THEY ARE TRYING TO SICKLE

Jennifer J. Mitchell, MD, FAAFP, FAMSSM¹; Rafael Rosalez, MD¹; Frank Perez, CAFS, LAT, ATC, MAT² Tracey Varis, MLS³

¹ Texas Tech University Health Sciences Center, Sports Medicine Fellowship, Lubbock, TX

- ² Texas Tech University, Athletic Department, Sports Medicine Division
- ³ Texas Tech Student Health Service, Clinical Laboratory

School *of* Medicine Family and Community Medicine Sports Medicine Fellowship

CASE HISTORY

- 21 yo Black Female Track and Field Multi athlete with c/o painful lumps in both armpits
- Day 3 of symptoms, Team Physician contacted by Athletic Trainer
 - Presumptive Lymphadenitis
 - Doxycycline 100mg po bid prescribed empirically
- Day 4 developed fever, Tmax 100.5
 - Increasing pain, not improved with ibuprofen
 - Athlete presented to the ER; Took first dose of doxycycline in the waiting area
 - ER diagnosed: Bilateral Axillary Abscesses
 - Prescribed:
 - Clindamycin 450mg po tid; Stop Doxycycline
 - Ketorolac 40mg IM x 1
- Day 5 seen by Team Physician in clinic
- Pain 7/10 both axillae; unable to lower arms completely
- No further fevers
- Denied night sweats, unexplained weight loss or other lymphadenopathy

PMHx: Iron Deficiency Anemia, Vitamin D Insufficiency; Sickle Cell Trait Negative (Mandatory NCAA screening)

PSHx: Inguinal hernia repair as a child

Meds: Ferrous Gluconate 324mg po bid, q other day with Ascorbic Acid 500mg; Cholecalciferol 2000IU/d; Nexplanon; Clindamycin; Ibuprofen

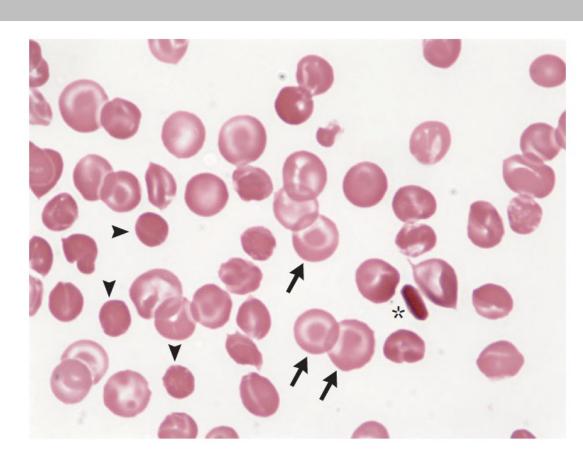
Social: No tobacco, drugs

Fam Hx: No known hemoglobinopathies; Mother unsure of family ancestry details

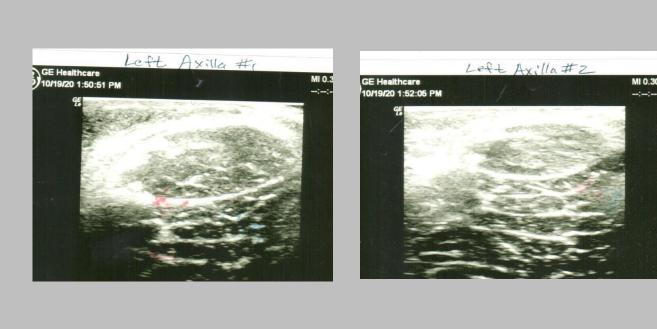
ROS: No history of jaundice, splenomegaly, cramping with exertion

