixate target objects on a table
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surface or within a 3D working area. The second setup was a simulated planar
arm with its number of links varying between two and four; this system had
to learn the correct arm postures for reaching movements. In the study on the
planar arm, we introduced different task conditions: without constraint, with
a “maximum symmetry” constraint, and with a “minimum energy” constraint.
Furthermore, for both the camera head and the planar arm, there was a task con-
dition with additional sensory noise. In this way, the goal was to find out which
learning strategies perform best for linear plants (camera head), for non-linear
plants (planar arm), with additional learning constraints (planar arm), with ad-
ditional noise, and how these strategies can cope with one-to-many mappings
(planar arm).

The performance measure in these comparisons was the required number
of “exploration trials” (actual movements of the cameras or of the arm for the
generation of a learning example) for controller training by the respective learn-
ing strategy. Training was halted as soon as the motor output of the controller
(alias inverse kinematics model) exceeded a very good pre-defined precision
level (called controller quality in Chapt. 4).

Main results

• For linear plants, local linear approximation techniques like FEL and DSL
showed a very good performance, as did DIM and DIM_NGPCA.

• For non-linear plants, DIM_NGPCA was the clear winner. Depending on
the number of links of the planar arm, either SLbA or FEL/DSL came
in second. CLbA failed for the planar arm (most likely because of the
negative impact of catastrophic interference).

• SLbA coped very well with the additional learning constraints in the pla-
nar arm task. It showed the most consistent and partly the best perfor-
mance in this respect. Furthermore, SLbA is well suited to incorporate
additional learning constraints through its quality function.

• Sensory noise had no considerable impact on the performance ranking
order of the learning strategies (with the exception of SLbA in one task
condition for the planar arm).

• DIM cannot cope at all with one-to-many mappings unless it is used in
combination with abstract recurrent neural networks (DIM_NGPCA). In
this combination, DIM_NGPCA has the theoretical advantage to store all
applicable controller outputs for a given controller input simultaneously.
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In practice, this advantage was as beneficial as expected for the learning
of one-to-many mappings in the planar arm task. FEL/DSL were also able
to cope with one-to-many mappings by converging to a single controller
output for a given input. SLbA only performed well with one-to-many
mappings as long as the number of dimensions of the sensorimotor space
was kept low or additional learning constraints were applied.

• Overall, DIM_NGPCA showed the best performance. It can be generally
recommended for kinematic motor learning in technical applications (for
restrictions, see the discussion in Sect. 4.3 and the following outlook).
FEL and DSL are also well suited for many applications, especially for
linear plants. If the plant is known analytically (and not too complex),
FEL might be preferred because the needed feedback controller can be
analytically determined, whereas DSL requires the prior training of a for-
ward model. SLbA is recommendable if a straight implementation of
additional learning constraints is desired.

• With regard to biological plausibility, the most promising candidates are
FEL (for simple plants that do not require any analytical knowledge) and
CLbA (see Table 2.1). The other learning strategies can be critized for
various reasons. The biological plausibility of DIM is often questioned
in the literature (e.g., Kawato, 1990) because of the supposed need for
“neural rewiring”. In Sect. 4.3, we briefly suggested a neural architecture
based on neural maps which would resolve this problem for DIM and
DIM_NGPCA.

Outlook

• In this comparison study, the performance of each learning strategy was
determined via the required number of exploration trials until a pre-
defined controller quality was achieved. In a more thorough analysis, one
might vary this quality level systematically to incorporate the learning
speed profile in the comparison. Furthermore, one might vary the sensory
noise levels or might even include motor noise. However, all of these ad-
ditional variations will require a lot of additional computational effort if
they are combined with an as thorough exploration of the parameter space
for each learning strategy as in the present study.

• The main weakness of DIM_NGPCA is the lacking goal-directedness in
the collection of learning examples for controller training. If the operating

217



CHAPTER 8. SUMMARY AND OUTLOOK

range of the controller defines only a small subset of the overall sensori-
motor space, this can result in a performance drop of DIM_NGPCA. To
overcome this weakness, it would be worthwhile to develop goal-directed
search strategies in motor space for the collection of learning examples.
This idea is related to the work by Bongard et al. (2006) on directed ex-
ploration (see Sect. 1.4).

• One might further investigate on the applicability of learning by averag-
ing for biological modeling. SLbA for the planar arm worked best when
additional constraints were applied. The kinematic control of the human
arm can be modeled on the basis of cost functions (Cruse et al., 1990).
Using these cost functions as constraints for SLbA might result in a plau-
sible model for the human learning of kinematic arm control.

8.2 Visual Prediction

In Chapt. 5 on visual prediction, we presented two versions of a learning algo-
rithm for visual forward models in the context of saccade-like camera move-
ments. This learning algorithm was able to overcome the two main difficulties
of visual prediction: first, the high dimensionality of the input and output space
(both image data) and, second, the need to detect which part of the visual output
is non-predictable (because it is out of view in the visual input of the forward
model). To demonstrate the robustness of the presented learning algorithm, we
did not work on plain camera images, but on distorted “retinal images” with a
decreasing resolution towards the corners.

In the proposed visual forward model, the direct prediction of output pixel
intensities was replaced by a mapping between output pixel positions and input
pixel positions. This mapping depends on the motor command; it encodes the
change of pixel positions induced by the motor action (a relative pan-tilt move-
ment of the camera). This mapping was implemented by a so-called “mapping
model” (MM). Furthermore, we introduced a “validator model” (VM) which
generates a binary output for each output pixel position, indicating if the re-
spective output pixel is predictable at all, given the scheduled motor command.

The main challenge was to develop a learning algorithm for the MM and
the VM. The presented algorithm worked by carrying out systematic camera
movements from many different initial camera positions. After each move-
ment, possibly matching pixels in the input image were determined for many
different output pixel positions. Over many learning trials, the possibly match-
ing input pixel positions for each specific camera movement and output pixel
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position were accumulated, yielding a density distribution which was stored in
a so-called “cumulator unit”. These cumulator units were generated at specific
positions in the input space of the MM and VM, defined by a regularly spaced
grid. After learning, the output of the MM corresponded to the density maxi-
mum in each cumulator unit, because it indicated the best matching input pixel
position. If no clear maximum arose during learning, the respective output pixel
was non-predictable; in this way, the binary output of the VM was determined.
To interpolate the output of the MM and the VM between the grid points, radial
basis function networks were applied. Finally, we demonstrated that the trained
MM and VM networks can be successfully used for the visual prediction task.

