http://www.science.oregonstate.edu/~gablek/CH334/Chapter5/chirality.htm Chirality – An object which is non-superimposable on its mirror image is said to be chiral (derived from the Greek term 'cheir' meaning hand).

Achiral objects

Object

Mirror image

Chiral Molecules: (1) Bromochlorofluoromethane Contains a tetrahedral carbon with four different substituents (F, CI, Br and H)

Molecules which are non-superimposable mirror images are called 'enantiomers' – Examples of stereoisomers

Isomers – Molecules with the same molecular formula but with different structure

Isomers

Constitutional isomers

 different atom to atom connectivity

Stereoisomers

same atom to atom
connectivity but the
arrangement in
space is different

Stereoisomers

Same atom connectivity, but have a different 3-D arrangement of atoms

• Enantiomers are stereoisomers which are non superimposable mirror images

Examples of Chiral molecules

How do the chemical and physical properties of enantiomers differ?

Enantiomers have identical physical properties except for the direction of rotation of plane-polarised light (PPL).

They will react in the same way with symmetric molecules but differently with asymmetric (often biological) molecules.

Polarimeter – An instrument for measuring the rotation of the plane of polarised light

Demonstration of optical rotation using the enantiomers of Limonene

Enzymes, which themselves are always chiral, often distinguish between the two enantiomers of a chiral substrate. Chiral objects (glove) have different interactions with the two enantiomers of other chiral objects (left and right hand).

Analogy: A left hand will not fit into a right-handed glove

