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First Strebloceras (Mollusca: Gastropoda: Caecidae)
from the middle Pleistocene of Japan

Takuma Haga*
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(Abstract)

A caecid gastropod of the small genus Strebloceras recovered from the middle Pleistocene Toyohashi Formation,

Atsumi Group, was newly described as S. kobayashii n. sp. It is the first record of the genus in Japan and is the

geochronologically youngest fossil that fills a large time gap of approximately 5 Myr after the middle Miocene.

Strebloceras kobayashii n. sp. is characterized as having a large shell that is up to approximately 5 mm long

and a dorsally or ventrally depressed teleoconch. It is interpreted to be a rare, extinct fossil species that lived

exclusively in the warm-temperate conditions during interglacial periods in the middle Pleistocene. Although the

geochronological occurrence of Strebloceras apparently matches well with the hypothesis of the eastward migration

from the Tethys to the Pacific in Miocene times, the origins of the Pacific members may be explainable by overlap

of both the Tethys and original Pacific lineages.

urn:1sid:zoobank.org:pub:883F3DA9-D8BC-4CE9-B3BB-2FD96AB900ES

Introduction

Members of the family Caecidae Gray, 1850 are small to
minute caenogastropods with characteristically tusk-shaped
to tubular or depressed trochiform to almost planispiral shells
(e.g., Ponder and de Keyzer, 1998). They are found worldwide
in tropical to temperate marine waters from the intertidal
to upper subtidal zones, and rarely in the deep sea down to
approximately 1,000 meters (e.g., Pizzini et al., 2013). Their
habitats vary but are essentially epibenthic or interstitial in

shallow marine bottoms (e.g., Bandel, 1996). These habitats

include the surfaces of substrata such as algae and rocks,
gravels (e.g., Ponder and de Keyzer, 1998), underneath
pebbles (Tatara, 2011), and underneath rocks and wood in
sulphide-rich reducing environments (Kano and Haga, 2011).

The Caecidae comprises three subfamilies: Caecinae
Gray, 1850, Ctiloceratinae Iredale and Laseron, 1957 (=
Pedumicrinae Iredale and Laseron, 1957; Watsoniinae
Iredale and Laseron, 1957; Parastrophiinae Hinoide and
Habe, 1978), and Strebloceratinae Bandel, 1996 (Bandel,
1996; Bouchet et al., 2017; MolluscaBase, 2019). Over 150

nominal species from ten genera are known (MolluscaBase,
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Figure 1. Locality map and image of outcrop at Hane, the type locality, where Strebloceras kobayashii n. sp. has been collected. Asterisk

indicates the type locality at Hane. Photograph of the outcrop was taken on 27 July 2014. The locality map at the lower right was

produced based on 1:25,000 scale topographic map of the Geospatial Information Authority of Japan.

2019). The three subfamilies are discerned primarily based
on protoconch and teleoconch morphologies (e.g., Bandel,
1996; Pizzini et al., 2013). The Caecinae has a planispirally
coiled protoconch, which is discarded during ontogeny, to
produce a tube-like teleoconch whose posterior end is sealed
with a septum in a fully-grown individual. The Ctiloceratinae
features an “uncoiled” protoconch of which earlier portions
are planispirally coiled. The protoconch permanently attaches
to the teleoconch throughout the lifetime. Finally, the
Strebloceratinae retains a trochospirally coiled protoconch
attached to an uncoiled teleoconch thorough the lifetime. The
Caecidae is suggested to have originated in the Cretaceous
period based on the fossil records of alleged sister groups
(Ponder, 1988; Bandel, 1996), whereas the oldest caecid
fossils are represented by early Eocene (Ypresian) examples:
two species of the genus Caecum in the Caecinae from the
northwestern United States (Goedert and Raines, 2016) and
an undescribed Strebloceratinae species from the South Island
of New Zealand (Beu and Maxwell, 1990; Beu and Raines,
2009).

The genus Strebloceras Carpenter, 1859 of the subfamily
Strebloceratinae is a monotypic genus previously composed of
only eight species. Of these, seven are considered to be valid
and one is unnamed through the Cenozoic, since the early
Eocene (Vannozzi, 2016; MolluscaBase, 2018; Vannozzi,
2019a, b; Table 1). The oldest recorded species of the genus is
from the early Eocene (Ypresian) in New Zealand, and from
the European Tethys realm during the Paleogene to earliest
Miocene (Aquitanian) (Table 1). In the Neogene, in contrast,
Strebloceras is recorded exclusively in the Pacific region, and
the highest species diversity is observed in the Recent tropical
Indo-Pacific, particularly in West Pacific waters (Table 1). A
single species, Strebloceras hinemoa Finlay, 1931, is recorded
from Miocene sediments of New Zealand as well as from
modern Pacific waters of New Caledonia and Mariana Islands
(Table 1). There is a hiatus of the fossil record of Streblo-
ceras between the last occurrence in the late middle Miocene
of New Zealand and Recent (Pizzini et al., 2013; Vannozzi,
2016; Vannozzi, 2019b; Table 1).