The main function of the cumulator units was to store the density distribu-
tion over the input pixel position space. Afterwards, the modal value of this
distribution was determined as MM output. To avoid the storage of the cumu-
lator units, we developed an additional iterative learning algorithm for modal
values which relied on the idea of fitting an ellipsoid to the density distribution
so that the center of the ellipsoid settles down at the modal value. Moreover,
we suggested a method of how to determine if a clear modal value exists at all
(for the output of the VM). First results indicated the success of these online
learning methods although there was still room for improvement.

The proposed learning algorithms offered two core ideas for biological mod-
eling in the area of visual forward models: first, learning the input-output re-
lationship by matching low-level visual features, and second, identifying pre-
dictable regions by detecting that a good match emerges during the learning
process.

Outlook

• The proposed learning algorithm is restricted to visuomotor relationships
in which depth information is not relevant. For head or whole-body move-
ments it is neccessary to extend the algorithm so that it includes depth
information.

• The online learning of modal values suffers from occasional outliers. To
overcome this problem in the context of the MM, one might couple the
learning process of neighbouring units in the grid like in a self-organizing
map (Kohonen, 1995).

• To get rid of the fixed grid in the input space of the MM and the VM dur-
ing learning, one might combine a neural network algorithm like “super-
vised growing neural gas” (SGNG; Fritzke, 1998), which features flexible
and adaptive unit placement, with the online learning of modal values.
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Each unit of the SGNG network might hold the necessary parameters
for modal value learning in its region of the input space. The result-
ing learning scheme would be more adaptive and better suited for high-
dimensional motor commands as input of the visual forward model.

• One might extend the core ideas of the presented algorithms (matching
low-level visual features, detecting regions without good match) to a bio-
logically inspired model of the learning of shifting visual receptive fields
as in predictive remapping (e.g., Umeno and Goldberg, 1997).

8.3 Grasping to Extrafoveal Targets

In Chapt. 6, we presented a model for grasping to extrafoveal targets which was
implemented on a robot setup, consisting of a camera head and a robot arm.
This model was based on the premotor theory of attention (Rizzolatti et al.,
1994) and added one specific hypothesis: Attention shifts caused by saccade
programming imply a prediction of the retinal foveal images after the saccade.
For this purpose, a visual forward model was used. Without visual prediction,
grasping towards extrafoveal target objects would be difficult because of the
heavy distortions found in retinal images. Whenever an object is depicted at
an extrafoveal position, its picture is significantly different from its foveal rep-
resentation, rendering the reliable extraction of object features like orientation
very difficult. Thus, the predicted foveal images were required to determine
movement parameters for the manual interaction with objects at the target loca-
tion of the attention shift.

The model consisted of three parts. First, a saccade controller acquired
through “continous learning by averaging”; second, a visual forward model
predicting retinal images (with decreasing image resolution towards the cor-
ners in analogy to the sensor distribution on the human retina); and third, an
arm controller for grasping movements which received the output of the sac-
cade controller and the orientation of the target object as inputs.

We compared the grasping precision of four different versions of the robot
model: (1) for grasping towards target objects which were precisely fixated by
a series of saccades, using the actual retinal images instead of the predicted
ones; (2) for grasping towards target objects which were fixated just by one
saccade, also using the actual retinal images instead of the predicted ones; (3)
for grasping towards non-fixated target objects using visual prediction; (4) for
grasping towards non-fixated target objects without visual prediction.

The first task condition produced the best results, followed by the second
and the third condition. The fourth condition caused considerable orientation
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errors. These results demonstrated that grasping towards extrafoveal targets is
less precise than grasping towards properly fixated targets (which is consistent
with the literature on eye-hand coordination), and furthermore that grasping
towards extrafoveal targets requires the application of a visual forward model.
Otherwise, grasping towards extrafoveal targets is bound to fail.

In conclusion, the proposed model offered a functional framework for grasp-
ing to extrafoveal targets, identifying visual prediction as an important com-
ponent of eye-hand coordination in this task domain. Moreover, the model’s
applicability to a real-world setup was successfully demonstrated.

Outlook

• In the present implementation of the overall model, the saccade controller
works with unmapped camera images, while the forward model and the
arm controller rely on retinal images. Although this inconsistency does
not impair the validity of the overall model, it would be desirable to
use retinal images for the saccade controller as well. In addition, one
might apply the visual forward model for target re-identification during
the adaptation and operation of the saccade controller as suggested in
Sect. 6.4.2.

• One might modify the model to account for the finding that human sub-
jects overestimate the distance to peripheral targets in pointing tasks
(Bock, 1993). Most likely, this would require additional mechanisms
which are independent of the basic claim that visual prediction is neces-
sary to avoid errors in shape recognition (e.g., orientation) and subsequent
grasping.

8.4 Perception by Anticipation

The goal of the robot study in Chapt. 7 was to show that the visual perception
of space might be based on an internal simulation process as supposed by the
“perception through anticipation” approach (Möller, 1999). The test bed for this
study was a block-pushing task for a robot arm. Since the internal simulation
for perception is closely related to movement planning, we started from a motor
control perspective, facing the task to generate the motor commands to push
a small wooden block over a table surface from a start to a goal position with
the help of the robot arm. To accomplish this task, a visuokinesthetic forward
model for the next state prediction and a method for the computation of the right
motor commands were needed.

221



CHAPTER 8. SUMMARY AND OUTLOOK

The visuokinesthetic forward model had to predict the new visual and kines-
thetic state after a small movement step of the robot arm. Its input were the
previous visual and kinesthetic state. The visual state indicated the position
and orientation of the block on the table surface (encoded by Gaussian units
and a compass filter histogram), the kinesthetic state the position and orienta-
tion of the gripper of the robot arm. The forward model was implemented by
a collection of multi-layer perceptrons. The training data for these networks
were generated by executing a large number of small pushing movements with
the robot arm within the workspace. During this “motor babbling” stage, the
visual and kinesthetic data were collected for the construction of the learning
examples.

The visuokinesthetic forward model was used for the internal prediction of
the sensory consequences of a sequence of small pushing movements. For this
purpose, the prediction had to be carried out in an iterative way for all elements
of the movement sequence. To generate a movement sequence for the success-
ful accomplishment of a specific pushing task (from a specific start to a specific
goal), we used the optimization method “differential evolution”. The optimiza-
tion goal was to minimize the difference between the desired visual state at the
goal position and the predicted visual state at the end of the movement sequence.
The number of movement steps was fixed within a single optimization trial, as
were the visual and kinesthetic state at the start. The free parameters in the
optimization process were the motor commands of each movement step. Since
the optimal number of movement steps is not known beforehand, it was varied
systematically over several optimization trials, finally executing the sequence
with the best fit between the desired and the final predicted visual state.

