

TECHNISCHE UNIVERSITÄT

CHEMNITZ

Physik der kondensierten Materie

Kapitel 8 – Elektronen im periodischen Potential

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz

Sommersemester 2019

ulrich.schwarz@physik.tu-chemnitz.de

www.tu-chemnitz.de/physik/EXSE

Elektronen im periodischen Potential

Inhalt: Elektronische Struktur von Kristallen

- 8.1 Bloch Theorem
- 8.2 Das fast freie Elektronengas
- 8.3 Stark gebundene Elektronen ("tight binding")
- 8.4 Metalle, Isolatoren, Halbleiter
- 8.5 Fermiflächen
- 8.6 Zustandsdichte

Ladungstransport

- 8.6 Semiklassisches Modell
- 8.7 Bewegung im elektrischen Feld
- 8.8 Streuprozesse
- 8.9 Boltzmann-Transportgleichung
- 8.10 Bewegung im elektrischen und magnetischen Feld

Siehe Ashcroft/Mermin (8-15), Ibach/Lüth (Kap. 7-7.5, 9-9.7) und Gross/Marx (Kap. 7.3, Kap 8 & 9) etc.

ulrich.schwarz@physik.tu-chemnitz.de

Grenzen des Modells des freien Elektronengases

Ungenauigkeiten bei Transportprozessen

Gemessener Hall-Koeffizient weicht stark vom Modell ab (Größe, Vorzeichen, Feld-Abh.) Abhängigkeit des Magnetowiderstands vom Feld fehlt Größe und Vorzeichen des thermoelektrischen Effekts Wiedemann-Franz Gesetz $\kappa/\sigma T = const.$ weicht bei tiefen Temperaturen ab Temperaturabhängigkeit der DC Leitfähigkeit σ (und damit Streuzeit τ) Richtungsabhängigkeit der Leitfähigkeit AC Leitfähigkeit (Reflektivität und Farbe von Metallen)

Ungenauigkeiten bei thermodynamischen Eigenschaften

Falsche Voraussage für die Größe des linearen Terms der spezifischen Wärme Falsche Voraussage für den kubischen Term der spezifischen Wärme Kompressibilität von Metallen

Grundsätzlich offene Fragen

- Anzahle der Leitungselektronen
- Warum sind einige Elemente Isolatoren?

Annahmen des freien Elektronengas Modells

Freie Elektronen

Vernachlässigung des periodischen Potentials der Ionenrümpfe des Baravis-Gitters

Unabhängige Elektronen

Keine Wechselwirkung zwischen den Elektronen

Relaxationszeit-Näherung

Streuzeit τ hängt nicht von der Konfiguration der Elektronen bei der Streuung ab

8.1 Bloch Theorem

Die Eigenfunktionen der Schrödinger-Gleichung für ein periodisches Potenzial sind durch das Produkt von ebenen Wellen $e^{i\mathbf{k}\cdot\mathbf{r}}$ mit einer gitterperiodischen Funktion $u_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r} + \mathbf{R})$ gegeben.

$$\Psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$$
 mit $u_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r}+\mathbf{R})$

Felix Bloch (1905– 1983), Nobelpreis für Physik 1952 Gross, Marx

Ausgangspunkt ist die periodische Struktur des Kristalls (Bravais Gitter).

Diese Translations-Invarianz bedeutet, dass das durch die Kerne (oder positiv geladenen Ionen-Rümpfe) gegebene Potential $V(\vec{r})$ des Gitters auch translationsinvariant ist:

$$V(\vec{r}) = V\left(\vec{r} + \vec{R}\right)$$

Mit $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$, $n_i \in \mathbb{Z}$ und den Gittervektoren \vec{a}_i des Kristalls.