Recent field surveys and curatorial works of paleontological
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collections have discovered gastropod shells referable to the
genus Strebloceras from the middle Pleistocene (Chibanian)
Toyohashi Formation of the Atsumi Group, the Pacific side of
central Honshd, Japan. These gastropod shells, once labeled
as the ctiloceratine caecid Parastrophia japonica Hinoide
and Habe, 1978 in Kawase et al. (2015: pl. 6, fig. G59, left
and right), were suggested by Vannozzi (2016: 111) to be an
undescribed species of Strebloceras sensu lato. This discovery
represents the first record of the genus in Japan as well as the
geologically youngest fossil of the genus that fills a time gap
of approximately 5 Myr after the middle Miocene. Here, I
describe this fossil species as S. kobayashii n. sp. and discuss

the significance of its discovery.

Abbreviations used in the text: AH—apertural height;
IWP—Indo-West Pacific, MEM—Mizunami Fossil Museum,
Mizunami, Gifu, Japan; NMNS—National Museum of Nature
and Science, Tokyo, Tsukuba, Ibaraki, Japan; TMSM—
Takamatsu Muddy Sand Member; TMNH—Toyohashi
Museum of Natural History, Toyohashi, Aichi, Japan; SL—
shell length; SW—shell width (= maximum width of the

teleoconch).

Materials and Geological Setting

A total of eight well-preserved specimens of the present
new species were recovered from an outcrop exposed at a
sea cliff at Hane, Takamatsu-chd, Tahara City, located in
the southeastern part of Aichi Prefecture in central Japan
(34°37'17.4" N, 137°14'38.0" E: Fig. 1), which represents
the surveyed site “Loc. 2" in Nakashima et al. (2010: 63).
This outcrop was recently covered during revetment related
shoreline preservation. Three paratype specimens were
acquired from the collection of late Mr. Shiji Ugai. The
collection, now kept at the Mizunami Fossil Museum (MFM),
was amassed during long-term field sampling from 1973 to
2005 (see Kawase, 2013: 44; Kawase et al., 2015: 51-53).

The collection site represents the 7onna Bed of the
Takamatsu Muddy Sand Member (TMSM: Nakashima
et al., 2008a, b; Fig. 1, lower left), Toyohashi Formation,
Atsumi Group. The Atsumi Group (Kuroda, 1958) is widely
distributed in the Tempakubara Upland located in a zone
extending from the west of Lake Hamana to Atsumi Peninsula
on the Pacific side of central Japan. It is composed of shallow

marine sediments deposited during glacio-eustatic sea level
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changes in the middle Pleistocene (Nakashima et al., 2010
and references therein). The group comprises the Futagawa,
Tahara, and Toyohashi Formations in ascending stratigraphic
order (Sugiyama, 1991; Nakashima et al., 2008a, b, 2010).
The TMSM is exposed along the coastline. It is approximately
2 km wide near Takamatsu-chd and over 8§ m thick. Its
sedimentary environment is likely a dissected valley (e.g.,
Hayasaka, 1961; Nakashima et al., 2010). Nakashima et al.
(2008b) demonstrated Marine Isotope Stage 9 (= Chibanian)
of the Toyohashi Formation on tephra correlation. The TMSM
is very fossiliferous, with four major shell-bearing horizons in
ascending order: Batillaria Bed, Dosinia Bed, Mya Bed and
Tonna Bed (Oinomikado, 1933; Hayasaka, 1961; Nakashima
et al., 2010). The sedimentary basin of this member was likely
a bay environment that had transited from the river mouth
or inner part of the bay to full marine conditions receiving
coastal/oceanic waters during the sea level rise (Oinomikado,
1933; Tsuchi, 1960; Shibata and Ujihara, 1983; Shibata et al.,
2006; Nakashima et al., 2010; Kawase et al., 2015). Kawase
et al. (2015) subdivided the Tonna Bed into two horizons
comprising the Ruditapes Bed for the lower part and the
Tonna Bed for the upper. However, I treat those two horizons
as the Tonna Bed according to previous interpretations
(Oinomikado, 1933; Hayasaka, 1961; Nakashima et al.,
2010).

Rich invertebrate fauna indicative of shallow marine
condition have been reported from this member. The fauna
include foraminifera (Makiyama and Nakagawa, 1940),
ostracodes (Yajima, 1987; Wakamatsu, 1988), barnacles
(Kobayashi et al., 2008) decapod crustaceans (Karasawa
and Tanaka, 1994; Karasawa and Goda, 1996; Kobayashi et
al., 2008; Karasawa et al., 2014; Ando et al., 2016) as well
as molluscs (Oinomikado, 1933; Tsuchi, 1960; Hayasaka,
1961; Shibata and Ujihara, 1983; Matsuoka and Goda, 1996;
Kawase, 2002, 2013; Kawase et al., 2015; Shibata et al., 2006;
Shimamoto et al., 1994). Molluscan (Hayasaka, 1962; Shibata
and Ujihara, 1983; Shibata et al., 2006; Kawase et al., 2015;
Haga and Hasegawa, 2017) and decapod crustacean (Karasawa
et al., 2014) fauna recognized from this member, including
a warm-temperate element, indicate the strong influence of
the Kuroshio Current. Kawase et al. (2015) recorded a total
of 470 molluscan species from the TMSM in which the
highest species diversity was found in the Tonna Bed sensu
Oinomikado (1933), Hayasaka (1961) and Nakashima et al.
(2010).
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Methods

