Juvenile Pilocytic Astrocytoma

Makenna Arca, MSIII October 23, 2019 RAD 3030 Eliana Bonfante-Mejia, MD

The University of Texas **Health Science Center at Houston**

Medical School

J.M.

- 5 yo M with no relevant past medical history sent to ED from ortho clinic on 7/30/2019 for ataxia
 - Ataxia x 7 weeks
 - Headache x 1 week
 - Vomiting x 2 days
- ED physical exam
 - Ataxic gait
 - Abnormal Romberg
 - Vertical nystagmus
- Sent for emergent CT

Non-contrast CT 7/30/2019

Non-contrast CT 7/30/2019

Non-contrast CT 7/30/2019

 Approximately 38 x 43 x 37 mm (AP x TV x CC) heterogenous mass with cystic and solid components centered within R lateral cerebellar hemisphere, R middle cerebellar peduncle and cerebellar vermis causing complete effacement of the 4th ventricle

Non-contrast CT 7/30/2019

- Approximately 38 x 43 x 37 mm (AP x TV x CC) heterogenous mass with cystic and solid components centered within R lateral cerebellar hemisphere, R middle cerebellar peduncle and cerebellar vermis causing complete effacement of the 4th ventricle
- Moderate supratentorial obstructive hydrocephalus and R > L cerebellar tonsillar herniation with effacement of the subarachnoid fluid spaces across the foramen magnum

Differential Diagnosis

Posterior fossa masses in children

- Medulloblastoma
- Pilocytic astrocytoma
- Ependymoma

Differential Diagnosis

Medulloblastoma

Case courtesy of Prof Frank Gaillard, Radiopaedia.org, rID: 7912

Ependymoma

Case courtesy of Dr Hani Salam, Radiopaedia.org, rID: 15699

Differential Diagnosis

With given location and predominant hypodense component of the mass, possibility of **pilocytic astrocytoma** was favored over medulloblastoma and ependymoma.

J.M. (cont'd)

- Admitted to neurosurgery service
- MRI brain and spine ordered for operative planning

Pre-operative CT vs. MRI

T1 with contrast

Pre-operative T1 3D 7/31/2019

Pre-operative T1 with contrast 7/31/2019

Approximately 38 x 43 x 44 mm (AP x TV x CC) mixed solid cystic and heterogeneous mass in R posterior fossa causing moderate supratentorial obstructive hydrocephalus and R > L cerebellar tonsillar herniation with effacement of subarachnoid fluid spaces across foramen magnum

Treatment

- Tumor debulking and VP shunt placement on 8/2/2019
- 24-hour post-op CT and MRI obtained

Post-operative T1 with contrast 8/2/2019

Post-op coronal T1 with contrast

Post-operative T1

Minimal areas of residual enhancing tumor measuring 24 x 23 x 28 mm (AP x LV x CC)

Pre-operative

Post-operative

Brainstem Pilocytic Astrocytoma

- Final diagnosis made by pathology
- WHO grade I tumor
- Often cystic, slow-growing tumor seen in children
- Radical resection is often curative
 - 5-year survival rate: 92%
 - 25-year survival rate: 88%
- Most common residual effects are emotional lability & disequilibrium

Hospital course

- 8/1/2019: tumor debulking, VP shunt placement
- 8/2/2019: post-operative imaging (MRI), hydrocephalus (CT)
- 8/3/2019: hydrocephalus (MRI)
- 8/5/2019: hydrocephalus (MRI)
- 8/9/2019: altered mental status (CT)
- 8/15/2019: Discharged to Shriner's for inpatient rehab

Post-operative course

Hydrocephalus

Post-operative course

- Hydrocephalus protocol
 - Interval decrease in ventricle size by POD 8
- Discharge disposition
 - Residual left-sided weakness
 - Horizontal gaze palsy

Follow up

- Readmitted 9/10/2019 for acute aggression
 - Found to have obstructive hydrocephalus
 - 9/11/2019: Right frontal endoscopic third ventriculostomy
 - Discharged on POD #4

Follow up 9/10/2019 readmission for acute aggression

T2 on admission

T2 from 8/5/2019

T2 on admission

Interval increase in supratentorial ventricular caliber related to noncommunicating obstructive hydrocephalus with new periventricular edema; interval increase in size of residual tumor along superior aspect of 4th ventricle and adjacent R brainstem with associated worsening mass effect on the adjacent brainstem and 4th ventricle