Dieses periodische Potential $V(\vec{r})$ kann durch harmonische Funktionen beschrieben werden (Fourier-Synthese):

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} e^{-i\vec{G}\vec{r}}$$

Die \vec{G} sind die Gittervektoren des reziproken Gitters: $\vec{G} = h \vec{b}_1 + k \vec{b}_2 + l \vec{b}_3$ mit $h, k, l \in \mathbb{Z}$ und der Basis des reziproken Gitters $\vec{b}_1, \vec{b}_2, \vec{b}_3$.

Die komplexen Zahlen $V_{\vec{G}}$ sind die Fourier-Koeffizienten von $V(\vec{r})$:

$$V_{\vec{G}} = \frac{1}{V_{EZ}} \int_{V_{EZ}} V(\vec{r}) e^{-i\vec{G}\vec{r}} \, d\vec{r}$$

 V_{EZ} : Volumen der Elementarzelle.

Nebenbemerkungen (siehe Ashroft & Mermin, Gl. 8.34 und 8.35):

Da das abgeschirmte Coulomb-Potential $V(\vec{r})$ reell ist, gilt:

$$V_{-\vec{G}} = -V_{\vec{G}}^*$$

Wenn der Kristall inversionssymmetrisch ist, sind die Fourier-Koeffizienten reell, und es gilt:

$$V_{-\vec{G}} = V_{\vec{G}} = V_{\vec{G}}^{*}$$

Generell kann der Energie-Ursprung so gewählt werden, dass der Koeffizient $V_{\vec{G}=0} = 0$ verschwindet.

Für diesen Beweis werden Wellenfunktionen in ebenen Wellen entwickelt (d.h. als Summe harmonischer Funktionen geschrieben):

$$\Psi(\vec{r}) = \sum_{\vec{k}} c_{\vec{k}} e^{i\vec{k}\vec{r}}$$

Diese Darstellung ist erst einmal generell möglich (Entwicklung in orthogonale Funktionen). Aber sie ist auch oft (also nicht nur hier für den Beweis) sehr hilfreich, weil sich die Wellenfunktionen oft in guter Näherung durch wenige Fourier-Komponenten darstellen lassen. In einer analytischen oder numerischen Berechnung reichen oft wenige von Null verschiedene Koeffizienten $c_{\vec{k}}$ aus, um die Wellenfunktion zu beschreiben.

Wir nehmen wieder (wie bei den Phononen) periodische (Born-von-Karmann) Randbedingungen an:

$$\Psi(r + N_i a_i) = \Psi(r)$$
 für einen Kristall mit Kantenlängen $N_i a_i = L_i$

und N_i Elementarzellen in Richtung *i*.

Damit nehmen die Wellenvektoren \vec{k} nur diskrete Werte an:

$$\vec{k} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + x_3 \vec{b}_3$$
 mit $x_i = \frac{m_i}{N_i}$ und $m_i \in \mathbb{Z}$

Mit dem Fourier-Ansatz ergibt sich für die kinetische Energie:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r}) = \sum_{\vec{k}}\frac{\hbar^2}{2m}k^2 c_{\vec{k}} e^{i\vec{k}\vec{r}}$$

und für die potentielle Energie:

$$V(\vec{r}) \Psi(\vec{r}) = \left(\sum_{\vec{G}} V_{\vec{G}} e^{-i\vec{G}\vec{r}}\right) \left(\sum_{\vec{k}} c_{\vec{k}} e^{i\vec{k}\vec{r}}\right)$$
$$= \sum_{\vec{G},\vec{k}} V_{\vec{G}} c_{\vec{k}} e^{i(\vec{G}+\vec{k})\vec{r}} \qquad \text{Substitution } k' = G + k \quad (*)$$
$$= \sum_{\vec{G},\vec{k}'} V_{\vec{G}} c_{\vec{k}'-\vec{G}} e^{i\vec{k}'\vec{r}}$$

(*) im Folgenden spare ich mir die Kennzeichnung der Vektoren mit " \rightarrow "