All specimens described in this study were primarily
obtained by drying and disaggregating fossiliferous sediment
samples in tap water, and collecting materials from washed
residues using binocular microscopy by the author, the late
S. Ugai, and by Mr. N. Kobayashi (see Kawase et al., 2015
on methodological detail for paratypes 1-3). Specimens were
then processed by the author. This involved thorough cleaning
in distilled water using a fine point brush with plastic hairs
under binocular microscopy. The inside of the shell of the
specimen was cleaned by using a hair cut from a Dipu Kurin
(= Deep Clean) “normal” toothbrush (Kao Co., Tokyo),
air-dried then photographed under a binocular microscope.
Scanning electron microscopy (SEM) images were directly
acquired using a JCM-6000 benchtop instrument (JEOL Ltd.,
Tokyo) at TMNH in the low-vacuum mode without coating.
Measurements were primarily made using Vernier calipers
together with the “digital measurement” package in the
microscope's operating software for the protoconch.

Specimens used in this study are housed in a Paleontology
Collection, TMNH (TMNH-10101, 10758-10760),
a collection at MFM (MFM 110117-110119), and a
Paleontology Collection of Cenozoic Molluscs at NMNS
(NMNS PM 28402).

I followed Vannozzi (2016), MolluscaBase (2018), and
Vannozzi (2019a, b) concerning the systematics of the
Strebloceratinae. Terminology of conchological characters
followed Vannozzi (2016).

Systematic Paleontology

Class Gastropoda Cuvier, 1797
Family Caecidae Gray, 1850
Subfamily Strebloceratinae Bandel, 1996
Genus Strebloceras Carpenter, 1859
Type species: Strebloceras cornuoides Carpenter, 1859, by
subsequent designation, Finlay, 1931: 20.
Remarks: The genus Strebloceras characteristically features a
trochospirally coiled protoconch permanently attached to the
teleoconch throughout the life, unlike the genus Caecum, and
never undergoes an uncoiled stage, like Parastrophia. The
teleoconch is uncoiled and tube-like, being a lightly curved or
twisted, with a diameter that gradually increases anteriorly. A

boundary between the protoconch and teleoconch is obvious
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and marked with an incised line. The surface of the teleoconch

is usually smooth or sculptured with fine collabral rings.

Strebloceras kobayashii n. sp.
urn:lsid:zoobank.org:act:79CC5F70-8E3B-479A-BBAE-
4BA31018EOFF

(Figs. 24)
Creseis virgula (Rang, 1828). Kawase, 2013: 50 (not figured).
Parastrophia japonica Hinoide and Habe, 1978. Kawase et al., 2015:
55,74, pl. 6, fig. G59.

Diagnosis: Shell large for genus, horn- or claw-like,
reaching approximately 5 mm in length. Teleoconch dorso-
ventrally depressed, rather thin, slightly incurved to right, may
slightly kink either dorsally or ventrally at mid-shell length.
Aperture laterally oblong, oval. Protoconch large for genus,
constitutes approximately 2.1 whorls.

Description:

Shell (Teleoconch)—Shell large for genus attaining
approximately 5 mm in length including protoconch (average:
4.96 mm, n =5 for fully-grown intact specimens), rather thin
but solid, vitreous translucent, shiny in excellently preserved
specimens (Figs. 2. A-D, F-H; 4. A—C). Surface of teleoconch
rather smooth, marked only with irregular growth lines (Figs.
2; 3. A, D; 4). Teleoconch horn- or claw-like, dorso-ventrally
depressed (Figs. 2. C, D, H; 3. D; 4. B, C, G, E, I), slightly
curved rightward (Figs. 2. A, B, E, F, G, I; 4. A, F, D, H).
Teleoconch abruptly expands towards aperture in early portion
but expansion rate may decrease at approximate anterior two
thirds (Figs. 2; 3. D; 4). Teleoconch dorso-ventrally straight
but may bend dorsally or ventrally near mid-shell length
when grown (see under Variations). Aperture thin, simple, not
thickened, elliptical, inclined ventrally (Figs. 2; 3. A, D; 4).
Apertural height occupies approximately 0.65% of apertural
width.

Protoconch—I.ow trochospiral, mutispirally coiled
(Figs. 3. B-F; 4. A-C, D, E, H, 1), approximately 2.1 whorls
(Figs. 3. B, E; 4. D), 407.98 um in width (range: 393.27-
415.68 um, n = 3) and 213.87 um (7 = 1) in height. Umbilicus
obvious, narrow (Figs. 3. C; 4. H). Surface smooth, marked
with blunt growth lines (Fig. 3. B, C, E, F); earlier whorl
partly marked with minute honeycomb-like sculptures (Fig.
3. B). Growth lines in early portion of last whorl comprise
deep sinuses in both apical and abapical sides like sinusigera,

whereas sinuses obscured towards aperture, being straight
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Figure 2. Strebloceras kobayashii n. sp. A-D. Holotype, TMNH-10101, dorsal, ventral, right lateral, apertural views, respectively. E. Paratype
1, MFM 110117, ventral view. F-H. Paratype 2, MFM 110118, dorsal, ventral, right lateral views, respectively. I. Paratype 3, MFM
110119, dorsal view.
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Figure 3. Scanning electron microscopy images of Strebloceras kobayashii n. sp. A~C. Paratype 1, MFM 110117, dorsal apertural surface,

dorsal view of protoconch, ventral view of protoconch, respectively. D-F. Holotype, TMNH-10101, right lateral view of whole shell,

dorso-lateral view of protoconch, right lateral view of protoconch, respectively. Arrowheads indicate boundary between protoconch

and teleoconch. Abbreviations: pc, protoconch; tc, teleoconch.