In our experiments, this optimization process proved to be quite success-
ful for the generation of movement sequences for block-pushing. The average
final position and orientation error were within an acceptable range. Some out-
liers were attributed to an insufficient precision of the visuokinesthetic forward
model in certain parts of the workspace.

Finally, the internal simulation was re-interpreted as perception of space.
Instead of showing the block at the goal position and afterwards at the start
position, it was proposed to show the block only at the goal position. In this set-
ting, the perceptual task would be to infer from the visual goal state the block’s
position in the workspace in kinesthetic coordinates, and thus to perceive the lo-
cation of the block in “body coordinates”. This perceptual task might be solved
on the basis of the presented motor planning method, only the inital visual state
would have to be inferred from the current kinesthetic state of the robot arm to
provide the full initial input to the iterative prediction. To generate the visual
state from the kinesthetic state, a lookup table approach was suggested. The
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data for the lookup table might be extracted from the learning examples for the
visuokinesthetic forward model.

In conclusion, this study demonstrated how the visual perception of space
can be accomplished by an internal simulation process which is closely related
to motor planning. In this way, the study contributed to the embodied approach
to perception and cognition.

Outlook

• Prediction errors of forward models easily accumulate, rendering the fi-
nal output of an iterative sequence useless. For this reason, one should
continue in finding ways for the training of forward models which result
in more precise predictions. Such research has to include neural network
and machine learning algorithms and methods of training data acquisition
such that good interpolation is possible over the entire workspace.

• It would be desirable to accomplish perception through internal simula-
tion without the need for table lookup at the beginning. For this purpose,
one might modify the optimization process such that the inital visual state
is not fixed, but also generated during optimization.

• One might extend the visual state of the system such that it also includes
the position and orientation of the gripper of the robot arm. In addition,
the visuokinesthetic should be trained also with data showing “empty”
pushing movements without block. Afterwards, the perceptual task might
be solved by a visuo-visual association between the block at the goal po-
sition and the imagined impression of the gripper in close vicinity to the
block. The generated movement sequence would rely on small move-
ment steps without considering the block, but only the visual state of the
gripper. In this way, the table lookup between kinesthetic and visual data
might be avoided as well.

• The generation of movement sequences by internal simulation is related
to trajectory formation. One might pursue the question if it is possible
to enforce certain types of trajectories by the goal criterion of the opti-
mization process. This might offer a new approach to model human arm
trajectories in different tasks.
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8.5 Final Remarks

The title of this thesis is “Adaptive Internal Models for Motor Control and Vi-
sual Prediction”. In the following, we will briefly summarize the contributions
across all chapters to the two main topics — motor learning and visual predic-
tion — and to the guiding theoretical framework of embodiment.

Motor learning

The main contribution to motor learning was presented in Chapt. 4, in which we
thoroughly compared the performance of various learning strategies — partly
developed on our own, partly taken from the literature — for kinematic motor
learning on different simulated setups. In addition, continuous learning by aver-
aging was applied to real-world saccade learning within the model for grasping
to extrafoveal targets (Chapt. 6). The results of the comparison study are both
of interest for technical applications and for biological modeling.

Motor learning in the domain of dynamics was briefly addressed with a
small experiment on feedback error learning (FEL) for trajectory generation
in Sect. 2.1.4.4 (comparing FEL to a learning strategy related to direct inverse
modeling).

The study on block-pushing (Chapt. 7) offered a very different approach to
the generation of motor commands based on optimization. No inverse model
was needed there, only an adaptive forward model underlying the internal sim-
ulation process.

Visual prediction

To the best of our knowledge, we developed the first learning algorithm for
visual forward models which scales up to input and output images of nearly
arbitrary size (within reasonable limits). Two versions of this algorithm were
presented in Chapt. 5. This algorithm offers a technical solution for visual pre-
diction in the area of saccade-like camera movements. Furthermore, its basic
idea — matching of low-level visual features — is a promising starting point
for biological modeling in the area of eye movements.

In Chapt. 6, we used the resulting visual forward model as important compo-
nent of the overall model of grasping towards extrafoveal targets and proposed
its application for target re-identification after saccadic eye movements. Both
applications were biologically motivated.

Finally, we trained a visuokinesthetic forward model for the block-pushing
task in Chapt. 7. In contrast to the visual forward model of Chapt. 5, it was
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restricted to visual prediction in a specific domain and worked only with low-
dimensional visual data. However, the visuokinesthetic forward model was es-
pecially taylored for the application in the internal simulation process, a more
general application was not intended.

Embodiment

The research in this thesis was pursued with the research paradigm of embodi-
ment in mind. According to its premises, we used real robot setups as our main
reseach tool. Furthermore, we concentrated on integrated sensorimotor process-
ing. Although we did not build any complete agent, our models on grasping to
extrafoveal targets and on the visual perception of space implemented the com-
plete sensorimotor loop for a specific behavioral or perceptual ability.

The comparison study on motor learning and the algorithms for visual pre-
diction are not necessarily linked to the embodied approach. From a technical
point of view, the offered solutions are of value independent of any theoret-
ical approach. However, from the cognitive science perspective, algorithms
for motor learning and adaptive sensory prediction are the building blocks of
autonomous embodied systems. In this way, these studies also contribute to
embodied cognition and action.

Finally, we demonstrated in the study on block-pushing that action might
enable perception, in this case the visual perception of space. This research
was based on simulation theories of perception and cognition, which in turn are
closely related to embodiment.

225



CHAPTER 8. SUMMARY AND OUTLOOK

226



Appendix A

Experimental Setup

The experimental setup which is used in the studies throughout this thesis con-
sists of a robot arm and a robot camera head (see Fig. A.1).1 The robot arm has
six rotatory degrees of freedom (DOF) and a two-finger gripper. It is composed
of PowerCube modules from the company Schunk. The model numbers of the
modules are: PR090 (2× for the “shoulder”), PR070 (2× for the “elbow”),
PW070 (2-DOF wrist module), and “Gripper 70”. The modules are connected
via CAN bus with a controller card in a desktop computer. The PowerCube
robot arm is well suited for kinematic control since each module can precisely
adjust and hold its commanded position.