INITIAL PHYSICAL EXAMINATION

- T 98.1 P79 RR 18 BP 110/70 BMI 22.2
- Gen: A&O x 3; NAD, but holding arms away from body
- HEENT, Resp, CV: Unremarkable
- Both Axillae:
- Visible axillary lymph node enlargement b
- Right: 2 large firm nodes and at least 5 smaller nodes
- Left: 2 large firm nodes and at least 4-5 smaller nodes
- All enlarged nodes, exquisitely tender
- No fluctuance of any nodes consistent with abscess
- Lymphatics: No other LAN to include cervical, supraclavicular, epitrochlear, submandibular or inguinal; no splenomegaly
- Skin: No discharge from nodes; No erythema of axillae
- MSK: Unremarkable


Bilateral Axillary Lymphadenitis Methicillin Resistant Staph Aureus Infection Lymphoma Hidradenitis Suppurativa Bilateral Axillary Abscesses

LABWORK AND IMAGES


- ☐ Sofia Antigen COVID-19 Screening Test: Negative
- ☐ Comprehensive Metabolic Profile, unremarkable
- Monospot: Negative
- ☐ CBC due to infection concern; other labs done due to abnormal indices and abnormal peripheral smear showing:
 - Target Cells 3+
 - Microcytosis 3+ Anisocytosis
 - Poikilocytosis 2+
 - Schistocytosis 1+
 - Hypochromasia 1+


"The red blood cells look like they are trying to sickle."

Comment from Lab Technician:

Typical Peripheral Smear
 Hemoglobin C Disease:
* HbC Crystal
Arrowhead: Microspherocy
o B-Thalassemia:
Pappenheimer Bodies
Poor Hemoglobinization
Both Conditions:
Arrows: Target Cells

Day 5 US images with enlarged lymph nodes (*), but no fluid collections essentially ruling out **Axillary Abscesses**

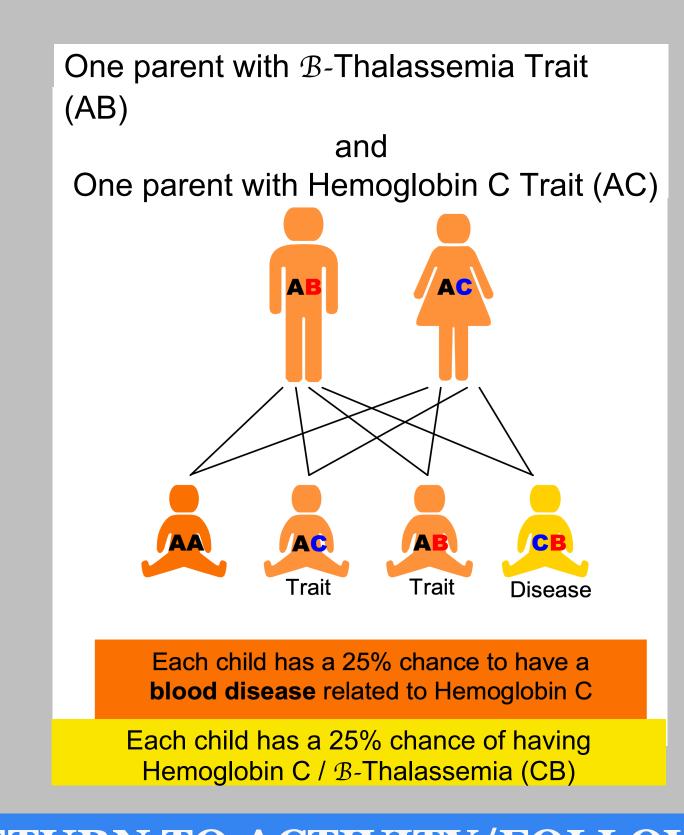
Hemoglobin Electrophoresis Pt. Values Normals 16.7 95 - 98 Hgb A Hgb A2 2 - 3 4.5 0.8 - 2 Hgb F 9.1 Abnormal Hgb C