lines (Fig. 3. B, C). Last whorl abruptly expands to form
flared apertural lip, slightly projecting from earlier whorls
(Figs. 3. B, C, E, F; 4. D, E). Boundary between protoconch
and teleoconch clearly demarcated by incised line (Fig. 3. B, C,
E, F: arrowheads; Fig. 4).

Types: Holotype (Figs. 2. A-D, 3. D-F), TMNH-10101,
SL =4.90 mm, SW = 1.25 mm, AH = 0.85 mm, an intact
specimen preserved with a protoconch, 27 June 2014, leg.
T. Haga; paratype 1 (Figs. 2. E; 3. A-C), MFM 110117, SL
=490 mm, SW = 1.20 mm, AH = 0.80 mm, an intact but
whitish weathered specimen preserved with a protoconch;
paratype 2 (Fig. 2. F-H), MFM 110118, SL = 5.25 mm, SW
= 1.25 mm, AH = 0.75 mm; an intact specimen preserved
with a protoconch; paratype 3 (Fig. 2. I), MFM 110119, SL
= 4.80 mm, SW = 1.25 mm, AH = 0.80 mm, an intact but a
protoconch and a posterior portion eroded with secondary
lining formed; paratype 4 (Fig. 4. A—C), NMNS PM 28402,
SL =4.95 mm, SW = 1.25 mm, AH = 0.85 mm, an intact
specimen preserved with a protoconch; paratype 5 (Fig. 4. D,
E), TMNH-10758, SL = 1.75 mm, SW = 0.75 mm, AH = 0.47
mm, an intact young specimen preserved with a protoconch.
All the types were collected from the type locality. Paratypes
1-3 were collected by the late S. Ugai from 1973 to 2005, and
paratypes 4 and 5 by N. Kobayashi from 2017 to 2019.

Paratypes 1-3 are voucher specimens previously identified
as Creseis virgata (Rang, 1828) in Kawase (2013: 50).
Paratypes 1 and 3 are also the figured vouchers of Parastrophia
Jjaponica Hinoide and Habe, 1978 in Kawase et al. (2015: 55,
74; pl. 6, fig. G. 59, right and left, respectively). See Remarks
below for the detail.

Other material examined: TMNH 10760, SL = 4.70
mm, SW = 1.35 mm, AH = 0.85 mm, a full-grown specimen
whose protoconch is missing (Fig. 4. F, G); TMNH 10759, SL
=1.65 mm, SW = 0.75 mm, AH = 0.35 mm, a young slightly
damaged specimen preserved with a protoconch (Fig. 4. H, I).
Both specimens were collected from the type locality by N.
Kobayashi from 2017 to 2019.

Type locality: A sea cliff at Hane, Takamatsu-cho,
Tahara City, Aichi Prefecture, central Japan (34°37'17.4" N,
137°14'38.0" E: Fig. 1).

Occurrence: The Tonna Bed of the TMSM, Toyohashi
Formation, Atsumi Group, at the type locality; middle
Pleistocene, Chibanian.

Etymology: Named for Mr. Nobuaki Kobayashi of
Gamagodri City, Aichi Prefecture, who has long been collecting
fossils from the Atsumi Group and who has provided
important research material to us, including specimens were

used to describe the present new species.
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Figure 4. Strebloceras kobayashii n. sp. A-C. Paratype 4, NMNS PM 28402, dorsal, left lateral, right lateral views, respectively. D, E. Paratype 5,
TMNH-10758, dorsal and left lateral views, respectively. F, G. TMNH-10760, ventral and left lateral views, respectively. H, . TMNH-

10759, ventral and right lateral views, respectively.
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Variations: Major variations are observed in the shell
profile at the fully-grown stage. The teleoconch tends to
bend dorsally or ventrally when grown. Of six full-grown
specimens, three were bent dorsally (Figs. 2. C; 4. C, G), one
ventrally (Fig. 2. H) and two were almost straight with an
unbent anterior portion (Fig. 2. E, I). The expansion rate of the
teleoconch towards the anterior also varies and two types are
observed: some specimens have a regularly increase diameter
(Figs. 2. F-H; 2I) whereas the expansion tapers off in some
specimens (Figs. 2. A-C, E; 4. A-C, F, G).

Remarks: The new species is the largest species of those
previously known in the genus, and is clearly distinguishable
from all other species, both fossil and extant, previously
reported by a large shell that can be up to approximately 5
mm in length and a dorso-ventrally depressed teleoconch
whose aperture is elliptical in shape. All congeners have
smaller shells in size (approximately < 3 mm SL) and circular
apertures (Table 1). The abruptly expanded early teleoconch is
also diagnostic for the new species.