The origin of the world coordinate system is placed in the center of the right
block of the uppermost joint module of the left robot arm (see Fig. A.1, left). In
this thesis, only the left robot arm is used. Its Denavit-Hartenberg parameters
are reported in Table A.1. Except in singularities, the inverse kinematics of
the robot arm allows for eight different solutions for every gripper position and
orientation within the working range. In practice, considering collisions of the
robot arm with its environment or with itself, usually only two or four different
solutions are applicable. The white table in Fig. A.1 in front of the robot arm
is used to hold the target objects for fixation movements with the robot camera
head and for grasping and pushing with the robot arm. The robot camera head
is described in detail in App. B.

1 Figure 1.1 in the introduction and Fig. A.1 show slightly different versions of this setup
at different points in time. A precise definition of the robot arm as it was used throughout this
thesis is given by the Denavit-Hartenberg parameters in Table A.1.
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z 0

y0

x0

Figure A.1 — These image show the robot setup used throughout the experimental
studies. The world coordinate system K0 is shown with black axes in the left image.
The origin of K0 is exactly in the center of the right block of the uppermost joint module
of the left robot arm. The x0-axis points towards the viewer (left image adapted from
Schenck and Möller, 2007, c© Springer).

Link i θNull
i [deg] di [mm] αi [deg] ai [mm]

1 0 90.5 90 0.0
2 0 440.5 90 0.0
3 180 0.0 90 0.0
4 90 407.0 90 0.0
5 180 0.0 90 0.0
6 0 323.5 90 0.0

Table A.1 — Denavit-Hartenberg parameters of the robot arm (for the definition and
the notation, see e.g. Spong and Vidyasagar, 1989). θNull

i is the value for θi for the null
position of the robot arm when it points straight downwards like in the left image in
Fig. A.1. Since the robot arm has only rotatory degrees of freedom, only the parameters
θi are variable.
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The Robot Camera Head

The robot camera head of the experimental setup consists of two cameras, each
mounted on its own pan-tilt unit (camera body: Imaging Source DFK 50H13/P;
lens: Computar T 0412 FICS-3; pan-tilt unit: Directed Perception PTU 46-
17.5). Figure A.1 shows the position of the cameras within the overall setup,
Fig. B.1 provides a close-up view. Throughout the thesis, the left/right assign-
ment is based on the viewpoint of the cameras. Thus, the camera that appears
on the left side in Fig. B.1 is designated as the right camera, and vice versa.

Figure B.1 — This stereo-vision robot camera head was used throughout the experi-
mental studies. Each camera is mounted on its own pan-tilt unit.

B.1 Basic Geometry

Figure B.2 illustrates the geometry of each pan-tilt unit (in the following: PTU)
with attached camera. Starting from the world coordinate system K0 with axes
x0, y0, and z0 (as shown in Fig. A.1 as well), the following transformations
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Figure B.2 — Geometry of a single pan-tilt unit with attached camera.

are necessary to arrive in the camera coordinate system KC (transformation
matrices in homogeneous coordinates are given in brackets):

1. Translation by a fixed vector a (Ta)

2. Rotation around the shifted z-axis by a fixed angle −θ0 (Rz,−θ0
) −→ re-

sulting in the PTU base coordinate system KP with axes xP , yP , and zP

3. Rotation around the yP -axis by the variable pan angle ρ (Ry,ρ)

4. Rotation around the current zP -axis (moved by the preceding rotation) by
the variable tilt angle θ (Rz,θ)

5. Translation by a fixed vector b (Tb) −→ the origin of the resulting coor-
dinate system is already at the center of the image plane of the camera,
but the axes do not point in the right directions yet

6. Rotation around the current y-axis by 90◦ (Ry,90◦) −→ resulting in the
camera coordinate system KC with axes xC , yC , and zC

Altogether, the transformation matrix H from the camera to the world coor-
dinate system is computed as:

H = TaRz,−θ0
Ry,ρRz,θTbRy,90◦ (B.1)

The inverse can be written as:

H−1 = R−1
y,90◦T

−1
b

R−1
z,θR

−1
y,ρR

−1
z,−θ0

T−1
a
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Figure B.3 — Illustration of the perspective transformation. A point v = (vx, vy, vz) in
the camera coordinate system is projected onto position (cx, cy) in the image plane (gray
area). λ is the focal length of the lens. The optical axis points along the zC-direction.

Knowing the matrix H−1, a point w in the world coordinate system can be
transformed into the camera coordinate system by v = H−1w. To finally com-
pute the point (cx, cy) on the image plane of the camera on which v is projected,
a perspective transformation has to be carried out (see Fig. B.3) (Gonzalez and
Woods, 1992). The perspective transformation matrix is defined as

P =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1

λ 1


 .

λ is the focal length of the lens. The product Pv yields a vector denoted c̃:

c̃ = Pv =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1

λ 1







vx

vy

vz

1


 =




vx

vy

vz
−vz

λ + 1




The final point (cx, cy) on the image plane is obtained by:

cx =
c̃1

c̃4
=

λvx

λ− vz
(B.2)

cy =
c̃2

c̃4
=

λvy

λ− vz
(B.3)

231



APPENDIX B. THE ROBOT CAMERA HEAD

B.2 Specifications

In the following, some important specifications are listed:

• Cameras and lenses:

– Size of the imaging chip (CCD): 1/3 inch (4.8 mm × 3.6 mm)

– Focal length λ of the lens: 4.0 mm

– Angle of view of the camera-lens combination: 61.9◦ horizontally /
48.5◦ vertically

• Working range of each single PTU:

– Horizontally (pan): ρmin = −60.4◦, ρmax = 23.8◦

– Vertically (tilt): θmin = −42.9◦, θmax = 21.4◦

The used PTUs are capable of a much larger working range, but this range
was restricted by software to keep camera movements in the region above
the table shown in Fig. A.1.

• Fixed parameters of the geometry of the robot camera head:

– θ0 = 60◦

– Vector a is different for the left and right PTU (left/right assignment
from the viewpoint of the cameras):
aleft =

(
154 mm 273 mm −422 mm

)T

aright =
(

154 mm 273 mm −182 mm
)T

– b =
(

150 mm 64 mm 0 mm
)T

The values for θ0, aleft, aright, and b were computed on the basis of man-
ufacturer’s specifications and own measurements. Only b1 (the position of
the CCD along the optical axis) was adjusted afterwards to obtain a better
match between the simulated results and real-world results. This value is
obviously too large but might compensate for other small measurement
errors. A camera calibration was omitted because there was no need for
an extremely precise camera model in any of the experimental studies.
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B.3 Independence from the Pan Angle

In the following it is shown that the effect of a change of the PTU position
(∆ρ, ∆θ) does not depend on the current value of the pan angle ρ. The final
effect of a PTU movement is a shift of the points on the image plane. A single
point (cx, cy) as projection from an unmoved point w in the world coordinate
system moves to a new position (c′x, c