Hgb Electrophoresis consistent with | Hemoglobin C / B-Thalassemia |

	Patient		
Labs:	Value	Normals	
WBC	8.2	4.8 - 10.8	Normal
RBC	5.2	4.2 - 5.4	
Hgb	10.9	12 - 16	Low
HCt	32.5	37-47	
PLT	288	130 - 400	
MCV	62.4	81 - 99	
MCH	20.9	27 - 31	
MCHC	33.4	32 - 36	
RDW	18.1	11.5 - 15.5	High
Potio Count	1.92%	5 10	
Retic Count		.5 - 1.8	
Iron	48	37-145	
TIBC	365	250-450	
Ferritin	8.2	>40	
CRP	24 - 47	<6	
Folate	8.4	4.6 - >20	

 Hgb C Trait (Hb AC), typically is asymptomatic, but does not carry Oxygen as well as normal hemoglobin; Poor

Hemoglobin C is one of the structural variants of normal


DISCUSSION/SIGNIFICANCE

Quality Hemoglobin

hemoglobin

 B-Thalassemia arises from deficient or absent synthesis of B globin chains leading to excess alpha chains; Low Quantity

- Patient typically asymptomatic or mild anemia
- Low MCV; RDW high or normal
- Hemoglobin C / B-Thalassemia:
- One Hgb C gene from one parent and
- One Thalassemia gene from the other parent (see figure)
- Mild to moderate anemia
- Typically does not cause serious health problems
- Low MCV and low Hemoglobin always seen
- Mutations seen in hemoglobinopathies protect carriers from malarial diseases
- Preconception genetic counseling is important for those with hemoglobinopathies.
- Any offspring of this individual will inherit either a gene for Hgb C or for Beta-thalassemia.
- If her partner has abnormal hemoglobin the offspring will have a high likelihood of having abnormal hemoglobin rather than just being a carrier.
- Those at risk of being carriers for beta-thalassemia include populations in the Mediterranean basin, West Africa, and South Asia.
- Prior to any decision regarding conception, she should strongly consider partner carrier testing.

Bilateral Axillary Lymphadenitis with incidental discovery of Hemoglobin C / B-Thalassemia

CLINICAL COURSE

- While reviewing the peripheral smear, the lab technician noted multiple atypical shaped red blood cells with some appearing to almost sickle.
- The team physician was contacted to ask if the patient has Sickle Cell Trait; screening was negative during her PPE
- Hemoglobin Electrophoresis was then ordered
- Day 8: pain resolved, Lymphadenitis resolving
- Day 13: Lymphadenitis clinically resolved Patient counseled regarding the new hemoglobinopathy dx

RETURN TO ACTIVITY/FOLLOW-UP

- With the lymphadenitis resolved, the patient returned to full activity workouts.
- It was recommended her siblings, her parents, and their siblings should consider Hgb electrophoresis testing.
- She was counselled regarding potential future genetic issues with her offspring depending on partner's hemoglobin components.

REFERENCES

- Muncie HL, Campbell JS. Alpha and Beta Thalassemia. Am Fam Physician. Aug 15, 2009;80(4):339-344. 2. Karna B, Jha SK, Zaabi EA. Hemoglobin C Disease. StatPearls [Internet]. Treasure Island, (FL): StatPearls Publishing.
- January 2021. PMID: 32644469. 3. Hemoglobin C. Kaiser Permanente. ps://mydoctor.kaiserpermanente.org/ncal/Images/GEN_HEM_hgbC_tcm28-818620.pdf.
- 4. Fairhurst RM, Casella JF. Homozygous Hemoglobin C disease. N Eng J Med. June 24, 2004; 350(26):e24.
- 5. Schwab JG, Abelson HT, Fairhurst RM, Casella JF. Hemoglobin C disease authors reply. N Eng J Med. October 2004;351(15):1577.
- 6. Bain BJ. C/Bothalassemia. Am J Hemat. Nov 2009;84(11):749. 7. Texas Department of State Health Services, Newborn Screening FACT Sheet, HbC/B0 Disease. 8. Origa R. Beta-Thalassemia. GeneReviews. February 4, 2021. www.ncbi.nlm.nih.gov/books/NBK1426/