Irrespective of the presence of unique diagnostic
characteristics of new species, correct identification
is tricky due to the analogous morphologies with
phylogenetically unrelated gastropod taxa of pteropods.
The present new species had previously been identified as
a holoplanktonic pteropod, Creseis virgula (Rang, 1828),
of the family Creseidae Rampal, 1973 (Kawase, 2013:
50). The identification was based on a slightly incurved
and unexpanded anterior portion of the teleoconch recall
species in the genus Creseis Rang, 1828, particularly when
the original trochospiral protoconch is eroded or missing, as
seen in paratype 3 (Fig. 2. I) and in another specimen (Fig.
4. F, G). However, creseids characteristically have a barrel-
like protoconch and a rather symmetrical, smooth teleoconch
and aperture (e.g., van der Spoel, 1987; Gasca and Janssen,
2014). Thus, the combination of the trochospiral protoconch,
asymmetrical aperture and teleoconch marked with ventrally
inclined growth rings in the present new species are not
referable to the creseids. Based on taxonomic scrutiny of
previously collected specimens (Kawase, 2013), Kawase et
al. (2015) subsequently identified and depicted the present
new species as a ctiloceratine caecid Parastrophia japonica
Hinoide and Habe, 1978 (Kawase et al., 2015: pl. 6, fig.
G59, left and right). Members of the genus Parastrophia
characteristically feature a protoconch that is permanently

attached to a very loosely twisted teleoconch, and a coiled
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protoconch followed by an uncoiled tube-like stage in the last
whorl (e.g., Habe, 1978a; Hinoide and Habe, 1978; Bandel,
1996; Pizzini et al., 2013). These diagnostic characters do not
match with those of the present new species. Thus, the present
new species is not a member of the genus Parastrophia.

The new species also resembles Neogene fossils of
freshwater gastropods in gross morphology. The planorbiid
genus Orygoceras Brusina, 1882 found in middle to late
Miocene rocks of central Europe (e.g., Brusina, 1882;
Harzhauser et al., 2002; Neubauer et al., 2011, 2013,
2016), and late Pliocene to early Pleistocene deposits in the
northwestern United States (e.g., Dall, 1924; Yen, 1944;
Taylor, 1966), is comparable with S. kobayashii n. sp.
because of its relatively large shell size (up to 10 mm SL),
rapid teleoconch expansion rate, and non-circular aperture.
European Orygoceras tropidophorum Brusina, 1902 and
North American Orygoceras tricarinatum Yen, 1944 in
particular exhibit extreme similarity with S. kobayashii n.
sp. in their depressed teleoconch with uneven growth rate,
and their unusual curvature (Yen, 1944; Neubauer et al.,
2016). However, members of Orygoceras share a paucispiral
(approximately 1 whorl), planispirally coiled small
protoconch whose surface is marked with spiral lirae (e.g.,
Harzhauser et al., 2002; Neubauer et al., 2011, 2013, 2016).
The teleoconch of Orygoceras is more or less marked with
spiral threads, often with macrosculptural development such
as longitudinal carina and widely spaced concentric ribs (Dall,
1924; Yen, 1944; Hershler and Longley, 1986; Harzhauser et
al., 2002; Neubauer et al., 2011, 2013, 2016). These features
in Orygoceras safely rule out their attribution to the genus

Strebloceras.

Discussion

Strebloceras kobayashii n. sp. as an extinct species in the
Pleistocene Japanese waters

Most members of Pleistocene marine molluscs still survive
today. Only a few have become extinct. A total of 470 marine
molluscan species have been identified from the TMSM of the
Toyohashi Formation, Atsumi Group (Kawase et al., 2015).
Of these, 21 (14 in Gastropoda excluding the present new
species, and seven in Bivalvia), representing approximately
4.5% of the total, are extinct fossil species (summed by T.H.,
based on Kawase et al., 2015). This level of extinction is

consistent with the background extinction rates of Pleistocene
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molluscan fauna of both sides of the temperate Pacific (e.g.,
Stanley and Campbell, 1981; Valentine and Jablonski, 1991;
Kase et al., 2013).

Whether S. kobayashii n. sp. is an extinct fossil species or
a yet undiscovered Recent species is an intriguing question.
Although modern caecids are well catalogued in Japanese
waters (Sasaki, 2008) mostly because of the contribution
by enthusiastic amateur shell collectors (e.g., Kato, 1990,
2000; see also Habe, 1978a, b), S. kobayashii n. sp. has never
appeared in the Recent records. In addition, irrespective of its
extraordinary large shell size of up to approximately 5 mm in
SL for the genus, S. kobayashii n. sp. has, to my knowledge,
never been recovered from Pleistocene beds, except the
Toyohashi Formation, or from Recent Japanese waters in a
numbers of inventories. Thus, it is reasonable to assume that S.
kobayashii n. sp. is an extinct fossil species in the Pleistocene.