′
y). To compute the new position, first the

corresponding point v in the camera coordinate system before the movement
has to be determined. Equations (B.2) and (B.3) are solved for the components
of v with vz as unknown variable:

vx =
cx

λ
(λ− vz)

vy =
cy

λ
(λ− vz)

The corresponding point w in the world coordinate system is computed as
w = Hv (for H see Eqn. (B.1)). After the movement, the rotation matrices for
the variable pan and tilt angles have changed to Ry,ρ+∆ρ and Rz,θ+∆θ. The new
overall transformation matrix H′−1 from the world to the camera coordinate
system can be written as:

H′−1 = R−1
y,90◦T

−1
b

R−1
z,θ+∆θR

−1
y,ρ+∆ρR

−1
z,−θ0

T−1
a

After the movement, the constant point w in the world coordinate system
has the new position v′ in the camera coordinate system:

v′ = H′−1w

= H′−1Hv

= R−1
y,90◦T

−1
b
·R−1

z,θ+∆θ ·R−1
y,ρ+∆ρ ·R−1

z,−θ0
T−1

a
TaRz,−θ0

Ry,ρRz,θTbRy,90◦v

= R−1
y,90◦T

−1
b

︷ ︸︸ ︷
R−1

z,∆θR
−1
z,θ

︷ ︸︸ ︷
R−1

y,∆ρR
−1
y,ρ Ry,ρRz,θTbRy,90◦v

= R−1
y,90◦T

−1
b

R−1
z,∆θR

−1
z,θR

−1
y,∆ρRz,θTbRy,90◦v (B.4)

The new position (c′x, c
′
y) on the image plane can be computed from v′ as in

Eqns. (B.2) and (B.3). Equation (B.4) shows that v′ does not depend on ρ.
Thus, the shift of points on the image plane during a pan-tilt movement does
not depend on the current pan angle.

B.4 Influence of the Tilt Angle

As shown in the previous section, the pan angle ρ has no influence how a PTU
movement translates into the shift of points on the image plane. However, the
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tilt angle θ has a certain influence according to Eqn. (B.4). To get an estimate

of the impact of θ on the displacement d =

(
c′x
c′y

)
−
(

cx

cy

)
, the following

procedure was carried out:

• For a certain point (cx, cy), vary ∆ρi, ∆θj , and θk systematically (by three
nested loops with iterators i, j, and k)

• For each combination of ∆ρi and ∆θj , compute dijk for all θk

(if (c′x, c
′
y)ijk is outside the area of the imaging CCD exclude dijk from

the following steps)

• Determine the smallest rectangle Rij (aligned to the coordinate system of
the image plane) in which all vectors dijk can be inscribed; this rectangle
describes the variation due to θk for the PTU movement (∆ρi, ∆θj); the
rectangle has edge lengths rx,ij and ry,ij

• Determine rmax
x = arg maxi,j rx,ij and rmax

y = arg maxi,j ry,ij (rmax
x and

rmax
y represent the largest variation in x- and y-direction caused by differ-

ent values of θk for the displacement of the point (cx, cy))

B.4 shows the resulting displacement rectangles with edge lengths rmax
x and

rmax
y for various positions (cx, cy) on the image plane (both cx and cy are var-

ied in the range [-1.8 mm; 1.8 mm] — this corresponds to the vertical size of
the imaging CCD of the used cameras). Each rectangle is centered at its corre-
sponding point (cx, cy). θk was varied in the range between θmin = −42.9◦ and
θmax = 21.4◦ (see Sect. B.2) in 13 steps.

For the top graphics in Fig. B.4, ∆ρi ran from−12.6◦ to +12.6◦ in 13 steps,
∆θj from−9.6◦ to +9.6◦ in 13 steps. This pan-tilt range guarantees that (c′x, c

′
y)

is always within the area of the imaging CCD for points (cx, cy) with cx ∈
[−0.6; 0.6] and cy ∈ [−0.6; 0.6] (close to the image center). The displacement
rectangles (which show the worst case) are rather small and are not expected to
have a large impact on the precision of the saccadic forward model presented in
Sect. 5.1, when θ is omitted as input.

The bottom graphics in Fig. B.4 was generated with twice as large values
for ∆ρi and ∆θj. Points (cx, cy) at the image center can be moved outside
the area of the imaging CCD by pan-tilt movements of this magnitude. The dis-
placement rectangles are considerably larger than in the left graphics, especially
along the x-axis. Still, the results with the forward model in Sect. 5.1 show that
these variations are not large enough to dominate the information loss in outer
regions of the camera image caused by the retinal mapping.
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B.4. INFLUENCE OF THE TILT ANGLE

The unknown variable vz which is necessary to compute (c′x, c
′
y) (see

Sect. B.3) is set to 1000.0 mm in these simulations. This is rough estimate of
the average distance of objects in our robot setup from the robot camera head.
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Figure B.4 — Displacement rectangles for different maximum pan-tilt movements on
the image plane (axes scaled in mm) (top: |∆ρi| ≤ 12.6◦, |∆θj | ≤ 9.6◦; bottom: |∆ρi| ≤
25.2◦, |∆θj | ≤ 19.2◦). The image plane is shown in the same orientation as it appears on
a camera image (rotated by 180◦ and from behind). A detailed explanation is provided
in the main text.
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Appendix C

Experimental Settings of Chapter 4

In all tables, variable parameters are given in MATLAB vector notation:
start value : step size : final value.

C.1 Saccade Control

Learning strategy Fixed parameters Variable parameters
FEL Tmax = 2000 η = 0.08 : 0.02 : 0.36

DSL Tmax = 5000 NFM = 10 : 10 : 100

ηFM = 0.025 η = 0.07 : 0.01 : 0.17

DIM Tmax = 10000 NCON = 10 : 10 : 150

η = 0.01

DIM_NGPCA Tmax = 100000 NCON = 20 : 10 : 150

N = 1 : 1 : 4

m = 4 : 1 : 16

SLbA Tmax = 100 σ0 = 1.0 : 0.2 : 2.8

η = 0.01

CLbA Tmax = 3000 σ0 = 0.1 : 0.2 : 2.5

η = 0.04 : 0.04 : 0.32

Table C.1 — Parameter values of the learning strategies for the 2D saccade learning
task without retinal noise with Q∗ = 0.985.
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Learning strategy Fixed parameters Variable parameters
FEL Tmax = 5000 η = 0.04 : 0.02 : 0.4

DSL Tmax = 10000 NFM = 10 : 10 : 150

ηFM = 0.025 η = 0.05 : 0.01 : 0.19

DIM Tmax = 20000 NCON = 10 : 10 : 300

η = 0.01

DIM_NGPCA Tmax = 100000 NCON = 20 : 10 : 150

N = 1 : 1 : 4

m = 4 : 1 : 16

SLbA Tmax = 100 σ0 = 1.0 : 0.2 : 2.8

η = 0.01

CLbA Tmax = 3000 σ0 = 0.3 : 0.2 : 2.1

η = 0.08 : 0.04 : 0.28

Table C.2 — Parameter values of the learning strategies for the 2D saccade learning
task with retinal noise with Q∗ = 0.975.