Follow up

- Readmitted 9/10/2019 for acute aggression
 - Found to have obstructive hydrocephalus
 - 9/11/2019: Right frontal endoscopic third ventriculostomy
 - Discharged on POD #4
- Direct admit from clinic 10/2/2019 for tumor recurrence
 - 10/4/2019: repeat tumor debulking and C1 laminectomy
 - Discharged on POD #3

Follow up 10/2/2019 direct admission from clinic for tumor recurrence

31.52 mm

33.74 mm

Enhancing tumor in cerebellar vermis and R cerebral hemisphere measuring 31 x 33 x 33 mm

Pre-operative T1 FLAIR with contrast

Follow up

10/2/2019 direct admission from clinic for tumor recurrence

Pre-operative T1 with contrast

Post-operative T1 with contrast

Follow up

- Readmitted 9/10/2019 for acute aggression
 - 9/11/2019: Right frontal endoscopic third ventriculostomy
 - Discharged on POD #4
- Direct admit from clinic 10/2/2019 for tumor recurrence
 - 10/4/2019: repeat tumor debulking
 - Discharged on POD #3
- Readmitted 10/10/2019 for seizures and visual hallucinations
 - Found to have CSF infection with *S. aureus*
 - Still admitted at time of case presentation

Follow up 10/10/2019 readmission for seizures

Tumor Progression

7/31/2019 (Pre-operative) 38 x 43 x 34 mm

8/2/2019 (Post-operative)

10/2/2019

(Pre-operative)

31 x 33 x 33 mm

10/5/2019 (Post-operative)

Imaging Costs

Procedure	Total Cost	Avg. Out-of- Pocket	# Obtained	Total Out-of- Pocket
Non-contrast head CT	\$3,157	\$98	4	\$392
MRI spine with and without contrast	\$23,464	\$995	1	\$995
MRI brain with and without contrast	\$7,431	\$523	4	\$2,092
MRI brain without contrast	\$5126	\$417	4	\$1,668
Chest x-ray	\$762	\$250	3	\$750
Abdominal x-ray	\$670	\$52	2	\$104
Retroperitoneal ultrasound	\$1576	\$224	1	\$224
Barium swallow video evaluation	\$918	\$221	1	\$221
Total Cost	\$92,440	Out-of-Pocket Expense		\$6,446

https://www.memorialhermann.org/patients-caregivers/memorial-hermann-charge-master/

ACR appropriateness Criteria

- MRI preferred over CT on initial presentation of ataxia in adults
 - Young kids pose a special consideration as MRI may require general anesthesia

variant 3: Ataxia. No history of trauma. Suspected intracranial process. Stroke intervention not a consideration. Initial imaging.			
Procedure	Appropriateness Category	Relative Radiation Level	
MRI head without and with IV contrast	Usually Appropriate	0	
MRI head without IV contrast	Usually Appropriate	0	
CT head with IV contrast	May Be Appropriate	***	
CT head without IV contrast	May Be Appropriate	\$ \$\$	
CT head without and with IV contrast	May Be Appropriate	***	
CTA head and neck with IV contrast	Usually Not Appropriate	***	
MRA head and neck without and with IV contrast	Usually Not Appropriate	0	
MRA head and neck without IV contrast	Usually Not Appropriate	0	
Arteriography cervicocerebral	Usually Not Appropriate	***	
CTV head with IV contrast	Usually Not Appropriate	***	
I-123 Ioflupane SPECT/CT brain	Usually Not Appropriate	ଡଡଡ	
MRV head with IV contrast	Usually Not Appropriate	0	
MRV head without IV contrast	Usually Not Appropriate	0	
In-111 DTPA cisternography	Usually Not Appropriate	\$\$\$\$	

ACR appropriateness Criteria

- MRI preferred over CT on initial presentation of ataxia in adults
 - Young kids pose a special consideration as MRI may require general anesthesia
- Per American Academy of Pediatrics, MRI is standard of care for all children with suspected brain tumor
 - Has the major benefit of no radiation exposure