Of the eight specimens of the present new species used in
this study, three were collected by late S. Ugai. He sampled
a total of 122 kg dry weight of sediments recovered from a
collection site, the type locality of S. kobayashii n. sp., on
the coast of Takamatsu-chd (Kawase, 2013; Kawase et al.,
2015), from which these specimens were collected. Despite
more than two years of careful and meticulous sorting of
the sampled sediments at the type locality by N. Kobayashi,
only four specimens were obtained. The low frequency
of occurrence probably reflects the biological rarity of S.
kobayashii n. sp. Pizzini et al. (2013) showed in his systematic
synthesis of caecids from the South-West Pacific that many
represent only by empty shells occurring in a few localities.
Ponder and de Keyzer (1998) mentioned that nearly all
Australian caecid species have never been collected alive.
Bouchet et al. (2002) amassed an extensive inventory of 2,738
marine molluscs from a 295-km” site on the west coast of
New Caledonia. The authors reported that rare species made
up a considerable portion of the fauna, comprising 32%
species collected at a single station and 20% represented by a
singleton. Caecids are the major representatives of this faunal
proportion (Pizzini in Bouchet et al., 2002: appendices 1 and
2). Among these, members of the Recent Strebloceras are the
most remarkable example of such a biological rarity. Out of
five species of Recent Strebloceras, Strebloceras subannulatum
de Folin, 1880 is exceptional due to the presence of a
relatively large number of available specimens especially
from Easter Island (Raines and Pizzini, 2005) and from Tahiti

(Vannozzi, 2016), but until now only three living individuals

(de Folin, 1880, 1886) have been recovered from reefs off
Honolulu, Hawaii. Very few specimens represented only by
empty shells are available for other Recent species (Lightfoot,
1992; Pizzini et al., 2013; Vannozzi, 2016; Vannozzi,
2017; Vannozzi, 2019b). There are also few specimens of
fossil species (see references in Table 1). These have been
recognized as rare, such as the Eocene species from France
(Gougerot, 1975). The fossilization process may bias the
total number of successfully preserved fossils due to the
minuteness of the shell. However, Caecum spp. congeners
were unearthed together with a Strebloceras fossil in the
Eocene of France (Gougerot, 1975). The same can be said for
the collection site of this study, where many Caecum species
co-occurred with S. kobayashii n. sp. (Kawase et al., 2015;
T.H., personal observation). Considering these facts and in the
context of the probable biological rarity of both modern and
fossil Strebloceras species as discussed above, it is reasonable
to interpret that S. kobayashii n. sp. was a rare species with a

small population size.

Strebloceras kobayashii n. sp. as a thermophile element
All four members of Recent Strebloceras exclusively
occur in tropical waters in the Pacific: S. subannulatum
in both the central Indo-Pacific and the eastern Indo-
Pacific, S. hinemoa and S. pizzinii Vannozzi, 2016 in the
central Indo-Pacific; and S. oliverioi Vannozzi, 2019 in the
Red Sea of western Indo-Pacific (Table 1). Three fossil
Strebloceras species—S. bezanconi (Cossmann, 1888),
S. cornuoides Carpenter, 1859 and S. edwardsi (Deshayes,
1861)—thrived in the middle Eocene—earliest early Miocene
of the European Tethys realm (Table 1). They are also
interpreted to be a thermophile element, as the European
Tethys at that time likely had a tropical to warm-temperate
climate (e.g., Lozouet, 2014; Harzhauser et al., 2016). Two
other fossil members from New Zealand, an unidentified
species from the early Eocene and S. hinemoa from the
Miocene (Table 1), co-occurred with molluscs indicative of
tropical and/or warm-temperate waters (Beu and Maxwell,
1990). Considering the occurrence of Strebloceras from a
tropical or warm waters setting, it is reasonable to assume
that S. kobayashii n. sp. is also a thermophile element. This
interpretation is strengthened by previous descriptions that
the TMSM comprises warm-water fauna that thrived under
the strong influence of the Kuroshio Current during the

middle Pleistocene interglacial periods (Hayasaka, 1962;



New Pleistocene Strebloceras gastropod from Japan

PRE-EOCENE
INVASION TO

THE TETHYS AND THE PACIFIC

Shibata and Ujihara, 1983; Shibata et al., 2006; Karasawa et
al., 2014; Kawase et al., 2015; Haga and Hasegawa, 2017).

Monophyly of Strebloceras revisited

The monophyly of the genus Strebloceras has been
questioned because there are gaps in morphology and
in geochronological and geographical occurrence
between Recent and fossil taxa. Pizzini et al. (2013) and
Vannozzi (2019b) have suggested that Recent species are
phylogenetically unrelated to fossil species, and their similar
shell shape is the result of convergence. This is because Recent
species more or less have sinusigera in the last whorl of the
protoconch, whereas fossil species have a simple protoconch
without sinusigera. The geographically distant occurrence
of fossil species, and a geochronological gap in occurrence
after the middle Miocene may also support this hypothesis.
Although compelling evidence is needed to assess the
monophyly of Strebloceras, at this time, 1 favor the view that
Strebloceras has a single lineage throughout the Cenozoic,
as they share a rather conservative protoconch morphology
(except for the presence/absence of sinusigera) that features a
low trochospiral shape with approximately 2 whorls. Modern