Learning strategy Fixed parameters Variable parameters
FEL Tmax = 5000 η = 0.04 : 0.02 : 0.4

DSL Tmax = 10000 NFM = 10 : 10 : 150

ηFM = 0.025 η = 0.05 : 0.01 : 0.2

DIM Tmax = 10000 NCON = 10 : 10 : 150

η = 0.01

DIM_NGPCA Tmax = 100000 NCON = 20 : 10 : 150

N = 1 : 1 : 4

m = 4 : 1 : 16

SLbA Tmax = 100 σ0 = 0.2 : 0.2 : 3.0

η = 0.01

CLbA Tmax = 10000 σ0 = 0.3 : 0.2 : 2.5

η = 0.04 : 0.04 : 0.32

Table C.3 — Parameter values of the learning strategies for the 3D saccade learning
task without retinal noise with Q∗ = 0.98.
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C.1. SACCADE CONTROL

Learning strategy Fixed parameters Variable parameters
FEL Tmax = 5000 η = 0.04 : 0.02 : 0.4

DSL Tmax = 10000 NFM = 10 : 10 : 150

ηFM = 0.025 η = 0.05 : 0.01 : 0.2

DIM Tmax = 20000 NCON = 10 : 10 : 150

η = 0.01

DIM_NGPCA Tmax = 100000 NCON = 20 : 10 : 150

N = 1 : 1 : 4

m = 4 : 1 : 16

SLbA Tmax = 100 σ0 = 0.2 : 0.2 : 3.0

η = 0.01

CLbA Tmax = 12000 σ0 = 0.5 : 0.2 : 2.5

η = 0.04 : 0.04 : 0.32

Table C.4 — Parameter values of the learning strategies for the 3D saccade learning
task with retinal noise with Q∗ = 0.972.
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C.2 Planar Arm

SLbA requires a strategy how to increase the number of learning examples and
training epochs in each stage. This strategy was varied depending on the num-
ber of links and the selected constraint. It is reported in Tables C.5 to C.14 in
the format LE: a-b-c / EP: a-b-c with a being the start value, b the increase from
stage to stage, and c the maximum value. LE indicates the number of learning
examples, EP the number of epochs.

Learning strategy Fixed parameters Variable parameters
FEL (J+/Jt) Tmax = 200000 η = 0.025 : 0.0125 : 0.125

DSL Tmax = 200000 NFM = 3000 : 3000 : 21000

ηFM = 0.005 η = 0.04 : 0.02 : 0.2

DIM Tmax = 100000 NCON = 25 : 25 : 300

η = 0.05

DIM_NGPCA Tmax = 100000 NCON = 25 : 25 : 300

N = 7 : 3 : 22

m = 1 : 1 : 4

SLbA (a/b) Tmax = 50 σ0 = 0.3 : 0.2 : 1.9

LE: 500− 250− 1000

EP: 500− 500− 2000

λSLbA = 0.005

λσ = 1.0

η = 0.05

Table C.5 — Parameter values of the learning strategies for the 2-link arm with quality
function Q0 with Q∗

0 = 0.97.
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Learning strategy Fixed parameters Variable parameters
FEL (J+/Jt) Tmax = 200000 η = 0.025 : 0.025 : 0.125

DSL Tmax = 200000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.01 : 0.01 : 0.1

DIM Tmax = 100000 NCON = 100 : 50 : 650

η = 0.05

DIM_NGPCA Tmax = 100000 NCON = 50 : 50 : 600

N = 7 : 3 : 22

m = 1 : 1 : 4

SLbA (a/b) Tmax = 50 σ0 = 0.3 : 0.2 : 1.9

LE: 500− 250− 1000

EP: 500− 500− 2000

λSLbA = 0.005

λσ = 1.0

η = 0.05

Table C.6 — Parameter values of the learning strategies for the 2-link arm with quality
function Q0 and additional sensor noise with Q∗

0N = 0.945.

Learning strategy Fixed parameters Variable parameters
FEL/J+ Tmax = 200000 η = 0.015 : 0.005 : 0.075

FEL/Jt Tmax = 200000 η = 0.005 : 0.005 : 0.05

DSL Tmax = 200000 NFM = 1000 : 2000 : 15000

ηFM = 0.005 η = 0.01 : 0.01 : 0.05

DIM_NGPCA Tmax = 100000 NCON = 500 : 250 : 1500

N = 40 : 20 : 100

m = 2 : 1 : 5

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.7 — Parameter values of the learning strategies for the 3-link arm with quality
function Q0 with Q∗

0 = 0.96.
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Learning strategy Fixed parameters Variable parameters
FEL/J+ Tmax = 200000 η = 0.015 : 0.005 : 0.075

FEL/Jt Tmax = 200000 η = 0.005 : 0.005 : 0.05

DSL Tmax = 200000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.01 : 0.01 : 0.05

DIM_NGPCA Tmax = 100000 NCON = 1000 : 500 : 3000

N = 20 : 20 : 100

m = 2 : 1 : 5

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.8 — Parameter values of the learning strategies for the 3-link arm with quality
function Q0 and additional sensor noise with Q∗

0N = 0.93.

Learning strategy Fixed parameters Variable parameters
DSL Tmax = 200000 NFM = 1000 : 2000 : 9000

ηFM = 0.005 η = 0.002 : 0.004 : 0.038

DIM_NGPCA Tmax = 100000 NCON = 1000 : 2000 : 9000

N = 40 : 20 : 100

m = 2 : 1 : 6

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.9 — Parameter values of the learning strategies for the 3-link arm with quality
function Q1 with Q∗

1 = 0.97.
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Learning strategy Fixed parameters Variable parameters
DSL Tmax = 200000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.01 : 0.01 : 0.05

DIM_NGPCA Tmax = 200000 NCON = 1000 : 10000 : 61000

N = 20 : 100 : 720

m = 1 : 1 : 6

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.05

λσ = 0.9

η = 0.005

Table C.10 — Parameter values of the learning strategies for the 3-link arm with qual-
ity function Q2 with Q∗

2 = 0.86.