Mit einer weiteren Umbenennung von G und k'zu G'und k werden kinetische und potentielle Energie in die stationäre Schrödinger-Gleichung $H\Psi = E\Psi$ eingesetzt.

$$\sum_{k} e^{ikr} \left\{ \left(\frac{\hbar^2}{2m} k^2 - E \right) c_k + \sum_{G} V_{G'} c_{k-G'} \right\} = 0$$

Weil die harmonischen Funktionen e^{-ikr} eine orthonormale Basis bilden, zerfällt das in N unabhängige Gleichungen, d.h. für jedes beliebige k muss der Term in den geschweiften Klammern Null sein.

$$\left(\frac{\hbar^2}{2m}k^2 - E\right)c_k + \sum_{G'}V_{G'}c_{k-G'} = 0$$

Für jedes k hat diese Gleichung mehrere Lösungen, die mit einem Band-Index n durchnummeriert werden.

In dieser Gleichung tauchen nur Koeffizienten c_k auf, die sich um reziproke Gittervektoren unterscheiden (also nur ein Bruchteil aller c_k). Siehe nächste Folie.

Wenn man für alle k die Gleichung löst und die $E_n(k)$ bestimmt, erhält man die Dispersionsrelation (d.h. Impuls und Energie aller möglichen Elektronen-Zustände im Gitter).

Wellenvektoren und Vektoren des Reziproken Gitters, die zur Konstruktion einer Blochwelle dienen:

Durch die Ersetzung von k durch k-G mit einem bestimmten G kann die Dispersionsrelation in die 1. BZ zurückgefaltet werden (im zweiten Term wurde G' mit G`-G ersetzt):

$$\left(\frac{\hbar^2}{2m}(k-G)^2 - E\right)c_{k-G} + \sum_{G'}V_{G'-G}c_{k-G'} = 0$$

Durch diese Umindizierung ändern sich die Lösungen des Gleichungssystems (und damit die Dispersion und die Wellenfunktionen) nicht. Es werde nur die Zweige der Dispersion über k-Vektoren in der 1 BZ dargestellt (siehe die nächsten beiden Folien).

Man spricht von ausgedehntem und (auf die 1. BZ) reduzierten Zonen-Schema der Dispersionsrelation.

Reduziertes Zonenschema

Reduziertes Zonenschema für ein freies Elektronengas in einem einfach kubischen Gitter mit Gitterkonstante *a.*

Dargestellt ist $E_n(k)$ nur entlang k_x innerhalb der 1. Brillouin-Zone

Für ein bestimmtes k sind in der allgemeinen Entwicklung in harmonischen Funktionen

$$\Psi(\vec{r}) = \sum_{\vec{k}} c_{\vec{k}} e^{i\vec{k}\vec{r}}$$

(wie gezeigt) nur die c_{k+G} ungleich Null, die sich jeweils um reziproke Gittervektoren unterscheiden. Damit ist

$$\Psi(\vec{r}) = \sum_{G} c_{k-G} e^{i(k-G)r}$$
$$= e^{ikr} \sum_{G} c_{k-G} e^{-iGr}$$

Der Summenterm ist eine Überlagerung (Fourier-Synthese) von gitterperiodischen harmonischen Funktionen. Damit hat dieser Term die selbe Periodizität (oder Translations-Invarianz) wie das Bravais Gitter. Damit kann die Wellenfunktion geschrieben werden als:

$$\Psi(\vec{r}) = e^{ikr}u(r)$$

Damit ist der zweite Beweis des Bloch Theorems abgeschlossen.

Aber, wie gesagt, diese Entwicklung in harmonische Funktionen ist allgemein nützlich. Auf dieser Entwicklung basieren viele Fourier-Methoden oder spektrale Methode.

Bemerkung zum Impuls:

Anwendung des Impuls-Operators auf die Bloch-Wellenfunktion:

$$-i\hbar \nabla \Psi_{n,k} = -i\hbar \nabla \left(e^{ikr} u(r) \right)$$

$$= \hbar k \Psi_{n,k} - i\hbar \, e^{ikr} \nabla u(r)$$

Die Bloch-Wellenfunktion ist also kein Eigenzustand zum Impuls-Operator.