S. subannulatum have a deep sinusigera notch rimmed with
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prominent crenation (Raines and Pizzini, 2005; Pizzini et al.,
2013; Vannozzi, 2016), but the remaining three Recent species
(S. hinemoa, S. pizzinii, and S. oliverioi) possess sinusigera
without clear crenation that gradually become shallower
towards their aperture (Pizzini et al., 2013; Vannozzi, 2016;
Vannozzi, 2017; Vannozzi, 2019b). Based on the protoconch
morphology of S. kobayashii n. sp., having the sinusigera-
like deep sinuses that become shallower and feebler towards
the aperture in the last protoconch whorl, it is likely that S.
kobayashii n. sp. represents an evolutionary intermediate form
between fossil members and extant ones. The geographic
and geochronologic occurrences of S. kobayashii n. sp.
from the middle Pleistocene of the Pacific region, filling in
these gaps, may support a view of the monophyletic origin
of Strebloceras. On the other hand, the familial/generic
assignment of S. bezanconi is questionable as it has a small
paucispiral protoconch with an average of 1 whorl (Vannozzi,
2016; Vannozzi, 2019b), displaying similarity for example
with the phylogenetically unrelated, freshwater-dwelling
planorbiid Orygoceras or even the phreatic hydrobiid
Phreatoceras Hershler and Longley, 1987. Morphological
scrutiny of the protoconch of S. bezanconi thus enables us to

unveil its identity.
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Tethyan origin of Pacific Strebloceras?

The tropical Indo-West Pacific IWP) harbors the Earth's
greatest biodiversity of marine organisms. This marine
biodiversity hotspot likely originated from the Tethys via
the Tethys Seaway during the Miocene or a much earlier
period on the basis of fossil records (e.g., Wallace and Rosen,
2006; Harzhauser et al., 2007; Yamaguchi et al., 2012) and
molecular phylogenetic evidence (e.g., Meyer, 2003; Williams
and Reid, 2004; Frey and Vermeij, 2008; Malaquias and
Reid, 2009; Ozawa et al., 2009; Liu et al., 2018) of various
invertebrate groups. The center of global marine biodiversity
was observed in the Tethys realm from the Cretaceous to
Eocene, but shifted to the Arabian Peninsula and western
Indian Ocean during the late Eocene—Oligocene, and finally
into Indonesia as far east as in the Fiji Islands in the IWP by
the early Miocene (e.g., Briggs, 1999; Renema et al., 2008;
Leprieur et al, 2016). Active tectonic events in the IWP
region accelerated speciation and isolation, and resulted in the
establishment of the highest concentration of species by the
late Miocene in the IWP (Leprieur et al, 2016).

Assuming the genus Strebloceras is monophyletic, the
pattern of geochronologic occurrence of Strebloceras (Fig. 5)
is apparently best explained by the “Tethys origin” hypothesis
because of the transition in the diversity from the Tethys to
the Pacific region during the early Miocene (Aquitanian—
Burdigarian). In the Tethys realm, three species (S. bezanconi,
S. cornuoides and S. edwardsi) have been recorded from the
early middle Eocene. Subsequently, the diversity gradually
decreased, with two species (S. bezanconi and S. cornuoides
in the Bartonian, and S. cornuoides and S. edwardsi in the
Priabonian—Rupelian) in the late middle Eocene (Bartonian)—
early Oligocene (Rupelian) and finally just S. edwardsi
surviving in the late Oligocene—earliest early Miocene
(Aquitanian). The fossil record demonstrates that Strebloceras
in the Tethys realm had disappeared by the beginning of the
late early Miocene (Burdigalian). The timing of disappearance
of Tethyan Strebloceras is coeval with the loss of tropic
biota in the Tethys realm, which was most likely caused by a
climate shift to a colder temperature in the late Oligocene (e.g.,
Briggs, 1999; Zachos et al., 2001). During much of the same
time, S. hinemoa appeared in the fossil record of late early
(Burdigarian) to late middle Miocene (Serravallian) of New
Zealand, representing the first fossil record of Strebloceras in
the Neogene of the Pacific.

However, considering the oldest fossil of Strebloceras,

Strebloceras sp. (“Strebloceras n. sp.” in Beu and Maxwell,
1990 and Beu and Raine, 2009) recorded from the Kauru
Formation in South Canterbury, South Islands, New Zealand,
representing the oldest fossil of the genus, this “Tethys
origin” must be revisited. The geologic age of the Strebloceras-
yielding lower horizon of Kauru Formation was given as
early Eocene (Ypresian). However, it may be much older,
possibly going back to the late Paleocene (Beu and Maxwell,
1990). During much of the same time, the oldest fossil of the
Caecinae of the family Caecidae, Caecum benhami Goedert
and Raines, 2016 and another unidentified Caecum, were
recorded from the middle early Eocene (Ypresian) of the
Crescent Formation in Washington States of the United States
(Goedert and Raines, 2016). Goedert and Raines (2016),
suggesting that the Caecidae had already diversified into two
subfamilies, Caecinae and Strebloceratinae, and inhabited
both the northeastern Pacific and southern Pacific by the early
Eocene. These early Eocene caecids fossils having slight
conchological difference with living species provide evidence
that the Caecinae and Strebloceratinae were already present in
Paleocene time, as estimated by Bandel (1996). Divergence of
the common ancestor of the Caecidae and its sister group are
suggested to have occurred as far back as the Late Cretaceous
(Ponder, 1988; Bandel, 1996; Ponder and de Keyzer, 1998).
Ponder (1988) inferred that they presumably migrated to the
west coast of the Americas from the Tethyan realm by at least
the Late Cretaceous. Considering the oldest fossil records
of caecids and the previous assumptions concerning the
time of divergence of caecids, I suggest that it is likely that
Strebloceras was already widely distributed in Eocene tropical
and subtropical waters of the Pacific, as well as the Tethyan
realm, although no fossils have yet been discovered from the
Paleocene—early Eocene Tethys realm.