Learning strategy Fixed parameters Variable parameters
FEL/J+ Tmax = 400000 η = 0.01 : 0.005 : 0.06

FEL/Jt Tmax = 400000 η = 0.0025 : 0.0025 : 0.025

DSL Tmax = 400000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.005 : 0.005 : 0.05

DIM_NGPCA Tmax = 300000 NCON = 2500 : 5000 : 17500

N = 80 : 60 : 260

m = 2 : 1 : 6

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.15 : 1.15

LE: 500− 250− 3000

EP: 500− 500− 5500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.11 — Parameter values of the learning strategies for the 4-link arm with qual-
ity function Q0 with Q∗

0 = 0.94.
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Learning strategy Fixed parameters Variable parameters
FEL (J+) Tmax = 400000 η = 0.01 : 0.005 : 0.06

FEL (Jt) Tmax = 400000 η = 0.0025 : 0.0025 : 0.025

DSL Tmax = 400000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.005 : 0.005 : 0.05

DIM_NGPCA Tmax = 300000 NCON = 2500 : 5000 : 22500

N = 80 : 60 : 320

m = 2 : 1 : 6

SLbA (a/b) Tmax = 50 σ0 = 0.05 : 0.05 : 0.6

LE: 500− 250− 3000

EP: 500− 500− 5500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.12 — Parameter values of the learning strategies for the 4-link arm with qual-
ity function Q0 and additional sensor noise with Q∗

0N = 0.9.

Learning strategy Fixed parameters Variable parameters
DSL Tmax = 400000 NFM = 5000 : 10000 : 55000

ηFM = 0.005 η = 0.002 : 0.004 : 0.018

DIM_NGPCA Tmax = 300000 NCON = 30000 : 30000 : 150000

N = 40 : 80 : 360

m = 2 : 1 : 6

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.005

λσ = 1.0

η = 0.005

Table C.13 — Parameter values of the learning strategies for the 4-link arm with qual-
ity function Q1 with Q∗

1 = 0.97.
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Learning strategy Fixed parameters Variable parameters
DSL Tmax = 400000 NFM = 1000 : 2000 : 11000

ηFM = 0.005 η = 0.005 : 0.005 : 0.05

DIM_NGPCA Tmax = 200000 NCON = 1000 : 3000 : 34000

N = 20 : 100 : 820

m = 1 : 1 : 7

SLbA (a/b) Tmax = 50 σ0 = 0.1 : 0.1 : 1.0

LE: 500− 250− 1500

EP: 500− 750− 3500

λSLbA = 0.05

λσ = 0.9

η = 0.005

Table C.14 — Parameter values of the learning strategies for the 4-link arm with qual-
ity function Q2 with Q∗

2 = 0.86.
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Appendix D

Experimental Results of Chapter 4

D.1 Saccade Control
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Figure D.1 — These plots show for DIM_NGPCA for the 2D saccade learning task
without retinal noise which combinations of the number of eigenvalues and the number
of ellipsoids are successful throughout all 20 learning passes in exceeding the target
quality Q∗ for the respective sizes of the training set (white: successful in all passes;
black: not successful in any pass).
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Figure D.2 — Results of the comparison of learning strategies for the 2D saccade learn-
ing task without retinal noise. The length of the bars represents the number of required
exploration trials. Bars are completely omitted whenever at least one of the 20 learning
passes failed.
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Figure D.3 — These plots show for DIM_NGPCA for the 2D saccade learning task
with retinal noise which combinations of the number of eigenvalues and the number of
ellipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗ for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.4 — Results of the comparison of learning strategies for the 2D saccade learn-
ing task with retinal noise (for further explanation see caption of Fig. D.2).
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Figure D.5 — These plots show for DIM_NGPCA for the 3D saccade learning task
without retinal noise which combinations of the number of eigenvalues and the number
of ellipsoids are successful throughout all 20 learning passes in exceeding the target
quality Q∗ for the respective sizes of the training set (white: successful in all passes;
black: not successful in any pass).
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Figure D.6 — Results of the comparison of learning strategies for the 3D saccade learn-
ing task without retinal noise (for further explanation see caption of Fig. D.2).
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Figure D.7 — These plots show for DIM_NGPCA for the 3D saccade learning task
with retinal noise which combinations of the number of eigenvalues and the number of
ellipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗ for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.8 — Results of the comparison of learning strategies for the 3D saccade learn-
ing task with retinal noise (for further explanation see caption of Fig. D.2).
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Figure D.9 — These plots show for DIM_NGPCA for the 2-link arm with quality
function Q0 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗

0 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.10 — Results of the comparison of learning strategies for the 2-link arm
with quality function Q0. The length of the bars represents the number of required
exploration trials. Bars are completely omitted whenever at least one of the 20 learning
passes failed.
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Figure D.11 — These plots show for DIM_NGPCA for the 2-link arm with quality
function Q0 and additional sensor noise which combinations of the number of eigen-
values and the number of ellipsoids are successful throughout all 20 learning passes
in exceeding the target quality Q∗

0N for the respective sizes of the training set (white:
successful in all passes; black: not successful in any pass).
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Figure D.12 — Results of the comparison of learning strategies for the 2-link arm with
quality function Q0 and additional sensor noise (for further explanation see caption
of Fig. D.10).
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Figure D.13 — These plots show for DIM_NGPCA for the 3-link arm with quality
function Q0 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗

0 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.14 — Results of the comparison of learning strategies for the 3-link arm with
quality function Q0 (for further explanation see caption of Fig. D.10).
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Figure D.15 — These plots show for DIM_NGPCA for the 3-link arm with quality
function Q0 and additional sensor noise which combinations of the number of eigen-
values and the number of ellipsoids are successful throughout all 20 learning passes
in exceeding the target quality Q∗

0N for the respective sizes of the training set (white:
successful in all passes; black: not successful in any pass).
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Figure D.16 — Results of the comparison of learning strategies for the 3-link arm with
quality function Q0 and additional sensor noise (for further explanation see caption
of Fig. D.10).
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Figure D.17 — These plots show for DIM_NGPCA for the 3-link arm with quality
function Q1 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗

1 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.18 — Results of the comparison of learning strategies for the 3-link arm with
quality function Q1 (for further explanation see caption of Fig. D.10).
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Figure D.19 — These plots show for DIM_NGPCA for the 3-link arm with quality
function Q2 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 5 learning passes in exceeding the target quality
Q∗