Trotzdem ist der Wellenvektor k eine sinnvolle Größe. Man sprich von quasi-Impuls oder Kristall-Impuls.

Die mittlere Geschwindigkeit eines Elektrons erhält man analog zur Gruppengeschwindigkeit über den Gradient der Dispersionsrelation:

$$v_n(k) = -\frac{1}{\hbar} \nabla_k E_n(k)$$

Zur Erinnerung: Fermikugel und Fermienergie

Ibach, Lüth

8.4 Fermi-Flächen von Metallen

Fermi-Fläche $E(k) = E_F$ trennt bei T = 0 besetzte von unbesetzten Zuständen Form der Fermi-Fläche: bestimmt Eigenschaften von Metallen (mit)

Fermi-Kugel

$$k_{\rm F} = (3\pi^2 n)^{1/3}$$

Wie sehen die Fermi-Flächen in Metallen aus?

Fermi-Fläche eines quadratischen Gitters

Hier für Kristallelektronen (ohne periodisches Potential)

periodisches Zonenschema

Aufspalten der Energieparabel des freien Elektrons (gestrichelt) an den Rändern der ersten Brillouin-Zone (im eindimensionalen Problem).

Vergleichen von Zonenschemata

Zonenschema

In guter Näherung durch Modelle für freie Elektronen beschrieben:

E(k) fast parabolisch, Zustandsdichte $\propto E^{1/2}$

Die Bandlücken an den Zonenrändern sind relativ klein

Konstruktion der Fermi-Fläche – Quadratisches Gitter

Qualitativer Verlauf der Fermi-Flachen von freien Elektronen (links) und Kristallelektronen (rechts) für ein quadratisches Gitter.

Fermi-Flächen von einfachen Metallen

Weil die Alkalimetalle (Li, ..., Cs) nur ein Valenzelektron pro Atom haben, liegen die Ränder der ersten Brillouinzone fern von der fast kugelförmigen Fermifläche

Fermi-Fläche von Na ist fast kugelförmig, Cs um etwa 10% verformt.

Cu, Ag, und Au (und auch Cs) weichen stärker von freien Elektronen ab: Fermiflächen berühren Rand der BZ \rightarrow biegen sich wg. des Gitterpotentials (dE/dk=0) auf

Annahme: $V(\vec{r})$ ist klein im Vergleich zur kinetischen Energie des freien Elektrons.

Dann kann die Dispersionsrelation der quasi-freien Elektronen in guter Näherung in Störungsrechnung niedriger Ordnung berechnet werden.

Die Wellenfunktion wird durch eine Bloch-Welle beschrieben:

$$\Psi(\vec{r}) = \sum_{G} c_{k-G} e^{i(k-G)r}$$
$$= e^{ikr} \sum_{G} c_{k-G} e^{-iGr}$$

1. Fall: Störungsrechnung, wenn keine Entartung vorliegt.

Ausgehend von einem Zustand auf der Dispersionsrelation des freien Elektrons, wird der Einfluss aller anderen Zweige der Dispersionsrelation auf den Zustand in Störungsrechnung untersucht.

Keine Entartung heißt, dass der Energieabstand zwischen untersuchtem Zustand und den anderen Zweigen sehr viel größer ist, als das Potential $V(\vec{r})$. Letzteres ist ortsabhängig, "sehr viel größer" bezieht sich auf die Amplitude des Potentials $V(\vec{r})$, also z.B. Maximum – Minimum.

Untersuchung des Einflusses des periodischen Potentials auf eine bestimmte Wellenfunktion

$$\Psi(\vec{r}) = \sum_{G_1} c_{k-G_1G} e^{i(k-G_1)r}$$

für ein bestimmtes k; dabei wird G_1 so gewählt, dass $k - G_1$ in der 1. BZ liegt.