The origin of Strebloceras in the Neogene Pacific region
is controversial due to incomplete fossil records. However, I
suggest that probable origins of the Pacific Strebloceras may
be explained by the overlap of the Tethyan and original Pacific
lineages. As presented above, the eastward migration from the
Tethys into the Indo-Pacific via the Tethyan Seaway by the
end of late early Miocene is very likely. As New Zealand has
received a large number of thermophile genera from warmer
areas (Kohn, 1990), presumably under Tethyan or even Indo-
Pacific influence (Fleming, 1967; Beu and Maxwell, 1990)
during the late Oligocene—early Miocene, the occurrence

of S. hinemoa in Miocene rocks of New Zealand appears to
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exemplify the eastward migration of Strebloceras into the
Indo-Pacific region. However, S. hinemoa became extinct in
New Zealand waters by the late middle Miocene, probably
due to a cooling event that gradually eliminated warm-water
taxa (Beu and Maxwell, 1990). On the other hand, I favor
the view that the Pacific lineage has survived somewhere
in the tropical to warm-temperate Pacific waters from the
late Paleocene to the present. The sparse fossil record of
Strebloceras in the Pacific, except for New Zealand and Japan,
is likely due to the extreme rarity and small shell size that
hinders successful preservation and collection. In the Pacific
region, well-preserved warm-water shallow marine molluscan
fossils of Paleogene times are very rare (Ogasawara, 2002 for
Japan; Kase and Aguilar, 2014 for Indonesia and Philippines).
Furthermore, even in highly fossiliferous Neogene beds,
micromolluscan fauna are still largely masked because few
studies have assessed such fossils. In the case of New Zealand
Strebloceras, 1 assume that they persisted, but have not yet
been discovered, from the middle Eocene to early Miocene,
since New Zealand was likely a tropical to warm-temperate
marine setting during that period (e.g., Beu and Maxwell,
1990). However, I suggest that migration from New Zealand
into other Pacific regions by Miocene times is unlikely
because, as far as I know, no such examples exist.

The discovery of S. kobayashii n. sp. from the middle
Pleistocene Toyohashi Formation in central Japan is
remarkable, as this finding clearly demonstrates that the
genus Strebloceras had once occurred in Japanese waters.
The timing of invasion into Japan is unclear, but I assume
Strebloceras had arrived after the early Miocene and before
the Pleistocene. After the remarkable faunal transition from
warm-water to temperate or cool-water molluscs in the
late Eocene to the early Oligocene, warm-water molluscs
have repeatedly flourished in Japanese Neogene sediments
corresponding with global Neogene climatic optima. Warm-
water molluscan faunas are prominent in the early Miocene
(the subtropical Akeyo-Kunugidaira Fauna), late early
Miocene—early middle Miocene (the tropical to subtropical
Yatsuo-Kadonosawa Fauna), middle to late Miocene (the
tropical to warm-temperate Kukinaga Fauna, the warm-
temperate Old Shiobara-Yama Fauna, the subtropical to
warm-temperate Fujina Fauna), late Miocene to early
Pliocene (the tropical to warm-temperate Zushi Fauna), late
Pliocene to early Pleistocene (subtropical to warm-temperate

Kakegawa Fauna), despite the fact that the Neogene is an era
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of cooling from its early to late stages, and that the overall
faunal composition of molluscs have been accordingly
changed from warmer to cooler waters (e.g., Chinzei, 1986;
Ozawa et al., 1995; Ogasawara, 2002; Ogasawara et al.,
2008). Ogasawara et al. (2008) inferred that the closure of the
Indonesian Seaway during the late early to early late Miocene
influenced the equatorial current system in the Pacific, which
may have resulted in the formation of the Paleo-Kuroshio
Current reaching the coast of Japanese archipelago, and
allowed tropical/subtropical molluscs indicative of the
Yatsuo-Kadonosawa Fauna to invade Japanese archipelago.
Considering the thermophile nature of Strebloceras, it is
reasonable to assume that they had reached Japanese waters
somewhere in correspondence with the Neogene influx of
warm-water taxa into Japan, that they disappeared in the
middle Pleistocene. Although Neogene marine sediments rich
in molluscs are common in Japan and numerous faunistic
studies have been carried out, micromollusks have been very
little studied even if successfully collected. Thus, I suggest
that scrutiny of Neogene micromollusks may discover further
Strebloceras fossils in the TIWP.
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