Discussion

- Radiation since original presentation on 7/31/2019
 - 4 Non-contrast CT x 2 mSv = 8 mSv
 - 3 Chest XR x 0.1 mSv = 0.3 mSv
 - 1 Barium swallow x 6 mSv = 6 mSv
 - 2 Abdominal XR x 8 mSv = 16 mSv

*Radiation doses are adjusted for body weight

Might delete this slide

Discussion

Pediatric Posterior Fossa Tumors

- Classic triad of gait imbalance, headache, nausea/vomiting
 - Any of the above symptoms + an abnormality on neuro exam warrants a referral for neuroimaging, MRI being the modality of choice
- Treatment depends on type and location of tumor
 - Medulloblastoma often requires resection, radiation, and chemotherapy
 - Ependymoma responds best to surgical resection and post-op radiation
 - Pilocytic astrocytoma requires surgical resection

Discussion

Juvenile Pilocytic Astrocytoma

- Most common posterior fossa tumor in kids > 4 years old
- If near-total resection and/or tumor recurs, repeat surgical resection with option to add chemotherapy or radiation to treat residual tumor
- Long-term follow up when gross total resection is achieved
 - MRI at 6 months, then 1, 2, 3.5 and 5 years
 - Recent studies have suggested 2 consecutive negative MRIs ≥ 3 months apart is sufficient
- Long-term follow up for patients with residual tumor
 - MRI every 6 months for 3 years, annually for 2 additional years, and every other year thereafter indefinitely

Discussion Case of J.M.

- Patient had been seen by pediatrician for slowly progressing ataxia a couple weeks prior to presentation at ED
 - Referred to ortho clinic for leg length discrepancy
 - Thorough neurological exam should have been completed by pediatrician who then should have placed order for MRI
 - Would have spared cost, time, and radiation exposure
- Will require post-operative surveillance MRIs and consideration of chemotherapy or targeted radiation if tumor recurs

Take Home Points

- There is a low threshold for obtaining neuroimaging for any child presenting with new-onset, progressive ataxia
- MRI carries significantly less radiation risk than CT or XR and is therefore the preferred neuroimaging modality for pediatric patients
- Juvenile pilocytic astrocytomas carry an overall good prognosis following radical resection but can be complicated by recurrence if resection is not complete

References

- 1. Crawford JC. Childhood bran tumors. *Pediatrics in Review.* 2013;34(2):63-78.
- 2. Gaillard F, Radiopaedia.org, rID: 8474. 3 Feb 2010.
- 3. Gaillard F, Radiopaedia.org, rID: 7912. 23 Dec 2009.
- 4. Hacking C, Radiopaedia.org, rID: 62252. 16 Aug 2018.
- 5. Juliano AF, Policeni B, Agarwal V, et al. ACR Appropriateness Criteria[®] Ataxia. Available at <u>https://acsearch.acr.org/docs/69477/Narrative/</u>. American College of Radiology. Accessed 20 Oct 2019.
- 6. Maher CO, Raffel C. Neurosurgical treatment of brain tumors in children. *Pediatr Clin North Am.* 2004;51(2):327-57.
- Mitchell RN, Kumar V, Fausto N et al. Chapter 28: The central nervous system. In: Mitchell RN, Kumar V, Fausto N et al. eds. *Pocket Companion to Robbins & Cotran Pathologic Basis of Disease*. 9th ed. Philadelphia, PA: Elsevier Health Sciences; 2016:1309.
- 8. Ronghe M, Hargrave D, Bartels U, et al. Vincristine and carboplatin chemotherapy for unresectable and/or recurrent low-grade astrocytoma of the brainstem. *Pediatr Blood Cancer*. 2010;55(3):471-7.
- 9. Salam H, Radiopaedia.org, rID: 15699. 1 Nov 2011.
- 10. Saunders DE, Phipps KP, Wade AM, Hayward RD. Surveillance imaging strategies following surgery and/or radiotherapy for childhood cerebellar low-grade astrocytoma. *J Neurosurg*. 2005;102(2 Suppl):172-8.
- 11. Yecies D, Fisher PG, Cheshier S, Edwards M, Grant G. Long-term outcomes of primarily metastatic juvenile pilocytic astrocytoma in children. *J Neurosurg Pediatr*. 2018;21(1):49-53.

Questions?