Einsetzen in die Schrödinger-Gleichung für den Koeffizienten zu $k - G_1$:

$$\left(\frac{\hbar^2}{2m}(k-G_1)^2 - E\right)c_{k-G_1} + \sum_G V_{G-G_1}c_{k-G} = 0$$

Und für die anderen Koeffizienten:

$$c_{k-G} = -\frac{V_{G_1-G}c_{k-G_1}}{E - E_{k-G}^0} - \sum_{G' \neq G_1} \frac{V_{G'-G}c_{k-G'}}{E - E_{k-G}^0}$$

0 in 1. bzw. 2. Ordnung von $V(\vec{r})$; dabei ist E_{k-G}^0 die Energie des freien Elektrons.

Mit $\frac{V_{G_1-G}}{E-E_{k-G}^0}$ sehr klein ist, d.h. großem Abstand zum nächsten Zweig folgt

$$c_{k-G} \ll c_{k-G_1}$$

Oben einsetzten
$$\rightarrow \qquad (E - E_{k-G_1}^0)c_{k-G_1} = \sum_{G \neq G_1} \frac{V_{G-G_1}V_{G_1-G}}{E - E_{k-G}^0}c_{k-G_1} + O(V^3)$$

Mit $E \approx E_{k-G_1}^0$ folgt

$$E = E_{k-G_1}^0 + \sum_{G \neq G_1} \frac{\left| V_{G-G_1} \right|^2}{E_{k-G_1}^0 - E_{k-G}^0} + O(V^3)$$

D.h. die Energie unterscheidet sich erst in Störungsrechnung 2. Ordnung von der des freien Elektrons, wenn keine Entartung vorliegt.

2. Fall: Störungsrechnung, wenn Entartung vorliegt, d.h. für Zustände auf der Dispersionsrelation nahe an den Kreuzungspunkten.

Mehrere Zustände sind dann näherungsweise entartet:

$$|E_{k-G}^0 - E_{k-G_2}^0| \approx O(V)$$
 für $G = G_1 \dots G_m$

Alle anderen Zustände sind weit entfernt (\rightarrow Fall 1).

Einsetzen der c_{k-G} in die SG:

$$(E - E_{k-G_i}^0)c_{k-G_i} = \sum_{j=1..m} V_{G_j-G_i}c_{k-G_j} + \sum_{j=1..m} \left(\sum_{j=1..m} \frac{V_{G-G_i}V_{G_j-G}}{E - E_{k-G}^0}\right)c_{k-G_j} + O(V^3)$$

Nur der lineare Term wird behalten:

$$(E - E_{k-G_i}^0)c_{k-G_i} = \sum_{j=1..m} V_{G_j-G_i} c_{k-G_j}$$

Das ist ein gekoppeltes Gleichungssysteme für die c_{k-G_i} mit i = 1..m

Daraus folgen m Quantenzustände als Linearkombination:

$$\Psi_k(r) = \sum_{i=1..m} c_{k-G_i G} e^{i(k-G_i)r}$$

Einfachster Fall: (nur) zwei nahezu entartete Niveaus

$$(E - E_{k-G_1}^0)c_{k-G_1} = V_{G_2-G_1} c_{k-G_2}$$

$$(E - E_{k-G_2}^0)c_{k-G_2} = V_{G_1-G_2} c_{k-G_1}$$

Substitution: $q = k - G_1$ und $G = G_2 - G_1$

$$\left(E-E_q^0\right)c_q=V_G\ c_{q-G}$$

$$(E - E_{q-G}^{0})c_{q-G} = V_{-G} c_{q} = V_{G}^{*} c_{q}$$

Entartung $E_q^0 \approx E_{q-G}^0$ bedeutet, dass $|q| \approx |q - G|$ und damit q und q - G auf den Rändern der BZ liegen (Bragg-Ebene).