2 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.20 — Results of the comparison of learning strategies for the 3-link arm with
quality function Q2 (for further explanation see caption of Fig. D.10).
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Figure D.21 — These plots show for DIM_NGPCA for the 4-link arm with quality
function Q0 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗

0 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.22 — Results of the comparison of learning strategies for the 4-link arm with
quality function Q0 (for further explanation see caption of Fig. D.10).
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Figure D.23 — These plots show for DIM_NGPCA for the 4-link arm with quality
function Q0 with additional sensor noise which combinations of the number of eigen-
values and the number of ellipsoids are successful throughout all 20 learning passes
in exceeding the target quality Q∗

0N for the respective sizes of the training set (white:
successful in all passes; black: not successful in any pass).
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Figure D.24 — Results of the comparison of learning strategies for the 4-link arm with
quality function Q0 with additional sensor noise (for further explanation see caption
of Fig. D.10).
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Figure D.25 — These plots show for DIM_NGPCA for the 4-link arm with quality
function Q1 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 5 learning passes in exceeding the target quality
Q∗

1 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.26 — Results of the comparison of learning strategies for the 4-link arm with
quality function Q1 (for further explanation see caption of Fig. D.10).
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Figure D.27 — These plots show for DIM_NGPCA for the 4-link arm with quality
function Q2 which combinations of the number of eigenvalues and the number of el-
lipsoids are successful throughout all 20 learning passes in exceeding the target quality
Q∗

2 for the respective sizes of the training set (white: successful in all passes; black: not
successful in any pass).
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Figure D.28 — Results of the comparison of learning strategies for the 4-link arm with
quality function Q2 (for further explanation see caption of Fig. D.10).

273



APPENDIX D. EXPERIMENTAL RESULTS OF CHAPTER 4

274



Appendix E

Notation and Symbols

Often used abbreviations (in alphabetical order)

CLbA continuous learning by averaging
CNS central nervous system
DE differential evolution
DIM direct inverse modeling
DIM_NGPCA direct inverse modeling in combination with NGPCA
DSL distal supervised learning
FC feedback controller
FDM forward dynamics model
FEL feedback error learning
FM forward model
IDM inverse dynamics model
IDMfb feedback IDM
IDMff feedforward IDM
IKM inverse kinematics model
IM inverse model
LbA learning by averaging
LbI learning by input adjustment
MLP multi-layer perceptron
MM mapping model
MOSAIC model of “modular selection and identification for control”
NG neural gas
NGPCA abstract recurrent network on the basis of NG and PCA
PCA principal component analysis
RBFN radial basis function network
RL reinforcement learning
SLbA staged learning by averaging
VM validator model
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Often used symbols in the domain of computational methods
(mainly in Chapt. 3)

aik activation of node i in layer k (MLP)
c unit center (RBFN/NG/NGPCA)
E error (MLP/NG) or energy (DE)
i unit index
j unit index or eigenvector index (only NGPCA)
k,l layer indices (MLP)
K number of layers (MLP)
m number of eigenvectors (NGPCA)
n dimensionality of data space
nik node i in layer k (MLP)
N number of units (NG/NGPCA)
NDE population size (DE)
Nk number of units in layer k (MLP/RBFN)
oik output of node i in layer k (MLP)
p pattern index
P number of patterns
T number of training steps (NG/NGPCA)
wi

j weight of the connection from input unit j to the Gaussian unit i (RBFN)
wik

jl weight of the connection from unit j in layer l to unit i in layer k (MLP)
w eigenvector estimate (NGPCA)
W weight matrix (MLP/RBFN) or

matrix of estimated eigenvectors (NGPCA)
x vector drawn from data space (NG/NGPCA/DE)
xin vector drawn from input data space (MLP/RBFN)
xout vector drawn from output data space (MLP/RBFN)
X set with training data

ε learning rate (NG/NGPCA)
η learning rate (MLP amongst others)
λ eigenvalue estimate (NGPCA)
λ∗ estimated residual variance in a minor eigendirection (NGPCA)
Λ diagonal matrix of eigenvalue estimates (NGPCA)
ρ neighborhood range (NG/NGPCA)
σ standard deviation of Gaussian unit (RBFN) or

general standard deviation

{...} set with elements counted by one or several indices
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Often used symbols in the domain of motor learning
(mainly in Chapts. 2 and 4)

C controller
F feedback controller
G gain matrix
h sensory output model
J Jacobi matrix
k stage index (SLbA)
K Kalman gain matrix
NCON number of learning examples for the controller training (DIM/DIM_NGPCA)
NEX number of exploration trials
NCON

EX number of exploration trials for the controller (DSL)
NFM

EX number of exploration trials for the FM (DSL)
NFM number of learning examples for the FM training (DSL)
P plant
Q quality (function)
Q̃ quality threshold
Q∗ desired controller quality level
QC average controller quality
QDE average quality of controller networks on the basis of DE
QPS average quality of the learning examples in a pattern set
u motor command
x system state (general) or

sensory context (only for specific kinematic problems)
x̂ estimated/predicted system state
x̂− uncorrected system state estimate
xd(t) desired trajectory in state space
y plant output
ŷ estimated/predicted plant output
y∗ desired plant output

θ joint angles
σ0 noise factor (CLbA/SLbA)
τ joint torques
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Miscellaneous symbols

I(x,y) pixel intensity of an image I at pixel coordinates (x, y)

L number of planar arm links
m motor command (equivalent to u)
mFM motor command as input for visual FM (Chapt. 6)
mSAC motor output of saccade controller (Chapt. 6)
N number of steps in a movement sequence (Chapt. 7)
pijkl single point in the grid P with grid indices i,j,k, and l (Chapt. 5)
P grid of cumulator units (Chapt. 5)
s sensory state (equivalent to plant output y) or

general vector drawn from arbitrary data space (Sect. 5.2)
ŝ estimated/predicted sensory state
s∗ desired sensory state
sKIN kinesthetic part of sSAC (Chapt. 6) or

kinesthetic state (Chapt. 7)
sOR part of the visual sensory state encoding the block orientation (Chapt. 7)
sPOS part of the visual sensory state encoding the block position (Chapt. 7)
sSAC sensory input for saccade controller (Chapt. 6)
sVIS visual part of sSAC (Chapt. 6)
v(xOut,yOut) output of the validator model (Chapt. 5)
w = (wx, wy, wz)

T

world coordinates
(x, y) pixel coordinates in an image
xleft, yleft, xright, yright

coordinates in left/right camera image
(x, z) gripper position in the working area (Chapt. 7)

α gripper orientation (Chapt. 7)
Σ covariance matrix
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