

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN - GERMANY

Tropentag 2014 Czech University of Life Sciences Prague, Czech Republic September 17 - 19, 2014

THE STATE UNIVERSITY OF PAPUA MANOKWARI - INDONESIA

Tree Species Composition, Diversity and Structure in Tunas Logging Concession Area of Papua-Indonesia

Yosias Gandhi^{1,2)}, Ralph Mitlohner¹⁾

1) Georg-August-Universität Göttingen, Tropical Silviculture and Forest Ecology, Germany 2) The State University of Papua Manokwari, Faculty of Forestry, Indonesia

Introduction

Present geography of New Guinea geological provinces are a product of interaction of three major tectonic plates (Ocean Pacific Plate, Continental Australian and Eurasian plates), a number of micro-continents and several arc island systems. Although development of these complex areas is still being debated among geologists (Polhemus, 2007), biologists are trying to construct a coherent geotectonic history of New Guinea and its biogeography patterns (Micaux, 1994; de Boer, 1995). However, scientific data of vegetation in western part of the island which is vulnerable to forest degradation and deforestation is poorly available.

Results

Table 1. Forest stand overview for unlogged (ULG), 4-year logged (LG4) and 8-year logged forest in Tunas Harvesting Area, West Papua

Forest Stands	ULG	LG4	LG8
Species No.	71	85	80
Abundance	1644	1049	1160
Basal Area (m2/ha)	38,23	21,34	23,90
Diameter of mean basal area (cm)	17,21	16,10	16,20

Figure 5. Tree's mean basal area of undisturbed and disturbed Forest stands in Tunas Logging Area, West Papua

Tree species composition

Objectives

Main objective is to identify forest characteristics in Stable Platform Tectonic Province in the south of New Guinea. Whilst specific objectives are to compare tree species composition, species diversity and forest structure between post-harvest forest and undisturbed forest.

Study site

a. 70-cm dbh of Vatica rassak in unlogged forest stand

Forest Stand ULG		Forest Stand LG4		Forest Stand LG8	
Scientific Name	Family	Scientific Name	Family	Scientific Name	Family
<i>Vatica rassak</i> Blume	Dipterocarpaceae	Chisocheton ceramicus C. DC.	Meliaceae	Vatica rassak Blume	Dipterocarpaceae
Litsea timoriana Span.	Lauraceae	<i>Vatica rassak</i> Blume	Dipterocarpaceae	Litsea tuberculata Boerl.	Lauraceae
Syzygium anomalum Ltrb.	Myrtaceae	Litsea tuberculata Boerl.	Lauraceae	Canarium indicum L.	Burseraceae
Hopea papuana Diels	Dipterocarpaceae	Medusanthera polot	Euphorbiaceae	Medusanthera polot	Euphorbiaceae
Litsea tuberculata Boerl.	Lauraceae	Myristica sulcata Warb.	Myristicaceae	Myristica tubiflora Blume	Myristicaceae

Table 3. Species similarity among Forest stands at different tree category in Tunas Logging Area, West Papua

Tree category	No. of species in ULG	No. of species in LG4	No. of species common to both plots	Percent similarity (Sörensen's coefficient)
Seedlings	31	26	17	59,65
Saplings	53	46	37	74,75
Poles	58	65	40	65,04
Trees	65	66	47	71,76
Tree category	No. of species in ULG	No. of species in LG8	No. of species common to both plots	Percent similarity (Sörensen's coefficient)
Seedlings	31	31	21	67,74
Saplings	53	55	42	77,78
Poles	58	64	43	70,49
Trees	65	63	46	71,88
Tree category	No. of species in LG4	No. of species in LG8	No. of species common to both plots	Percent similarity (Sörensen's coefficient)
Seedlings	26	31	17	59,65
Saplings	46	55	38	75,25
Poles	65	64	47	72,78
Trees	66	63	46	71,32

Measure of species diversity at different tree Table 4. category in Tunas Logging Area, West Papua

	Forest stands			
Thee category	ULG	LG4	LG8	
	Simpson's Diversity (Ds)			
Seedlings	0,81	0,94	0,84	
Saplings	0,96	0,96	0,96	
Poles	0,96	0,97	0,96	
Trees	0,95	0,96	0,96	
	Shannon-Wiener Diversity (H')			
Seedlings	2,35	3,04	2,47	
Saplings	3,5	3,56	3,6	
Poles	3,62	3,86	3,65	
Trees	3,59	3,69	3,57	
	Hmax Diversity			
Seedlings	3,43	3,26	3,43	
Saplings	3,97	3,83	4,01	
Poles	4,06	4,17	4,16	
Trees	4,22	4,19	4,14	
	Evennes Diversity (E)			
Seedlings	68,44	93,29	71,86	
Saplings	88,19	92,99	89,85	
Poles	85,09	92,46	87,73	
Trees	85,04	87,96	86,05	

Forest structure

Figure 6. Observed and expected tree diameter distributions, from top left in clock direction, ULG, LG4, LG8 Forest stands and comparison of all expected diameter distribution for all stands in Tunas Logging Area, West Papua

Dillenia ovalifolia sorounding by saplings and poles in 8-years logged forest stand

b. Saplings and Poles grow after 4 years in ex-skid trial of logged forest stand

Figure 3. Aerial view of Tunas logging Concession Area of West Papua-Indonesia

Acknowledgment:

500

We would like to thank Directorate General of Higher Education, Indonesian Ministry of Education for its financial for first author suporting and Production Manager of PT. Tunas Timber Lestari, Papua for inviting and facilitating the authors during data collection.

Diameter (cm)

Conclusions

Tunas Forest stands in Australian craton of New Guinea is mostly by families dominated of Dipterocarpaceae, Lauraceae and Myrtaceae among statistically estimated more than 30 families and 85 species found. Following logging, pioneer tree species of Moraceae were present causing slightly change in the species compositions as well as the forest structures. However, it is expected to be short-lived during first few years after cutting.