Der Einfluss des periodischen Potentials ist am stärksten für Elektronen-Zustände, die die Bragg-Bedingung für Streuung erfüllen.

Lösung des Gleichungssystems:

$$\begin{vmatrix} E - E_q^0 & -V_G \\ -V_G^* & E - E_{q-G}^0 \end{vmatrix} = 0$$

Damit folgt

$$E = \frac{1}{2} \left(E_q^0 + E_{q-G}^0 \right) \pm \sqrt{\left(\frac{E_q^0 - E_{q-G}^0}{2} \right)^2 + |V_G|^2}$$

Am Rang der BZ gilt $E_q^0 \approx E_{q-G}^0$, damit folgt:

$$E = E_q^0 \pm |V_G|$$

Die Energie-Aufspaltung (Bandlücke) der Dispersionsrelation am Rand der BZ beträgt damit $2|V_G|$.

Näherungen: quasifreie vs. tight binding

8.2 Stark gebundene Elektronen ("tight binding")

Das in der Näherung vom stark gebundenen Elektron verwendete Potential

Tight binding model

Aufspalten der Energieparabel des freien Elektrons (gestrichelt) an den Rändern der ersten Brillouin-Zone (im eindimensionalen Problem).

Ge: Gruppe-IV

GaAs: III-V

ZnSe: II-VI

8.2 Stark gebundene Elektronen

Linear Combination of Atomic Orbitals (LCAO) als Näherung für Kristallelektronwellenfunktion.

8.2 Stark gebundene Elektronen ("tight binding")

Das in der Näherung vom stark gebundenen Elektron verwendete Potential

$$E(\mathbf{k}) = E_{\mathrm{A}}^{i} - \alpha^{i} - \beta^{i} \sum_{NN} \mathrm{e}^{i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')}$$

Energiespektrum 2D

Energiespektrum von stark gebundenen Elektronen auf einem einfachen zweidimensionalen quadratischen Gitter mit Gitterkonstante *a.*

$$E(\mathbf{k}) = E_{\mathrm{A}} - \alpha - 2\beta \left[\cos(k_x a) + \cos(k_y a) \right]$$

8.3 Metalle, Isolatoren, Halbleiter

Metalle: Festkörper mit unvollständig gefüllten Bändern

Halbleiter und Isolatoren haben vollständig gefüllte oder leere Bänder und eine Energielücke, die das höchste besetzte und das niedrigste unbesetzte Band trennt. Halbleiter haben eine kleine Energielücke ($E_g < 2-3$ eV).

Gross, Marx

Metalle und Halbleiter im PSE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Н	Schmelztemperatur (°C)															Не	
1	-259.14 0.05868	Bindungsenergie (kJ/mol)														-272		
	Li	Be							Übergangsmetalle				В	С	N	0	F	Ne
2	180.54	1278		Alk	alimet	alle Er	dalkaliı	metalle					2300	3500	-209.9	-218.4	-219.62	-248.6
	158	320		Sel	tene Er	dena	ndere M	1etalle	Halbm	etalle/	Halbleiter		561	711	474	251	81.0	1.92
2	Na	Mg	Nichtmetalle Halogene						Edelgase				AI	Si	Р	S	CI	Ar
3	97.8 107	650 145											660.37 327	1410 446	44.1 331	112.8 275	-100.98 135	-189.3 7.74
	К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	63.65	839	1539	1660	1890	1857	1245	1535	1495	1453	1083	419.58	29.78	937.4	817	217	-7.2	-157.2
	90.1	178	376	468	512	395	282	413	424	428	336	130	271	372	285.3	237	118	11.2
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	38.89	764	1523	1852	2468	2617	2200	2250	1966	1552	961.93	320.9	156.61	231.9	630	449.5	113.5	-111.9
\vdash	02.2 Cc	100 Ro	*	003	730	14/	Bo	050	554 Tr	370 D+	204 A	112 Ha	243 TI	Db	205	211 Po	107	15.9 Dn
6	28.5	725		2150	10	2410	2100	2045	2410	1772	Au	ny	202.5	FU	271.2	254	AL 202	71
ľ	28.5 77.5	183		621	782	859	775	788	670	564	368	-38.87 65	182	196	271.3 210	254 144	302	19.5
	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
7	27	700 160		?	?	?	?	?	?	?	?	?						
													I					
			*	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				920	795	935	1010	2	1072	822	1311	1360	1412	1470	1522	1545	824	1656
				431	417	357	328	· ·	206	179	400	391	294	302	317	233	154	428
			**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				1050 410	1750 598	1600	1132 536	640 456	639.5 <mark>347</mark>	994 264	1340 385	?	?	?	?	?	?	?

Energiebänder von Diamant

Kohlenstoff C (1s², 2s², 2p²), aber Diamant zeigt sp³ Hybridisierung.

Energiebänder KCI

Die vier höchsten besetzten Energiebänder von KCI, gerechnet in Abhängigkeit vom Ionenabstand in Bohr-Radien

fcc Gitter \rightarrow bcc reziprokes Gitter

AI ([Ne] 3s² 3p¹)

AI ([Ne] 3s² 3p¹)

In guter Näherung durch Modelle für freie Elektronen beschrieben: E(k) fast parabolisch, Zustandsdichte $\propto E^{1/2}$ Die Bandlücken an den Zonenrändern sind relativ klein

Beispiele für Bandstrukturen: Cu (3d-Übergangsmetall)

s-s-Überlapp groß:

Gross, Marx

Breites Band (-9.5 eV beginnt (Γ) und unterhalb von etwa -5 eV einen fast parabolischen Verlauf hat. Am Fermi-Niveau dominiert das parabolische *s-Band*. Deshalb kann Cu recht gut im Rahmen des freien Elektronengasmodells beschrieben werden (nicht aber Fe, Ni, Co)

d-d-Überlapp sehr klein wegen stark gebundener 3d-Elektronen: Sehr schmale d-Bänder. Die schmalen d-Bänder liegen zwischen etwa -6 und -2 eV

Beispiele für Bandstrukturen: Cu (3d-Übergangsmetall)

Fermi-Oberfläche

8.5 Zustandsdichte

Durch Volumen teilen \rightarrow Zustandsdichte pro Energie und pro Volumen

D(E) wird dominiert durch Punkte im **k-Raum, wo** ∇_k E verschwindet, d. h. flach verlaufende Energieflächen \rightarrow kritische Punkte = van Hove-Singularitäten

Fermi-Flächen von komplexeren Metallen

Ca, Sr haben je 2 s-Elektronen. Erwartet: Isolatoren.

Aber: Bandüberlappung, daher ist (gezeigtes) 1. Band nur teils gefüllt, hingegen besetzen einige Elektronen das 2. Band.

Al hat 3 Valenzelektronen/Atom, hier werden drei Energiebänder gefüllt (hier 2. grün, 3. magenta) \rightarrow komplexe Form \rightarrow komplexe Magnetotransporteigenschaften

Ni bei tiefen Temp ferromagnetisch, energet. Aufspaltung für Spin ↑, ↓ Elektronen

Bandstruktur Halbleiter

Falls die Bandstruktur eine absolute Energielücke besitzt, das heißt, wenn für alle k-Richtungen in einem bestimmten Energiebereich keine Zustände verfügbar sind, erhalten wir einen Isolator oder Halbleiter

Bandstruktur direkter vs indirekter Halbleiter

Photonenenergie ≥Bandlücke

 $E_G \geq \hbar \omega$

Bandstruktur direkter vs indirekter Halbleiter

Bandstruktur direkter vs indirekter Halbleiter

Indirekter Übergang unter Beteiligung von Phononen (nehmen den quasi-Impuls auf).

Übergang zu direkter Absorption bei direkter Bandlücke.

Experimentelle Bestimmung der kompletten Bandstruktur

Grundlage: PES (photo electron spectroscopy)

Experimentelle Bestimmung von kompletten Bandstruktur

ARPES (angle resolved photo electron spectroscopy)

measure E, **k** outside the solid deduce E(**k**) inside the solid

Ziel: Beschreibung von Transportphänomenen

• Bewegung von mehr oder weniger lokalisierten Kristallelektronen aufgrund externer Kräfte

Kristallelektronen

• Verbindung zwischen Transport und Bandstruktur E_n(k)

freie Elektronen (Kap. 7)

	Sommerfeld	Bloch
Quantenzahlen	Wellenvektor k (ħ k ist Impuls)	Wellenvektor k , Bandindex n (\hbar k ist Kristallimpuls)
Bereich der Quantenzahlen	k verträglich mit Randbedingungen, sonst beliebig groß	k verträglich mit Randbedingungen, beschränkt auf 1. BZ
Energie	$E(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m}$	$E_n(\mathbf{k}) = E_n(\mathbf{k} + \mathbf{G})$
Geschwindigkeit	$\mathbf{v}_{\mathbf{k}} = \frac{1}{\hbar} \frac{\partial E}{\partial \mathbf{k}} = \frac{\hbar \mathbf{k}}{m}$	$\mathbf{v}_{n,\mathbf{k}} = \frac{1}{\hbar} \frac{\partial E_n(\mathbf{k})}{\partial \mathbf{k}}$
Wellenfunktion	ebene Welle: $\Psi_{\mathbf{k}}(\mathbf{r}) = \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}}$	Bloch-Welle: $\Psi_{n,\mathbf{k}}(\mathbf{r}) = u_{n,\mathbf{k}}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$ mit $u_{n,\mathbf{k}}(\mathbf{r}) = u_{n,\mathbf{k}}(\mathbf{r} + \mathbf{R})$

8.6 Semiklassisches Modell

Ziel: Beschreibung von Transportphänomenen

- Bewegung von mehr oder weniger lokalisierten Kristallelektronen aufgrund externer Kräfte
- Verbindung zwischen Transport und Bandstruktur E_n(k)

Gültigkeitsbereich

- Wohldefinierter Impuls → Ausdehnung des Wellenpakets über viele Gitterkonstanten
- Wellenpaket kleiner als der Abstand zwischen Streuprozessen (freie Weglänge),
 Wellenpaket bewegt sich quasi-klassisch zwischen zwei Streuereignissen
- Externe Felder werden klassisch behandelt → Variation auf einer Längenskala, die groß gegenüber der Ausdehnung des Wellenpakets ist
- Bandindex bleibt erhalten, keine Band-zu-Band Übergänge

8.6 Semiklassisches Modell

Transport: Teilchenbild gut geeignet \rightarrow Wellenpakete aus Bloch-Wellen

Heisenbergsche Unschärferelation: $\Delta p \cdot \Delta x \ge \hbar$ mit $\Delta p = \hbar \Delta k \rightarrow \Delta k \cdot \Delta x \ge 1$

Wohldef. Wellenpaket: $\Delta k \ll 2\pi/a$ (1. BZ) $\rightarrow \Delta x \gg a/(2\pi)$, also \gg Einheitszelle

Lineare Überlagerung von Blochwellen im Intervall [k- $\Delta k/2$, k + $\Delta k/2$]

$$\Psi_n(\mathbf{r},t) = \sum_{k-\frac{\Delta k}{2}}^{k+\frac{\Delta k}{2}} a(\mathbf{k}) u_{\mathbf{k}}(\mathbf{r}) e^{i\left[\mathbf{k}\cdot\mathbf{r}-\frac{E_n(\mathbf{k})}{\hbar}t\right]}$$

Ortsdarstellung eines Wellenpakets, das die Bewegung von räumlich lokalisierten Elektronen beschreibt

